1
|
Li X, Bao Y, Zhang N, Lin C, Xie Y, Wei Y, Luo Q, Liu J, Sha Z, Wu G, Zhou T, Chen Q, Ling T, Pan W, Lu L, Wu L, Dai Y, Jin Q. Senescent CD8+ T cells: a novel risk factor in atrial fibrillation. Cardiovasc Res 2025; 121:97-112. [PMID: 39382426 DOI: 10.1093/cvr/cvae222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/24/2024] [Accepted: 08/16/2024] [Indexed: 10/10/2024] Open
Abstract
AIMS Immune cell alterations may play a role in the development of atrial fibrillation (AF). Our objective was to comprehensively characterize immune cells in AF, and investigate the potential mechanisms. METHODS AND RESULTS Single-cell RNA sequencing and multicolour flow cytometry revealed that T cells constituted the most significant subset alterations in AF, and senescent CD8+ T cells were AF-associated subset. Senescent CD8+ T cells increased in both peripheral veins (P < 0.0001) and the left atria (P < 0.05) in patients with AF compared to non-AF control. Senescent CD8+ T cells were independently associated with AF prevalence (odds ratio = 2.876, P < 0.05) and postprocedural recurrence (hazard ratio = 22.955, P < 0.0001) using a cross-sectional study and a subsequent prospective cohort study. Senescent CD8+ T cells secreted an increased amount of interferon (IFN)-γ, which induces Ca2+ handling abnormalities in human induced pluripotent stem cell-derived atrial cardiomyocytes, and translated into an increased susceptibility to AF assessed by heart optical mapping. CONCLUSIONS An increased amount of senescent CD8+ T cells may be a hallmark of the immune senescence phenotype in AF and potentially serve as a valid biomarker for assessing prevalence and postprocedural recurrence of AF. By connecting immune senescence with electrophysiological disturbances in AF, this research provides a potential mechanism for the involvement of senescent CD8+ T cells in proarrhythmic calcium disorders and suggests novel avenues for developing new immune-modulatory and senolytic therapies for AF.
Collapse
Affiliation(s)
- Xiang Li
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin Road Number Two, Shanghai 200025, China
| | - Yangyang Bao
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin Road Number Two, Shanghai 200025, China
| | - Ning Zhang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin Road Number Two, Shanghai 200025, China
| | - Changjian Lin
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin Road Number Two, Shanghai 200025, China
| | - Yun Xie
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin Road Number Two, Shanghai 200025, China
| | - Yue Wei
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin Road Number Two, Shanghai 200025, China
| | - Qingzhi Luo
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin Road Number Two, Shanghai 200025, China
| | - Jingmeng Liu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin Road Number Two, Shanghai 200025, China
| | - Zimo Sha
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin Road Number Two, Shanghai 200025, China
| | - Guanhua Wu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin Road Number Two, Shanghai 200025, China
| | - Taojie Zhou
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin Road Number Two, Shanghai 200025, China
| | - Qiujing Chen
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin Road Number Two, Shanghai 200025, China
| | - Tianyou Ling
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin Road Number Two, Shanghai 200025, China
| | - Wenqi Pan
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin Road Number Two, Shanghai 200025, China
| | - Lin Lu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin Road Number Two, Shanghai 200025, China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin Road Number Two, Shanghai 200025, China
| | - Liqun Wu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin Road Number Two, Shanghai 200025, China
| | - Yang Dai
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin Road Number Two, Shanghai 200025, China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin Road Number Two, Shanghai 200025, China
| | - Qi Jin
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin Road Number Two, Shanghai 200025, China
| |
Collapse
|
2
|
Yan W, Li Y, Wang G, Huang Y, Xie P. Clinical application and immune infiltration landscape of stemness-related genes in heart failure. ESC Heart Fail 2025; 12:250-270. [PMID: 39275894 PMCID: PMC11769652 DOI: 10.1002/ehf2.15055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 07/17/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
BACKGROUND Heart failure (HF) is the leading cause of morbidity and mortality worldwide. Stemness refers to the self-renewal and differentiation ability of cells. However, little is known about the heart's stemness properties. Thus, the current study aims to identify putative stemness-related biomarkers to construct a viable prediction model of HF and characterize the immune infiltration features of HF. METHODS HF datasets from the Gene Expression Omnibus (GEO) database were adopted as the training and validation cohorts while stemness-related genes were obtained from GeneCards and previously published papers. Feature selection was performed using two machine learning algorithms. Nomogram models were then constructed to predict HF risk based on the selected key genes. Moreover, the biological functions of the key genes were evaluated using Gene Ontology (GO) and Kyoto Encyclopedia of Genes Genomes (KEGG) pathway analyses, and gene set variation analysis (GSVA) and enrichment analysis (GSEA) were performed between the high- and low-risk groups. The immune infiltration landscape in HF was investigated, and the interaction network of key genes was analysed to predict potential targets and molecular mechanisms. RESULTS Seven key genes, namely SMOC2, LUM, FNDC1, SCUBE2, CD163, BLM and S1PR3, were included in the proposed nomogram. This nomogram showed good predictive performance for HF diagnosis in the training and validation sets. GO and KEGG analyses revealed that the key genes were primarily associated with ageing, inflammatory processes and DNA oxidation. GSEA and GSVA identified various inflammatory and immune signalling pathways that were enriched between the high- and low-risk groups. The infiltration of 15 immune cell subsets suggests that adaptive immunity has an important role in HF. CONCLUSIONS Our study identified a clinically significant stemness-related signature for predicting HF risk, with the potential to improve early disease diagnosis, optimize risk stratification and provide new strategies for treating patients with HF.
Collapse
Affiliation(s)
- Wenting Yan
- Gansu University of Traditional Chinese MedicineLanzhouChina
| | - Yanling Li
- Department of CardiologyGansu Provincial HospitalLanzhouChina
| | - Gang Wang
- First Clinical Medical College of Lanzhou UniversityLanzhouChina
| | - Yuan Huang
- Gansu University of Traditional Chinese MedicineLanzhouChina
| | - Ping Xie
- Department of CardiologyGansu Provincial HospitalLanzhouChina
| |
Collapse
|
3
|
Kumar V, Bansal SS. Immunological Regulation of Fibrosis During Heart Failure: It Takes Two to Tango. Biomolecules 2025; 15:58. [PMID: 39858452 PMCID: PMC11763336 DOI: 10.3390/biom15010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Immuno-fibrotic networks and their protein mediators, such as cytokines and chemokines, have increasingly been appreciated for their critical role in cardiac healing and fibrosis during cardiomyopathy. Immune activation, trafficking, and extravasation are tightly regulated to ensure a targeted and effective response against non-self antigens/pathogens while preserving tolerance towards self-antigens and coordinate fibrotic responses for efficient scar formation, a distinction that is severely compromised during chronic diseases. It is clear that immune cells are not only the critical regulators of post-infarct healing and scarring but are also the key players in regulating fibroblast activation during left-ventricular (LV) remodeling. Incomplete resolution coupled with sustained low-grade inflammation during dilated cardiomyopathy precipitates a "frustrated" immune cell response resulting in unconstrained pro-fibrotic and pro-hypertrophic signaling to induce maladaptive structural and functional changes in the myocardium. The aims of this review are to (i) briefly summarize the role of key immune cells that regulate wound healing during MI and fibrosis during LV remodeling; (ii) underscore phenotypic diversities in immune cells and their subsets to underscore their role in regulating fibrotic responses, and, last but not the least, (iii) highlight gaps in our understanding that restrict the translation of immuno-modulatory therapies from the preclinical models to heart failure patients.
Collapse
Affiliation(s)
- Vinay Kumar
- Heart and Vascular Institute, Pennsylvania State University Hershey Medical Center, Hershey, PA 17033, USA;
- Department of Medicine, Pennsylvania State University Hershey Medical Center, Hershey, PA 17033, USA
| | - Shyam S. Bansal
- Heart and Vascular Institute, Pennsylvania State University Hershey Medical Center, Hershey, PA 17033, USA;
- Department of Medicine, Pennsylvania State University Hershey Medical Center, Hershey, PA 17033, USA
- Department of Cellular and Molecular Physiology, Pennsylvania State University Hershey Medical Center, Hershey, PA 17033, USA
| |
Collapse
|
4
|
Tasis A, Papaioannou NE, Grigoriou M, Paschalidis N, Loukogiannaki C, Filia A, Katsiki K, Lamprianidou E, Papadopoulos V, Rimpa CM, Chatzigeorgiou A, Kourtzelis I, Gerasimou P, Kyprianou I, Costeas P, Liakopoulos P, Liapis K, Kolovos P, Chavakis T, Alissafi T, Kotsianidis I, Mitroulis I. Single-Cell Analysis of Bone Marrow CD8+ T Cells in Myeloid Neoplasms Reveals Pathways Associated with Disease Progression and Response to Treatment with Azacitidine. CANCER RESEARCH COMMUNICATIONS 2024; 4:3067-3083. [PMID: 39485042 PMCID: PMC11616010 DOI: 10.1158/2767-9764.crc-24-0310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/13/2024] [Accepted: 10/29/2024] [Indexed: 11/03/2024]
Abstract
SIGNIFICANCE Immunophenotypic analysis identified a BM CD57+CXCR3+ subset of CD8+ T cells associated with response to AZA in patients with MDS and AML. Single-cell RNA sequencing analysis revealed that IFN signaling is linked to the response to treatment, whereas TGF-β signaling is associated with treatment failure, providing insights into new therapeutic approaches.
Collapse
Affiliation(s)
- Athanasios Tasis
- Translational Research and Laboratory Medicine Unit, First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Nikos E. Papaioannou
- Laboratory of Immune Regulation, Center of Basic Sciences, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Maria Grigoriou
- Translational Research and Laboratory Medicine Unit, First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Nikolaos Paschalidis
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Catherine Loukogiannaki
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Anastasia Filia
- Translational Research and Laboratory Medicine Unit, First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Kyriaki Katsiki
- Translational Research and Laboratory Medicine Unit, First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Eleftheria Lamprianidou
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Vasileios Papadopoulos
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Christina Maria Rimpa
- Translational Research and Laboratory Medicine Unit, First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Kourtzelis
- Hull York Medical School, York Biomedical Research Institute, University of York, York, United Kingdom
| | | | - Ioannis Kyprianou
- Molecular Hematology-Oncology, Karaiskakio Foundation, Nicosia, Cyprus
| | - Paul Costeas
- Molecular Hematology-Oncology, Karaiskakio Foundation, Nicosia, Cyprus
| | - Panagiotis Liakopoulos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Konstantinos Liapis
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Petros Kolovos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany
- National Center for Tumor Diseases, Partner Site Dresden, Dresden, Germany
| | - Themis Alissafi
- Laboratory of Immune Regulation, Center of Basic Sciences, Biomedical Research Foundation Academy of Athens, Athens, Greece
- Laboratory of Biology, School of Medicine, Athens, Greece
| | - Ioannis Kotsianidis
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ioannis Mitroulis
- Translational Research and Laboratory Medicine Unit, First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany
- National Center for Tumor Diseases, Partner Site Dresden, Dresden, Germany
| |
Collapse
|
5
|
Douradinha B. Computational strategies in Klebsiella pneumoniae vaccine design: navigating the landscape of in silico insights. Biotechnol Adv 2024; 76:108437. [PMID: 39216613 DOI: 10.1016/j.biotechadv.2024.108437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/07/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
The emergence of multidrug-resistant Klebsiella pneumoniae poses a grave threat to global public health, necessitating urgent strategies for vaccine development. In this context, computational tools have emerged as indispensable assets, offering unprecedented insights into klebsiellal biology and facilitating the design of effective vaccines. Here, a review of the application of computational methods in the development of K. pneumoniae vaccines is presented, elucidating the transformative impact of in silico approaches. Through a systematic exploration of bioinformatics, structural biology, and immunoinformatics techniques, the complex landscape of K. pneumoniae pathogenesis and antigenicity was unravelled. Key insights into virulence factors, antigen discovery, and immune response mechanisms are discussed, highlighting the pivotal role of computational tools in accelerating vaccine development efforts. Advancements in epitope prediction, antigen selection, and vaccine design optimisation are examined, highlighting the potential of in silico approaches to update vaccine development pipelines. Furthermore, challenges and future directions in leveraging computational tools to combat K. pneumoniae are discussed, emphasizing the importance of multidisciplinary collaboration and data integration. This review provides a comprehensive overview of the current state of computational contributions to K. pneumoniae vaccine development, offering insights into innovative strategies for addressing this urgent global health challenge.
Collapse
|
6
|
Douradinha B. Exploring the journey: A comprehensive review of vaccine development against Klebsiella pneumoniae. Microbiol Res 2024; 287:127837. [PMID: 39059097 DOI: 10.1016/j.micres.2024.127837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/09/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024]
Abstract
Klebsiella pneumoniae, a prominent nosocomial pathogen, poses a critical global health threat due to its multidrug-resistant (MDR) and hypervirulent strains. This comprehensive review focuses into the complex approaches undertaken in the development of vaccines against K. pneumoniae. Traditional methods, such as whole-cell and ribosomal-based vaccines, are compared with modern strategies, including DNA and mRNA vaccines, and extracellular vesicles (EVs), among others. Each method presents unique advantages and challenges, emphasising the complexity of developing an effective vaccine against this pathogen. Significant advancements in computational tools and artificial intelligence (AI) have revolutionised antigen identification and vaccine design, enhancing the precision and efficiency of developing multiepitope-based vaccines. The review also highlights the potential of glycomics and immunoinformatics in identifying key antigenic components and elucidating immune evasion mechanisms employed by K. pneumoniae. Despite progress, challenges remain in ensuring the safety, efficacy, and manufacturability of these vaccines. Notably, EVs demonstrate promise due to their intrinsic adjuvant properties and ability to elicit robust immune responses, although concerns regarding inflammation and antigen variability persist. This review provides a critical overview of the current landscape of K. pneumoniae vaccine development, stressing the need for continued innovation and interdisciplinary collaboration to address this pressing public health issue. The integration of advanced computational methods and AI holds the potential to accelerate the development of effective immunotherapies, paving the way for novel vaccines against MDR K. pneumoniae.
Collapse
|
7
|
Guo S, Gong Z, Sun X, Gao F, Li X, Zu X, Qu C, Zhang H, Gao H. Consensus Clustering Analysis Identifies Ferroptosis-Related Patient Clusters and Predictive Signature Construction Based on Ferroptosis-Related Genes in Ischemic Cardiomyopathy. J Inflamm Res 2024; 17:6797-6814. [PMID: 39372582 PMCID: PMC11451430 DOI: 10.2147/jir.s475645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/13/2024] [Indexed: 10/08/2024] Open
Abstract
Background Ischemic cardiomyopathy (ICM) significantly contributes to global disease burden, while the role of ferroptosis in ICM remains underexplored. Methods We identified differentially expressed ferroptosis-related genes (DEFRGs) by analyzing the GSE57338 dataset and cross-referencing with FerrDb. Consensus clustering was then used to identify ferroptosis-associated clusters within the ICM samples. A ferroptosis-specific predictive signature was developed using the least absolute shrinkage and selection operator (LASSO) method and validated with the GSE5406 dataset. Additionally, quantitative real-time PCR (qRT-PCR) experiments were performed to validate the 11 feature genes in a rat ICM model. Results We identified 15 DEFRGs in GSE57338, which distinguished two patient clusters with distinct ferroptosis gene expression, pathway enrichment profiles, and metabolic characteristics. All DEFRGs were upregulated in cluster 2. Potential therapeutic targets were also identified for different ICM patient clusters. The 11-gene predictive signature (TXNRD1, STEAP3, STAT3, SCL2A1, PLIN2, NQO1, NNMT, IL33, ENPP2, ARRDC3, ALOX5) showed robust predictive power in both training and validation sets. High-risk patients exhibited increased infiltration of CD8+ T cells, CD4+ naïve T cells, M0/M1 macrophages, and resting mast cells, along with significant enrichment in epithelial mesenchymal transition and interferon responses. Low-risk patients had higher infiltration of regulatory T cells and monocytes. Results of qPCR analysis confirmed the bioinformatic analysis, validating the expression of the 11 feature genes in the rat ICM model. Conclusion We identified two ferroptosis-related clusters in ICM patients and developed a predictive signature based on ferroptosis-related genes. Our findings highlight the importance of ferroptosis in ICM and offer new insights for its diagnosis and treatment.
Collapse
Affiliation(s)
- Shuai Guo
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Zhaoting Gong
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Xiaona Sun
- Department of Cardiology, Laizhou City People’s Hospital, Laizhou, People’s Republic of China
| | - Fei Gao
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Xiang Li
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Xiaolin Zu
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Chao Qu
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Hongliang Zhang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, People’s Republic of China
| | - Hai Gao
- Center for Coronary Artery Disease, Division of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
8
|
Nga HT, Nguyen TL, Yi HS. T-Cell Senescence in Human Metabolic Diseases. Diabetes Metab J 2024; 48:864-881. [PMID: 39192822 PMCID: PMC11449820 DOI: 10.4093/dmj.2024.0140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/17/2024] [Indexed: 08/29/2024] Open
Abstract
Immunosenescence denotes a state of dysregulated immune cell function characterized by a confluence of factors, including arrested cell cycle, telomere shortening, markers of cellular stress, mitochondrial dysfunction, loss of proteostasis, epigenetic reprogramming, and secretion of proinflammatory mediators. This state primarily manifests during the aging process but can also be induced in various pathological conditions, encompassing chronic viral infections, autoimmune diseases, and metabolic disorders. Age-associated immune system alterations extend to innate and adaptive immune cells, with T-cells exhibiting heightened susceptibility to immunosenescence. In particular, senescent T-cells have been identified in the context of metabolic disorders such as obesity, diabetes, and cardiovascular diseases. Recent investigations suggest a direct link between T-cell senescence, inflammation, and insulin resistance. The perturbation of biological homeostasis by senescent T-cells appears intricately linked to the initiation and progression of metabolic diseases, particularly through inflammation-mediated insulin resistance. Consequently, senescent T-cells are emerging as a noteworthy therapeutic target. This review aims to elucidate the intricate relationship between metabolic diseases and T-cell senescence, providing insights into the potential roles of senescent T-cells in the pathogenesis of metabolic disorders. Through a comprehensive examination of current research findings, this review seeks to contribute to a deeper understanding of the complex interplay between immunosenescence and metabolic health.
Collapse
Affiliation(s)
- Ha Thi Nga
- Laboratory of Endocrinology and Immune System, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
| | - Thi Linh Nguyen
- Laboratory of Endocrinology and Immune System, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
| | - Hyon-Seung Yi
- Laboratory of Endocrinology and Immune System, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| |
Collapse
|
9
|
Ju SH, Lim JY, Song M, Kim JM, Kang YE, Yi HS, Joung KH, Lee JH, Kim HJ, Ku BJ. Distinct effects of rosuvastatin and rosuvastatin/ezetimibe on senescence markers of CD8+ T cells in patients with type 2 diabetes mellitus: a randomized controlled trial. Front Endocrinol (Lausanne) 2024; 15:1336357. [PMID: 38586464 PMCID: PMC10996898 DOI: 10.3389/fendo.2024.1336357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/04/2024] [Indexed: 04/09/2024] Open
Abstract
Objectives Chronic low-grade inflammation is widely recognized as a pathophysiological defect contributing to β-cell failure in type 2 diabetes mellitus (T2DM). Statin therapy is known to ameliorate CD8+ T cell senescence, a mediator of chronic inflammation. However, the additional immunomodulatory roles of ezetimibe are not fully understood. Therefore, we investigated the effect of statin or statin/ezetimibe combination treatment on T cell senescence markers. Methods In this two-group parallel and randomized controlled trial, we enrolled 149 patients with T2DM whose low-density lipoprotein cholesterol (LDL-C) was 100 mg/dL or higher. Patients were randomly assigned to either the rosuvastatin group (N=74) or the rosuvastatin/ezetimibe group (N=75). The immunophenotype of peripheral blood mononuclear cells and metabolic profiles were analyzed using samples from baseline and post-12 weeks of medication. Results The fractions of CD8+CD57+ (senescent CD8+ T cells) and CD4+FoxP3+ (Treg) significantly decreased after intervention in the rosuvastatin/ezetimibe group (-4.5 ± 14.1% and -1.2 ± 2.3%, respectively), while these fractions showed minimal change in the rosuvastatin group (2.8 ± 9.4% and 1.4 ± 1.5%, respectively). The degree of LDL-C reduction was correlated with an improvement in HbA1c (R=0.193, p=0.021). Changes in the CD8+CD57+ fraction positively correlated with patient age (R=0.538, p=0.026). Notably, the fraction change in senescent CD8+ T cells showed no significant relationship with changes in either HbA1c (p=0.314) or LDL-C (p=0.592). Finally, the ratio of naïve to memory CD8+ T cells increased in the rosuvastatin/ezetimibe group (p=0.011), but not in the rosuvastatin group (p=0.339). Conclusions We observed a reduction in senescent CD8+ T cells and an increase in the ratio of naive to memory CD8+ T cells with rosuvastatin/ezetimibe treatment. Our results demonstrate the immunomodulatory roles of ezetimibe in combination with statins, independent of improvements in lipid or HbA1c levels.
Collapse
Affiliation(s)
- Sang-Hyeon Ju
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Joung Youl Lim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Minchul Song
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Ji Min Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University Sejong Hospital, Sejong, Republic of Korea
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Yea Eun Kang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Hyon-Seung Yi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Kyong Hye Joung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University Sejong Hospital, Sejong, Republic of Korea
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Ju Hee Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Hyun Jin Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Bon Jeong Ku
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| |
Collapse
|
10
|
Tang X, Zhou Y, Chen Z, Liu C, Wu Z, Zhou Y, Zhang F, Lu X, Tang L. Identification of key biomarkers for predicting CAD progression in inflammatory bowel disease via machine-learning and bioinformatics strategies. J Cell Mol Med 2024; 28:e18175. [PMID: 38451044 PMCID: PMC10919158 DOI: 10.1111/jcmm.18175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/07/2024] [Accepted: 01/31/2024] [Indexed: 03/08/2024] Open
Abstract
The study aimed to identify the biomarkers for predicting coronary atherosclerotic lesions progression in patients with inflammatory bowel disease (IBD). Related transcriptome datasets were seized from Gene Expression Omnibus database. IBD-related modules were identified via Weighted Gene Co-expression Network Analysis. The 'Limma' was applied to screen differentially expressed genes between stable coronary artery disease (CAD) and acute myocardial infarction (AMI). Subsequently, we employed protein-protein interaction (PPI) network and three machine-learning strategies to further screen for candidate hub genes. Application of the receiver operating characteristics curve to quantitatively evaluate candidates to determine key diagnostic biomarkers, followed by a nomogram construction. Ultimately, we performed immune landscape analysis, single-gene GSEA and prediction of target-drugs. 3227 IBD-related module genes and 570 DEGs accounting for AMI were recognized. Intersection yielded 85 shared genes and mostly enriched in immune and inflammatory pathways. After filtering through PPI network and multi-machine learning algorithms, five candidate genes generated. Upon validation, CTSD, CEBPD, CYP27A1 were identified as key diagnostic biomarkers with a superior sensitivity and specificity (AUC > 0.8). Furthermore, all three genes were negatively correlated with CD4+ T cells and positively correlated with neutrophils. Single-gene GSEA highlighted the importance of pathogen invasion, metabolism, immune and inflammation responses during the pathogenesis of AMI. Ten target-drugs were predicted. The discovery of three peripheral blood biomarkers capable of predicting the risk of CAD proceeding into AMI in IBD patients. These identified biomarkers were negatively correlated with CD4+ T cells and positively correlated with neutrophils, indicating a latent therapeutic target.
Collapse
Affiliation(s)
- Xiaoqi Tang
- School of MedicineShaoxing UniversityZhejiangChina
| | - Yufei Zhou
- Department of CardiologyShanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan UniversityShanghaiChina
| | - Zhuolin Chen
- Department of OrthopedicsShaoxing People's Hospital (Zhejiang University School of Medicine)ShaoxingChina
| | - Chunjiang Liu
- Department of General Surgery, Division of Vascular SurgeryShaoxing People's HospitalShaoxingChina
| | - Zhifeng Wu
- School of MedicineShaoxing UniversityZhejiangChina
| | - Yue Zhou
- Department of General Surgery, Division of Vascular SurgeryShaoxing People's HospitalShaoxingChina
| | - Fan Zhang
- School of MedicineShaoxing UniversityZhejiangChina
| | - Xuanyuan Lu
- Department of OrthopedicsShaoxing People's Hospital (Zhejiang University School of Medicine)ShaoxingChina
| | - Liming Tang
- Department of General Surgery, Division of Vascular SurgeryShaoxing People's HospitalShaoxingChina
| |
Collapse
|
11
|
Jallah BP, Kuypers DRJ. Impact of Immunosenescence in Older Kidney Transplant Recipients: Associated Clinical Outcomes and Possible Risk Stratification for Immunosuppression Reduction. Drugs Aging 2024; 41:219-238. [PMID: 38386164 DOI: 10.1007/s40266-024-01100-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2024] [Indexed: 02/23/2024]
Abstract
The number of older individuals receiving a kidney transplant as replacement therapy has significantly increased in the past decades and this increase is expected to continue. Older patients have a lower rate of acute rejection but an increased incidence of death with a functioning graft. Several factors, including an increased incidence of infections, post-transplant malignancy and cardiovascular comorbidity and mortality, contribute to this increased risk. Notwithstanding, kidney transplantation is still the best form of kidney replacement therapy in all patients with chronic kidney disease, including in older individuals. The best form of immunosuppression and the optimal dose of these medications in older recipients remains a topic of discussion. Pharmacological studies have usually excluded older patients and when included, patients were highly selected and their numbers insignificant to draw a reasonable conclusion. The reduced incidence of acute rejection in older recipients has largely been attributed to immunosenescence. Immunosenescence refers to the aging of the innate and adaptive immunity, accumulating in phenotypic and functional changes. These changes influences the response of the immune system to new challenges. In older individuals, immunosenescence is associated with increased susceptibility to infectious pathogens, a decreased response after vaccinations, increased risk of malignancies and cardiovascular morbidity and mortality. Chronic kidney disease is associated with premature immunosenescent changes, and these are independent of aging. The immunosenescent state is associated with low-grade sterile inflammation termed inflammaging. This chronic low-grade inflammation triggers a compensatory immunosuppressive state to avoid further tissue damage, leaving older individuals with chronic kidney disease in an immune-impaired state before kidney transplantation. Immunosuppression after transplantation may further enhance progression of this immunosenescent state. This review covers the role of immunosenescence in older kidney transplant recipients and it details present knowledge of the changes in chronic kidney disease and after transplantation. The impact of immunosuppression on the progression and complications of an immunosenescent state are discussed, and the future direction of a possible clinical implementation of immunosenescence to individualize/reduce immunosuppression in older recipients is laid out.
Collapse
Affiliation(s)
- Borefore P Jallah
- Department of Nephrology and Renal Transplantation, University Hospital Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Dirk R J Kuypers
- Department of Nephrology and Renal Transplantation, University Hospital Leuven, Herestraat 49, 3000, Leuven, Belgium.
- Department of Microbiology, Immunology and Transplantation, University of Leuven, Leuven, Belgium.
| |
Collapse
|
12
|
Winchester NE, Panigrahi S, Haria A, Chakraborty A, Su X, Chen B, Morris SR, Clagett BM, Juchnowski SM, Yadavalli R, Villinger F, Paiardini M, Harth K, Kashyap VS, Calabrese LH, Margolis L, Sieg SF, Shive CL, Gianella S, Funderburg NT, Zidar DA, Lederman MM, Freeman ML. Cytomegalovirus Infection Facilitates the Costimulation of CD57+CD28- CD8 T Cells in HIV Infection and Atherosclerosis via the CD2-LFA-3 Axis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:245-257. [PMID: 38047900 PMCID: PMC10843654 DOI: 10.4049/jimmunol.2300267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 11/06/2023] [Indexed: 12/05/2023]
Abstract
CD8 T cells are emerging as important mediators in atherosclerosis and cardiovascular disease (CVD). Immune activation may play a particular role in people with HIV (PWH) who are at an increased risk of CVD, even after controlling for known CVD risk factors. Latent CMV infection is associated with increased CVD risk for both PWH and people without HIV, and human CMV-specific CD4 and CD8 T cells are enriched for an immunosenescent phenotype. We previously showed that CMV coinfection in PWH promotes vascular homing and activation of inflammatory CD4 T cells through the CD2-LFA-3 axis. However, the role of CD2/LFA3 costimulation of CD8 T cells in PWH with CMV has yet to be described. In the present study, we demonstrate that CD2 expression on CX3CR1+CD57+CD28- inflammescent CD8 T cells is increased on cells from CMV-seropositive PWH. In vitro CD2/LFA-3 costimulation enhances TCR-mediated activation of these inflammatory CD8 memory T cells. Finally, we show that LFA-3 is highly expressed in aortas of SIV-infected rhesus macaques and in atherosclerotic plaques of people without HIV. Our findings are consistent with a model in which CMV infection enhances CD2 expression on highly proinflammatory CD8 T cells that can then be stimulated by LFA-3 expressed in the vasculature, even in the absence of CD28 costimulation. This model, in which CMV infection exacerbates toxic cytokine and granzyme production by CD8 T cells within the vasculature, highlights a potential therapeutic target in atherosclerosis development and progression, especially for PWH.
Collapse
Affiliation(s)
- Nicole E. Winchester
- Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH, USA
| | - Soumya Panigrahi
- Rustbelt Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Anokhi Haria
- Rustbelt Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Archeesha Chakraborty
- Rustbelt Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Xi Su
- Rustbelt Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Bonnie Chen
- Rustbelt Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Stephen R. Morris
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Brian M. Clagett
- Rustbelt Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Steven M. Juchnowski
- Division of Cardiology, Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Raghavendra Yadavalli
- Rustbelt Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Francois Villinger
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, USA
| | - Mirko Paiardini
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Karem Harth
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center/Case Western Reserve University, Cleveland, OH, USA
| | - Vikram S. Kashyap
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center/Case Western Reserve University, Cleveland, OH, USA
| | - Leonard H. Calabrese
- Department of Rheumatic and Immunologic Diseases, Cleveland Clinic, Cleveland, OH, USA
| | - Leonid Margolis
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Scott F. Sieg
- Rustbelt Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Carey L. Shive
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Sara Gianella
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Nicholas T. Funderburg
- Division of Medical Laboratory Science, School of Health and Rehabilitation Sciences, Ohio State University, Columbus, OH, USA
| | - David A. Zidar
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center/Case Western Reserve University, Cleveland, OH, USA
| | - Michael M. Lederman
- Rustbelt Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Michael L. Freeman
- Rustbelt Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| |
Collapse
|
13
|
Kott KA, Chan AS, Vernon ST, Hansen T, Kim T, de Dreu M, Gunasegaran B, Murphy AJ, Patrick E, Psaltis PJ, Grieve SM, Yang JY, Fazekas de St Groth B, McGuire HM, Figtree GA. Mass cytometry analysis reveals altered immune profiles in patients with coronary artery disease. Clin Transl Immunology 2023; 12:e1462. [PMID: 37927302 PMCID: PMC10621005 DOI: 10.1002/cti2.1462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/09/2023] [Accepted: 08/09/2023] [Indexed: 11/07/2023] Open
Abstract
Objective The importance of inflammation in atherosclerosis is well accepted, but the role of the adaptive immune system is not yet fully understood. To further explore this, we assessed the circulating immune cell profile of patients with coronary artery disease (CAD) to identify discriminatory features by mass cytometry. Methods Mass cytometry was performed on patient samples from the BioHEART-CT study, gated to detect 82 distinct cell subsets. CT coronary angiograms were analysed to categorise patients as having CAD (CAD+) or having normal coronary arteries (CAD-). Results The discovery cohort included 117 patients (mean age 61 ± 12 years, 49% female); 79 patients (68%) were CAD+. Mass cytometry identified changes in 15 T-cell subsets, with higher numbers of proliferating, highly differentiated and cytotoxic cells and decreases in naïve T cells. Five T-regulatory subsets were related to an age and gender-independent increase in the odds of CAD incidence when expressing CCR2 (OR 1.12), CCR4 (OR 1.08), CD38 and CD45RO (OR 1.13), HLA-DR (OR 1.06) and Ki67 (OR 1.22). Markers of proliferation and differentiation were also increased within B cells, while plasmacytoid dendritic cells were decreased. This combination of changes was assessed using SVM models in discovery and validation cohorts (area under the curve = 0.74 for both), confirming the robust nature of the immune signature detected. Conclusion We identified differences within immune subpopulations of CAD+ patients which are indicative of a systemic immune response to coronary atherosclerosis. This immune signature needs further study via incorporation into risk scoring tools for the precision diagnosis of CAD.
Collapse
Affiliation(s)
- Katharine A Kott
- Cardiothoracic and Vascular HealthKolling Institute of Medical ResearchSydneyNSWAustralia
- Department of Cardiology, Royal North Shore HospitalNorthern Sydney Local Health DistrictSydneyNSWAustralia
- Northern Clinical School, Faculty of Medicine and HealthUniversity of SydneySydneyNSWAustralia
| | - Adam S Chan
- School of Mathematics and StatisticsUniversity of SydneySydneyNSWAustralia
- Charles Perkins CentreUniversity of SydneySydneyNSWAustralia
| | - Stephen T Vernon
- Cardiothoracic and Vascular HealthKolling Institute of Medical ResearchSydneyNSWAustralia
- Department of Cardiology, Royal North Shore HospitalNorthern Sydney Local Health DistrictSydneyNSWAustralia
- Northern Clinical School, Faculty of Medicine and HealthUniversity of SydneySydneyNSWAustralia
| | - Thomas Hansen
- Cardiothoracic and Vascular HealthKolling Institute of Medical ResearchSydneyNSWAustralia
| | - Taiyun Kim
- School of Mathematics and StatisticsUniversity of SydneySydneyNSWAustralia
- Charles Perkins CentreUniversity of SydneySydneyNSWAustralia
| | - Macha de Dreu
- School of Medical Sciences, Faculty of Medicine and HealthUniversity of SydneySydneyNSWAustralia
| | - Bavani Gunasegaran
- Charles Perkins CentreUniversity of SydneySydneyNSWAustralia
- School of Medical Sciences, Faculty of Medicine and HealthUniversity of SydneySydneyNSWAustralia
| | | | - Ellis Patrick
- School of Mathematics and StatisticsUniversity of SydneySydneyNSWAustralia
- Charles Perkins CentreUniversity of SydneySydneyNSWAustralia
| | | | - Stuart M Grieve
- Charles Perkins CentreUniversity of SydneySydneyNSWAustralia
- School of Medical Sciences, Faculty of Medicine and HealthUniversity of SydneySydneyNSWAustralia
- Department of RadiologyRoyal Prince Alfred HospitalSydneyNSWAustralia
- Imaging and Phenotyping Laboratory, Charles Perkins Centre, Faculty of Medicine and HealthUniversity of SydneySydneyNSWAustralia
| | - Jean Y Yang
- School of Mathematics and StatisticsUniversity of SydneySydneyNSWAustralia
- Charles Perkins CentreUniversity of SydneySydneyNSWAustralia
| | - Barbara Fazekas de St Groth
- Charles Perkins CentreUniversity of SydneySydneyNSWAustralia
- School of Medical Sciences, Faculty of Medicine and HealthUniversity of SydneySydneyNSWAustralia
- Ramaciotti Facility for Human Systems BiologyUniversity of SydneySydneyNSWAustralia
| | - Helen M McGuire
- Charles Perkins CentreUniversity of SydneySydneyNSWAustralia
- School of Medical Sciences, Faculty of Medicine and HealthUniversity of SydneySydneyNSWAustralia
- Ramaciotti Facility for Human Systems BiologyUniversity of SydneySydneyNSWAustralia
| | - Gemma A Figtree
- Cardiothoracic and Vascular HealthKolling Institute of Medical ResearchSydneyNSWAustralia
- Department of Cardiology, Royal North Shore HospitalNorthern Sydney Local Health DistrictSydneyNSWAustralia
- Northern Clinical School, Faculty of Medicine and HealthUniversity of SydneySydneyNSWAustralia
- Charles Perkins CentreUniversity of SydneySydneyNSWAustralia
| |
Collapse
|
14
|
Lee S, Chih H, Affandi J, Waters S, Irish A, Price P. Markers of terminally differentiated T-cells as predictors of vascular health in renal transplant recipients and healthy adults. Clin Immunol 2023; 255:109760. [PMID: 37678718 DOI: 10.1016/j.clim.2023.109760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/27/2023] [Accepted: 09/02/2023] [Indexed: 09/09/2023]
Abstract
Meta-analyses confirm a link between persistent human cytomegalovirus (HCMV) infections and cardiovascular disease, but the mechanisms are unclear. We assess whether proportions of T-cell populations are reliable predictors of subclinical atherosclerosis and/or reflect the burden of HCMV in healthy adults and renal transplant recipients (RTR). Samples were collected from healthy adults and RTR at baseline (T0) and after 32 (24-40) months (T1). Left carotid intima media thickness (cIMT) and proportions of T-cells expressing CD57, LIR-1 or the TEMRA phenotype increased in healthy adults and RTR. The T-cell populations correlated with levels of HCMV-reactive antibodies. Proportions of CD57+, LIR-1+ and TEMRA CD8+ T-cells correlated with left and right cIMT in healthy adults. Proportions of CD57+ and LIR-1+ CD8+ T-cells at T0 predicted left cIMT at T1 among healthy adults, but these associations disappeared after adjustment for covariates. We link LIR-1+ and CD57+CD8+ T-cells with the progression of cIMT in healthy adults.
Collapse
Affiliation(s)
- Silvia Lee
- School of Medicine, Curtin Health Innovation Research Institute, Curtin University, Bentley, Australia; Department of Microbiology, Pathwest Laboratory Medicine, Western Australia, Australia.
| | - HuiJun Chih
- Curtin School of Population Health, Curtin University, Bentley, Perth, Australia
| | - Jacquita Affandi
- Curtin School of Population Health, Curtin University, Bentley, Perth, Australia
| | - Shelley Waters
- School of Medicine, Curtin Health Innovation Research Institute, Curtin University, Bentley, Australia
| | - Ashley Irish
- Renal Unit, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Patricia Price
- School of Medicine, Curtin Health Innovation Research Institute, Curtin University, Bentley, Australia
| |
Collapse
|
15
|
Sur M, Rasquinha MT, Arumugam R, Massilamany C, Gangaplara A, Mone K, Lasrado N, Yalaka B, Doiphode A, Gurumurthy C, Steffen D, Reddy J. Transgenic Mice Expressing Functional TCRs Specific to Cardiac Myhc-α 334-352 on Both CD4 and CD8 T Cells Are Resistant to the Development of Myocarditis on C57BL/6 Genetic Background. Cells 2023; 12:2346. [PMID: 37830560 PMCID: PMC10571761 DOI: 10.3390/cells12192346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023] Open
Abstract
Myocarditis is a predominant cause of congestive heart failure and sudden death in children and young adolescents that can lead to dilated cardiomyopathy. Lymphocytic myocarditis mediated by T cells can result from the recognition of cardiac antigens that may involve CD4 or CD8 T cells or both. In this report, we describe the generation of T cell receptor (TCR) transgenic mice on a C57BL/6 genetic background specific to cardiac myosin heavy chain (Myhc)-α 334-352 and make the following observations: First, we verified that Myhc-α 334-352 was immunogenic in wild-type C57BL/6 mice and induced antigen-specific CD4 T cell responses despite being a poor binder of IAb; however, the immunized animals developed only mild myocarditis. Second, TCRs specific to Myhc-α 334-352 in transgenic mice were expressed in both CD4 and CD8 T cells, suggesting that the expression of epitope-specific TCR is common to both cell types. Third, although T cells from naïve transgenic mice did not respond to Myhc-α 334-352, both CD4 and CD8 T cells from animals immunized with Myhc-α 334-352 responded to the peptide, indicating that antigen priming is necessary to break tolerance. Fourth, although the transgenic T cells could produce significant amounts of interferon-γ and interleukin-17, the immunized animals developed only mild disease, indicating that other soluble factors might be necessary for developing severe myocarditis. Alternatively, the C57BL/6 genetic background might be a major contributing factor for resistance to the development of myocarditis. Taken together, our model permits the determination of the roles of both CD4 and CD8 T cells to understand the disease-resistance mechanisms of myocarditis in a single transgenic system antigen-specifically.
Collapse
Affiliation(s)
- Meghna Sur
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.S.); (M.T.R.); (R.A.); (C.M.); (A.G.); (K.M.); (N.L.); (B.Y.); (A.D.); (D.S.)
| | - Mahima T. Rasquinha
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.S.); (M.T.R.); (R.A.); (C.M.); (A.G.); (K.M.); (N.L.); (B.Y.); (A.D.); (D.S.)
| | - Rajkumar Arumugam
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.S.); (M.T.R.); (R.A.); (C.M.); (A.G.); (K.M.); (N.L.); (B.Y.); (A.D.); (D.S.)
- Bristol Myers Squibb, Summit, NJ 07901, USA
| | - Chandirasegaran Massilamany
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.S.); (M.T.R.); (R.A.); (C.M.); (A.G.); (K.M.); (N.L.); (B.Y.); (A.D.); (D.S.)
- CRISPR Therapeutics, Boston, MA 02127, USA
| | - Arunkumar Gangaplara
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.S.); (M.T.R.); (R.A.); (C.M.); (A.G.); (K.M.); (N.L.); (B.Y.); (A.D.); (D.S.)
- Miltenyi Biotec, Gaithersburg, MD 20878, USA
| | - Kiruthiga Mone
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.S.); (M.T.R.); (R.A.); (C.M.); (A.G.); (K.M.); (N.L.); (B.Y.); (A.D.); (D.S.)
| | - Ninaad Lasrado
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.S.); (M.T.R.); (R.A.); (C.M.); (A.G.); (K.M.); (N.L.); (B.Y.); (A.D.); (D.S.)
- Center for Virology and Vaccine Research, Harvard Medical School, Boston, MA 02115, USA
| | - Bharathi Yalaka
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.S.); (M.T.R.); (R.A.); (C.M.); (A.G.); (K.M.); (N.L.); (B.Y.); (A.D.); (D.S.)
- Bristol Myers Squibb, Summit, NJ 07901, USA
| | - Aakash Doiphode
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.S.); (M.T.R.); (R.A.); (C.M.); (A.G.); (K.M.); (N.L.); (B.Y.); (A.D.); (D.S.)
- Department of Animal Genetics and Breeding, Krantisinh Nana Patil College of Veterinary Science, Shirwal 412801, Maharashtra, India
| | - Channabasavaiah Gurumurthy
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - David Steffen
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.S.); (M.T.R.); (R.A.); (C.M.); (A.G.); (K.M.); (N.L.); (B.Y.); (A.D.); (D.S.)
| | - Jay Reddy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.S.); (M.T.R.); (R.A.); (C.M.); (A.G.); (K.M.); (N.L.); (B.Y.); (A.D.); (D.S.)
| |
Collapse
|
16
|
Sopova K, Tual-Chalot S, Mueller-Hennessen M, Vlachogiannis NI, Georgiopoulos G, Biener M, Sachse M, Turchinovich A, Polycarpou-Schwarz M, Spray L, Maneta E, Bennaceur K, Mohammad A, Richardson GD, Gatsiou A, Langer HF, Frey N, Stamatelopoulos K, Heineke J, Duerschmied D, Giannitsis E, Spyridopoulos I, Stellos K. Effector T cell chemokine IP-10 predicts cardiac recovery and clinical outcomes post-myocardial infarction. Front Immunol 2023; 14:1177467. [PMID: 37426649 PMCID: PMC10326041 DOI: 10.3389/fimmu.2023.1177467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/23/2023] [Indexed: 07/11/2023] Open
Abstract
Background and aims Preclinical data suggest that activation of the adaptive immune system is critical for myocardial repair processes in acute myocardial infarction. The aim of the present study was to determine the clinical value of baseline effector T cell chemokine IP-10 blood levels in the acute phase of ST-segment elevation myocardial infarction (STEMI) for the prediction of the left ventricular function changes and cardiovascular outcomes after STEMI. Methods Serum IP-10 levels were retrospectively quantified in two independent cohorts of STEMI patients undergoing primary percutaneous coronary intervention. Results We report a biphasic response of the effector T cell trafficking chemokine IP-10 characterized by an initial increase of its serum levels in the acute phase of STEMI followed by a rapid reduction at 90min post reperfusion. Patients at the highest IP-10 tertile presented also with more CD4 effector memory T cells (CD4 TEM cells), but not other T cell subtypes, in blood. In the Newcastle cohort (n=47), patients in the highest IP-10 tertile or CD4 TEM cells at admission exhibited an improved cardiac systolic function 12 weeks after STEMI compared to patients in the lowest IP-10 tertile. In the Heidelberg cohort (n=331), STEMI patients were followed for a median of 540 days for major adverse cardiovascular events (MACE). Patients presenting with higher serum IP-10 levels at admission had a lower risk for MACE after adjustment for traditional risk factors, CRP and high-sensitivity troponin-T levels (highest vs. rest quarters: HR [95% CI]=0.420 [0.218-0.808]). Conclusion Increased serum levels of IP-10 in the acute phase of STEMI predict a better recovery in cardiac systolic function and less adverse events in patients after STEMI.
Collapse
Affiliation(s)
- Kateryna Sopova
- Translational and Clinical Research Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Cardiology, Royal Victoria Infirmary (RVI) and Freeman Hospitals, Newcastle Upon Tyne Hospitals National Health Service (NHS) Foundation Trust, Newcastle Upon Tyne, United Kingdom
- German Centre for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim, Mannheim, Germany
- Department of Cardiovascular Research, European Center for Angioscience (ECAS), Heidelberg University, Heidelberg/Mannheim, Germany
| | - Simon Tual-Chalot
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Matthias Mueller-Hennessen
- German Centre for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim, Mannheim, Germany
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Nikolaos I. Vlachogiannis
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Georgios Georgiopoulos
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Moritz Biener
- German Centre for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim, Mannheim, Germany
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Marco Sachse
- Department of Cardiovascular Research, European Center for Angioscience (ECAS), Heidelberg University, Heidelberg/Mannheim, Germany
| | - Andrey Turchinovich
- Department of Cardiovascular Research, European Center for Angioscience (ECAS), Heidelberg University, Heidelberg/Mannheim, Germany
| | - Maria Polycarpou-Schwarz
- Department of Cardiovascular Research, European Center for Angioscience (ECAS), Heidelberg University, Heidelberg/Mannheim, Germany
| | - Luke Spray
- Department of Cardiology, Royal Victoria Infirmary (RVI) and Freeman Hospitals, Newcastle Upon Tyne Hospitals National Health Service (NHS) Foundation Trust, Newcastle Upon Tyne, United Kingdom
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Eleni Maneta
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Karim Bennaceur
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Ashfaq Mohammad
- Department of Cardiology, Royal Victoria Infirmary (RVI) and Freeman Hospitals, Newcastle Upon Tyne Hospitals National Health Service (NHS) Foundation Trust, Newcastle Upon Tyne, United Kingdom
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Gavin David Richardson
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Aikaterini Gatsiou
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Harald F. Langer
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim, Mannheim, Germany
| | - Norbert Frey
- German Centre for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim, Mannheim, Germany
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Kimon Stamatelopoulos
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Joerg Heineke
- German Centre for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim, Mannheim, Germany
- Department of Cardiovascular Physiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Daniel Duerschmied
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim, Mannheim, Germany
| | - Evangelos Giannitsis
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Ioakim Spyridopoulos
- Translational and Clinical Research Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
- Department of Cardiology, Royal Victoria Infirmary (RVI) and Freeman Hospitals, Newcastle Upon Tyne Hospitals National Health Service (NHS) Foundation Trust, Newcastle Upon Tyne, United Kingdom
| | - Konstantinos Stellos
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim, Mannheim, Germany
- Department of Cardiovascular Research, European Center for Angioscience (ECAS), Heidelberg University, Heidelberg/Mannheim, Germany
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
- Department of Internal Medicine III, Cardiology, University Hospital Heidelberg, Heidelberg, Germany
- Department of Cardiovascular Physiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
17
|
Liu Z, Liang Q, Ren Y, Guo C, Ge X, Wang L, Cheng Q, Luo P, Zhang Y, Han X. Immunosenescence: molecular mechanisms and diseases. Signal Transduct Target Ther 2023; 8:200. [PMID: 37179335 PMCID: PMC10182360 DOI: 10.1038/s41392-023-01451-2] [Citation(s) in RCA: 248] [Impact Index Per Article: 124.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 03/24/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Infection susceptibility, poor vaccination efficacy, age-related disease onset, and neoplasms are linked to innate and adaptive immune dysfunction that accompanies aging (known as immunosenescence). During aging, organisms tend to develop a characteristic inflammatory state that expresses high levels of pro-inflammatory markers, termed inflammaging. This chronic inflammation is a typical phenomenon linked to immunosenescence and it is considered the major risk factor for age-related diseases. Thymic involution, naïve/memory cell ratio imbalance, dysregulated metabolism, and epigenetic alterations are striking features of immunosenescence. Disturbed T-cell pools and chronic antigen stimulation mediate premature senescence of immune cells, and senescent immune cells develop a proinflammatory senescence-associated secretory phenotype that exacerbates inflammaging. Although the underlying molecular mechanisms remain to be addressed, it is well documented that senescent T cells and inflammaging might be major driving forces in immunosenescence. Potential counteractive measures will be discussed, including intervention of cellular senescence and metabolic-epigenetic axes to mitigate immunosenescence. In recent years, immunosenescence has attracted increasing attention for its role in tumor development. As a result of the limited participation of elderly patients, the impact of immunosenescence on cancer immunotherapy is unclear. Despite some surprising results from clinical trials and drugs, it is necessary to investigate the role of immunosenescence in cancer and other age-related diseases.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
- Interventional Institute of Zhengzhou University, 450052, Zhengzhou, Henan, China
- Interventional Treatment and Clinical Research Center of Henan Province, 450052, Zhengzhou, Henan, China
| | - Qimeng Liang
- Nephrology Hospital, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, 4500052, Henan, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Chunguang Guo
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Xiaoyong Ge
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Libo Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China.
- Interventional Institute of Zhengzhou University, 450052, Zhengzhou, Henan, China.
- Interventional Treatment and Clinical Research Center of Henan Province, 450052, Zhengzhou, Henan, China.
| |
Collapse
|
18
|
Suda M, Paul KH, Minamino T, Miller JD, Lerman A, Ellison-Hughes GM, Tchkonia T, Kirkland JL. Senescent Cells: A Therapeutic Target in Cardiovascular Diseases. Cells 2023; 12:1296. [PMID: 37174697 PMCID: PMC10177324 DOI: 10.3390/cells12091296] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Senescent cell accumulation has been observed in age-associated diseases including cardiovascular diseases. Senescent cells lack proliferative capacity and secrete senescence-associated secretory phenotype (SASP) factors that may cause or worsen many cardiovascular diseases. Therapies targeting senescent cells, especially senolytic drugs that selectively induce senescent cell removal, have been shown to delay, prevent, alleviate, or treat multiple age-associated diseases in preclinical models. Some senolytic clinical trials have already been completed or are underway for a number of diseases and geriatric syndromes. Understanding how cellular senescence affects the various cell types in the cardiovascular system, such as endothelial cells, vascular smooth muscle cells, fibroblasts, immune cells, progenitor cells, and cardiomyocytes, is important to facilitate translation of senotherapeutics into clinical interventions. This review highlights: (1) the characteristics of senescent cells and their involvement in cardiovascular diseases, focusing on the aforementioned cardiovascular cell types, (2) evidence about senolytic drugs and other senotherapeutics, and (3) the future path and clinical potential of senotherapeutics for cardiovascular diseases.
Collapse
Affiliation(s)
- Masayoshi Suda
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Karl H. Paul
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
- Department of Physiology and Pharmacology, Karolinska Institutet, Solnavägen 9, 171 65 Solna, Sweden
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 3-1-3 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| | - Jordan D. Miller
- Division of Cardiovascular Surgery, Mayo Clinic College of Medicine, 200 First St., S.W., Rochester, MN 55905, USA
| | - Amir Lerman
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| | - Georgina M. Ellison-Hughes
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, Guy’s Campus, King’s College London, London SE1 1UL, UK
- Centre for Stem Cells and Regenerative Medicine, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, Guy’s Campus, King’s College London, London SE1 1UL, UK
| | - Tamar Tchkonia
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| | - James L. Kirkland
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
- Division of General Internal Medicine, Department of Medicine, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA
| |
Collapse
|
19
|
Wang X, Zhang J, Xiu C, Yang J, Liu Y, Lei Y. Whole-transcriptome sequencing analysis reveal mechanisms of Yiqi Huoxue Yangyin (YHY) decoction in ameliorating D-gal-induced cardiac aging. Aging (Albany NY) 2023; 15:2906-2919. [PMID: 37071017 DOI: 10.18632/aging.204532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/03/2023] [Indexed: 04/19/2023]
Abstract
BACKGROUND Aging is a major factor for cardiovascular disease, and cardiac aging is closely related to the incidence of cardiovascular disease. Clarifying the mechanism of cardiac aging and finding reliable intervention is critical for preventing cardiovascular diseases and achieving healthy longevity. Traditional Chinese medicine Yiqi Huoxue Yangyin (YHY) decoction has unique advantage in the treatment of cardiovascular disease and aging. However, the associated molecular mechanisms remain unknown. PURPOSE The present study aimed to verify the efficacy of YHY decoction against cardiac aging in D-gal-induced mouse model, and explore the potential mechanism of YHY decoction treatment through whole-transcriptome sequencing technique, providing novel insights into the molecular basis of YHY decoction in treating cardiac aging. METHODS The component of YHY decoction was identified by High Performance Liquid Chromatography (HPLC). D-gal-induced aging mouse model was established for this study. HE and Masson staining were applied to determine pathological changes of heart; telomere length, telomerase activity, AGEs and p53 were used to evaluate the degree of heart aging. Transcriptome sequencing, GO, KEGG, GSEA and ceRNA network were applied to analyze the potential mechanism of YHY decoction treatment of cardiac aging. RESULTS In this study, we found that YHY decoction not only improved the pathological structure of aging heart, but also regulated the expression of aging-related markers, telomere length, telomerase activity, AGEs and p53, the myocardial tissue, suggesting that it has a specific effect in delaying cardiac aging. Whole-transcriptome sequencing showed that the total of 433 mRNAs, 284 lncRNAs, 62 miRNAs, and 39 circRNAs were significantly differentially expressed after YHY decoction treatment. According to the analysis results of KEGG and GSEA, the differentially expressed mRNAs were found significantly involved in immune system, cytokine-cytokine receptor interaction and cell adhesion molecules. The ceRNA network showed that miR-770, miR-324, and miR-365 are localized in center, mainly affecting the immune system, PI3K-Akt signaling pathway, and MAPK signaling pathway. CONCLUSION In conclusion, our results evaluated the ceRNA network of YHY decoction in treating cardiac aging for the first time, which could provide better understanding of the potential mechanism of YHY decoction treatment of cardiac aging.
Collapse
Affiliation(s)
- Xue Wang
- Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jiaqi Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chengkui Xiu
- Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jing Yang
- Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yiqing Liu
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yan Lei
- Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
20
|
Ruxton CHS, Kajita C, Rocca P, Pot B. Microbiota and probiotics: chances and challenges - a symposium report. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2023; 4:e6. [PMID: 39295904 PMCID: PMC11406417 DOI: 10.1017/gmb.2023.4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 09/21/2024]
Abstract
The 10th International Yakult Symposium was held in Milan, Italy, on 13-14 October 2022. Two keynote lectures covered the crewed journey to space and its implications for the human microbiome, and how current regulatory systems can be adapted and updated to ensure the safety of microorganisms used as probiotics or food processing ingredients. The remaining lectures were split into sections entitled "Chances" and "Challenges." The "Chances" section explored opportunities for the science of probiotics and fermented foods to contribute to diverse areas of health such as irritable bowel syndrome, major depression, Parkinson's disease, immune dysfunction, infant colic, intensive care, respiratory infections, and promoting healthy longevity. The "Challenges" section included selecting appropriate clinical trial participants and methodologies to minimise heterogeneity in responses, how to view probiotics in the context of One Health, adapting regulatory frameworks, and understanding how substances of bacterial origin can cross the blood-brain barrier. The symposium provided evidence from cutting-edge research that gut eubiosis is vital for human health and, like space, the microbiota deserves further exploration of its vast potential.
Collapse
Affiliation(s)
| | | | | | - Bruno Pot
- Yakult Europe BV, Almere, Netherlands
| |
Collapse
|
21
|
Zhang RYK, Cochran BJ, Thomas SR, Rye KA. Impact of Reperfusion on Temporal Immune Cell Dynamics After Myocardial Infarction. J Am Heart Assoc 2023; 12:e027600. [PMID: 36789837 PMCID: PMC10111498 DOI: 10.1161/jaha.122.027600] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Excessive inflammation and impaired healing of cardiac tissue following a myocardial infarction (MI) can drive the development of heart failure. Cardiac repair begins immediately after the onset of MI and continues for months. The repair process can be divided into the following 3 overlapping phases, each having distinct functions and sequelae: the inflammatory phase, the proliferative phase, and the maturation phase. Macrophages, neutrophils, and lymphocytes are present in the myocardium throughout the repair process and govern the duration and function of each of these phases. However, changes in the functions of these cell types across each phase are poorly characterized. Numerous immunomodulatory therapies that specifically target inflammation have been developed for promoting cardiac repair and preventing heart failure after MI. However, these treatments have been largely unsuccessful in large-scale clinical randomized controlled trials. A potential explanation for this failure is the lack of a thorough understanding of the time-dependent evolution of the functions of immune cells after a major cardiovascular event. Failure to account for this temporal plasticity in cell function may reduce the efficacy of immunomodulatory approaches that target cardiac repair. This review is concerned with how the functions of different immune cells change with time following an MI. Improved understanding of the temporal changes in immune cell function is important for the future development of effective and targeted treatments for preventing heart failure after MI.
Collapse
Affiliation(s)
| | - Blake J Cochran
- School of Medical Sciences University of New South Wales Sydney New South Wales
| | - Shane R Thomas
- School of Medical Sciences University of New South Wales Sydney New South Wales
| | - Kerry-Anne Rye
- School of Medical Sciences University of New South Wales Sydney New South Wales
| |
Collapse
|
22
|
Kim KH, Pyo H, Lee H, Oh D, Noh JM, Ahn YC, Kim CG, Yoon HI, Lee J, Park S, Jung HA, Sun JM, Lee SH, Ahn JS, Park K, Ku BM, Shin EC, Ahn MJ. Association of T Cell Senescence with Radiation Pneumonitis in Patients with Non-small Cell Lung Cancer. Int J Radiat Oncol Biol Phys 2023; 115:464-475. [PMID: 35896144 DOI: 10.1016/j.ijrobp.2022.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/07/2022] [Accepted: 07/13/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE Associations between immunosenescence and radiation pneumonitis (RP) are largely unknown. We aimed to identify a peripheral blood T cell senescence biomarker to predict RP in patients with non-small cell lung cancer (NSCLC). METHODS AND MATERIALS Patients with locally advanced NSCLC who received definitive concurrent chemoradiotherapy (dCRT) were prospectively registered (cohort 1, n=23; cohort 2, n=31). Peripheral blood was collected at baseline, during dCRT, and at 1 month post-dCRT. Patients were dichotomized to grade ≥2 (G2+) RP and grade 0-1 (G0-1) RP. Flow cytometry was performed to assess phenotypes and functional properties of T cell subsets. RP incidence was estimated via competing risk analysis. RESULTS Five and six patients exhibited G2+ RP following dCRT in cohorts 1 and 2, respectively. Patients with G2+ RP exhibited a more aged T cell pool and higher frequencies of senescent CD57+CD28-CD8+ T cells than patients with G0-1 RP at baseline, during dCRT, and at 1 month post-dCRT. These senescent cells exhibited increased granzyme B, IFN-γ, and TNF-α production. Higher baseline frequency of CD57+CD28-CD8+ T cells was an independent predictor of G2+ RP (hazard ratio, 8.42; 95% confidence interval, 2.58-27.45; P<0.001). Recursive partitioning analysis revealed three distinct risk groups stratified by baseline CD57+CD28-CD8+ T cell frequency and lung V20 Gy, with 1-year cumulative G2+ RP incidences of 50.0%, 16.7%, and 0% for high-, intermediate-, and low-risk groups, respectively (P=0.002). CONCLUSIONS Higher baseline frequencies of CD57+CD28-CD8+ T cells correlated with increased G2+ RP risks. Our results suggest the need for further investigation of the role of T cell senescence on radiation-induced organ damage.
Collapse
Affiliation(s)
- Kyung Hwan Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hongryull Pyo
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hoyoung Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Dongryul Oh
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jae Myoung Noh
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yong Chan Ahn
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Chang Gon Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hong In Yoon
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jiyun Lee
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea; Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sehhoon Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyun-Ae Jung
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jong-Mu Sun
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Se-Hoon Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jin Seok Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Keunchil Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Bo Mi Ku
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
| | - Myung-Ju Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
23
|
Friebel J, Witkowski M, Wegner M, Blöbaum L, Lammel S, Schencke PA, Jakobs K, Puccini M, Reißner D, Steffens D, Moos V, Schutheiss HP, Landmesser U, Rauch U. Cytotoxic CD8 + T Cells Are Involved in the Thrombo-Inflammatory Response during First-Diagnosed Atrial Fibrillation. Cells 2022; 12:cells12010141. [PMID: 36611934 PMCID: PMC9818535 DOI: 10.3390/cells12010141] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Atrial myopathy and atrial fibrillation (AF) accompany thrombo-inflammation. This facilitates disease progression and promotes major adverse cardiovascular events (MACEs). Thrombin receptor (protease-activated receptor 1, PAR1) signalling is central in mediating thrombo-inflammation. We hypothesised that PAR1 signalling links coagulation and inflammation through cytotoxic CD8+ T lymphocytes in patients presenting with first-diagnosed AF (FDAF). METHODS A total of 210 patients were studied. We included data and blood samples from patients presenting with FDAF (n = 160), cardiac tissue from patients with paroxysmal AF (n = 32) and 20 controls. RESULTS During early AF, a pro-inflammatory and cytotoxic subset of T lymphocytes (CD8+) circulated more frequently when compared to patients with chronic cardiovascular disease but without AF, accompanied by elevated plasma levels of CD8+ effector molecules, which corresponded to biomarkers of adverse cardiac remodelling and atrial dysfunction. Activation of tissue factor (TF) and PAR1 was associated with pro-inflammatory and cytotoxic effector functions. PAR1-related CD8+ cell activation was more frequent in FDAF patients that experienced a MACE. CONCLUSIONS In patients with FDAF, the TF-factor Xa-factor IIa-axis contributes to thrombo-inflammation via PAR1 in CD8+ T cells. Intervening in this cascade might be a promising synergistic approach to reducing disease progression and the vascular complications of AF.
Collapse
Affiliation(s)
- Julian Friebel
- Charité Center 11—Department of Cardiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
- Department of Cardiac Anesthesiology and Intensive Care Medicine, German Heart Center, 13353 Berlin, Germany
| | - Marco Witkowski
- Charité Center 11—Department of Cardiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Max Wegner
- Charité Center 11—Department of Cardiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Leon Blöbaum
- Charité Center 11—Department of Cardiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Stella Lammel
- Charité Center 11—Department of Cardiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Philipp-Alexander Schencke
- Charité Center 11—Department of Cardiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Kai Jakobs
- Charité Center 11—Department of Cardiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Marianna Puccini
- Charité Center 11—Department of Cardiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Daniela Reißner
- Charité Center 11—Department of Cardiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Daniel Steffens
- Charité Center 11—Department of Cardiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Verena Moos
- Medical Department I, Gastroenterology, Infectious Diseases and Rheumatology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | | | - Ulf Landmesser
- Charité Center 11—Department of Cardiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Ursula Rauch
- Charité Center 11—Department of Cardiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
- Correspondence: ; Tel.: +49-30-450-513794
| |
Collapse
|
24
|
Ju SH, Ku BJ. Effects of rosuvastatin/ezetimibe on senescence of CD8+ T-cell in type 2 diabetic patients with hypercholesterolemia: A study protocol. Medicine (Baltimore) 2022; 101:e31691. [PMID: 36451471 PMCID: PMC9704954 DOI: 10.1097/md.0000000000031691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND A decade ago, systemic inflammation became widely recognized as an etiology of type 2 diabetes mellitus (T2DM) and complications thereof. Senescent CD8 + T cells of T2DM patients exhibit increased secretion of pro-inflammatory cytokines and enhanced expression of cytotoxic molecules, contributing to systemic inflammation. Recently, many anti-inflammatory roles played by statins and ezetimibe (cholesterol-lowering drugs) have been reported. We will explore the effects of statin/ezetimibe therapy on CD8 + T cell senescence in patients with T2DM and hypercholesterolemia. METHODS This 2-group, parallel, randomized, controlled clinical trial will recruit 108 subjects with T2DM and low-density lipoprotein-cholesterol (LDL-C) levels ≥100 mg/dL and randomly assign them to rosuvastatin/ezetimibe and rosuvastatin groups at a 1:1 ratio. Blood samples will be drawn at baseline and after 12 weeks of medication. The primary outcomes will be the LDL-C-lowering effects after 12 weeks. The secondary outcomes will be changes in the senescent (CD28 - CD57+) CD8 + T cell proportions; the levels of circulating pro-inflammatory cytokines, cytotoxic molecules, interleukin-1, transforming growth factor-β, fasting glucose, and HbA1c; and biochemical indices of kidney, liver, and muscle function. Symptoms and signs of predictable adverse events (myopathy and hepatitis) will be routinely monitored. DISCUSSION We will evaluate the effects of statin/ezetimibe on CD8 + T cell senescence. Statin/ezetimibe may exert a beneficial immunomodulatory effect.
Collapse
Affiliation(s)
- Sang Hyeon Ju
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Bon Jeong Ku
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Republic of Korea
- * Correspondence: Bon Jeong Ku, Department of Internal Medicine, Chungnam National University School of Medicine, 282 Munhwa-ro, Jung-gu, Daejeon 35015, Republic of Korea (e-mail: )
| |
Collapse
|
25
|
Meng X, Xia G, Zhang L, Xu C, Chen Z. T cell immunoglobulin and mucin domain-containing protein 3 is highly expressed in patients with acute decompensated heart failure and predicts mid-term prognosis. Front Cardiovasc Med 2022; 9:933532. [PMID: 36186992 PMCID: PMC9520239 DOI: 10.3389/fcvm.2022.933532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Background and aims T cell immunoglobulin and mucin domain-containing protein 3 (Tim-3) is mainly expressed by immune cells and plays an immunomodulatory role in cardiovascular disease. However, the prognostic value of Tim-3 in acute decompensated heart failure (ADHF) is unclear. This study aimed to investigate the expression profile of Tim-3 on CD4+ and CD8+ T cells in patients with ADHF and its impact on their prognosis. Methods In this prospective study, 84 patients who were hospitalized with ADHF and 83 patients without heart failure were enrolled. Main clinical data were collected during patient visits. The Tim-3 expression on CD4+ and CD8+ T cells in peripheral blood samples was assayed by flow cytometry. Long-term prognosis of the patients with ADHF was evaluated by major adverse cardiac and cerebrovascular events (MACCE) over a 12-month follow-up period. Results We found that the Tim-3 expression on CD4+ T cells [2.08% (1.15–2.67%) vs. 0.88% (0.56–1.39%), p < 0.001] and CD8+ T cells [3.81% (2.24–6.03%) vs. 1.36% (0.76–3.00%), p < 0.001] in ADHF group were significantly increased vs. the non-ADHF group. Logistic analysis revealed that high levels of Tim-3 expressed on CD4+ and CD8+ T cells were independent risk factors of ADHF (OR: 2.76; 95% CI: 1.34–5.65, p = 0.006; OR: 2.58; 95% CI: 1.26–5.31, p = 0.010, respectively). ROC curve analysis showed that the high level of Tim-3 on CD4+ or CD8+ T cells as a biomarker has predictive performance for ADHF (AUC: 0.75; 95% CI: 0.68–0.83; AUC: 0.78, 95% CI: 0.71–0.85, respectively). During a median follow-up of 12 months, the Cox regression analysis revealed that higher Tim-3 on CD4+ and CD8+ T cells were strongly associated with increased risks of MACCE within 12 months after ADHF (HR: 2.613; 95% CI: 1.11–6.13, p = 0.027; HR: 2.762, 95% CI: 1.15–6.63, p = 0.023; respectively). Conclusion Our research indicated that the expression level of Tim-3 on CD4+ and CD8+ T cells, elevated in patients with ADHF, was an independent predictor of MACCE within 12 months after ADHF. It suggests a potential immunoregulatory role of Tim-3 signaling system in the mechanism of ADHF.
Collapse
Affiliation(s)
- Xin Meng
- Department of Cardiology, The Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guofang Xia
- Department of Cardiology, The Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lili Zhang
- Department of Cardiology, The Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Congfeng Xu
- Department of Cardiology, The Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhong Chen
- Department of Cardiology, The Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
26
|
Grievink HW, Smit V, Huisman BW, Gal P, Yavuz Y, Klerks C, Binder CJ, Bot I, Kuiper J, Foks AC, Moerland M. Cardiovascular risk factors: The effects of ageing and smoking on the immune system, an observational clinical study. Front Immunol 2022; 13:968815. [PMID: 36189218 PMCID: PMC9519851 DOI: 10.3389/fimmu.2022.968815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022] Open
Abstract
Currently immunomodulatory compounds are under investigation for use in patients with cardiovascular disease, caused by atherosclerosis. These trials, using recurrent cardiovascular events as endpoint, require enrollment of large patient groups. We investigated the effect of key risk factors for atherosclerosis development, ageing and smoking, on the immune system, with the objective to identify biomarkers differentiating between human populations, and potentially serving as endpoints for future phase 1B trials with immunomodulatory compounds. Blood was collected from young healthy volunteers (aged 18-25 years, n=30), young smokers (18-25 years, n=20), elderly healthy volunteers (>60 years, n=20), heavy smokers (>45 years, 15 packyears, n=11) and patients with stable coronary artery disease (CAD) (>60 years, n=27). Circulating immune cell subsets were characterized by flow cytometry, and collected plasma was evaluated by proteomics (Olink). Clear ageing effects were observed, mostly illustrated by a lower level in CD8+ and naïve CD4+ and CD8+ T cells, with an increase in CD4+ and CD8+ effector memory T cells in elderly healthy volunteers compared to young healthy volunteers. Heavy smokers showed a more inflammatory cellular phenotype, especially a shift in Th1/Th2 ratio: higher Th1 and lower Th2 percentages compared to young healthy volunteers. A significant decrease in circulating atheroprotective oxLDL-specific IgM was found in patients with CAD compared to young healthy volunteers. Elevated pro-inflammatory and chemotactic proteins TREM1 and CCL11 were observed in elderly volunteers compared to young volunteers. In addition, heavy smokers had an increase in pro-inflammatory cytokine IL-6 and lysosomal protein LAMP3. These data show that ageing and smoking are associated with an inflammatory immunophenotype, and that heavy smokers or aged individuals may serve as potential populations for future clinical trials investigating immunomodulatory drugs targeted for cardiovascular disease.
Collapse
Affiliation(s)
- H. W. Grievink
- Centre for Human Drug Research, Leiden, Netherlands
- Division of BioTherapeutics, Leiden Academic Center for Drug Research, Leiden University, Leiden, Netherlands
| | - V. Smit
- Division of BioTherapeutics, Leiden Academic Center for Drug Research, Leiden University, Leiden, Netherlands
| | - B. W. Huisman
- Centre for Human Drug Research, Leiden, Netherlands
- Department of Gynecology and Obstetrics, Leiden University Medical Center, Leiden, Netherlands
| | - P. Gal
- Centre for Human Drug Research, Leiden, Netherlands
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, Netherlands
| | - Y. Yavuz
- Centre for Human Drug Research, Leiden, Netherlands
| | - C. Klerks
- Centre for Human Drug Research, Leiden, Netherlands
| | - C. J. Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - I. Bot
- Division of BioTherapeutics, Leiden Academic Center for Drug Research, Leiden University, Leiden, Netherlands
| | - J. Kuiper
- Division of BioTherapeutics, Leiden Academic Center for Drug Research, Leiden University, Leiden, Netherlands
| | - A. C. Foks
- Division of BioTherapeutics, Leiden Academic Center for Drug Research, Leiden University, Leiden, Netherlands
| | - M. Moerland
- Centre for Human Drug Research, Leiden, Netherlands
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
27
|
Ghamar Talepoor A, Doroudchi M. Immunosenescence in atherosclerosis: A role for chronic viral infections. Front Immunol 2022; 13:945016. [PMID: 36059478 PMCID: PMC9428721 DOI: 10.3389/fimmu.2022.945016] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/26/2022] [Indexed: 01/10/2023] Open
Abstract
Immune system is a versatile and dynamic body organ which offers survival and endurance of human beings in their hostile living environment. However, similar to other cells, immune cells are hijacked by senescence. The ageing immune cells lose their beneficial functions but continue to produce inflammatory mediators which draw other immune and non-immune cells to the senescence loop. Immunosenescence has been shown to be associated with different pathological conditions and diseases, among which atherosclerosis has recently come to light. There are common drivers of both immunosenescence and atherosclerosis; e.g. inflammation, reactive oxygen species (ROS), chronic viral infections, genomic damage, oxidized-LDL, hypertension, cigarette smoke, hyperglycaemia, and mitochondrial failure. Chronic viral infections induce inflammaging, sustained cytokine signaling, ROS generation and DNA damage which are associated with atherogenesis. Accumulating evidence shows that several DNA and RNA viruses are stimulators of immunosenescence and atherosclerosis in an interrelated network. DNA viruses such as CMV, EBV and HBV upregulate p16, p21 and p53 senescence-associated molecules; induce inflammaging, metabolic reprogramming of infected cells, replicative senescence and telomere shortening. RNA viruses such as HCV and HIV induce ROS generation, DNA damage, induction of senescence-associated secretory phenotype (SASP), metabolic reprogramming of infected cells, G1 cell cycle arrest, telomere shortening, as well as epigenetic modifications of DNA and histones. The newly emerged SARS-CoV-2 virus is also a potent inducer of cytokine storm and SASP. The spike protein of SARS-CoV-2 promotes senescence phenotype in endothelial cells by augmenting p16, p21, senescence-associated β-galactosidase (SA-β-Gal) and adhesion molecules expression. The impact of SARS-CoV-2 mega-inflammation on atherogenesis, however, remains to be investigated. In this review we focus on the common processes in immunosenescence and atherogenesis caused by chronic viral infections and discuss the current knowledge on this topic.
Collapse
|
28
|
Youn JC, Kim D, Kim IC, Lee HS, Choi JO, Jeon ES, Nishihara K, Kransdorf EP, Chang DH, Kittleson MM, Patel JK, Ramzy D, Esmailian F, Kobashigawa JA. Characteristics, outcomes, and predictors of de novo malignancy after heart transplantation. Front Cardiovasc Med 2022; 9:939275. [PMID: 36003907 PMCID: PMC9393331 DOI: 10.3389/fcvm.2022.939275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Background Post-transplant malignancy (PTM) causes long-term morbidity and mortality in heart transplant (HTx) recipients. However, the detailed characteristics or predictors of PTM are not well-known. We evaluated the incidence, characteristics, long-term outcomes, and predictors of de novo PTM using a single center large-volume database. Methods We retrospectively analyzed the types and characteristics of de novo PTM in 989 patients who underwent HTx. Univariate and multivariate logistic regression analyses were used for the PTM prediction model. Results Two hundred and six patients (20.8%) had de novo PTMs (241 cancers) during a median follow-up of 11.5 years. PTM patients were older than non-PTM patients, received immunosuppressive therapy for a longer period, and were more likely to be male and white. Skin cancers were the most frequent types of malignancy (60.6%) followed by prostate (9.5%), lung (7.1%), and breast (4.1%) cancers. Although most cancers (88.8%) were surgically resected at initial presentation, about half (47.3%) recurred or progressed. Patients with skin cancer and non-skin cancer had significantly lower overall survival (P < 0.001) than patients without cancer. Older age (P < 0.001), white race (P = 0.001), and longer time receiving immunosuppressive therapy (P < 0.001) were independent predictors for PTM. Conclusion Older age, white race, and longer administration of immunosuppressive therapies were independent risk factors for PTM, which was associated with increased mortality. Further research is necessary for the prevention and early detection of PTM in HTx recipients.
Collapse
Affiliation(s)
- Jong-Chan Youn
- Department of Cardiology, Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, United States
- Division of Cardiology, Department of Internal Medicine, Catholic Research Institute for Intractable Cardiovascular Disease, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Darae Kim
- Division of Cardiology, Department of Medicine, Samsung Medical Center, Heart Vascular Stroke Institute, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - In-Cheol Kim
- Division of Cardiology, Department of Internal Medicine, Keimyung University Dongsan Hospital, Daegu, South Korea
| | - Hye Sun Lee
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, South Korea
| | - Jin-Oh Choi
- Division of Cardiology, Department of Medicine, Samsung Medical Center, Heart Vascular Stroke Institute, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Eun-Seok Jeon
- Division of Cardiology, Department of Medicine, Samsung Medical Center, Heart Vascular Stroke Institute, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Keith Nishihara
- Department of Cardiology, Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, United States
| | - Evan P. Kransdorf
- Department of Cardiology, Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, United States
| | - David H. Chang
- Department of Cardiology, Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, United States
| | - Michelle M. Kittleson
- Department of Cardiology, Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, United States
| | - Jignesh K. Patel
- Department of Cardiology, Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, United States
| | - Danny Ramzy
- Department of Cardiothoracic Surgery, Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, United States
| | - Fardad Esmailian
- Department of Cardiothoracic Surgery, Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, United States
| | - Jon A. Kobashigawa
- Department of Cardiology, Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, United States
| |
Collapse
|
29
|
Sun Y, Wang X, Liu T, Zhu X, Pan X. The multifaceted role of the SASP in atherosclerosis: from mechanisms to therapeutic opportunities. Cell Biosci 2022; 12:74. [PMID: 35642067 PMCID: PMC9153125 DOI: 10.1186/s13578-022-00815-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/15/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The global population of older individuals is growing, and ageing is a key risk factor for atherosclerotic cardiovascular diseases. Abnormal accumulation of senescent cells can cause potentially deleterious effects on the organism with age. As a vital marker of cellular senescence, the senescence-associated secretory phenotype (SASP) is a novel mechanism to link cellular senescence with atherosclerosis. MAIN BODY In this review, we concretely describe the characteristics of the SASP and its regulation mechanisms. Importantly, we provide novel perspectives on how the SASP can promote atherosclerosis. The SASP from different types of senescent cells have vital roles in atherosclerosis progression. As a significant mediator of the harmful effects of senescent cells, it can play a pro-atherogenic role by producing inflammation and immune dysfunction. Furthermore, the SASP can deliver senescence signals to the surrounding vascular cells, gradually contributing to the development of atherosclerosis. Finally, we focus on a variety of novel therapeutic strategies aimed to reduce the burden of atherosclerosis in elderly individuals by targeting senescent cells and inhibiting the regulatory mechanisms of the SASP. CONCLUSION This review systematically summarizes the multiple roles of the SASP in atherosclerosis and can contribute to the exploration of new therapeutic opportunities.
Collapse
Affiliation(s)
- Yu Sun
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xia Wang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Tianwei Liu
- Institute of Cerebrovascular Diseases, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiaoyan Zhu
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| | - Xudong Pan
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
30
|
Abstract
The immune system is fundamental to tissue homeostasis and is the first line of defense following infection, injury or disease. In the damaged heart, large numbers of immune cells are recruited to the site of injury. These cells play an integral part in both repair by scar formation and the initiation of tissue regeneration. They initially assume inflammatory phenotypes, releasing pro-inflammatory cytokines and removing dead and dying tissue, before entering a reparative stage, replacing dead muscle tissue with a non-contractile scar. In this Review, we present an overview of the innate and adaptive immune response to heart injury. We explore the kinetics of immune cell mobilization following cardiac injury and how the different innate and adaptive immune cells interact with one another and with the damaged tissue. We draw on key findings from regenerative models, providing insight into how to support a robust immune response permissible for cardiac regeneration. Finally, we consider how the latest technological developments can offer opportunities for a deeper and unbiased functional understanding of the immune response to heart disease, highlighting the importance of such knowledge as the basis for promoting regeneration following cardiac injury in human patients.
Collapse
Affiliation(s)
- Filipa C. Simões
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford,Oxford, OxfordshireOX3 9DS, UK
- Institute of Developmental and Regenerative Medicine, Old Road Campus, Oxford, OxfordshireOX3 7DQ, UK
| | - Paul R. Riley
- Institute of Developmental and Regenerative Medicine, Old Road Campus, Oxford, OxfordshireOX3 7DQ, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OxfordshireOX1 3PT, UK
| |
Collapse
|
31
|
Peterson EA, Sun J, Wang J. Leukocyte-Mediated Cardiac Repair after Myocardial Infarction in Non-Regenerative vs. Regenerative Systems. J Cardiovasc Dev Dis 2022; 9:63. [PMID: 35200716 PMCID: PMC8877434 DOI: 10.3390/jcdd9020063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
Innate and adaptive leukocytes rapidly mobilize to ischemic tissues after myocardial infarction in response to damage signals released from necrotic cells. Leukocytes play important roles in cardiac repair and regeneration such as inflammation initiation and resolution; the removal of dead cells and debris; the deposition of the extracellular matrix and granulation tissue; supporting angiogenesis and cardiomyocyte proliferation; and fibrotic scar generation and resolution. By organizing and comparing the present knowledge of leukocyte recruitment and function after cardiac injury in non-regenerative to regenerative systems, we propose that the leukocyte response to cardiac injury differs in non-regenerative adult mammals such as humans and mice in comparison to cardiac regenerative models such as neonatal mice and adult zebrafish. Specifically, extensive neutrophil, macrophage, and T-cell persistence contributes to a lengthy inflammatory period in non-regenerative systems for adverse cardiac remodeling and heart failure development, whereas their quick removal supports inflammation resolution in regenerative systems for new contractile tissue formation and coronary revascularization. Surprisingly, other leukocytes have not been examined in regenerative model systems. With this review, we aim to encourage the development of improved immune cell markers and tools in cardiac regenerative models for the identification of new immune targets in non-regenerative systems to develop new therapies.
Collapse
Affiliation(s)
| | | | - Jinhu Wang
- Division of Cardiology, School of Medicine, Emory University, Atlanta, GA 30322, USA; (E.A.P.); (J.S.)
| |
Collapse
|
32
|
Hu C, Zhang X, Teng T, Ma ZG, Tang QZ. Cellular Senescence in Cardiovascular Diseases: A Systematic Review. Aging Dis 2022; 13:103-128. [PMID: 35111365 PMCID: PMC8782554 DOI: 10.14336/ad.2021.0927] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Aging is a prominent risk factor for cardiovascular diseases, which is the leading cause of death around the world. Recently, cellular senescence has received potential attention as a promising target in preventing cardiovascular diseases, including acute myocardial infarction, atherosclerosis, cardiac aging, pressure overload-induced hypertrophy, heart regeneration, hypertension, and abdominal aortic aneurysm. Here, we discuss the mechanisms underlying cellular senescence and describe the involvement of senescent cardiovascular cells (including cardiomyocytes, endothelial cells, vascular smooth muscle cells, fibroblasts/myofibroblasts and T cells) in age-related cardiovascular diseases. Then, we highlight the targets (SIRT1 and mTOR) that regulating cellular senescence in cardiovascular disorders. Furthermore, we review the evidence that senescent cells can exert both beneficial and detrimental implications in cardiovascular diseases on a context-dependent manner. Finally, we summarize the emerging pro-senescent or anti-senescent interventions and discuss their therapeutic potential in preventing cardiovascular diseases.
Collapse
Affiliation(s)
- Can Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Xin Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Teng Teng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Zhen-Guo Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| |
Collapse
|
33
|
Cuscino N, Fatima A, Di Pilato V, Bulati M, Alfano C, Monaca E, Di Mento G, Di Carlo D, Cardinale F, Monaco F, Rossolini GM, Khan AM, Conaldi PG, Douradinha B. Computational design and characterization of a multiepitope vaccine against carbapenemase-producing Klebsiella pneumoniae strains, derived from antigens identified through reverse vaccinology. Comput Struct Biotechnol J 2022; 20:4446-4463. [PMID: 36051872 PMCID: PMC9418682 DOI: 10.1016/j.csbj.2022.08.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/15/2022] [Accepted: 08/15/2022] [Indexed: 11/10/2022] Open
Abstract
Klebsiella pneumoniae is a Gram-negative pathogen of clinical relevance, which can provoke serious urinary and blood infections and pneumonia. This bacterium is a major public health threat due to its resistance to several antibiotic classes. Using a reverse vaccinology approach, 7 potential antigens were identified, of which 4 were present in most of the sequences of Italian carbapenem-resistant K. pneumoniae clinical isolates. Bioinformatics tools demonstrated the antigenic potential of these bacterial proteins and allowed for the identification of T and B cell epitopes. This led to a rational design and in silico characterization of a multiepitope vaccine against carbapenem-resistant K. pneumoniae strains. As adjuvant, the mycobacterial heparin-binding hemagglutinin adhesin (HBHA), which is a Toll-like receptor 4 (TLR-4) agonist, was included, to increase the immunogenicity of the construct. The multiepitope vaccine candidate was analyzed by bioinformatics tools to assess its antigenicity, solubility, allergenicity, toxicity, physical and chemical parameters, and secondary and tertiary structures. Molecular docking binding energies to TLR-2 and TLR-4, two important innate immunity receptors involved in the immune response against K. pneumoniae infections, and molecular dynamics simulations of such complexes supported active interactions. A codon optimized multiepitope sequence cloning strategy is proposed, for production of recombinant vaccine in classical bacterial vectors. Finally, a 3 dose-immunization simulation with the multiepitope construct induced both cellular and humoral immune responses. These results suggest that this multiepitope construct has potential as a vaccination strategy against carbapenem-resistant K. pneumoniae and deserves further validation.
Collapse
|
34
|
Corker A, Neff LS, Broughton P, Bradshaw AD, DeLeon-Pennell KY. Organized Chaos: Deciphering Immune Cell Heterogeneity's Role in Inflammation in the Heart. Biomolecules 2021; 12:11. [PMID: 35053159 PMCID: PMC8773626 DOI: 10.3390/biom12010011] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/10/2021] [Accepted: 12/18/2021] [Indexed: 12/24/2022] Open
Abstract
During homeostasis, immune cells perform daily housekeeping functions to maintain heart health by acting as sentinels for tissue damage and foreign particles. Resident immune cells compose 5% of the cellular population in healthy human ventricular tissue. In response to injury, there is an increase in inflammation within the heart due to the influx of immune cells. Some of the most common immune cells recruited to the heart are macrophages, dendritic cells, neutrophils, and T-cells. In this review, we will discuss what is known about cardiac immune cell heterogeneity during homeostasis, how these cell populations change in response to a pathology such as myocardial infarction or pressure overload, and what stimuli are regulating these processes. In addition, we will summarize technologies used to evaluate cell heterogeneity in models of cardiovascular disease.
Collapse
Affiliation(s)
- Alexa Corker
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, Charleston, SC 29425, USA; (A.C.); (L.S.N.); (P.B.); (A.D.B.)
| | - Lily S. Neff
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, Charleston, SC 29425, USA; (A.C.); (L.S.N.); (P.B.); (A.D.B.)
| | - Philip Broughton
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, Charleston, SC 29425, USA; (A.C.); (L.S.N.); (P.B.); (A.D.B.)
| | - Amy D. Bradshaw
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, Charleston, SC 29425, USA; (A.C.); (L.S.N.); (P.B.); (A.D.B.)
- Ralph H. Johnson Veterans Affairs Medical Center, Medical University of South Carolina, Charleston, SC 29401, USA
| | - Kristine Y. DeLeon-Pennell
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, Charleston, SC 29425, USA; (A.C.); (L.S.N.); (P.B.); (A.D.B.)
- Ralph H. Johnson Veterans Affairs Medical Center, Medical University of South Carolina, Charleston, SC 29401, USA
| |
Collapse
|
35
|
Shirakawa K, Sano M. T Cell Immunosenescence in Aging, Obesity, and Cardiovascular Disease. Cells 2021; 10:cells10092435. [PMID: 34572084 PMCID: PMC8464832 DOI: 10.3390/cells10092435] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/24/2022] Open
Abstract
Although advances in preventive medicine have greatly improved prognosis, cardiovascular disease (CVD) remains the leading cause of death worldwide. This clearly indicates that there remain residual cardiovascular risks that have not been targeted by conventional therapies. The results of multiple animal studies and clinical trials clearly indicate that inflammation is the most important residual risk and a potential target for CVD prevention. The immune cell network is intricately regulated to maintain homeostasis. Ageing associated changes to the immune system occurs in both innate and adaptive immune cells, however T cells are most susceptible to this process. T-cell changes due to thymic degeneration and homeostatic proliferation, metabolic abnormalities, telomere length shortening, and epigenetic changes associated with aging and obesity may not only reduce normal immune function, but also induce inflammatory tendencies, a process referred to as immunosenescence. Since the disruption of biological homeostasis by T cell immunosenescence is closely related to the development and progression of CVD via inflammation, senescent T cells are attracting attention as a new therapeutic target. In this review, we discuss the relationship between CVD and T cell immunosenescence associated with aging and obesity.
Collapse
Affiliation(s)
- Kohsuke Shirakawa
- Department of Cardiovascular Medicine, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 1138421, Japan;
| | - Motoaki Sano
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 1608582, Japan
- Correspondence: ; Tel.: +81-(3)-5363-3874
| |
Collapse
|
36
|
Broadway R, Patel NM, Hillier LE, El-Briri A, Korneva YS, Zinovkin DA, Pranjol MZI. Potential Role of Diabetes Mellitus-Associated T Cell Senescence in Epithelial Ovarian Cancer Omental Metastasis. Life (Basel) 2021; 11:788. [PMID: 34440532 PMCID: PMC8401827 DOI: 10.3390/life11080788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 01/21/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is one of the most common causes of cancer-related deaths among women and is associated with age and age-related diseases. With increasing evidence of risks associated with metabolic inflammatory conditions, such as obesity and type 2 diabetes mellitus (T2DM), it is important to understand the complex pathophysiological mechanisms underlying cancer progression and metastasis. Age-related conditions can lead to both genotypic and phenotypic immune function alterations, such as induction of senescence, which can contribute to disease progression. Immune senescence is a common phenomenon in the ageing population, which is now known to play a role in multiple diseases, often detrimentally. EOC progression and metastasis, with the highest rates in the 75-79 age group in women, have been shown to be influenced by immune cells within the "milky spots" or immune clusters of the omentum. As T2DM has been reported to cause T cell senescence in both prediabetic and diabetic patients, there is a possibility that poor prognosis in EOC patients with T2DM is partly due to the accumulation of senescent T cells in the omentum. In this review, we explore this hypothesis with recent findings, potential therapeutic approaches, and future directions.
Collapse
Affiliation(s)
- Rhianne Broadway
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK; (R.B.); (L.E.H.)
| | - Nikita M. Patel
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, London EC1M 6BQ, UK; (N.M.P.); (A.E.-B.)
| | - Lucy E. Hillier
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK; (R.B.); (L.E.H.)
| | - Amal El-Briri
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, London EC1M 6BQ, UK; (N.M.P.); (A.E.-B.)
| | - Yulia S. Korneva
- Department of Pathological Anatomy, Smolensk State Medical University, Krupskoy St., 28, 214019 Smolensk, Russia;
- Smolensk Regional Institute of Pathology, Gagarina av, 214020 Smolensk, Russia
| | - Dmitry A. Zinovkin
- Department of Pathology, Gomel State Medical University, 246000 Gomel Region, Belarus;
| | - Md Zahidul I. Pranjol
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK; (R.B.); (L.E.H.)
| |
Collapse
|
37
|
Abbas AA, Akbar AN. Induction of T Cell Senescence by Cytokine Induced Bystander Activation. FRONTIERS IN AGING 2021; 2:714239. [PMID: 35821998 PMCID: PMC9261416 DOI: 10.3389/fragi.2021.714239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/29/2021] [Indexed: 12/15/2022]
Abstract
As people around the world continue to live longer, maintaining a good quality of life is of increasing importance. The COVID-19 pandemic revealed that the elderly are disproportionally vulnerable to infectious diseases and Immunosenescence plays a critical role in that. An ageing immune system influences the conventional activity of T cells which are at the forefront of eliminating harmful foreign antigens. With ageing, unconventional end-stage T cells, that exhibit a senescent phenotype, amass. These senescent T cells deviate from T cell receptor (TCR) signaling toward natural killer (NK) activity. The transition toward innate immune cell function from these adaptor T cells impacts antigen specificity, contributing to increased susceptibility of infection in the elderly. The mechanism by which senescent T cells arise remains largely unclear however in this review we investigate the part that bystander activation plays in driving the change in function of T cells with age. Cytokine-induced bystander activation may offer a plausible explanation for the induction of NK-like activity and senescence in T cells. Further understanding of these specific NK-like senescent T cells allows us to identify the benefits and detriments of these cells in health and disease which can be utilized or regulated, respectively. This review discusses the dynamic of senescent T cells in adopting NK-like T cells and the implications that has in an infectious disease context, predominately in the elderly.
Collapse
|
38
|
Klaourakis K, Vieira JM, Riley PR. The evolving cardiac lymphatic vasculature in development, repair and regeneration. Nat Rev Cardiol 2021; 18:368-379. [PMID: 33462421 PMCID: PMC7812989 DOI: 10.1038/s41569-020-00489-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/23/2020] [Indexed: 02/08/2023]
Abstract
The lymphatic vasculature has an essential role in maintaining normal fluid balance in tissues and modulating the inflammatory response to injury or pathogens. Disruption of normal development or function of lymphatic vessels can have severe consequences. In the heart, reduced lymphatic function can lead to myocardial oedema and persistent inflammation. Macrophages, which are phagocytic cells of the innate immune system, contribute to cardiac development and to fibrotic repair and regeneration of cardiac tissue after myocardial infarction. In this Review, we discuss the cardiac lymphatic vasculature with a focus on developments over the past 5 years arising from the study of mammalian and zebrafish model organisms. In addition, we examine the interplay between the cardiac lymphatics and macrophages during fibrotic repair and regeneration after myocardial infarction. Finally, we discuss the therapeutic potential of targeting the cardiac lymphatic network to regulate immune cell content and alleviate inflammation in patients with ischaemic heart disease.
Collapse
Affiliation(s)
- Konstantinos Klaourakis
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- British Heart Foundation-Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford, UK
| | - Joaquim M Vieira
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
- British Heart Foundation-Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford, UK.
| | - Paul R Riley
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
- British Heart Foundation-Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford, UK.
| |
Collapse
|
39
|
Habal MV, Miller AM, Rao S, Lin S, Obradovic A, Khosravi-Maharlooei M, See S, Roy P, Ronzon S, Ho SH, Marboe C, Naka Y, Takeda K, Restaino S, Han A, Mancini D, Givertz M, Madsen JC, Sykes M, Addonizio L, Farr M, Zorn E. T cell repertoire analysis suggests a prominent bystander response in human cardiac allograft vasculopathy. Am J Transplant 2021; 21:1465-1476. [PMID: 33021057 PMCID: PMC8672660 DOI: 10.1111/ajt.16333] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/02/2020] [Accepted: 09/16/2020] [Indexed: 01/25/2023]
Abstract
T cells are implicated in the pathogenesis of cardiac allograft vasculopathy (CAV), yet their clonality, specificity, and function are incompletely defined. Here we used T cell receptor β chain (TCRB) sequencing to study the T cell repertoire in the coronary artery, endomyocardium, and peripheral blood at the time of retransplant in four cases of CAV and compared it to the immunoglobulin heavy chain variable region (IGHV) repertoire from the same samples. High-dimensional flow cytometry coupled with single-cell PCR was also used to define the T cell phenotype. Extensive overlap was observed between intragraft and blood TCRBs in all cases, a finding supported by robust quantitative diversity metrics. In contrast, blood and graft IGHV repertoires from the same samples showed minimal overlap. Coronary infiltrates included CD4+ and CD8+ memory T cells expressing inflammatory (IFNγ, TNFα) and profibrotic (TGFβ) cytokines. These were distinguishable from the peripheral blood based on memory, activation, and tissue residency markers (CD45RO, CTLA-4, and CD69). Importantly, high-frequency rearrangements were traced back to endomyocardial biopsies (2-6 years prior). Comparison with four HLA-mismatched blood donors revealed a repertoire of shared TCRBs, including a subset of recently described cross-reactive sequences. These findings provide supportive evidence for an active local intragraft bystander T cell response in late-stage CAV.
Collapse
Affiliation(s)
- Marlena V. Habal
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY,Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York, NY
| | - April M.I Miller
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY
| | - Samhita Rao
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY
| | - Sijie Lin
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY
| | - Aleksandar Obradovic
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY
| | | | - Sarah See
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY
| | - Poulomi Roy
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY
| | - Shihab Ronzon
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY
| | - Siu-hong Ho
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY
| | - Charles Marboe
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY
| | - Yoshifumi Naka
- Department of Surgery, Division of Cardiothoracic Surgery, Columbia University Irving Medical Center, New York, NY
| | - Koji Takeda
- Department of Surgery, Division of Cardiothoracic Surgery, Columbia University Irving Medical Center, New York, NY
| | - Susan Restaino
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York, NY
| | - Arnold Han
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY
| | - Donna Mancini
- Department of Medicine, Mount Sinai Hospital, Icahn School of Medicine, New York, NY
| | - Michael Givertz
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Joren C. Madsen
- Center for Transplantation Science, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Megan Sykes
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY
| | - Linda Addonizio
- Department of Pediatrics, Division of Pediatric Cardiology, Columbia University Irving Medical Center, New York, NY
| | - Maryjane Farr
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York, NY
| | - Emmanuel Zorn
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
40
|
Ghamar Talepoor A, Khosropanah S, Doroudchi M. Partial recovery of senescence in circulating follicular helper T cells after Dasatinib treatment. Int Immunopharmacol 2021; 94:107465. [PMID: 33631598 DOI: 10.1016/j.intimp.2021.107465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 01/01/2023]
Abstract
Cellular senescence is an irreversible arrest of cell proliferation triggered by different stimuli, including DNA damage, telomere shortening and oncogenic stress. Senescent cells, by releasing the senescence-associated-secretory-phenotype (SASP), contribute to various diseases pathogenesis. Human atherosclerotic plaque contains cells with multiple markers of senescence that associate with disease severity. We characterized the frequency of senescent cTfh cells and genes expressions before and after treatment with Dasatinib in patients with different degrees of stenosis. Twelve high (≥50%), and twelve low (<50%) stenosis patients and six healthy controls were enrolled. The percentage of senescent CD3+CD4+CXCR5+CD153+CD57+ cells was significantly decreased in Dasatinib treated cells from individuals with low and high stenosis (P = 0.0007 and P = 0.0002, respectively). However, the frequency of total lymphocytes, CD3+ and CD4+ T cells were not significantly different between the groups before and after treatment. The expression levels of P53 (P = 0.0003 and P = 0.0001), P16 (P = 0.0005 and P = 0.0002), p21 (P = 0.0002 and P < 0.0001), SENEX (P = 0.0005 and P < 0.0001) and BCL-2 (P = 0.0005 and P = 0.0002) were decreased in PBMCs of low and high stenosis groups after treatment with Dasatinib, respectively. The percentage of senescent cTfh cells positively correlated with cholesterol (P = 0.034; r = 0.671), C-reactive protein (CRP) (P = 0.029; r = 0.707), Erythrocyte sedimentation rate (ESR) levels (P = 0.030; r = 0.598) and neutrophil counts (P = 0.021; r = 0.799) in patients with high stenosis. The decreased frequency of senescent cTfh cells and the expression levels of senescence genes after Dasatinib treatment in patients with atherosclerosis suggest a role for Dasatinib in partial clearance or rejuvenation of senescent cTfh cells, which may decrease inflammatory mediators and attenuate disease progression.
Collapse
Affiliation(s)
- Atefe Ghamar Talepoor
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahdad Khosropanah
- Department of Cardiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrnoosh Doroudchi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
41
|
Li Y, Qin L, Bai Q, Zhang J, Chen R, Song K. CD100 modulates cytotoxicity of CD8 + T cells in patients with acute myocardial infarction. BMC Immunol 2021; 22:13. [PMID: 33593275 PMCID: PMC7888114 DOI: 10.1186/s12865-021-00406-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/03/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND CD100 is an immune semaphorin family member that highly expressed on T cells, which take part in the development of acute myocardial infarction (AMI). Matrix metalloproteinases (MMPs) are important mediators for membrane-bound CD100 (mCD100) shedding from T cells to generate soluble CD100 (sCD100), which has immunoregulatory effect on T cells. The aim of this study was to investigate modulatory role of CD100 on CD8+ T cell activity in AMI patients. METHODS Peripheral sCD100 and MMP-2 level, as well as mCD100 level on T cells was assessed in patients with stable angina pectoris (SAP), unstable angina pectoris (UAP), and AMI. The regulatory function of MMP-2 on mCD100 shedding, sCD100 formation, and cytotoxicity of CD8+ T cells was analyzed in direct and indirect contact co-culture system. RESULTS AMI patients had higher peripheral sCD100 and lower mCD100 expression on CD8+ T cells in comparison with SAP, UAP, and controls. CD8+ T cells in AMI patients showed elevated direct cytotoxicity, enhanced cytokine production, and increased perforin/granzyme B secretion. Recombinant sCD100 stimulation promoted cytolytic function of CD8+ T cells in controls and AMI patients. Furthermore, AMI patients also had elevated circulating MMP-2 level. Recombinant MMP-2 stimulation induced mCD100 shedding from CD8+ T cells and sCD100 generation, resulting in enhancement of CD8+ T cell cytotoxicity in AMI patients. CONCLUSION Up-regulation of MMP-2 might contribute to elevation of mCD100 shedding and sCD100 formation, leading to increased cytotoxicity CD8+ T cells in AMI patients.
Collapse
Affiliation(s)
- Yan Li
- Department of Cardiovascular Medicine Ward II, Zhengzhou Central Hospital Affiliated to Zhengzhou University, 16 North Tongbai Road, Zhongyuan District, Zhengzhou, 450000, Henan Province, China
| | - Li Qin
- Department of Cardiovascular Medicine Ward II, Zhengzhou Central Hospital Affiliated to Zhengzhou University, 16 North Tongbai Road, Zhongyuan District, Zhengzhou, 450000, Henan Province, China
| | - Qijun Bai
- Department of Cardiovascular Medicine Ward II, Zhengzhou Central Hospital Affiliated to Zhengzhou University, 16 North Tongbai Road, Zhongyuan District, Zhengzhou, 450000, Henan Province, China
| | - Jingjing Zhang
- Department of Cardiovascular Medicine Ward II, Zhengzhou Central Hospital Affiliated to Zhengzhou University, 16 North Tongbai Road, Zhongyuan District, Zhengzhou, 450000, Henan Province, China
| | - Ruixue Chen
- Department of Cardiovascular Medicine Ward II, Zhengzhou Central Hospital Affiliated to Zhengzhou University, 16 North Tongbai Road, Zhongyuan District, Zhengzhou, 450000, Henan Province, China
| | - Kunpeng Song
- Department of Cardiovascular Medicine Ward II, Zhengzhou Central Hospital Affiliated to Zhengzhou University, 16 North Tongbai Road, Zhongyuan District, Zhengzhou, 450000, Henan Province, China.
| |
Collapse
|
42
|
Romero-Olmedo AJ, Schulz AR, Huber M, Brehm CU, Chang HD, Chiarolla CM, Bopp T, Skevaki C, Berberich-Siebelt F, Radbruch A, Mei HE, Lohoff M. Deep phenotypical characterization of human CD3 + CD56 + T cells by mass cytometry. Eur J Immunol 2020; 51:672-681. [PMID: 33231295 DOI: 10.1002/eji.202048941] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/25/2020] [Accepted: 11/19/2020] [Indexed: 12/25/2022]
Abstract
CD56+ T cells are a group of pro-inflammatory CD3+ lymphocytes with characteristics of natural killer cells, being involved in antimicrobial immune defense. Here, we performed deep phenotypic profiling of CD3+ CD56+ cells in peripheral blood of normal human donors and individuals sensitized to birch-pollen or/and house dust mite by high-dimensional mass cytometry combined with manual and computational data analysis. A co-regulation between major conventional T-cell subsets and their respective CD3+ CD56+ cell counterparts appeared restricted to CD8+ , MAIT, and TCRγδ+ T-cell compartments. Interestingly, we find a co-regulation of several CD3+ CD56+ cell subsets in allergic but not in healthy individuals. Moreover, using FlowSOM, we distinguished a variety of CD56+ T-cell phenotypes demonstrating a hitherto underestimated heterogeneity among these cells. The novel CD3+ CD56+ subset description comprises phenotypes superimposed with naive, memory, type 1, 2, and 17 differentiation stages, in part represented by a phenotypical continuum. Frequencies of two out of 19 CD3+ CD56+ FlowSOM clusters were significantly diminished in allergic individuals, demonstrating less frequent presence of cells with cytolytic, presumably protective, capacity in these donors consistent with defective expansion or their recruitment to the affected tissue. Our results contribute to defining specific cell populations to be targeted during therapy for allergic conditions.
Collapse
Affiliation(s)
- Addi J Romero-Olmedo
- Institute for Medical Microbiology and Hospital Hygiene, University of Marburg, Marburg, Germany
| | - Axel R Schulz
- German Rheumatism Research Center Berlin (DRFZ), Leibniz Institute, Berlin, Germany
| | - Magdalena Huber
- Institute for Medical Microbiology and Hospital Hygiene, University of Marburg, Marburg, Germany
| | - Corinna U Brehm
- Comprehensive Biobank Marburg - CBBMR, Member of the DZL, Philipps-University Marburg, Marburg, Germany.,Institute for Pathology, University Hospital Marburg, Philipps-University Marburg, Marburg, Germany
| | - Hyun-Dong Chang
- German Rheumatism Research Center Berlin (DRFZ), Leibniz Institute, Berlin, Germany
| | - Cristina M Chiarolla
- Institute of Pathology, Julius-Maximilian University of Wuerzburg, Wuerzburg, Germany
| | - Tobias Bopp
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Chrysanthi Skevaki
- Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | | | - Andreas Radbruch
- German Rheumatism Research Center Berlin (DRFZ), Leibniz Institute, Berlin, Germany
| | - Henrik E Mei
- German Rheumatism Research Center Berlin (DRFZ), Leibniz Institute, Berlin, Germany
| | - Michael Lohoff
- Institute for Medical Microbiology and Hospital Hygiene, University of Marburg, Marburg, Germany
| |
Collapse
|
43
|
Lockyer S. Effects of diets, foods and nutrients on immunity: Implications for COVID‐19? NUTR BULL 2020. [DOI: 10.1111/nbu.12470] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
44
|
Covre LP, De Maeyer RPH, Gomes DCO, Akbar AN. The role of senescent T cells in immunopathology. Aging Cell 2020; 19:e13272. [PMID: 33166035 PMCID: PMC7744956 DOI: 10.1111/acel.13272] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/11/2020] [Accepted: 10/04/2020] [Indexed: 12/16/2022] Open
Abstract
The development of senescence in tissues of different organs and in the immune system are usually investigated independently of each other although during ageing, senescence in both cellular systems develop concurrently. Senescent T cells are highly inflammatory and secrete cytotoxic mediators and express natural killer cells receptors (NKR) that bypass their antigen specificity. Instead they recognize stress ligands that are induced by inflammation or infection of different cell types in tissues. In this article we discuss data on T cell senescence, how it is regulated and evidence for novel functional attributes of senescent T cells. We discuss an interactive loop between senescent T cells and senescent non-lymphoid cells and conclude that in situations of intense inflammation, senescent cells may damage healthy tissue. While the example for immunopathology induced by senescent cells that we highlight is cutaneous leishmaniasis, this situation of organ damage may apply to other infections, including COVID-19 and also rheumatoid arthritis, where ageing, inflammation and senescent cells are all part of the same equation.
Collapse
Affiliation(s)
- Luciana P. Covre
- Division of MedicineUniversity College LondonLondonUK
- Núcleo de Doenças InfecciosasUniversidade Federal do Espírito SantoVitoriaBrazil
| | | | - Daniel C. O. Gomes
- Núcleo de Doenças InfecciosasUniversidade Federal do Espírito SantoVitoriaBrazil
| | - Arne N. Akbar
- Division of MedicineUniversity College LondonLondonUK
| |
Collapse
|
45
|
Gang H, Peng D, Hu Y, Tang S, Li S, Huang Q. Interleukin-9-secreting CD4 + T cells regulate CD8 + T cells cytotoxicity in patients with acute coronary syndromes. APMIS 2020; 129:91-102. [PMID: 33113251 DOI: 10.1111/apm.13094] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/22/2020] [Indexed: 12/21/2022]
Abstract
T cells play vital roles in the development and progression of acute coronary syndromes (ACS), including cytotoxicity mediated by CD8+ T cells and immunoregulatory activity mediated by CD4+ T cells. Interleukin (IL)-9-secreting CD4+ T cells (Th9 cells) were recently found to be involved in the onset of ACS. We investigated regulatory role of Th9 cells to CD8+ T cells in patients with stable angina pectoris, unstable angina pectoris, and acute myocardial infarction (AMI). Circulating Th9 cells percentage, plasma IL-9 level, and PU.1 mRNA relative level was up-regulated in AMI patients compared with controls. There was no significant difference of IL-9-secreting CD8+ T cells percentage among groups. CD8+ T cells from AMI patients revealed increased cytotoxicity than those from controls, which presented as enhanced cytotolytic activity to target cells, increased interferon-γ and tumor necrosis factor-α secretion, elevated perforin and granzyme B production, and reduced programmed death-1 and cytotoxic T lymphocyte-associated protein 4. IL-9 stimulation did not affect proliferation, but promoted CD8+ T-cell cytotoxicity from both controls and AMI patients. IL-9-secreting CD4+ T cells were enriched in CD4+ CCR4- CCR6- CXCR3- cells. The enhancement of CD8+ T-cell cytotoxicity induced by CD4+ CCR4- CCR6- CXCR3- cells was dependent on IL-9 secretion. The present results indicated that up-regulation of IL-9-secreting CD4+ T cells may contribute to pathogenesis of AMI through enhancement of CD8+ T-cell cytotoxicity.
Collapse
Affiliation(s)
- Hongsheng Gang
- Department of Cardiology, Wuhan Fourth Hospital, Pu'ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dingfeng Peng
- Department of Cardiology, Wuhan Fourth Hospital, Pu'ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongjun Hu
- Department of Cardiology, Wuhan Fourth Hospital, Pu'ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaoyong Tang
- Department of Cardiology, Wuhan Fourth Hospital, Pu'ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Songhai Li
- Department of Cardiology, Wuhan Fourth Hospital, Pu'ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Huang
- Department of Cardiology, Wuhan Fourth Hospital, Pu'ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
46
|
Padgett LE, Dinh HQ, Wu R, Gaddis DE, Araujo DJ, Winkels H, Nguyen A, McNamara CA, Hedrick CC. Naive CD8 + T Cells Expressing CD95 Increase Human Cardiovascular Disease Severity. Arterioscler Thromb Vasc Biol 2020; 40:2845-2859. [PMID: 33054398 DOI: 10.1161/atvbaha.120.315106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVE Cardiovascular disease (CVD) remains a significant global health concern with a high degree of mortality. While CD4+ T cells have been extensively studied in CVD, the importance of CD8+ T cells in this disease, despite their abundance and increased activation in human atherosclerotic plaques, remains largely unknown. Thus, the objective of this study was to compare peripheral T-cell signatures between humans with a high (severe) risk of CVD (including myocardial infarction or stroke) and those with a low risk of CVD. Approach and Results: Using mass cytometry, we uncovered a naive CD8+ T (TN) cell population expressing CD95 (termed CD95+CD8+ stem cell memory T [CD8 TSCM] cells) that was enriched in patients with high compared with low CVD. This T-cell subset enrichment within individuals with high CVD was a relative increase and resulted from the loss of CD95lo cells within the TN compartment. We found that CD8 TSCM cells positively correlated with CVD risk in humans, while CD8+ TN cells were inversely correlated. Atherosclerotic apolipoprotein E-deficient (ApoE-/-) mice also displayed respective 7- and 2-fold increases in CD8+ TSCM frequencies within the peripheral blood and aorta-draining paraaortic lymph nodes compared with C57BL/6J mice. CD8+ TSCM cells were 1.7-fold increased in aortas from western diet fed ApoE-/- mice compared with normal laboratory diet-fed ApoE-/- mice. Importantly, transfer of TSCM cells into immune-deficient Rag.Ldlr recipient mice that lacked T cells increased atherosclerosis, illustrating the importance of these cells in atherogenesis. CONCLUSIONS CD8+ TSCM cells are increased in humans with high CVD. As these TSCM cells promote atherosclerosis, targeting them may attenuate atherosclerotic plaque progression.
Collapse
Affiliation(s)
- Lindsey E Padgett
- Division of Inflammation Biology, La Jolla Institute for Immunology, CA (L.E.P., H.Q.D., R.W., D.E.G., D.J.A., H.W., C.C.H.)
| | - Huy Q Dinh
- Division of Inflammation Biology, La Jolla Institute for Immunology, CA (L.E.P., H.Q.D., R.W., D.E.G., D.J.A., H.W., C.C.H.)
| | - Runpei Wu
- Division of Inflammation Biology, La Jolla Institute for Immunology, CA (L.E.P., H.Q.D., R.W., D.E.G., D.J.A., H.W., C.C.H.)
| | - Dalia E Gaddis
- Division of Inflammation Biology, La Jolla Institute for Immunology, CA (L.E.P., H.Q.D., R.W., D.E.G., D.J.A., H.W., C.C.H.)
| | - Daniel J Araujo
- Division of Inflammation Biology, La Jolla Institute for Immunology, CA (L.E.P., H.Q.D., R.W., D.E.G., D.J.A., H.W., C.C.H.)
| | - Holger Winkels
- Division of Inflammation Biology, La Jolla Institute for Immunology, CA (L.E.P., H.Q.D., R.W., D.E.G., D.J.A., H.W., C.C.H.)
| | - Anh Nguyen
- Cardiovascular Research Center and Division of Cardiovascular Medicine, University of Virginia, Charlottesville (A.N., C.A.M.)
| | - Coleen A McNamara
- Cardiovascular Research Center and Division of Cardiovascular Medicine, University of Virginia, Charlottesville (A.N., C.A.M.)
| | - Catherine C Hedrick
- Division of Inflammation Biology, La Jolla Institute for Immunology, CA (L.E.P., H.Q.D., R.W., D.E.G., D.J.A., H.W., C.C.H.)
| |
Collapse
|
47
|
Rai A, Narisawa M, Li P, Piao L, Li Y, Yang G, Cheng XW. Adaptive immune disorders in hypertension and heart failure: focusing on T-cell subset activation and clinical implications. J Hypertens 2020; 38:1878-1889. [PMID: 32890260 DOI: 10.1097/hjh.0000000000002456] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
: Hypertension is a growing health concern worldwide. Established hypertension is a causative factor of heart failure, which is characterized by increased vascular resistance and intractable uncontrolled blood pressure. Hypertension and heart failure have multiple causes and complex pathophysiology but cellular immunity is thought to contribute to the development of both. Recent studies showed that T cells play critical roles in hypertension and heart failure in humans and animals, with various stimuli leading to the formation of effector T cells that infiltrate the cardiovascular wall. Monocytes/macrophages also accumulate in the cardiovascular wall. Various cytokines (e.g. interleukin-6, interleukin-17, interleukin-10, tumor necrosis factor-α, and interferon-γ) released from immune cells of various subtypes promote vascular senescence and elastic laminal degradation as well as cardiac fibrosis and/or hypertrophy, leading to cardiovascular structural alterations and dysfunction. Recent laboratory evidence has defined a link between inflammation and the immune system in initiation and progression of hypertension and heart failure. Moreover, cross-talk among natural killer cells, adaptive immune cells (T cells and B cells), and innate immune cells (i.e. monocytes, macrophages, neutrophils, and dendritic cells) contributes to end-cardiovasculature damage and dysfunction in hypertension and heart failure. Clinical and experimental studies on the diagnostic potential of T-cell subsets revealed that blood regulatory T cells, CD4 cells, CD8 T cells, and the ratio of CD4 to CD8 T cells show promise as biomarkers of hypertension and heart failure. Therapeutic interventions to suppress activation of these cells may prove beneficial in reducing end-organ damage and preventing consequences of cardiovascular failure, including hypertension of heart failure.
Collapse
Affiliation(s)
- Avinas Rai
- Department of Cardiology, Yanbian University Hospital, Juzijie, Yanji, Jilin Province, China
| | - Megumi Narisawa
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ping Li
- State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Limei Piao
- Department of Cardiology, Yanbian University Hospital, Juzijie, Yanji, Jilin Province, China
| | - Yanglong Li
- Department of Cardiology, Yanbian University Hospital, Juzijie, Yanji, Jilin Province, China
| | - Guang Yang
- Department of Cardiology, Yanbian University Hospital, Juzijie, Yanji, Jilin Province, China
| | - Xian Wu Cheng
- Department of Cardiology, Yanbian University Hospital, Juzijie, Yanji, Jilin Province, China
| |
Collapse
|
48
|
Bradshaw AD, DeLeon-Pennell KY. T-cell regulation of fibroblasts and cardiac fibrosis. Matrix Biol 2020; 91-92:167-175. [PMID: 32438054 PMCID: PMC7434661 DOI: 10.1016/j.matbio.2020.04.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/30/2020] [Accepted: 04/13/2020] [Indexed: 02/06/2023]
Abstract
Inflammation contributes to the development of heart failure (HF) through multiple mechanisms including regulating extracellular matrix (ECM) degradation and deposition. Interactions between cells in the myocardium orchestrates the magnitude and duration of inflammatory cell recruitment and ECM remodeling events associated with HF. More recently, studies have shown T-cells have signficant roles in post-MI wound healing. T-cell biology in HF illustrates the complexity of cross-talk between inflammatory cell types and resident fibroblasts. This review will focus on T-cell recruitment to the myocardium and T-cell specific factors that might influence cardiac wound healing and fibrosis in the heart with consideration of age and sex as important factors in T-cell activity.
Collapse
Affiliation(s)
- Amy D Bradshaw
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, Ralph H. Johnson Veterans Affairs Medical Center, 109 Bee Street Charleston, SC 29401, United States
| | - Kristine Y DeLeon-Pennell
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, Ralph H. Johnson Veterans Affairs Medical Center, 109 Bee Street Charleston, SC 29401, United States.
| |
Collapse
|
49
|
Ovchinnikov AG, Arefieva TI, Potekhina AV, Filatova AY, Ageev FT, Boytsov SА. The Molecular and Cellular Mechanisms Associated with a Microvascular Inflammation in the Pathogenesis of Heart Failure with Preserved Ejection Fraction. Acta Naturae 2020. [DOI: 10.32607/actanaturae.11154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heart failure withpreserved ejection fraction (HFpEF) is a severe disease with an often unfavorable outcome. The prevalence of HFpEF continues to increase, while effective treatment options remain elusive. All the medical strategies used toimprove the outcome in a heart failure with reduced ejection fraction proved ineffective in HFpEF, which was probably due to the different mechanisms ofdevelopment of these two types of heart failure and the diversity of the HFpEF phenotypes. According to the current paradigm of HFpEF development, a chronic mild pro-inflammatory statecauses a coronary microvascular endothelial inflammation, with further myocardial fibrosis and diastolic dysfunction progression. This inflammatory paradigm of HFpEF has been confirmed with someevidence, and suppressing the inflammation may become a novel strategy for treating and managing HFpEF. This review summarizes current concepts about a microvascular inflammation in hypertrophied myocardium and provides a translational perspective of the anti-inflammatory and immunomodulatory approaches in HFpEF.
Collapse
|
50
|
Barbé-Tuana F, Funchal G, Schmitz CRR, Maurmann RM, Bauer ME. The interplay between immunosenescence and age-related diseases. Semin Immunopathol 2020; 42:545-557. [PMID: 32747977 PMCID: PMC7398288 DOI: 10.1007/s00281-020-00806-z] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023]
Abstract
The aging immune system (immunosenescence) has been implicated with increased morbidity and mortality in the elderly. Of note, T cell aging and low-grade inflammation (inflammaging) are implicated with several age-related conditions. The expansion of late-differentiated T cells (CD28−), regulatory T cells, increased serum levels of autoantibodies, and pro-inflammatory cytokines were implicated with morbidities during aging. Features of accelerated immunosenescence can be identified in adults with chronic inflammatory conditions, such as rheumatoid arthritis, and are predictive of poor clinical outcomes. Therefore, there is an interplay between immunosenescence and age-related diseases. In this review, we discuss how the aging immune system may contribute to the development and clinical course of age-related diseases such as neurodegenerative diseases, rheumatoid arthritis, cancer, cardiovascular, and metabolic diseases.
Collapse
Affiliation(s)
- Florencia Barbé-Tuana
- Laboratory of Immunobiology, Graduate Program in Cellular and Molecular Biology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Giselle Funchal
- Laboratory of Immunobiology, Graduate Program in Cellular and Molecular Biology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Carine Raquel Richter Schmitz
- Graduate Program in Cell Biology: Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Rafael Moura Maurmann
- Laboratory of Immunobiology, Graduate Program in Cellular and Molecular Biology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Moisés E Bauer
- Laboratory of Immunobiology, Graduate Program in Cellular and Molecular Biology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil. .,Graduate Program in Biomedical Gerontology, PUCRS, Porto Alegre, Brazil.
| |
Collapse
|