1
|
Gulino ME, Ordóñez-Morán P, Mahida YR. Establishment of a 3D organoid culture model for the investigation of adult slow-cycling putative intestinal stem cells. Histochem Cell Biol 2024; 162:351-362. [PMID: 39073425 DOI: 10.1007/s00418-024-02312-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 07/30/2024]
Abstract
The study of intestinal stem cells is a prerequisite for the development of therapies aimed at regenerating the gut. To enable investigation of adult slow-cycling H2B-GFP-retaining putative small intestinal (SI) stem cells in vitro, we have developed a three-dimensional (3D) SI organoid culture model based on the Tet-Op histone 2 B (H2B)-green fluorescent protein (GFP) fusion protein (Tet-Op-H2B-GFP) transgenic mouse. SI crypts were isolated from 6- to 12-week-old Tet-Op-H2B-GFP transgenic mice and cultured with appropriate growth factors and an animal-derived matrix (Matrigel). For in vitro transgene expression, doxycycline was added to the culture medium for 24 h. By pulse-chase experiments, H2B-GFP expression and retention were assessed through direct GFP fluorescence observations, both by confocal and fluorescence microscopy and by immunohistochemistry. The percentages of H2B-GFP-retaining putative SI stem cells and H2B-GFP-retaining Paneth cells persisting in organoids were determined by scoring relevant GFP-positive cells. Our results indicate that 24 h exposure to doxycycline (pulse) induced ubiquitous expression of H2B-GFP in the SI organoids. During subsequent culture, in the absence of doxycycline (chase), there was a gradual loss (due to cell division) of H2B-GFP. At 6-day chase, slow-cycling H2B-GFP-retaining putative SI stem cells and H2B-GFP-retaining Paneth cells were detected in the SI organoids. The developed culture model allows detection of slow-cycling H2B-GFP-retaining putative SI stem cells and will enable the study of self-renewal and regeneration for further characterization of these cells.
Collapse
Affiliation(s)
- Maria Eugenia Gulino
- Translational Medical Sciences, School of Medicine, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK.
| | - Paloma Ordóñez-Morán
- Translational Medical Sciences Unit, School of Medicine, Centre for Cancer Sciences, Biodiscovery Institute-3, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Yashwant R Mahida
- Translational Medical Sciences, School of Medicine, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
| |
Collapse
|
2
|
Zhang R, Perekatt A, Chen L. Metabolic regulation of intestinal homeostasis: molecular and cellular mechanisms and diseases. MedComm (Beijing) 2024; 5:e776. [PMID: 39465140 PMCID: PMC11502721 DOI: 10.1002/mco2.776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/21/2024] [Accepted: 09/22/2024] [Indexed: 10/29/2024] Open
Abstract
Metabolism serves not only as the organism's energy source but also yields metabolites crucial for maintaining tissue homeostasis and overall health. Intestinal stem cells (ISCs) maintain intestinal homeostasis through continuous self-renewal and differentiation divisions. The intricate relationship between metabolic pathways and intestinal homeostasis underscores their crucial interplay. Metabolic pathways have been shown to directly regulate ISC self-renewal and influence ISC fate decisions under homeostatic conditions, but the cellular and molecular mechanisms remain incompletely understood. Understanding the intricate involvement of various pathways in maintaining intestinal homeostasis holds promise for devising innovative strategies to address intestinal diseases. Here, we provide a comprehensive review of recent advances in the regulation of intestinal homeostasis. We describe the regulation of intestinal homeostasis from multiple perspectives, including the regulation of intestinal epithelial cells, the regulation of the tissue microenvironment, and the key role of nutrient metabolism. We highlight the regulation of intestinal homeostasis and ISC by nutrient metabolism. This review provides a multifaceted perspective on how intestinal homeostasis is regulated and provides ideas for intestinal diseases and repair of intestinal damage.
Collapse
Affiliation(s)
- Ruolan Zhang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human DiseaseSoutheast UniversityNanjingChina
| | - Ansu Perekatt
- Department of Chemistry and Chemical BiologyStevens Institute of TechnologyHobokenNew JerseyUSA
| | - Lei Chen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human DiseaseSoutheast UniversityNanjingChina
- Institute of Microphysiological SystemsSoutheast UniversityNanjingChina
| |
Collapse
|
3
|
Hartl K, Bayram Ş, Wetzel A, Harnack C, Lin M, Fischer AS, Liu L, Beccaceci G, Mastrobuoni G, Geisberger S, Forbes M, Monteiro BJE, Macino M, Flores RE, Engelmann C, Mollenkopf HJ, Schupp M, Tacke F, Sanders AD, Kempa S, Berger H, Sigal M. p53 terminates the regenerative fetal-like state after colitis-associated injury. SCIENCE ADVANCES 2024; 10:eadp8783. [PMID: 39453996 PMCID: PMC11506124 DOI: 10.1126/sciadv.adp8783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/20/2024] [Indexed: 10/27/2024]
Abstract
Cells that lack p53 signaling frequently occur in ulcerative colitis (UC) and are considered early drivers in UC-associated colorectal cancer (CRC). Epithelial injury during colitis is associated with transient stem cell reprogramming from the adult, homeostatic to a "fetal-like" regenerative state. Here, we use murine and organoid-based models to study the role of Trp53 during epithelial reprogramming. We find that p53 signaling is silent and dispensable during homeostasis but strongly up-regulated in the epithelium upon DSS-induced colitis. While in WT cells this causes termination of the regenerative state, crypts that lack Trp53 remain locked in the highly proliferative, regenerative state long-term. The regenerative state in WT cells requires high Wnt signaling to maintain elevated levels of glycolysis. Instead, Trp53 deficiency enables Wnt-independent glycolysis due to overexpression of rate-limiting enzyme PKM2. Our study reveals the context-dependent relevance of p53 signaling specifically in the injury-induced regenerative state, explaining the high abundance of clones lacking p53 signaling in UC and UC-associated CRC.
Collapse
Affiliation(s)
- Kimberly Hartl
- Medical Department, Division of Gastroenterology and Hepatology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Şafak Bayram
- Medical Department, Division of Gastroenterology and Hepatology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Alexandra Wetzel
- Medical Department, Division of Gastroenterology and Hepatology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christine Harnack
- Medical Department, Division of Gastroenterology and Hepatology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Manqiang Lin
- Medical Department, Division of Gastroenterology and Hepatology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Anne-Sophie Fischer
- Medical Department, Division of Gastroenterology and Hepatology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Lichao Liu
- Medical Department, Division of Gastroenterology and Hepatology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Giulia Beccaceci
- Medical Department, Division of Gastroenterology and Hepatology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Guido Mastrobuoni
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Sabrina Geisberger
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Martin Forbes
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Benedict J. E. Monteiro
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Berlin Institute of Health (BIH) at Charité–Universitätsmedizin Berlin, Berlin, Germany
- Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Martina Macino
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Berlin Institute of Health (BIH) at Charité–Universitätsmedizin Berlin, Berlin, Germany
- Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Roberto E. Flores
- Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Cornelius Engelmann
- Medical Department, Division of Gastroenterology and Hepatology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Michael Schupp
- Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Frank Tacke
- Medical Department, Division of Gastroenterology and Hepatology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ashley D. Sanders
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Berlin Institute of Health (BIH) at Charité–Universitätsmedizin Berlin, Berlin, Germany
- Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Stefan Kempa
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Hilmar Berger
- Medical Department, Division of Gastroenterology and Hepatology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michael Sigal
- Medical Department, Division of Gastroenterology and Hepatology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| |
Collapse
|
4
|
Beumer J, Geurts MH, Geurts V, Andersson-Rolf A, Akkerman N, Völlmy F, Krueger D, Busslinger GA, Martínez-Silgado A, Boot C, Yousef Yengej FA, Puschhof J, Van de Wetering WJ, Knoops K, López-Iglesias C, Peters PJ, Vivié JA, Mooijman D, van Es JH, Clevers H. Description and functional validation of human enteroendocrine cell sensors. Science 2024; 386:341-348. [PMID: 39418382 PMCID: PMC7616728 DOI: 10.1126/science.adl1460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 09/09/2024] [Indexed: 10/19/2024]
Abstract
Enteroendocrine cells (EECs) are gut epithelial cells that respond to intestinal contents by secreting hormones, including the incretins glucagon-like peptide 1 (GLP-1) and gastric inhibitory protein (GIP), which regulate multiple physiological processes. Hormone release is controlled through metabolite-sensing proteins. Low expression, interspecies differences, and the existence of multiple EEC subtypes have posed challenges to the study of these sensors. We describe differentiation of stomach EECs to complement existing intestinal organoid protocols. CD200 emerged as a pan-EEC surface marker, allowing deep transcriptomic profiling from primary human tissue along the stomach-intestinal tract. We generated loss-of-function mutations in 22 receptors and subjected organoids to ligand-induced secretion experiments. We delineate the role of individual human EEC sensors in the secretion of hormones, including GLP-1. These represent potential pharmacological targets to influence appetite, bowel movement, insulin sensitivity, and mucosal immunity.
Collapse
Affiliation(s)
- Joep Beumer
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CTUtrecht, The Netherlands; Oncode Institute
- Institute of Human Biology, Roche Pharma Research and Early Development, Roche Innovation Center Basel, CH-4070 Basel, Switzerland
| | - Maarten H. Geurts
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CTUtrecht, The Netherlands; Oncode Institute
| | - Veerle Geurts
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CTUtrecht, The Netherlands; Oncode Institute
| | - Amanda Andersson-Rolf
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CTUtrecht, The Netherlands; Oncode Institute
| | - Ninouk Akkerman
- Institute of Human Biology, Roche Pharma Research and Early Development, Roche Innovation Center Basel, CH-4070 Basel, Switzerland
| | - Franziska Völlmy
- Pharmaceutical Sciences, Roche Pharma Research and Early Development, Roche Innovation Center Basel, CH-4070 Basel, Switzerland
| | - Daniel Krueger
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CTUtrecht, The Netherlands; Oncode Institute
| | - Georg A. Busslinger
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CTUtrecht, The Netherlands; Oncode Institute
| | - Adriana Martínez-Silgado
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CTUtrecht, The Netherlands; Oncode Institute
| | - Charelle Boot
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CTUtrecht, The Netherlands; Oncode Institute
| | - Fjodor A. Yousef Yengej
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CTUtrecht, The Netherlands; Oncode Institute
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584 CXUtrecht, the Netherlands
| | - Jens Puschhof
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CTUtrecht, The Netherlands; Oncode Institute
| | - Wiline J. Van de Wetering
- The Maastricht Multimodal Molecular Imaging Institute, Maastricht University, 6229 ERMaastricht, the Netherlands
| | - Kevin Knoops
- The Maastricht Multimodal Molecular Imaging Institute, Maastricht University, 6229 ERMaastricht, the Netherlands
| | - Carmen López-Iglesias
- The Maastricht Multimodal Molecular Imaging Institute, Maastricht University, 6229 ERMaastricht, the Netherlands
| | - Peter J. Peters
- The Maastricht Multimodal Molecular Imaging Institute, Maastricht University, 6229 ERMaastricht, the Netherlands
| | | | - Dylan Mooijman
- Single Cell Discoveries BV, 3584 BWUtrecht, The Netherlands
| | - Johan H. van Es
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CTUtrecht, The Netherlands; Oncode Institute
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CTUtrecht, The Netherlands; Oncode Institute
| |
Collapse
|
5
|
Chen SM, Guo BJ, Feng AQ, Wang XL, Zhang SL, Miao CY. Pathways regulating intestinal stem cells and potential therapeutic targets for radiation enteropathy. MOLECULAR BIOMEDICINE 2024; 5:46. [PMID: 39388072 PMCID: PMC11467144 DOI: 10.1186/s43556-024-00211-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Radiotherapy is a pivotal intervention for cancer patients, significantly impacting their treatment outcomes and survival prospects. Nevertheless, in the course of treating those with abdominal, pelvic, or retroperitoneal malignant tumors, the procedure inadvertently exposes adjacent intestinal tissues to radiation, posing risks of radiation-induced enteropathy upon reaching threshold doses. Stem cells within the intestinal crypts, through their controlled proliferation and differentiation, support the critical functions of the intestinal epithelium, ensuring efficient nutrient absorption while upholding its protective barrier properties. Intestinal stem cells (ISCs) regulation is intricately orchestrated by diverse signaling pathways, among which are the WNT, BMP, NOTCH, EGF, Hippo, Hedgehog and NF-κB, each contributing to the complex control of these cells' behavior. Complementing these pathways are additional regulators such as nutrient metabolic states, and the intestinal microbiota, all of which contribute to the fine-tuning of ISCs behavior in the intestinal crypts. It is the harmonious interplay among these signaling cascades and modulating elements that preserves the homeostasis of intestinal epithelial cells (IECs), thereby ensuring the gut's overall health and function. This review delves into the molecular underpinnings of how stem cells respond in the context of radiation enteropathy, aiming to illuminate potential biological targets for therapeutic intervention. Furthermore, we have compiled a summary of several current treatment methodologies. By unraveling these mechanisms and treatment methods, we aspire to furnish a roadmap for the development of novel therapeutics, advancing our capabilities in mitigating radiation-induced intestinal damage.
Collapse
Affiliation(s)
- Si-Min Chen
- Department of Pharmacology, Second Military Medical University/Naval Medical University, 325 Guo He Road, Shanghai, 200433, China
| | - Bing-Jie Guo
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - An-Qiang Feng
- Department of Digestive Disease, Xuzhou Central Hospital, Xuzhou, China
| | - Xue-Lian Wang
- School of Medicine, Shanghai University, Shanghai, China
| | - Sai-Long Zhang
- Department of Pharmacology, Second Military Medical University/Naval Medical University, 325 Guo He Road, Shanghai, 200433, China.
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University/Naval Medical University, 325 Guo He Road, Shanghai, 200433, China.
| |
Collapse
|
6
|
Sadien ID, Adler S, Mehmed S, Bailey S, Sawle A, Couturier DL, Eldridge M, Adams DJ, Kemp R, Lourenço FC, Winton DJ. Polyclonality overcomes fitness barriers in Apc-driven tumorigenesis. Nature 2024; 634:1196-1203. [PMID: 39478206 PMCID: PMC11525183 DOI: 10.1038/s41586-024-08053-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 09/16/2024] [Indexed: 11/02/2024]
Abstract
Loss-of-function mutations in the tumour suppressor APC are an initial step in intestinal tumorigenesis1,2. APC-mutant intestinal stem cells outcompete their wild-type neighbours through the secretion of Wnt antagonists, which accelerates the fixation and subsequent rapid clonal expansion of mutants3-5. Reports of polyclonal intestinal tumours in human patients and mouse models appear at odds with this process6,7. Here we combine multicolour lineage tracing with chemical mutagenesis in mice to show that a large proportion of intestinal tumours have a multiancestral origin. Polyclonal tumours retain a structure comprising subclones with distinct Apc mutations and transcriptional states, driven predominantly by differences in KRAS and MYC signalling. These pathway-level changes are accompanied by profound differences in cancer stem cell phenotypes. Of note, these findings are confirmed by introducing an oncogenic Kras mutation that results in predominantly monoclonal tumour formation. Further, polyclonal tumours have accelerated growth dynamics, suggesting a link between polyclonality and tumour progression. Together, these findings demonstrate the role of interclonal interactions in promoting tumorigenesis through non-cell autonomous pathways that are dependent on the differential activation of oncogenic pathways between clones.
Collapse
Affiliation(s)
- Iannish D Sadien
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK
| | - Sam Adler
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK
| | - Shenay Mehmed
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK
| | - Sasha Bailey
- Tumour Cell Biology Laboratory, The Francis Crick Institute, London, UK
| | - Ashley Sawle
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK
| | | | - Matthew Eldridge
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK
| | - David J Adams
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Richard Kemp
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK
| | - Filipe C Lourenço
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK
| | - Douglas J Winton
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK.
| |
Collapse
|
7
|
Huang L, Bernink JH, Giladi A, Krueger D, van Son GJF, Geurts MH, Busslinger G, Lin L, Begthel H, Zandvliet M, Buskens CJ, Bemelman WA, López-Iglesias C, Peters PJ, Clevers H. Tuft cells act as regenerative stem cells in the human intestine. Nature 2024; 634:929-935. [PMID: 39358509 PMCID: PMC11499303 DOI: 10.1038/s41586-024-07952-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/15/2024] [Indexed: 10/04/2024]
Abstract
In mice, intestinal tuft cells have been described as a long-lived, postmitotic cell type. Two distinct subsets have been identified: tuft-1 and tuft-2 (ref. 1). By combining analysis of primary human intestinal resection material and intestinal organoids, we identify four distinct human tuft cell states, two of which overlap with their murine counterparts. We show that tuft cell development depends on the presence of Wnt ligands, and that tuft cell numbers rapidly increase on interleukin-4 (IL-4) and IL-13 exposure, as reported previously in mice2-4. This occurs through proliferation of pre-existing tuft cells, rather than through increased de novo generation from stem cells. Indeed, proliferative tuft cells occur in vivo both in fetal and in adult human intestine. Single mature proliferating tuft cells can form organoids that contain all intestinal epithelial cell types. Unlike stem and progenitor cells, human tuft cells survive irradiation damage and retain the ability to generate all other epithelial cell types. Accordingly, organoids engineered to lack tuft cells fail to recover from radiation-induced damage. Thus, tuft cells represent a damage-induced reserve intestinal stem cell pool in humans.
Collapse
Affiliation(s)
- Lulu Huang
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
- Oncode Institute, Hubrecht Institute, Utrecht, the Netherlands
| | - Jochem H Bernink
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands.
- Amsterdam University Medical Center, University of Amsterdam, Department of Experimental Immunology, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands.
| | - Amir Giladi
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
- Oncode Institute, Hubrecht Institute, Utrecht, the Netherlands
| | - Daniel Krueger
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Gijs J F van Son
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
- The Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Maarten H Geurts
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
- The Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Georg Busslinger
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Lin Lin
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
- The Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Harry Begthel
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Maurice Zandvliet
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Christianne J Buskens
- Amsterdam University Medical Center, University of Amsterdam, Department of Surgery, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Willem A Bemelman
- Amsterdam University Medical Center, University of Amsterdam, Department of Surgery, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Carmen López-Iglesias
- The Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, the Netherlands
| | - Peter J Peters
- The Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, the Netherlands
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands.
- Oncode Institute, Hubrecht Institute, Utrecht, the Netherlands.
- The Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands.
- Pharma, Research and Early Development of F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| |
Collapse
|
8
|
González A, Fullaondo A, Odriozola A. Host genetics-associated mechanisms in colorectal cancer. ADVANCES IN GENETICS 2024; 112:83-122. [PMID: 39396843 DOI: 10.1016/bs.adgen.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Colorectal cancer (CRC) represents the second leading cause of cancer incidence and the third leading cause of cancer deaths worldwide. There is currently a lack of understanding of the onset of CRC, hindering the development of effective prevention strategies, early detection methods and the selection of appropriate therapies. This article outlines the key aspects of host genetics currently known about the origin and development of CRC. The organisation of the colonic crypts is described. It discusses how the transformation of a normal cell to a cancer cell occurs and how that malignant cell can populate an entire colonic crypt, promoting colorectal carcinogenesis. Current knowledge about the cell of origin of CRC is discussed, and the two morphological pathways that can give rise to CRC, the classical and alternative pathways, are presented. Due to the molecular heterogeneity of CRC, each of these pathways has been associated with different molecular mechanisms, including chromosomal and microsatellite genetic instability, as well as the CpG island methylator phenotype. Finally, different CRC classification systems are described based on genetic, epigenetic and transcriptomic alterations, allowing diagnosis and treatment personalisation.
Collapse
Affiliation(s)
- Adriana González
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Asier Fullaondo
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Adrian Odriozola
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain.
| |
Collapse
|
9
|
Shaikh NA, Liu C, Yin Y, Baylink DJ, Tang X. 1,25-Dihydroxyvitamin D Enhances the Regenerative Function of Lgr5 + Intestinal Stem Cells In Vitro and In Vivo. Cells 2024; 13:1465. [PMID: 39273035 PMCID: PMC11394149 DOI: 10.3390/cells13171465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disorder in the intestines without a cure. Current therapies suppress inflammation to prevent further intestinal damage. However, healing already damaged intestinal epithelia is still an unmet medical need. Under physiological conditions, Lgr5+ intestinal stem cells (ISCs) in the intestinal crypts replenish the epithelia every 3-5 days. Therefore, understanding the regulation of Lgr5+ ISCs is essential. Previous data suggest vitamin D signaling is essential to maintain normal Lgr5+ ISC function in vivo. Our recent data indicate that to execute its functions in the intestines optimally, 1,25(OH)2D requires high concentrations that, if present systemically, can cause hypercalcemia (i.e., blood calcium levels significantly higher than physiological levels), leading to severe consequences. Using 5-bromo-2'-deoxyuridine (BrdU) to label the actively proliferating ISCs, our previous data suggested that de novo synthesized locally high 1,25(OH)2D concentrations effectively enhanced the migration and differentiation of ISCs without causing hypercalcemia. However, although sparse in the crypts, other proliferating cells other than Lgr5+ ISCs could also be labeled with BrdU. This current study used high-purity Lgr5+ ISC lines and a mouse strain, in which Lgr5+ ISCs and their progeny could be specifically tracked, to investigate the effects of de novo synthesized locally high 1,25(OH)2D concentrations on Lgr5+ ISC function. Our data showed that 1,25(OH)2D at concentrations significantly higher than physiological levels augmented Lgr5+ ISC differentiation in vitro. In vivo, de novo synthesized locally high 1,25(OH)2D concentrations significantly elevated local 1α-hydroxylase expression, robustly suppressed experimental colitis, and promoted Lgr5+ ISC differentiation. For the first time, this study definitively demonstrated 1,25(OH)2D's role in Lgr5+ ISCs, underpinning 1,25(OH)2D's promise in IBD therapy.
Collapse
Affiliation(s)
- Nisar Ali Shaikh
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY 11548, USA
| | - Chenfan Liu
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY 11548, USA
- Shandong Public Health Clinical Center, Shandong University, Jinan 250013, China
| | - Yue Yin
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY 11548, USA
| | - David J. Baylink
- Division of Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Xiaolei Tang
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY 11548, USA
- Division of Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| |
Collapse
|
10
|
Oh SJ, Seo Y, Kim HS. Navigating the Landscape of Intestinal Regeneration: A Spotlight on Quiescence Regulation and Fetal Reprogramming. Int J Stem Cells 2024; 17:213-223. [PMID: 38267367 PMCID: PMC11361849 DOI: 10.15283/ijsc23176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/26/2024] Open
Abstract
Tissue-specific adult stem cells are pivotal in maintaining tissue homeostasis, especially in the rapidly renewing intestinal epithelium. At the heart of this process are leucine-rich repeat-containing G protein-coupled receptor 5-expressing crypt base columnar cells (CBCs) that differentiate into various intestinal epithelial cells. However, while these CBCs are vital for tissue turnover, they are vulnerable to cytotoxic agents. Recent advances indicate that alternative stem cell sources drive the epithelial regeneration post-injury. Techniques like lineage tracing and single-cell RNA sequencing, combined with in vitro organoid systems, highlight the remarkable cellular adaptability of the intestinal epithelium during repair. These regenerative responses are mediated by the reactivation of conserved stem cells, predominantly quiescent stem cells and revival stem cells. With focus on these cells, this review unpacks underlying mechanisms governing intestinal regeneration and explores their potential clinical applications.
Collapse
Affiliation(s)
- Su-Jeong Oh
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Korea
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan, Korea
- Education and Research Team for Life Science on Dentistry, Pusan National University, Yangsan, Korea
| | - Yoojin Seo
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Korea
| | - Hyung-Sik Kim
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Korea
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan, Korea
- Education and Research Team for Life Science on Dentistry, Pusan National University, Yangsan, Korea
| |
Collapse
|
11
|
Masser BE, Brinkmeier ML, Lin Y, Liu Q, Miyazaki A, Nayeem J, Cheung LYM. Gene Misexpression in a Smoc2+ve/ Sox2-Low Population in Juvenile Prop1-Mutant Pituitary Gland. J Endocr Soc 2024; 8:bvae146. [PMID: 39253355 PMCID: PMC11382140 DOI: 10.1210/jendso/bvae146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Indexed: 09/11/2024] Open
Abstract
Mutations in the pituitary-specific transcription factor Prophet of Pit-1 (PROP1) are the most common genetic etiology of combined pituitary hormone deficiency (CPHD). CPHD is associated with short stature, attributable to growth hormone deficiency and/or thyroid-stimulating hormone deficiency, as well as hypothyroidism and infertility. Pathogenic lesions impair pituitary development and differentiation of endocrine cells. We performed single-cell RNA sequencing of pituitary cells from a wild-type and a Prop1-mutant P4 female mouse to elucidate population-specific differential gene expression. We observed a Smoc2+ve population that expressed low Sox2, which trajectory analyses suggest are a transitional cell state as stem cells differentiate into endocrine cells. We also detected ectopic expression of Sox21 in these cells in the Prop1df/df mutant. Prop1-mutant mice are known to overexpress Pou3f4, which we now show to be also enriched in this Smoc2+ve population. We sought to elucidate the role of Pou3f4 during pituitary development and to determine the contributions of Pou3f4 upregulation to pituitary disease by utilizing double-mutant mice lacking both Prop1 and Pou3f4. However, our data showed that Pou3f4 is not required for normal pituitary development and function. Double mutants further demonstrated that the upregulation of Pou3f4 was not causative for the overexpression of Sox21. These data indicate loss of Pou3f4 is not a potential cause of CPHD, and further studies may investigate the functional consequence of upregulation of Pou3f4 and Sox21, if any, in the novel Smoc2+ve cell population.
Collapse
Affiliation(s)
- Bailey E Masser
- Department of Human Genetics, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48105, USA
| | - Michelle L Brinkmeier
- Department of Human Genetics, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48105, USA
| | - Yuxuan Lin
- Department of Physiology & Biophysics, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Qin Liu
- Department of Physiology & Biophysics, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Aya Miyazaki
- Department of Physiology & Biophysics, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jannatun Nayeem
- Department of Physiology & Biophysics, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Leonard Y M Cheung
- Department of Physiology & Biophysics, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
12
|
van Luyk ME, Krotenberg Garcia A, Lamprou M, Suijkerbuijk SJE. Cell competition in primary and metastatic colorectal cancer. Oncogenesis 2024; 13:28. [PMID: 39060237 PMCID: PMC11282291 DOI: 10.1038/s41389-024-00530-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/05/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Adult tissues set the scene for a continuous battle between cells, where a comparison of cellular fitness results in the elimination of weaker "loser" cells. This phenomenon, named cell competition, is beneficial for tissue integrity and homeostasis. In fact, cell competition plays a crucial role in tumor suppression, through elimination of early malignant cells, as part of Epithelial Defense Against Cancer. However, it is increasingly apparent that cell competition doubles as a tumor-promoting mechanism. The comparative nature of cell competition means that mutational background, proliferation rate and polarity all factor in to determine the outcome of these processes. In this review, we explore the intricate and context-dependent involvement of cell competition in homeostasis and regeneration, as well as during initiation and progression of primary and metastasized colorectal cancer. We provide a comprehensive overview of molecular and cellular mechanisms governing cell competition and its parallels with regeneration.
Collapse
Affiliation(s)
- Merel Elise van Luyk
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Ana Krotenberg Garcia
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Maria Lamprou
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Saskia Jacoba Elisabeth Suijkerbuijk
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
13
|
Gerdol M, Greco S, Marino R, Locascio A, Plateroti M, Sirakov M. Conserved Signaling Pathways in the Ciona robusta Gut. Int J Mol Sci 2024; 25:7846. [PMID: 39063090 PMCID: PMC11277035 DOI: 10.3390/ijms25147846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/04/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
The urochordate Ciona robusta exhibits numerous functional and morphogenetic traits that are shared with vertebrate models. While prior investigations have identified several analogies between the gastrointestinal tract (i.e., gut) of Ciona and mice, the molecular mechanisms responsible for these similarities remain poorly understood. This study seeks to address this knowledge gap by investigating the transcriptional landscape of the adult stage gut. Through comparative genomics analyses, we identified several evolutionarily conserved components of signaling pathways of pivotal importance for gut development (such as WNT, Notch, and TGFβ-BMP) and further evaluated their expression in three distinct sections of the gastrointestinal tract by RNA-seq. Despite the presence of lineage-specific gene gains, losses, and often unclear orthology relationships, the investigated pathways were characterized by well-conserved molecular machinery, with most components being expressed at significant levels throughout the entire intestinal tract of C. robusta. We also showed significant differences in the transcriptional landscape of the stomach and intestinal tract, which were much less pronounced between the proximal and distal portions of the intestine. This study confirms that C. robusta is a reliable model system for comparative studies, supporting the use of ascidians as a model to study gut physiology.
Collapse
Affiliation(s)
- Marco Gerdol
- Department of Life Sciences, Università degli Studi di Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy; (M.G.); (S.G.)
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (R.M.); (A.L.)
| | - Samuele Greco
- Department of Life Sciences, Università degli Studi di Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy; (M.G.); (S.G.)
| | - Rita Marino
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (R.M.); (A.L.)
| | - Annamaria Locascio
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (R.M.); (A.L.)
| | - Michelina Plateroti
- Institute of Genetics and Molecular and Cellular Biology, CNRS UMR7104–INSERM U1258–Université de Strasbourg, 1 Rue Laurent Fries, 67404 Illkirch, France
| | - Maria Sirakov
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (R.M.); (A.L.)
| |
Collapse
|
14
|
Viragova S, Li D, Klein OD. Activation of fetal-like molecular programs during regeneration in the intestine and beyond. Cell Stem Cell 2024; 31:949-960. [PMID: 38971147 PMCID: PMC11235077 DOI: 10.1016/j.stem.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/10/2024] [Accepted: 05/24/2024] [Indexed: 07/08/2024]
Abstract
Tissue regeneration after damage is generally thought to involve the mobilization of adult stem cells that divide and differentiate into progressively specialized progeny. However, recent studies indicate that tissue regeneration can be accompanied by reversion to a fetal-like state. During this process, cells at the injury site reactivate programs that operate during fetal development but are typically absent in adult homeostasis. Here, we summarize our current understanding of the molecular signals and epigenetic mediators that orchestrate "fetal-like reversion" during intestinal regeneration. We also explore evidence for this phenomenon in other organs and species and highlight open questions that merit future examination.
Collapse
Affiliation(s)
- Sara Viragova
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Dong Li
- Department of Pediatrics, Cedars-Sinai Guerin Children's, Los Angeles, CA, USA
| | - Ophir D Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA; Department of Pediatrics, Cedars-Sinai Guerin Children's, Los Angeles, CA, USA.
| |
Collapse
|
15
|
Gao C, Ge H, Kuan SF, Cai C, Lu X, Esni F, Schoen RE, Wang JH, Chu E, Hu J. FAK loss reduces BRAF V600E-induced ERK phosphorylation to promote intestinal stemness and cecal tumor formation. eLife 2024; 13:RP94605. [PMID: 38921956 PMCID: PMC11208045 DOI: 10.7554/elife.94605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024] Open
Abstract
BRAFV600E mutation is a driver mutation in the serrated pathway to colorectal cancers. BRAFV600E drives tumorigenesis through constitutive downstream extracellular signal-regulated kinase (ERK) activation, but high-intensity ERK activation can also trigger tumor suppression. Whether and how oncogenic ERK signaling can be intrinsically adjusted to a 'just-right' level optimal for tumorigenesis remains undetermined. In this study, we found that FAK (Focal adhesion kinase) expression was reduced in BRAFV600E-mutant adenomas/polyps in mice and patients. In Vil1-Cre;BRAFLSL-V600E/+;Ptk2fl/fl mice, Fak deletion maximized BRAFV600E's oncogenic activity and increased cecal tumor incidence to 100%. Mechanistically, our results showed that Fak loss, without jeopardizing BRAFV600E-induced ERK pathway transcriptional output, reduced EGFR (epidermal growth factor receptor)-dependent ERK phosphorylation. Reduction in ERK phosphorylation increased the level of Lgr4, promoting intestinal stemness and cecal tumor formation. Our findings show that a 'just-right' ERK signaling optimal for BRAFV600E-induced cecal tumor formation can be achieved via Fak loss-mediated downregulation of ERK phosphorylation.
Collapse
Affiliation(s)
- Chenxi Gao
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Huaibin Ge
- UPMC Hillman Cancer Center, Division of Hematology and Oncology, Department of Medicine, University of PittsburghPittsburghUnited States
| | - Shih-Fan Kuan
- Department of Pathology, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Chunhui Cai
- Department of Biomedical Informatics, University of PittsburghPittsburghUnited States
| | - Xinghua Lu
- Department of Biomedical Informatics, University of PittsburghPittsburghUnited States
| | - Farzad Esni
- Department of Surgery, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Robert E Schoen
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Jing H Wang
- UPMC Hillman Cancer Center, Division of Hematology and Oncology, Department of Medicine, University of PittsburghPittsburghUnited States
| | - Edward Chu
- UPMC Hillman Cancer Center, Division of Hematology and Oncology, Department of Medicine, University of PittsburghPittsburghUnited States
| | - Jing Hu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of MedicinePittsburghUnited States
| |
Collapse
|
16
|
Fernández Á, Casamitjana J, Holguín-Horcajo A, Coolens K, Mularoni L, Guo L, Hartwig O, Düking T, Vidal N, Strickland LN, Pasquali L, Bailey-Lundberg JM, Rooman I, Wang YJ, Rovira M. A Single-Cell Atlas of the Murine Pancreatic Ductal Tree Identifies Novel Cell Populations With Potential Implications in Pancreas Regeneration and Exocrine Pathogenesis. Gastroenterology 2024:S0016-5085(24)05063-7. [PMID: 38908487 DOI: 10.1053/j.gastro.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/24/2024]
Abstract
BACKGROUND & AIMS Pancreatic ducts form an intricate network of tubules that secrete bicarbonate and drive acinar secretions into the duodenum. This network is formed by centroacinar cells, terminal, intercalated, intracalated ducts, and the main pancreatic duct. Ductal heterogeneity at the single-cell level has been poorly characterized; therefore, our understanding of the role of ductal cells in pancreas regeneration and exocrine pathogenesis has been hampered by the limited knowledge and unexplained diversity within the ductal network. METHODS We used single cell RNA sequencing to comprehensively characterize mouse ductal heterogeneity at single-cell resolution of the entire ductal epithelium from centroacinar cells to the main duct. Moreover, we used organoid cultures, injury models, and pancreatic tumor samples to interrogate the role of novel ductal populations in pancreas regeneration and exocrine pathogenesis. RESULTS We have identified the coexistence of 15 ductal populations within the healthy pancreas and characterized their organoid formation capacity and endocrine differentiation potential. Cluster isolation and subsequent culturing let us identify ductal cell populations with high organoid formation capacity and endocrine and exocrine differentiation potential in vitro, including a Wnt-responsive population, a ciliated population, and Flrt3+ cells. Moreover, we have characterized the location of these novel ductal populations in healthy pancreas, chronic pancreatitis, and tumor samples. The expression of Wnt-responsive, interferon-responsive, and epithelial-to-mesenchymal transition population markers increases in chronic pancreatitis and tumor samples. CONCLUSIONS In light of our discovery of previously unidentified ductal populations, we unmask potential roles of specific ductal populations in pancreas regeneration and exocrine pathogenesis. Thus, novel lineage-tracing models are needed to investigate ductal-specific populations in vivo.
Collapse
Affiliation(s)
- Ángel Fernández
- Department of Physiological Science, School of Medicine, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain; Pancreas Regeneration: Pancreatic Progenitors and Their Niche Group, Regenerative Medicine Program, Instituto de Investigación Biomédica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain; Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L'Hospitalet de Llobregat, Spain; Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Joan Casamitjana
- Department of Physiological Science, School of Medicine, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain; Pancreas Regeneration: Pancreatic Progenitors and Their Niche Group, Regenerative Medicine Program, Instituto de Investigación Biomédica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain; Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L'Hospitalet de Llobregat, Spain
| | - Adrián Holguín-Horcajo
- Department of Physiological Science, School of Medicine, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain; Pancreas Regeneration: Pancreatic Progenitors and Their Niche Group, Regenerative Medicine Program, Instituto de Investigación Biomédica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain; Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L'Hospitalet de Llobregat, Spain
| | - Katarina Coolens
- Vrije Universiteit Brussel, Translational Oncology Research Center, Laboratory for Medical and Molecular Oncology, Brussels, Belgium
| | - Loris Mularoni
- Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L'Hospitalet de Llobregat, Spain
| | - Li Guo
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida
| | - Olga Hartwig
- Miltenyi Biotec B.V. & Co KG, Bergisch Gladbach, Germany
| | - Tim Düking
- Miltenyi Biotec B.V. & Co KG, Bergisch Gladbach, Germany
| | - Noemi Vidal
- Pathology Department, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Lincoln N Strickland
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Lorenzo Pasquali
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Jennifer M Bailey-Lundberg
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Ilse Rooman
- Vrije Universiteit Brussel, Translational Oncology Research Center, Laboratory for Medical and Molecular Oncology, Brussels, Belgium
| | - Yue J Wang
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida
| | - Meritxell Rovira
- Department of Physiological Science, School of Medicine, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain; Pancreas Regeneration: Pancreatic Progenitors and Their Niche Group, Regenerative Medicine Program, Instituto de Investigación Biomédica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain; Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L'Hospitalet de Llobregat, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Barcelona, Spain.
| |
Collapse
|
17
|
Zutshi N, Mohapatra BC, Mondal P, An W, Goetz BT, Wang S, Li S, Storck MD, Mercer DF, Black AR, Thayer SP, Black JD, Lin C, Band V, Band H. Cbl and Cbl-b ubiquitin ligases are essential for intestinal epithelial stem cell maintenance. iScience 2024; 27:109912. [PMID: 38974465 PMCID: PMC11225835 DOI: 10.1016/j.isci.2024.109912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 02/29/2024] [Accepted: 05/03/2024] [Indexed: 07/09/2024] Open
Abstract
Receptor tyrosine kinases (RTKs) control stem cell maintenance vs. differentiation decisions. Casitas B-lineage lymphoma (CBL) family ubiquitin ligases are negative regulators of RTKs, but their stem cell regulatory roles remain unclear. Here, we show that Lgr5+ intestinal stem cell (ISC)-specific inducible Cbl-knockout (KO) on a Cblb null mouse background (iDKO) induced rapid loss of the Lgr5 Hi ISCs with transient expansion of the Lgr5 Lo transit-amplifying population. LacZ-based lineage tracing revealed increased ISC commitment toward enterocyte and goblet cell fate at the expense of Paneth cells. Functionally, Cbl/Cblb iDKO impaired the recovery from radiation-induced intestinal epithelial injury. In vitro, Cbl/Cblb iDKO led to inability to maintain intestinal organoids. Single-cell RNA sequencing in organoids identified Akt-mTOR (mammalian target of rapamycin) pathway hyperactivation upon iDKO, and pharmacological Akt-mTOR axis inhibition rescued the iDKO defects. Our results demonstrate a requirement for Cbl/Cblb in the maintenance of ISCs by fine-tuning the Akt-mTOR axis to balance stem cell maintenance vs. commitment to differentiation.
Collapse
Affiliation(s)
- Neha Zutshi
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pathology & Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Bhopal C. Mohapatra
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Pinaki Mondal
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Wei An
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Benjamin T. Goetz
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Shuo Wang
- Department of Radiation Oncology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sicong Li
- Department of Radiation Oncology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Matthew D. Storck
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - David F. Mercer
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Adrian R. Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sarah P. Thayer
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jennifer D. Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Chi Lin
- Department of Radiation Oncology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Vimla Band
- Department of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Hamid Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pathology & Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
18
|
Capdevila C, Miller J, Cheng L, Kornberg A, George JJ, Lee H, Botella T, Moon CS, Murray JW, Lam S, Calderon RI, Malagola E, Whelan G, Lin CS, Han A, Wang TC, Sims PA, Yan KS. Time-resolved fate mapping identifies the intestinal upper crypt zone as an origin of Lgr5+ crypt base columnar cells. Cell 2024; 187:3039-3055.e14. [PMID: 38848677 DOI: 10.1016/j.cell.2024.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/16/2024] [Accepted: 05/01/2024] [Indexed: 06/09/2024]
Abstract
In the prevailing model, Lgr5+ cells are the only intestinal stem cells (ISCs) that sustain homeostatic epithelial regeneration by upward migration of progeny through elusive upper crypt transit-amplifying (TA) intermediates. Here, we identify a proliferative upper crypt population marked by Fgfbp1, in the location of putative TA cells, that is transcriptionally distinct from Lgr5+ cells. Using a kinetic reporter for time-resolved fate mapping and Fgfbp1-CreERT2 lineage tracing, we establish that Fgfbp1+ cells are multi-potent and give rise to Lgr5+ cells, consistent with their ISC function. Fgfbp1+ cells also sustain epithelial regeneration following Lgr5+ cell depletion. We demonstrate that FGFBP1, produced by the upper crypt cells, is an essential factor for crypt proliferation and epithelial homeostasis. Our findings support a model in which tissue regeneration originates from upper crypt Fgfbp1+ cells that generate progeny propagating bi-directionally along the crypt-villus axis and serve as a source of Lgr5+ cells in the crypt base.
Collapse
Affiliation(s)
- Claudia Capdevila
- Department of Medicine, Division of Digestive & Liver Diseases, Columbia University Irving Medical Center, New York, NY, USA; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Digestive & Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Jonathan Miller
- Department of Medicine, Division of Digestive & Liver Diseases, Columbia University Irving Medical Center, New York, NY, USA; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Digestive & Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY, USA; Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Liang Cheng
- Department of Medicine, Division of Digestive & Liver Diseases, Columbia University Irving Medical Center, New York, NY, USA; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Digestive & Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Adam Kornberg
- Department of Medicine, Division of Digestive & Liver Diseases, Columbia University Irving Medical Center, New York, NY, USA; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Digestive & Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY, USA; Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Joel J George
- Department of Medicine, Division of Digestive & Liver Diseases, Columbia University Irving Medical Center, New York, NY, USA; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Digestive & Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Hyeonjeong Lee
- Department of Medicine, Division of Digestive & Liver Diseases, Columbia University Irving Medical Center, New York, NY, USA; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Digestive & Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Theo Botella
- Department of Medicine, Division of Digestive & Liver Diseases, Columbia University Irving Medical Center, New York, NY, USA; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Digestive & Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Christine S Moon
- Department of Medicine, Division of Digestive & Liver Diseases, Columbia University Irving Medical Center, New York, NY, USA; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Digestive & Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY, USA
| | - John W Murray
- Department of Medicine, Division of Digestive & Liver Diseases, Columbia University Irving Medical Center, New York, NY, USA
| | - Stephanie Lam
- Department of Medicine, Division of Digestive & Liver Diseases, Columbia University Irving Medical Center, New York, NY, USA; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Digestive & Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Ruben I Calderon
- Department of Medicine, Division of Digestive & Liver Diseases, Columbia University Irving Medical Center, New York, NY, USA; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Digestive & Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Ermanno Malagola
- Department of Medicine, Division of Digestive & Liver Diseases, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Digestive & Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Gary Whelan
- Department of Medicine, Division of Digestive & Liver Diseases, Columbia University Irving Medical Center, New York, NY, USA; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Digestive & Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Chyuan-Sheng Lin
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Department of Pathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Arnold Han
- Department of Medicine, Division of Digestive & Liver Diseases, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Digestive & Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY, USA; Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Timothy C Wang
- Department of Medicine, Division of Digestive & Liver Diseases, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Digestive & Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Peter A Sims
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Digestive & Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY, USA; Departments of Biochemistry & Molecular Biophysics and of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Kelley S Yan
- Department of Medicine, Division of Digestive & Liver Diseases, Columbia University Irving Medical Center, New York, NY, USA; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Digestive & Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
19
|
Hill ABT, Murphy YM, Polkoff KM, Edwards L, Walker DM, Moatti A, Greenbaum A, Piedrahita JA. A gene edited pig model for studying LGR5 + stem cells: implications for future applications in tissue regeneration and biomedical research. Front Genome Ed 2024; 6:1401163. [PMID: 38903529 PMCID: PMC11187295 DOI: 10.3389/fgeed.2024.1401163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/15/2024] [Indexed: 06/22/2024] Open
Abstract
Recent advancements in genome editing techniques, notably CRISPR-Cas9 and TALENs, have marked a transformative era in biomedical research, significantly enhancing our understanding of disease mechanisms and helping develop novel therapies. These technologies have been instrumental in creating precise animal models for use in stem cell research and regenerative medicine. For instance, we have developed a transgenic pig model to enable the investigation of LGR5-expressing cells. The model was designed to induce the expression of H2B-GFP under the regulatory control of the LGR5 promoter via CRISPR/Cas9-mediated gene knock-in. Notably, advancements in stem cell research have identified distinct subpopulations of LGR5-expressing cells within adult human, mouse, and pig tissues. LGR5, a leucine-rich repeat-containing G protein-coupled receptor, enhances WNT signaling and these LGR5+ subpopulations demonstrate varied roles and anatomical distributions, underscoring the necessity for suitable translational models. This transgenic pig model facilitates the tracking of LGR5-expressing cells and has provided valuable insights into the roles of these cells across different tissues and species. For instance, in pulmonary tissue, Lgr5+ cells in mice are predominantly located in alveolar compartments, driving alveolar differentiation of epithelial progenitors via Wnt pathway activation. In contrast, in pigs and humans, these cells are situated in a unique sub-basal position adjacent to the airway epithelium. In fetal stages a pattern of LGR5 expression during lung bud tip formation is evident in humans and pigs but is lacking in mice. Species differences with respect to LGR5 expression have also been observed in the skin, intestines, and cochlea further reinforcing the need for careful selection of appropriate translational animal models. This paper discusses the potential utility of the LGR5+ pig model in exploring the role of LGR5+ cells in tissue development and regeneration with the goal of translating these findings into human and animal clinical applications.
Collapse
Affiliation(s)
- Amanda B. T. Hill
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
| | - Yanet M. Murphy
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
| | - Kathryn M. Polkoff
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
| | - Laura Edwards
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
| | - Derek M. Walker
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
| | - Adele Moatti
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, and North Carolina State University, Raleigh, NC, United States
| | - Alon Greenbaum
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, and North Carolina State University, Raleigh, NC, United States
| | - Jorge A. Piedrahita
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, and North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
20
|
Zhang X, Wang J, Liu Y, Wang H, Li B, Li Q, Wang Y, Zong Y, Wang J, Meng Q, Wu S, Hao R, Li X, Chen R, Chen H. In situ profiling reveals spatially metabolic injury in the initiation of polystyrene nanoplastic-derived intestinal epithelial injury in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172037. [PMID: 38575003 DOI: 10.1016/j.scitotenv.2024.172037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
Despite increasing concerns regarding the harmful effects of plastic-induced gut injury, mechanisms underlying the initiation of plastic-derived intestinal toxicity remain unelucidated. Here, mice were subjected to long-term exposure to polystyrene nanoplastics (PS-NPs) of varying sizes (80, 200, and 1000 nm) at doses relevant to human dietary exposure. PS-NPs exposure did not induce a significant inflammatory response, histopathological damage, or intestinal epithelial dysfunction in mice at a dosage of 0.5 mg/kg/day for 28 days. However, PS-NPs were detected in the mouse intestine, coupled with observed microstructural changes in enterocytes, including mild villous lodging, mitochondrial membrane rupture, and endoplasmic reticulum (ER) dysfunction, suggesting that intestinal-accumulating PS-NPs resulted in the onset of intestinal epithelial injury in mice. Mechanistically, intragastric PS-NPs induced gut microbiota dysbiosis and specific bacteria alterations, accompanied by abnormal metabolic fingerprinting in the plasma. Furthermore, integrated data from mass spectrometry imaging-based spatial metabolomics and metallomics revealed that PS-NPs exposure led to gut dysbiosis-associated host metabolic reprogramming and initiated intestinal injury. These findings provide novel insights into the critical gut microbial-host metabolic remodeling events vital to nanoplastic-derived-initiated intestinal injury.
Collapse
Affiliation(s)
- Xianan Zhang
- School of Public Health, Capital Medical University, Beijing 100069, China; Yanjing Medical College, Capital Medical University, Beijing 101300, China
| | - Jing Wang
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yuansheng Liu
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Hemin Wang
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Bin Li
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Qing Li
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yi Wang
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yuru Zong
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Jiajia Wang
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Qingtao Meng
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission, Beijing 100069, China
| | - Shenshen Wu
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission, Beijing 100069, China
| | - Rongzhang Hao
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Xiaobo Li
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission, Beijing 100069, China.
| | - Rui Chen
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission, Beijing 100069, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China; Department of Occupational and Environmental Health, Fourth Military Medical University, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an 710032, China.
| | - Hanqing Chen
- School of Public Health, Capital Medical University, Beijing 100069, China; Department of Nutrition & Food Hygiene, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
21
|
Shi R, Wang B. Nutrient metabolism in regulating intestinal stem cell homeostasis. Cell Prolif 2024; 57:e13602. [PMID: 38386338 PMCID: PMC11150145 DOI: 10.1111/cpr.13602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 02/23/2024] Open
Abstract
Intestinal stem cells (ISCs) are known for their remarkable proliferative capacity, making them one of the most active cell populations in the body. However, a high turnover rate of intestinal epithelium raises the likelihood of dysregulated homeostasis, which is known to cause various diseases, including cancer. Maintaining precise control over the homeostasis of ISCs is crucial to preserve the intestinal epithelium's integrity during homeostasis or stressed conditions. Recent research has indicated that nutrients and metabolic pathways can extensively modulate the fate of ISCs. This review will explore recent findings concerning the influence of various nutrients, including lipids, carbohydrates, and vitamin D, on the delicate balance between ISC proliferation and differentiation.
Collapse
Affiliation(s)
- Ruicheng Shi
- Department of Comparative Biosciences, College of Veterinary MedicineUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Bo Wang
- Department of Comparative Biosciences, College of Veterinary MedicineUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- Division of Nutritional Sciences, College of Agricultural, Consumer and Environmental SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- Cancer Center at IllinoisUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| |
Collapse
|
22
|
Deans-Fielder K, Wu T, Nguyen T, To S, Huang YZ, Bark SJ, Mills JC, Shroyer NF. Mechanisms driving fasting-induced protection from genotoxic injury in the small intestine. Am J Physiol Gastrointest Liver Physiol 2024; 326:G504-G524. [PMID: 38349111 PMCID: PMC11376978 DOI: 10.1152/ajpgi.00126.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 01/18/2024] [Accepted: 01/28/2024] [Indexed: 04/05/2024]
Abstract
Genotoxic agents such as doxorubicin (DXR) can cause damage to the intestines that can be ameliorated by fasting. How fasting is protective and the optimal timing of fasting and refeeding remain unclear. Here, our analysis of fasting/refeeding-induced global intestinal transcriptional changes revealed metabolic shifts and implicated the cellular energetic hub mechanistic target of rapamycin complex 1 (mTORC1) in protecting from DXR-induced DNA damage. Our analysis of specific transcripts and proteins in intestinal tissue and tissue extracts showed that fasting followed by refeeding at the time of DXR administration reduced damage and caused a spike in mTORC1 activity. However, continued fasting after DXR prevented the mTORC1 spike and damage reduction. Surprisingly, the mTORC1 inhibitor, rapamycin, did not block fasting/refeeding-induced reduction in DNA damage, suggesting that increased mTORC1 is dispensable for protection against the initial DNA damage response. In Ddit4-/- mice [DDIT4 (DNA-damage-inducible transcript 4) functions to regulate mTORC1 activity], fasting reduced DNA damage and increased intestinal crypt viability vs. ad libitum-fed Ddit4-/- mice. Fasted/refed Ddit4-/- mice maintained body weight, with increased crypt proliferation by 5 days post-DXR, whereas ad libitum-fed Ddit4-/- mice continued to lose weight and displayed limited crypt proliferation. Genes encoding epithelial stem cell and DNA repair proteins were elevated in DXR-injured, fasted vs. ad libitum Ddit4-/- intestines. Thus, fasting strongly reduced intestinal damage when normal dynamic regulation of mTORC1 was lost. Overall, the results confirm that fasting protects the intestines against DXR and suggests that fasting works by pleiotropic - including both mTORC1-dependent and independent - mechanisms across the temporally dynamic injury response.NEW & NOTEWORTHY New findings are 1) DNA damage reduction following a 24-h fast depends on the timing of postfast refeeding in relation to chemotherapy initiation; 2) fasting/refeeding-induced upregulation of mTORC1 activity is not required for early (6 h) protection against DXR-induced DNA damage; and 3) fasting increases expression of intestinal stem cell and DNA damage repair genes, even when mTORC1 is dysregulated, highlighting fasting's crucial role in regulating mTORC1-dependent and independent mechanisms in the dynamic recovery process.
Collapse
Affiliation(s)
- Kali Deans-Fielder
- Division of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States
- Translational Biology and Molecular Medicine Graduate Program, Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, Texas, United States
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas, United States
| | - Timothy Wu
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Thanh Nguyen
- Division of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States
- Cancer and Cell Biology Graduate Program, Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, Texas, United States
| | - Sarah To
- Division of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States
| | - Yang-Zhe Huang
- Division of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States
- Cancer and Cell Biology Graduate Program, Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, Texas, United States
| | - Steven J Bark
- Division of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States
| | - Jason C Mills
- Division of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States
| | - Noah F Shroyer
- Division of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States
- Translational Biology and Molecular Medicine Graduate Program, Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, Texas, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
23
|
Bustamante-Madrid P, Barbáchano A, Albandea-Rodríguez D, Rodríguez-Cobos J, Rodríguez-Salas N, Prieto I, Burgos A, Martínez de Villarreal J, Real FX, González-Sancho JM, Larriba MJ, Lafarga M, Muñoz A, Fernández-Barral A. Vitamin D opposes multilineage cell differentiation induced by Notch inhibition and BMP4 pathway activation in human colon organoids. Cell Death Dis 2024; 15:301. [PMID: 38684650 PMCID: PMC11058856 DOI: 10.1038/s41419-024-06680-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 05/02/2024]
Abstract
Understanding the mechanisms involved in colonic epithelial differentiation is key to unraveling the alterations causing inflammatory conditions and cancer. Organoid cultures provide an unique tool to address these questions but studies are scarce. We report a differentiation system toward enterocytes and goblet cells, the two major colonic epithelial cell lineages, using colon organoids generated from healthy tissue of colorectal cancer patients. Culture of these organoids in medium lacking stemness agents resulted in a modest ultrastructural differentiation phenotype with low-level expression of enterocyte (KLF4, KRT20, CA1, FABP2) and goblet cell (TFF2, TFF3, AGR2) lineage markers. BMP pathway activation through depletion of Noggin and addition of BMP4 resulted in enterocyte-biased differentiation. Contrarily, blockade of the Notch pathway using the γ-secretase inhibitor dibenzazepine (DBZ) favored goblet cell differentiation. Combination treatment with BMP4 and DBZ caused a balanced strong induction of both lineages. In contrast, colon tumor organoids responded poorly to BMP4 showing only weak signals of cell differentiation, and were unresponsive to DBZ. We also investigated the effects of 1α,25-dihydroxyvitamin D3 (calcitriol) on differentiation. Calcitriol attenuated the effects of BMP4 and DBZ on colon normal organoids, with reduced expression of differentiation genes and phenotype. Consistently, in normal organoids, calcitriol inhibited early signaling by BMP4 as assessed by reduction of the level of phospho-SMAD1/5/8. Our results show that BMP and Notch signaling play key roles in human colon stem cell differentiation to the enterocytic and goblet cell lineages and that calcitriol modulates these processes favoring stemness features.
Collapse
Affiliation(s)
- Pilar Bustamante-Madrid
- Instituto de Investigaciones Biomédicas Sols-Morreale, CSIC-UAM, 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red-Cáncer (CIBERONC), 28029, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital Universitario La Paz (IdiPAZ), 28046, Madrid, Spain
| | - Antonio Barbáchano
- Instituto de Investigaciones Biomédicas Sols-Morreale, CSIC-UAM, 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red-Cáncer (CIBERONC), 28029, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital Universitario La Paz (IdiPAZ), 28046, Madrid, Spain
| | - David Albandea-Rodríguez
- Instituto de Investigaciones Biomédicas Sols-Morreale, CSIC-UAM, 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red-Cáncer (CIBERONC), 28029, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital Universitario La Paz (IdiPAZ), 28046, Madrid, Spain
| | - Javier Rodríguez-Cobos
- Instituto de Investigaciones Biomédicas Sols-Morreale, CSIC-UAM, 28029, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital Universitario La Paz (IdiPAZ), 28046, Madrid, Spain
| | - Nuria Rodríguez-Salas
- Centro de Investigación Biomédica en Red-Cáncer (CIBERONC), 28029, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital Universitario La Paz (IdiPAZ), 28046, Madrid, Spain
- Servicio de Oncología Médica, Hospital Universitario La Paz, 28046, Madrid, Spain
| | - Isabel Prieto
- Instituto de Investigación Sanitaria Hospital Universitario La Paz (IdiPAZ), 28046, Madrid, Spain
- Servicio de Cirugía General, Hospital Universitario La Paz, 28046, Madrid, Spain
| | - Aurora Burgos
- Servicio de Digestivo, Hospital Universitario La Paz, 28046, Madrid, Spain
| | - Jaime Martínez de Villarreal
- Centro de Investigación Biomédica en Red-Cáncer (CIBERONC), 28029, Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| | - Francisco X Real
- Centro de Investigación Biomédica en Red-Cáncer (CIBERONC), 28029, Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - José Manuel González-Sancho
- Instituto de Investigaciones Biomédicas Sols-Morreale, CSIC-UAM, 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red-Cáncer (CIBERONC), 28029, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital Universitario La Paz (IdiPAZ), 28046, Madrid, Spain
| | - María Jesús Larriba
- Instituto de Investigaciones Biomédicas Sols-Morreale, CSIC-UAM, 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red-Cáncer (CIBERONC), 28029, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital Universitario La Paz (IdiPAZ), 28046, Madrid, Spain
| | - Miguel Lafarga
- Departamento de Anatomía y Biología Celular, Universidad de Cantabria-IDIVAL, 39008, Santander, Spain
| | - Alberto Muñoz
- Instituto de Investigaciones Biomédicas Sols-Morreale, CSIC-UAM, 28029, Madrid, Spain.
- Centro de Investigación Biomédica en Red-Cáncer (CIBERONC), 28029, Madrid, Spain.
- Instituto de Investigación Sanitaria Hospital Universitario La Paz (IdiPAZ), 28046, Madrid, Spain.
| | - Asunción Fernández-Barral
- Instituto de Investigaciones Biomédicas Sols-Morreale, CSIC-UAM, 28029, Madrid, Spain.
- Centro de Investigación Biomédica en Red-Cáncer (CIBERONC), 28029, Madrid, Spain.
- Instituto de Investigación Sanitaria Hospital Universitario La Paz (IdiPAZ), 28046, Madrid, Spain.
| |
Collapse
|
24
|
Hosohama L, Tifrea DF, Nee K, Park SY, Wu J, Habowski AN, Van C, Seldin MM, Edwards RA, Waterman ML. Colorectal Cancer Stem Cell Subtypes Orchestrate Distinct Tumor Microenvironments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591144. [PMID: 38712298 PMCID: PMC11071458 DOI: 10.1101/2024.04.25.591144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Several classification systems have been developed to define tumor subtypes in colorectal cancer (CRC). One system proposes that tumor heterogeneity derives in part from distinct cancer stem cell populations that co-exist as admixtures of varying proportions. However, the lack of single cell resolution has prohibited a definitive identification of these types of stem cells and therefore any understanding of how each influence tumor phenotypes. Here were report the isolation and characterization of two cancer stem cell subtypes from the SW480 CRC cell line. We find these cancer stem cells are oncogenic versions of the normal Crypt Base Columnar (CBC) and Regenerative Stem Cell (RSC) populations from intestinal crypts and that their gene signatures are consistent with the "Admixture" and other CRC classification systems. Using publicly available single cell RNA sequencing (scRNAseq) data from CRC patients, we determine that RSC and CBC cancer stem cells are commonly co-present in human CRC. To characterize influences on the tumor microenvironment, we develop subtype-specific xenograft models and we define their tumor microenvironments at high resolution via scRNAseq. RSCs create differentiated, inflammatory, slow growing tumors. CBCs create proliferative, undifferentiated, invasive tumors. With this enhanced resolution, we unify current CRC patient classification schema with TME phenotypes and organization.
Collapse
Affiliation(s)
- Linzi Hosohama
- Department of Microbiology & Molecular Genetics, School of Medicine, University of California, Irvine, California
| | - Delia F. Tifrea
- Department of Pathology & Laboratory Medicine, School of Medicine, University of California, Irvine, California
- Chao Family Comprehensive Cancer Center, University of California, Irvine, California
| | - Kevin Nee
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California
| | - Sung Yun Park
- Department of Microbiology & Molecular Genetics, School of Medicine, University of California, Irvine, California
| | - Jie Wu
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California
- Chao Family Comprehensive Cancer Center, University of California, Irvine, California
| | - Amber N. Habowski
- Department of Microbiology & Molecular Genetics, School of Medicine, University of California, Irvine, California
| | - Cassandra Van
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California
| | - Marcus M. Seldin
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California
- Chao Family Comprehensive Cancer Center, University of California, Irvine, California
- Cancer Research Institute, University of California, Irvine, California
| | - Robert A. Edwards
- Department of Pathology & Laboratory Medicine, School of Medicine, University of California, Irvine, California
- Chao Family Comprehensive Cancer Center, University of California, Irvine, California
- Cancer Research Institute, University of California, Irvine, California
| | - Marian L. Waterman
- Department of Microbiology & Molecular Genetics, School of Medicine, University of California, Irvine, California
- Chao Family Comprehensive Cancer Center, University of California, Irvine, California
- Cancer Research Institute, University of California, Irvine, California
| |
Collapse
|
25
|
Wang K, Liu Y, Li H, Liang X, Hao M, Yuan D, Ding L. Claudin-7 is essential for the maintenance of colonic stem cell homoeostasis via the modulation of Wnt/Notch signalling. Cell Death Dis 2024; 15:284. [PMID: 38654000 PMCID: PMC11039680 DOI: 10.1038/s41419-024-06658-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
Intestinal stem cells (ISCs) play a crucial role in the continuous self-renewal and recovery of the intestinal epithelium. In previous studies, we have revealed that the specific absence of Claudin-7 (Cldn-7) in intestinal epithelial cells (IECs) can lead to the development of spontaneous colitis. However, the mechanisms by which Cldn-7 maintains homeostasis in the colonic epithelium remain unclear. Therefore, in the present study, we used IEC- and ISC-specific Cldn-7 knockout mice to investigate the regulatory effects of Cldn-7 on colonic Lgr5+ stem cells in the mediation of colonic epithelial injury and repair under physiological and inflammatory conditions. Notably, our findings reveal that Cldn-7 deletion disrupts the self-renewal and differentiation of colonic stem cells alongside the formation of colonic organoids in vitro. Additionally, these Cldn-7 knockout models exhibited heightened susceptibility to experimental colitis, limited epithelial repair and regeneration, and increased differentiation toward the secretory lineage. Mechanistically, we also established that Cldn-7 facilitates the proliferation, differentiation, and organoid formation of Lgr5+ stem cells through the maintenance of Wnt and Notch signalling pathways in the colonic epithelium. Overall, our study provides new insights into the maintenance of ISC function and colonic epithelial homoeostasis.
Collapse
Affiliation(s)
- Kun Wang
- Gastrointestinal Oncology Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yin Liu
- Gastrointestinal Oncology Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Huimin Li
- Gastrointestinal Oncology Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xiaoqing Liang
- Gastrointestinal Oncology Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Mengdi Hao
- Gastrointestinal Oncology Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Dajin Yuan
- Gastrointestinal Oncology Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Lei Ding
- Gastrointestinal Oncology Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
26
|
Lin K, Chowdhury S, Zeineddine MA, Zeineddine FA, Hornstein NJ, Villarreal OE, Maru DM, Haymaker CL, Vauthey JN, Chang GJ, Bogatenkova E, Menter D, Kopetz S, Shen JP. Identification of Colorectal Cancer Cell Stemness from Single-Cell RNA Sequencing. Mol Cancer Res 2024; 22:337-346. [PMID: 38156967 PMCID: PMC10987274 DOI: 10.1158/1541-7786.mcr-23-0468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/12/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Cancer stem cells (CSC) play a critical role in metastasis, relapse, and therapy resistance in colorectal cancer. While characterization of the normal lineage of cell development in the intestine has led to the identification of many genes involved in the induction and maintenance of pluripotency, recent studies suggest significant heterogeneity in CSC populations. Moreover, while many canonical colorectal cancer CSC marker genes have been identified, the ability to use these classical markers to annotate stemness at the single-cell level is limited. In this study, we performed single-cell RNA sequencing on a cohort of 6 primary colon, 9 liver metastatic tumors, and 11 normal (nontumor) controls to identify colorectal CSCs at the single-cell level. Finding poor alignment of the 11 genes most used to identify colorectal CSC, we instead extracted a single-cell stemness signature (SCS_sig) that robustly identified "gold-standard" colorectal CSCs that expressed all marker genes. Using this SCS_sig to quantify stemness, we found that while normal epithelial cells show a bimodal distribution, indicating distinct stem and differentiated states, in tumor epithelial cells stemness is a continuum, suggesting greater plasticity in these cells. The SCS_sig score was quite variable between different tumors, reflective of the known transcriptomic heterogeneity of CRC. Notably, patients with higher SCS_sig scores had significantly shorter disease-free survival time after curative intent surgical resection, suggesting stemness is associated with relapse. IMPLICATIONS This study reveals significant heterogeneity of expression of genes commonly used to identify colorectal CSCs, and identifies a novel stemness signature to identify these cells from scRNA-seq data.
Collapse
Affiliation(s)
- Kangyu Lin
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Saikat Chowdhury
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mohammad A. Zeineddine
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Fadl A. Zeineddine
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Nicholas J. Hornstein
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Oscar E. Villarreal
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Dipen M. Maru
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cara L. Haymaker
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jean-Nicolas Vauthey
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - George J. Chang
- Department of Colon and Rectal Surgery, The University of Texas-MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elena Bogatenkova
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David Menter
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - John Paul Shen
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
27
|
Ogasawara N, Kano Y, Yoneyama Y, Kobayashi S, Watanabe S, Kirino S, Velez-Bravo FD, Hong Y, Ostapiuk A, Lutsik P, Onishi I, Yamauchi S, Hiraguri Y, Ito G, Kinugasa Y, Ohashi K, Watanabe M, Okamoto R, Tejpar S, Yui S. Discovery of non-genomic drivers of YAP signaling modulating the cell plasticity in CRC tumor lines. iScience 2024; 27:109247. [PMID: 38439969 PMCID: PMC10910304 DOI: 10.1016/j.isci.2024.109247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 03/06/2024] Open
Abstract
In normal intestines, a fetal/regenerative/revival cell state can be induced upon inflammation. This plasticity in cell fate is also one of the current topics in human colorectal cancer (CRC). To dissect the underlying mechanisms, we generated human CRC organoids with naturally selected genetic mutation profiles and exposed them to two different conditions by modulating the extracellular matrix (ECM). Among tested mutation profiles, a fetal/regenerative/revival state was induced following YAP activation via a collagen type I-enriched microenvironment. Mechanistically, YAP transcription was promoted by activating AP-1 and TEAD-dependent transcription and suppressing intestinal lineage-determining transcription via mechanotransduction. The phenotypic conversion was also involved in chemoresistance, which could be potentially resolved by targeting the underlying YAP regulatory elements, a potential target of CRC treatment.
Collapse
Affiliation(s)
- Nobuhiko Ogasawara
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yoshihito Kano
- Department of Clinical Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yosuke Yoneyama
- Institute of Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Sakurako Kobayashi
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Satoshi Watanabe
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Sakura Kirino
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | | | - Yourae Hong
- Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | | | - Pavlo Lutsik
- Computational Cancer Biology and Epigenomics, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Iichiroh Onishi
- Department of Diagnostic Pathology, Tokyo Medical and Dental University Hospital, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Shinichi Yamauchi
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yui Hiraguri
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Go Ito
- Advanced Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yusuke Kinugasa
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Kenichi Ohashi
- Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Mamoru Watanabe
- Advanced Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Ryuichi Okamoto
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Sabine Tejpar
- Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Shiro Yui
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
28
|
Choi J, Augenlicht LH. Intestinal stem cells: guardians of homeostasis in health and aging amid environmental challenges. Exp Mol Med 2024; 56:495-500. [PMID: 38424189 PMCID: PMC10985084 DOI: 10.1038/s12276-024-01179-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/11/2023] [Indexed: 03/02/2024] Open
Abstract
The intestinal epithelium is the first line of defense and acts as an interface between the vast microbial world within the gastrointestinal tract and the body's internal milieu. The intestinal epithelium not only facilitates nutrient absorption but also plays a key role in defending against pathogens and regulating the immune system. Central to maintaining a healthy epithelium are intestinal stem cells (ISCs), which are essential for replenishing the intestinal epithelium throughout an individual's lifespan. Recent research has unveiled the intricate interplay between ISCs and their niche, which includes various cell types, extracellular components, and signaling molecules. In this review, we delve into the most recent advances in ISC research, with a focus on the roles of ISCs in maintaining mucosal homeostasis and how ISC functionality is influenced by the niche environment. In this review, we explored the regulatory mechanisms that govern ISC behavior, emphasizing the dynamic adaptability of the intestinal epithelium in the face of various challenges. Understanding the intricate regulation of ISCs and the impact of aging and environmental factors is crucial for advancing our knowledge and developing translational approaches. Future studies should investigate the interactive effects of different risk factors on intestinal function and develop strategies for improving the regenerative capacity of the gut.
Collapse
Affiliation(s)
- Jiahn Choi
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Leonard H Augenlicht
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
29
|
Fernández Á, Casamitjana J, Holguín-Horcajo A, Coolens K, Mularoni L, Pasquali L, Bailey-Lundberg JM, Rooman I, Wang YJ, Rovira M. A single-cell atlas of the murine pancreatic ductal tree identifies novel cell populations with potential implications in pancreas regeneration and exocrine pathogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582044. [PMID: 38463969 PMCID: PMC10925197 DOI: 10.1101/2024.02.26.582044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Background and aims Pancreatic ducts form an intricate network of tubules that secrete bicarbonate and drive acinar secretions into the duodenum. This network is formed by centroacinar cells, terminal, intercalated, intracalated ducts, and the main pancreatic duct. Ductal heterogeneity at the single-cell level has been poorly characterized; therefore, our understanding of the role of ductal cells in pancreas regeneration and exocrine pathogenesis has been hampered by the limited knowledge and unexplained diversity within the ductal network. Methods We used scRNA-seq to comprehensively characterize mouse ductal heterogeneity at single-cell resolution of the entire ductal epithelium from centroacinar cells to the main duct. Moreover, we used organoid cultures, injury models and pancreatic tumor samples to interrogate the role of novel ductal populations in pancreas regeneration and exocrine pathogenesis. Results We have identified the coexistence of 15 ductal populations within the healthy pancreas and characterized their organoid formation capacity and endocrine differentiation potential. Cluster isolation and subsequent culturing let us identify ductal cell populations with high organoid formation capacity and endocrine and exocrine differentiation potential in vitro , including Wnt-responsive-population, ciliated-population and FLRT3 + cells. Moreover, we have characterized the location of these novel ductal populations in healthy pancreas, chronic pancreatitis, and tumor samples, highlighting a putative role of WNT-responsive, IFN-responsive and EMT-populations in pancreatic exocrine pathogenesis as their expression increases in chronic pancreatitis and PanIN lesions. Conclusions In light of our discovery of previously unidentified ductal populations, we unmask the potential roles of specific ductal populations in pancreas regeneration and exocrine pathogenesis.
Collapse
|
30
|
Gao C, Ge H, Kuan SF, Cai C, Lu X, Esni F, Schoen R, Wang J, Chu E, Hu J. FAK loss reduces BRAF V600E-induced ERK phosphorylation to promote intestinal stemness and cecal tumor formation. RESEARCH SQUARE 2024:rs.3.rs-2531119. [PMID: 36778401 PMCID: PMC9915899 DOI: 10.21203/rs.3.rs-2531119/v2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
BRAF V600E mutation is a driver mutation in the serrated pathway to colorectal cancers. BRAFV600E drives tumorigenesis through constitutive downstream extracellular signal-regulated kinase (ERK) activation, but high-intensity ERK activation can also trigger tumor suppression. Whether and how oncogenic ERK signaling can be intrinsically adjusted to a "just-right" level optimal for tumorigenesis remains undetermined. In this study, we found that FAK (Focal adhesion kinase) expression was reduced in BRAFV600E-mutant adenomas/polyps in mice and patients. In Vill-Cre;BRAFV600E/+;Fakfl/fl mice, Fak deletion maximized BRAFV600E's oncogenic activity and increased cecal tumor incidence to 100%. Mechanistically, our results showed that Fak loss, without jeopardizing BRAFV600E-induced ERK pathway transcriptional output, reduced EGFR (epidermal growth factor receptor)-dependent ERK phosphorylation. Reduction in ERK phosphorylation increased the level of Lgr4, promoting intestinal stemness and cecal tumor formation. Our findings show that a "just-right" ERK signaling optimal for BRAFV600E-induced cecal tumor formation can be achieved via Fak loss-mediated downregulation of ERK phosphorylation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jing Wang
- UPMC Hillman Cancer Center/University of Pittsburgh
| | | | | |
Collapse
|
31
|
Gao C, Ge H, Kuan SF, Cai C, Lu X, Esni F, Schoen R, Wang J, Chu E, Hu J. FAK loss reduces BRAF V600E-induced ERK phosphorylation to promote intestinal stemness and cecal tumor formation. RESEARCH SQUARE 2024:rs.3.rs-2531119. [PMID: 36778401 PMCID: PMC9915899 DOI: 10.21203/rs.3.rs-2531119/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BRAF V600E mutation is a driver mutation in the serrated pathway to colorectal cancers. BRAFV600E drives tumorigenesis through constitutive downstream extracellular signal-regulated kinase (ERK) activation, but high-intensity ERK activation can also trigger tumor suppression. Whether and how oncogenic ERK signaling can be intrinsically adjusted to a "just-right" level optimal for tumorigenesis remains undetermined. In this study, we found that FAK (Focal adhesion kinase) expression was reduced in BRAFV600E-mutant adenomas/polyps in mice and patients. In Vill-Cre;BRAFV600E/+;Fakfl/fl mice, Fak deletion maximized BRAFV600E's oncogenic activity and increased cecal tumor incidence to 100%. Mechanistically, our results showed that Fak loss, without jeopardizing BRAFV600E-induced ERK pathway transcriptional output, reduced EGFR (epidermal growth factor receptor)-dependent ERK phosphorylation. Reduction in ERK phosphorylation increased the level of Lgr4, promoting intestinal stemness and cecal tumor formation. Our findings show that a "just-right" ERK signaling optimal for BRAFV600E-induced cecal tumor formation can be achieved via Fak loss-mediated downregulation of ERK phosphorylation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jing Wang
- UPMC Hillman Cancer Center/University of Pittsburgh
| | | | | |
Collapse
|
32
|
Beumer J, Clevers H. Hallmarks of stemness in mammalian tissues. Cell Stem Cell 2024; 31:7-24. [PMID: 38181752 PMCID: PMC10769195 DOI: 10.1016/j.stem.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/03/2023] [Accepted: 12/08/2023] [Indexed: 01/07/2024]
Abstract
All adult tissues experience wear and tear. Most tissues can compensate for cell loss through the activity of resident stem cells. Although the cellular maintenance strategies vary greatly between different adult (read: postnatal) tissues, the function of stem cells is best defined by their capacity to replace lost tissue through division. We discuss a set of six complementary hallmarks that are key enabling features of this basic function. These include longevity and self-renewal, multipotency, transplantability, plasticity, dependence on niche signals, and maintenance of genome integrity. We discuss these hallmarks in the context of some of the best-understood adult stem cell niches.
Collapse
Affiliation(s)
- Joep Beumer
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Basel, Switzerland.
| | - Hans Clevers
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Basel, Switzerland.
| |
Collapse
|
33
|
Zitter RC, Chugh RM, Bhanja P, Saha S. LGR5+ Intestinal Stem Cells Display Sex Dependent Radiosensitivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570158. [PMID: 38106083 PMCID: PMC10723330 DOI: 10.1101/2023.12.05.570158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Radiosensitivity, the susceptibility of cells to ionizing radiation, plays a critical role in understanding the effects of radiation therapy and exposure on tissue health and regeneration. Identifying characteristics that predict how a patient may respond to radiotherapy enables clinicians to maximize the therapeutic window. Limited clinical data suggested a difference in male and female radiotherapy outcomes. Radiotherapy for gastrointestinal malignancy is still a challenge due to intestinal sensitivity to radiation toxicity. In this manuscript, we demonstrated sex-specific differences in intestinal epithelial radiosensitivity. In mice models of abdominal irradiation, we observed a significant increase in oxidative stress and injury in males compared to females. Lgr5+ve intestinal stem cells from male mice showed higher sensitivity to radiation-induced toxicity. However, sex-specific differences in intestinal radiosensitivity are not dependent on sex hormones as we demonstrated similar sex-specific radiosensitivity differences in pediatric mice. In an ex-vivo study, we found that human patient-derived intestinal organoids (PID) derived from males showed higher sensitivity to irradiation compared to females as evidenced by loss of budding crypt, organoid size, and membrane integrity. Transcriptomic analysis of human Lgr5+ intestinal stem cells suggested radiation induced upregulation of mitochondrial oxidative metabolism in males compared to females' possible mechanism for radiosensitivity differences.
Collapse
|
34
|
Qin X, Cardoso Rodriguez F, Sufi J, Vlckova P, Claus J, Tape CJ. An oncogenic phenoscape of colonic stem cell polarization. Cell 2023; 186:5554-5568.e18. [PMID: 38065080 DOI: 10.1016/j.cell.2023.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/14/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023]
Abstract
Cancer cells are regulated by oncogenic mutations and microenvironmental signals, yet these processes are often studied separately. To functionally map how cell-intrinsic and cell-extrinsic cues co-regulate cell fate, we performed a systematic single-cell analysis of 1,107 colonic organoid cultures regulated by (1) colorectal cancer (CRC) oncogenic mutations, (2) microenvironmental fibroblasts and macrophages, (3) stromal ligands, and (4) signaling inhibitors. Multiplexed single-cell analysis revealed a stepwise epithelial differentiation phenoscape dictated by combinations of oncogenes and stromal ligands, spanning from fibroblast-induced Clusterin (CLU)+ revival colonic stem cells (revCSCs) to oncogene-driven LRIG1+ hyper-proliferative CSCs (proCSCs). The transition from revCSCs to proCSCs is regulated by decreasing WNT3A and TGF-β-driven YAP signaling and increasing KRASG12D or stromal EGF/Epiregulin-activated MAPK/PI3K flux. We find that APC loss and KRASG12D collaboratively limit access to revCSCs and disrupt stromal-epithelial communication-trapping epithelia in the proCSC fate. These results reveal that oncogenic mutations dominate homeostatic differentiation by obstructing cell-extrinsic regulation of cell-fate plasticity.
Collapse
Affiliation(s)
- Xiao Qin
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, 72 Huntley Street, London WC1E 6DD, UK
| | - Ferran Cardoso Rodriguez
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, 72 Huntley Street, London WC1E 6DD, UK
| | - Jahangir Sufi
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, 72 Huntley Street, London WC1E 6DD, UK
| | - Petra Vlckova
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, 72 Huntley Street, London WC1E 6DD, UK
| | - Jeroen Claus
- Phospho Biomedical Animation, The Greenhouse Studio 6, London N17 9QU, UK
| | - Christopher J Tape
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, 72 Huntley Street, London WC1E 6DD, UK.
| |
Collapse
|
35
|
Zhou F, He K, Cai JJ, Davidson LA, Chapkin RS, Ni Y. A Unified Bayesian Framework for Bi-overlapping-Clustering Multi-omics Data via Sparse Matrix Factorization. STATISTICS IN BIOSCIENCES 2023; 15:669-691. [PMID: 38179127 PMCID: PMC10766378 DOI: 10.1007/s12561-022-09350-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 04/10/2021] [Accepted: 06/06/2022] [Indexed: 11/27/2022]
Abstract
The advances of modern sequencing techniques have generated an unprecedented amount of multi-omics data which provide great opportunities to quantitatively explore functional genomes from different but complementary perspectives. However, distinct modalities/sequencing technologies generate diverse types of data which greatly complicate statistical modeling because uniquely optimized methods are required for handling each type of data. In this paper, we propose a unified framework for Bayesian nonparametric matrix factorization that infers overlapping bi-clusters for multi-omics data. The proposed method adaptively discretizes different types of observations into common latent states on which cluster structures are built hierarchically. The proposed Bayesian nonparametric method is able to automatically determine the number of clusters. We demonstrate the utility of the proposed method using simulation studies and applications to a single-cell RNA-sequencing dataset, a combination of single-cell RNA-sequencing and single-cell ATAC-sequencing dataset, a bulk RNA-sequencing dataset, and a DNA methylation dataset which reveal several interesting findings that are consistent with biological literature.
Collapse
Affiliation(s)
- Fangting Zhou
- Institute of Statistics and Big Data, Renmin University of China, Beijing, China
- Department of Statistics, Texas A&M University, College Station, USA
| | - Kejun He
- Institute of Statistics and Big Data, Renmin University of China, Beijing, China
| | - James J. Cai
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, USA
| | - Laurie A. Davidson
- Department of Nutrition and Food Science, Texas A&M University, College Station, USA
- Program in Integrative Nutrition and Complex Diseases, Texas A &M University, College Station, USA
| | - Robert S. Chapkin
- Department of Nutrition and Food Science, Texas A&M University, College Station, USA
- Program in Integrative Nutrition and Complex Diseases, Texas A &M University, College Station, USA
| | - Yang Ni
- Department of Statistics, Texas A&M University, College Station, USA
| |
Collapse
|
36
|
Prame Kumar K, McKay LD, Nguyen H, Kaur J, Wilson JL, Suthya AR, McKeown SJ, Abud HE, Wong CHY. Sympathetic-Mediated Intestinal Cell Death Contributes to Gut Barrier Impairment After Stroke. Transl Stroke Res 2023:10.1007/s12975-023-01211-y. [PMID: 38030854 DOI: 10.1007/s12975-023-01211-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/25/2023] [Accepted: 10/28/2023] [Indexed: 12/01/2023]
Abstract
Tissue injury induced by stroke is traditionally thought to be localised to the brain. However, there is an accumulating body of evidence to demonstrate that stroke promotes pathophysiological consequences in peripheral tissues including the gastrointestinal system. In this study, we investigated the mechanisms underlying gut permeability after stroke. We utilised the clinically relevant experimental model of stroke called permanent intraluminal middle cerebral artery occlusion (pMCAO) to examine the effect of cerebral ischaemia on the gut. We detected stroke-induced gut permeability at 5 h after pMCAO. At this timepoint, we observed significantly elevated intestinal epithelial cell death in post-stroke mice compared to their sham-operated counterparts. At 24 h after stroke onset when the gut barrier integrity is restored, our findings indicated that post-stroke intestinal epithelium had higher expression of genes associated with fructose metabolism, and hyperplasia of intestinal crypts and goblet cells, conceivably as a host compensatory mechanism to adapt to the impaired gut barrier. Furthermore, we discovered that stroke-induced gut permeability was mediated by the activation of the sympathetic nervous system as pharmacological denervation decreased the stroke-induced intestinal epithelial cell death, goblet cell and crypt hyperplasia, and gut permeability to baseline levels. Our study identifies a previously unknown mechanism in the brain-gut axis by which stroke triggers intestinal cell death and gut permeability.
Collapse
Affiliation(s)
- Kathryn Prame Kumar
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences at Monash Health, Monash Medical Centre, Monash University, Clayton, VIC, 3168, Australia
| | - Liam D McKay
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences at Monash Health, Monash Medical Centre, Monash University, Clayton, VIC, 3168, Australia
| | - Huynh Nguyen
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences at Monash Health, Monash Medical Centre, Monash University, Clayton, VIC, 3168, Australia
| | - Jasveena Kaur
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Biomedical Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Jenny L Wilson
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences at Monash Health, Monash Medical Centre, Monash University, Clayton, VIC, 3168, Australia
| | - Althea R Suthya
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences at Monash Health, Monash Medical Centre, Monash University, Clayton, VIC, 3168, Australia
| | - Sonja J McKeown
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Biomedical Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Helen E Abud
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Biomedical Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Connie H Y Wong
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences at Monash Health, Monash Medical Centre, Monash University, Clayton, VIC, 3168, Australia.
| |
Collapse
|
37
|
Wei X, Yu S, Zhang T, Liu L, Wang X, Wang X, Chan YS, Wang Y, Meng S, Chen YG. MicroRNA-200 Loaded Lipid Nanoparticles Promote Intestinal Epithelium Regeneration in Canonical MicroRNA-Deficient Mice. ACS NANO 2023; 17:22901-22915. [PMID: 37939210 PMCID: PMC10690841 DOI: 10.1021/acsnano.3c08030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/10/2023]
Abstract
Intestinal epithelium undergoes regeneration after injuries, and the disruption of this process can lead to inflammatory bowel disease and tumorigenesis. Intestinal stem cells (ISCs) residing in the crypts are crucial for maintaining the intestinal epithelium's homeostasis and promoting regeneration upon injury. However, the precise role of DGCR8, a critical component in microRNA (miRNA) biogenesis, in intestinal regeneration remains poorly understood. In this study, we provide compelling evidence demonstrating the indispensable role of epithelial miRNAs in the regeneration of the intestine in mice subjected to 5-FU or irradiation-induced injury. Through a comprehensive pooled screen of miRNA function in Dgcr8-deficient organoids, we observe that the loss of the miR-200 family leads to the hyperactivation of the p53 pathway, thereby reducing ISCs and impairing epithelial regeneration. Notably, downregulation of the miR-200 family and hyperactivation of the p53 pathway are verified in colonic tissues from patients with active ulcerative colitis (UC). Most importantly, the transient supply of miR-200 through the oral delivery of lipid nanoparticles (LNPs) carrying miR-200 restores ISCs and promotes intestinal regeneration in mice following acute injury. Our study implies the miR-200/p53 pathway as a promising therapeutic target for active UC patients with diminished levels of the miR-200 family. Furthermore, our findings suggest that the clinical application of LNP-miRNAs could enhance the efficacy, safety, and acceptability of existing therapeutic modalities for intestinal diseases.
Collapse
Affiliation(s)
- Xiyang Wei
- Guangzhou
Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou
National Laboratory, Guangzhou 510005, China
| | - Shicheng Yu
- Guangzhou
Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou
National Laboratory, Guangzhou 510005, China
| | | | - Liansheng Liu
- Guangzhou
Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou
National Laboratory, Guangzhou 510005, China
| | - Xu Wang
- Guangzhou
National Laboratory, Guangzhou 510005, China
| | - Xiaodan Wang
- The
State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for
Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yun-Shen Chan
- Guangzhou
National Laboratory, Guangzhou 510005, China
| | - Yangming Wang
- Institute
of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Shu Meng
- Guangzhou
National Laboratory, Guangzhou 510005, China
| | - Ye-Guang Chen
- Guangzhou
National Laboratory, Guangzhou 510005, China
- The
State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for
Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
- School
of Basic Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| |
Collapse
|
38
|
Dinarello A, May M, Amo-Aparicio J, Azam T, Gaballa JM, Marchetti C, Tesoriere A, Ghirardo R, Redzic JS, Webber WS, Atif SM, Li S, Eisenmesser EZ, de Graaf DM, Dinarello CA. IL-38 regulates intestinal stem cell homeostasis by inducing WNT signaling and beneficial IL-1β secretion. Proc Natl Acad Sci U S A 2023; 120:e2306476120. [PMID: 37906644 PMCID: PMC10636342 DOI: 10.1073/pnas.2306476120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/13/2023] [Indexed: 11/02/2023] Open
Abstract
The IL-1 Family member IL-38 has been characterized primarily as an antiinflammatory cytokine in human and mouse models of systemic diseases. Here, we examined the role of IL-38 in the murine small intestine (SI). Immunostaining of SI revealed that IL-38 expression partially confines to intestinal stem cells. Cultures of intestinal organoids reveal IL-38 functions as a growth factor by increasing organoid size via inducing WNT3a. In contrast, organoids from IL-38-deficient mice develop more slowly. This reduction in size is likely due to the downregulation of intestinal stemness markers (i.e., Fzd5, Ephb2, and Olfm4) expression compared with wild-type organoids. The IL-38 binding to IL-1R6 and IL-1R9 is still a matter of debate. Therefore, to analyze the molecular mechanisms of IL-38 signaling, we also examined organoids from IL-1R9-deficient mice. Unexpectedly, these organoids, although significantly smaller than wild type, respond to IL-38, suggesting that IL-1R9 is not involved in IL-38 signaling in the stem cell crypt. Nevertheless, silencing of IL-1R6 disabled the organoid response to the growth property of IL-38, thus suggesting IL-1R6 as the main receptor used by IL-38 in the crypt compartment. In organoids from wild-type mice, IL-38 stimulation induced low concentrations of IL-1β which contribute to organoid growth. However, high concentrations of IL-1β have detrimental effects on the cultures that were prevented by treatment with recombinant IL-38. Overall, our data demonstrate an important regulatory function of IL-38 as a growth factor, and as an antiinflammatory molecule in the SI, maintaining homeostasis.
Collapse
Affiliation(s)
- Alberto Dinarello
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO80045
| | - Makenna May
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO80045
| | - Jesus Amo-Aparicio
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO80045
| | - Tania Azam
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO80045
| | - Joseph M. Gaballa
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO80045
| | - Carlo Marchetti
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO80045
| | | | | | - Jasmina S. Redzic
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, Aurora, CO80045
| | - William S. Webber
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO80045
| | - Shaikh M. Atif
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO80045
| | - Suzhao Li
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO80045
| | - Elan Z. Eisenmesser
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, Aurora, CO80045
| | - Dennis M. de Graaf
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO80045
| | - Charles A. Dinarello
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO80045
| |
Collapse
|
39
|
Chen L, Qiu X, Dupre A, Pellon-Cardenas O, Fan X, Xu X, Rout P, Walton KD, Burclaff J, Zhang R, Fang W, Ofer R, Logerfo A, Vemuri K, Bandyopadhyay S, Wang J, Barbet G, Wang Y, Gao N, Perekatt AO, Hu W, Magness ST, Spence JR, Verzi MP. TGFB1 induces fetal reprogramming and enhances intestinal regeneration. Cell Stem Cell 2023; 30:1520-1537.e8. [PMID: 37865088 PMCID: PMC10841757 DOI: 10.1016/j.stem.2023.09.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 07/03/2023] [Accepted: 09/28/2023] [Indexed: 10/23/2023]
Abstract
The gut epithelium has a remarkable ability to recover from damage. We employed a combination of high-throughput sequencing approaches, mouse genetics, and murine and human organoids and identified a role for TGFB signaling during intestinal regeneration following injury. At 2 days following irradiation (IR)-induced damage of intestinal crypts, a surge in TGFB1 expression is mediated by monocyte/macrophage cells at the location of damage. The depletion of macrophages or genetic disruption of TGFB signaling significantly impaired the regenerative response. Intestinal regeneration is characterized by the induction of a fetal-like transcriptional signature during repair. In organoid culture, TGFB1 treatment was necessary and sufficient to induce the fetal-like/regenerative state. Mesenchymal cells were also responsive to TGFB1 and enhanced the regenerative response. Mechanistically, pro-regenerative factors, YAP/TEAD and SOX9, are activated in the epithelium exposed to TGFB1. Finally, pre-treatment with TGFB1 enhanced the ability of primary epithelial cultures to engraft into damaged murine colon, suggesting promise for cellular therapy.
Collapse
Affiliation(s)
- Lei Chen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China.
| | - Xia Qiu
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 00854, USA
| | - Abigail Dupre
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 00854, USA
| | - Oscar Pellon-Cardenas
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 00854, USA
| | - Xiaojiao Fan
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Xiaoting Xu
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Prateeksha Rout
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 00854, USA
| | - Katherine D Walton
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Joseph Burclaff
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, and North Carolina State University, Chapel Hill, NC 27695, USA; Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Ruolan Zhang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Wenxin Fang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Rachel Ofer
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 00854, USA
| | - Alexandra Logerfo
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 00854, USA
| | - Kiranmayi Vemuri
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 00854, USA
| | - Sheila Bandyopadhyay
- Department of Biological Sciences, Rutgers University-Newark, Newark, NJ 07102, USA
| | - Jianming Wang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University-New Brunswick, New Brunswick, NJ 08903, USA
| | - Gaetan Barbet
- Child Health Institute of New Jersey, Rutgers University-New Brunswick, New Brunswick, NJ 08901, USA
| | - Yan Wang
- Center for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Nan Gao
- Department of Biological Sciences, Rutgers University-Newark, Newark, NJ 07102, USA
| | - Ansu O Perekatt
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Wenwei Hu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University-New Brunswick, New Brunswick, NJ 08903, USA
| | - Scott T Magness
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, and North Carolina State University, Chapel Hill, NC 27695, USA; Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Jason R Spence
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109, USA
| | - Michael P Verzi
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 00854, USA; Rutgers Cancer Institute of New Jersey, Rutgers University-New Brunswick, New Brunswick, NJ 08903, USA; Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University-New Brunswick, New Brunswick, NJ 08901, USA; NIEHS Center for Environmental Exposures and Disease (CEED), Rutgers EOHSI, Piscataway, NJ 08854, USA.
| |
Collapse
|
40
|
Arenas-Gómez CM, Garcia-Gutierrez E, Escobar JS, Cotter PD. Human gut homeostasis and regeneration: the role of the gut microbiota and its metabolites. Crit Rev Microbiol 2023; 49:764-785. [PMID: 36369718 DOI: 10.1080/1040841x.2022.2142088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 08/18/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022]
Abstract
The healthy human gut is a balanced ecosystem where host cells and representatives of the gut microbiota interact and communicate in a bidirectional manner at the gut epithelium. As a result of these interactions, many local and systemic processes necessary for host functionality, and ultimately health, take place. Impairment of the integrity of the gut epithelium diminishes its ability to act as an effective gut barrier, can contribute to conditions associated to inflammation processes and can have other negative consequences. Pathogens and pathobionts have been linked with damage of the integrity of the gut epithelium, but other components of the gut microbiota and some of their metabolites can contribute to its repair and regeneration. Here, we review what is known about the effect of bacterial metabolites on the gut epithelium and, more specifically, on the regulation of repair by intestinal stem cells and the regulation of the immune system in the gut. Additionally, we explore the potential therapeutic use of targeted modulation of the gut microbiota to maintain and improve gut homeostasis as a mean to improve health outcomes.
Collapse
Affiliation(s)
- Claudia Marcela Arenas-Gómez
- Vidarium-Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, Medellin, Colombia
- Dirección Académica, Universidad Nacional de Colombia, Sede de La Paz, La Paz 202017, Colombia
| | - Enriqueta Garcia-Gutierrez
- Teagasc Food Research Centre Moorepark, Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- VistaMilk SFI Research Centre, Moorepark, Fermoy, Ireland
| | - Juan S Escobar
- Vidarium-Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, Medellin, Colombia
| | - Paul D Cotter
- Teagasc Food Research Centre Moorepark, Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- VistaMilk SFI Research Centre, Moorepark, Fermoy, Ireland
| |
Collapse
|
41
|
Shimomura K, Hattori N, Iida N, Muranaka Y, Sato K, Shiraishi Y, Arai Y, Hama N, Shibata T, Narushima D, Kato M, Takamaru H, Okamoto K, Takeda H. Sleeping Beauty transposon mutagenesis identified genes and pathways involved in inflammation-associated colon tumor development. Nat Commun 2023; 14:6514. [PMID: 37845228 PMCID: PMC10579371 DOI: 10.1038/s41467-023-42228-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/29/2023] [Indexed: 10/18/2023] Open
Abstract
Chronic inflammation promotes development and progression of colorectal cancer (CRC). To comprehensively understand the molecular mechanisms underlying the development and progression of inflamed CRC, we perform in vivo screening and identify 142 genes that are frequently mutated in inflammation-associated colon tumors. These genes include senescence and TGFβ-activin signaling genes. We find that TNFα can induce stemness and activate senescence signaling by enhancing cell plasticity in colonic epithelial cells, which could act as a selective pressure to mutate senescence-related genes in inflammation-associated colonic tumors. Furthermore, we show the efficacy of the Cdk4/6 inhibitor in vivo for inflammation-associated colonic tumors. Finally, we functionally validate that Arhgap5 and Mecom are tumor suppressor genes, providing possible therapeutic targets for CRC. Thus, we demonstrate the importance of the inactivation of senescence pathways in CRC development and progression in an inflammatory microenvironment, which can help progress toward precision medicine.
Collapse
Affiliation(s)
- Kana Shimomura
- The Laboratory of Molecular Genetics, National Cancer Center Research Institute, Tokyo, Japan
| | - Naoko Hattori
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
- Department of Epigenomics, Institute for Advanced Life Sciences, Hoshi University, Tokyo, Japan
| | - Naoko Iida
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Yukari Muranaka
- The Laboratory of Molecular Genetics, National Cancer Center Research Institute, Tokyo, Japan
| | - Kotomi Sato
- The Laboratory of Molecular Genetics, National Cancer Center Research Institute, Tokyo, Japan
| | - Yuichi Shiraishi
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Yasuhito Arai
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Natsuko Hama
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Tatsuhiro Shibata
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Daichi Narushima
- Division of Bioinformatics, National Cancer Center Research Institute, Tokyo, Japan
| | - Mamoru Kato
- Division of Bioinformatics, National Cancer Center Research Institute, Tokyo, Japan
| | | | - Koji Okamoto
- Advanced Comprehensive Research Organization, Teikyo University, Tokyo, Japan
| | - Haruna Takeda
- The Laboratory of Molecular Genetics, National Cancer Center Research Institute, Tokyo, Japan.
| |
Collapse
|
42
|
Qi Y, He J, Zhang Y, Ge Q, Wang Q, Chen L, Xu J, Wang L, Chen X, Jia D, Lin Y, Xu C, Zhang Y, Hou T, Si J, Chen S, Wang L. Heat-inactivated Bifidobacterium adolescentis ameliorates colon senescence through Paneth-like-cell-mediated stem cell activation. Nat Commun 2023; 14:6121. [PMID: 37777508 PMCID: PMC10542354 DOI: 10.1038/s41467-023-41827-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/14/2023] [Indexed: 10/02/2023] Open
Abstract
Declined numbers and weakened functions of intestinal stem cells (ISCs) impair the integrity of the intestinal epithelium during aging. However, the impact of intestinal microbiota on ISCs in this process is unclear. Here, using premature aging mice (telomerase RNA component knockout, Terc-/-), natural aging mice, and in vitro colonoid models, we explore how heat-inactivated Bifidobacterium adolescentis (B. adolescentis) affects colon senescence. We find that B. adolescentis could mitigate colonic senescence-related changes by enhancing intestinal integrity and stimulating the regeneration of Lgr5+ ISCs via Wnt/β-catenin signaling. Furthermore, we uncover the involvement of Paneth-like cells (PLCs) within the colonic stem-cell-supporting niche in the B. adolescentis-induced ISC regeneration. In addition, we identify soluble polysaccharides (SPS) as potential effective components of B. adolescentis. Overall, our findings reveal the role of heat-inactivated B. adolescentis in maintaining the ISCs regeneration and intestinal barrier, and propose a microbiota target for ameliorating colon senescence.
Collapse
Affiliation(s)
- Yadong Qi
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiamin He
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yawen Zhang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qiwei Ge
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qiwen Wang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Luyi Chen
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of General Practice, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jilei Xu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lan Wang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xueqin Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dingjiacheng Jia
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yifeng Lin
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chaochao Xu
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ying Zhang
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tongyao Hou
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianmin Si
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Shujie Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Liangjing Wang
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
43
|
Bao W, You Y, Ni J, Hou H, Lyu J, Feng G, Wang Y, You K, Zhang S, Zhang L, Cao X, Wang X, Li H, Li H, Xu J, Liu C, Luo X, Du P, Chen D, Shen X. Inhibiting sorting nexin 10 promotes mucosal healing through SREBP2-mediated stemness restoration of intestinal stem cells. SCIENCE ADVANCES 2023; 9:eadh5016. [PMID: 37647408 PMCID: PMC10468130 DOI: 10.1126/sciadv.adh5016] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023]
Abstract
Intestinal stem cell (ISC) is a promising therapeutic target for inflammatory bowel disease. Cholesterol availability is critical for ISC stemness. Low plasma cholesterol is a typical feature of Crohn's disease (CD); however, its impact on mucosal healing remains unclear. Here, we identified an essential role of sorting nexin 10 (SNX10) in maintaining the stemness of ISCs. SNX10 expression in intestinal tissues positively correlates with the severity of human CD and mouse colitis. Conditional SNX10 knockout in intestinal epithelial cells or ISCs promotes intestinal mucosal repair by maintaining the ISC population associated with increased intracellular cholesterol synthesis. Disassociation of ERLIN2 with SCAP by SNX10 deletion enhances the activation of SREBP2, resulting in increased cholesterol biosynthesis. DC-SX029, a small-molecule inhibitor of SNX10, was used to verify the druggable potential of SNX10 for the treatment of patients with CD. Our study provides a strategy for mucosal healing through SREBP2-mediated stemness restoration of ISCs.
Collapse
Affiliation(s)
- Weilian Bao
- Department of Pharmacology and the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China
| | - Yan You
- Department of Pharmacology and the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Jiahui Ni
- Department of Pharmacology and the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Hui Hou
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jiaren Lyu
- Department of Pharmacology and the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Guize Feng
- Department of Pharmacology and the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Yirui Wang
- Department of Pharmacology and the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Keyuan You
- Department of Pharmacology and the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Sulin Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Lijie Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xinyue Cao
- Department of Pharmacology and the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Xu Wang
- Department of Pharmacology and the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Haidong Li
- Department of Pharmacology and the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Hong Li
- Department of Pharmacology and the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chenying Liu
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Colorectal Cancer Research Center, Shanghai, China
| | - Xiaomin Luo
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Peng Du
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Colorectal Cancer Research Center, Shanghai, China
| | - Daofeng Chen
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China
| | - Xiaoyan Shen
- Department of Pharmacology and the Key Laboratory of Smart Drug Delivery Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
44
|
Choi J, Zhang X, Li W, Houston M, Peregrina K, Dubin R, Ye K, Augenlicht L. Dynamic Intestinal Stem Cell Plasticity and Lineage Remodeling by a Nutritional Environment Relevant to Human Risk for Tumorigenesis. Mol Cancer Res 2023; 21:808-824. [PMID: 37097719 PMCID: PMC10390890 DOI: 10.1158/1541-7786.mcr-22-1000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/27/2023] [Accepted: 04/21/2023] [Indexed: 04/26/2023]
Abstract
New Western-style diet 1 (NWD1), a purified diet establishing mouse exposure to key nutrients recapitulating levels that increase human risk for intestinal cancer, reproducibly causes mouse sporadic intestinal and colonic tumors reflecting human etiology, incidence, frequency, and lag with developmental age. Complex NWD1 stem cell and lineage reprogramming was deconvolved by bulk and single-cell RNA sequencing, single-cell Assay for Transposase-Accessible Chromatin using sequencing, functional genomics, and imaging. NWD1 extensively, rapidly, and reversibly, reprogrammed Lgr5hi stem cells, epigenetically downregulating Ppargc1a expression, altering mitochondrial structure and function. This suppressed Lgr5hi stem cell functions and developmental maturation of Lgr5hi cell progeny as cells progressed through progenitor cell compartments, recapitulated by Ppargc1a genetic inactivation in Lgr5hi cells in vivo. Mobilized Bmi1+, Ascl2hi cells adapted lineages to the nutritional environment and elevated antigen processing and presentation pathways, especially in mature enterocytes, causing chronic, protumorigenic low-level inflammation. There were multiple parallels between NWD1 remodeling of stem cells and lineages with pathogenic mechanisms in human inflammatory bowel disease, also protumorigenic. Moreover, the shift to alternate stem cells reflects that the balance between Lgr5-positive and -negative stem cells in supporting human colon tumors is determined by environmental influences. Stem cell and lineage plasticity in response to nutrients supports historic concepts of homeostasis as a continual adaptation to environment, with the human mucosa likely in constant flux in response to changing nutrient exposures. IMPLICATIONS Although oncogenic mutations provide a competitive advantage to intestinal epithelial cells in clonal expansion, the competition is on a playing field dynamically sculpted by the nutritional environment, influencing which cells dominate in mucosal maintenance and tumorigenesis.
Collapse
Affiliation(s)
- Jiahn Choi
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Xusheng Zhang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Wenge Li
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Michele Houston
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Karina Peregrina
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Robert Dubin
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Kenny Ye
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Leonard Augenlicht
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
45
|
Pikkupeura LM, Bressan RB, Guiu J, Chen Y, Maimets M, Mayer D, Schweiger PJ, Hansen SL, Maciag GJ, Larsen HL, Lõhmussaar K, Pedersen MT, Teves JMY, Bornholdt J, Benes V, Sandelin A, Jensen KB. Transcriptional and epigenomic profiling identifies YAP signaling as a key regulator of intestinal epithelium maturation. SCIENCE ADVANCES 2023; 9:eadf9460. [PMID: 37436997 DOI: 10.1126/sciadv.adf9460] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 06/08/2023] [Indexed: 07/14/2023]
Abstract
During intestinal organogenesis, equipotent epithelial progenitors mature into phenotypically distinct stem cells that are responsible for lifelong maintenance of the tissue. While the morphological changes associated with the transition are well characterized, the molecular mechanisms underpinning the maturation process are not fully understood. Here, we leverage intestinal organoid cultures to profile transcriptional, chromatin accessibility, DNA methylation, and three-dimensional (3D) chromatin conformation landscapes in fetal and adult epithelial cells. We observed prominent differences in gene expression and enhancer activity, which are accompanied by local changes in 3D organization, DNA accessibility, and methylation between the two cellular states. Using integrative analyses, we identified sustained Yes-Associated Protein (YAP) transcriptional activity as a major gatekeeper of the immature fetal state. We found the YAP-associated transcriptional network to be regulated at various levels of chromatin organization and likely to be coordinated by changes in extracellular matrix composition. Together, our work highlights the value of unbiased profiling of regulatory landscapes for the identification of key mechanisms underlying tissue maturation.
Collapse
Affiliation(s)
- Laura M Pikkupeura
- BRIC - Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N DK-2200, Denmark
- Bioinformatics Center, Department of Biology, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Raul B Bressan
- BRIC - Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N DK-2200, Denmark
- Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Jordi Guiu
- BRIC - Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N DK-2200, Denmark
- Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, 3a planta, Av. Granvia de l'Hospitalet 199, Hospitalet de Llobregat 08908, Spain
| | - Yun Chen
- BRIC - Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N DK-2200, Denmark
- Bioinformatics Center, Department of Biology, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Martti Maimets
- BRIC - Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N DK-2200, Denmark
- Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Daniela Mayer
- BRIC - Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N DK-2200, Denmark
- Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Pawel J Schweiger
- BRIC - Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N DK-2200, Denmark
- Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Stine L Hansen
- BRIC - Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N DK-2200, Denmark
- Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Grzegorz J Maciag
- BRIC - Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N DK-2200, Denmark
- Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Hjalte L Larsen
- BRIC - Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N DK-2200, Denmark
- Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Kadi Lõhmussaar
- Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | | | - Joji M Yap Teves
- BRIC - Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N DK-2200, Denmark
- Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Jette Bornholdt
- BRIC - Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N DK-2200, Denmark
- Bioinformatics Center, Department of Biology, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | | | - Albin Sandelin
- BRIC - Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N DK-2200, Denmark
- Bioinformatics Center, Department of Biology, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Kim B Jensen
- BRIC - Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N DK-2200, Denmark
- Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N DK-2200, Denmark
| |
Collapse
|
46
|
Casanova-Maldonado I, Arancibia D, Lois P, Peña-Villalobos I, Palma V. Hyperbaric oxygen treatment increases intestinal stem cell proliferation through the mTORC1/S6K1 signaling pathway in Mus musculus. Biol Res 2023; 56:41. [PMID: 37438828 DOI: 10.1186/s40659-023-00444-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/05/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND Hyperbaric oxygen treatment (HBOT) has been reported to modulate the proliferation of neural and mesenchymal stem cell populations, but the molecular mechanisms underlying these effects are not completely understood. In this study, we aimed to assess HBOT somatic stem cell modulation by evaluating the role of the mTOR complex 1 (mTORC1), a key regulator of cell metabolism whose activity is modified depending on oxygen levels, as a potential mediator of HBOT in murine intestinal stem cells (ISCs). RESULTS We discovered that acute HBOT synchronously increases the proliferation of ISCs without affecting the animal's oxidative metabolism through activation of the mTORC1/S6K1 axis. mTORC1 inhibition by rapamycin administration for 20 days also increases ISCs proliferation, generating a paradoxical response in mice intestines, and has been proposed to mimic a partial starvation state. Interestingly, the combination of HBOT and rapamycin does not have a synergic effect, possibly due to their differential impact on the mTORC1/S6K1 axis. CONCLUSIONS HBOT can induce an increase in ISCs proliferation along with other cell populations within the crypt through mTORC1/S6K1 modulation without altering the oxidative metabolism of the animal's small intestine. These results shed light on the molecular mechanisms underlying HBOT therapeutic action, laying the groundwork for future studies.
Collapse
Affiliation(s)
- Ignacio Casanova-Maldonado
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences, Universidad de Chile, Las Encinas 3370, Milenio Building Floor 3, 7800024, Santiago de Chile, Nunoa, Chile.
| | - David Arancibia
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences, Universidad de Chile, Las Encinas 3370, Milenio Building Floor 3, 7800024, Santiago de Chile, Nunoa, Chile
| | - Pablo Lois
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences, Universidad de Chile, Las Encinas 3370, Milenio Building Floor 3, 7800024, Santiago de Chile, Nunoa, Chile
- Education Department, Faculty of Humanities, Universidad Mayor, Santiago de Chile, Providencia, Chile
| | - Isaac Peña-Villalobos
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences, Universidad de Chile, Las Encinas 3370, Milenio Building Floor 3, 7800024, Santiago de Chile, Nunoa, Chile.
| | - Verónica Palma
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences, Universidad de Chile, Las Encinas 3370, Milenio Building Floor 3, 7800024, Santiago de Chile, Nunoa, Chile.
| |
Collapse
|
47
|
Creff J, Nowosad A, Prel A, Pizzoccaro A, Aguirrebengoa M, Duquesnes N, Callot C, Jungas T, Dozier C, Besson A. p57 Kip2 acts as a transcriptional corepressor to regulate intestinal stem cell fate and proliferation. Cell Rep 2023; 42:112659. [PMID: 37327110 DOI: 10.1016/j.celrep.2023.112659] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/01/2022] [Accepted: 06/01/2023] [Indexed: 06/18/2023] Open
Abstract
p57Kip2 is a cyclin/CDK inhibitor and a negative regulator of cell proliferation. Here, we report that p57 regulates intestinal stem cell (ISC) fate and proliferation in a CDK-independent manner during intestinal development. In the absence of p57, intestinal crypts exhibit an increased proliferation and an amplification of transit-amplifying cells and of Hopx+ ISCs, which are no longer quiescent, while Lgr5+ ISCs are unaffected. RNA sequencing (RNA-seq) analyses of Hopx+ ISCs show major gene expression changes in the absence of p57. We found that p57 binds to and inhibits the activity of Ascl2, a transcription factor critical for ISC specification and maintenance, by participating in the recruitment of a corepressor complex to Ascl2 target gene promoters. Thus, our data suggest that, during intestinal development, p57 plays a key role in maintaining Hopx+ ISC quiescence and repressing the ISC phenotype outside of the crypt bottom by inhibiting the transcription factor Ascl2 in a CDK-independent manner.
Collapse
Affiliation(s)
- Justine Creff
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Ada Nowosad
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Anne Prel
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Anne Pizzoccaro
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Marion Aguirrebengoa
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Nicolas Duquesnes
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Caroline Callot
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Thomas Jungas
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Christine Dozier
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Arnaud Besson
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France.
| |
Collapse
|
48
|
Sell T, Klotz C, Fischer MM, Astaburuaga-García R, Krug S, Drost J, Clevers H, Sers C, Morkel M, Blüthgen N. Oncogenic signaling is coupled to colorectal cancer cell differentiation state. J Cell Biol 2023; 222:e202204001. [PMID: 37017636 PMCID: PMC10082329 DOI: 10.1083/jcb.202204001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 12/23/2022] [Accepted: 03/17/2023] [Indexed: 04/06/2023] Open
Abstract
Colorectal cancer progression is intrinsically linked to stepwise deregulation of the intestinal differentiation trajectory. In this process, sequential mutations of APC, KRAS, TP53, and SMAD4 enable oncogenic signaling and establish the hallmarks of cancer. Here, we use mass cytometry of isogenic human colon organoids and patient-derived cancer organoids to capture oncogenic signaling, cell phenotypes, and differentiation states in a high-dimensional single-cell map. We define a differentiation axis in all tumor progression states from normal to cancer. Our data show that colorectal cancer driver mutations shape the distribution of cells along the differentiation axis. In this regard, subsequent mutations can have stem cell promoting or restricting effects. Individual nodes of the cancer cell signaling network remain coupled to the differentiation state, regardless of the presence of driver mutations. We use single-cell RNA sequencing to link the (phospho-)protein signaling network to transcriptomic states with biological and clinical relevance. Our work highlights how oncogenes gradually shape signaling and transcriptomes during tumor progression.
Collapse
Affiliation(s)
- Thomas Sell
- Institute of Pathology, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Biology, Humboldt University of Berlin, Berlin, Germany
| | - Christian Klotz
- Department of Infectious Diseases, Robert Koch-Institute, Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Berlin, Germany
| | - Matthias M. Fischer
- Institute of Pathology, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Biology, Humboldt University of Berlin, Berlin, Germany
| | - Rosario Astaburuaga-García
- Institute of Pathology, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Biology, Humboldt University of Berlin, Berlin, Germany
| | - Susanne Krug
- Department of Gastroenterology, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Rheumatology and Infectious Diseases, Clinical Physiology/Nutritional Medicine, Berlin, Germany
| | - Jarno Drost
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Hans Clevers
- Oncode Institute, Utrecht, Netherlands
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, Netherlands
| | - Christine Sers
- Institute of Pathology, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Biology, Humboldt University of Berlin, Berlin, Germany
- German Cancer Consortium Partner Site Berlin, German Cancer Research Center, Heidelberg, Germany
| | - Markus Morkel
- Institute of Pathology, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium Partner Site Berlin, German Cancer Research Center, Heidelberg, Germany
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Bioportal Single Cells, Berlin, Germany
| | - Nils Blüthgen
- Institute of Pathology, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Biology, Humboldt University of Berlin, Berlin, Germany
- German Cancer Consortium Partner Site Berlin, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
49
|
Schaaf CR, Polkoff KM, Carter A, Stewart AS, Sheahan B, Freund J, Ginzel J, Snyder JC, Roper J, Piedrahita JA, Gonzalez LM. A LGR5 reporter pig model closely resembles human intestine for improved study of stem cells in disease. FASEB J 2023; 37:e22975. [PMID: 37159340 PMCID: PMC10446885 DOI: 10.1096/fj.202300223r] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/12/2023] [Accepted: 05/01/2023] [Indexed: 05/11/2023]
Abstract
Intestinal epithelial stem cells (ISCs) are responsible for intestinal epithelial barrier renewal; thereby, ISCs play a critical role in intestinal pathophysiology research. While transgenic ISC reporter mice are available, advanced translational studies lack a large animal model. This study validates ISC isolation in a new porcine Leucine Rich Repeat Containing G Protein-Coupled Receptor 5 (LGR5) reporter line and demonstrates the use of these pigs as a novel colorectal cancer (CRC) model. We applied histology, immunofluorescence, fluorescence-activated cell sorting, flow cytometry, gene expression quantification, and 3D organoid cultures to whole tissue and single cells from the duodenum, jejunum, ileum, and colon of LGR5-H2B-GFP and wild-type pigs. Ileum and colon LGR5-H2B-GFP, healthy human, and murine biopsies were compared by mRNA fluorescent in situ hybridization (FISH). To model CRC, adenomatous polyposis coli (APC) mutation was induced by CRISPR/Cas9 editing in porcine LGR5-H2B-GFP colonoids. Crypt-base, green fluorescent protein (GFP) expressing cells co-localized with ISC biomarkers. LGR5-H2B-GFPhi cells had significantly higher LGR5 expression (p < .01) and enteroid forming efficiency (p < .0001) compared with LGR5-H2B-GFPmed/lo/neg cells. Using FISH, similar LGR5, OLFM4, HOPX, LYZ, and SOX9 expression was identified between human and LGR5-H2B-GFP pig crypt-base cells. LGR5-H2B-GFP/APCnull colonoids had cystic growth in WNT/R-spondin-depleted media and significantly upregulated WNT/β-catenin target gene expression (p < .05). LGR5+ ISCs are reproducibly isolated in LGR5-H2B-GFP pigs and used to model CRC in an organoid platform. The known anatomical and physiologic similarities between pig and human, and those shown by crypt-base FISH, underscore the significance of this novel LGR5-H2B-GFP pig to translational ISC research.
Collapse
Affiliation(s)
- Cecilia R. Schaaf
- Department of Clinical Sciences, College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Kathryn M. Polkoff
- Department of Molecular Biomedical Sciences, College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Amber Carter
- Department of Molecular Biomedical Sciences, College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Amy S. Stewart
- Department of Clinical Sciences, College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Breanna Sheahan
- Department of Molecular Biomedical Sciences, College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - John Freund
- Department of Clinical Sciences, College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Joshua Ginzel
- Department of SurgeryDuke UniversityDurhamNorth CarolinaUSA
| | - Joshua C. Snyder
- Department of SurgeryDuke UniversityDurhamNorth CarolinaUSA
- Department of Cell BiologyDuke UniversityDurhamNorth CarolinaUSA
| | - Jatin Roper
- Department of Medicine, Division of GastroenterologyDuke UniversityDurhamNorth CarolinaUSA
- Department of Pharmacology and Cancer BiologyDuke UniversityDurhamNorth CarolinaUSA
| | - Jorge A. Piedrahita
- Department of Molecular Biomedical Sciences, College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Liara M. Gonzalez
- Department of Clinical Sciences, College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth CarolinaUSA
| |
Collapse
|
50
|
Zutshi N, Mohapatra BC, Mondal P, An W, Goetz BT, Wang S, Li S, Storck MD, Mercer DF, Black AR, Thayer SP, Black JD, Lin C, Band V, Band H. Cbl and Cbl-b Ubiquitin Ligases are Essential for Intestinal Epithelial Stem Cell Maintenance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.17.541154. [PMID: 37292716 PMCID: PMC10245689 DOI: 10.1101/2023.05.17.541154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Among the signaling pathways that control the stem cell self-renewal and maintenance vs. acquisition of differentiated cell fates, those mediated by receptor tyrosine kinase (RTK) activation are well established as key players. CBL family ubiquitin ligases are negative regulators of RTKs but their physiological roles in regulating stem cell behaviors are unclear. While hematopoietic Cbl/Cblb knockout (KO) leads to a myeloproliferative disease due to expansion and reduced quiescence of hematopoietic stem cells, mammary epithelial KO led to stunted mammary gland development due to mammary stem cell depletion. Here, we examined the impact of inducible Cbl/Cblb double-KO (iDKO) selectively in the Lgr5-defined intestinal stem cell (ISC) compartment. Cbl/Cblb iDKO led to rapid loss of the Lgr5 Hi ISC pool with a concomitant transient expansion of the Lgr5 Lo transit amplifying population. LacZ reporter-based lineage tracing showed increased ISC commitment to differentiation, with propensity towards enterocyte and goblet cell fate at the expense of Paneth cells. Functionally, Cbl/Cblb iDKO impaired the recovery from radiation-induced intestinal epithelial injury. In vitro , Cbl/Cblb iDKO led to inability to maintain intestinal organoids. Single cell RNAseq analysis of organoids revealed Akt-mTOR pathway hyperactivation in iDKO ISCs and progeny cells, and pharmacological inhibition of the Akt-mTOR axis rescued the organoid maintenance and propagation defects. Our results demonstrate a requirement for Cbl/Cblb in the maintenance of ISCs by fine tuning the Akt-mTOR axis to balance stem cell maintenance vs. commitment to differentiation.
Collapse
|