1
|
Kelly M, Dietz C, Kasson S, Zhang Y, Holtzman MJ, Kim IK. Deltex family E3 ligases specifically ubiquitinate the terminal ADP-ribose of poly(ADP-ribosyl)ation. Biochem Biophys Res Commun 2024; 720:150101. [PMID: 38749191 PMCID: PMC11219154 DOI: 10.1016/j.bbrc.2024.150101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 04/24/2024] [Accepted: 05/10/2024] [Indexed: 06/01/2024]
Abstract
Poly(ADP-ribose) polymerases (PARPs) are critical to regulating cellular activities, such as the response to DNA damage and cell death. PARPs catalyze a reversible post-translational modification (PTM) in the form of mono- or poly(ADP-ribosyl)ation. This type of modification is known to form a ubiquitin-ADP-ribose (Ub-ADPR) conjugate that depends on the actions of Deltex family of E3 ubiquitin ligases (DTXs). In particular, DTXs add ubiquitin to the 3'-OH of adenosine ribose' in ADP-ribose, which effectively sequesters ubiquitin and impedes ubiquitin-dependent signaling. Previous work demonstrates DTX function for ubiquitination of protein-free ADPR, mono-ADP-ribosylated peptides, and ADP-ribosylated nucleic acids. However, the dynamics of DTX-mediated ubiquitination of poly(ADP-ribosyl)ation remains to be defined. Here we show that the ADPR ubiquitination function is not found in other PAR-binding E3 ligases and is conserved across DTX family members. Importantly, DTXs specifically target poly(ADP-ribose) chains for ubiquitination that can be cleaved by PARG, the primary eraser of poly(ADP-ribose), leaving the adenosine-terminal ADPR unit conjugated to ubiquitin. Our collective results demonstrate the DTXs' specific ubiquitination of the adenosine terminus of poly(ADP-ribosyl)ation and suggest the unique Ub-ADPR conjugation process as a basis for PARP-DTX control of cellular activities.
Collapse
Affiliation(s)
- Matthew Kelly
- Division of Biochemistry, Department of Chemistry, University of Cincinnati, 301 Clifton Ct, Cincinnati, OH, 45221, USA
| | - Chase Dietz
- Division of Biochemistry, Department of Chemistry, University of Cincinnati, 301 Clifton Ct, Cincinnati, OH, 45221, USA
| | - Samuel Kasson
- Division of Biochemistry, Department of Chemistry, University of Cincinnati, 301 Clifton Ct, Cincinnati, OH, 45221, USA
| | - Yong Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - Michael J Holtzman
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110, USA
| | - In-Kwon Kim
- Division of Biochemistry, Department of Chemistry, University of Cincinnati, 301 Clifton Ct, Cincinnati, OH, 45221, USA.
| |
Collapse
|
2
|
Yan S, Ren J, Su H, Ma J, He W, Cai X, Sun D. Novel heterozygous variant of ADPRHL2 causes pathogenic variation in CONDSIAS. Heliyon 2024; 10:e32945. [PMID: 39100487 PMCID: PMC11295978 DOI: 10.1016/j.heliyon.2024.e32945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 08/06/2024] Open
Abstract
Adprhl2 (OMIM: 610624) mutation associated stress-induced childhood-onset neurodegeneration with variable ataxia and seizures (CONDSIAS, OMIM: 618170) is a sporadic neurodegenerative disease with poor prognosis. ADPRHL2 encodes ADP-ribosylhydrolase 3 (ARH3), which participates in ADP-ribosylation to remove poly-ADP ribose (PAR). We found a new compound heterozygous mutation in the ADPRHL2 gene c.580C > T (p.Gln194Ter) and c.803-1G > A in a 30-month-old boy, who showed gait instability, abnormal EEG, and developmental delay after respiratory infection. He died of convulsions 4 months after onset. By constructing a mutant plasmid and using Western blot to detect the expression of ARH3 and PAR, it was demonstrated that the ADPRHL2 gene c.580C > T (p.Gln194Ter) and c.803-1G > A is pathogenic according to ACMG guidelines.
Collapse
Affiliation(s)
- Shuang Yan
- Department of Neurology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Jie Ren
- Department of Emergency and Critical Care Center, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Hongting Su
- Department of Neurology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Jiehui Ma
- Department of Neurology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Weijie He
- Aegicare (Shenzhen) Technology Co., Ltd., Shenzhen, China
| | - Xiaofang Cai
- Department of Emergency and Critical Care Center, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Dan Sun
- Department of Neurology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| |
Collapse
|
3
|
Dhakar SS, Galera-Prat A, Lehtiö L. High-throughput screening assay for PARP-HPF1 interaction inhibitors to affect DNA damage repair. Sci Rep 2024; 14:3875. [PMID: 38365924 PMCID: PMC10873324 DOI: 10.1038/s41598-024-54123-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/08/2024] [Indexed: 02/18/2024] Open
Abstract
ADP-ribosyltransferases PARP1 and PARP2 play a major role in DNA repair mechanism by detecting the DNA damage and inducing poly-ADP-ribosylation dependent chromatin relaxation and recruitment of repair proteins. Catalytic PARP inhibitors are used as anticancer drugs especially in the case of tumors arising from sensitizing mutations. Recently, a study showed that Histone PARylation Factor (HPF1) forms a joint active site with PARP1/2. The interaction of HPF1 with PARP1/2 alters the modification site from Aspartate/Glutamate to Serine, which has been shown to be a key ADP-ribosylation event in the context of DNA damage. Therefore, disruption of PARP1/2-HPF1 interaction could be an alternative strategy for drug development to block the PARP1/2 activity. In this study, we describe a FRET based high-throughput screening assay to screen inhibitor libraries against PARP-HPF1 interaction. We optimized the conditions for FRET signal and verified the interaction by competing the FRET pair in multiple ways. The assay is robust and easy to automate. Validatory screening showed the robust performance of the assay, and we discovered two compounds Dimethylacrylshikonin and Alkannin, with µM inhibition potency against PARP1/2-HPF1 interaction. The assay will facilitate the discovery of inhibitors against HPF1-PARP1/2 complex and to develop potentially new effective anticancer agents.
Collapse
Affiliation(s)
- Saurabh S Dhakar
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Albert Galera-Prat
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Lari Lehtiö
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|
4
|
Bourlon MT, Valdez P, Castro E. Development of PARP inhibitors in advanced prostate cancer. Ther Adv Med Oncol 2024; 16:17588359231221337. [PMID: 38205078 PMCID: PMC10777773 DOI: 10.1177/17588359231221337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/29/2023] [Indexed: 01/12/2024] Open
Abstract
The relatively high prevalence of alterations in the homologous recombination repair (HRR) pathway described in advanced prostate cancer provides a unique opportunity to develop therapeutic strategies that take advantage of the decreased tumor ability to repair DNA damage. Poly ADP-ribose polymerase (PARP) inhibitors have been demonstrated to improve the outcomes of metastatic castration-resistant prostate cancer (mCRPC) patients with HRR defects, particularly in those with BRCA1/2 alterations. To expand the benefit of PARPi to patients without detectable HRR alterations, multiple studies are addressing potential synergies between PARP inhibition (PARPi) and androgen receptor pathway inhibitors (ARSi), radiation, radioligand therapy, chemotherapy, or immunotherapy, and these strategies are also being evaluated in the hormone-sensitive setting. In this review, we summarize the development of PARPi in prostate cancer, the potential synergies, and combinations being investigated as well as the future directions of PARPi for the management of the disease.
Collapse
Affiliation(s)
- Maria Teresa Bourlon
- Hemato-Oncology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Paola Valdez
- Hemato-Oncology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Elena Castro
- Department of Medical Oncology, Hospital Universitario 12 de Octubre, Av. Cordoba s/n, 28041, Madrid, Spain
| |
Collapse
|
5
|
Thakur A, Rana M, Ritika, Mathew J, Nepali S, Pan CH, Liou JP, Nepali K. Small molecule tractable PARP inhibitors: Scaffold construction approaches, mechanistic insights and structure activity relationship. Bioorg Chem 2023; 141:106893. [PMID: 37783100 DOI: 10.1016/j.bioorg.2023.106893] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
Diverse drug design strategies viz. molecular hybridization, substituent installation, scaffold hopping, isosteric replacement, high-throughput screening, induction and separation of chirality, structure modifications of phytoconstituents and use of structural templates have been exhaustively leveraged in the last decade to load the chemical toolbox of PARP inhibitors. Resultantly, numerous promising scaffolds have been pinpointed that in turn have led to the resuscitation of the credence to PARP inhibitors as cancer therapeutics. This review briefly presents the physiological functions of PARPs, the pharmacokinetics, and pharmacodynamics, and the interaction profiles of FDA-approved PARP inhibitors. Comprehensively covered is the section on the drug design strategies employed by drug discovery enthusiasts for furnishing PARP inhibitors. The impact of structural variations in the template of designed scaffolds on enzymatic and cellular activity (structure-activity relationship studies) has been discussed. The insights gained through the biological evaluation such as profiling of physicochemical properties andin vitroADME properties, PK assessments, and high-dose pharmacology are covered.
Collapse
Affiliation(s)
- Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan
| | - Mandeep Rana
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan
| | - Ritika
- College of Medicine, Taipei Medical University, Taipei 110031, Taiwan
| | - Jacob Mathew
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan
| | - Sanya Nepali
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Chun-Hsu Pan
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan
| | - Jing Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan.
| |
Collapse
|
6
|
Macchia G, Titone F, Restaino S, Arcieri M, Pellecchia G, Andreetta C, Driul L, Vizzielli G, Pezzulla D. Is It Time to Reassess the Role of Radiotherapy Treatment in Ovarian Cancer? Healthcare (Basel) 2023; 11:2413. [PMID: 37685447 PMCID: PMC10486999 DOI: 10.3390/healthcare11172413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
With a 5-year survival rate of fewer than 50%, epithelial ovarian carcinoma is the most fatal of the gynecologic cancers. Each year, an estimated 22,000 women are diagnosed with the condition, with 14,000 dying as a result, in the United States. Over the last decade, the advent of molecular and genetic data has enhanced our understanding of the heterogeneity of ovarian cancer. More than 80% of women diagnosed with advanced illness have an initial full response to rigorous therapy at diagnosis, including surgery and platinum-based chemotherapy. Unfortunately, these responses are infrequently lasting, and the majority of women with ovarian cancer suffer recurrent disease, which is often incurable, despite the possibility of future response and months of survival. And what therapeutic weapons do we have to counter it? For many years, radiation therapy for ovarian tumors was disregarded as an effective treatment option due to its toxicity and lack of survival benefits. Chemotherapy is widely used following surgery, and it has nearly completely supplanted radiation therapy. Even with the use of more modern and efficient chemotherapy regimens, ovarian cancer failures still happen. After receiving first-line ovarian cancer chemotherapy, over 70% of patients show evidence of recurrence in the abdomen or pelvis. It is necessary to reinterpret the function of radiation therapy in light of recent technological developments, the sophistication of radiation procedures, and the molecular and biological understanding of various histological subtypes. This review article focuses on the literature on the use of radiation in ovarian tumors as well as its rationale and current indications.
Collapse
Affiliation(s)
- Gabriella Macchia
- Radiation Oncology Unit, Responsible Research Hospital, 86100 Campobasso, Italy; (G.M.); (D.P.)
| | - Francesca Titone
- Radiation Oncology Unit, Department of Oncology, “Santa Maria della Misericordia” University Hospital, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), 33100 Udine, Italy
| | - Stefano Restaino
- Department of Maternal and Child Health, “Santa Maria della Misericordia” University Hospital, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), 33100 Udine, Italy; (S.R.); (M.A.); (G.P.); (L.D.); (G.V.)
| | - Martina Arcieri
- Department of Maternal and Child Health, “Santa Maria della Misericordia” University Hospital, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), 33100 Udine, Italy; (S.R.); (M.A.); (G.P.); (L.D.); (G.V.)
- Department of Biomedical, Dental, Morphological and Functional Imaging Science, University of Messina, 98122 Messina, Italy
| | - Giulia Pellecchia
- Department of Maternal and Child Health, “Santa Maria della Misericordia” University Hospital, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), 33100 Udine, Italy; (S.R.); (M.A.); (G.P.); (L.D.); (G.V.)
- Medical Area Department (DAME), University of Udine, 33100 Udine, Italy
| | - Claudia Andreetta
- Medical Oncology Unit, Department of Oncology, “Santa Maria della Misericordia” University Hospital, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), 33100 Udine, Italy;
| | - Lorenza Driul
- Department of Maternal and Child Health, “Santa Maria della Misericordia” University Hospital, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), 33100 Udine, Italy; (S.R.); (M.A.); (G.P.); (L.D.); (G.V.)
- Medical Area Department (DAME), University of Udine, 33100 Udine, Italy
| | - Giuseppe Vizzielli
- Department of Maternal and Child Health, “Santa Maria della Misericordia” University Hospital, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), 33100 Udine, Italy; (S.R.); (M.A.); (G.P.); (L.D.); (G.V.)
- Medical Area Department (DAME), University of Udine, 33100 Udine, Italy
| | - Donato Pezzulla
- Radiation Oncology Unit, Responsible Research Hospital, 86100 Campobasso, Italy; (G.M.); (D.P.)
| |
Collapse
|
7
|
Liu Z, Kruhlak MJ, Thiele CJ. Zinc finger transcription factor CASZ1b is involved in the DNA damage response in live cells. Biochem Biophys Res Commun 2023; 663:171-178. [PMID: 37121127 PMCID: PMC10880029 DOI: 10.1016/j.bbrc.2023.04.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/24/2023] [Indexed: 05/02/2023]
Abstract
Zinc finger transcription factor CASZ1b is essential for nervous system development and suppresses neuroblastoma growth. Our previous study showed that CASZ1b interacts with DNA repair proteins, however, whether CASZ1b is involved in the DNA damage response remains unclear. In this study, we investigated the kinetic recruitment of CASZ1b to sites of DNA damage upon induction by laser microirradiation. We find that CASZ1b is transiently recruited to sites of DNA damage in multiple cell lines. Mutagenesis of either the poly-(ADP-ribose) (PAR) binding motif or NuRD complex binding region in CASZ1b significantly reduces the recruitment of CASZ1b to these sites of DNA damage (∼65% and ∼30%, respectively). In addition, treatment of cells with a poly-(ADP-ribose) polymerase (PARP) inhibitor significantly attenuates the recruitment of CASZ1b to these DNA damaged sites. Loss of CASZ1 increases cell sensitivity to DNA damage induced by gamma irradiation as shown by decreased colony formation. Our studies reveal that CASZ1b is transiently recruited to DNA damage sites mainly in a PARP-dependent way and regulates cell sensitivity to DNA damage. Our results suggest that CASZ1b has a role, although perhaps a minor one, in the DNA damage response and ultimately regulating the efficiency of DNA repair during normal development and tumorigenesis.
Collapse
Affiliation(s)
- Zhihui Liu
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, 20892, USA.
| | - Michael J Kruhlak
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Carol J Thiele
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, 20892, USA.
| |
Collapse
|
8
|
Duma L, Ahel I. The function and regulation of ADP-ribosylation in the DNA damage response. Biochem Soc Trans 2023; 51:995-1008. [PMID: 37171085 PMCID: PMC10317172 DOI: 10.1042/bst20220749] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/13/2023]
Abstract
ADP-ribosylation is a post-translational modification involved in DNA damage response (DDR). In higher organisms it is synthesised by PARP 1-3, DNA strand break sensors. Recent advances have identified serine residues as the most common targets for ADP-ribosylation during DDR. To ADP-ribosylate serine, PARPs require an accessory factor, HPF1 which completes the catalytic domain. Through ADP-ribosylation, PARPs recruit a variety of factors to the break site and control their activities. However, the timely removal of ADP-ribosylation is also key for genome stability and is mostly performed by two hydrolases: PARG and ARH3. Here, we describe the key writers, readers and erasers of ADP-ribosylation and their contribution to the mounting of the DDR. We also discuss the use of PARP inhibitors in cancer therapy and the ways to tackle PARPi treatment resistance.
Collapse
Affiliation(s)
- Lena Duma
- Sir William Dunn School of Pathology, University of Oxford, Oxford, U.K
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, U.K
| |
Collapse
|
9
|
Bianchi AR, La Pietra A, Guerretti V, De Maio A, Capriello T, Ferrandino I. Synthesis and Degradation of Poly(ADP-ribose) in Zebrafish Brain Exposed to Aluminum. Int J Mol Sci 2023; 24:ijms24108766. [PMID: 37240112 DOI: 10.3390/ijms24108766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/02/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Poly(ADPribosyl)ation is a post-translational protein modification, catalyzed by poly(ADP-ribose) polymerase (PARPs) enzymes, responsible for ADP-ribose polymer synthesis (PAR) from NAD+. PAR turnover is assured by poly(ADPR) glycohydrolase (PARGs) enzymes. In our previous study, the altered histology of zebrafish brain tissue, resulting in demyelination and neurodegeneration also with poly(ADPribosyl)ation hyperactivation, was demonstrated after aluminum (Al) exposure for 10 and 15 days. On the basis of this evidence, the aim of the present research was to study the synthesis and degradation of poly(ADP-ribose) in the brain of adult zebrafish exposed to 11 mg/L of Al for 10, 15, and 20 days. For this reason, PARP and PARG expression analyses were carried out, and ADPR polymers were synthesized and digested. The data showed the presence of different PARP isoforms, among which a human PARP1 counterpart was also expressed. Moreover, the highest PARP and PARG activity levels, responsible for the PAR production and its degradation, respectively, were measured after 10 and 15 days of exposure. We suppose that PARP activation is related to DNA damage induced by Al, while PARG activation is needed to avoid PAR accumulation, which is known to inhibit PARP and promote parthanatos. On the contrary, PARP activity decrease at longer exposure times suggests that neuronal cells could adopt the stratagem of reducing polymer synthesis to avoid energy expenditure and allow cell survival.
Collapse
Affiliation(s)
- Anna Rita Bianchi
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126 Naples, Italy
| | - Alessandra La Pietra
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126 Naples, Italy
| | - Valeria Guerretti
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126 Naples, Italy
| | - Anna De Maio
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126 Naples, Italy
| | - Teresa Capriello
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126 Naples, Italy
| | - Ida Ferrandino
- Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126 Naples, Italy
| |
Collapse
|
10
|
Koczor CA, Saville KM, Al-Rahahleh RQ, Andrews JF, Li J, Sobol RW. Quantitative Analysis of Nuclear Poly(ADP-Ribose) Dynamics in Response to Laser-Induced DNA Damage. Methods Mol Biol 2023; 2609:43-59. [PMID: 36515828 PMCID: PMC9920208 DOI: 10.1007/978-1-0716-2891-1_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Poly(ADP-ribose) (PAR), catalyzed by members of the poly(ADP-ribose) polymerase family of enzymes, is a posttranslational modification with a critical role in most mechanisms of DNA repair. Upon activation of poly(ADP-ribose) polymerase isoforms 1 and 2 (PARP-1 and PARP-2), the proteins of the base excision repair (BER) and single-strand break repair (SSBR) pathways form DNA lesion-dependent, transient complexes to facilitate repair. PAR is central to the temporal dynamics of BER/SSBR complex assembly and disassembly. To enhance cellular PAR analysis, we developed LivePAR, a fluorescently tagged PAR-binding fusion protein and genetically encoded imaging probe for live cell, quantitative analysis of PAR in mammalian cells. LivePAR has the advantage that it enables real-time imaging of PAR formation in cells and significantly overcomes limitations of immunocytochemistry for PAR analysis. This chapter describes the protocols needed to develop cells expressing LivePAR or EGFP-tagged BER proteins and to evaluate laser-induced formation of PAR and comparison to the assembly of the BER proteins XRCC1 and DNA polymerase-β.
Collapse
Affiliation(s)
- Christopher A Koczor
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Kate M Saville
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Rasha Q Al-Rahahleh
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, USA
- Department of Pathology and Laboratory Medicine & Legorreta Cancer Center, Brown University, Providence, RI, USA
| | - Joel F Andrews
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Jianfeng Li
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Robert W Sobol
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA.
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, USA.
- Department of Pathology and Laboratory Medicine & Legorreta Cancer Center, Brown University, Providence, RI, USA.
| |
Collapse
|
11
|
Zhang J, Gao Y, Zhang Z, Zhao J, Jia W, Xia C, Wang F, Liu T. Multi-therapies Based on PARP Inhibition: Potential Therapeutic Approaches for Cancer Treatment. J Med Chem 2022; 65:16099-16127. [PMID: 36512711 DOI: 10.1021/acs.jmedchem.2c01352] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The nuclear enzymes called poly(ADP-ribose)polymerases (PARPs) are known to catalyze the process of PARylation, which plays a vital role in various cellular functions. They have become important targets for the discovery of novel antitumor drugs since their inhibition can induce significant lethality in tumor cells. Therefore, researchers all over the world have been focusing on developing novel and potent PARP inhibitors for cancer therapy. Studies have shown that PARP inhibitors and other antitumor agents, such as EZH2 and EGFR inhibitors, play a synergistic role in cancer cells. The combined inhibition of PARP and the targets with synergistic effects may provide a rational strategy to improve the effectiveness of current anticancer regimens. In this Perspective, we sum up the recent advance of PARP-targeted agents, including single-target inhibitors/degraders and dual-target inhibitors/degraders, discuss the fundamental theory of developing these dual-target agents, and give insight into the corresponding structure-activity relationships of these agents.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271016, China
| | - Yuqi Gao
- College of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271016, China.,Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, Shandong 250117, China
| | - Zipeng Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, Shandong 250117, China
| | - Jinbo Zhao
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271016, China.,Department of Chemistry and Biology, Jilin Provincial Key Laboratory of Carbon Fiber Development and Application, Changchun University of Technology, Changchun, Jilin 130012, China
| | - Wenshuang Jia
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, Shandong 250117, China
| | - Chengcai Xia
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271016, China
| | - Fugang Wang
- Department of Pharmacology, School of Pharmacy, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271016, China
| | - Tingting Liu
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271016, China
| |
Collapse
|
12
|
Hunia J, Gawalski K, Szredzka A, Suskiewicz MJ, Nowis D. The potential of PARP inhibitors in targeted cancer therapy and immunotherapy. Front Mol Biosci 2022; 9:1073797. [PMID: 36533080 PMCID: PMC9751342 DOI: 10.3389/fmolb.2022.1073797] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/15/2022] [Indexed: 07/29/2023] Open
Abstract
DNA damage response (DDR) deficiencies result in genome instability, which is one of the hallmarks of cancer. Poly (ADP-ribose) polymerase (PARP) enzymes take part in various DDR pathways, determining cell fate in the wake of DNA damage. PARPs are readily druggable and PARP inhibitors (PARPi) against the main DDR-associated PARPs, PARP1 and PARP2, are currently approved for the treatment of a range of tumor types. Inhibition of efficient PARP1/2-dependent DDR is fatal for tumor cells with homologous recombination deficiencies (HRD), especially defects in breast cancer type 1 susceptibility protein 1 or 2 (BRCA1/2)-dependent pathway, while allowing healthy cells to survive. Moreover, PARPi indirectly influence the tumor microenvironment by increasing genomic instability, immune pathway activation and PD-L1 expression on cancer cells. For this reason, PARPi might enhance sensitivity to immune checkpoint inhibitors (ICIs), such as anti-PD-(L)1 or anti-CTLA4, providing a rationale for PARPi-ICI combination therapies. In this review, we discuss the complex background of the different roles of PARP1/2 in the cell and summarize the basics of how PARPi work from bench to bedside. Furthermore, we detail the early data of ongoing clinical trials indicating the synergistic effect of PARPi and ICIs. We also introduce the diagnostic tools for therapy development and discuss the future perspectives and limitations of this approach.
Collapse
Affiliation(s)
- Jaromir Hunia
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Karol Gawalski
- Doctoral School, Medical University of Warsaw, Warsaw, Poland
- Laboratory of Experimental Medicine, Medical University of Warsaw, Warsaw, Poland
| | | | | | - Dominika Nowis
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- Laboratory of Experimental Medicine, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
13
|
Ukraintsev AA, Belousova EA, Kutuzov MM, Lavrik OI. Study of Interaction of the PARP Family DNA-Dependent Proteins with Nucleosomes Containing DNA Intermediates of the Initial Stages of BER Process. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:331-345. [PMID: 35527371 DOI: 10.1134/s0006297922040034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Reaction of (ADP-ribosyl)ation catalyzed by DNA-dependent proteins of the poly(ADP-ribose)polymerase (PARP) family, PARP1, PARP2, and PARP3, comprises the cellular response to DNA damage. These proteins are involved in the base excision repair (BER) process. Despite the extensive research, it remains unknown how PARPs are involved in the regulation of the BER process and how the roles are distributed between the DNA-dependent members of the PARP family. Here, we investigated the interaction of the PARP's family DNA-dependent proteins with nucleosome core particles containing DNA intermediates of the initial stages of BER. To do that, the nucleosomes containing damage in the vicinity of one of the DNA duplex blunt ends were reconstituted based on the Widom's Clone 603 DNA sequence. Dissociation constants of the PARP complexes with nucleosomes bearing DNA contained uracil (Native), apurine/apyrimidine site (AP site), or a single-nucleotide gap with 5'-dRp fragment (Gap) were determined. It was shown that the affinity of the proteins for the nucleosomes increased in the row: PARP3<<PARP2<PARP1; whereas the affinity of each protein for the certain damage type increased in the row: Native = AP site < Gap for PARP1 and PARP2, Gap<<<Native = AP site for PARP3. The interaction regions of each PARP protein with nucleosome were also determined by sodium borohydride cross-linking and footprinting assay. Based on the obtained and published data, the involvement pattern of the PARP1, PARP2, and PARP3 into the interaction with nucleosome particles containing DNA intermediates of the BER process was discussed.
Collapse
Affiliation(s)
- Alexander A Ukraintsev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Ekaterina A Belousova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Mikhail M Kutuzov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Olga I Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia. .,Novosibirsk State University, Novosibirsk, 630090, Russia
| |
Collapse
|
14
|
Kumar V, Kumar A, Mir KUI, Yadav V, Chauhan SS. Pleiotropic role of PARP1: an overview. 3 Biotech 2022; 12:3. [PMID: 34926116 PMCID: PMC8643375 DOI: 10.1007/s13205-021-03038-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/20/2021] [Indexed: 01/03/2023] Open
Abstract
Poly (ADP-ribose) polymerase 1 (PARP1) protein is encoded by the PARP1 gene located on chromosome 1 (1q42.12) in human cells. It plays a crucial role in post-translational modification by adding poly (ADP-ribose) (PAR) groups to various proteins and PARP1 itself by utilizing nicotinamide adenine dinucleotide (NAD +) as a substrate. Since the discovery of PARP1, its role in DNA repair and cell death has been its identity. This is evident from an overwhelmingly high number of scientific reports in this regard. However, PARP1 also plays critical roles in inflammation, metabolism, tumor development and progression, chromatin modification and transcription, mRNA stability, and alternative splicing. In the present study, we attempted to compile all the scattered scientific information about this molecule, including the structure and multifunctional role of PARP1 in cancer and non-cancer diseases, along with PARP1 inhibitors (PARPis). Furthermore, for the first time, we have classified PARP1-mediated cell death for ease of understanding its role in cell death pathways.
Collapse
Affiliation(s)
- Vikas Kumar
- grid.413618.90000 0004 1767 6103Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Anurag Kumar
- grid.413618.90000 0004 1767 6103Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Khursheed Ul Islam Mir
- grid.413618.90000 0004 1767 6103Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Vandana Yadav
- grid.413618.90000 0004 1767 6103Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Shyam Singh Chauhan
- grid.413618.90000 0004 1767 6103Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
15
|
Sheoran S, Kaur Y, Kumar S, Shukla S, Rakshit S, Kumar R. Recent Advances for Drought Stress Tolerance in Maize ( Zea mays L.): Present Status and Future Prospects. FRONTIERS IN PLANT SCIENCE 2022; 13:872566. [PMID: 35707615 PMCID: PMC9189405 DOI: 10.3389/fpls.2022.872566] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/26/2022] [Indexed: 05/04/2023]
Abstract
Drought stress has severely hampered maize production, affecting the livelihood and economics of millions of people worldwide. In the future, as a result of climate change, unpredictable weather events will become more frequent hence the implementation of adaptive strategies will be inevitable. Through utilizing different genetic and breeding approaches, efforts are in progress to develop the drought tolerance in maize. The recent approaches of genomics-assisted breeding, transcriptomics, proteomics, transgenics, and genome editing have fast-tracked enhancement for drought stress tolerance under laboratory and field conditions. Drought stress tolerance in maize could be considerably improved by combining omics technologies with novel breeding methods and high-throughput phenotyping (HTP). This review focuses on maize responses against drought, as well as novel breeding and system biology approaches applied to better understand drought tolerance mechanisms and the development of drought-tolerant maize cultivars. Researchers must disentangle the molecular and physiological bases of drought tolerance features in order to increase maize yield. Therefore, the integrated investments in field-based HTP, system biology, and sophisticated breeding methodologies are expected to help increase and stabilize maize production in the face of climate change.
Collapse
|
16
|
Dash S, Dash C, Pandhare J. Therapeutic Significance of microRNA-Mediated Regulation of PARP-1 in SARS-CoV-2 Infection. Noncoding RNA 2021; 7:60. [PMID: 34698261 PMCID: PMC8544662 DOI: 10.3390/ncrna7040060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/18/2021] [Accepted: 09/18/2021] [Indexed: 02/07/2023] Open
Abstract
The COVID-19 pandemic caused by the novel coronavirus SARS-CoV-2 (2019-nCoV) has devastated global healthcare and economies. Despite the stabilization of infectivity rates in some developed nations, several countries are still under the grip of the pathogenic viral mutants that are causing a significant increase in infections and hospitalization. Given this urgency, targeting of key host factors regulating SARS-CoV-2 life cycle is postulated as a novel strategy to counter the virus and its associated pathological outcomes. In this regard, Poly (ADP)-ribose polymerase-1 (PARP-1) is being increasingly recognized as a possible target. PARP-1 is well studied in human diseases such as cancer, central nervous system (CNS) disorders and pathology of RNA viruses. Emerging evidence indicates that regulation of PARP-1 by non-coding RNAs such as microRNAs is integral to cell survival, redox balance, DNA damage response, energy homeostasis, and several other cellular processes. In this short perspective, we summarize the recent findings on the microRNA/PARP-1 axis and its therapeutic potential for COVID-19 pathologies.
Collapse
Affiliation(s)
- Sabyasachi Dash
- Weill Cornell Medicine, Department of Pathology and Laboratory Medicine, Cornell University, New York, NY 10065, USA
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN 37208, USA; (C.D.); (J.P.)
- School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA
| | - Chandravanu Dash
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN 37208, USA; (C.D.); (J.P.)
- School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA
- Department of Biochemistry, Cancer Biology, Pharmacology and Neuroscience, Meharry Medical College, Nashville, TN 37208, USA
| | - Jui Pandhare
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN 37208, USA; (C.D.); (J.P.)
- School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN 37208, USA
| |
Collapse
|
17
|
van Beek L, McClay É, Patel S, Schimpl M, Spagnolo L, Maia de Oliveira T. PARP Power: A Structural Perspective on PARP1, PARP2, and PARP3 in DNA Damage Repair and Nucleosome Remodelling. Int J Mol Sci 2021; 22:ijms22105112. [PMID: 34066057 PMCID: PMC8150716 DOI: 10.3390/ijms22105112] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 12/30/2022] Open
Abstract
Poly (ADP-ribose) polymerases (PARP) 1-3 are well-known multi-domain enzymes, catalysing the covalent modification of proteins, DNA, and themselves. They attach mono- or poly-ADP-ribose to targets using NAD+ as a substrate. Poly-ADP-ribosylation (PARylation) is central to the important functions of PARP enzymes in the DNA damage response and nucleosome remodelling. Activation of PARP happens through DNA binding via zinc fingers and/or the WGR domain. Modulation of their activity using PARP inhibitors occupying the NAD+ binding site has proven successful in cancer therapies. For decades, studies set out to elucidate their full-length molecular structure and activation mechanism. In the last five years, significant advances have progressed the structural and functional understanding of PARP1-3, such as understanding allosteric activation via inter-domain contacts, how PARP senses damaged DNA in the crowded nucleus, and the complementary role of histone PARylation factor 1 in modulating the active site of PARP. Here, we review these advances together with the versatility of PARP domains involved in DNA binding, the targets and shape of PARylation and the role of PARPs in nucleosome remodelling.
Collapse
Affiliation(s)
- Lotte van Beek
- Structure and Biophysics, Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, UK; (L.v.B.); (M.S.)
| | - Éilís McClay
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Garscube Campus, University of Glasgow, Glasgow G61 1QQ, UK;
| | - Saleha Patel
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, UK;
| | - Marianne Schimpl
- Structure and Biophysics, Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, UK; (L.v.B.); (M.S.)
| | - Laura Spagnolo
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Garscube Campus, University of Glasgow, Glasgow G61 1QQ, UK;
- Correspondence: (L.S.); (T.M.d.O.)
| | - Taiana Maia de Oliveira
- Structure and Biophysics, Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, UK; (L.v.B.); (M.S.)
- Correspondence: (L.S.); (T.M.d.O.)
| |
Collapse
|
18
|
Mao K, Zhang G. The role of PARP1 in neurodegenerative diseases and aging. FEBS J 2021; 289:2013-2024. [PMID: 33460497 DOI: 10.1111/febs.15716] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/09/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022]
Affiliation(s)
- Kanmin Mao
- Key Laboratory of Environmental Health Ministry of Education Department of Toxicology School of Public Health Tongji Medical College Wuhan China
- Institute for Brain Research Collaborative Innovation Center for Brain Science Huazhong University of Science and Technology Wuhan China
| | - Guo Zhang
- Key Laboratory of Environmental Health Ministry of Education Department of Toxicology School of Public Health Tongji Medical College Wuhan China
- Institute for Brain Research Collaborative Innovation Center for Brain Science Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
19
|
Verma P, Zhou Y, Cao Z, Deraska PV, Deb M, Arai E, Li W, Shao Y, Puentes L, Li Y, Patankar S, Mach RH, Faryabi RB, Shi J, Greenberg RA. ALC1 links chromatin accessibility to PARP inhibitor response in homologous recombination-deficient cells. Nat Cell Biol 2021; 23:160-171. [PMID: 33462394 PMCID: PMC7880902 DOI: 10.1038/s41556-020-00624-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 12/08/2020] [Indexed: 01/29/2023]
Abstract
The response to poly(ADP-ribose) polymerase inhibitors (PARPi) is dictated by homologous recombination (HR) DNA repair and the abundance of lesions that trap PARP enzymes. It remains unclear, however, if the established role of PARP in promoting chromatin accessibility impacts viability in these settings. Using a CRISPR-based screen, we identified the PAR-binding chromatin remodeller ALC1/CHD1L as a key determinant of PARPi toxicity in HR-deficient cells. ALC1 loss reduced viability of breast cancer gene (BRCA)-mutant cells and enhanced sensitivity to PARPi by up to 250-fold, while overcoming several resistance mechanisms. ALC1 deficiency reduced chromatin accessibility concomitant with a decrease in the association of base damage repair factors. This resulted in an accumulation of replication-associated DNA damage, increased PARP trapping and a reliance on HR. These findings establish PAR-dependent chromatin remodelling as a mechanistically distinct aspect of PARPi responses and therapeutic target in HR-deficient cancers.
Collapse
Affiliation(s)
- Priyanka Verma
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Yeqiao Zhou
- Departments of Pathology and Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Zhendong Cao
- Department of Cancer Biology, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Peter V. Deraska
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Moniher Deb
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Eri Arai
- Department of Cancer Biology, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Weihua Li
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Yue Shao
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Laura Puentes
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Yiwen Li
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Sonali Patankar
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Robert H. Mach
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Robert B. Faryabi
- Departments of Pathology and Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Junwei Shi
- Department of Cancer Biology, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA,Address correspondence to: ;
| | - Roger A. Greenberg
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA,Address correspondence to: ;
| |
Collapse
|
20
|
Kadam A, Jubin T, Roychowdhury R, Begum R. Role of PARP-1 in mitochondrial homeostasis. Biochim Biophys Acta Gen Subj 2020; 1864:129669. [PMID: 32553688 DOI: 10.1016/j.bbagen.2020.129669] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Nuclear poly(ADP-ribose) polymerase-1 (PARP-1) is a well characterised protein that accounts for the majority of PARylation reactions using NAD+ as a substrate, regulating diverse cellular functions. In addition to its nuclear functions, several recent studies have identified localization of PARP-1 in mitochondria and emphasized its possible role in maintaining mitochondrial homeostasis. Various reports suggest that nuclear PARP-1 has been implicated in diverse mitochondria-specific communication processes. SCOPE OF REVIEW The present review emphasizes on the potential role of PARP-1 in mitochondrial processes such as bioenergetics, mtDNA maintenance, cell death and mitophagy. MAJOR CONCLUSIONS The origin of mitochondrial PARP-1 is still an enigma; however researchers are trying to establish the cross-talk between nuclear and mitochondrial PARP-1 and how these PARP-1 pools modulate mitochondrial activity. GENERAL SIGNIFICANCE A better understanding of the possible role of PARP-1 in mitochondrial homeostasis helps us to explore the potential therapeutic targets to protect mitochondrial dysfunctions.
Collapse
Affiliation(s)
- Ashlesha Kadam
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India
| | - Tina Jubin
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India
| | - Rittwika Roychowdhury
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India
| | - Rasheedunnisa Begum
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India.
| |
Collapse
|
21
|
Habieb MSED, Younis FE, Safan M, Allam HK. PARP1-DNMT1-CTCF complex and the apoptotic-induced factor mRNA expressions in workers occupationally exposed to benzene. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:22648-22657. [PMID: 32319058 DOI: 10.1007/s11356-020-08614-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
Exposure to benzene is a common occupational hazard as well as a hematopoietic system intoxicant, but the entire picture of its molecular pathogenesis is still hazy. Its leukemogenic effect could be attributed to DNA damage, decreased repair capacity, altered methylation patterns, and defective apoptosis. Poly ADP-ribose polymerase1, DNA methyltransferase1, and CCCTC-binding factor (PARP1-DNMT1-CTCF) complex play an essential role in methylation maintenance and DNA damage repair response. This study aimed to assess the expression of PARP1, PAR glycohydrolases (PARG), DNMT1, CTCF, and apoptosis-inducing factor (AIF) in subjects occupationally exposed to benzene. A total of 200 subjects were enrolled in this study: 100 workers occupationally exposed to benzene (painters and decorators) and 100 unexposed office workers. Occupational exposure data were obtained. The biochemical and hematological evaluations were done. Quantitative reverse transcription polymerase chain reaction (RT-PCR) was used to assess mRNA expression of PARP1, PARG, DNMT1, CTCF, and AIF. Both biochemical and hematological parameters were within normal limits; workplace benzene air concentration was significantly higher in exposed workers than the levels among controls (P < 0.001). Significant decrease in mRNA levels of PARP1, DNMT1, CTCF, and AIF was noticed among the exposed group (P = 0.01, P < 0.001, P = 0.004, P < 0.001, respectively) in comparison with the control group, while PARG showed non-significant difference (P = 0.16). There was a significant negative correlation between workplace benzene air concentration and expression levels of PARP1, DNMT1, and AIF. The reduced expression of PARP1, DNMT1, CTCF, and AIF observed in exposed workers may represent one of the first benzene-induced changes that might threaten erythropoiesis.
Collapse
Affiliation(s)
- Mona Salah El-Din Habieb
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Menoufia University, Shebin Al-Kom, Menoufia, Egypt
| | - Faten Ezzelarab Younis
- Department of Public Health and Community Medicine, Faculty of Medicine, Menoufia University, Shebin Al-Kom, Menoufia, Egypt
| | - Manal Safan
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Menoufia University, Shebin Al-Kom, Menoufia, Egypt
| | - Heba Khodary Allam
- Department of Public Health and Community Medicine, Faculty of Medicine, Menoufia University, Shebin Al-Kom, Menoufia, Egypt.
| |
Collapse
|
22
|
Pourfarjam Y, Kasson S, Tran L, Ho C, Lim S, Kim IK. PARG has a robust endo-glycohydrolase activity that releases protein-free poly(ADP-ribose) chains. Biochem Biophys Res Commun 2020; 527:818-823. [PMID: 32439163 DOI: 10.1016/j.bbrc.2020.04.120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 04/22/2020] [Indexed: 12/21/2022]
Abstract
Poly(ADP-ribosyl)ation (PARylation) regulates DNA damage response, chromatin structure, and cell-fate. Dynamic regulation of cellular PAR levels is crucial for the maintenance of genomic integrity and excessive cellular PAR activates a PAR-dependent cell death pathway. Thus, PAR serves as a cell-death signal; however, it has been debated how the protein-free PAR is generated. Here, we demonstrate that PAR glycohydrolases (PARGs) from mammals to bacteria have a robust endo-glycohydrolase activity, releasing protein-free PAR chains longer than three ADP-ribose units as early reaction products. Released PAR chains are transient and rapidly degraded to monomeric ADP-ribose, which is consistent with a short half-life of PAR during DNA damage responses. Computational simulations using a tri-ADP-ribose further support that PARG can efficiently bind to internal sites of PAR for the endo-glycosidic cleavage. Our collective results suggest PARG as a key player in producing protein-free PAR during DNA damage signaling and establish bacterial PARG as a useful tool to enrich short PAR chains that emerge as important reagents for biomedical research.
Collapse
Affiliation(s)
- Yasin Pourfarjam
- Department of Chemistry, University of Cincinnati, 301 Clifton Ct, Cincinnati, OH, 45221, USA
| | - Samuel Kasson
- Department of Chemistry, University of Cincinnati, 301 Clifton Ct, Cincinnati, OH, 45221, USA
| | - Linh Tran
- Department of Chemistry, University of Cincinnati, 301 Clifton Ct, Cincinnati, OH, 45221, USA
| | - Chris Ho
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Sookkyung Lim
- Department of Mathematical Sciences, University of Cincinnati, 4199 French Hall West, Cincinnati, OH, 45221, USA
| | - In-Kwon Kim
- Department of Chemistry, University of Cincinnati, 301 Clifton Ct, Cincinnati, OH, 45221, USA.
| |
Collapse
|
23
|
Wang R, Cong Y, Li M, Bao J, Qi Y, Zhang JZH. Molecular Mechanism of Selective Binding of NMS-P118 to PARP-1 and PARP-2: A Computational Perspective. Front Mol Biosci 2020; 7:50. [PMID: 32373627 PMCID: PMC7179655 DOI: 10.3389/fmolb.2020.00050] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 03/13/2020] [Indexed: 12/11/2022] Open
Abstract
The nuclear protein poly (ADP-ribose) polymerase-1 (PARP-1) inhibitors have been proven effective to potentiate both chemotherapeutic agents and radiotherapy. However, a major problem of most current PARP inhibitors is their lack of selectivity for PARP-1 and its closest isoform PARP-2. NMS-P118 is a highly selective PARP inhibitor that binds PARP-1 stronger than PARP-2 and has many advantages such as excellent pharmacokinetic profiles. In this study, molecular dynamics (MD) simulations of NMS-P118 in complex with PARP-1 and PARP-2 were performed to understand the molecular mechanism of its selectivity. Alanine scanning together with free energy calculation using MM/GBSA and interaction entropy reveal key residues that are responsible for the selectivity. Although the conformation of the binding pockets and NMS-P118 are very similar in PARP-1 and PARP-2, most of the hot-spot residues in PARP-1 have stronger binding free energy than the corresponding residues in PARP-2. Detailed analysis of the binding energy shows that the 4′4-difluorocyclohexyl ring on NMS-P118 form favorable hydrophobic interaction with Y889 in PARP-1. In addition, the H862 residue in PARP-1 has stronger binding free energy than H428 in PARP-2, which is due to shorter distance and stronger hydrogen bonds. Moreover, the negatively charged E763 residue in PARP-1 forms stronger electrostatic interaction energy with the positively charged NMS-P118 than the Q332 residue in PARP-2. These results rationalize the selectivity of NMS-P118 and may be useful for designing novel selective PARP inhibitors.
Collapse
Affiliation(s)
- Ran Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University at Shanghai, Shanghai, China
| | - Yalong Cong
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University at Shanghai, Shanghai, China
| | - Mengxin Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University at Shanghai, Shanghai, China
| | - Jinxiao Bao
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University at Shanghai, Shanghai, China
| | - Yifei Qi
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University at Shanghai, Shanghai, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, China
| | - John Z H Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University at Shanghai, Shanghai, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, China.,Department of Chemistry, New York University, New York, NY, United States.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, China
| |
Collapse
|
24
|
Jannetti SA, Zeglis BM, Zalutsky MR, Reiner T. Poly(ADP-Ribose)Polymerase (PARP) Inhibitors and Radiation Therapy. Front Pharmacol 2020; 11:170. [PMID: 32194409 PMCID: PMC7062869 DOI: 10.3389/fphar.2020.00170] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/07/2020] [Indexed: 12/15/2022] Open
Abstract
Poly(ADP-ribose)polymerase-1 (PARP1) is a DNA repair enzyme highly expressed in the nuclei of mammalian cells, with a structure and function that have attracted interest since its discovery. PARP inhibitors, moreover, can be used to induce synthetic lethality in cells where the homologous recombination (HR) pathway is deficient. Several small molecule PARP inhibitors have been approved by the FDA for multiple cancers bearing this deficiency These PARP inhibitors also act as radiosensitizing agents by delaying single strand break (SSB) repair and causing subsequent double strand break (DSB) generation, a concept that has been leveraged in various preclinical models of combination therapy with PARP inhibitors and ionizing radiation. Researchers have determined the efficacy of various PARP inhibitors at sub-cytotoxic concentrations in radiosensitizing multiple human cancer cell lines to ionizing radiation. Furthermore, several groups have begun evaluating combination therapy strategies in mouse models of cancer, and a fluorescent imaging agent that allows for subcellular imaging in real time has been developed from a PARP inhibitor scaffold. Other PARP inhibitor scaffolds have been radiolabeled to create PET imaging agents, some of which have also entered clinical trials. Most recently, these highly targeted small molecules have been radiolabeled with therapeutic isotopes to create radiotherapeutics and radiotheranostics in cancers whose primary interventions are surgical resection and whole-body radiotherapy. In this review we discuss the utilization of these small molecules in combination therapies and in scaffolds for imaging agents, radiotherapeutics, and radiotheranostics. Development of these radiolabeled PARP inhibitors has presented promising results for new interventions in the fight against some of the most intractable cancers.
Collapse
Affiliation(s)
- Stephen A. Jannetti
- Department of Biochemistry, Hunter College, New York, NY, United States
- Ph.D. Program in Biochemistry, CUNY Graduate Center, New York, NY, United States
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Brian M. Zeglis
- Department of Biochemistry, Hunter College, New York, NY, United States
- Ph.D. Program in Biochemistry, CUNY Graduate Center, New York, NY, United States
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Ph.D. Program in Chemistry, CUNY Graduate Center, New York, NY, United States
| | - Michael R. Zalutsky
- Department of Radiology, Duke University Medical Center, Durham, NC, United States
| | - Thomas Reiner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
25
|
Peters XQ, Malinga TH, Agoni C, Olotu FA, Soliman MES. Zoning in on Tankyrases: A Brief Review on the Past, Present and Prospective Studies. Anticancer Agents Med Chem 2019; 19:1920-1934. [PMID: 31648650 DOI: 10.2174/1871520619666191019114321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/29/2019] [Accepted: 07/17/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Tankyrases are known for their multifunctionalities within the poly(ADPribose) polymerases family and playing vital roles in various cellular processes which include the regulation of tumour suppressors. Tankyrases, which exist in two isoforms; Tankyrase 1 and 2, are highly homologous and an integral part of the Wnt β -catenin pathway that becomes overly dysregulated when hijacked by pro-carcinogenic machineries. METHODS In this review, we cover the distinct roles of the Tankyrase isoforms and their involvement in the disease pathogenesis. Also, we provide updates on experimentally and computationally derived antagonists of Tankyrase whilst highlighting the precedence of integrative computer-aided drug design methods towards the discovery of selective inhibitors. RESULTS Despite the high prospects embedded in the therapeutic targeting and blockade of Tankyrase isoforms, the inability of small molecule inhibitors to achieve selective targeting has remained a major setback, even until date. This explains numerous incessant drug design efforts geared towards the development of highly selective inhibitors of the respective Tankyrase isoforms since they mediate distinct aberrancies in disease progression. Therefore, considering the setbacks of conventional drug design methods, can computer-aided approaches actually save the day? CONCLUSION The implementation of computer-aided drug design techniques in Tankyrase research could help complement experimental methods and facilitate ligand/structure-based design and discovery of small molecule inhibitors with enhanced selectivity.
Collapse
Affiliation(s)
- Xylia Q Peters
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Thembeka H Malinga
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Clement Agoni
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Fisayo A Olotu
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| |
Collapse
|
26
|
Song Z, Wang Y, Xiao Q, Yu Z, Zhao L, Wu H, Sun M, Chai Z, Hou P, Geng X, Liu W, Wei M. Poly(ADP-ribose) polymerase-3 overexpression is associated with poor prognosis in patients with breast cancer following chemotherapy. Oncol Lett 2018; 16:5621-5630. [PMID: 30344717 PMCID: PMC6176245 DOI: 10.3892/ol.2018.9398] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 05/18/2017] [Indexed: 12/31/2022] Open
Abstract
Double strand breaks induced by genotoxic agents, if inappropriately repaired, will cause cell death or induce cancer. Poly(ADP-ribose) polymerase-3 (PARP-3) serves a role in double strand break repair, and may be involved in tumorigenesis. To the best of our knowledge, the role of PARP-3 in breast cancer has not yet been examined. In the present study, the expression of PARP-3 was investigated in 493 breast cancer samples and 54 tumor-adjacent control samples using tissue-microarray-based immunohistochemistry. PARP-3 expression was higher in breast cancer samples compared with control samples. PARP-3 overexpression was significantly associated with histological grade II–III (P=0.012). In addition, PARP-3 overexpression was significantly associated with shorter disease-free survival (DFS; P=0.027) time and exhibited a tendency toward shorter overall survival (OS; P=0.183) time in patients with breast cancer compared with patients with lower PARP-3 expression, particularly in BRCA1-positive patients (P=0.004 for disease-free survival and P=0.095 for OS). Multivariate Cox regression analysis indicated that PARP-3 was an independent prognostic factor in patients with breast cancer. Furthermore, it was revealed that PARP-3 overexpression was associated with shorter survival time in patients with cyclophosphamide/doxorubicin or epirubicin/5-fluorouracil (CAF/CEF) chemotherapy compared with low PARP-3 expression, but not in patients with CAF/CEF + docetaxel chemotherapy. The present study suggested that PARP-3 may be used as a biomarker for predicting the clinical outcome of patients receiving chemotherapy, and targeting PARP-3 may be a potential therapeutic strategy for the treatment of breast cancer.
Collapse
Affiliation(s)
- Zhiguo Song
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Yong Wang
- Department of General Practice, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Qinghuan Xiao
- Deparment of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Zhaojin Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Huizhe Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Mingli Sun
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Zhangguo Chai
- Outpatient Department, Shenyang Artillery Academy, Shenyang, Liaoning 110867, P.R. China
| | - Ping Hou
- Liaoning Blood Center, Shenyang, Liaoning 110044, P.R. China
| | - Xiaoqiang Geng
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Wensi Liu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|
27
|
Kamada Y, Yakabu H, Ichiba T, Tamanaha A, Shimoji M, Kato M, Norimoto C, Yamashiro R, Miyagi I, Sakudo A, Tanaka Y. Castalagin and vescalagin purified from leaves of Syzygium samarangense (Blume) Merrill & L.M. Perry: Dual inhibitory activity against PARP1 and DNA topoisomerase II. Fitoterapia 2018; 129:94-101. [DOI: 10.1016/j.fitote.2018.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 06/12/2018] [Accepted: 06/14/2018] [Indexed: 12/13/2022]
|
28
|
Pourfarjam Y, Ventura J, Kurinov I, Cho A, Moss J, Kim IK. Structure of human ADP-ribosyl-acceptor hydrolase 3 bound to ADP-ribose reveals a conformational switch that enables specific substrate recognition. J Biol Chem 2018; 293:12350-12359. [PMID: 29907568 PMCID: PMC6093245 DOI: 10.1074/jbc.ra118.003586] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/30/2018] [Indexed: 01/07/2023] Open
Abstract
ADP-ribosyl-acceptor hydrolase 3 (ARH3) plays important roles in regulation of poly(ADP-ribosyl)ation, a reversible post-translational modification, and in maintenance of genomic integrity. ARH3 degrades poly(ADP-ribose) to protect cells from poly(ADP-ribose)-dependent cell death, reverses serine mono(ADP-ribosyl)ation, and hydrolyzes O-acetyl-ADP-ribose, a product of Sirtuin-catalyzed histone deacetylation. ARH3 preferentially hydrolyzes O-linkages attached to the anomeric C1″ of ADP-ribose; however, how ARH3 specifically recognizes and cleaves structurally diverse substrates remains unknown. Here, structures of full-length human ARH3 bound to ADP-ribose and Mg2+, coupled with computational modeling, reveal a dramatic conformational switch from closed to open states that enables specific substrate recognition. The glutamate flap, which blocks substrate entrance to Mg2+ in the unliganded closed state, is ejected from the active site when substrate is bound. This closed-to-open transition significantly widens the substrate-binding channel and precisely positions the scissile 1″-O-linkage for cleavage while securing tightly 2″- and 3″-hydroxyls of ADP-ribose. Our collective data uncover an unprecedented structural plasticity of ARH3 that supports its specificity for the 1″-O-linkage in substrates and Mg2+-dependent catalysis.
Collapse
Affiliation(s)
- Yasin Pourfarjam
- From the Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221
| | - Jessica Ventura
- From the Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221
| | - Igor Kurinov
- Cornell University, Department of Chemistry and Chemical Biology, Northeastern Collaborative Access Team Advanced Photon Source (NE-CAT APS), Argonne, Illinois 60439, and
| | - Ahra Cho
- From the Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221
| | - Joel Moss
- Pulmonary Branch, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - In-Kwon Kim
- From the Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, , Supported by the University of Cincinnati startup fund. To whom correspondence should be addressed:
Dept. of Chemistry, University of Cincinnati, 301 Clifton Ct., Cincinnati, OH 45221. Tel.:
513-556-1909; Fax:
513-556-9239; E-mail:
| |
Collapse
|
29
|
Bitler BG, Watson ZL, Wheeler LJ, Behbakht K. PARP inhibitors: Clinical utility and possibilities of overcoming resistance. Gynecol Oncol 2017; 147:695-704. [PMID: 29037806 DOI: 10.1016/j.ygyno.2017.10.003] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/01/2017] [Accepted: 10/03/2017] [Indexed: 12/21/2022]
Abstract
PARP inhibitors represent a major breakthrough in ovarian cancer care. Almost half of all ovarian cancers have deficiencies in the homologous recombination (HR) DNA repair pathway, namely BRCA1/2 mutations. Given the limited therapeutic options for recurrent ovarian cancer patients there has been a significant effort to develop novel therapies to exploit DNA repair deficiencies. In 2005 and 2006, inhibiting PARP enzymes was first observed to be highly effective against cancers with HR deficiencies. PARP inhibitors are being utilized in the clinic to manage recurrent ovarian cancers that display defects in the HR repair pathway. However, PARP inhibitors also show significant clinical benefit in patients without HR deficiencies. There are currently three FDA-approved PARP inhibitors for recurrent ovarian cancer and an additional two PARP inhibitors being evaluated in late stage clinical trials. Given the expanding clinical use of PARP inhibitors and the high likelihood of acquired resistance, there is a significant need for clinical strategies to manage PARP inhibitor resistant disease. This review will examine PARP inhibitors in the context of: indications and toxicities, novel biomarkers to predict response, targeted-therapy resistance, and potential approaches to manage resistant disease.
Collapse
Affiliation(s)
- Benjamin G Bitler
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, The University of Colorado, Aurora, CO, United States.
| | - Zachary L Watson
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, The University of Colorado, Aurora, CO, United States
| | - Lindsay J Wheeler
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, The University of Colorado, Aurora, CO, United States; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The University of Colorado, Aurora, CO, United States
| | - Kian Behbakht
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, The University of Colorado, Aurora, CO, United States; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The University of Colorado, Aurora, CO, United States.
| |
Collapse
|
30
|
Fakouri NB, Durhuus JA, Regnell CE, Angleys M, Desler C, Hasan-Olive MM, Martín-Pardillos A, Tsaalbi-Shtylik A, Thomsen K, Lauritzen M, Bohr VA, de Wind N, Bergersen LH, Rasmussen LJ. Rev1 contributes to proper mitochondrial function via the PARP-NAD +-SIRT1-PGC1α axis. Sci Rep 2017; 7:12480. [PMID: 28970491 PMCID: PMC5624938 DOI: 10.1038/s41598-017-12662-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 09/18/2017] [Indexed: 12/25/2022] Open
Abstract
Nucleic acids, which constitute the genetic material of all organisms, are continuously exposed to endogenous and exogenous damaging agents, representing a significant challenge to genome stability and genome integrity over the life of a cell or organism. Unrepaired DNA lesions, such as single- and double-stranded DNA breaks (SSBs and DSBs), and single-stranded gaps can block progression of the DNA replication fork, causing replicative stress and/or cell cycle arrest. However, translesion synthesis (TLS) DNA polymerases, such as Rev1, have the ability to bypass some DNA lesions, which can circumvent the process leading to replication fork arrest and minimize replicative stress. Here, we show that Rev1-deficiency in mouse embryo fibroblasts or mouse liver tissue is associated with replicative stress and mitochondrial dysfunction. In addition, Rev1-deficiency is associated with high poly(ADP) ribose polymerase 1 (PARP1) activity, low endogenous NAD+, low expression of SIRT1 and PGC1α and low adenosine monophosphate (AMP)-activated kinase (AMPK) activity. We conclude that replication stress via Rev1-deficiency contributes to metabolic stress caused by compromized mitochondrial function via the PARP-NAD+-SIRT1-PGC1α axis.
Collapse
Affiliation(s)
- Nima Borhan Fakouri
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jon Ambæk Durhuus
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Christine Elisabeth Regnell
- Department of Oral Biology, University of Oslo, Oslo, Norway
- Center for Healthy Aging, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Maria Angleys
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Claus Desler
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | - Kirsten Thomsen
- Center for Healthy Aging, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Martin Lauritzen
- Center for Healthy Aging, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Neurophysiology, Rigshospitalet, 2600, Glostrup, Denmark
| | - Vilhelm A Bohr
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
- National Institute on Aging, NIH, Baltimore, USA
| | - Niels de Wind
- Leiden University Medical Center, Leiden, Netherlands
| | - Linda Hildegard Bergersen
- Department of Oral Biology, University of Oslo, Oslo, Norway
- Center for Healthy Aging, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Lene Juel Rasmussen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
31
|
Wang Z, Gao Y, Zhang C, Hu H, Guo D, Xu Y, Xu Q, Zhang W, Deng S, Lv P, Yang Y, Ding Y, Li Q, Weng C, Chen X, Gong S, Chen H, Niu J, Tang H. Quinolinate Phosphoribosyltransferase is an Antiviral Host Factor Against Hepatitis C Virus Infection. Sci Rep 2017; 7:5876. [PMID: 28724915 PMCID: PMC5517448 DOI: 10.1038/s41598-017-06254-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 06/09/2017] [Indexed: 01/09/2023] Open
Abstract
HCV infection can decrease NAD+/NADH ratio, which could convert lipid metabolism to favor HCV replication. In hepatocytes, quinolinate phosphoribosyl transferase (QPRT) catabolizes quinolinic acid (QA) to nicotinic acid mononucleotide (NAMN) for de novo NAD synthesis. However, whether and how HCV modulates QPRT hence the lipogenesis is unknown. In this work, we found QPRT was reduced significantly in livers of patients or humanized C/OTg mice with persistent HCV infection. Mechanistic studies indicated that HCV NS3/4A promoted proteasomal degradation of QPRT through Smurf2, an E3 ubiquitin-protein ligase, in Huh7.5.1 cells. Furthermore, QPRT enzymatic activity involved in suppression of HCV replication in cells. Activation of QPRT with clofibrate (CLO) or addition of QPRT catabolite NAD both inhibited HCV replication in cells, probably through NAD+-dependent Sirt1 inhibition of cellular lipogenesis. More importantly, administration of CLO, a hypolipidemic drug used in clinics, could significantly reduce the viral load in HCV infected C/OTg mice. Take together, these results suggested that HCV infection triggered proteasomal degradation of QPRT and consequently reduced de novo NAD synthesis and lipogenesis, in favor of HCV replication. Hepatic QPRT thus likely served as a cellular factor that dampened productive HCV replication.
Collapse
Affiliation(s)
- Zhilong Wang
- The Joint Laboratory for Translational Precision Medicine of Wuhan Institute of Virology, Chinese Academy of Sciences and Guangzhou Women and Children`s Medical Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China.,CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Yanhang Gao
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Chao Zhang
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Haiming Hu
- The Joint Laboratory for Translational Precision Medicine of Wuhan Institute of Virology, Chinese Academy of Sciences and Guangzhou Women and Children`s Medical Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Dongwei Guo
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Heilong Jiang, 150001, China
| | - Yi Xu
- The Joint Laboratory for Translational Precision Medicine of Wuhan Institute of Virology, Chinese Academy of Sciences and Guangzhou Women and Children`s Medical Center, Guangzhou Women and Children's Medical Center, Guangzhou, 510623, China
| | - Qiuping Xu
- The Joint Laboratory for Translational Precision Medicine of Wuhan Institute of Virology, Chinese Academy of Sciences and Guangzhou Women and Children`s Medical Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China.,Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Weihong Zhang
- The Joint Laboratory for Translational Precision Medicine of Wuhan Institute of Virology, Chinese Academy of Sciences and Guangzhou Women and Children`s Medical Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Sisi Deng
- The Joint Laboratory for Translational Precision Medicine of Wuhan Institute of Virology, Chinese Academy of Sciences and Guangzhou Women and Children`s Medical Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Pingyun Lv
- The Joint Laboratory for Translational Precision Medicine of Wuhan Institute of Virology, Chinese Academy of Sciences and Guangzhou Women and Children`s Medical Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Yan Yang
- The Joint Laboratory for Translational Precision Medicine of Wuhan Institute of Virology, Chinese Academy of Sciences and Guangzhou Women and Children`s Medical Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Yanhua Ding
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Qingquan Li
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Changjiang Weng
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Heilong Jiang, 150001, China
| | - Xinwen Chen
- The Joint Laboratory for Translational Precision Medicine of Wuhan Institute of Virology, Chinese Academy of Sciences and Guangzhou Women and Children`s Medical Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Sitang Gong
- The Joint Laboratory for Translational Precision Medicine of Wuhan Institute of Virology, Chinese Academy of Sciences and Guangzhou Women and Children`s Medical Center, Guangzhou Women and Children's Medical Center, Guangzhou, 510623, China
| | - Hairong Chen
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Junqi Niu
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Hong Tang
- The Joint Laboratory for Translational Precision Medicine of Wuhan Institute of Virology, Chinese Academy of Sciences and Guangzhou Women and Children`s Medical Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China. .,CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
32
|
Xu S, Zhao C, Jia Z, Wang X, Han Y, Yang Z. Down-regulation of PARP1 by miR-891b sensitizes human breast cancer cells to alkylating chemotherapeutic drugs. Arch Gynecol Obstet 2017; 296:543-549. [PMID: 28660502 DOI: 10.1007/s00404-017-4444-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 06/22/2017] [Indexed: 11/30/2022]
Abstract
PURPOSE Breast cancer is the most common invasive type of cancer among women. Role of different microRNAs (miRNAs) and poly(ADP-ribose) polymerases (PARPs) in breast cancer has been well established. This study aimed to explore the effects of miR-891b on sensitizing breast cancer cells to alkylating chemotherapeutic drugs through PARPs. METHODS The expression of miR-891b and PARP1 in human breast cancer cells HCC1806 was overexpressed by transfection with their mimics or expressing vector. Then, the transfected cells were exposed to 40 µM N-methyl-N-nitro-N-nitrosoguanidine (MNNG) for 1 h. The correlation between miR-891b and PARP1 was detected by RT-qPCR, western blot, and dual-luciferase reporter assay. Besides, MTT assay and Annexin V assay were done to measure cell proliferation and apoptosis, respectively. RESULTS PARP1 was a target of miR-891b, and it was negatively regulated by miR-891b. MiR-891b increased the sensitivity of the HCC1806 cells to the cytotoxic effects of MNNG through suppressing cell proliferation and increasing the percentage of apoptotic cells. Restoration of PARP1 activity in the HCC1806 cells led to loss of miR-891b mediated sensitivity of the HCC1806 cells to MNNG. CONCLUSION MiR-891b increases the sensitivity of the breast cancer cells (HCC1806) to the cytotoxic effects of the chemotherapeutic agent MNNG by suppressing the expression of PARP1.
Collapse
Affiliation(s)
- Shujian Xu
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, 250012, China.,Department of Thyroid and Breast Surgery, The Affiliated Hospital to Binzhou Medical University, No. 661, Huangheer Road, Bincheng District, Binzhou, 256603, China
| | - Cui Zhao
- Department of Rehabilitation Medicine, The Affiliated Hospital to Binzhou Medical University, Binzhou, 256603, China
| | - Zhongming Jia
- Department of Thyroid and Breast Surgery, The Affiliated Hospital to Binzhou Medical University, No. 661, Huangheer Road, Bincheng District, Binzhou, 256603, China
| | - Xilong Wang
- Department of Thyroid and Breast Surgery, The Affiliated Hospital to Binzhou Medical University, No. 661, Huangheer Road, Bincheng District, Binzhou, 256603, China
| | - Yong Han
- Department of Thyroid and Breast Surgery, The Affiliated Hospital to Binzhou Medical University, No. 661, Huangheer Road, Bincheng District, Binzhou, 256603, China
| | - Zhenlin Yang
- Department of Thyroid and Breast Surgery, The Affiliated Hospital to Binzhou Medical University, No. 661, Huangheer Road, Bincheng District, Binzhou, 256603, China.
| |
Collapse
|
33
|
Fontana P, Bonfiglio JJ, Palazzo L, Bartlett E, Matic I, Ahel I. Serine ADP-ribosylation reversal by the hydrolase ARH3. eLife 2017; 6:e28533. [PMID: 28650317 PMCID: PMC5552275 DOI: 10.7554/elife.28533] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 06/23/2017] [Indexed: 12/12/2022] Open
Abstract
ADP-ribosylation (ADPr) is a posttranslational modification (PTM) of proteins that controls many cellular processes, including DNA repair, transcription, chromatin regulation and mitosis. A number of proteins catalyse the transfer and hydrolysis of ADPr, and also specify how and when the modification is conjugated to the targets. We recently discovered a new form of ADPr that is attached to serine residues in target proteins (Ser-ADPr) and showed that this PTM is specifically made by PARP1/HPF1 and PARP2/HPF1 complexes. In this work, we found by quantitative proteomics that histone Ser-ADPr is reversible in cells during response to DNA damage. By screening for the hydrolase that is responsible for the reversal of Ser-ADPr, we identified ARH3/ADPRHL2 as capable of efficiently and specifically removing Ser-ADPr of histones and other proteins. We further showed that Ser-ADPr is a major PTM in cells after DNA damage and that this signalling is dependent on ARH3.
Collapse
Affiliation(s)
- Pietro Fontana
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | | | - Luca Palazzo
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Edward Bartlett
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Ivan Matic
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
34
|
Brosey CA, Ahmed Z, Lees-Miller SP, Tainer JA. What Combined Measurements From Structures and Imaging Tell Us About DNA Damage Responses. Methods Enzymol 2017; 592:417-455. [PMID: 28668129 DOI: 10.1016/bs.mie.2017.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
DNA damage outcomes depend upon the efficiency and fidelity of DNA damage responses (DDRs) for different cells and damage. As such, DDRs represent tightly regulated prototypical systems for linking nanoscale biomolecular structure and assembly to the biology of genomic regulation and cell signaling. However, the dynamic and multifunctional nature of DDR assemblies can render elusive the correlation between the structures of DDR factors and specific biological disruptions to the DDR when these structures are altered. In this chapter, we discuss concepts and strategies for combining structural, biophysical, and imaging techniques to investigate DDR recognition and regulation, and thus bridge sequence-level structural biochemistry to quantitative biological outcomes visualized in cells. We focus on representative DDR responses from PARP/PARG/AIF damage signaling in DNA single-strand break repair and nonhomologous end joining complexes in double-strand break repair. Methods with exemplary experimental results are considered with a focus on strategies for probing flexibility, conformational changes, and assembly processes that shape a predictive understanding of DDR mechanisms in a cellular context. Integration of structural and imaging measurements promises to provide foundational knowledge to rationally control and optimize DNA damage outcomes for synthetic lethality and for immune activation with resulting insights for biology and cancer interventions.
Collapse
Affiliation(s)
- Chris A Brosey
- The University of Texas, M.D. Anderson Cancer Center, Houston, TX, United States
| | - Zamal Ahmed
- The University of Texas, M.D. Anderson Cancer Center, Houston, TX, United States
| | - Susan P Lees-Miller
- Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada.
| | - John A Tainer
- The University of Texas, M.D. Anderson Cancer Center, Houston, TX, United States; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.
| |
Collapse
|
35
|
Wang H, Li S, Luo X, Song Z, Long X, Zhu X. Knockdown of PARP6 or survivin promotes cell apoptosis and inhibits cell invasion of colorectal adenocarcinoma cells. Oncol Rep 2017; 37:2245-2251. [PMID: 28260087 DOI: 10.3892/or.2017.5441] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 07/14/2016] [Indexed: 11/05/2022] Open
Abstract
Colorectal adenocarcinoma is the third most common cancer worldwide. PARP6, a novel member of the poly(ADP-ribose) polymerases (PARPs) and survivin, a member of the family of inhibitor of apoptosis (IAP) proteins are associated with a poor prognosis in various types of cancers. However, limited evidence exists regarding the interaction between PARP6 and survivin in colorectal adenocarcinoma. In the present study, we used the paired samples of 20 patients with colorectal adenocarcinoma to detect the expression of PARP6 and survivin in both tumor and adjacent normal colorectal mucosa. Their interaction and roles in cell viability, cell cycle, cell apoptosis and cell invasion were further investigated. Our results showed that both PARP6 and survivin exhibited higher expression in colorectal adenocarcinoma tissues and SW620 cells when compared with levels in adjacent non-tumor tissues and a normal colon cell line FHC. Co-immunoprecipitation assay showed that a significant correlation existed between PARP6 and survivin. We also showed that sole treatment of PARP6 siRNA or survivin siRNA partially inhibited the cell survival and invasion, induced cell G0/G1 arrest, and cell apoptosis at the early and late stages. The combined treatment of PARP6 siRNA and survivin siRNA suppressed the cell survival and cell invasion, further induced cell cycle phase G0/G1 arrest, and cell apoptosis at the early and late stages. Taken together, knockdown of PARP6 or survivin promotes cell apoptosis and inhibits the cell invasion of colorectal adenocarcinoma cells. A significant correlation exists between PARP6 and survivin, and both are promising targets for the development of new strategies for the diagnosis and treatment of advanced or metastatic colorectal adenocarcinoma.
Collapse
Affiliation(s)
- Haipeng Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Guilin Medical University, Lingui, Guilin, Guangxi Zhuang Autonomous Region, Guangxi 541100, P.R. China
| | - Shengguo Li
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Guilin Medical University, Lingui, Guilin, Guangxi Zhuang Autonomous Region, Guangxi 541100, P.R. China
| | - Xishun Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Guilin Medical University, Lingui, Guilin, Guangxi Zhuang Autonomous Region, Guangxi 541100, P.R. China
| | - Zhike Song
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Guilin Medical University, Lingui, Guilin, Guangxi Zhuang Autonomous Region, Guangxi 541100, P.R. China
| | - Xiangkai Long
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Guilin Medical University, Lingui, Guilin, Guangxi Zhuang Autonomous Region, Guangxi 541100, P.R. China
| | - Xijia Zhu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Guilin Medical University, Lingui, Guilin, Guangxi Zhuang Autonomous Region, Guangxi 541100, P.R. China
| |
Collapse
|
36
|
Qi G, Kudo Y, Tang B, Liu T, Jin S, Liu J, Zuo X, Mi S, Shao W, Ma X, Tsunematsu T, Ishimaru N, Zeng S, Tatsuka M, Shimamoto F. PARP6 acts as a tumor suppressor via downregulating Survivin expression in colorectal cancer. Oncotarget 2017; 7:18812-24. [PMID: 26934315 PMCID: PMC4951331 DOI: 10.18632/oncotarget.7712] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 02/15/2016] [Indexed: 12/14/2022] Open
Abstract
Poly (ADP-ribose) polymerases (PARPs) are enzymes that transfer ADP-ribose groups to target proteins and are involved in a variety of biological processes. PARP6 is a novel member, and our previous findings suggest that PARP6 may act as a tumor suppressor via suppressing cell cycle progression. However, it is still unclear that PARP6 function besides growth suppression in colorectal cancer (CRC). In this study, we examined tumor suppressive roles of PAPR6 in CRC cells both in vitro and in vivo. We found that PARP6 inhibited colony formation, invasion and migration as well as cell proliferation. Moreover, ectopic overexpression of PARP6 decreased Survivin expression, which acts as an oncogene and is involved in apoptosis and mitosis. We confirmed the inverse correlation between PARP6 and Survivin expression in CRC cases by immunohistochemistry. Importantly, CRC cases with downregulation of PARP6 and upregulation of Survivin showed poor prognosis. In summary, PARP6 acts as a tumor suppressor via downregulating Survivin expression in CRC. PARP6 can be a novel diagnostic and therapeutic target together with Survivin for CRC.
Collapse
Affiliation(s)
- Guangying Qi
- Department of Pathology and Physiopathology, Guilin Medical University, Guilin 541004, People's Republic of China.,Department of Health Sciences, Prefectural University of Hiroshima, Hiroshima 734-8558, Japan
| | - Yasusei Kudo
- Department of Oral Molecular Pathology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8504, Japan
| | - Bo Tang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guilin Medical University, Guilin 541000, People's Republic of China
| | - Tian Liu
- Department of Pathology and Physiopathology, Guilin Medical University, Guilin 541004, People's Republic of China
| | - Shengjian Jin
- Department of Pathology and Physiopathology, Guilin Medical University, Guilin 541004, People's Republic of China
| | - Jing Liu
- Department of Pathology and Physiopathology, Guilin Medical University, Guilin 541004, People's Republic of China
| | - Xiaoxu Zuo
- Department of Pathology and Physiopathology, Guilin Medical University, Guilin 541004, People's Republic of China
| | - Sisi Mi
- Department of Pathology and Physiopathology, Guilin Medical University, Guilin 541004, People's Republic of China
| | - Wenhuan Shao
- Department of Pathology and Physiopathology, Guilin Medical University, Guilin 541004, People's Republic of China
| | - Xiaojuan Ma
- Department of Pathology and Physiopathology, Guilin Medical University, Guilin 541004, People's Republic of China
| | - Takaaki Tsunematsu
- Department of Oral Molecular Pathology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8504, Japan
| | - Naozumi Ishimaru
- Department of Oral Molecular Pathology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8504, Japan
| | - Sien Zeng
- Department of Pathology and Physiopathology, Guilin Medical University, Guilin 541004, People's Republic of China
| | - Masaaki Tatsuka
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Hiroshima 727-0023, Japan
| | - Fumio Shimamoto
- Department of Health Sciences, Prefectural University of Hiroshima, Hiroshima 734-8558, Japan
| |
Collapse
|
37
|
Pu Y, Zhang S, Chang Z, Zhang Y, Wang D, Zhang L, Li Y, Zuo Z. Discovery of new dual binding TNKS inhibitors of Wnt signaling inhibition by pharmacophore modeling, molecular docking and bioassay. MOLECULAR BIOSYSTEMS 2017; 13:363-370. [PMID: 27995250 DOI: 10.1039/c6mb00712k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Discovery of novel dual site TNKS inhibitors by pharmacophore modeling, molecular docking and bioassay.
Collapse
Affiliation(s)
- Yinglan Pu
- School of Chemical Engineering
- Sichuan University of Science & Engineering
- Zigong
- China
- State Key Laboratory of Phytochemistry and Plant Resources in West China
| | - Shuqun Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming
- China
| | - Zhe Chang
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming
- China
| | - Yunqin Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming
- China
| | - Dong Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming
- China
| | - Li Zhang
- School of Chemical Engineering
- Sichuan University of Science & Engineering
- Zigong
- China
| | - Yan Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming
- China
| | - Zhili Zuo
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming
- China
| |
Collapse
|
38
|
Cerrato A, Morra F, Celetti A. Use of poly ADP-ribose polymerase [PARP] inhibitors in cancer cells bearing DDR defects: the rationale for their inclusion in the clinic. J Exp Clin Cancer Res 2016; 35:179. [PMID: 27884198 PMCID: PMC5123312 DOI: 10.1186/s13046-016-0456-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/09/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND DNA damage response (DDR) defects imply genomic instability and favor tumor progression but make the cells vulnerable to the pharmacological inhibition of the DNA repairing enzymes. Targeting cellular proteins like PARPs, which cooperate and complement molecular defects of the DDR process, induces a specific lethality in DDR defective cancer cells and represents an anti-cancer strategy. Normal cells can tolerate the DNA damage generated by PARP inhibition because of an efficient homologous recombination mechanism (HR); in contrast, cancer cells with a deficient HR are unable to manage the DSBs and appear especially sensitive to the PARP inhibitors (PARPi) effects. MAIN BODY In this review we discuss the proof of concept for the use of PARPi in different cancer types and the success and failure of their inclusion in clinical trials. The PARP inhibitor Olaparib [AZD2281] has been approved by the FDA for use in pretreated ovarian cancer patients with defective BRCA1/2 genes, and by the EMEA for maintenance therapy in platinum sensitive ovarian cancer patients with defective BRCA1/2 genes. BRCA mutations are now recognised as the molecular targets for PARPi sensitivity in several tumors. However, it is noteworthy that the use of PARPi has shown its efficacy also in non-BRCA related tumors. Several trials are ongoing to test different PARPi in different cancer types. Here we review the concept of BRCAness and the functional loss of proteins involved in DDR/HR mechanisms in cancer, including additional molecules that can influence the cancer cells sensitivity to PARPi. Given the complexity of the existing crosstalk between different DNA repair pathways, it is likely that a single biomarker may not be sufficient to predict the benefit of PARP inhibitors therapies. Novel general assays able to predict the DDR/HR proficiency in cancer cells and the PARPi sensitivity represent a challenge for a personalized therapy. CONCLUSIONS PARP inhibition is a potentially important strategy for managing a significant subset of tumors. The discovery of both germline and somatic DNA repair deficiencies in different cancer patients, together with the development of new PARP inhibitors that can kill selectively cancer cells is a potent example of targeting therapy to molecularly defined tumor subtypes.
Collapse
|
39
|
Liu Y, Zhang Y, Zhao Y, Gao D, Xing J, Liu H. High PARP-1 expression is associated with tumor invasion and poor prognosis in gastric cancer. Oncol Lett 2016; 12:3825-3835. [PMID: 27895737 PMCID: PMC5104177 DOI: 10.3892/ol.2016.5169] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 07/12/2016] [Indexed: 12/11/2022] Open
Abstract
Poly (adenosine diphosphate-ribose) polymerase 1 (PARP-1) was previously demonstrated to be overexpressed in numerous malignant tumors and associated with invasiveness and poor prognosis. However, the expression of the PARP-1 protein in gastric cancer and its association with clinical outcomes requires further investigation. In the present study, the expression of PARP-1 in 564 gastric cancer tissues and 335 tumor-adjacent control tissues is investigated, using tissue microarray-based immunohistochemistry. PARP-1 expression levels were demonstrated to be significantly higher in gastric cancer tissue samples, as compared with control tissue samples. In gastric cancer, high PARP-1 expression levels were significantly associated with Helicobacter pylori (H. pylori) infection (P=0.032), decreased differentiation (P<0.001), increased depth of invasion (P=0.037), presence of lymphatic invasion (P<0.001), presence of lymph node metastasis (P<0.001), and advanced tumor-node-metastasis (TNM) stage (P=0.015). High PARP-1 expression levels were associated with a significantly shorter overall survival rate (P<0.001) and disease-free survival rate (P=0.001) in patients with gastric cancer, particularly a subset of patients with H. pylori infection or an advanced TNM stage. In addition, univariate analysis indicated that PARP-1 high expression levels were significantly associated with a poor prognosis in gastric cancer. These results suggest that PARP-1 expression may be involved in the progression and prognosis of gastric cancer, particularly H. pylori-positive or advanced-stage gastric cancer.
Collapse
Affiliation(s)
- Ying Liu
- Emergency Department, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Yu Zhang
- Emergency Department, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Ying Zhao
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Dongna Gao
- Emergency Department, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Jing Xing
- Emergency Department, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Hui Liu
- Emergency Department, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
40
|
Xu Y, Liu L, Wang Z, Dai Z. Stable and Reusable Electrochemical Biosensor for Poly(ADP-ribose) Polymerase and Its Inhibitor Based on Enzyme-Initiated Auto-PARylation. ACS APPLIED MATERIALS & INTERFACES 2016; 8:18669-18674. [PMID: 27367274 DOI: 10.1021/acsami.6b01883] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A stable and reusable electrochemical biosensor for the label-free detection of poly(ADP-ribose) polymerase (PARP) is designed in this work. C-kit-1, a thiol-modified G-quadruplex oligonucleotide, is first self-assembled on a gold electrode surface. The G-quadruplex structure of c-kit-1 can specifically tether and activate PARP, resulting in the generation of negatively charged poly(ADP-ribose) polymer (PAR). On the basis of electrostatic attraction, PAR facilitates the surface accumulation of positively charged electrochemical signal molecules. Through the characterization of electrochemical signal molecules, the label-free quantification of PARP is simply implemented. On the basis of the proposed method, selective quantification of PARP can be achieved over the linear range from 0.01 to 1 U with a calculated detection limit of 0.003U. Further studies also demonstrate the applicability of the proposed method to biosamples revealing the broad potential in practical applications. Furthermore, inhibitor of PARP has also been detected with this biosensor. Meanwhile, benefited from self-assembly on solid surface, this biosensor possesses two important features, i.e., reusability and stability, which are desirable in related biosensors.
Collapse
Affiliation(s)
- Yuanyuan Xu
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, Jiangsu 210095, China
| | - Li Liu
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University , Nanjing, Jiangsu 210023, P. R. China
| | - Zhaoyin Wang
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University , Nanjing, Jiangsu 210023, P. R. China
| | - Zhihui Dai
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University , Nanjing, Jiangsu 210023, P. R. China
| |
Collapse
|
41
|
Pathways of cardiac toxicity: comparison between chemotherapeutic drugs doxorubicin and mitoxantrone. Arch Toxicol 2016; 90:2063-2076. [PMID: 27342245 DOI: 10.1007/s00204-016-1759-y] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/13/2016] [Indexed: 01/25/2023]
Abstract
Anthracyclines, e.g., doxorubicin (DOX), and anthracenediones, e.g., mitoxantrone (MTX), are drugs used in the chemotherapy of several cancer types, including solid and non-solid malignancies such as breast cancer, leukemia, lymphomas, and sarcomas. Although they are effective in tumor therapy, treatment with these two drugs may lead to side effects such as arrhythmia and heart failure. At the same clinically equivalent dose, MTX causes slightly reduced cardiotoxicity compared with DOX. These drugs interact with iron to generate reactive oxygen species (ROS), target topoisomerase 2 (Top2), and impair mitochondria. These are some of the mechanisms through which these drugs induce late cardiomyopathy. In this review, we compare the cardiotoxicities of these two chemotherapeutic drugs, DOX and MTX. As described here, even though they share similarities in their modes of toxicant action, DOX and MTX seem to differ in a key aspect. DOX is a more redox-interfering drug, while MTX induces energy imbalance. In addition, DOX toxicity can be explained by underlying mechanisms that include targeting of Top2 beta, mitochondrial impairment, and increases in ROS generation. These modes of action have not yet been demonstrated for MTX, and this knowledge gap needs to be filled.
Collapse
|
42
|
Wei H, Yu X. Functions of PARylation in DNA Damage Repair Pathways. GENOMICS PROTEOMICS & BIOINFORMATICS 2016; 14:131-139. [PMID: 27240471 PMCID: PMC4936651 DOI: 10.1016/j.gpb.2016.05.001] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/29/2016] [Accepted: 05/02/2016] [Indexed: 12/15/2022]
Abstract
Protein poly ADP-ribosylation (PARylation) is a widespread post-translational modification at DNA lesions, which is catalyzed by poly(ADP-ribose) polymerases (PARPs). This modification regulates a number of biological processes including chromatin reorganization, DNA damage response (DDR), transcriptional regulation, apoptosis, and mitosis. PARP1, functioning as a DNA damage sensor, can be activated by DNA lesions, forming PAR chains that serve as a docking platform for DNA repair factors with high biochemical complexity. Here, we highlight molecular insights into PARylation recognition, the expanding role of PARylation in DDR pathways, and the functional interaction between PARylation and ubiquitination, which will offer us a better understanding of the biological roles of this unique post-translational modification.
Collapse
Affiliation(s)
- Huiting Wei
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, MOE Key Laboratory of Immune Microenvironment and Disease, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xiaochun Yu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010, USA.
| |
Collapse
|
43
|
Ganguly B, Dolfi SC, Rodriguez-Rodriguez L, Ganesan S, Hirshfield KM. Role of Biomarkers in the Development of PARP Inhibitors. BIOMARKERS IN CANCER 2016; 8:15-25. [PMID: 26997874 PMCID: PMC4786099 DOI: 10.4137/bic.s36679] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/28/2015] [Accepted: 12/31/2015] [Indexed: 01/01/2023]
Abstract
Defects in DNA repair lead to genomic instability and play a critical role in cancer development. Understanding the process by which DNA damage repair is altered or bypassed in cancer may identify novel therapeutic targets and lead to improved patient outcomes. Poly(adenosine diphosphate-ribose) polymerase 1 (PARP1) has an important role in DNA repair, and novel therapeutics targeting PARP1 have been developed to treat cancers with defective DNA repair pathways. Despite treatment successes with PARP inhibitors (PARPi), intrinsic and acquired resistances have been observed. Preclinical studies and clinical trials in cancer suggest that combination therapy using PARPi and platinating agents is more effective than monotherapy in circumventing drug resistance mechanisms. Additionally, identification of biomarkers in response to PARPi will lead to improved patient selection for targeted cancer treatment. Recent technological advances have provided the necessary tools to examine many potential avenues to develop such biomarkers. This review examines the mechanistic rationale of PARP inhibition and potential biomarkers in their development for personalized therapy.
Collapse
Affiliation(s)
- Bratati Ganguly
- Department of Medicine, Division of Medical Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Sonia C. Dolfi
- Department of Medicine, Division of Medical Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Lorna Rodriguez-Rodriguez
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Shridar Ganesan
- Department of Medicine, Division of Medical Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Kim M. Hirshfield
- Department of Medicine, Division of Medical Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| |
Collapse
|
44
|
Bogliolo S, Cassani C, Dominoni M, Musacchi V, Venturini PL, Spinillo A, Ferrero S, Gardella B. Veliparib for the treatment of ovarian cancer. Expert Opin Investig Drugs 2016; 25:367-74. [PMID: 26807493 DOI: 10.1517/13543784.2016.1146677] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Ovarian cancer represents the sixth most commonly diagnosed cancer among women, with an incidence of 6.1 cases per 100.000 women and a cumulative lifetime risk of 0.5%. Treatment is based on debulking surgery and platinum-based chemotherapy, with the potential combination with taxane. However, the recently available data on the genetic basis and aetiology of ovarian cancer has led to the development of new anticancer drugs. Poly(ADP-ribose) polymerase (PARP) inhibitors are one of the most promising new classes of targeted agents currently under investigation for the treatment of ovarian cancer. Veliparib is a small molecule that inhibits both PARP-1 and PARP-2 and was originally shown to be efficacious in BRCA-associated tumors. AREAS COVERED This manuscript reviews the Phase I and II studies investigating the use of veliparib in ovarian cancer. This article also provides and discusses the pharmacokinetics and pharmacodynamics of veliparib. EXPERT OPINION It is still being discussed whether PARP inhibitors should be used in a front-line or relapsed setting, alone or in combination with cytotoxic chemotherapy or as maintenance treatment. In terms of veliparib, further investigations are needed to explore its full potential in ovarian cancer. It is hoped that the ongoing phase 3 trials will help to further elucidate it potential as a treatment option.
Collapse
Affiliation(s)
- Stefano Bogliolo
- a Department of Obstetrics and Gynaecology , IRCCS-Fondazione Policlinico San Matteo and University of Pavia , Pavia , Italy
| | - Chiara Cassani
- a Department of Obstetrics and Gynaecology , IRCCS-Fondazione Policlinico San Matteo and University of Pavia , Pavia , Italy
| | - Mattia Dominoni
- a Department of Obstetrics and Gynaecology , IRCCS-Fondazione Policlinico San Matteo and University of Pavia , Pavia , Italy
| | - Valentina Musacchi
- a Department of Obstetrics and Gynaecology , IRCCS-Fondazione Policlinico San Matteo and University of Pavia , Pavia , Italy
| | - Pier Luigi Venturini
- b Department of Obstetrics and Gynaecology , IRCCS Azienda Ospedaliera Universitaria San Martino - IST Istituto Nazionale per la Ricerca sul Cancro and University of Genoa , Genoa , Italy
| | - Arsenio Spinillo
- a Department of Obstetrics and Gynaecology , IRCCS-Fondazione Policlinico San Matteo and University of Pavia , Pavia , Italy
| | - Simone Ferrero
- b Department of Obstetrics and Gynaecology , IRCCS Azienda Ospedaliera Universitaria San Martino - IST Istituto Nazionale per la Ricerca sul Cancro and University of Genoa , Genoa , Italy
| | - Barbara Gardella
- a Department of Obstetrics and Gynaecology , IRCCS-Fondazione Policlinico San Matteo and University of Pavia , Pavia , Italy
| |
Collapse
|
45
|
Dantuma NP, van Attikum H. Spatiotemporal regulation of posttranslational modifications in the DNA damage response. EMBO J 2015; 35:6-23. [PMID: 26628622 DOI: 10.15252/embj.201592595] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/06/2015] [Indexed: 11/09/2022] Open
Abstract
A timely and accurate cellular response to DNA damage requires tight regulation of the action of DNA damage response (DDR) proteins at lesions. A multitude of posttranslational modifications (PTMs) of chromatin and chromatin-associated proteins coordinates the recruitment of critical proteins that dictate the appropriate DNA repair pathway and enable the actual repair of lesions. Phosphorylation, ubiquitylation, SUMOylation, neddylation, poly(ADP-ribosyl)ation, acetylation, and methylation are among the DNA damage-induced PTMs that have taken center stage as important DDR regulators. Redundant and multivalent interactions of DDR proteins with PTMs may not only be a means to facilitate efficient relocalization, but also a feature that allows high temporal and spatial resolution of protein recruitment to, and extraction from, DNA damage sites. In this review, we will focus on the complex interplay between such PTMs, and discuss the importance of their interconnectivity in coding DNA lesions and maintaining the integrity of the genome.
Collapse
Affiliation(s)
- Nico P Dantuma
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
46
|
Ida C, Yamashita S, Tsukada M, Sato T, Eguchi T, Tanaka M, Ogata S, Fujii T, Nishi Y, Ikegami S, Moss J, Miwa M. An enzyme-linked immunosorbent assay-based system for determining the physiological level of poly(ADP-ribose) in cultured cells. Anal Biochem 2015; 494:76-81. [PMID: 26548958 DOI: 10.1016/j.ab.2015.10.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/23/2015] [Accepted: 10/28/2015] [Indexed: 01/01/2023]
Abstract
PolyADP-ribosylation is mediated by poly(ADP-ribose) (PAR) polymerases (PARPs) and may be involved in various cellular events, including chromosomal stability, DNA repair, transcription, cell death, and differentiation. The physiological level of PAR is difficult to determine in intact cells because of the rapid synthesis of PAR by PARPs and the breakdown of PAR by PAR-degrading enzymes, including poly(ADP-ribose) glycohydrolase (PARG) and ADP-ribosylhydrolase 3. Artifactual synthesis and/or degradation of PAR likely occurs during lysis of cells in culture. We developed a sensitive enzyme-linked immunosorbent assay (ELISA) to measure the physiological levels of PAR in cultured cells. We immediately inactivated enzymes that catalyze the synthesis and degradation of PAR. We validated that trichloroacetic acid is suitable for inactivating PARPs, PARG, and other enzymes involved in metabolizing PAR in cultured cells during cell lysis. The PAR level in cells harvested with the standard radioimmunoprecipitation assay buffer was increased by 450-fold compared with trichloroacetic acid for lysis, presumably because of activation of PARPs by DNA damage that occurred during cell lysis. This ELISA can be used to analyze the biological functions of polyADP-ribosylation under various physiological conditions in cultured cells.
Collapse
Affiliation(s)
- Chieri Ida
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan; Department of Applied Life Studies, College of Nagoya Women's University, Nagoya-shi, Aichi 467-8610, Japan
| | - Sachiko Yamashita
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan
| | - Masaki Tsukada
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan
| | - Teruaki Sato
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan
| | - Takayuki Eguchi
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan
| | - Masakazu Tanaka
- Department of Microbiology, Kansai Medical University, Hirakata City, Osaka 573-1010, Japan
| | - Shin Ogata
- Laboratory of Molecular and Cellular Biology, Graduate School of Bioresources, Mie University, Tsu, Mie 514-8507, Japan
| | - Takahiro Fujii
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan
| | - Yoshisuke Nishi
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan
| | - Susumu Ikegami
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan
| | - Joel Moss
- Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Masanao Miwa
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan.
| |
Collapse
|
47
|
Andreoli F, Del Rio A. Computer-aided Molecular Design of Compounds Targeting Histone Modifying Enzymes. Comput Struct Biotechnol J 2015; 13:358-65. [PMID: 26082827 PMCID: PMC4459771 DOI: 10.1016/j.csbj.2015.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 04/24/2015] [Accepted: 04/30/2015] [Indexed: 02/06/2023] Open
Abstract
Growing evidences show that epigenetic mechanisms play crucial roles in the genesis and progression of many physiopathological processes. As a result, research in epigenetic grew at a fast pace in the last decade. In particular, the study of histone post-translational modifications encountered an extraordinary progression and many modifications have been characterized and associated to fundamental biological processes and pathological conditions. Histone modifications are the catalytic result of a large set of enzyme families that operate covalent modifications on specific residues at the histone tails. Taken together, these modifications elicit a complex and concerted processing that greatly contribute to the chromatin remodeling and may drive different pathological conditions, especially cancer. For this reason, several epigenetic targets are currently under validation for drug discovery purposes and different academic and industrial programs have been already launched to produce the first pre-clinical and clinical outcomes. In this scenario, computer-aided molecular design techniques are offering important tools, mainly as a consequence of the increasing structural information available for these targets. In this mini-review we will briefly discuss the most common types of known histone modifications and the corresponding operating enzymes by emphasizing the computer-aided molecular design approaches that can be of use to speed-up the efforts to generate new pharmaceutically relevant compounds.
Collapse
Affiliation(s)
- Federico Andreoli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, Via S. Giacomo 14, 40126 Bologna, Italy
| | - Alberto Del Rio
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, Via S. Giacomo 14, 40126 Bologna, Italy
- Institute of Organic Synthesis and Photoreactivity, National Research Council, Via P. Gobetti, 101 40129 Bologna, Italy
| |
Collapse
|
48
|
Stolarek M, Gruszka D, Braszewska-Zalewska A, Maluszynski M. Alleles of newly identified barley gene HvPARP3 exhibit changes in efficiency of DNA repair. DNA Repair (Amst) 2015; 28:116-30. [PMID: 25753810 DOI: 10.1016/j.dnarep.2015.02.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 02/05/2015] [Accepted: 02/17/2015] [Indexed: 12/16/2022]
Abstract
Genome integrity is constantly challenged by endo- and exogenous DNA-damaging factors. The influence of genotoxic agents causes an accumulation of DNA lesions, which if not repaired, become mutations that can cause various abnormalities in a cell metabolism. The main pathway of DSB repair, which is based on non-homologous recombination, is canonical non-homologous end joining (C-NHEJ). It has been shown that this mechanism is highly conserved in both Pro- and Eukaryotes. The mechanisms that underlie DSB repair through C-NHEJ have mainly been investigated in mammalian systems, and therefore our knowledge about this process is much more limited as far as plants, and crop plants in particular, are concerned. Recent studies have demonstrated that PARP3 is an important response factor to the presence of DSB in a genome. The aims of this study were to identify the sequence of the barley PARP3 gene, to perform a mutational analysis of the sequence that was identified using the TILLING (Targeting Induced Local Lesions IN Genomes) method and to phenotype the mutants that were identified through their exposure to mutagenic treatment with the DSB-inducing chemical--bleomycin. A functional analysis led to the identification of a series of parp3 alleles. The mutants were characterized using several different approaches, including quantifying the DSB and γH2AX foci, which validated the function of the HvPARP3 gene in DSB repair in barley. The potential involvement of the HvPARP3 gene in the regulation of telomere length in barley was also analyzed.
Collapse
Affiliation(s)
- Magdalena Stolarek
- Department of Genetics, Faculty of Biology and Environment Protection, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland.
| | - Damian Gruszka
- Department of Genetics, Faculty of Biology and Environment Protection, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland
| | - Agnieszka Braszewska-Zalewska
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environment Protection, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland
| | - Miroslaw Maluszynski
- Department of Genetics, Faculty of Biology and Environment Protection, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland
| |
Collapse
|
49
|
Abstract
Poly (ADP-ribose) polymerases, abbreviated as PARPs, are a group of familiar proteins that play a central role in DNA repair employing the base excision repair (BER) pathway. There about 17 proteins in this family out of which the primary nuclear PARPs are PARP-1, PARP-2, PARP-3, and tankyrases 1 and 2 (PARP-5a and -5b) .The PARP family members are known to engage in a wide range of cellular activities, for example, DNA repair, transcription, cellular signaling, cell cycle regulation and mitosis amongst others. The chief functional units of PARP-1 are an amino terminal DNA binding domain (DBD), a central auto modification domain (AMD), and a carboxyl-terminal catalytic domain (CD). PARP inhibitors are currently undergoing clinical trials as targeted treatment modalities of breast, uterine, colorectal and ovarian cancer. This review summarizes current insights into the mechanism of action of PARP inhibitors, its recent clinical trials, and potential next steps in the evaluation of this promising class of anti-cancer drugs.
Collapse
Affiliation(s)
- Maheen Anwar
- Dow Medical College, Dow University of Health Sciences, Karachi, Pakistan
| | | | - Shahzad Anwar
- Final year student of Dow Medical College, Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
50
|
Alshammari AH, Shalaby MA, Alanazi MS, Saeed HM. Novel mutations of the PARP-1 gene associated with colorectal cancer in the Saudi population. Asian Pac J Cancer Prev 2015; 15:3667-73. [PMID: 24870775 DOI: 10.7314/apjcp.2014.15.8.3667] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most common type of cancers and the fourth leading cause of death worldwide. In Saudi Arabia, CRC accounts for 8.5% of all tumors; it ranks first among all cancers in males and third among females. The aim of this study was to link between different PARP-1 mutations and risk of CRC in Saudi population and to determine common variants of PARP-1 in Saudi CRC patients and normal individuals. MATERIALS AND METHODS DNA samples were isolated from fifty CRC patients and from a comparable number of control subjects then sequenced to detect different variations present in exons 3, 17, and 21 of the PARP-1 gene. RESULTS AND CONCLUSIONS When comparing the genotype and allele frequencies of all detected SNPs in CRC patients with those in controls, we found none were significantly different for all variants even the most common SNP in PARP-1 gene (Val762Ala). However, two novel alterations in exon 21 were found to be associated with increased risk of CRC. The variants identified as (1) Lys933Asn [p-value 0.0318] and (2) Lys945Asn [p-value 0.0257]. Our results suggest that PARP-1 Lys933Asn and Lys945Asn alterations could be associated with increased risk of CRC in the Saudi population.
Collapse
Affiliation(s)
- Atika Hazzaa Alshammari
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia E-mail :
| | | | | | | |
Collapse
|