1
|
Pötzl L, Wolf OT, Merz CJ. The influence of time of day on memory recognition for faces. Horm Behav 2024; 165:105633. [PMID: 39244875 DOI: 10.1016/j.yhbeh.2024.105633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Time of day can alter memory performance in general. Its influence on memory recognition performance for faces, which is important for daily encounters with new persons or testimonies, has not been investigated yet. Importantly, high levels of the stress hormone cortisol impair memory recognition, in particular for emotional material. However, some studies also reported high cortisol levels to enhance memory recognition. Since cortisol levels in the morning are usually higher than in the evening, time of day might also influence recognition performance. In this pre-registered study with a two-day design, 51 healthy men encoded pictures of male and female faces with distinct emotional expressions on day one around noon. Memory for the faces was retrieved two days later at two consecutive testing times either in the morning (high and moderately increased endogenous cortisol levels) or in the evening (low endogenous cortisol levels). Additionally, alertness as well as salivary cortisol levels at the different timepoints was assessed. Cortisol levels were significantly higher in the morning compared to the evening group as expected, while both groups did not differ in alertness. Familiarity ratings for female stimuli were significantly better when participants were tested during moderately increased endogenous cortisol levels in the morning than during low endogenous cortisol levels in the evening, a pattern which was previously also observed for stressed versus non-stressed participants. In addition, cortisol levels during that time in the morning were positively correlated with the recollection of face stimuli in general. Thus, recognition memory performance may depend on the time of day and as well as on stimulus type, such as the difference of male and female faces. Most importantly, the results suggest that cortisol may be meaningful and worth investigating when studying the effects of time of day on memory performance. This research offers both, insights into daily encounters as well as legally relevant domains as for instance testimonies.
Collapse
Affiliation(s)
- Lisa Pötzl
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Germany
| | - Oliver T Wolf
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Germany
| | - Christian J Merz
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Germany.
| |
Collapse
|
2
|
Sadhukhan D, Biswas A, Mishra S, Chatterjee K, Maji D, Mitra P, Mukherjee P, Podder G, Ray BK, Biswas A, Banerjee TK, Hui SP, Deb I. Genetic Variations and Altered Blood mRNA Level of Circadian Genes and BDNF as Risk Factors of Post-Stroke Cognitive Impairment Among Eastern Indians. Neuromolecular Med 2023; 25:586-595. [PMID: 37814155 DOI: 10.1007/s12017-023-08761-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/18/2023] [Indexed: 10/11/2023]
Abstract
Post-stroke cognitive impairment (PSCI) is a clinical outcome in around 30% of post-stroke survivors. BDNF is a major gene in this regard. It is regulated by circadian rhythm. The circadian genes are correlated with stroke timings at molecular level. However, studies suggesting the role of these on susceptibility to PSCI are limited. We aim here to determine: (a) genetic risk variants in circadian clock genes, BDNF and (b) dysregulation in expression level of CLOCK, BMAL1, and BDNF that may be associated with PSCI. BDNF (rs6265G/A, rs56164415C/T), CLOCK (rs1801260T/C, rs4580704G/C), and CRY2 (rs2292912C/G) genes variants were genotyped among 119 post-stroke survivors and 292 controls from Eastern part of India. In addition, we analyzed their gene expression in Peripheral blood Mononuclear cells (PBMC) from 15 PSCI cases and 12 controls. The mRNA data for BDNF was further validated by its plasma level through ELISA (n = 38). Among the studied variants, only rs4580704/CLOCK showed an overall association with PSCI (P = 0.001) and lower Bengali Mini-Mental State Examination (BMSE) score. Its 'C' allele showed a correlation with attention deficiency. The language and memory impairments showed association with rs6265/BDNF, while the 'CC' genotype of rs2292912/CRY2 negatively influenced language and executive function. A significant decrease in gene expression for CLOCK and BDNF in PBMC (influenced by specific genotypes) of PSCI patients was observed than controls. Unlike Pro-BDNF, plasma-level mBDNF was also lower in them. Our results suggest the genetic variants in CLOCK, CRY2, and BDNF as risk factors for PSCI among eastern Indians. At the same time, a lowering expression of CLOCK and BDNF genes in PSCI patients than controls describes their transcriptional dysregulation as underlying mechanism for post-stroke cognitive decline.
Collapse
Affiliation(s)
- Dipanwita Sadhukhan
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700019, India.
- Molecular Biology & Clinical Neuroscience Division, National Neurosciences Centre Calcutta, Kolkata, India.
| | - Arindam Biswas
- Molecular Biology & Clinical Neuroscience Division, National Neurosciences Centre Calcutta, Kolkata, India
| | - Smriti Mishra
- Molecular Biology & Clinical Neuroscience Division, National Neurosciences Centre Calcutta, Kolkata, India
| | - Koustav Chatterjee
- Department of Neurology, Institute of Neurosciences Kolkata, Kolkata, India
| | - Daytee Maji
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Parama Mitra
- Molecular Biology & Clinical Neuroscience Division, National Neurosciences Centre Calcutta, Kolkata, India
| | - Priyanka Mukherjee
- Molecular Biology & Clinical Neuroscience Division, National Neurosciences Centre Calcutta, Kolkata, India
| | - Gargi Podder
- Institute of Post Graduate of Medical Education & Research and Bangur Institute of Neurosciences, Kolkata, India
| | - Biman Kanti Ray
- Institute of Post Graduate of Medical Education & Research and Bangur Institute of Neurosciences, Kolkata, India
| | - Atanu Biswas
- Institute of Post Graduate of Medical Education & Research and Bangur Institute of Neurosciences, Kolkata, India
| | - Tapas Kumar Banerjee
- Molecular Biology & Clinical Neuroscience Division, National Neurosciences Centre Calcutta, Kolkata, India
| | - Subhra Prakash Hui
- S. N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, India
| | - Ishani Deb
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700019, India.
| |
Collapse
|
3
|
Chen P, Ban W, Wang W, You Y, Yang Z. The Devastating Effects of Sleep Deprivation on Memory: Lessons from Rodent Models. Clocks Sleep 2023; 5:276-294. [PMID: 37218868 DOI: 10.3390/clockssleep5020022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023] Open
Abstract
In this narrative review article, we discuss the role of sleep deprivation (SD) in memory processing in rodent models. Numerous studies have examined the effects of SD on memory, with the majority showing that sleep disorders negatively affect memory. Currently, a consensus has not been established on which damage mechanism is the most appropriate. This critical issue in the neuroscience of sleep remains largely unknown. This review article aims to elucidate the mechanisms that underlie the damaging effects of SD on memory. It also proposes a scientific solution that might explain some findings. We have chosen to summarize literature that is both representative and comprehensive, as well as innovative in its approach. We examined the effects of SD on memory, including synaptic plasticity, neuritis, oxidative stress, and neurotransmitters. Results provide valuable insights into the mechanisms by which SD impairs memory function.
Collapse
Affiliation(s)
- Pinqiu Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Weikang Ban
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Wenyan Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Yuyang You
- School of Automation, Beijing Institute of Technology, Beijing 100081, China
| | - Zhihong Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
4
|
Barrio-Alonso E, Lituma PJ, Notaras MJ, Albero R, Bouchekioua Y, Wayland N, Stankovic IN, Jain T, Gao S, Calderon DP, Castillo PE, Colak D. Circadian protein TIMELESS regulates synaptic function and memory by modulating cAMP signaling. Cell Rep 2023; 42:112375. [PMID: 37043347 PMCID: PMC10564971 DOI: 10.1016/j.celrep.2023.112375] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 03/07/2023] [Accepted: 03/24/2023] [Indexed: 04/13/2023] Open
Abstract
The regulation of neurons by circadian clock genes is thought to contribute to the maintenance of neuronal functions that ultimately underlie animal behavior. However, the impact of specific circadian genes on cellular and molecular mechanisms controlling synaptic plasticity and cognitive function remains elusive. Here, we show that the expression of the circadian protein TIMELESS displays circadian rhythmicity in the mammalian hippocampus. We identify TIMELESS as a chromatin-bound protein that targets synaptic-plasticity-related genes such as phosphodiesterase 4B (Pde4b). By promoting Pde4b transcription, TIMELESS negatively regulates cAMP signaling to modulate AMPA receptor GluA1 function and influence synaptic plasticity. Conditional deletion of Timeless in the adult forebrain impairs working and contextual fear memory in mice. These cognitive phenotypes were accompanied by attenuation of hippocampal Schaffer-collateral synapse long-term potentiation. Together, these data establish a neuron-specific function of mammalian TIMELESS by defining a mechanism that regulates synaptic plasticity and cognitive function.
Collapse
Affiliation(s)
- Estibaliz Barrio-Alonso
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Pablo J Lituma
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Michael J Notaras
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Robert Albero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Youcef Bouchekioua
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
| | - Natalie Wayland
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Isidora N Stankovic
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Tanya Jain
- Program of Neurosciences, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Sijia Gao
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
| | | | - Pablo E Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dilek Colak
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA; Gale & Ira Drukier Institute for Children's Health, Weill Cornell Medical College, Cornell University, New York, NY, USA.
| |
Collapse
|
5
|
Deibel SH, Higdon S, Cassell TTS, House-Denine ML, Giberson E, Webb IC, Thorpe CM. Impaired Morris water task retention following T21 light dark cycle exposure is not due to reduced hippocampal c-FOS expression. Front Behav Neurosci 2022; 16:1025388. [PMID: 36311860 PMCID: PMC9596763 DOI: 10.3389/fnbeh.2022.1025388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/09/2022] [Indexed: 11/21/2022] Open
Abstract
Circadian rhythms influence virtually all aspects of physiology and behavior. This is problematic when circadian rhythms no longer reliably predict time. Circadian rhythm disruption can impair memory, yet we don’t know how this fully works at the systems and molecular level. When trying to determine the root of a memory impairment, assessing neuronal activation with c-FOS is useful. This has yet to be assessed in the hippocampi of circadian rhythm disrupted rats in a hippocampal gold standard task. Rats were trained on the Morris water task (MWT), then received 6 days of a 21-h day (T21), 13 days of a normal light dark cycle, probe trial, and tissue extraction an hour later. Despite having impaired memory in the probe trial, compared to controls there were no differences in c-FOS expression in hippocampal sub regions: CA1; CA3; Dentate gyrus. These data confirm others in hamsters demonstrating that arrhythmicity which produces an impairment in spontaneous alternation does not affect c-FOS in the dentate gyrus. The current study indicates that the memory impairment induced by a lighting manipulation is likely not due to attenuated neuronal activation. Determining how the master clock in the brain communicates with the hippocampus is needed to untangle the relationship between circadian rhythms and memory.
Collapse
Affiliation(s)
- Scott H. Deibel
- Department of Psychology, University of New Brunswick, Fredericton, NB, Canada
- *Correspondence: Scott H. Deibel,
| | - S. Higdon
- Department of Psychology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - T. T. S. Cassell
- Department of Psychology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - M. L. House-Denine
- Department of Psychology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - E. Giberson
- Department of Psychology, University of New Brunswick, Fredericton, NB, Canada
| | - I. C. Webb
- Department of Psychology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - C. M. Thorpe
- Department of Psychology, Memorial University of Newfoundland, St. John’s, NL, Canada
| |
Collapse
|
6
|
Deibel SH, Lewis LM, Cleary J, Cassell TTS, Skinner DM, Thorpe CM. Unpredictable mealtimes rather than social jetlag affects acquisition and retention of hippocampal dependent memory. Behav Processes 2022; 201:104704. [PMID: 35842197 DOI: 10.1016/j.beproc.2022.104704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/15/2022] [Accepted: 07/11/2022] [Indexed: 11/19/2022]
Abstract
Some degree of circadian rhythm disruption is hard to avoid in today's society. Along, with many other deleterious effects, circadian rhythm disruption impairs memory. One way to study this is to expose rats to daylengths that are outside the range of entrainment. As a result, circadian processes and behaviours occur during phases of the light dark cycle in which they typically would not. Even brief exposures to these day lengths can impair hippocampal dependent memory. In a recent report, we created an unentrainable light dark cycle that was intended to resemble aspects of social jetlag. As predictable mealtime impacts circadian entrainment, in that report, we also created an unpredictable meal schedule with the idea that failure to entrain to a meal might afford a disadvantage in some instances. Both of these manipulations impaired retention in a spatial water plus-maze task. Using the same manipulations, the present study investigated their effects on acquisition in distributed and massed spatial water plus-maze paradigms. As in other reports with unentrainable daylengths, acquisition was not affected by our lighting manipulation. Conversely, in accordance with our past report, unpredictable mealtimes had a harmful effect on hippocampal dependent memory. Notably, impaired acquisition in the distributed version, and impaired retention in the massed version. In tandem, these data suggest that failure to consolidate or retrieve the information is the likely culprit. The unpredictable mealtime manipulation offers a unique opportunity to study the effects of circadian entrainment on memory.
Collapse
Affiliation(s)
- Scott H Deibel
- Department of Psychology, University of New Brunswick, Canada.
| | - Leanna M Lewis
- Department of Psychology, Memorial University of Newfoundland, Canada
| | - Jillian Cleary
- Department of Psychology, Memorial University of Newfoundland, Canada
| | | | - Darlene M Skinner
- Department of Psychology, Memorial University of Newfoundland, Canada
| | | |
Collapse
|
7
|
Gessner N, Shinbashi M, Chuluun B, Heller C, Pittaras E. Handling, task complexity, time-of-day, and sleep deprivation as dynamic modulators of recognition memory in mice. Physiol Behav 2022; 251:113803. [PMID: 35398333 DOI: 10.1016/j.physbeh.2022.113803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 12/25/2022]
Abstract
Sleep is essential for optimal cognitive functioning. Although we lack a complete understanding of the role of sleep in memory consolidation, we know that various factors that disturb sleep or sleep quality have consequences for cognitive performance. Such factors can be unintended components of behavioral experiments on rodents and other experimental animals that generate differing results from different labs. These experimental variables include habituation to handling, intended or unintended sleep deprivation, task complexity, time of testing, and environmental features. We have examined how these variables impact recognition memory in C57BL/6 mice. Handled mice outperformed their non-handled counterparts across different combinations of delay phase duration and lighting conditions. Results also suggest that simple task recall is more resistant to diurnal variation and the impairing effects of sleep deprivation than is complex task recall. This study underscores the role of protocol and environmental factors in recognition memory and in conflicting results from different laboratories.
Collapse
Affiliation(s)
- Nicholas Gessner
- Stanford University Department of Biology, 371 Jane Stanford Way, Stanford, CA 94305-5020
| | - Meagan Shinbashi
- Stanford University Department of Biology, 371 Jane Stanford Way, Stanford, CA 94305-5020
| | - Bayarsaikhan Chuluun
- Stanford University Department of Biology, 371 Jane Stanford Way, Stanford, CA 94305-5020
| | - Craig Heller
- Stanford University Department of Biology, 371 Jane Stanford Way, Stanford, CA 94305-5020
| | - Elsa Pittaras
- Stanford University Department of Biology, 371 Jane Stanford Way, Stanford, CA 94305-5020.
| |
Collapse
|
8
|
Protein interaction networks of the mammalian core clock proteins. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 131:207-233. [PMID: 35871891 DOI: 10.1016/bs.apcsb.2022.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Circadian rhythm is a 24-h cycle that regulates the biochemical and behavioral changes of organisms. It controls a wide range of functions, from gene expression to behavior, allowing organisms to anticipate daily changes in their environment. In mammals, circadian rhythm is generated by a complex transcriptional and translational feedback loop mechanism. The binding of CLOCK/BMAL1 heterodimer to the E-box of DNA located within the promoter region initiates transcription of clock control genes including the transcription of the other two core clock genes of Periods (Pers) and Cryptochromes (Crys). Then PERs and CRYs along with casein kinase 1ɛ/Δ translocate into the nucleus where they suppress CLOCK/BMAL1 transactivation and, in turn, clock-regulated gene expression. Various clock components must be operational to aid in their stabilization and period extension in circadian rhythm. In this review, we have highlighted the recent progress for the core clock interacting proteins to maintain and to stabilize circadian rhythm in mammals.
Collapse
|
9
|
Smith JG, Sato T, Shimaji K, Koronowski KB, Petrus P, Cervantes M, Kinouchi K, Lutter D, Dyar KA, Sassone-Corsi P. Antibiotic-induced microbiome depletion remodels daily metabolic cycles in the brain. Life Sci 2022; 303:120601. [PMID: 35561749 DOI: 10.1016/j.lfs.2022.120601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 11/29/2022]
Abstract
The gut microbiome influences cognition and behavior in mammals, yet its metabolic impact on the brain is only starting to be defined. Using metabolite profiling of antibiotics-treated mice, we reveal the microbiome as a key input controlling circadian metabolic cycles in the brain. Intra and inter-region analyses characterise the influence of the microbiome on the suprachiasmatic nucleus, containing the central clockwork, as well as the hippocampus and cortex, regions involved in learning and behavior.
Collapse
Affiliation(s)
- Jacob G Smith
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, CA 92697, USA.
| | - Tomoki Sato
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
| | - Kohei Shimaji
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
| | - Kevin B Koronowski
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
| | - Paul Petrus
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
| | - Marlene Cervantes
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
| | - Kenichiro Kinouchi
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, CA 92697, USA; Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Dominik Lutter
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Computational Discovery Research, Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC), Helmholtz Zentrum München, Neuherberg, Germany
| | - Kenneth A Dyar
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Metabolic Physiology, Institute for Diabetes and Cancer, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
| |
Collapse
|
10
|
Hoyt KR, Obrietan K. Circadian clocks, cognition, and Alzheimer's disease: synaptic mechanisms, signaling effectors, and chronotherapeutics. Mol Neurodegener 2022; 17:35. [PMID: 35525980 PMCID: PMC9078023 DOI: 10.1186/s13024-022-00537-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 04/08/2022] [Indexed: 12/20/2022] Open
Abstract
Modulation of basic biochemical and physiological processes by the circadian timing system is now recognized as a fundamental feature of all mammalian organ systems. Within the central nervous system, these clock-modulating effects are reflected in some of the most complex behavioral states including learning, memory, and mood. How the clock shapes these behavioral processes is only now beginning to be realized. In this review we describe recent findings regarding the complex set of cellular signaling events, including kinase pathways, gene networks, and synaptic circuits that are under the influence of the clock timing system and how this, in turn, shapes cognitive capacity over the circadian cycle. Further, we discuss the functional roles of the master circadian clock located in the suprachiasmatic nucleus, and peripheral oscillator populations within cortical and limbic circuits, in the gating of synaptic plasticity and memory over the circadian cycle. These findings are then used as the basis to discuss the connection between clock dysregulation and cognitive impairments resulting from Alzheimer's disease (AD). In addition, we discuss the conceptually novel idea that in AD, there is a selective disruption of circadian timing within cortical and limbic circuits, and that it is the disruption/desynchronization of these regions from the phase-entraining effects of the SCN that underlies aspects of the early- and mid-stage cognitive deficits in AD. Further, we discuss the prospect that the disruption of circadian timing in AD could produce a self-reinforcing feedback loop, where disruption of timing accelerates AD pathogenesis (e.g., amyloid deposition, oxidative stress and cell death) that in turn leads to a further disruption of the circadian timing system. Lastly, we address potential therapeutic approaches that could be used to strengthen cellular timing networks and, in turn, how these approaches could be used to improve cognitive capacity in Alzheimer's patients.
Collapse
Affiliation(s)
- Kari R Hoyt
- Division of Pharmaceutics and Pharmacology, Ohio State University, 412 Riffe Building, 12th Ave, Columbus, OH, 43210, USA.
| | - Karl Obrietan
- Department of Neuroscience, Ohio State University, Graves Hall, 333 W. 10th Ave, Columbus, OH, 43210, USA.
| |
Collapse
|
11
|
Carvalho da Silva AM, Lemos C, Silva HB, Ferreira IL, Tomé AR, Rego AC, Cunha RA. Simultaneous Alteration of the Circadian Variation of Memory, Hippocampal Synaptic Plasticity, and Metabolism in a Triple Transgenic Mouse Model of Alzheimer’s Disease. Front Aging Neurosci 2022; 14:835885. [PMID: 35431906 PMCID: PMC9009366 DOI: 10.3389/fnagi.2022.835885] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/02/2022] [Indexed: 12/28/2022] Open
Abstract
Alzheimer’s disease (AD) is characterized by progressive memory deficits accompanied by synaptic and metabolic deficits, namely of mitochondrial function. AD patients also display a disrupted circadian pattern. Thus, we now compared memory performance, synaptic plasticity, and mitochondria function in 24-week-old non-transgenic (non-Tg) and triple transgenic male mice modeling AD (3xTg-AD) at Zeitgeber 04 (ZT-4, inactive phase) and ZT-16 (active phase). Using the Morris water maze test to minimize the influence of circadian-associated locomotor activity, we observed a circadian variation in hippocampus-dependent learning performance in non-Tg mice, which was impaired in 3xTg-AD mice. 3xTg-AD mice also displayed a lack of circadian variation of their performance in the reversal spatial learning task. Additionally, the amplitude of hippocampal long-term potentiation also exhibited a circadian profile in non-Tg mice, which was not observed in 3xTg-AD mice. Moreover, cerebral cortical synaptosomes of non-Tg mice also displayed a circadian variation of FCCP-stimulated oxygen consumption as well as in mitochondrial calcium retention that were blunted in 3xTg-AD mice. In sum, this multidimensional study shows that the ability to maintain a circadian oscillation in brain behavior, synaptic plasticity, and synaptic mitochondria function are simultaneously impaired in 3xTg-AD mice, highlighting the effects of circadian misalignment in AD.
Collapse
Affiliation(s)
- António M. Carvalho da Silva
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- *Correspondence: António M. Carvalho da Silva,
| | - Cristina Lemos
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Henrique B. Silva
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ildete L. Ferreira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Angelo R. Tomé
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - A. Cristina Rego
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- A. Cristina Rego,
| | - Rodrigo A. Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Rodrigo A. Cunha,
| |
Collapse
|
12
|
West AS, Schønsted MI, Iversen HK. Impact of the circadian clock on fibrinolysis and coagulation in healthy individuals and cardiovascular patients - A systematic review. Thromb Res 2021; 207:75-84. [PMID: 34563981 DOI: 10.1016/j.thromres.2021.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/06/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Human body functions exhibit a circadian rhythm generated in peripheral cells and synchronized by the suprachiasmatic nucleus (SCN), which mostly is entrained by the daily light/dark cycles. Activity, meals and posture are capable of interfering with the endogenous circadian rhythm of coagulation parameters. An increasing number of human disorders show a circadian component, and epidemiological studies find cardiovascular events to peak in the morning hours. The aim was to review the circadian rhythms impact on fibrinolysis and coagulation in healthy individuals and cardiovascular patients. MATERIALS AND METHODS A total number of 25 studies were identified where 8 enrolled cardiovascular patients with or without healthy individuals. Using a MeSH-search in MEDLINE PubMed. Only original peer-reviewed papers were included. RESULTS Results showed substantial variance with respect to exhibition of circadian rhythms and/or peak/trough times. Circadian rhythms of fibrinolysis were less pronounced in cardiovascular patients than in healthy individuals with decreased levels in the morning hours compared to healthy inducing higher risk of blood clotting. CONCLUSIONS Because of small studied group sizes and failure to control for entraining factors, larger studies are needed to fully establish the effects of the circadian rhythm on especially coagulation. The findings of chronobiologic rhythms in coagulation and fibrinolysis could suggest a need for a chrono-pharmacological approach when treating/preventing cardiovascular diseases.
Collapse
Affiliation(s)
- A S West
- Stroke Centre Rigshospitalet, Department of Neurology, Copenhagen, Capital Region, Denmark.
| | - M I Schønsted
- Stroke Centre Rigshospitalet, Department of Neurology, Copenhagen, Capital Region, Denmark
| | - H K Iversen
- Stroke Centre Rigshospitalet, Department of Neurology, Copenhagen, Capital Region, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Samoilova EM, Belopasov VV, Ekusheva EV, Zhang C, Troitskiy AV, Baklaushev VP. Epigenetic Clock and Circadian Rhythms in Stem Cell Aging and Rejuvenation. J Pers Med 2021; 11:1050. [PMID: 34834402 PMCID: PMC8620936 DOI: 10.3390/jpm11111050] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022] Open
Abstract
This review summarizes the current understanding of the interaction between circadian rhythms of gene expression and epigenetic clocks characterized by the specific profile of DNA methylation in CpG-islands which mirror the senescence of all somatic cells and stem cells in particular. Basic mechanisms of regulation for circadian genes CLOCK-BMAL1 as well as downstream clock-controlled genes (ССG) are also discussed here. It has been shown that circadian rhythms operate by the finely tuned regulation of transcription and rely on various epigenetic mechanisms including the activation of enhancers/suppressors, acetylation/deacetylation of histones and other proteins as well as DNA methylation. Overall, up to 20% of all genes expressed by the cell are subject to expression oscillations associated with circadian rhythms. Additionally included in the review is a brief list of genes involved in the regulation of circadian rhythms, along with genes important for cell aging, and oncogenesis. Eliminating some of them (for example, Sirt1) accelerates the aging process, while the overexpression of Sirt1, on the contrary, protects against age-related changes. Circadian regulators control a number of genes that activate the cell cycle (Wee1, c-Myc, p20, p21, and Cyclin D1) and regulate histone modification and DNA methylation. Approaches for determining the epigenetic age from methylation profiles across CpG islands in individual cells are described. DNA methylation, which characterizes the function of the epigenetic clock, appears to link together such key biological processes as regeneration and functioning of stem cells, aging and malignant transformation. Finally, the main features of adult stem cell aging in stem cell niches and current possibilities for modulating the epigenetic clock and stem cells rejuvenation as part of antiaging therapy are discussed.
Collapse
Affiliation(s)
- Ekaterina M. Samoilova
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, FMBA of Russia, 115682 Moscow, Russia; (A.V.T.); (V.P.B.)
| | | | - Evgenia V. Ekusheva
- Academy of Postgraduate Education of the Federal Scientific and Clinical Center for Specialized Types of Medical Care and Medical Technologies, FMBA of Russia, 125371 Moscow, Russia;
| | - Chao Zhang
- Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China;
| | - Alexander V. Troitskiy
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, FMBA of Russia, 115682 Moscow, Russia; (A.V.T.); (V.P.B.)
| | - Vladimir P. Baklaushev
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, FMBA of Russia, 115682 Moscow, Russia; (A.V.T.); (V.P.B.)
| |
Collapse
|
14
|
Lehr AB, McDonald RJ, Thorpe CM, Tetzlaff C, Deibel SH. A local circadian clock for memory? Neurosci Biobehav Rev 2021; 127:946-957. [PMID: 33476672 DOI: 10.1016/j.neubiorev.2020.11.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/20/2020] [Accepted: 11/30/2020] [Indexed: 12/20/2022]
Abstract
The master clock, suprachiasmatic nucleus, is believed to control peripheral circadian oscillators throughout the brain and body. However, recent data suggest there is a circadian clock involved in learning and memory, potentially housed in the hippocampus, which is capable of acting independently of the master clock. Curiously, the hippocampal clock appears to be influenced by the master clock and by hippocampal dependent learning, while under certain conditions it may also revert to its endogenous circadian rhythm. Here we propose a mechanism by which the hippocampal clock could locally determine the nature of its entrainment. We introduce a novel theoretical framework, inspired by but extending beyond the hippocampal memory clock, which provides a new perspective on how circadian clocks throughout the brain coordinate their rhythms. Importantly, a local clock for memory would suggest that hippocampal-dependent learning at the same time every day should improve memory, opening up a range of possibilities for non-invasive therapies to alleviate the detrimental effects of circadian rhythm disruption on human health.
Collapse
Affiliation(s)
- Andrew B Lehr
- Department of Computational Neuroscience, University of Göttingen, Germany; Bernstein Center for Computational Neuroscience, University of Göttingen, Germany
| | | | | | - Christian Tetzlaff
- Department of Computational Neuroscience, University of Göttingen, Germany; Bernstein Center for Computational Neuroscience, University of Göttingen, Germany
| | - Scott H Deibel
- Department of Psychology, Memorial University of Newfoundland, Canada.
| |
Collapse
|
15
|
Davis CJ, Gerstner JR, Vanderheyden WM. Single prolonged stress blocks sleep homeostasis and pre-trauma sleep deprivation does not exacerbate the severity of trauma-induced fear-associated memory impairments. PLoS One 2021; 16:e0243743. [PMID: 33406143 PMCID: PMC7787370 DOI: 10.1371/journal.pone.0243743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/26/2020] [Indexed: 11/25/2022] Open
Abstract
Sleep is intimately linked to cognitive performance and exposure to traumatic stress that leads to post-traumatic stress disorder (PTSD) impairs both sleep and cognitive function. However, the contribution of pre-trauma sleep loss to subsequent trauma-dependent fear-associated memory impairment remains unstudied. We hypothesized that sleep deprivation (SD) prior to trauma exposure may increase the severity of a PTSD-like phenotype in rats exposed to single prolonged stress (SPS), a rodent model of PTSD. Rats were exposed to SPS alone, SD alone, or a combination of SPS+SD and measures of fear-associated memory impairments and vigilance state changes were compared to a group of control animals not exposed to SPS or SD. We found that SPS, and SPS+SD animals showed impaired fear-associated memory processing and that the addition of SD to SPS did not further exaggerate the effect of SPS alone. Additionally, the combination of SPS with SD results in a unique homeostatic sleep duration phenotype when compared to SD, SPS, or control animals. SPS exposure following SD represses homeostatic rebound and eliminates sleep-deprivation-induced increases in NREM sleep delta power. This work identifies a unique time frame where trauma exposure and sleep interact and identifies this window of time as a potential therapeutic treatment window for staving off the negative consequences of trauma exposure.
Collapse
Affiliation(s)
- Christopher J. Davis
- Department of Biomedical Sciences, WSU Health Sciences Spokane, Elson S. Floyd College of Medicine, Spokane, Washington, United States of America
| | - Jason R. Gerstner
- Department of Biomedical Sciences, WSU Health Sciences Spokane, Elson S. Floyd College of Medicine, Spokane, Washington, United States of America
| | - William M. Vanderheyden
- Department of Biomedical Sciences, WSU Health Sciences Spokane, Elson S. Floyd College of Medicine, Spokane, Washington, United States of America
| |
Collapse
|
16
|
Cal-Kayitmazbatir S, Kulkoyluoglu-Cotul E, Growe J, Selby CP, Rhoades SD, Malik D, Oner H, Asimgil H, Francey LJ, Sancar A, Kruger WD, Hogenesch JB, Weljie A, Anafi RC, Kavakli IH. CRY1-CBS binding regulates circadian clock function and metabolism. FEBS J 2021; 288:614-639. [PMID: 32383312 PMCID: PMC7648728 DOI: 10.1111/febs.15360] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/09/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022]
Abstract
Circadian disruption influences metabolic health. Metabolism modulates circadian function. However, the mechanisms coupling circadian rhythms and metabolism remain poorly understood. Here, we report that cystathionine β-synthase (CBS), a central enzyme in one-carbon metabolism, functionally interacts with the core circadian protein cryptochrome 1 (CRY1). In cells, CBS augments CRY1-mediated repression of the CLOCK/BMAL1 complex and shortens circadian period. Notably, we find that mutant CBS-I278T protein, the most common cause of homocystinuria, does not bind CRY1 or regulate its repressor activity. Transgenic CbsZn/Zn mice, while maintaining circadian locomotor activity period, exhibit reduced circadian power and increased expression of E-BOX outputs. CBS function is reciprocally influenced by CRY1 binding. CRY1 modulates enzymatic activity of the CBS. Liver extracts from Cry1-/- mice show reduced CBS activity that normalizes after the addition of exogenous wild-type (WT) CRY1. Metabolomic analysis of WT, CbsZn/Zn , Cry1-/- , and Cry2-/- samples highlights the metabolic importance of endogenous CRY1. We observed temporal variation in one-carbon and transsulfuration pathways attributable to CRY1-induced CBS activation. CBS-CRY1 binding provides a post-translational switch to modulate cellular circadian physiology and metabolic control.
Collapse
Affiliation(s)
- Sibel Cal-Kayitmazbatir
- Department Molecular Biology and Genetics, Koc University
Rumelifeneri Yolu, Sariyer, Istanbul, Turkey
| | - Eylem Kulkoyluoglu-Cotul
- Department Chemical and Biological Engineering Koc
University Rumelifeneri Yolu, Sariyer, Istanbul, Turkey
| | - Jacqueline Growe
- Systems Pharmacology and Translational Therapeutics,
University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Christopher P. Selby
- Department of Biochemistry and Biophysics, University of
North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Seth D. Rhoades
- Systems Pharmacology and Translational Therapeutics,
University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Dania Malik
- Systems Pharmacology and Translational Therapeutics,
University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Hasimcan Oner
- Department Chemical and Biological Engineering Koc
University Rumelifeneri Yolu, Sariyer, Istanbul, Turkey
| | - Hande Asimgil
- Department Chemical and Biological Engineering Koc
University Rumelifeneri Yolu, Sariyer, Istanbul, Turkey
| | - Lauren J. Francey
- Divisions of Human Genetics and Immunobiology, Cincinnati
Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, University of
North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Warren D. Kruger
- Cancer Biology Program, Fox Chase Cancer Center,
Philadelphia, PA, USA
| | - John B. Hogenesch
- Systems Pharmacology and Translational Therapeutics,
University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Divisions of Human Genetics and Immunobiology, Cincinnati
Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Aalim Weljie
- Systems Pharmacology and Translational Therapeutics,
University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ron C. Anafi
- Department of Medicine, Chronobiology and Sleep Institute,
University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ibrahim Halil Kavakli
- Department Molecular Biology and Genetics, Koc University
Rumelifeneri Yolu, Sariyer, Istanbul, Turkey
- Department Chemical and Biological Engineering Koc
University Rumelifeneri Yolu, Sariyer, Istanbul, Turkey
| |
Collapse
|
17
|
Deibel SH, McDonald RJ, Kolla NJ. Are Owls and Larks Different When it Comes to Aggression? Genetics, Neurobiology, and Behavior. Front Behav Neurosci 2020; 14:39. [PMID: 32256322 PMCID: PMC7092663 DOI: 10.3389/fnbeh.2020.00039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/25/2020] [Indexed: 12/16/2022] Open
Abstract
This review focuses on the contribution of circadian rhythms to aggression with a multifaceted approach incorporating genetics, neural networks, and behavior. We explore the hypothesis that chronic circadian misalignment is contributing to increased aggression. Genes involved in both circadian rhythms and aggression are discussed as a possible mechanism for increased aggression that might be elicited by circadian misalignment. We then discuss the neural networks underlying aggression and how dysregulation in the interaction of these networks evoked by circadian rhythm misalignment could contribute to aggression. The last section of this review will present recent human correlational data demonstrating the association between chronotype and/or circadian misalignment with aggression. With circadian rhythms and aggression being a burgeoning area of study, we hope that this review initiates more interest in this promising and topical area.
Collapse
Affiliation(s)
- Scott H Deibel
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Robert J McDonald
- Department of Neuroscience, University of Lethbridge, Lethbridge, AL, Canada
| | - Nathan J Kolla
- Waypoint Centre for Mental Health Care, Penetanguishene, ON, Canada.,Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
18
|
Newman AW, Deibel SH, Lewis LM, Viguers KB, Thorpe CM. Brief circadian rhythm disruption does not impair hippocampal dependent memory when rats are over-trained and given more re-entrainment days. LEARNING AND MOTIVATION 2020. [DOI: 10.1016/j.lmot.2020.101613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Kouzehgarani GN, Bothwell MY, Gillette MU. Circadian rhythm of redox state regulates membrane excitability in hippocampal CA1 neurons. Eur J Neurosci 2020; 51:34-46. [PMID: 30614107 PMCID: PMC6609501 DOI: 10.1111/ejn.14334] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/21/2018] [Accepted: 12/21/2018] [Indexed: 12/25/2022]
Abstract
Behaviors, such as sleeping, foraging, and learning, are controlled by different regions of the rat brain, yet they occur rhythmically over the course of day and night. They are aligned adaptively with the day-night cycle by an endogenous circadian clock in the suprachiasmatic nucleus (SCN), but local mechanisms of rhythmic control are not established. The SCN expresses a ~24-hr oscillation in reduction-oxidation that modulates its own neuronal excitability. Could circadian redox oscillations control neuronal excitability elsewhere in the brain? We focused on the CA1 region of the rat hippocampus, which is known for integrating information as memories and where clock gene expression undergoes a circadian oscillation that is in anti-phase to the SCN. Evaluating long-term imaging of endogenous redox couples and biochemical determination of glutathiolation levels, we observed oscillations with a ~24 hr period that is 180° out-of-phase to the SCN. Excitability of CA1 pyramidal neurons, primary hippocampal projection neurons, also exhibits a rhythm in resting membrane potential that is circadian time-dependent and opposite from that of the SCN. The reducing reagent glutathione rapidly and reversibly depolarized the resting membrane potential of CA1 neurons; the magnitude is time-of-day-dependent and, again, opposite from the SCN. These findings extend circadian redox regulation of neuronal excitability from the SCN to the hippocampus. Insights into this system contribute to understanding hippocampal circadian processes, such as learning and memory, seizure susceptibility, and memory loss with aging.
Collapse
Affiliation(s)
- Ghazal Naseri Kouzehgarani
- Neuroscience Program, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave., B107 CLSL, MC-123, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave., B107 CLSL, MC-123, Urbana, IL 61801, USA and Beckman Institute for Advanced Science & Technology, 405 N. Mathews Ave., Urbana, IL 61801, USA
| | - Mia Y. Bothwell
- Departments of Molecular & Integrative Physiology and University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave., B107 CLSL, MC-123, Urbana, IL 61801, USA
| | - Martha U. Gillette
- Neuroscience Program, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave., B107 CLSL, MC-123, Urbana, IL 61801, USA
- Departments of Molecular & Integrative Physiology and University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave., B107 CLSL, MC-123, Urbana, IL 61801, USA
- Cell & Developmental Biology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave., B107 CLSL, MC-123, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave., B107 CLSL, MC-123, Urbana, IL 61801, USA and Beckman Institute for Advanced Science & Technology, 405 N. Mathews Ave., Urbana, IL 61801, USA
| |
Collapse
|
20
|
Hasegawa S, Fukushima H, Hosoda H, Serita T, Ishikawa R, Rokukawa T, Kawahara-Miki R, Zhang Y, Ohta M, Okada S, Tanimizu T, Josselyn SA, Frankland PW, Kida S. Hippocampal clock regulates memory retrieval via Dopamine and PKA-induced GluA1 phosphorylation. Nat Commun 2019; 10:5766. [PMID: 31852900 PMCID: PMC6920429 DOI: 10.1038/s41467-019-13554-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 11/11/2019] [Indexed: 12/11/2022] Open
Abstract
Cognitive performance in people varies according to time-of-day, with memory retrieval declining in the late afternoon-early evening. However, functional roles of local brain circadian clocks in memory performance remains unclear. Here, we show that hippocampal clock controlled by the circadian-dependent transcription factor BMAL1 regulates time-of-day retrieval profile. Inducible transgenic dominant negative BMAL1 (dnBMAL1) expression in mouse forebrain or hippocampus disrupted retrieval of hippocampal memories at Zeitgeber Time 8-12, independently of retention delay, encoding time and Zeitgeber entrainment cue. This altered retrieval profile was associated with downregulation of hippocampal Dopamine-cAMP signaling in dnBMAL1 mice. These changes included decreases in Dopamine Receptors (D1-R and D5-R) and GluA1-S845 phosphorylation by PKA. Consistently, pharmacological activation of cAMP-signals or D1/5Rs rescued impaired retrieval in dnBMAL1 mice. Importantly, GluA1 S845A knock-in mice showed similar retrieval deficits with dnBMAL1 mice. Our findings suggest mechanisms underlying regulation of retrieval by hippocampal clock through D1/5R-cAMP-PKA-mediated GluA1 phosphorylation.
Collapse
Grants
- R01 MH119421 NIMH NIH HHS
- Grant-in-Aid for Scientific Research on Innovative Areas (17H05962).
- Grant-in-Aids for Scientific Research (A) (15H02488, 18H03944, 19H01047), Scientific Research (B) (23300120 and 20380078) and Challenging Exploratory Research (24650172, 26640014, 17K19464), Grant-in-Aids for Scientific Research on Priority Areas -Molecular Brain Science- (18022038 and 22022039), Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area) (24116008, 24116001, 23115716, 17H06084, 17H05961, 17H05581, 18H05428, 18H05434, 19H04917), MEXT-Supported Program for the Strategic Research Foundation at Private Universities (S1311017), Core Research for Evolutional Science and Technology (CREST), Japan, The Sumitomo Foundation, Japan and the Takeda Science Foundation, Japan, The Naito Foundation, The Uehara Memorial Foundation and The Science Research Promotion Fund, The Promotion and Mutual Aid Corporation for Private Schools of Japan.
Collapse
Affiliation(s)
- Shunsuke Hasegawa
- Department of Bioscience, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
- CREST, Japan Science and Technology Agency, Saitama, 332-0012, Japan
| | - Hotaka Fukushima
- Department of Bioscience, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
- CREST, Japan Science and Technology Agency, Saitama, 332-0012, Japan
| | - Hiroshi Hosoda
- Department of Bioscience, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Tatsurou Serita
- Department of Bioscience, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Rie Ishikawa
- Department of Bioscience, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
- Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Tomohiro Rokukawa
- Department of Bioscience, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Ryouka Kawahara-Miki
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Yue Zhang
- Department of Bioscience, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
- CREST, Japan Science and Technology Agency, Saitama, 332-0012, Japan
| | - Miho Ohta
- Department of Bioscience, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Shintaro Okada
- Department of Bioscience, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Toshiyuki Tanimizu
- Department of Bioscience, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Sheena A Josselyn
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Paul W Frankland
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Satoshi Kida
- Department of Bioscience, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, 156-8502, Japan.
- CREST, Japan Science and Technology Agency, Saitama, 332-0012, Japan.
- Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan.
| |
Collapse
|
21
|
Wolter ME, Svoboda KR. Doing the locomotion: Insights and potential pitfalls associated with using locomotor activity as a readout of the circadian rhythm in larval zebrafish. J Neurosci Methods 2019; 330:108465. [PMID: 31634493 DOI: 10.1016/j.jneumeth.2019.108465] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/20/2019] [Accepted: 10/15/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND Zebrafish have been used as a model to study circadian rhythms (CRs) for over 20 years by analyzing various endpoints including locomotor activity. Such studies often utilize high-throughput analysis monitoring activity of larvae placed in well plates numbering >48 wells per plate. Although the CR can be influenced by numerous factors, it is not clear if such effects are permanent. Here, we investigated the variability of CRs of larvae analyzed in different types of well plates and determined the permanency of experimentally-induced aberrations in CRs. NEW METHOD Utilized the tracking software Ethovision XT to investigate how different well plate sizes influence the CR. Re-tested subjects for recovery from long-term CR disruptions and evaluated CR patterns at the individual level. RESULTS CR tracking using locomotion as a readout is best in 24 well plates. CR consistency is not maintained in larvae tracked in 48 or 96 well plates. A perturbed CR due to constant light recovered after just 3 days of a normal light/dark cycle. COMPARISON WITH EXISTING METHODS Unlike other CR locomotor-based assays, our approach allowed for a medium-throughput analysis of individual CRs, minimized variability and allowed for the re-evaluation of larval CRs 4-5 days later. CONCLUSIONS This medium-throughput locomotor CR analysis allows for a standardized, less variable approach whereby larvae can be re-tested to identify potential long-term changes after experimental manipulations. Long-term behavioral experiments in 48 or 96 well plates may impart stress on the larvae due to space constraints which could impact nervous system function and/or behavior.
Collapse
Affiliation(s)
- Matthew E Wolter
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53205, USA
| | - Kurt R Svoboda
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53205, USA.
| |
Collapse
|
22
|
Multi-scale modeling of the circadian modulation of learning and memory. PLoS One 2019; 14:e0219915. [PMID: 31323054 PMCID: PMC6641212 DOI: 10.1371/journal.pone.0219915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022] Open
Abstract
We propose a multi-scale model to explain the time-of-day effects on learning and memory. We specifically model the circadian variation of hippocampus (HC) dependent long-term potentiation (LTP), depression (LTD), and the fear conditioning paradigm in amygdala. The model we built has both Goodwin type circadian gene regulatory network (GRN) and the conductance model of Morris-Lecar (ML) type to explain the spontaneous firing patterns (SFR) in suprachiasmatic nucleus (SCN). In the conductance model, we also include N-Methyl-D-aspartic acid receptor (NMDAR) to study the circadian dependent changes in LTP/LTD in hippocampus and include both NMDAR and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) dynamics to explain the circadian modulation of fear conditioning paradigm in memory acquisition, recall, and extinction as seen in amygdala. Our multi-scale model captures the essential dynamics seen in the experiments and strongly supports the circadian time-of-the-day effects on learning and memory.
Collapse
|
23
|
Deibel SH, Hong NS, Moore K, Mysyk T, McDonald RJ. Hippocampal-dependent memory retention is unaffected by a T21 light–dark cycle in female Fischer brown Norway rats. BIOL RHYTHM RES 2019. [DOI: 10.1080/09291016.2019.1616454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Scott H. Deibel
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
- Department of Psychology, SHD is currently at Memorial University of Newfoundland, Newfoundland, Canada
| | - Nancy S. Hong
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Kevan Moore
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Tyler Mysyk
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Robert J. McDonald
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
24
|
Ertosun MG, Kocak G, Ozes ON. The regulation of circadian clock by tumor necrosis factor alpha. Cytokine Growth Factor Rev 2019; 46:10-16. [PMID: 31000463 DOI: 10.1016/j.cytogfr.2019.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/23/2019] [Accepted: 04/01/2019] [Indexed: 12/13/2022]
Abstract
All organisms display circadian rhythms which are under the control of the circadian clock located in the hypothalamus at the suprachiasmatic nucleus, (SCN). The circadian rhythms allow individuals to adjust their physiological activities and daily behavior for the diurnal changes in the living environment. To achieve these, all metabolic processes are aligned with the sleep/wake and fasting/feeding cycles. Subtle changes of daily behavior or food intake can result in misalignment of circadian rhythms. This can cause development of variety of metabolic diseases and even cancer. Although light plays a pivotal role for the activation of the master clock in SCN, the peripheral secondary clocks (or non-SCN), such as melatonin, growth hormone (GH), insulin, adiponectin and Ghrelin also are important in maintaining the circadian rhythms in the brain and peripheral organs. In recent years, growing body of evidence strongly suggest that CA2+ signaling, tumor necrosis factor alpha (TNFα) and transforming growth factor beta (TGFβ) also play very important roles in the regulation of circadian rhythms by regulating the transcription of the clock genes.
Collapse
Affiliation(s)
- Mustafa Gokhan Ertosun
- Akdeniz University School of Medicine, Department of Plastic, Reconstructive & Anesthetic Surgery, Turkey.
| | - Gamze Kocak
- Akdeniz University School of Medicine, Department of Medical Biology and Genetics, Turkey.
| | | |
Collapse
|
25
|
Kim P, Oster H, Lehnert H, Schmid SM, Salamat N, Barclay JL, Maronde E, Inder W, Rawashdeh O. Coupling the Circadian Clock to Homeostasis: The Role of Period in Timing Physiology. Endocr Rev 2019; 40:66-95. [PMID: 30169559 DOI: 10.1210/er.2018-00049] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 07/06/2018] [Indexed: 01/01/2023]
Abstract
A plethora of physiological processes show stable and synchronized daily oscillations that are either driven or modulated by biological clocks. A circadian pacemaker located in the suprachiasmatic nucleus of the ventral hypothalamus coordinates 24-hour oscillations of central and peripheral physiology with the environment. The circadian clockwork involved in driving rhythmic physiology is composed of various clock genes that are interlocked via a complex feedback loop to generate precise yet plastic oscillations of ∼24 hours. This review focuses on the specific role of the core clockwork gene Period1 and its paralogs on intra-oscillator and extra-oscillator functions, including, but not limited to, hippocampus-dependent processes, cardiovascular function, appetite control, as well as glucose and lipid homeostasis. Alterations in Period gene function have been implicated in a wide range of physical and mental disorders. At the same time, a variety of conditions including metabolic disorders also impact clock gene expression, resulting in circadian disruptions, which in turn often exacerbates the disease state.
Collapse
Affiliation(s)
- Pureum Kim
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Henrik Oster
- Institute of Neurobiology, University of Lübeck, Lübeck, Germany
| | - Hendrik Lehnert
- Department of Internal Medicine 1, University of Lübeck, Lübeck, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Sebastian M Schmid
- Department of Internal Medicine 1, University of Lübeck, Lübeck, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Nicole Salamat
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Johanna L Barclay
- Mater Research Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Erik Maronde
- Department of Anatomy, Goethe University Frankfurt, Frankfurt, Germany
| | - Warrick Inder
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
- Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Oliver Rawashdeh
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
26
|
Chi-Castañeda D, Ortega A. Glial Cells in the Genesis and Regulation of Circadian Rhythms. Front Physiol 2018; 9:88. [PMID: 29483880 PMCID: PMC5816069 DOI: 10.3389/fphys.2018.00088] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/26/2018] [Indexed: 12/26/2022] Open
Abstract
Circadian rhythms are biological oscillations with a period of ~24 h. These rhythms are orchestrated by a circadian timekeeper in the suprachiasmatic nucleus of the hypothalamus, the circadian "master clock," which exactly adjusts clock outputs to solar time via photic synchronization. At the molecular level, circadian rhythms are generated by the interaction of positive and negative feedback loops of transcriptional and translational processes of the so-called "clock genes." A large number of clock genes encode numerous proteins that regulate their own transcription and that of other genes, collectively known as "clock-controlled genes." In addition to the sleep/wake cycle, many cellular processes are regulated by circadian rhythms, including synaptic plasticity in which an exquisite interplay between neurons and glial cells takes place. In particular, there is compelling evidence suggesting that glial cells participate in and regulate synaptic plasticity in a circadian fashion, possibly representing the missing cellular and physiological link between circadian rhythms with learning and cognition processes. Here we review recent studies in support of this hypothesis, focusing on the interplay between glial cells, synaptic plasticity, and circadian rhythmogenesis.
Collapse
Affiliation(s)
- Donají Chi-Castañeda
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico, Mexico.,Soluciones para un México Verde S.A. de C.V., Ciudad de Mexico, Mexico
| | - Arturo Ortega
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico, Mexico
| |
Collapse
|
27
|
Ozturk N, Ozturk D, Kavakli IH, Okyar A. Molecular Aspects of Circadian Pharmacology and Relevance for Cancer Chronotherapy. Int J Mol Sci 2017; 18:E2168. [PMID: 29039812 PMCID: PMC5666849 DOI: 10.3390/ijms18102168] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/13/2017] [Accepted: 10/14/2017] [Indexed: 02/01/2023] Open
Abstract
The circadian timing system (CTS) controls various biological functions in mammals including xenobiotic metabolism and detoxification, immune functions, cell cycle events, apoptosis and angiogenesis. Although the importance of the CTS is well known in the pharmacology of drugs, it is less appreciated at the clinical level. Genome-wide studies highlighted that the majority of drug target genes are controlled by CTS. This suggests that chronotherapeutic approaches should be taken for many drugs to enhance their effectiveness. Currently chronotherapeutic approaches are successfully applied in the treatment of different types of cancers. The chronotherapy approach has improved the tolerability and antitumor efficacy of anticancer drugs both in experimental animals and in cancer patients. Thus, chronobiological studies have been of importance in determining the most appropriate time of administration of anticancer agents to minimize their side effects or toxicity and enhance treatment efficacy, so as to optimize the therapeutic ratio. This review focuses on the underlying mechanisms of the circadian pharmacology i.e., chronopharmacokinetics and chronopharmacodynamics of anticancer agents with the molecular aspects, and provides an overview of chronotherapy in cancer and some of the recent advances in the development of chronopharmaceutics.
Collapse
Affiliation(s)
- Narin Ozturk
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, TR-34116 Beyazit-Istanbul, Turkey.
| | - Dilek Ozturk
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, TR-34116 Beyazit-Istanbul, Turkey.
- Department of Pharmacology, Faculty of Pharmacy, Bezmialem Vakif University, TR-34093 Fatih-Istanbul, Turkey.
| | - Ibrahim Halil Kavakli
- Departments of Molecular Biology and Genetics and Chemical and Biological Engineering, Koc University, TR-34450 Sariyer-Istanbul, Turkey.
| | - Alper Okyar
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, TR-34116 Beyazit-Istanbul, Turkey.
| |
Collapse
|
28
|
Bhadra U, Thakkar N, Das P, Pal Bhadra M. Evolution of circadian rhythms: from bacteria to human. Sleep Med 2017; 35:49-61. [DOI: 10.1016/j.sleep.2017.04.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/07/2017] [Accepted: 04/18/2017] [Indexed: 12/20/2022]
|
29
|
Munn RG, Hardcastle K, Porter B, Bilkey D. Circadian-scale periodic bursts in theta and gamma-band coherence between hippocampus, cingulate and insular cortices. Neurobiol Sleep Circadian Rhythms 2017; 3:26-37. [PMID: 31236501 PMCID: PMC6575562 DOI: 10.1016/j.nbscr.2017.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 02/10/2017] [Accepted: 04/01/2017] [Indexed: 11/21/2022] Open
Abstract
Previous studies have demonstrated that mean activity levels in the hippocampus oscillate on a circadian timescale, both at the single neuron and EEG level. This oscillation is also entrained by the availability of food, suggesting that the circadian modulation of hippocampal activity might comprise part of the recently discovered food-entrainable circadian oscillator (FEO). In order to determine whether the circadian oscillation in hippocampal activity is linked to activity in other brain regions, we recorded field-potential EEG from hippocampus and two cortical regions known to connect to hippocampus; the anterior cingulate cortex and the agranular insular cortex. These latter regions are involved in executive control (cingulate) and gustatory feedback (insula) and so are in a position where they could usefully contribute to, or benefit from, hippocampal memorial information in order to undertake task-related processing. We recorded EEG from these three regions for 20 m every hour for 58 consecutive hours in one continuous exposure to the recording environment. We found that there are regular and distinct increases in magnitude coherence between hippocampus and both cortical regions for EEG in both theta (6-12 Hz) and gamma (30-48 Hz) bands. These periods of increased coherence are spaced approximately one solar day apart, appear not to be specifically light-entrained, and are most apparent for gamma frequency activity. The gamma association between the two cortical regions shows the same temporal pattern of coherence peaks as the hippocampal-cortical coherences. We propose that these peaks in coherence represent the transient synchronization of temporally tagged memorial information between the hippocampus and other brain regions for which this information may be relevant. These findings suggest that the FEO involves coordinated activity across a number of brain regions and may underlie a mechanism via which an organism can store and recall salient gustatory events on a circadian timescale.
Collapse
Affiliation(s)
- Robert G.K. Munn
- Department of Psychology, University of Otago, Dunedin, New Zealand
- Department of Neurobiology, Stanford University, USA
| | | | - Blake Porter
- Department of Psychology, University of Otago, Dunedin, New Zealand
| | - David Bilkey
- Department of Psychology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
30
|
Coria-Lucero CD, Golini RS, Ponce IT, Deyurka N, Anzulovich AC, Delgado SM, Navigatore-Fonzo LS. Rhythmic Bdnf and TrkB expression patterns in the prefrontal cortex are lost in aged rats. Brain Res 2016; 1653:51-58. [PMID: 27771283 DOI: 10.1016/j.brainres.2016.10.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 10/10/2016] [Accepted: 10/18/2016] [Indexed: 12/15/2022]
Abstract
Aging brain undergoes several changes leading to a decline in cognitive functions. Memory and learning-related genes such as Creb, Bdnf and its receptor TrkB, are expressed in different brain regions including prefrontal cortex. Those genes' proteins regulate a wide range of functions such as synaptic plasticity and long-term potentiation. In this work, our objectives were: 1) to investigate whether Creb1, Bdnf and TrkB genes display endogenous circadian expression rhythms, in the prefrontal cortex of rats maintained under constant darkness conditions; 2) to study the synchronization of those temporal patterns to the local cellular clock and 3) to evaluate the aging consequences on both cognition-related genes and activating clock transcription factor, BMAL1, rhythms. A bioinformatics analysis revealed clock-responsive (E-box) sites in regulatory regions of Creb1, Bdnf and TrkB genes. Additionally, cAMP response elements (CRE) were found in Bdnf and TrkB promoters. We observed those key cognition-related factors expression oscillates in the rat prefrontal cortex. Creb1 and TrkB mRNAs display a circadian rhythm with their highest levels occurring at the second half of the 24h period. Interestingly, the cosinor analysis revealed a 12-h rhythm of Bdnf transcript levels, with peaks occurring at the second half of the subjective day and night, respectively. As expected, the BMAL1 rhythm's acrophase precedes Creb1 and first Bdnf expression peaks. Noteworthy, Creb1, Bdnf and TrkB expression rhythms are lost in the prefrontal cortex of aged rats, probably, as consequence of the loss of BMAL1 protein circadian rhythm and altered function of the local cellular clock.
Collapse
Affiliation(s)
- Cinthia D Coria-Lucero
- Laboratory of Chronobiology, Multidisciplinary Institute of Biological Research-San Luis (IMIBIO-SL), National Council of Science and Technology (CONICET), National University of San Luis (UNSL)., Av Ejército de los Andes N° 950, D5700HHW, San Luis, Argentina
| | - Rebeca S Golini
- Laboratory of Chronobiology, Multidisciplinary Institute of Biological Research-San Luis (IMIBIO-SL), National Council of Science and Technology (CONICET), National University of San Luis (UNSL)., Av Ejército de los Andes N° 950, D5700HHW, San Luis, Argentina
| | - Ivana T Ponce
- Laboratory of Chronobiology, Multidisciplinary Institute of Biological Research-San Luis (IMIBIO-SL), National Council of Science and Technology (CONICET), National University of San Luis (UNSL)., Av Ejército de los Andes N° 950, D5700HHW, San Luis, Argentina
| | - Nicolas Deyurka
- Laboratory of Chronobiology, Multidisciplinary Institute of Biological Research-San Luis (IMIBIO-SL), National Council of Science and Technology (CONICET), National University of San Luis (UNSL)., Av Ejército de los Andes N° 950, D5700HHW, San Luis, Argentina
| | - Ana C Anzulovich
- Laboratory of Chronobiology, Multidisciplinary Institute of Biological Research-San Luis (IMIBIO-SL), National Council of Science and Technology (CONICET), National University of San Luis (UNSL)., Av Ejército de los Andes N° 950, D5700HHW, San Luis, Argentina
| | - Silvia M Delgado
- Laboratory of Chronobiology, Multidisciplinary Institute of Biological Research-San Luis (IMIBIO-SL), National Council of Science and Technology (CONICET), National University of San Luis (UNSL)., Av Ejército de los Andes N° 950, D5700HHW, San Luis, Argentina; Laboratory of Biology Reproduction, Multidisciplinary Institute of Biological Research-San Luis (IMIBIO-SL), National Council of Science and Technology (CONICET), National University of San Luis (UNSL)., Av Ejército de los Andes N° 950, D5700HHW, San Luis, Argentina
| | - Lorena S Navigatore-Fonzo
- Laboratory of Chronobiology, Multidisciplinary Institute of Biological Research-San Luis (IMIBIO-SL), National Council of Science and Technology (CONICET), National University of San Luis (UNSL)., Av Ejército de los Andes N° 950, D5700HHW, San Luis, Argentina.
| |
Collapse
|
31
|
Benard V, Geoffroy PA, Bellivier F. [Seasons, circadian rhythms, sleep and suicidal behaviors vulnerability]. Encephale 2016; 41:S29-37. [PMID: 26746320 DOI: 10.1016/s0013-7006(15)30004-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Suicidal behaviors are common in the general population and are so a major public health problem. In order to improve suicide prevention and to reduce the mortality by suicide, it appears essential to better identify suicide risk factors. Seasonality, circadian rhythms and sleep abnormalities have been already associated with numerous psychiatric disorders. This review aimed to characterize the associations between seasonality, circadian rhythms, sleep and suicidal behaviors including suicide attempts and completed suicides. METHODS We conducted a literature search between 1973 and 2015 in PubMed databases using the following terms: ("suicide" OR "suicidality" OR "suicide attempts" OR "suicidal behavior") AND ("circadian rhythms" OR "seasons" OR "sleep"). RESULTS Many studies confirm a specific seasonality for suicide with a higher peak of suicides in spring for both sex and a lower peak in autumn especially for women. This distribution seems to correlate with depressive symptoms (especially for the autumn peak), gender and different types of suicide. Regarding gender and type of suicide differences, males more commonly commit violent suicide with a higher rate of suicides in spring. Suicide behaviors appear to be influenced by climatic and biological factors like sunshine, daylight cycles, temperature, air pollutants, viruses, parasites and aeroallergens. Circadian variations exist in suicide rates depending on age with a morning peak for elder and an evening peak for youth. In addition, completed suicide peak in early morning whereas suicide attempts peak rather in later afternoon. Several biomarkers dysregulation like melatonin, serotonin and cortisol may be implicated in suicide circadian variations. Furthermore, specific sleep disorders like insomnia, nightmares and sleep deprivation are common risk factors of suicide and possibly independently of the presence of depressive symptoms. Finally, the efficacy of chronotherapeutics (such as luminotherapy, dark therapy, sleep deprivation and melatonin drugs) has been suggested in the reduction of suicidal behaviors. CONCLUSION The suicide seasonality is very well documented showing a main peak in spring and another one in autumn. A suicide circadian distribution also exists depending of the suicidal behavior intensity and of the age. Numerous sleep disorders are also suicide risk factors and can be treated with chronotherapeutics. A better identification of seasonality, circadian rhythms and sleep abnormalities in suicidal behaviors could allow a better prevention in suicidal attempts and a reduction in death by suicide.
Collapse
Affiliation(s)
- V Benard
- Centre Hospitalier Universitaire de Lille (CHRU), Lille, F-59000, France; Université de Lille, Lille, F-59000, France
| | - P A Geoffroy
- Inserm, U1144, Paris, F-75006, France; Université Paris Descartes, UMR-S 1144, Paris, F-75006, France; Université Paris Diderot, Sorbonne Paris Cité, UMR-S 1144, Paris, F-75013, France; AP-HP, GH Saint-Louis - Lariboisière - F. Widal, Pôle de Psychiatrie et de Médecine Addictologique, 75475 Paris cedex 10, France; Fondation FondaMental, Créteil, 94000, France
| | - F Bellivier
- Inserm, U1144, Paris, F-75006, France; Université Paris Diderot, Sorbonne Paris Cité, UMR-S 1144, Paris, F-75013, France; AP-HP, GH Saint-Louis - Lariboisière - F. Widal, Pôle de Psychiatrie et de Médecine Addictologique, 75475 Paris cedex 10, France; Fondation FondaMental, Créteil, 94000, France.
| |
Collapse
|
32
|
Elsaey MA, Sallam AED, Hassaneen E, Zaghloul MS. Circadian phase modulates the enhancing effect of the Egyptian Moringa peregrinaextract on learning and memory in mice. BIOL RHYTHM RES 2016. [DOI: 10.1080/09291016.2016.1183880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
33
|
Deibel SH, Zelinski EL, Keeley RJ, Kovalchuk O, McDonald RJ. Epigenetic alterations in the suprachiasmatic nucleus and hippocampus contribute to age-related cognitive decline. Oncotarget 2016; 6:23181-203. [PMID: 26252151 PMCID: PMC4695111 DOI: 10.18632/oncotarget.4036] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 12/31/1969] [Indexed: 12/16/2022] Open
Abstract
Circadian rhythm dysfunction and cognitive decline, specifically memory loss, frequently accompany natural aging. Circadian rhythms and memory are intertwined, as circadian rhythms influence memory formation and recall in young and old rodents. Although, the precise relationship between circadian rhythms and memory is still largely unknown, it is hypothesized that circadian rhythm disruption, which occurs during aging, contributes to age-associated cognitive decline, specifically memory loss. While there are a variety of mechanisms that could mediate this effect, changes in the epigenome that occur during aging has been proposed as a potential candidate. Interestingly, epigenetic mechanisms, such as DNA methylation and sirtuin1 (SIRT1) are necessary for both circadian rhythms and memory. During aging, similar alterations of epigenetic mechanisms occur in the suprachiasmatic nucleus (SCN) and hippocampus, which are necessary for circadian rhythm generation and memory, respectively. Recently, circadian rhythms have been linked to epigenetic function in the hippocampus, as some of these epigenetic mechanisms oscillate in the hippocampus and are disrupted by clock gene deletion. The current paper will review how circadian rhythms and memory change with age, and will suggest how epigenetic changes in these processes might contribute to age-related cognitive decline.
Collapse
Affiliation(s)
- Scott H Deibel
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Erin L Zelinski
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Robin J Keeley
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Robert J McDonald
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
34
|
Renaud J, Dumont F, Khelfaoui M, Foisset S, Letourneur F, Bienvenu T, Khwaja O, Dorseuil O, Billuart P. Identification of intellectual disability genes showing circadian clock-dependent expression in the mouse hippocampus. Neuroscience 2015; 308:11-50. [DOI: 10.1016/j.neuroscience.2015.08.066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 08/24/2015] [Accepted: 08/26/2015] [Indexed: 10/23/2022]
|
35
|
Malik A, Kondratov RV, Jamasbi RJ, Geusz ME. Circadian Clock Genes Are Essential for Normal Adult Neurogenesis, Differentiation, and Fate Determination. PLoS One 2015; 10:e0139655. [PMID: 26439128 PMCID: PMC4595423 DOI: 10.1371/journal.pone.0139655] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/15/2015] [Indexed: 02/01/2023] Open
Abstract
Adult neurogenesis creates new neurons and glia from stem cells in the human brain throughout life. It is best understood in the dentate gyrus (DG) of the hippocampus and the subventricular zone (SVZ). Circadian rhythms have been identified in the hippocampus, but the role of any endogenous circadian oscillator cells in hippocampal neurogenesis and their importance in learning or memory remains unclear. Any study of stem cell regulation by intrinsic circadian timing within the DG is complicated by modulation from circadian clocks elsewhere in the brain. To examine circadian oscillators in greater isolation, neurosphere cultures were prepared from the DG of two knockout mouse lines that lack a functional circadian clock and from mPer1::luc mice to identify circadian oscillations in gene expression. Circadian mPer1 gene activity rhythms were recorded in neurospheres maintained in a culture medium that induces neurogenesis but not in one that maintains the stem cell state. Although the differentiating neural stem progenitor cells of spheres were rhythmic, evidence of any mature neurons was extremely sparse. The circadian timing signal originated in undifferentiated cells within the neurosphere. This conclusion was supported by immunocytochemistry for mPER1 protein that was localized to the inner, more stem cell-like neurosphere core. To test for effects of the circadian clock on neurogenesis, media conditions were altered to induce neurospheres from BMAL1 knockout mice to differentiate. These cultures displayed unusually high differentiation into glia rather than neurons according to GFAP and NeuN expression, respectively, and very few BetaIII tubulin-positive, immature neurons were observed. The knockout neurospheres also displayed areas visibly devoid of cells and had overall higher cell death. Neurospheres from arrhythmic mice lacking two other core clock genes, Cry1 and Cry2, showed significantly reduced growth and increased astrocyte proliferation during differentiation, but they generated normal percentages of neuronal cells. Neuronal fate commitment therefore appears to be controlled through a non-clock function of BMAL1. This study provides insight into how cell autonomous circadian clocks and clock genes regulate adult neural stem cells with implications for treating neurodegenerative disorders and impaired brain functions by manipulating neurogenesis.
Collapse
Affiliation(s)
- Astha Malik
- Department of Biology, Bowling Green State University, Bowling Green, Ohio, United States of America
| | - Roman V. Kondratov
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, Ohio, United States of America
| | - Roudabeh J. Jamasbi
- Department of Biology, Bowling Green State University, Bowling Green, Ohio, United States of America
- Department of Public and Allied Health, Bowling Green State University, Bowling Green, Ohio, United States of America
| | - Michael E. Geusz
- Department of Biology, Bowling Green State University, Bowling Green, Ohio, United States of America
| |
Collapse
|
36
|
Ikeda M, Hojo Y, Komatsuzaki Y, Okamoto M, Kato A, Takeda T, Kawato S. Hippocampal spine changes across the sleep-wake cycle: corticosterone and kinases. J Endocrinol 2015; 226:M13-27. [PMID: 26034071 DOI: 10.1530/joe-15-0078] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/01/2015] [Indexed: 12/22/2022]
Abstract
The corticosterone (CORT) level changes along the circadian rhythm. Hippocampus is sensitive to CORT, since glucocorticoid receptors are highly expressed. In rat hippocampus fixed in a living state every 3 h, we found that the dendritic spine density of CA1 pyramidal neurons increased upon waking (within 3 h), as compared with the spine density in the sleep state. Particularly, the large-head spines increased. The observed change in the spine density may be due to the change in the hippocampal CORT level, since the CORT level at awake state (∼30 nM) in cerebrospinal fluid was higher than that at sleep state (∼3 nM), as observed from our earlier study. In adrenalectomized (ADX) rats, such a wake-induced increase of the spine density disappeared. S.c. administration of CORT into ADX rats rescued the decreased spine density. By using isolated hippocampal slices, we found that the application of 30 nM CORT increased the spine density within 1 h and that the spine increase was mediated via PKA, PKC, ERK MAPK, and LIMK signaling pathways. These findings suggest that the moderately rapid increase of the spine density on waking might mainly be caused by the CORT-driven kinase networks.
Collapse
Affiliation(s)
- Muneki Ikeda
- Department of Biophysics and Life SciencesGraduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 152-8902, JapanBioinformatics Project of Japan Science and Technology AgencyUniversity of Tokyo, Tokyo, JapanLaboratory of Exercise Biochemistry and NeuroendocrinologyFaculty of Health and Sports Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, JapanDepartment of UrologyGraduate School of Medicine, Juntendo University, 2-1-1 Hongo, Tokyo 113-8424, Japan
| | - Yasushi Hojo
- Department of Biophysics and Life SciencesGraduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 152-8902, JapanBioinformatics Project of Japan Science and Technology AgencyUniversity of Tokyo, Tokyo, JapanLaboratory of Exercise Biochemistry and NeuroendocrinologyFaculty of Health and Sports Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, JapanDepartment of UrologyGraduate School of Medicine, Juntendo University, 2-1-1 Hongo, Tokyo 113-8424, Japan Department of Biophysics and Life SciencesGraduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 152-8902, JapanBioinformatics Project of Japan Science and Technology AgencyUniversity of Tokyo, Tokyo, JapanLaboratory of Exercise Biochemistry and NeuroendocrinologyFaculty of Health and Sports Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, JapanDepartment of UrologyGraduate School of Medicine, Juntendo University, 2-1-1 Hongo, Tokyo 113-8424, Japan
| | - Yoshimasa Komatsuzaki
- Department of Biophysics and Life SciencesGraduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 152-8902, JapanBioinformatics Project of Japan Science and Technology AgencyUniversity of Tokyo, Tokyo, JapanLaboratory of Exercise Biochemistry and NeuroendocrinologyFaculty of Health and Sports Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, JapanDepartment of UrologyGraduate School of Medicine, Juntendo University, 2-1-1 Hongo, Tokyo 113-8424, Japan
| | - Masahiro Okamoto
- Department of Biophysics and Life SciencesGraduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 152-8902, JapanBioinformatics Project of Japan Science and Technology AgencyUniversity of Tokyo, Tokyo, JapanLaboratory of Exercise Biochemistry and NeuroendocrinologyFaculty of Health and Sports Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, JapanDepartment of UrologyGraduate School of Medicine, Juntendo University, 2-1-1 Hongo, Tokyo 113-8424, Japan Department of Biophysics and Life SciencesGraduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 152-8902, JapanBioinformatics Project of Japan Science and Technology AgencyUniversity of Tokyo, Tokyo, JapanLaboratory of Exercise Biochemistry and NeuroendocrinologyFaculty of Health and Sports Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, JapanDepartment of UrologyGraduate School of Medicine, Juntendo University, 2-1-1 Hongo, Tokyo 113-8424, Japan
| | - Asami Kato
- Department of Biophysics and Life SciencesGraduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 152-8902, JapanBioinformatics Project of Japan Science and Technology AgencyUniversity of Tokyo, Tokyo, JapanLaboratory of Exercise Biochemistry and NeuroendocrinologyFaculty of Health and Sports Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, JapanDepartment of UrologyGraduate School of Medicine, Juntendo University, 2-1-1 Hongo, Tokyo 113-8424, Japan
| | - Taishi Takeda
- Department of Biophysics and Life SciencesGraduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 152-8902, JapanBioinformatics Project of Japan Science and Technology AgencyUniversity of Tokyo, Tokyo, JapanLaboratory of Exercise Biochemistry and NeuroendocrinologyFaculty of Health and Sports Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, JapanDepartment of UrologyGraduate School of Medicine, Juntendo University, 2-1-1 Hongo, Tokyo 113-8424, Japan
| | - Suguru Kawato
- Department of Biophysics and Life SciencesGraduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 152-8902, JapanBioinformatics Project of Japan Science and Technology AgencyUniversity of Tokyo, Tokyo, JapanLaboratory of Exercise Biochemistry and NeuroendocrinologyFaculty of Health and Sports Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, JapanDepartment of UrologyGraduate School of Medicine, Juntendo University, 2-1-1 Hongo, Tokyo 113-8424, Japan Department of Biophysics and Life SciencesGraduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 152-8902, JapanBioinformatics Project of Japan Science and Technology AgencyUniversity of Tokyo, Tokyo, JapanLaboratory of Exercise Biochemistry and NeuroendocrinologyFaculty of Health and Sports Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, JapanDepartment of UrologyGraduate School of Medicine, Juntendo University, 2-1-1 Hongo, Tokyo 113-8424, Japan Department of Biophysics and Life SciencesGraduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 152-8902, JapanBioinformatics Project of Japan Science and Technology AgencyUniversity of Tokyo, Tokyo, JapanLaboratory of Exercise Biochemistry and NeuroendocrinologyFaculty of Health and Sports Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, JapanDepartment of UrologyGraduate School of Medicine, Juntendo University, 2-1-1 Hongo, Tokyo 113-8424, Japan
| |
Collapse
|
37
|
Enhanced memory consolidation in mice lacking the circadian modulators Sharp1 and -2 caused by elevated Igf2 signaling in the cortex. Proc Natl Acad Sci U S A 2015; 112:E3582-9. [PMID: 26100875 DOI: 10.1073/pnas.1423989112] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The bHLH transcription factors SHARP1 and SHARP2 are partially redundant modulators of the circadian system. SHARP1/DEC2 has been shown to control sleep length in humans and sleep architecture is also altered in double mutant mice (S1/2(-/-)). Because of the importance of sleep for memory consolidation, we investigated the role of SHARP1 and SHARP2 in cognitive processing. S1/2(-/-) mice show enhanced cortex (Cx)-dependent remote fear memory formation as well as improved reversal learning, but do not display alterations in hippocampus (Hi)-dependent recent fear memory formation. SHARP1 and SHARP2 single null mutants do not display any cognitive phenotype supporting functional redundancy of both factors. Molecular and biochemical analyses revealed elevated insulin-related growth factor 2 (IGF2) signaling and increased phosphorylation of MAPK and S6 in the Cx but not the Hi of S1/2(-/-) mice. No changes were detected in single mutants. Moreover, adeno-associated virus type 2-mediated IGF2 overexpression in the anterior cingulate cortex enhanced remote fear memory formation and the analysis of forebrain-specific double null mutants of the Insulin and IGF1 receptors revealed their essential function for memory formation. Impaired fear memory formation in aged S1/2(-/-) mice indicates that elevated IGF2 signaling in the long term, however, has a negative impact on cognitive processing. In summary, we conclude that the bHLH transcription factors SHARP1 and SHARP2 are involved in cognitive processing by controlling Igf2 expression and associated signaling cascades. Our analyses provide evidence that the control of sleep and memory consolidation may share common molecular mechanisms.
Collapse
|
38
|
Mulder CK, Reckman GAR, Gerkema MP, Van der Zee EA. Time-place learning over a lifetime: absence of memory loss in trained old mice. ACTA ACUST UNITED AC 2015; 22:278-88. [PMID: 25903452 PMCID: PMC4408771 DOI: 10.1101/lm.037440.114] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 03/16/2015] [Indexed: 12/22/2022]
Abstract
Time–place learning (TPL) offers the possibility to study the functional interaction between cognition and the circadian system with aging. With TPL, animals link biological significant events with the location and the time of day. This what–where–when type of memory provides animals with an experience-based daily schedule. Mice were tested for TPL five times throughout their lifespan and showed (re)learning from below chance level at the age of 4, 7, 12, and 18 mo. In contrast, at the age of 22 mo these mice showed preservation of TPL memory (absence of memory loss), together with deficiencies in the ability to update time-of-day information. Conversely, the majority of untrained (naïve) mice at 17 mo of age were unable to acquire TPL, indicating that training had delayed TPL deficiencies in the mice trained over lifespan. Two out of seven naïve mice, however, compensated for correct performance loss by adapting an alternative learning strategy that is independent of the age-deteriorating circadian system and presumably less cognitively demanding. Together, these data show the age-sensitivity of TPL, and the positive effects of repeated training over a lifetime. In addition, these data shed new light on aging-related loss of behavioral flexibility to update time-of-day information.
Collapse
Affiliation(s)
- Cornelis K Mulder
- Department of Molecular Neurobiology, University of Groningen, 9747 AG Groningen, The Netherlands Department of Chronobiology, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Gerlof A R Reckman
- Department of Molecular Neurobiology, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Menno P Gerkema
- Department of Chronobiology, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Eddy A Van der Zee
- Department of Molecular Neurobiology, University of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
39
|
Woodruff ER, Greenwood BN, Chun LE, Fardi S, Hinds LR, Spencer RL. Adrenal-dependent diurnal modulation of conditioned fear extinction learning. Behav Brain Res 2015; 286:249-55. [PMID: 25746455 DOI: 10.1016/j.bbr.2015.03.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 03/01/2015] [Accepted: 03/02/2015] [Indexed: 12/23/2022]
Abstract
Post traumatic stress disorder (PTSD) is associated with altered conditioned fear extinction expression and impaired circadian function including dysregulation of glucocorticoid hormone secretion. We examined in adult male rats the relationship between conditioned fear extinction learning, circadian phase, and endogenous glucocorticoids (CORT). Rats maintained on a 12h light:dark cycle were trained and tested across 3 separate daily sessions (conditioned fear acquisition and 2 extinction sessions) that were administered during either the rats' active or inactive circadian phase. In an initial experiment we found that rats at both circadian phases acquired and extinguished auditory cue conditioned fear to a similar degree in the first extinction session. However, rats trained and tested at zeitgeber time-16 (ZT16) (active phase) showed enhanced extinction memory expression during the second extinction session compared to rats trained and tested at ZT4 (inactive phase). In a follow-up experiment, adrenalectomized (ADX) or sham surgery rats were similarly trained and tested across 3 separate daily sessions at either ZT4 or ZT16. ADX had no effect on conditioned fear acquisition or conditioned fear memory. Sham ADX rats trained and tested at ZT16 exhibited better extinction learning across the two extinction sessions compared to all other groups of rats. These results indicate that conditioned fear extinction learning is modulated by time of day, and this diurnal modulation requires the presence of adrenal hormones. These results support an important role of CORT-dependent circadian processes in regulating conditioned fear extinction learning, which may be capitalized upon to optimize effective treatment of PTSD.
Collapse
Affiliation(s)
- Elizabeth R Woodruff
- Department of Psychology and Neuroscience, University of Colorado, UCB 345, Boulder, CO 80309, USA.
| | - Benjamin N Greenwood
- Department of Integrated Physiology, University of Colorado, UCB 354, Boulder, CO 80309, USA.
| | - Lauren E Chun
- Department of Psychology and Neuroscience, University of Colorado, UCB 345, Boulder, CO 80309, USA.
| | - Sara Fardi
- Department of Psychology and Neuroscience, University of Colorado, UCB 345, Boulder, CO 80309, USA.
| | - Laura R Hinds
- Department of Psychology and Neuroscience, University of Colorado, UCB 345, Boulder, CO 80309, USA.
| | - Robert L Spencer
- Department of Psychology and Neuroscience, University of Colorado, UCB 345, Boulder, CO 80309, USA.
| |
Collapse
|
40
|
A positive autoregulatory BDNF feedback loop via C/EBPβ mediates hippocampal memory consolidation. J Neurosci 2015; 34:12547-59. [PMID: 25209292 DOI: 10.1523/jneurosci.0324-14.2014] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Little is known about the temporal progression and regulation of the mechanisms underlying memory consolidation. Brain-derived-neurotrophic-factor (BDNF) has been shown to mediate the maintenance of memory consolidation, but the mechanisms of this regulation remain unclear. Using inhibitory avoidance (IA) in rats, here we show that a hippocampal BDNF-positive autoregulatory feedback loop via CCAAT-enhancer binding protein β (C/EBPβ) is necessary to mediate memory consolidation. At training, a very rapid, learning-induced requirement of BDNF accompanied by rapid de novo translation controls the induction of a persistent activation of cAMP-response element binding-protein (CREB) and C/EBPβ expression. The latter, in turn, controls an increase in expression of bdnf exon IV transcripts and BDNF protein, both of which are necessary and, together with the initial BDNF requirement, mediate memory consolidation. The autoregulatory loop terminates by 48 h after training with decreased C/EBPβ and pCREB and increased methyl-CpG binding protein-2, histone-deacetylase-2, and switch-independent-3a binding at the bdnf exon IV promoter.
Collapse
|
41
|
Alberini CM, Kandel ER. The regulation of transcription in memory consolidation. Cold Spring Harb Perspect Biol 2014; 7:a021741. [PMID: 25475090 DOI: 10.1101/cshperspect.a021741] [Citation(s) in RCA: 237] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
De novo transcription of DNA is a fundamental requirement for the formation of long-term memory. It is required during both consolidation and reconsolidation, the posttraining and postreactivation phases that change the state of the memory from a fragile into a stable and long-lasting form. Transcription generates both mRNAs that are translated into proteins, which are necessary for the growth of new synaptic connections, as well as noncoding RNA transcripts that have regulatory or effector roles in gene expression. The result is a cascade of events that ultimately leads to structural changes in the neurons that mediate long-term memory storage. The de novo transcription, critical for synaptic plasticity and memory formation, is orchestrated by chromatin and epigenetic modifications. The complexity of transcription regulation, its temporal progression, and the effectors produced all contribute to the flexibility and persistence of long-term memory formation. In this article, we provide an overview of the mechanisms contributing to this transcriptional regulation underlying long-term memory formation.
Collapse
Affiliation(s)
| | - Eric R Kandel
- Zuckerman Mind Brain Behavior Institute, New York State Psychiatric Institute, New York, New York 10032 Department of Neuroscience, New York State Psychiatric Institute, New York, New York 10032 Kavli Institute for Brain Science, New York State Psychiatric Institute, New York, New York 10032 Howard Hughes Medical Institute, New York State Psychiatric Institute, New York, New York 10032 College of Physicians and Surgeons of Columbia University, New York State Psychiatric Institute, New York, New York 10032
| |
Collapse
|
42
|
Mulder CK, Papantoniou C, Gerkema MP, Van Der Zee EA. Neither the SCN nor the adrenals are required for circadian time-place learning in mice. Chronobiol Int 2014; 31:1075-92. [PMID: 25083974 PMCID: PMC4219850 DOI: 10.3109/07420528.2014.944975] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
During Time-Place Learning (TPL), animals link biological significant events (e.g. encountering predators, food, mates) with the location and time of occurrence in the environment. This allows animals to anticipate which locations to visit or avoid based on previous experience and knowledge of the current time of day. The TPL task applied in this study consists of three daily sessions in a three-arm maze, with a food reward at the end of each arm. During each session, mice should avoid one specific arm to avoid a foot-shock. We previously demonstrated that, rather than using external cue-based strategies, mice use an internal clock (circadian strategy) for TPL, referred to as circadian TPL (cTPL). It is unknown in which brain region(s) or peripheral organ(s) the consulted clock underlying cTPL resides. Three candidates were examined in this study: (a) the suprachiasmatic nucleus (SCN), a light entrainable oscillator (LEO) and considered the master circadian clock in the brain, (b) the food entrainable oscillator (FEO), entrained by restricted food availability, and (c) the adrenal glands, harboring an important peripheral oscillator. cTPL performance should be affected if the underlying oscillator system is abruptly phase-shifted. Therefore, we first investigated cTPL sensitivity to abrupt light and food shifts. Next we investigated cTPL in SCN-lesioned- and adrenalectomized mice. Abrupt FEO phase-shifts (induced by advancing and delaying feeding time) affected TPL performance in specific test sessions while a LEO phase-shift (induced by a light pulse) more severely affected TPL performance in all three daily test sessions. SCN-lesioned mice showed no TPL deficiencies compared to SHAM-lesioned mice. Moreover, both SHAM- and SCN-lesioned mice showed unaffected cTPL performance when re-tested after bilateral adrenalectomy. We conclude that, although cTPL is sensitive to timing manipulations with light as well as food, neither the SCN nor the adrenals are required for cTPL in mice.
Collapse
|
43
|
Bussi IL, Levín G, Golombek DA, Agostino PV. Involvement of dopamine signaling in the circadian modulation of interval timing. Eur J Neurosci 2014; 40:2299-310. [PMID: 24689904 DOI: 10.1111/ejn.12569] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 02/12/2014] [Accepted: 02/21/2014] [Indexed: 02/03/2023]
Abstract
Duration discrimination within the seconds-to-minutes range, known as interval timing, involves the interaction of cortico-striatal circuits via dopaminergic-glutamatergic pathways. Besides interval timing, most (if not all) organisms exhibit circadian rhythms in physiological, metabolic and behavioral functions with periods close to 24 h. We have previously reported that both circadian disruption and desynchronization impaired interval timing in mice. In this work we studied the involvement of dopamine (DA) signaling in the interaction between circadian and interval timing. We report that daily injections of levodopa improved timing performance in the peak-interval procedure in C57BL/6 mice with circadian disruptions, suggesting that a daily increase of DA is necessary for an accurate performance in the timing task. Moreover, striatal DA levels measured by reverse-phase high-pressure liquid chromatography indicated a daily rhythm under light/dark conditions. This daily variation was affected by inducing circadian disruption under constant light (LL). We also demonstrated a daily oscillation in tyrosine hydroxylase levels, DA turnover (3,4-dihydroxyphenylacetic acid/DA levels), and both mRNA and protein levels of the circadian component Period2 (Per2) in the striatum and substantia nigra, two brain areas relevant for interval timing. None of these oscillations persisted under LL conditions. We suggest that the lack of DA rhythmicity in the striatum under LL - probably regulated by Per2 - could be responsible for impaired performance in the timing task. Our findings add further support to the notion that circadian and interval timing share some common processes, interacting at the level of the dopaminergic system.
Collapse
Affiliation(s)
- Ivana L Bussi
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/CONICET, R. S. Peña 352, B1876BXD, Bernal, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
44
|
Vilches N, Spichiger C, Mendez N, Abarzua-Catalan L, Galdames HA, Hazlerigg DG, Richter HG, Torres-Farfan C. Gestational chronodisruption impairs hippocampal expression of NMDA receptor subunits Grin1b/Grin3a and spatial memory in the adult offspring. PLoS One 2014; 9:e91313. [PMID: 24663672 PMCID: PMC3963867 DOI: 10.1371/journal.pone.0091313] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 02/10/2014] [Indexed: 11/18/2022] Open
Abstract
Epidemiological and experimental evidence correlates adverse intrauterine conditions with the onset of disease later in life. For a fetus to achieve a successful transition to extrauterine life, a myriad of temporally integrated humoral/biophysical signals must be accurately provided by the mother. We and others have shown the existence of daily rhythms in the fetus, with peripheral clocks being entrained by maternal cues, such as transplacental melatonin signaling. Among developing tissues, the fetal hippocampus is a key structure for learning and memory processing that may be anticipated as a sensitive target of gestational chronodisruption. Here, we used pregnant rats exposed to constant light treated with or without melatonin as a model of gestational chronodisruption, to investigate effects on the putative fetal hippocampus clock, as well as on adult offspring’s rhythms, endocrine and spatial memory outcomes. The hippocampus of fetuses gestated under light:dark photoperiod (12:12 LD) displayed daily oscillatory expression of the clock genes Bmal1 and Per2, clock-controlled genes Mtnr1b, Slc2a4, Nr3c1 and NMDA receptor subunits 1B-3A-3B. In contrast, in the hippocampus of fetuses gestated under constant light (LL), these oscillations were suppressed. In the adult LL offspring (reared in LD during postpartum), we observed complete lack of day/night differences in plasma melatonin and decreased day/night differences in plasma corticosterone. In the adult LL offspring, overall hippocampal day/night difference of gene expression was decreased, which was accompanied by a significant deficit of spatial memory. Notably, maternal melatonin replacement to dams subjected to gestational chronodisruption prevented the effects observed in both, LL fetuses and adult LL offspring. Collectively, the present data point to adverse effects of gestational chronodisruption on long-term cognitive function; raising challenging questions about the consequences of shift work during pregnancy. The present study also supports that developmental plasticity in response to photoperiodic cues may be modulated by maternal melatonin.
Collapse
Affiliation(s)
- Nelson Vilches
- Laboratorio de Cronobiologia del Desarrollo, Instituto de Anatomia, Histologia y Patologia, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Carlos Spichiger
- Laboratorio de Cronobiologia del Desarrollo, Instituto de Anatomia, Histologia y Patologia, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Natalia Mendez
- Laboratorio de Cronobiologia del Desarrollo, Instituto de Anatomia, Histologia y Patologia, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Lorena Abarzua-Catalan
- Laboratorio de Cronobiologia del Desarrollo, Instituto de Anatomia, Histologia y Patologia, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Hugo A. Galdames
- Laboratorio de Cronobiologia del Desarrollo, Instituto de Anatomia, Histologia y Patologia, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - David G. Hazlerigg
- Institute of Biological and Environmental Sciences, Zoology Building, Tillydrone Avenue, University of Aberdeen, Aberdeen, United Kingdom
| | - Hans G. Richter
- Laboratorio de Cronobiologia del Desarrollo, Instituto de Anatomia, Histologia y Patologia, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Claudia Torres-Farfan
- Laboratorio de Cronobiologia del Desarrollo, Instituto de Anatomia, Histologia y Patologia, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
- * E-mail:
| |
Collapse
|
45
|
Golombek DA, Bussi IL, Agostino PV. Minutes, days and years: molecular interactions among different scales of biological timing. Philos Trans R Soc Lond B Biol Sci 2014; 369:20120465. [PMID: 24446499 DOI: 10.1098/rstb.2012.0465] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Biological clocks are genetically encoded oscillators that allow organisms to keep track of their environment. Among them, the circadian system is a highly conserved timing structure that regulates several physiological, metabolic and behavioural functions with periods close to 24 h. Time is also crucial for everyday activities that involve conscious time estimation. Timing behaviour in the second-to-minutes range, known as interval timing, involves the interaction of cortico-striatal circuits. In this review, we summarize current findings on the neurobiological basis of the circadian system, both at the genetic and behavioural level, and also focus on its interactions with interval timing and seasonal rhythms, in order to construct a multi-level biological clock.
Collapse
Affiliation(s)
- Diego A Golombek
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/CONICET, , Roque Sáenz Peña 352, Bernal, Buenos Aires B1876BXD, Argentina
| | | | | |
Collapse
|
46
|
Furini CRG, Myskiw JC, Benetti F, Izquierdo I. New frontiers in the study of memory mechanisms. BRAZILIAN JOURNAL OF PSYCHIATRY 2014; 35:173-7. [PMID: 23904024 DOI: 10.1590/1516-4446-2012-1046] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 11/26/2012] [Indexed: 12/11/2022]
Abstract
We review recent work on three major lines of memory research: a) the possible role of the protein kinase M-zeta (PKMzeta) in memory persistence; b) the processes of "synaptic tagging and capture" in memory formation; c) the modulation of extinction learning, widely used in the psychotherapy of fear memories under the name of "exposure therapy". PKMzeta is a form of protein kinase C (PKC) that apparently remains stimulated for months after the consolidation of a given memory. Synaptic tagging is a mechanism whereby the weak activation of one synapse can tag it with a protein so other synapses in the same cell can reactivate it by producing other proteins that bind to the tag. Extinction, once mistakenly labeled as a form of forgetting, is by itself a form of learning; through it animals can learn to inhibit a response. We now know it can be modulated by neurotransmitters or by synaptic tagging, which should enable better control of its clinical use.
Collapse
Affiliation(s)
- Cristiane R G Furini
- Memory Center, Brain Institute, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | | | | | | |
Collapse
|
47
|
Baltazar RM, Coolen LM, Webb IC. Medial prefrontal cortex inactivation attenuates the diurnal rhythm in amphetamine reward. Neuroscience 2013; 258:204-10. [PMID: 24239716 DOI: 10.1016/j.neuroscience.2013.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/06/2013] [Accepted: 11/06/2013] [Indexed: 10/26/2022]
Abstract
Psychostimulant reward, as assessed via the conditioned place preference (CPP) paradigm, exhibits a daily rhythm with peaks in the late dark and early light periods, and a nadir near the light-to-dark transition. While this diurnal rhythm is correlated with neural activity in several corticolimbic structures, the brain regions mediating this behavioral rhythm remain unknown. Here, we examine the role of the ventral medial prefrontal cortex (mPFC). The effects of excitotoxic mPFC lesions on daily rhythms in amphetamine CPP were examined at previously observed peak (zeitgeber time [ZT] 23) and nadir times (ZT11). mPFC lesions encompassing the prelimbic and infralimbic subregions increased the CPP for amphetamine at the nadir time, thereby eliminating the daily rhythm in amphetamine reward. To examine the effects of transient mPFC inactivation, rats received intra-mPFC infusions of GABA receptor agonists during the acquisition or expression phases of CPP testing. Inactivation of the ventral mPFC at either of these phases also eliminated the daily rhythm in amphetamine-induced CPP via an increase in drug-paired chamber dwell time at the baseline nadir. Together, these results indicate that the ventral mPFC plays a critical role in mediating the diurnal rhythm in amphetamine CPP during both the acquisition and expression of learned reward-context associations. Moreover, as the loss of rhythmicity occurs via an increase at the nadir point, these results suggest that excitatory output from the ventral mPFC normally inhibits context-elicited reward seeking prior to the light-to-dark transition.
Collapse
Affiliation(s)
- R M Baltazar
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada
| | - L M Coolen
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA; Department of Physiology & Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | - I C Webb
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, USA.
| |
Collapse
|
48
|
Machado-Nils AV, de Faria LO, Vieira AS, Teixeira SA, Muscará MN, Ferrari EA. Daily cycling of nitric oxide synthase (NOS) in the hippocampus of pigeons (C. livia). J Circadian Rhythms 2013; 11:12. [PMID: 24176048 PMCID: PMC4177212 DOI: 10.1186/1740-3391-11-12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 10/08/2013] [Indexed: 11/18/2022] Open
Abstract
Background Nitric oxide synthase (NOS) is essential for the synthesis of nitric oxide (NO), a non-conventional neurotransmitter with an important role in synaptic plasticity underlying processes of hippocampus-dependent memory and in the regulation of biological clocks and circadian rhythms. Many studies have shown that both the NOS cytosolic protein content and its enzymatic activity present a circadian variation in different regions of the rodent brain, including the hippocampus. The present study investigated the daily variation of NOS enzymatic activity and the cytosolic content of nNOS in the hippocampus of pigeons. Results Adult pigeons kept under a skeleton photoperiod were assigned to six different groups. Homogenates of the hippocampus obtained at six different times-of-day were used for NOS analyses. Both iNOS activity and nNOS cytosolic protein concentrations were highest during the subjective light phase and lowest in the subjective dark phase of the circadian period. ANOVA showed significant time differences for iNOS enzymatic activity (p < 0.05) and for nNOS protein content (p < 0.05) in the hippocampus. A significant daily rhythm for both iNOS and nNOS was confirmed by analysis with the Cosinor method (p < 0.05). The present findings indicate that the enzymatic activity of iNOS and content of nNOS protein in the hippocampus of pigeons exhibit a daily rhythm, with acrophase values occurring during the behavioral activity phase. Conclusions The data corroborate the reports on circadian variation of NOS in the mammalian hippocampus and can be considered indicative of a dynamic interaction between hippocampus-dependent processes and circadian clock mechanisms.
Collapse
Affiliation(s)
- Aline V Machado-Nils
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, São Paulo 13083-970, Brazil.
| | | | | | | | | | | |
Collapse
|
49
|
De Bundel D, Gangarossa G, Biever A, Bonnefont X, Valjent E. Cognitive dysfunction, elevated anxiety, and reduced cocaine response in circadian clock-deficient cryptochrome knockout mice. Front Behav Neurosci 2013; 7:152. [PMID: 24187535 PMCID: PMC3807562 DOI: 10.3389/fnbeh.2013.00152] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 10/04/2013] [Indexed: 01/09/2023] Open
Abstract
The circadian clock comprises a set of genes involved in cell-autonomous transcriptional feedback loops that orchestrate the expression of a range of downstream genes, driving circadian patterns of behavior. Cognitive dysfunction, mood disorders, anxiety disorders, and substance abuse disorders have been associated with disruptions in circadian rhythm and circadian clock genes, but the causal relationship of these associations is still poorly understood. In the present study, we investigate the effect of genetic disruption of the circadian clock, through deletion of both paralogs of the core gene cryptochrome (Cry1 and Cry2). Mice lacking Cry1 and Cry2 (Cry1(-/-)Cry2(-/-) ) displayed attenuated dark phase and novelty-induced locomotor activity. Moreover, they showed impaired recognition memory but intact fear memory. Depression-related behaviors in the forced swim test or sucrose preference tests were unaffected but Cry1(-/-)Cry2(-/-) mice displayed increased anxiety in the open field and elevated plus maze tests. Finally, hyperlocomotion and striatal phosphorylation of extracellular signal-regulated kinase (ERK) induced by a single cocaine administration are strongly reduced in Cry1(-/-)Cry2(-/-) mice. Interestingly, only some behavioral measures were affected in mice lacking either Cry1 or Cry2. Notably, recognition memory was impaired in both Cry1(-/-)Cry2(+/+) and Cry1(+/+)Cry2(-/-) mice. Moreover, we further observed elevated anxiety in Cry1(-/-)Cry2(+/+) and Cry1(+/+)Cry2(-/-) mice. Our data indicate that beyond their role in the control of circadian rhythm, cryptochrome genes have a direct influence in cognitive function, anxiety-related behaviors and sensitivity to psychostimulant drugs.
Collapse
Affiliation(s)
- Dimitri De Bundel
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle Montpellier, France ; INSERM, U661 Montpellier, France ; Universités de Montpellier 1 and 2, UMR-5203 Montpellier, France
| | | | | | | | | |
Collapse
|
50
|
Otalora BB, Hagenauer MH, Rol MA, Madrid JA, Lee TM. Period Gene Expression in the Brain of a Dual-Phasing Rodent, the Octodon degus. J Biol Rhythms 2013; 28:249-61. [DOI: 10.1177/0748730413495521] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Clock gene expression is not only confined to the master circadian clock in the suprachiasmatic nucleus (SCN) but is also found in many other brain regions. The phase relationship between SCN and extra-SCN oscillators may contribute to known differences in chronotypes. The Octodon degus is a diurnal rodent that can shift its activity-phase preference from diurnal to nocturnal when running wheels become available. To understand better the relationship between brain clock gene activity and chronotype, we studied the day-night expression of the Period genes, Per1 and Per2, in the SCN and extra-SCN brain areas in diurnal and nocturnal degus. Since negative masking to light and entrainment to the dark phase are involved in the nocturnalism of this species, we also compare, for the first time, Per expression between entrained (EN) and masked nocturnal (MN) degus. The brains of diurnal, MN, and EN degus housed with wheels were collected during the light (ZT4) and dark (ZT16) phases. Per1 and Per2 mRNA levels were analyzed by in situ hybridization. Within the SCN, signals for Per1 and Per2 were higher at ZT4 irrespective of chronotype. However, outside of the SCN, Per1 expression in the hippocampus of EN degus was out of phase (higher values at ZT16) with SCN values. Although a similar trend was seen in MN animals, this day-night difference in Per1 expression was not significant. Interestingly, daily differences in Per1 expression were not seen in the hippocampus of diurnal degus. For other putative brain areas analyzed (cortices, striatum, arcuate, ventromedial hypothalamus), no differences in Per1 levels were found between chronotypes. Both in diurnal and nocturnal degus, Per2 levels in the hippocampus and in the cingulate and piriform cortices were in phase with their activity rhythms. Thus, diurnal degus showed higher Per2 levels at ZT4, whereas in both types of nocturnal degus, Per2 expression was reversed, peaking at ZT16. Together, the present study supports the hypothesis that the mechanisms underlying activity-phase preference in diurnal and nocturnal mammals reside downstream from the SCN, but our data also indicate that there are fundamental differences between nocturnal masked and entrained degus.
Collapse
Affiliation(s)
- Beatriz B. Otalora
- Department of Physiology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Megan H. Hagenauer
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
- Molecular & Behavioral Neuroscience Institute (MBNI), University of Michigan, Ann Arbor, MI, USA
| | - Maria A. Rol
- Department of Physiology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Juan A. Madrid
- Department of Physiology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Theresa M. Lee
- College of Arts and Sciences, University of Tennessee–Knoxville, Knoxville, TN, USA
| |
Collapse
|