1
|
Varadan AC, Grasis JA. Filamentous bacteriophage M13 induces proinflammatory responses in intestinal epithelial cells. Infect Immun 2025:e0061824. [PMID: 40208028 DOI: 10.1128/iai.00618-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/24/2025] [Indexed: 04/11/2025] Open
Abstract
Bacteriophages are the dominant members of the human enteric virome and can shape bacterial communities in the gut; however, our understanding of how they directly impact health and disease is limited. Previous studies have shown that specific bacteriophage populations are expanded in patients with Crohn's disease (CD) and ulcerative colitis (UC), suggesting that fluctuations in the enteric virome may contribute to intestinal inflammation. Based on these studies, we hypothesized that a high bacteriophage burden directly induces intestinal epithelial responses. We found that filamentous bacteriophages M13 and Fd induced dose-dependent IL-8 expression in the human intestinal epithelial cell line HT-29 to a greater degree than their lytic counterparts, T4 and ϕX174. We also found that M13, but not Fd, reduced bacterial internalization in HT-29 cells. This led us to investigate the mechanism underlying M13-mediated inhibition of bacterial internalization by examining the antiviral and antimicrobial responses in these cells. M13 upregulated type I and III IFN expressions and augmented short-chain fatty acid (SCFA)-mediated LL-37 expression in HT-29 cells. Taken together, our data establish that filamentous bacteriophages directly affect human intestinal epithelial cells. These results provide new insights into the complex interactions between bacteriophages and the intestinal mucosa, which may underlie disease pathogenesis.
Collapse
Affiliation(s)
- Ambarish C Varadan
- Department of Molecular and Cellular Biology, University of California, Merced, California, USA
- Quantitative and Systems Biology Graduate Group, University of California, Merced, California, USA
| | - Juris A Grasis
- Department of Molecular and Cellular Biology, University of California, Merced, California, USA
- Quantitative and Systems Biology Graduate Group, University of California, Merced, California, USA
| |
Collapse
|
2
|
Song Y, Lu J, Qin P, Chen H, Chen L. Interferon-I modulation and natural products: Unraveling mechanisms and therapeutic potential in severe COVID-19. Cytokine Growth Factor Rev 2025; 82:18-30. [PMID: 39261232 DOI: 10.1016/j.cytogfr.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to pose a significant global public health threat, particularly to older adults, pregnant women, and individuals with underlying chronic conditions. Dysregulated immune responses to SARS-CoV-2 infection are believed to contribute to the progression of COVID-19 in severe cases. Previous studies indicates that a deficiency in type I interferon (IFN-I) immunity accounts for approximately 15 %-20 % of patients with severe pneumonia caused by COVID-19, highlighting the potential therapeutic importance of modulating IFN-I signals. Natural products and their derivatives, due to their structural diversity and novel scaffolds, play a crucial role in drug discovery. Some of these natural products targeting IFN-I have demonstrated applications in infectious diseases and inflammatory conditions. However, the immunomodulatory potential of IFN-I in critical COVID-19 pneumonia and the natural compounds regulating the related signal pathway remain not fully understood. In this review, we offer a comprehensive assessment of the association between IFN-I and severe COVID-19, exploring its mechanisms and integrating information on natural compounds effective for IFN-I regulation. Focusing on the primary targets of IFN-I, we also summarize the regulatory mechanisms of natural products, their impact on IFNs, and their therapeutic roles in viral infections. Collectively, by synthesizing these findings, our goal is to provide a valuable reference for future research and to inspire innovative treatment strategies for COVID-19.
Collapse
Affiliation(s)
- Yuheng Song
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiani Lu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Pengcheng Qin
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Henan University, Kaifeng 475001, China
| | - Hongzhuan Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 200032, China
| | - Lili Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
3
|
Zhao X, Zhang Y, Jia H, Lv L, Ahsan MA, Fu X, Hu R, Shen Z, Shen N. Diversities of African swine fever virus host-virus dynamics revealed by single-cell profiling. J Virol 2025; 99:e0203524. [PMID: 39932318 PMCID: PMC11917525 DOI: 10.1128/jvi.02035-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/08/2025] [Indexed: 03/19/2025] Open
Abstract
African swine fever virus (ASFV) causes epidemics with high mortality; however, effective vaccines and therapies remain missing. Here, we depict a temporal single-cell landscape of primary porcine alveolar macrophages (PAMs) exposed to three different virulent ASFV strains in vitro. We found that attenuated and low-virulence ASFV strains tend to exhibit higher viral loads than highly virulent strain, which may result from upregulated RNA polymerase subunit genes expression. On the host side, our study highlights the IRF7-mediated positive feedback loop to the activation of the interferon signaling pathway in cells exposed to attenuated and low virulent ASFV strains. Moreover, we unraveled the PAMs populations marked by expressions of the IFI16 and CD163, respectively, which produce high levels of interferon-stimulated genes (ISGs) and IL18 to regulate the host response to different virulent ASFV strains. Collectively, our data provide insights into the complex host-virus interactions with various ASFV strain infections, which may shed light on the development of effective antiviral strategies.IMPORTANCEThere is still no available research on the temporal transcriptional profile of host cells exposed to different virulent ASFV strains at the single-cell level. Here, we first profiled the temporal viral and host transcriptomes in PAMs exposed to high virulent, attenuated virulent, and low virulent ASFV strains. Our analysis revealed that attenuated and low-virulence ASFV strains tend to exhibit higher viral loads than highly virulent strains, which may result from upregulated RNA polymerase subunit genes expression. We also found a positive feedback loop of the interferon signaling pathway mediated through IRF7 and identified the populations of PAMs marked by IFI6 and CD163, respectively, which produce high levels of ISGs and IL18 to regulate host response to different virulent ASFV strains. Our study delineated a comprehensive single-cell landscape of host-virus dynamics across ASFV strains with different virulences and would provide an important resource for future research.
Collapse
Affiliation(s)
- Xiaoyang Zhao
- Department of Obstetrics and Gynecology of Sir Run Run Shaw Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanyan Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Hanying Jia
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Lin Lv
- Department of Obstetrics and Gynecology of Sir Run Run Shaw Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Md Asif Ahsan
- Department of Obstetrics and Gynecology of Sir Run Run Shaw Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Xudong Fu
- Department of Obstetrics and Gynecology of Sir Run Run Shaw Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Rongliang Hu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zhiqiang Shen
- Shandong Lvdu Bio-Sciences and Technology Co., Ltd., Binzhou, Shandong, China
- Shandong Binzhou Academy of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Binzhou, Shandong, China
| | - Ning Shen
- Department of Obstetrics and Gynecology of Sir Run Run Shaw Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
4
|
Xu Y, Bai X, Lin J, Lu K, Weng S, Wu Y, Liu S, Li H, Wu Z, Chen G, Li W. Intracranial AAV administration dose-dependently recruits B cells to inhibit the AAV redosing. Mol Ther Methods Clin Dev 2025; 33:101420. [PMID: 40034424 PMCID: PMC11874542 DOI: 10.1016/j.omtm.2025.101420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/22/2025] [Indexed: 03/05/2025]
Abstract
Recombinant adeno-associated virus (rAAV) is a widely used viral vector for gene therapy. However, a limitation of AAV-mediated gene therapy is that patients are typically dosed only once. In this study, we investigated the possibility of delivering multiple rounds of AAV through intracerebral injections in the mouse brain, and discovered a dose-dependent modulation of the second administration by the first-round AAV injection in a brain-wide scale. High-dose AAV injection increased chemokines CXCL9 and CXCL10 to recruit parenchymal infiltration of lymphocytes, whereas the blood-brain-barrier was relatively intact. Brain-wide dissection discovered the likely routes of the infiltrated lymphocytes through perivascular space and ventricles. Further analysis revealed that B lymphocytes played a critical role in inhibiting the redose. Choosing the right dosage for the first injection or switching the second AAV to a different serotype provided an effective way to antagonize the first-round AAV inhibition. Together, these results suggest that mammalian brains are not immunoprivileged for AAV infection, but multiple rounds of AAV gene therapy are feasible if designed carefully with proper doses and serotypes.
Collapse
Affiliation(s)
- Yuge Xu
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, China
| | - Xiaoni Bai
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, China
| | - Jianhua Lin
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, China
| | - Kang Lu
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, China
| | - Shihan Weng
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, China
| | - Yiying Wu
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, China
| | - Shanggong Liu
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, China
| | - Houlin Li
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, China
| | - Zheng Wu
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, China
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-Human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Jinan University, Guangzhou 510632, China
| | - Gong Chen
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, China
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-Human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Jinan University, Guangzhou 510632, China
| | - Wen Li
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, China
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-Human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Jinan University, Guangzhou 510632, China
| |
Collapse
|
5
|
Panthi A, Ferretti MB, Howard O, Pokharel SM, McCracken R, Quesnel-Vallieres M, Li Q, Cherry S, Lynch KW. Alternate isoforms of IRF7 Differentially Regulate Interferon Expression to Tune Response to Viral Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.10.642367. [PMID: 40161609 PMCID: PMC11952429 DOI: 10.1101/2025.03.10.642367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Interferon Regulatory Factor 7 (IRF7), and its homologue IRF3, are master transcriptional regulators of the innate immune response. IRF7 binds to promoters of interferon β (IFNβ) and several IFNαs as a homodimer or as a heterodimer with IRF3 to drive expression of these type I IFNs, which in turn activate downstream signaling pathways to promote expression of antiviral genes. Here we demonstrate that alternative splicing of the first intron within the coding region of IRF7 is highly regulated across immune tissues and in response to immunologic signals including viral infection. Retention of this intron generates an alternative translation start site, resulting in a N-terminally extended form of the protein (exIRF7) with distinct function from the canonical version of IRF7 (cIRF7). We find that exIRF7 uniquely activates a gene expression program, including IFNβ, in response to innate immune triggers. Mechanistically, this enhanced activity of exIRF7 relative to cIRF7 is through increased homodimerization and association with IRF3 on DNA. Furthermore, the enhanced transcriptional activity of exIRF7 controls viral infection to a greater extent than cIRF7, demonstrating that alternative splicing of IRF7 is a previously unrecognized mechanism used by cells to tune the interferon response to control viral infections and other immune challenges. Highlights Intron retention in the human IRF7 gene generates a distinct protein isoform that differs in the N-terminus.IRF7 intron retention is regulated in a stimuli- and cell-type specific manner.The extended version of IRF7, produced by intron retention, exhibits enhanced transcriptional activation of type I interferon genes.Cells expressing the extended version of IRF7 are more resistant to viral infection.
Collapse
|
6
|
Naqvi RA, Valverde A, Shukla D, Naqvi A. Long noncoding RNA PARAL1 regulates myeloid dendritic cell differentiation and TLR signaling. Genes Immun 2025:10.1038/s41435-025-00323-9. [PMID: 40000873 DOI: 10.1038/s41435-025-00323-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 02/03/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025]
Abstract
Dendritic cells (DCs) are professional antigen presentation cells (APCs) that bridge innate and adaptive immune functions to contain pathogenic threats. Long noncoding RNAs (lncRNAs) are implicated in regulating biological processes, including inflammation and immunity. However, the knowledge of myeloid DC-expressed lncRNA repertoire and their regulatory functions is limited. Here we profiled lncRNA expression kinetics during monocyte-to-DC (moDC) differentiation and characterized their functional roles. Our RNA-seq data identified a repertoire of differentially expressed lncRNAs associated with moDC differentiation and a large subset of these lncRNAs are distinct from M1 or M2 macrophages. We selected two DC-enriched lncRNAs and observed that PARAL1 silencing, or overexpression modulates DC surface markers expression. Importantly, PARAL1 RNAi significantly reduced, while its overexpression upregulated the levels of multiple TLRs. Upon treatment with TLR agonists PARAL1 knockdown cells exhibit reduced NF-κB, IRF3 and IRF7 phosphorylation substantiating its role in potentiating TLR signaling. Mechanistically, PARAL1 silencing showed significant downregulation of multiple NF-κB-induced genes and time-dependent inhibition of proinflammatory cytokine secretion upon challenge with TLR agonists. Finally, PARAL1 RNAi in DCs significantly impaired antigen processing and presentation to T cells. Overall, this study characterized novel functions of PARAL1 in regulating DC differentiation, TLR-dependent innate immunity and activation of adaptive immune response.
Collapse
Affiliation(s)
- Raza Ali Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Araceli Valverde
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Deepak Shukla
- Department of Microbiology and Immunology, College of Medicine, University of Illinois Chicago, Chicago, IL, 60612, USA
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL, 60612, USA
| | - Afsar Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, IL, 60612, USA.
- Department of Microbiology and Immunology, College of Medicine, University of Illinois Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
7
|
Long Q, Rabi K, Cai Y, Li L, Huang S, Qian B, Zhong Y, Qi Z, Zhang Y, Huang K, Wang X, Chang L, Xie W, Jiang H, Zhang H, Zhang J, Ren T, Wang Z, Teesalu T, Wu C, Lu L, Zhu Z, Chu Y, Santos HA, Liu Z, Zhao Q, Ye X. Identification of splenic IRF7 as a nanotherapy target for tele-conditioning myocardial reperfusion injury. Nat Commun 2025; 16:1909. [PMID: 39994192 PMCID: PMC11850716 DOI: 10.1038/s41467-025-57048-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 02/06/2025] [Indexed: 02/26/2025] Open
Abstract
The sequestration of nanoparticles by mononuclear phagocyte system is a challenge for the use of nanotherapy for treating cardiovascular diseases due to the conventionally perceived loss of therapeutic potency. Here, we revitalize cardiovascular nanotherapy by unlocking an alternative route in which nanomedicines are redirected to the spleen, leveraging its potential as a highly efficient and targeted site for remote conditioning, or tele-conditioning myocardial reperfusion injury. The theoretical foundation underpinning is the splenogenic nature of recruited monocytes upon myocardial reperfusion in the acute stage, which is confirmed through murine heterotopic spleen transplantation. Single-cell RNA-seq analysis identifies IRF7 as a pivotal mediator in the spleen-heart communication network that is initially induced in the spleen and orchestrates functional changes in myocardial macrophages. Spleen-related induction of IRF7 is also valid in human myocardial reperfusion scenarios. In addition, in a murine preclinical model of male mice, temporal inhibition of splenic IRF7 through the designed spleen-targeting erythrosome engineered with the targeting peptide RP182, termed as STEER nanoparticles, mitigates the acute-stage innate immune responses and improves the cardiac function in the long term. In contrast, systemic inhibition, genetic knockout of IRF7 or absolute depletion of splenic monocytes does not have therapeutic benefits, indicating the superiority of nanoparticle-based targeted treatment. These findings establish the spleen as a naturally favored site for nanoparticle-based treatments, offering promising avenues for managing myocardial reperfusion injury.
Collapse
Affiliation(s)
- Qiang Long
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kristina Rabi
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Yu Cai
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Lihui Li
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shixing Huang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bei Qian
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiming Zhong
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhaoxi Qi
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yecen Zhang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kaichen Huang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinming Wang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lan Chang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weichang Xie
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huaiyu Jiang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haonan Zhang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junjie Zhang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting Ren
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zichen Wang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tambet Teesalu
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Caisheng Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Lin Lu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengbin Zhu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwei Chu
- Department of Immunology, School of Basic Medical Sciences, Biotherapy Research Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen, University of Groningen (UMCG), AV, Groningen, Netherlands
| | - Zehua Liu
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen, University of Groningen (UMCG), AV, Groningen, Netherlands.
| | - Qiang Zhao
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiaofeng Ye
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
8
|
Joshi JC, Joshi B, Zhang C, Banerjee S, Vellingiri V, Raghunathrao VAB, Anwar M, Rokade TP, Zhang L, Amin R, Song Y, Mehta D. RGS2 is an innate immune checkpoint for suppressing Gαq-mediated IFNγ generation and lung injury. iScience 2025; 28:111878. [PMID: 40041768 PMCID: PMC11876898 DOI: 10.1016/j.isci.2025.111878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/01/2024] [Accepted: 01/20/2025] [Indexed: 03/12/2025] Open
Abstract
Interferon gamma (IFNγ), a type II interferon, augments tissue inflammation following infections, leading to lethal acute lung injury (ALI), yet the mechanisms controlling IFNγ generation in the lungs remain elusive. Here, we identified regulator of G protein signaling 2 (RGS2) as a gatekeeper of the lung's IFNγ levels during infections. Deletion of RGS2 sustained an increase in IFNγ levels in macrophages, leading to unresolvable inflammatory lung injury. This response was not seen in RGS2 null chimeric mice receiving wild-type (WT) bone marrow or the RGS2 gene in alveolar macrophages (AMs) or IFNγ-blocking antibody. RGS2 functioned by suppressing Gαq-mediated IFNγ generation and AM inflammatory signaling. Thus, the inhibition of Gαq blocked IFNγ generation in AMs and rewired AM transcriptomes from an inflammatory to a reparative phenotype in RGS2 null mice, pointing to the RGS2-Gαq axis as a potential target for suppressing inflammatory injury.
Collapse
Affiliation(s)
- Jagdish Chandra Joshi
- Department of Pharmacology and Centre for Lung and Vascular Biology, University of Illinois, College of Medicine, Chicago, IL, USA
- Lake Erie College of Osteopathic Medicine, School of Pharmacy, Erie, PA, USA
| | - Bhagwati Joshi
- Department of Pharmacology and Centre for Lung and Vascular Biology, University of Illinois, College of Medicine, Chicago, IL, USA
| | - Cuiping Zhang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Somenath Banerjee
- Department of Pharmacology and Centre for Lung and Vascular Biology, University of Illinois, College of Medicine, Chicago, IL, USA
| | - Vigneshwaran Vellingiri
- Department of Pharmacology and Centre for Lung and Vascular Biology, University of Illinois, College of Medicine, Chicago, IL, USA
| | - Vijay Avin Balaji Raghunathrao
- Department of Pharmacology and Centre for Lung and Vascular Biology, University of Illinois, College of Medicine, Chicago, IL, USA
| | - Mumtaz Anwar
- Department of Pharmacology and Centre for Lung and Vascular Biology, University of Illinois, College of Medicine, Chicago, IL, USA
| | - Tejas Pravin Rokade
- Department of Pharmacology and Centre for Lung and Vascular Biology, University of Illinois, College of Medicine, Chicago, IL, USA
| | - Lianghui Zhang
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Vascular Medicine Institute, Center for Vaccine Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Ruhul Amin
- Department of Pharmacology and Centre for Lung and Vascular Biology, University of Illinois, College of Medicine, Chicago, IL, USA
| | - Yuanlin Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dolly Mehta
- Department of Pharmacology and Centre for Lung and Vascular Biology, University of Illinois, College of Medicine, Chicago, IL, USA
| |
Collapse
|
9
|
Fike AJ, Bricker KN, Gonzalez MV, Maharjan A, Bui T, Nuon K, Emrich SM, Weber JL, Luckenbill SA, Choi NM, Sauteraud R, Liu DJ, Olsen NJ, Caricchio R, Trebak M, Chodisetti SB, Rahman ZS. IRF7 controls spontaneous autoimmune germinal center and plasma cell checkpoints. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.04.636277. [PMID: 39974943 PMCID: PMC11838595 DOI: 10.1101/2025.02.04.636277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
How IRF7 promotes autoimmune B cell responses and systemic autoimmunity is unclear. Analysis of spontaneous SLE-prone mice deficient in IRF7 uncovered the IRF7 role in regulating autoimmune germinal center (GC), plasma cell (PC) and autoantibody responses and disease. IRF7, however, was dispensable for foreign antigen driven GC, PC and antibody responses. Competitive bone marrow (BM) chimeras highlighted the importance of IRF7 in hematopoietic cells in spontaneous GC and PC differentiation. Single-cell-RNAseq of SLE-prone B cells indicated IRF7 mediated B cell differentiation through GC and PC fates. Mechanistic studies revealed that IRF7 promoted B cell differentiation through GC and PC fates by regulating the transcriptome, translation, and metabolism of SLE-prone B cells. Mixed BM chimeras demonstrated a requirement for B cell-intrinsic IRF7 in IgG autoantibody production but not sufficient for promoting spontaneous GC and PC responses. Altogether, we delineate previously unknown B cell-intrinsic and -extrinsic mechanisms of IRF7-promoted spontaneous GC and PC responses, loss of tolerance, autoantibody production and SLE development.
Collapse
Affiliation(s)
- Adam J. Fike
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Kristen N. Bricker
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Michael V. Gonzalez
- Center for Cytokine Storm Treatment and Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19464, USA
| | | | | | | | - Scott M. Emrich
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Julia L. Weber
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Sara A. Luckenbill
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Nicholas M. Choi
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Renan Sauteraud
- Public Health Science, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Dajiang J. Liu
- Public Health Science, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Nancy J. Olsen
- Rheumatology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | | | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Sathi Babu Chodisetti
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Ziaur S.M. Rahman
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| |
Collapse
|
10
|
Hubing V, Marquis A, Ziemann C, Moriyama H, Moriyama EN, Zhang L. Cytoplasmic Shift of Interferon Regulatory Factors Co-Evolved With Jawed Vertebrate Innate Immunity. J Med Virol 2025; 97:e70247. [PMID: 39977406 PMCID: PMC11841930 DOI: 10.1002/jmv.70247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/26/2024] [Accepted: 02/05/2025] [Indexed: 02/22/2025]
Abstract
The emergence of jaws in early vertebrates introduced a novel feeding apparatus and powerful oral defenses, but it also increased the risk of physical injury and pathogen exposure. Interferon regulatory factors (IRFs) play critical roles in orchestrating innate immunity and inflammation in response to invading microbes and tissue damage, with their subcellular localization being essential to some IRFs' function. Our results indicate that IRF members underwent independent expansion and diversification in two distinct vertebrate lineages: jawed and jawless vertebrates. The jawed vertebrate-specific factor, IRF5, has maintained conserved nuclear export sequences throughout evolution, while newly diversified IRF members in jawed vertebrates have acquired cytoplasmic localization. This cytoplasmic shift particularly affected IRFs involved in type I interferon (IFN) signaling (IRF3, IRF5, IRF7, and IRF9), suggesting co-evolution with the development of the type I IFN system in jawed animals. Interestingly, although IRF9 is inherently nuclear, its association with Signal Transducer and Activator of Transcription 2 (STAT2) has led to its cytoplasmic localization. Additionally, IRF6, another jawed vertebrate-specific factor, plays a crucial role in jaw development, reflecting an evolutionary adaptation that aligns structural innovations with immune function. Our findings suggest that the evolution of jaws coincided with the adoption of cytoplasmic localization in IRF members, potentially enhancing rapid immune responses to meet the immunological challenges posed by the predatory lifestyle of early jawed vertebrates.
Collapse
Affiliation(s)
- Vanessa Hubing
- School of Biological SciencesUniversity of NebraskaLincolnNebraskaUSA
| | - Avery Marquis
- School of Biological SciencesUniversity of NebraskaLincolnNebraskaUSA
| | - Chanasei Ziemann
- School of Biological SciencesUniversity of NebraskaLincolnNebraskaUSA
| | - Hideaki Moriyama
- School of Biological SciencesUniversity of NebraskaLincolnNebraskaUSA
| | - Etsuko N. Moriyama
- School of Biological SciencesUniversity of NebraskaLincolnNebraskaUSA
- Center for Plant Science InnovationUniversity of NebraskaLincolnNebraskaUSA
| | - Luwen Zhang
- School of Biological SciencesUniversity of NebraskaLincolnNebraskaUSA
- Nebraska Center for VirologyUniversity of NebraskaLincolnNebraskaUSA
| |
Collapse
|
11
|
Xiao H, Chen H, Liang W, Liu Y, Lin K, Guo Y. Assessing the causal effect of inflammation-related genes on myocarditis: A Mendelian randomization study. ESC Heart Fail 2025; 12:271-280. [PMID: 39285466 PMCID: PMC11769633 DOI: 10.1002/ehf2.15064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/06/2024] [Accepted: 08/21/2024] [Indexed: 01/28/2025] Open
Abstract
AIMS Prior evidence has shown a significant link between inflammation and the development of myocarditis. This study aimed to investigate the causal relationship between inflammation-related genes (IRGs) and myocarditis. METHODS AND RESULTS In this study, the causal relationship between 167 IRGs and myocarditis were investigated using datasets from the Gene Set Enrichment Analysis and Integrative Epidemiology Unit open genome-wide association study (IEU OpenGWAS) databases. The GWAS data (finn-b-I9 MYOCARD) contained single nucleotide polymorphisms (SNPs) data from 117 755 myocarditis samples (16 379 455 SNPs, 829 cases vs. 116 926 controls). Five algorithms [MR-Egger, weighted median, inverse variance weighted (IVW), simple mode, and weighted mode regression] were employed for the MR analysis, with IVW as the primary method, and sensitivity analysis was conducted. Subcellular localization and protein-protein interaction (PPI) network analyses were performed for selected biomarkers. Results were verified in ebi-a-GCST90018882 (24 180 570 SNPs, 633 cases vs. 427 278 controls) and finn-b-I9 MYOCARD EXNONE (16 380 466 SNPs, 829 cases vs. 217 963 controls) to enhance reliability. RESULTS IRF7 and ADORA2B were shown to be two exposure factors after screening. Univariable MR (UVMR) analysis revealed that IRF7 was a risk factor for myocarditis [IVW: odd ratio (OR) = 1.041, 95% confidence interval (CI) = 1.018-1.955, P = 0.039], while ADORA2B was a protective factors for myocarditis (IVW: OR = 0.799, 95% CI = 0.640-0.997, P = 0.047). Sensitivity analysis confirmed the robustness of these findings. Multivariable MR (MVMR) analysis further demonstrated a direct causal role of ADORA2B in preventing myocarditis. Subcellular localization analysis indicated predominant cytoplasmic expression and limited mitochondrial expression for both genes. The results of PPI analysis showed that 20 genes were predicted to be associated with IRF7 function, such as response to type I interferon, pattern recognition receptor signalling pathway, and toll-like receptor signalling pathway. The results in finn-b-I9 MYOCARD EXNONE were consistent with MR analysis. CONCLUSIONS The findings indicated there was a causal connection between IRGs (IRF7 and ADORA2B) and myocarditis, which offered a crucial point of reference and guidance for future studies and myocarditis treatment.
Collapse
Affiliation(s)
- Huazhen Xiao
- Department of CardiologyShengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial HospitalFuzhouChina
- Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for GeriatricsFujian Provincial Clinical Research Center for Severe Acute Cardiovascular DiseasesFuzhouChina
- Fujian Heart Failure Center AllianceFuzhouChina
| | - Hongkui Chen
- Department of CardiologyShengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial HospitalFuzhouChina
- Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for GeriatricsFujian Provincial Clinical Research Center for Severe Acute Cardiovascular DiseasesFuzhouChina
| | - Wenjia Liang
- Department of CardiologyShengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial HospitalFuzhouChina
- Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for GeriatricsFujian Provincial Clinical Research Center for Severe Acute Cardiovascular DiseasesFuzhouChina
| | - Yucheng Liu
- Department of CardiologyShengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial HospitalFuzhouChina
| | - Kaiyang Lin
- Department of CardiologyShengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial HospitalFuzhouChina
- Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for GeriatricsFujian Provincial Clinical Research Center for Severe Acute Cardiovascular DiseasesFuzhouChina
- Fujian Heart Failure Center AllianceFuzhouChina
| | - Yansong Guo
- Department of CardiologyShengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial HospitalFuzhouChina
- Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for GeriatricsFujian Provincial Clinical Research Center for Severe Acute Cardiovascular DiseasesFuzhouChina
- Fujian Heart Failure Center AllianceFuzhouChina
| |
Collapse
|
12
|
Kiruba B, Naidu A, Sundararajan V, Lulu S S. Mapping integral cell-type-specific interferon-induced gene regulatory networks (GRNs) involved in systemic lupus erythematosus using systems and computational analysis. Heliyon 2025; 11:e41342. [PMID: 39844998 PMCID: PMC11751531 DOI: 10.1016/j.heliyon.2024.e41342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 01/24/2025] Open
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disorder characterized by the production of autoantibodies, resulting in inflammation and organ damage. Although extensive research has been conducted on SLE pathogenesis, a comprehensive understanding of its molecular landscape in different cell types has not been achieved. This study uncovers the molecular mechanisms of the disease by thoroughly examining gene regulatory networks within neutrophils, dendritic cells, T cells, and B cells. Firstly, we identified genes and ncRNAs with differential expression in SLE patients compared to controls for different cell types. Furthermore, the derived differentially expressed genes were curated based on immune functions using functional enrichment analysis to create a protein-protein interaction network. Topological network analysis of the formed genes revealed key hub genes associated with each of the cell types. To understand the regulatory mechanism through which these hub genes function in the diseased state, their associations with transcription factors, and non-coding RNAs in different immune cell types were investigated through correlation analysis and regression models. Finally, by integrating these findings, distinct gene regulatory networks were constructed, which provide a novel perspective on the molecular, cellular, and immunological landscapes of SLE. Importantly, we reveal the crucial role of IRF3, IRF7, and STAT1 in neutrophils, dendritic cells, and T cells, where their aberrant upregulation in disease states might enhance the production of type I IFN. Furthermore, we found MYB to be a crucial regulator that might activate T cells toward autoimmune responses in SLE. Similarly, in B-cell lymphocytes, we found FOXO1 to be a key player in autophagy and chemokine regulation. These findings were also validated using single-cell RNASeq analysis using an independent dataset. Genotype variations of these genes were also explored using the GWAS central database to ensure their targetability. These findings indicate that IRF3, IRF7, STAT1, MYB, and FOXO1 are promising targets for therapeutic interventions for SLE.
Collapse
Affiliation(s)
- Blessy Kiruba
- Department of Biosciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632 014, Tamil Nadu, India
| | - Akshayata Naidu
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632 014, Tamil Nadu, India
| | - Vino Sundararajan
- Department of Biosciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632 014, Tamil Nadu, India
| | - Sajitha Lulu S
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632 014, Tamil Nadu, India
| |
Collapse
|
13
|
Zhang L, Wang HL, Zhang YF, Mao XT, Wu TT, Huang ZH, Jiang WJ, Fan KQ, Liu DD, Yang B, Zhuang MH, Huang GM, Liang Y, Zhu SJ, Zhong JY, Xu GY, Li XM, Cao Q, Li YY, Jin J. Stress triggers irritable bowel syndrome with diarrhea through a spermidine-mediated decline in type I interferon. Cell Metab 2025; 37:87-103.e10. [PMID: 39366386 DOI: 10.1016/j.cmet.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/27/2024] [Accepted: 09/05/2024] [Indexed: 10/06/2024]
Abstract
Irritable bowel syndrome with diarrhea (IBS-D) is a common and chronic gastrointestinal disorder that is characterized by abdominal discomfort and occasional diarrhea. The pathogenesis of IBS-D is thought to be related to a combination of factors, including psychological stress, abnormal muscle contractions, and inflammation and disorder of the gut microbiome. However, there is still a lack of comprehensive analysis of the logical regulatory correlation among these factors. In this study, we found that stress induced hyperproduction of xanthine and altered the abundance and metabolic characteristics of Lactobacillus murinus in the gut. Lactobacillus murinus-derived spermidine suppressed the basal expression of type I interferon (IFN)-α in plasmacytoid dendritic cells by inhibiting the K63-linked polyubiquitination of TRAF3. The reduction in IFN-α unrestricted the contractile function of colonic smooth muscle cells, resulting in an increase in bowel movement. Our findings provided a theoretical basis for the pathological mechanism of, and new drug targets for, stress-exposed IBS-D.
Collapse
Affiliation(s)
- Li Zhang
- Center for Neuroimmunology and Health Longevity, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China; Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou 310016, China
| | - Hao-Li Wang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ya-Fang Zhang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xin-Tao Mao
- Center for Neuroimmunology and Health Longevity, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Ting-Ting Wu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou 310016, China
| | - Zhi-Hui Huang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou 310016, China
| | - Wan-Jun Jiang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Ke-Qi Fan
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Dan-Dan Liu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Bing Yang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Mei-Hui Zhuang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Guang-Ming Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Yinming Liang
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China
| | - Shu Jeffrey Zhu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jiang-Yan Zhong
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Guang-Yin Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Xiao-Ming Li
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
| | - Qian Cao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou 310016, China
| | - Yi-Yuan Li
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China.
| | - Jin Jin
- Center for Neuroimmunology and Health Longevity, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China; Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou 310016, China; The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
14
|
Jung M, Kim H, Choi E, Shin MK, Shin SJ. Enhancing vaccine effectiveness in the elderly to counter antibiotic resistance: The potential of adjuvants via pattern recognition receptors. Hum Vaccin Immunother 2024; 20:2317439. [PMID: 39693178 DOI: 10.1080/21645515.2024.2317439] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/24/2024] [Accepted: 02/07/2024] [Indexed: 12/20/2024] Open
Abstract
Vaccines are an effective way to prevent the emergence and spread of antibiotic resistance by preventing diseases and establishing herd immunity. However, the reduced effectiveness of vaccines in the elderly due to immunosenescence is one of the significant contributors to the increasing antibiotic resistance. To counteract this decline and enhance vaccine effectiveness in the elderly, adjuvants play a pivotal role. Adjuvants are designed to augment the effectiveness of vaccines by activating the innate immune system, particularly through pattern recognition receptors on antigen-presenting cells. To improve vaccine effectiveness in the elderly using adjuvants, it is imperative to select the appropriate adjuvants based on an understanding of immunosenescence and the mechanisms of adjuvant functions. This review demonstrates the phenomenon of immunosenescence and explores various types of adjuvants, including their mechanisms and their potential in improving vaccine effectiveness for the elderly, thereby contributing to developing more effective vaccines for this vulnerable demographic.
Collapse
Affiliation(s)
- Myunghwan Jung
- Department of Microbiology, Institute of Medical Science, Department of Convergence Medical Science, BK21 Center for Human Resource Development in the Bio-Health Industry, Gyeongsang National University College of Medicine, Jinju, South Korea
| | - Hongmin Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Eunsol Choi
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Min-Kyoung Shin
- Department of Microbiology, Institute of Medical Science, Department of Convergence Medical Science, BK21 Center for Human Resource Development in the Bio-Health Industry, Gyeongsang National University College of Medicine, Jinju, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
15
|
Lv Y, Zhang L. IRF7 Activates LCN2 Transcription to Enhance LPS-Induced Acute Lung Injury by Inducing Macrophage Ferroptosis and M1 Polarization. Cell Biochem Biophys 2024:10.1007/s12013-024-01651-9. [PMID: 39738844 DOI: 10.1007/s12013-024-01651-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025]
Abstract
Acute lung injury (ALI), a severe pulmonary disorder that poses a significant threat to life, is closely associated with macrophage ferroptosis and polarization. Lipocalin 2 (LCN2) has been previously reported to be implicated in the pathogenesis of ALI. However, the specific role of LCN2 in macrophage ferroptosis and polarization remains undetermined. Lipopolysaccharide (LPS) was used to establish a mouse model of ALI and also to stimulate mouse RAW264.7 cells. H&E staining was used for histopathologic evaluation, and immunohistochemistry analysis was used to determine the 4-HNE-positive cells. The secretion levels of TNF-α, IL-6, and IL-1β were assessed by ELISA. Gene and protein expression assays were performed using quantitative PCR and immunoblotting. The levels of MDA, GSH, ROS, and lipid ROS were detected to evaluate the alteration in ferroptosis. CD86+ and CD206+ cells were quantified by flow cytometry. The relationship between LCN2 and interferon regulatory factor 7 (IRF7) was confirmed by chromatin immunoprecipitation (ChIP) and luciferase reporter assays. LCN2 expression was upregulated in the lungs of LPS-induced ALI mice and LPS-stimulated RAW264.7 cells. In LPS-induced ALI mice, the depletion of LCN2 alleviated lung injury and ferroptosis, and also inhibited inflammation and macrophage M1 polarization. In LPS-stimulated RAW264.7 cells, the depletion of LCN2 suppressed ferroptosis, inflammation, and M1 polarization. Mechanistically, IRF7 enhanced LCN2 transcription in RAW264.7 cells by binding to its promoter region. More importantly, the silencing of IRF7 inhibited ferroptosis and M1 polarization in LPS-stimulated RAW264.7 cells by downregulating LCN2. Taken together, the IRF7/LCN2 cascade enhances the ferroptosis and M1 polarization of LPS-stimulated macrophages, thereby exacerbating ALI. Anti-IRF7 and anti-LCN2 therapies might potentially be exploited for the prevention and treatment in ALI.
Collapse
Affiliation(s)
- Yali Lv
- Graduate School, Zhejiang Chinese Medical University, Hangzhou, China
- Emergency Intensive Care Unit (ICU), Jinyun County Second People's Hospital, Lishui, China
| | - Lefeng Zhang
- Department of Respiratory and Critical Care Medicine, Lishui Second People's Hospital, Lishui, China.
| |
Collapse
|
16
|
Zhang Q, Yu J, You Q, Wang L. Modulating Phosphorylation by Proximity-Inducing Modalities for Cancer Therapy. J Med Chem 2024; 67:21695-21716. [PMID: 39648992 DOI: 10.1021/acs.jmedchem.4c02624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Abnormal phosphorylation of proteins can lead to various diseases, particularly cancer. Therefore, the development of small molecules for precise regulation of protein phosphorylation holds great potential for drug design. While the traditional kinase/phosphatase small-molecule modulators have shown some success, achieving precise phosphorylation regulation has proven to be challenging. The emergence of heterobifunctional molecules, such as phosphorylation-inducing chimeric small molecules (PHICSs) and phosphatase recruiting chimeras (PHORCs), with proximity-inducing modalities is expected to lead to a breakthrough by specifically recruiting kinase or phosphatase to the protein of interest. Herein, we summarize the drug targets with aberrant phosphorylation in cancer and underscore the potential of correcting phosphorylation in cancer therapy. Through reported cases of heterobifunctional molecules targeting phosphorylation regulation, we highlight the current design strategies and features of these molecules. We also provide a systematic elaboration of the link between aberrantly phosphorylated targets and cancer as well as the existing challenges and future research directions for developing heterobifunctional molecular drugs for phosphorylation regulation.
Collapse
Affiliation(s)
- Qiuyue Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jia Yu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
17
|
Ge G, Li D, Ling Q, Xu L, Ata EB, Wang X, Li K, Hao W, Gong Q, Li J, Shi K, Leng X, Du R. IRF7-deficient MDBK cell based on CRISPR/Cas9 technology for enhancing IBRV replication. Front Microbiol 2024; 15:1483527. [PMID: 39691910 PMCID: PMC11649632 DOI: 10.3389/fmicb.2024.1483527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/05/2024] [Indexed: 12/19/2024] Open
Abstract
Infectious bovine rhinotracheitis (IBR), characterized by acute respiratory lesions in cattle, is a major infectious disease caused by bovine alphaherpesvirus-1 (BoAHV-1). Control of this disease is primarily depending on vaccination. Madin-Darby bovine kidney cells (MDBK) being the main host cells and the important production platform for IBR vaccines. However, innate immune genes inhibit viral replication. Accordingly, the aim of this study was developing of IRF7 gene deleted MDBK cells to facilitate the production of high-titer vaccines. The CRISPR/Cas9 technology was used to knock out the IRF7 gene in MDBK cells and the impact on virus replication was examined using virus growth curves, CCK-8 assays, cell scratch assays, and qPCR. The knockout of the IRF7 gene in MDBK cells led to an increased replication capacity of IBRV and a significant reduction in type I interferons expression, specifically IFN-α and IFN-β. This indicates that IRF7 -/-MDBK cell lines can effectively result in production of IBRV with high-titer, which will enhance the development of inactivated or attenuated vaccines.
Collapse
Affiliation(s)
- Guiyang Ge
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Dongli Li
- Wengniute Banner Agriculture and Animal Husbandry Bureau, Chifeng, China
| | - Qian Ling
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China
| | - Lihui Xu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Emad Beshir Ata
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, Giza, Egypt
| | - Xiaolin Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Keyan Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Wen Hao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Qinglong Gong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jianming Li
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China
| | - Kun Shi
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China
| | - Xue Leng
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China
| | - Rui Du
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China
| |
Collapse
|
18
|
Indrawijaya YYA, Artarini AA, Hamijoyo L, Iwo MI. GSTA1 gene polymorphisms are associated with cyclophosphamide effectiveness in lupus nephritis patients: A case-control study in Indonesia. NARRA J 2024; 4:e1144. [PMID: 39816074 PMCID: PMC11731938 DOI: 10.52225/narra.v4i3.1144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/14/2024] [Indexed: 01/18/2025]
Abstract
Glutathione-S-transferase alpha-1 (GSTA1) is an enzyme with high conjugation activity against aldophosphamide, a metabolite of cyclophosphamide and promoter polymorphisms in GSTA1 may influence the cyclophosphamide effectiveness. The aim of this study was to evaluate the effectiveness and side effects of cyclophosphamide in lupus nephritis patients, using GSTA1 variants as predictors. A case-control study was conducted at Hasan Sadikin Hospital, Bandung, Indonesia, involving 100 lupus nephritis patients from February 2023 to January 2024. The PCR-Sanger sequencing was used to genotype five selected single nucleotide polymorphisms (SNPs) in the GSTA1 promoter: - 52 A > G, -69 T > C, -513 A > G, -567 G > T, and -631 G > T. The endpoint was assessed after six doses of cyclophosphamide by evaluating renal function, disease activity and side effects. Results indicated that six doses of intravenous cyclophosphamide treatment improved renal function and disease activity in the patients, as evidenced by significant changes in serum creatinine (0.79 vs 0.69 mg/dL), dipstick proteinuria (3.00 vs 1.50), creatinine clearance (98.50 vs 109.50 mL/min), and Modified Systemic Lupus Erythematosus Disease Activity Index 2000 (M-SLEDAI-2 K) score (8.61 vs 6.95). The AG genotype at - 513 A > G was associated with reduced cyclophosphamide effectiveness (odds ratio (OR): 0.19; 95%CI: 0.19-0.60; p = 0.019). The GT genotype at -631 G > T independently increased the progression of anemia (OR: 2.41; 95%CI: 0.26-22.12; p = 0.040). This study highlights that the presence of GSTA1 variants affected cyclophosphamide effectiveness in lupus nephritis patients, with heterozygous polymorphisms at -513 (AA to AG) and -631 (TT to GT) predicting reduced effectiveness of cyclophosphamide by enhancing GSTA1 promoter activity, while anemia further exacerbated lupus nephritis disease severity. GSTA1 polymorphism was not associated with the presence of alopecia, amenorrhea, gastrointestinal disorders, and leukopenia during cyclophosphamide therapy.
Collapse
Affiliation(s)
- Yen YA. Indrawijaya
- Doctoral Program, School of Pharmacy, Institut Teknologi Bandung, Bandung, Indonesia
- Department of Pharmacy, Faculty of Medicine and Health Sciences, Universitas Islam Negeri Maulana Malik Ibrahim, Malang, Indonesia
| | - Aluicia A. Artarini
- Laboratory of Pharmaceutical Biotechnology, School of Pharmacy, Institut Teknologi Bandung, Bandung, Indonesia
| | - Laniyati Hamijoyo
- Department of Internal Medicine, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Immunology Study Center, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Maria I. Iwo
- Department of Pharmacology-Clinical Pharmacy, School of Pharmacy, Institut Teknologi Bandung, Bandung, Indonesia
| |
Collapse
|
19
|
Swaraj S, Tripathi S. Interference without interferon: interferon-independent induction of interferon-stimulated genes and its role in cellular innate immunity. mBio 2024; 15:e0258224. [PMID: 39302126 PMCID: PMC11481898 DOI: 10.1128/mbio.02582-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Abstract
Interferons (IFNs) are multifaceted proteins that play pivotal roles in orchestrating robust antiviral immune responses and modulating the intricate landscape of host immunity. The major signaling pathway activated by IFNs is the JAK/STAT (Janus kinase/signal transducer and activator of transcription) pathway, which leads to the transcription of a battery of genes, collectively known as IFN-stimulated genes (ISGs). While the well-established role of IFNs in coordinating the innate immune response against viral infections is widely acknowledged, recent years have provided a more distinct comprehension of the functional significance attributed to non-canonical, IFN-independent induction of ISGs. In this review, we summarize the non-conventional signaling pathways of ISG induction. These alternative pathways offer new avenues for developing antiviral strategies or immunomodulation in various diseases.
Collapse
Affiliation(s)
- Shachee Swaraj
- Emerging Viral Pathogens Laboratory, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
- Microbiology & Cell Biology Department, Biological Sciences Division, Indian Institute of Science, Bengaluru, India
| | - Shashank Tripathi
- Emerging Viral Pathogens Laboratory, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
- Microbiology & Cell Biology Department, Biological Sciences Division, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
20
|
Stillman JM, Kiniwa T, Schafer DP. Nucleic acid sensing in the central nervous system: Implications for neural circuit development, function, and degeneration. Immunol Rev 2024; 327:71-82. [PMID: 39503567 PMCID: PMC11653434 DOI: 10.1111/imr.13420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Nucleic acids are a critical trigger for the innate immune response to infection, wherein pathogen-derived RNA and DNA are sensed by nucleic acid sensing receptors. This subsequently drives the production of type I interferon and other inflammatory cytokines to combat infection. While the system is designed such that these receptors should specifically recognize pathogen-derived nucleic acids, it is now clear that self-derived RNA and DNA can also stimulate these receptors to cause aberrant inflammation and autoimmune disease. Intriguingly, similar pathways are now emerging in the central nervous system in neurons and glial cells. As in the periphery, these signaling pathways are active in neurons and glia to present the spread of pathogens in the CNS. They further appear to be active even under steady conditions to regulate neuronal development and function, and they can become activated aberrantly during disease to propagate neuroinflammation and neurodegeneration. Here, we review the emerging new roles for nucleic acid sensing mechanisms in the CNS and raise open questions that we are poised to explore in the future.
Collapse
Affiliation(s)
- Jacob M. Stillman
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- University of Massachusetts Chan Morningside Graduate School of Biomedical Sciences, Neuroscience Program, Worcester, MA, USA
| | - Tsuyoshi Kiniwa
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Dorothy P. Schafer
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| |
Collapse
|
21
|
Peng P, Yin Q, Sun W, Han J, Guo H, Cheng C, Liu D. Global RNA Interaction and Transcriptome Profiles Demonstrate the Potential Anti-Oncogenic Targets and Pathways of RBM6 in HeLa Cells. FRONT BIOSCI-LANDMRK 2024; 29:330. [PMID: 39344314 DOI: 10.31083/j.fbl2909330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/01/2024] [Accepted: 06/11/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND The fate and functions of RNAs are coordinately regulated by RNA-binding proteins (RBPs), which are often dysregulated in various cancers. Known as a splicing regulator, RNA-binding motif protein 6 (RBM6) harbors tumor-suppressor activity in many cancers; however, there is a lack of research on the molecular targets and regulatory mechanisms of RBM6. METHODS In this study, we constructed an RBM6 knock-down (shRBM6) model in the HeLa cell line to investigate its functions and molecular targets. Then we applied improved RNA immunoprecipitation coupled with sequencing (iRIP-seq) and whole transcriptome sequencing approaches to investigate the potential role and RNA targets of RBM6. RESULTS Using The Cancer Genome Atlas dataset, we found that higher expression of RBM6 is associated with a better prognosis in many cancer types. In addition, we found that RBM6 knockdown promoted cell proliferation and inhibited apoptosis, demonstrating that RBM6 may act as an anti-oncogenic protein in cancer cells. RBM6 can regulate the alternative splicing (AS) of genes involved in DNA damage response, proliferation, and apoptosis-associated pathways. Meanwhile, RBM6 knockdown activated type I interferon signaling pathways and inhibited the expression of genes involved in the cell cycle, cellular responses to DNA damage, and DNA repair pathways. The differentially expressed genes (DEGs) by shRBM6 and their involved pathways were likely regulated by the transcription factors undergoing aberrant AS by RBM6 knockdown. For iRIP-seq analysis, we found that RBM6 could interact with a large number of mRNAs, with a tendency for binding motifs GGCGAUG and CUCU. RBM6 bound to the mRNA of cell proliferation- and apoptosis-associated genes with dysregulated AS after RBM6 knockdown. CONCLUSIONS In summary, our study highlights the important role of RBM6, as well as the downstream targets and regulated pathways, suggesting the potential regulatory mechanisms of RBM6 in the development of cancer.
Collapse
Affiliation(s)
- Ping Peng
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China
| | - Qingqing Yin
- Center for Genome Analysis, Wuhan Ruixing Biotechnology Co., Ltd., 430075 Wuhan, Hubei, China
| | - Wei Sun
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China
| | - Jing Han
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China
| | - Hao Guo
- Center for Genome Analysis, Wuhan Ruixing Biotechnology Co., Ltd., 430075 Wuhan, Hubei, China
| | - Chao Cheng
- Center for BioBigData Analysis, ABLife BioBigData Institute, 430075 Wuhan, Hubei, China
| | - Dongbo Liu
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China
| |
Collapse
|
22
|
Wang C, Khatun MS, Ellsworth CR, Chen Z, Islamuddin M, Nisperuza Vidal AK, Afaque Alam M, Liu S, Mccombs JE, Maness NJ, Blair RV, Kolls JK, Qin X. Deficiency of Tlr7 and Irf7 in mice increases the severity of COVID-19 through the reduced interferon production. Commun Biol 2024; 7:1162. [PMID: 39289468 PMCID: PMC11408513 DOI: 10.1038/s42003-024-06872-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024] Open
Abstract
Toll-like receptor 7 (Tlr7) deficiency-accelerated severe COVID-19 is associated with reduced production of interferons (IFNs). However, the underlying mechanisms remain elusive. To address these questions, we utilize Tlr7 and Irf7 deficiency mice, single-cell RNA analysis together with bone marrow transplantation approaches. We demonstrate that at the early phase of infection, SARS-CoV-2 causes the upregulation of Tlr7, Irf7, and IFN pathways in the lungs of the infected mice. The deficiency of Tlr7 and Irf7 globally and/or in immune cells in mice increases the severity of COVID-19 via impaired IFN activation in both immune and/or non-immune cells, leading to increased lung viral loads. These effects are associated with reduced IFN alpha and gamma levels in the circulation. The deficiency of Tlr7 tends to cause the reduced production and nuclear translocation of interferon regulatory factor 7 (IRF7) in the lungs of the infected mice, indicative of reduced IRF7 activation. Despite higher amounts of lung viral antigen, Tlr7 or Irf7 deficiency resulted in substantially reduced production of antibodies against SARS-CoV-2, thereby delaying the viral clearance. These results highlight the importance of the activation of TLR7 and IRF7 leading to IFN production on the development of innate and adaptive immunity against COVID-19.
Collapse
Affiliation(s)
- Chenxiao Wang
- Tulane National Primate Research Center, Covington, LA, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Mst Shamima Khatun
- Departments of Medicine and Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA, USA
| | - Calder R Ellsworth
- Tulane National Primate Research Center, Covington, LA, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Zheng Chen
- Tulane National Primate Research Center, Covington, LA, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Mohammad Islamuddin
- Tulane National Primate Research Center, Covington, LA, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Ana Karina Nisperuza Vidal
- Tulane National Primate Research Center, Covington, LA, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Mohammad Afaque Alam
- Tulane National Primate Research Center, Covington, LA, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Shumei Liu
- Tulane National Primate Research Center, Covington, LA, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Janet E Mccombs
- Departments of Medicine and Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA, USA
| | - Nicholas J Maness
- Tulane National Primate Research Center, Covington, LA, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Robert V Blair
- Tulane National Primate Research Center, Covington, LA, USA
| | - Jay K Kolls
- Departments of Medicine and Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA, USA
| | - Xuebin Qin
- Tulane National Primate Research Center, Covington, LA, USA.
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
23
|
Bertlin JAC, Pauzaite T, Liang Q, Wit N, Williamson JC, Sia JJ, Matheson NJ, Ortmann BM, Mitchell TJ, Speak AO, Zhang Q, Nathan JA. VHL synthetic lethality screens uncover CBF-β as a negative regulator of STING. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.610968. [PMID: 39282259 PMCID: PMC11398426 DOI: 10.1101/2024.09.03.610968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Clear cell renal cell carcinoma (ccRCC) represents the most common form of kidney cancer and is typified by biallelic inactivation of the von Hippel-Lindau (VHL) tumour suppressor gene. Here, we undertake genome-wide CRISPR/Cas9 screening to reveal synthetic lethal interactors of VHL, and uncover that loss of Core Binding Factor β (CBF-β) causes cell death in VHL-null ccRCC cell lines and impairs tumour establishment and growth in vivo. This synthetic relationship is independent of the elevated activity of hypoxia inducible factors (HIFs) in VHL-null cells, but does involve the RUNX transcription factors that are known binding partners of CBF-β. Mechanistically, CBF-β loss leads to upregulation of type I interferon signalling, and we uncover a direct inhibitory role for CBF-β at the STING locus controlling Interferon Stimulated Gene expression. Targeting CBF-β in kidney cancer both selectively induces tumour cell lethality and promotes activation of type I interferon signalling.
Collapse
Affiliation(s)
- James A C Bertlin
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Tekle Pauzaite
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Qian Liang
- Simmons Comprehensive Cancer Center, Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Niek Wit
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - James C Williamson
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Jia Jhing Sia
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Nicholas J Matheson
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Brian M Ortmann
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
- Wolfson Childhood Cancer Research Centre, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Thomas J Mitchell
- Early Cancer Institute and Department of Surgery, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Anneliese O Speak
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Qing Zhang
- Simmons Comprehensive Cancer Center, Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - James A Nathan
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| |
Collapse
|
24
|
Jensen SB, Jæhger DE, Serrano-Chávez E, Halldórsdóttir HR, Engel TB, Jørgensen JS, Björgvinsdóttir UJ, Kostrikov S, Scheeper MJ, Ringgaard L, Bruun LM, Stavnsbjerg C, Christensen E, Bak M, Thuroczy J, Balogh L, Jensen ATI, Melander F, Kjaer A, Henriksen JR, Hansen AE, Andresen TL. An in situ depot for the sustained release of a TLR7/8 agonist in combination with a TGFβ inhibitor promotes anti-tumor immune responses. Nat Commun 2024; 15:7687. [PMID: 39227589 PMCID: PMC11371921 DOI: 10.1038/s41467-024-50967-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 07/26/2024] [Indexed: 09/05/2024] Open
Abstract
Cancer curing immune responses against heterogeneous solid cancers require that a coordinated immune activation is initiated in the antigen avid but immunosuppressive tumor microenvironment (TME). The plastic TME, and the poor systemic tolerability of immune activating drugs are, however, fundamental barriers to generating curative anticancer immune responses. Here, we introduce the CarboCell technology to overcome these barriers by forming an intratumoral sustained drug release depot that provides high payloads of immune stimulatory drugs selectively within the TME. The CarboCell thereby induces a hot spot for immune cell training and polarization and further drives and maintains the tumor-draining lymph nodes in an anticancer and immune activated state. Mechanistically, this transforms cancerous tissues, consequently generating systemic anticancer immunoreactivity. CarboCell can be injected through standard thin-needle technologies and has inherent imaging contrast which secure accurate intratumoral positioning. In particular, here we report the therapeutic performance for a dual-drug CarboCell providing sustained release of a Toll-like receptor 7/8 agonist and a transforming growth factor-β inhibitor in preclinical tumor models in female mice.
Collapse
Affiliation(s)
- Sophie B Jensen
- Department of Health Technology, Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Ditte E Jæhger
- Department of Health Technology, Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Elizabeth Serrano-Chávez
- Department of Health Technology, Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Hólmfríður R Halldórsdóttir
- Department of Health Technology, Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Trine B Engel
- Department of Health Technology, Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Jennifer S Jørgensen
- Department of Health Technology, Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Unnur J Björgvinsdóttir
- Department of Health Technology, Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Serhii Kostrikov
- Department of Health Technology, Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Marouschka J Scheeper
- Department of Health Technology, Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Lars Ringgaard
- Department of Health Technology, Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Linda M Bruun
- Department of Health Technology, Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Camilla Stavnsbjerg
- Department of Health Technology, Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Esben Christensen
- Department of Health Technology, Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Martin Bak
- Department of Health Technology, Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | | | - Andreas T I Jensen
- Department of Health Technology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Roskilde, Denmark
| | - Fredrik Melander
- Department of Health Technology, Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital, Copenhagen, Denmark
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas R Henriksen
- Department of Health Technology, Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Anders E Hansen
- Department of Health Technology, Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Thomas L Andresen
- Department of Health Technology, Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, Kgs. Lyngby, Denmark.
| |
Collapse
|
25
|
Sellaththurai SR, Jung S, Nadarajapillai K, Kim MJ, Lee J. Functional characterization of irf3 against viral hemorrhagic septicemia virus infection using a CRISPR/Cas9-mediated zebrafish knockout model. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 158:105208. [PMID: 38834141 DOI: 10.1016/j.dci.2024.105208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/11/2024] [Accepted: 06/01/2024] [Indexed: 06/06/2024]
Abstract
Interferon regulatory factors (IRFs) are transcription factors involved in immune responses, such as pathogen response regulation, immune cell growth, and differentiation. IRFs are necessary for the synthesis of type I interferons through a signaling cascade when pathogen recognition receptors identify viral DNA or RNA. We discovered that irf3 is expressed in the early embryonic stages and in all immune organs of adult zebrafish. We demonstrated the antiviral immune mechanism of Irf3 against viral hemorrhagic septicemia virus (VHSV) using CRISPR/Cas9-mediated knockout zebrafish (irf3-KO). In this study, we used a truncated Irf3 protein, encoded by irf3 with a 10 bp deletion, for further investigation. Upon VHSV injection, irf3-KO zebrafish showed dose-dependent high and early mortality compared with zebrafish with the wild-type Irf3 protein (WT), confirming the antiviral activity of Irf3. Based on the results of expression analysis of downstream genes upon VHSV challenge, we inferred that Irf3 deficiency substantially affects the expression of ifnphi1 and ifnphi2. However, after 5 days post infection (dpi), ifnphi3 expression was not significantly altered in irf3-KO compared to that in WT, and irf7 transcription showed a considerable increase in irf3-KO after 5 dpi, indicating irf7's control over ifnphi3 expression. The significantly reduced expression of isg15, viperin, mxa, and mxb at 3 dpi also supported the effect of Irf3 deficiency on the antiviral activity in the early stage of infection. The higher mortality in irf3-KO zebrafish than in WT might be due to an increased inflammation and tissue damage that occurs in irf3-KO because of delayed immune response. Our results suggest that Irf3 plays a role in antiviral immunity of zebrafish by modulating critical immune signaling molecules and regulating antiviral immune genes.
Collapse
Affiliation(s)
- Sarithaa Raguvaran Sellaththurai
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Sumi Jung
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Kidang Marine Science Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - Kishanthini Nadarajapillai
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Myoung-Jin Kim
- Nakdonggang National Institute of Biological Resources, Sangju, 37242, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Kidang Marine Science Institute, Jeju National University, Jeju, 63333, Republic of Korea.
| |
Collapse
|
26
|
Sowa MA, Sun H, Wang TT, Virginio VW, Schlamp F, El Bannoudi H, Cornwell M, Bash H, Izmirly PM, Belmont HM, Ruggles KV, Buyon JP, Voora D, Barrett TJ, Berger JS. Inhibiting the P2Y 12 Receptor in Megakaryocytes and Platelets Suppresses Interferon-Associated Responses. JACC Basic Transl Sci 2024; 9:1126-1140. [PMID: 39444926 PMCID: PMC11494392 DOI: 10.1016/j.jacbts.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 05/18/2024] [Accepted: 05/18/2024] [Indexed: 10/25/2024]
Abstract
The authors investigated the impact of antiplatelet therapy on the megakaryocyte (MK) and platelet transcriptome. RNA-sequencing was performed on MKs treated with aspirin or P2Y12 inhibitor, platelets from healthy volunteers receiving aspirin or P2Y12 inhibition, and platelets from patients with systemic lupus erythematosus (SLE). P2Y12 inhibition reduced gene expression and inflammatory pathways in MKs and platelets. In SLE, the interferon (IFN) pathway was elevated. In vitro experiments demonstrated the role of P2Y12 inhibition in reducing IFNα-induced platelet-leukocyte interactions and IFN signaling pathways. These results suggest that P2Y12 inhibition may have therapeutic potential for proinflammatory and autoimmune conditions like SLE.
Collapse
Affiliation(s)
- Marcin A. Sowa
- Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Haoyu Sun
- Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Tricia T. Wang
- Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Vitor W. Virginio
- Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Florencia Schlamp
- Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Hanane El Bannoudi
- Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - MacIntosh Cornwell
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, New York, USA
| | - Hannah Bash
- Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Peter M. Izmirly
- Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - H. Michael Belmont
- Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Kelly V. Ruggles
- Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
- Institute for Systems Genetics, New York University Grossman School of Medicine, New York, New York, USA
| | - Jill P. Buyon
- Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Deepak Voora
- Duke University School of Medicine, Durham, North Carolina, USA
| | - Tessa J. Barrett
- Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Jeffrey S. Berger
- Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
- Center for the Prevention of Cardiovascular Disease, New York University Grossman School of Medicine, New York, New York, USA
- Department of Surgery, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
27
|
Li T, Gao R, Xu K, Pan P, Chen C, Wang D, Zhang K, Qiao J, Gu Y. BCL7A inhibits the progression and drug-resistance in acute myeloid leukemia. Drug Resist Updat 2024; 76:101120. [PMID: 39053383 DOI: 10.1016/j.drup.2024.101120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/14/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024]
Abstract
AIMS This study aimed to elucidate the biological roles and regulatory mechanisms of B-cell lymphoma 7 protein family member A (BCL7A) in acute myeloid leukemia (AML), particularly its interaction with polypyrimidine tract binding protein 1 (PTBP1) and the effects on cancer progression and drug resistance. METHODS BCL7A expression levels were analyzed in AML tissues and cell lines, focusing on associations with promoter hypermethylation. Interaction with PTBP1 and effects of differential expression of BCL7A were examined in vitro and in vivo. The impacts on cell proliferation, cycle progression, apoptosis, and differentiation were studied. Additionally, the regulatory roles of BCL7A on interferon regulatory factor 7 (IRF7) and 3-hydroxy-3-methylglutaryl-CoA synthase 1 (HMGCS1) were assessed. RESULTS BCL7A was downregulated in AML due to promoter hypermethylation and negatively regulated by PTBP1. Upregulation of BCL7A impeded AML cell growth, induced apoptosis, promoted cell differentiation, and decreased cell infiltration into lymph nodes, enhancing survival in mouse models. Overexpression of BCL7A upregulated IRF7 and downregulated HMGCS1, linking to reduced AML cell malignancy and decreased resistance to cytarabine. CONCLUSIONS BCL7A acts as a tumor suppressor in AML, inhibiting malignant progression and enhancing drug sensitivity through the IRF7/HMGCS1 pathway. These findings suggest potential therapeutic targets for improving AML treatment outcomes.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Drug Resistance, Neoplasm/drug effects
- Animals
- Mice
- Polypyrimidine Tract-Binding Protein/metabolism
- Polypyrimidine Tract-Binding Protein/genetics
- Cell Proliferation/drug effects
- Apoptosis/drug effects
- Cell Line, Tumor
- Heterogeneous-Nuclear Ribonucleoproteins/metabolism
- Heterogeneous-Nuclear Ribonucleoproteins/genetics
- DNA Methylation
- Promoter Regions, Genetic
- Disease Progression
- Xenograft Model Antitumor Assays
- Male
- Female
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
- Cell Differentiation/drug effects
- Gene Expression Regulation, Leukemic/drug effects
Collapse
Affiliation(s)
- Tushuai Li
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, PR China; School of Biology and Food Engineering, Changshu Institute of Technology, Suzhou 215500, PR China
| | - Renjie Gao
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, PR China; Graduate Department, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, PR China
| | - Kaiwen Xu
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, PR China
| | - Pengpeng Pan
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, PR China
| | - Congcong Chen
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, PR China
| | - Daokuan Wang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, PR China; The First Clinical School of Anhui Medical University, Hefei 230032, PR China
| | - Keyi Zhang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, PR China
| | - Jilei Qiao
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, PR China; The First Clinical School of Anhui Medical University, Hefei 230032, PR China
| | - Yue Gu
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, PR China.
| |
Collapse
|
28
|
Kim H, Choi IA, Umemoto A, Bae S, Kaneko K, Mizuno M, Giannopoulou E, Pannellini T, Deng L, Park-Min KH. SREBP2 restricts osteoclast differentiation and activity by regulating IRF7 and limits inflammatory bone erosion. Bone Res 2024; 12:48. [PMID: 39191742 DOI: 10.1038/s41413-024-00354-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 07/03/2024] [Accepted: 07/16/2024] [Indexed: 08/29/2024] Open
Abstract
Osteoclasts are multinucleated bone-resorbing cells, and their formation is tightly regulated to prevent excessive bone loss. However, the mechanisms by which osteoclast formation is restricted remain incompletely determined. Here, we found that sterol regulatory element binding protein 2 (SREBP2) functions as a negative regulator of osteoclast formation and inflammatory bone loss. Cholesterols and SREBP2, a key transcription factor for cholesterol biosynthesis, increased in the late phase of osteoclastogenesis. The ablation of SREBP2 in myeloid cells resulted in increased in vivo and in vitro osteoclastogenesis, leading to low bone mass. Moreover, deletion of SREBP2 accelerated inflammatory bone destruction in murine inflammatory osteolysis and arthritis models. SREBP2-mediated regulation of osteoclastogenesis is independent of its canonical function in cholesterol biosynthesis but is mediated, in part, by its downstream target, interferon regulatory factor 7 (IRF7). Taken together, our study highlights a previously undescribed role of the SREBP2-IRF7 regulatory circuit as a negative feedback loop in osteoclast differentiation and represents a novel mechanism to restrain pathological bone destruction.
Collapse
Affiliation(s)
- Haemin Kim
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, 11366, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, 10021, USA
- CHA Biomedical Research Institute, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, 13496, Republic of Korea
| | - In Ah Choi
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, 11366, USA
- Department of Internal Medicine, College of Medicine, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Akio Umemoto
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, 11366, USA
| | - Seyeon Bae
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, 11366, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, 10021, USA
| | - Kaichi Kaneko
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, 11366, USA
| | - Masataka Mizuno
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, 11366, USA
| | - Eugenia Giannopoulou
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, 11366, USA
- Biological Sciences Department, New York City College of Technology, City University of New York, Brooklyn, NY, 11201, USA
| | - Tania Pannellini
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, 11366, USA
| | - Liang Deng
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Dermatology, Weill Cornell Medical College, New York, NY, 10021, USA
| | - Kyung-Hyun Park-Min
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, 11366, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, 10021, USA.
- BCMB Allied Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, 10065, USA.
| |
Collapse
|
29
|
Baraldo S, Bonato M, Cassia S, Casolari P, De Ferrari L, Tiné M, Baraldi F, Bigoni T, Riccio AM, Braido F, Saetta M, Papi A, Contoli M. Expression of human Interferon Regulatory Factor 3 (IRF-3) in alveolar macrophages relates to clinical and functional traits in COPD. Respir Res 2024; 25:315. [PMID: 39160551 PMCID: PMC11334339 DOI: 10.1186/s12931-024-02952-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 08/13/2024] [Indexed: 08/21/2024] Open
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) is a frequent cause of morbidity and mortality. Dysregulated and enhanced immune-inflammatory responses have been described in COPD. Recent data showed impaired immune responses and, in particular, of interferon (IFNs) signaling pathway in these patients. AIM To evaluate in peripheral lung of COPD patients, the expression of some of the less investigated key components of the innate immune responses leading to IFN productions including: IFN-receptors (IFNAR1/IFNAR2), IRF-3 and MDA-5. Correlations with clinical traits and with the inflammatory cell profile have been assessed. METHODS Lung specimens were collected from 58 subjects undergoing thoracic surgery: 22 COPD patients, 21 smokers with normal lung function (SC) and 15 non-smoker controls (nSC). The expression of IFNAR1, IFNAR2, IRF-3 and MDA-5, of eosinophils and activated NK cells (NKp46+) were quantified in the peripheral lung by immunohistochemistry. RESULTS A significant increase of IRF-3 + alveolar macrophages were observed in COPD and SC compared with nSC subjects. However, in COPD patients, the lower the levels of IRF-3 + alveolar macrophages the lower the FEV1 and the higher the exacerbation rate. The presence of chronic bronchitis (CB) was also associated with low levels of IRF-3 + alveolar macrophages. NKp46 + cells, but not eosinophils, were increased in COPD patients compared to nSC patients (p < 0.0001). CONCLUSIONS Smoking is associated with higher levels of innate immune response as showed by higher levels of IRF-3 + alveolar macrophages and NKp46 + cells. In COPD, exacerbation rates, severe airflow obstruction and CB were associated with lower levels of IRF-3 expression, suggesting that innate immune responses characterize specific clinical traits of the disease.
Collapse
Affiliation(s)
- Simonetta Baraldo
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Matteo Bonato
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
- Pulmonology Unit, Ca' Foncello Hospital, Azienda Unità Locale Socio-Sanitaria 2 Marca Trevigiana, Treviso, Italy
| | - Sebastiano Cassia
- Respiratory Clinic, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Paolo Casolari
- Section of Respiratory Diseases, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Laura De Ferrari
- Respiratory Clinic, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Mariaenrica Tiné
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Federico Baraldi
- Section of Respiratory Diseases, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Tommaso Bigoni
- Section of Respiratory Diseases, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Anna Maria Riccio
- Respiratory Clinic, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Fulvio Braido
- Respiratory Clinic, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Marina Saetta
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Alberto Papi
- Section of Respiratory Diseases, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Azienda Ospedaliera Universitaria Ferrara and AUSL, Ferrara, Italy
| | - Marco Contoli
- Section of Respiratory Diseases, Department of Translational Medicine, University of Ferrara, Ferrara, Italy.
- Azienda Ospedaliera Universitaria Ferrara and AUSL, Ferrara, Italy.
| |
Collapse
|
30
|
Miller LG, Chiok K, Mariasoosai C, Mohanty I, Pandit S, Deol P, Mehari L, Teng MN, Haas AL, Natesan S, Miura TA, Bose S. Extracellular ISG15 triggers ISGylation via a type-I interferon independent non-canonical mechanism to regulate host response during virus infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.05.602290. [PMID: 39026703 PMCID: PMC11257485 DOI: 10.1101/2024.07.05.602290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Type-I interferons (IFN) induce cellular proteins with antiviral activity. One such protein is Interferon Stimulated Gene 15 (ISG15). ISG15 is conjugated to proteins during ISGylation to confer antiviral activity and regulate cellular activities associated with inflammatory and neurodegenerative diseases and cancer. Apart from ISGylation, unconjugated free ISG15 is also released from cells during various conditions, including virus infection. The role of extracellular ISG15 during virus infection was unknown. We show that extracellular ISG15 triggers ISGylation and acts as a soluble antiviral factor to restrict virus infection via an IFN-independent mechanism. Specifically, extracellular ISG15 acts post-translationally to markedly enhance the stability of basal intracellular ISG15 protein levels to support ISGylation. Furthermore, extracellular ISG15 interacts with cell surface integrin (α5β1 integrins) molecules via its RGD-like motif to activate the integrin-FAK (Focal Adhesion Kinase) pathway resulting in IFN-independent ISGylation. Thus, our studies have identified extracellular ISG15 protein as a new soluble antiviral factor that confers IFN-independent non-canonical ISGylation via the integrin-FAK pathway by post-translational stabilization of intracellular ISG15 protein.
Collapse
|
31
|
Liu J, Ma J, Wen J, Zhou X. A Cell Cycle-Aware Network for Data Integration and Label Transferring of Single-Cell RNA-Seq and ATAC-Seq. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401815. [PMID: 38887194 PMCID: PMC11336957 DOI: 10.1002/advs.202401815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/22/2024] [Indexed: 06/20/2024]
Abstract
In recent years, the integration of single-cell multi-omics data has provided a more comprehensive understanding of cell functions and internal regulatory mechanisms from a non-single omics perspective, but it still suffers many challenges, such as omics-variance, sparsity, cell heterogeneity, and confounding factors. As it is known, the cell cycle is regarded as a confounder when analyzing other factors in single-cell RNA-seq data, but it is not clear how it will work on the integrated single-cell multi-omics data. Here, a cell cycle-aware network (CCAN) is developed to remove cell cycle effects from the integrated single-cell multi-omics data while keeping the cell type-specific variations. This is the first computational model to study the cell-cycle effects in the integration of single-cell multi-omics data. Validations on several benchmark datasets show the outstanding performance of CCAN in a variety of downstream analyses and applications, including removing cell cycle effects and batch effects of scRNA-seq datasets from different protocols, integrating paired and unpaired scRNA-seq and scATAC-seq data, accurately transferring cell type labels from scRNA-seq to scATAC-seq data, and characterizing the differentiation process from hematopoietic stem cells to different lineages in the integration of differentiation data.
Collapse
Affiliation(s)
- Jiajia Liu
- Center for Computational Systems MedicineMcWilliams School of Biomedical InformaticsThe University of Texas Health Science Center at HoustonHoustonTX77030USA
| | - Jian Ma
- Department of Electronic Information and Computer EngineeringThe Engineering & Technical College of Chengdu University of TechnologyLeshanSichuan614000China
| | - Jianguo Wen
- Center for Computational Systems MedicineMcWilliams School of Biomedical InformaticsThe University of Texas Health Science Center at HoustonHoustonTX77030USA
| | - Xiaobo Zhou
- Center for Computational Systems MedicineMcWilliams School of Biomedical InformaticsThe University of Texas Health Science Center at HoustonHoustonTX77030USA
- McGovern Medical SchoolThe University of Texas Health Science Center at HoustonHoustonTX77030USA
- School of DentistryThe University of Texas Health Science Center at HoustonHoustonTX77030USA
| |
Collapse
|
32
|
Zhan T, Zou Y, Han Z, Tian X, Chen M, Liu J, Yang X, Zhu Q, Liu M, Chen W, Chen M, Huang X, Tan J, Liu W, Tian X. Single-cell sequencing combined with spatial transcriptomics reveals that the IRF7 gene in M1 macrophages inhibits the occurrence of pancreatic cancer by regulating lipid metabolism-related mechanisms. Clin Transl Med 2024; 14:e1799. [PMID: 39118300 PMCID: PMC11310283 DOI: 10.1002/ctm2.1799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
AIM The main focus of this study is to explore the molecular mechanism of IRF7 regulation on RPS18 transcription in M1-type macrophages in pancreatic adenocarcinoma (PAAD) tissue, as well as the transfer of RPS18 by IRF7 via exosomes to PAAD cells and the regulation of ILF3 expression. METHODS By utilising single-cell RNA sequencing (scRNA-seq) data and spatial transcriptomics (ST) data from the Gene Expression Omnibus database, we identified distinct cell types with significant expression differences in PAAD tissue. Among these cell types, we identified those closely associated with lipid metabolism. The differentially expressed genes within these cell types were analysed, and target genes relevant to prognosis were identified. Flow cytometry was employed to assess the expression levels of target genes in M1 and M2 macrophages. Cell lines with target gene knockout were constructed using CRISPR/Cas9 editing technology, and cell lines with target gene knockdown and overexpression were established using lentiviral vectors. Additionally, a co-culture model of exosomes derived from M1 macrophages with PAAD cells was developed. The impact of M1 macrophage-derived exosomes on the lipid metabolism of PAAD cells in the model was evaluated through metabolomics analysis. The effects of M1 macrophage-derived exosomes on the viability, proliferation, division, migration and apoptosis of PAAD cells were assessed using MTT assay, flow cytometry, EdU assay, wound healing assay, Transwell assay and TUNEL staining. Furthermore, a mouse PAAD orthotopic implantation model was established, and bioluminescence imaging was utilised to assess the influence of M1 macrophage-derived exosomes on the intratumoural formation capacity of PAAD cells, as well as measuring tumour weight and volume. The expression of proliferation-associated proteins in tumour tissues was examined using immunohistochemistry. RESULTS Through combined analysis of scRNA-seq and ST technologies, we discovered a close association between M1 macrophages in PAAD samples and lipid metabolism signals, as well as a negative correlation between M1 macrophages and cancer cells. The construction of a prognostic risk score model identified RPS18 and IRF7 as two prognostically relevant genes in M1 macrophages, exhibiting negative and positive correlations, respectively. Mechanistically, it was found that IRF7 in M1 macrophages can inhibit the transcription of RPS18, reducing the transfer of RPS18 to PAAD cells via exosomes, consequently affecting the expression of ILF3 in PAAD cells. IRF7/RPS18 in M1 macrophages can also suppress lipid metabolism, cell viability, proliferation, migration, invasion and intratumoural formation capacity of PAAD cells, while promoting cell apoptosis. CONCLUSION Overexpression of IRF7 in M1 macrophages may inhibit RPS18 transcription, reduce the transfer of RPS18 from M1 macrophage-derived exosomes to PAAD cells, thereby suppressing ILF3 expression in PAAD cells, inhibiting the lipid metabolism pathway, and curtailing the viability, proliferation, migration, invasion of PAAD cells, as well as enhancing cell apoptosis, ultimately inhibiting tumour formation in PAAD cells in vivo. Targeting IRF7/RPS18 in M1 macrophages could represent a promising immunotherapeutic approach for PAAD in the future.
Collapse
Affiliation(s)
- Ting Zhan
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
| | - Yanli Zou
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
| | - Zheng Han
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
| | - XiaoRong Tian
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Mengge Chen
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Jiaxi Liu
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Xiulin Yang
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Qingxi Zhu
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
| | - Meng Liu
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
| | - Wei Chen
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
| | - Mingtao Chen
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
| | - Xiaodong Huang
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Jie Tan
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
| | - Weijie Liu
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
| | - Xia Tian
- Department of GastroenterologyWuHan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
| |
Collapse
|
33
|
Jiang S, Li Z, Huang SJ, Zou W, Luo JG. IRF7 overexpression alleviates CFA-induced inflammatory pain by inhibiting nuclear factor-κB activation and pro-inflammatory cytokines expression in rats. Brain Behav Immun 2024; 120:10-20. [PMID: 38777286 DOI: 10.1016/j.bbi.2024.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/04/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND It is known that nerve signals arising from sites of inflammation lead to persistent changes in the spinal cord and contribute to the amplification and persistence of pain. Nevertheless, the underlying mechanisms have not yet been completely elucidated. We identified differentially expressed genes in the lumbar (L4-L6) segment of the spinal cord from complete Freund's adjuvant (CFA) rats compared to control animals via high throughput sequencing. Based on differential gene expression analysis, we selected interferon regulatory factor 7 (IRF7) for follow-up experiments to explore its antinociceptive potential. METHODS An animal model of inflammatory pain was induced by intraplantar injection of CFA. We evaluated the effects of adeno-associated viral (AAV)-mediated overexpression of IRF7 in the spinal cord on pain-related behavior after CFA injection. Moreover, the activation of the nuclear factor-κB (NF-κB) and the expression of inflammatory cytokines were investigated to understand the underlying mechanisms related to the contribution of IRF7 to inflammatory pain. RESULTS CFA intraplantar injection caused a significant decrease in the level of spinal IRF7, which is mainly expressed in the dorsal horn neurons and astrocytes. Moreover, IRF7 overexpression significantly attenuated pain-related behaviors, as well as the activity of NF-κB/p65 and the production of interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) in the spinal cord of CFA rats. CONCLUSIONS Our data indicated that spinal IRF7 plays an important role in the regulation of inflammatory pain. Thus, IRF7 overexpression at the spinal cord level might represent a potential target for the treatment of inflammatory pain.
Collapse
Affiliation(s)
- Shasha Jiang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Zhengyiqi Li
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Si-Jian Huang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Wangyuan Zou
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China.
| | - Jian-Gang Luo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, PR China.
| |
Collapse
|
34
|
Berthold A, Lloyd VK. Changes in the Transcriptome and Long Non-Coding RNAs but Not the Methylome Occur in Human Cells Exposed to Borrelia burgdorferi. Genes (Basel) 2024; 15:1010. [PMID: 39202370 PMCID: PMC11353914 DOI: 10.3390/genes15081010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
Lyme disease, caused by infection with members of the Lyme borreliosis group of Borrelia spirochete bacteria, is increasing in frequency and distribution worldwide. Epigenetic interactions between the mammalian host, tick, and bacterial pathogen are poorly understood. In this study, high-throughput next-generation sequencing (NGS) allowed for the in vitro study of the transcriptome, non-coding RNAs, and methylome in human host cells in response to Borrelia burgdorferi infection. We tested the effect of the Borrelia burgdorferi strain B31 on a human primary cell line (HUVEC) and an immortalized cell line (HEK-293) for 72 h, a long-duration time that might allow for epigenetic responses in the exposed human host cells. Differential gene expression was detected in both cell models in response to B. burgdorferi. More differentially expressed genes were found in HUVECs compared to HEK-293 cells. Borrelia burgdorferi exposure significantly induced genes in the interferon, in addition to cytokine and other immune response signaling in HUVECs. In HEK-293 cells, pre-NOTCH processing in Golgi was significantly downregulated in Borrelia-exposed cells. Other significantly altered gene expressions were found in genes involved in the extracellular matrix. No significant global methylation changes were detected in HUVECs or HEK-293 cells exposed to B. burgdorferi; however, two long non-coding RNAs and a pseudogene were deregulated in response to B. burgdorferi in HUVECs, suggesting that other epigenetic mechanisms may be initiated by infection.
Collapse
Affiliation(s)
| | - Vett K. Lloyd
- Department of Biology, Mount Allison University, Sackville, NB E4L 1G7, Canada;
| |
Collapse
|
35
|
Weiss A, D'Amata C, Pearson BJ, Hayes MN. A syngeneic spontaneous zebrafish model of tp53-deficient, EGFR vIII, and PI3KCA H1047R-driven glioblastoma reveals inhibitory roles for inflammation during tumor initiation and relapse in vivo. eLife 2024; 13:RP93077. [PMID: 39052000 PMCID: PMC11272161 DOI: 10.7554/elife.93077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
High-throughput vertebrate animal model systems for the study of patient-specific biology and new therapeutic approaches for aggressive brain tumors are currently lacking, and new approaches are urgently needed. Therefore, to build a patient-relevant in vivo model of human glioblastoma, we expressed common oncogenic variants including activated human EGFRvIII and PI3KCAH1047R under the control of the radial glial-specific promoter her4.1 in syngeneic tp53 loss-of-function mutant zebrafish. Robust tumor formation was observed prior to 45 days of life, and tumors had a gene expression signature similar to human glioblastoma of the mesenchymal subtype, with a strong inflammatory component. Within early stage tumor lesions, and in an in vivo and endogenous tumor microenvironment, we visualized infiltration of phagocytic cells, as well as internalization of tumor cells by mpeg1.1:EGFP+ microglia/macrophages, suggesting negative regulatory pressure by pro-inflammatory cell types on tumor growth at early stages of glioblastoma initiation. Furthermore, CRISPR/Cas9-mediated gene targeting of master inflammatory transcription factors irf7 or irf8 led to increased tumor formation in the primary context, while suppression of phagocyte activity led to enhanced tumor cell engraftment following transplantation into otherwise immune-competent zebrafish hosts. Altogether, we developed a genetically relevant model of aggressive human glioblastoma and harnessed the unique advantages of zebrafish including live imaging, high-throughput genetic and chemical manipulations to highlight important tumor-suppressive roles for the innate immune system on glioblastoma initiation, with important future opportunities for therapeutic discovery and optimizations.
Collapse
Affiliation(s)
- Alex Weiss
- Developmental and Stem Cell Biology Program, The Hospital for Sick ChildrenTorontoCanada
| | - Cassandra D'Amata
- Developmental and Stem Cell Biology Program, The Hospital for Sick ChildrenTorontoCanada
| | - Bret J Pearson
- Department of Molecular Genetics, University of TorontoTorontoCanada
- Knight Cancer Institute, Oregon Health & Science UniversityPortlandUnited States
- Department of Pediatrics, Papé Research Institute, Oregon Health & Science UniversityPortlandUnited States
| | - Madeline N Hayes
- Developmental and Stem Cell Biology Program, The Hospital for Sick ChildrenTorontoCanada
- Department of Molecular Genetics, University of TorontoTorontoCanada
| |
Collapse
|
36
|
Arunagiri V, Cooper L, Dong H, Class J, Biswas I, Vahora S, Deshpande R, Gopani KH, Hu G, Richner JM, Rong L, Liu J. Suppression of interferon α and γ response by Huwe1-mediated Miz1 degradation promotes SARS-CoV-2 replication. Front Immunol 2024; 15:1388517. [PMID: 39034993 PMCID: PMC11257858 DOI: 10.3389/fimmu.2024.1388517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has been demonstrated to limit the host interferon response; however, the underlying mechanism remains unclear. Here, we found that SARS-CoV-2 infection upregulated the E3 ubiquitin ligase Huwe1, which in turn facilitated the degradation of the transcription factor Miz1. The degradation of Miz1 hampered interferon alpha and gamma responses, consequently fostering viral replication and impeding viral clearance. Conversely, silencing or inhibiting Huwe1 enhanced the interferon responses, effectively curbing viral replication. Consistently, overexpressing Miz1 augmented the interferon responses and limited viral replication, whereas silencing Miz1 had the opposite effect. Targeting Huwe1 or overexpressing Miz1 elicited transcriptomic alterations characterized by enriched functions associated with bolstered antiviral response and diminished virus replication. Further study revealed Miz1 exerted epigenetic control over the transcription of specific interferon signaling molecules, which acted as common upstream regulators responsible for the observed transcriptomic changes following Huwe1 or Miz1 targeting. These findings underscore the critical role of the Huwe1-Miz1 axis in governing the host antiviral response, with its dysregulation contributing to the impaired interferon response observed during COVID-19.
Collapse
Affiliation(s)
- Vinothini Arunagiri
- Department of Surgery, College of Medicine, Cancer Center, University of Illinois at Chicago, Chicago, IL, United States
| | - Laura Cooper
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Huali Dong
- Department of Surgery, College of Medicine, Cancer Center, University of Illinois at Chicago, Chicago, IL, United States
| | - Jake Class
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Indrani Biswas
- Department of Surgery, College of Medicine, Cancer Center, University of Illinois at Chicago, Chicago, IL, United States
| | - Sujan Vahora
- Department of Surgery, College of Medicine, Cancer Center, University of Illinois at Chicago, Chicago, IL, United States
| | - Riddhi Deshpande
- Department of Surgery, College of Medicine, Cancer Center, University of Illinois at Chicago, Chicago, IL, United States
| | - Khushi H. Gopani
- Department of Surgery, College of Medicine, Cancer Center, University of Illinois at Chicago, Chicago, IL, United States
| | - Guochang Hu
- Departments of Anesthesiology and Pharmacology & Regenerative Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Justin M. Richner
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Jing Liu
- Department of Surgery, College of Medicine, Cancer Center, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
37
|
Zhou CJ, Zhang C, Lu LF, Li S. Fish ubiquitin-specific protease 8 (USP8) inhibits IFN production through autophagy-lysosomal dependent degradation of IRF7. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 156:105181. [PMID: 38636698 DOI: 10.1016/j.dci.2024.105181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Interferon regulatory factor 7 (IRF7) is considered the master regulator of virus-induced interferon (IFN) production. However, to avoid an autoimmune response, the expression of IRF7 must be tightly controlled. In this study, we report that zebrafish ubiquitin-specific protease 8 (USP8) promotes IRF7 degradation through an autophagy-lysosome-dependent pathway to inhibit IFN production. First, zebrafish usp8 is induced upon spring viremia of carp virus (SVCV) infection and polyinosinic/polycytidylic acid (poly I:C) stimulation. Second, overexpression of USP8 suppresses SVCV or poly I:C-mediated IFN expression. Mechanistically, USP8 interacts with IRF7 and promotes its degradation via an autophagy-lysosome-dependent pathway. Finally, USP8 significantly suppresses cellular antiviral responses and enhances SVCV proliferation. In summary, our discoveries offer a perspective on the role of zebrafish USP8 and provide additional understanding of the regulation of IRF7 in host antiviral immune response.
Collapse
Affiliation(s)
- Chu-Jing Zhou
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Can Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Long-Feng Lu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Shun Li
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
38
|
Zeng C, Zhu X, Li H, Huang Z, Chen M. The Role of Interferon Regulatory Factors in Liver Diseases. Int J Mol Sci 2024; 25:6874. [PMID: 38999981 PMCID: PMC11241258 DOI: 10.3390/ijms25136874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
The interferon regulatory factors (IRFs) family comprises 11 members that are involved in various biological processes such as antiviral defense, cell proliferation regulation, differentiation, and apoptosis. Recent studies have highlighted the roles of IRF1-9 in a range of liver diseases, including hepatic ischemia-reperfusion injury (IRI), alcohol-induced liver injury, Con A-induced liver injury, nonalcoholic fatty liver disease (NAFLD), cirrhosis, and hepatocellular carcinoma (HCC). IRF1 is involved in the progression of hepatic IRI through signaling pathways such as PIAS1/NFATc1/HDAC1/IRF1/p38 MAPK and IRF1/JNK. The regulation of downstream IL-12, IL-15, p21, p38, HMGB1, JNK, Beclin1, β-catenin, caspase 3, caspase 8, IFN-γ, IFN-β and other genes are involved in the progression of hepatic IRI, and in the development of HCC through the regulation of PD-L1, IL-6, IL-8, CXCL1, CXCL10, and CXCR3. In addition, IRF3-PPP2R1B and IRF4-FSTL1-DIP2A/CD14 pathways are involved in the development of NAFLD. Other members of the IRF family also play moderately important functions in different liver diseases. Therefore, given the significance of IRFs in liver diseases and the lack of a comprehensive compilation of their molecular mechanisms in different liver diseases, this review is dedicated to exploring the molecular mechanisms of IRFs in various liver diseases.
Collapse
Affiliation(s)
- Chuanfei Zeng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan 430060, China
| | - Xiaoqin Zhu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan 430060, China
| | - Huan Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan 430060, China
| | - Ziyin Huang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan 430060, China
| | - Mingkai Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan 430060, China
| |
Collapse
|
39
|
Torices S, Moreno T, Ramaswamy S, Naranjo O, Teglas T, Osborne OM, Park M, Sun E, Toborek M. MITOCHONDRIAL ANTIVIRAL PATHWAYS CONTROL ANTI-HIV RESPONSES AND ISCHEMIC STROKE OUTCOMES VIA THE RIG-1 SIGNALING AND INNATE IMMUNITY MECHANISMS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.598027. [PMID: 38895303 PMCID: PMC11185786 DOI: 10.1101/2024.06.07.598027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Occludin (ocln) is one of the main regulatory cells of the blood-brain barrier (BBB). Ocln silencing resulted in alterations of the gene expression signatures of a variety of genes of the innate immunity system, including IFN-stimulated genes (ISGs) and the antiviral retinoic acid-inducible gene-1 (RIG-1) signaling pathway, which functions as a regulator of the cytoplasmic sensors upstream of the mitochondrial antiviral signaling protein (MAVS). Indeed, we observed dysfunctional mitochondrial bioenergetics, dynamics, and autophagy in our system. Alterations of mitochondrial bioenergetics and innate immune protection translated into worsened ischemic stroke outcomes in EcoHIV-infected ocln deficient mice. Overall, these results allow for a better understanding of the molecular mechanisms of viral infection in the brain and describe a previously unrecognized role of ocln as a key factor in the control of innate immune responses and mitochondrial dynamics, which affect cerebral vascular diseases such as ischemic stroke.
Collapse
Affiliation(s)
- Silvia Torices
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| | - Thaidy Moreno
- Department of Radiation Oncology, UCSF, San Francisco, California, USA
| | - Sita Ramaswamy
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| | - Oandy Naranjo
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| | - Timea Teglas
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| | - Olivia M. Osborne
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| | - Minseon Park
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| | - Enze Sun
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| | - Michal Toborek
- University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL
| |
Collapse
|
40
|
Saadat A, Gouttenoire J, Ripellino P, Semela D, Amar S, Frey BM, Fontana S, Mdawar-Bailly E, Moradpour D, Fellay J, Fraga M. Inborn errors of type I interferon immunity in patients with symptomatic acute hepatitis E. Hepatology 2024; 79:1421-1431. [PMID: 38079352 PMCID: PMC11095861 DOI: 10.1097/hep.0000000000000701] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/06/2023] [Indexed: 03/13/2024]
Abstract
BACKGROUND AND AIMS The clinical spectrum of human infection by HEV ranges from asymptomatic to severe acute hepatitis. Furthermore, HEV can cause diverse neurological manifestations, especially Parsonage-Turner syndrome. Here, we used a large-scale human genomic approach to search for genetic determinants of severe clinical presentations of HEV infection. APPROACH AND RESULTS We performed whole genome sequencing in 3 groups of study participants with PCR-proven acute HEV infection: (1) 24 patients with symptomatic acute hepatitis E; (2) 12 patients with HEV-associated Parsonage-Turner syndrome; and (3) 16 asymptomatic blood donors (controls). For variant calling and annotation, we used GATK4 best practices followed by Variant Effect Predictor (VEP) and Annovar. For variant classification, we implemented the American College of Medical Genetics and Genomics/Association for Molecular Pathology Bayesian classification framework in R. Variants with a probability of pathogenicity >0.9 were considered damaging. We used all genes with at least 1 damaging variant as input for pathway enrichment analyses.We observed a significant enrichment of type I interferon response pathways in the symptomatic hepatitis group: 10 out of 24 patients carried a damaging variant in one of 9 genes encoding either intracellular viral sensors ( IFIH1 , DDX58 , TLR3 , POLR3B , POLR3C ) or other molecules involved in type I interferon response [interferon regulatory factor 7 ( IRF7 ), MYD88 , OAS3 , GAPDH ]. We did not find any enriched pathway in the Parsonage-Turner syndrome group or in the controls. CONCLUSIONS Our results highlight the essential role of type I interferon in preventing symptomatic acute hepatitis E.
Collapse
Affiliation(s)
- Ali Saadat
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jérôme Gouttenoire
- Division of Gastroenterology and Hepatology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Paolo Ripellino
- Department of Neurology, Neurocenter of Southern Switzerland, EOC, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - David Semela
- Division of Gastroenterology and Hepatology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Soraya Amar
- Swiss Transfusion, Swiss Red Cross, Bern, Switzerland
| | - Beat M. Frey
- Blood Transfusion Service SRC, Schlieren/Zurich, Switzerland
| | | | | | - Elise Mdawar-Bailly
- Division of Gastroenterology and Hepatology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Darius Moradpour
- Division of Gastroenterology and Hepatology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jacques Fellay
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Precision Medicine Unit, Biomedical Data Science Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Montserrat Fraga
- Division of Gastroenterology and Hepatology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
41
|
Qi WH, Hu LF, Gu YJ, Zhang XY, Jiang XM, Li WJ, Qi JS, Xiao GS, Jie H. Integrated mRNA-miRNA transcriptome profiling of blood immune responses potentially related to pulmonary fibrosis in forest musk deer. Front Immunol 2024; 15:1404108. [PMID: 38873601 PMCID: PMC11169664 DOI: 10.3389/fimmu.2024.1404108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/18/2024] [Indexed: 06/15/2024] Open
Abstract
Background Forest musk deer (FMD, Moschus Berezovskii) is a critically endangered species world-widely, the death of which can be caused by pulmonary disease in the farm. Pulmonary fibrosis (PF) was a huge threat to the health and survival of captive FMD. MicroRNAs (miRNAs) and messenger RNAs (mRNAs) have been involved in the regulation of immune genes and disease development. However, the regulatory profiles of mRNAs and miRNAs involved in immune regulation of FMD are unclear. Methods In this study, mRNA-seq and miRNA-seq in blood were performed to constructed coexpression regulatory networks between PF and healthy groups of FMD. The hub immune- and apoptosis-related genes in the PF blood of FMD were explored through Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Further, protein-protein interaction (PPI) network of immune-associated and apoptosis-associated key signaling pathways were constructed based on mRNA-miRNA in the PF blood of the FMD. Immune hub DEGs and immune hub DEmiRNAs were selected for experimental verification using RT-qPCR. Results A total of 2744 differentially expressed genes (DEGs) and 356 differentially expressed miRNAs (DEmiRNAs) were identified in the PF blood group compared to the healthy blood group. Among them, 42 DEmiRNAs were negatively correlated with 20 immune DEGs from a total of 57 correlations. The DEGs were significantly associated with pathways related to CD molecules, immune disease, immune system, cytokine receptors, T cell receptor signaling pathway, Th1 and Th2 cell differentiation, cytokine-cytokine receptor interaction, intestinal immune network for IgA production, and NOD-like receptor signaling pathway. There were 240 immune-related DEGs, in which 186 immune-related DEGs were up-regulated and 54 immune-related DEGs were down-regulated. In the protein-protein interaction (PPI) analysis of immune-related signaling pathway, TYK2, TLR2, TLR4, IL18, CSF1, CXCL13, LCK, ITGB2, PIK3CB, HCK, CD40, CD86, CCL3, CCR7, IL2RA, TLR3, and IL4R were identified as the hub immune genes. The mRNA-miRNA coregulation analysis showed that let-7d, miR-324-3p, miR-760, miR-185, miR-149, miR-149-5p, and miR-1842-5p are key miRNAs that target DEGs involved in immune disease, immune system and immunoregulation. Conclusion The development and occurrence of PF were significantly influenced by the immune-related and apoptosis-related genes present in PF blood. mRNAs and miRNAs associated with the development and occurrence of PF in the FMD.
Collapse
Affiliation(s)
- Wen-Hua Qi
- College of Biological and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Li-Fan Hu
- College of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Yu-Jiawei Gu
- College of Biological and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | | | - Xue-Mei Jiang
- College of Biological and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Wu-Jiao Li
- Department of Laboratory Medicine, Shenzhen Children’s Hospital, Shenzhen, China
| | - Jun-Sheng Qi
- College of Biological and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Guo-Sheng Xiao
- College of Biological and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Hang Jie
- Jinfo Mountain Forest Ecosystem Field Scientific Observation and Research Station of Chongqing, Chongqing Institute of Medicinal Plant Cultivation, Chongqing, China
| |
Collapse
|
42
|
Tsitkov S, Valentine K, Kozareva V, Donde A, Frank A, Lei S, E Van Eyk J, Finkbeiner S, Rothstein JD, Thompson LM, Sareen D, Svendsen CN, Fraenkel E. Disease related changes in ATAC-seq of iPSC-derived motor neuron lines from ALS patients and controls. Nat Commun 2024; 15:3606. [PMID: 38697975 PMCID: PMC11066062 DOI: 10.1038/s41467-024-47758-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/09/2024] [Indexed: 05/05/2024] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS), like many other neurodegenerative diseases, is highly heritable, but with only a small fraction of cases explained by monogenic disease alleles. To better understand sporadic ALS, we report epigenomic profiles, as measured by ATAC-seq, of motor neuron cultures derived from a diverse group of 380 ALS patients and 80 healthy controls. We find that chromatin accessibility is heavily influenced by sex, the iPSC cell type of origin, ancestry, and the inherent variance arising from sequencing. Once these covariates are corrected for, we are able to identify ALS-specific signals in the data. Additionally, we find that the ATAC-seq data is able to predict ALS disease progression rates with similar accuracy to methods based on biomarkers and clinical status. These results suggest that iPSC-derived motor neurons recapitulate important disease-relevant epigenomic changes.
Collapse
Affiliation(s)
- Stanislav Tsitkov
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kelsey Valentine
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Velina Kozareva
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Aneesh Donde
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Aaron Frank
- Cedars-Sinai Biomanufacturing Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Susan Lei
- Cedars-Sinai Biomanufacturing Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jennifer E Van Eyk
- Advanced Clinical Biosystems Research Institute, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Steve Finkbeiner
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA, USA
- Taube/Koret Center for Neurodegenerative Disease, Gladstone Institutes, San Francisco, CA, USA
- Departments of Neurology and Physiology, University of California, San Francisco, San Francisco, CA, USA
| | - Jeffrey D Rothstein
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Leslie M Thompson
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Center, University of California, Irvine, CA, USA
| | - Dhruv Sareen
- Cedars-Sinai Biomanufacturing Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- The Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Clive N Svendsen
- The Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ernest Fraenkel
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
43
|
Wang L, Yang F, Ye J, Zhang L, Jiang X. Insight into the role of IRF7 in skin and connective tissue diseases. Exp Dermatol 2024; 33:e15083. [PMID: 38794808 DOI: 10.1111/exd.15083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/15/2024] [Accepted: 04/08/2024] [Indexed: 05/26/2024]
Abstract
Interferons (IFNs) are signalling proteins primarily involved in initiating innate immune responses against pathogens and promoting the maturation of immune cells. Interferon Regulatory Factor 7 (IRF7) plays a pivotal role in the IFNs signalling pathway. The activation process of IRF7 is incited by exogenous or abnormal nucleic acids, which is followed by the identification via pattern recognition receptors (PRRs) and the ensuing signalling cascades. Upon activation, IRF7 modulates the expression of both IFNs and inflammatory gene regulation. As a multifunctional transcription factor, IRF7 is mainly expressed in immune cells, yet its presence is also detected in keratinocytes, fibroblasts, and various dermal cell types. In these cells, IRF7 is critical for skin immunity, inflammation, and fibrosis. IRF7 dysregulation may lead to autoimmune and inflammatory skin conditions, including systemic scleroderma (SSc), systemic lupus erythematosus (SLE), Atopic dermatitis (AD) and Psoriasis. This comprehensive review aims to extensively elucidate the role of IRF7 and its signalling pathways in immune cells and keratinocytes, highlighting its significance in skin-related and connective tissue diseases.
Collapse
Affiliation(s)
- Lian Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Fengjuan Yang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Ye
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Zhang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
44
|
Buthasane W, Shotelersuk V, Chetruengchai W, Srichomthong C, Assawapitaksakul A, Tangphatsornruang S, Pootakham W, Sonthirod C, Tongsima S, Wangkumhang P, Wilantho A, Thongphakdee A, Sanannu S, Poksawat C, Nipanunt T, Kasorndorkbua C, Koepfli KP, Pukazhenthi BS, Suriyaphol P, Wongsurawat T, Jenjaroenpun P, Suriyaphol G. Comprehensive genome assembly reveals genetic diversity and carcass consumption insights in critically endangered Asian king vultures. Sci Rep 2024; 14:9455. [PMID: 38658744 PMCID: PMC11043450 DOI: 10.1038/s41598-024-59990-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/17/2024] [Indexed: 04/26/2024] Open
Abstract
The Asian king vulture (AKV), a vital forest scavenger, is facing globally critical endangerment. This study aimed to construct a reference genome to unveil the mechanisms underlying its scavenger abilities and to assess the genetic relatedness of the captive population in Thailand. A reference genome of a female AKV was assembled from sequencing reads obtained from both PacBio long-read and MGI short-read sequencing platforms. Comparative genomics with New World vultures (NWVs) and other birds in the Family Accipitridae revealed unique gene families in AKV associated with retroviral genome integration and feather keratin, contrasting with NWVs' genes related to olfactory reception. Expanded gene families in AKV were linked to inflammatory response, iron regulation and spermatogenesis. Positively selected genes included those associated with anti-apoptosis, immune response and muscle cell development, shedding light on adaptations for carcass consumption and high-altitude soaring. Using restriction site-associated DNA sequencing (RADseq)-based genome-wide single nucleotide polymorphisms (SNPs), genetic relatedness and inbreeding status of five captive AKVs were determined, revealing high genomic inbreeding in two females. In conclusion, the AKV reference genome was established, providing insights into its unique characteristics. Additionally, the potential of RADseq-based genome-wide SNPs for selecting AKV breeders was demonstrated.
Collapse
Affiliation(s)
- Wannapol Buthasane
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Henri Dunant Road, Pathumwan, Bangkok, 10330, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Wanna Chetruengchai
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Henri Dunant Road, Pathumwan, Bangkok, 10330, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Chalurmpon Srichomthong
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Henri Dunant Road, Pathumwan, Bangkok, 10330, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Adjima Assawapitaksakul
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Henri Dunant Road, Pathumwan, Bangkok, 10330, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Sithichoke Tangphatsornruang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Wirulda Pootakham
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Chutima Sonthirod
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Sissades Tongsima
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Pongsakorn Wangkumhang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Alisa Wilantho
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Ampika Thongphakdee
- Animal Conservation and Research Institute, The Zoological Park Organization of Thailand under the Royal Patronage of H.M. The King, Bangkok, 10300, Thailand
| | - Saowaphang Sanannu
- Animal Conservation and Research Institute, The Zoological Park Organization of Thailand under the Royal Patronage of H.M. The King, Bangkok, 10300, Thailand
| | - Chaianan Poksawat
- Animal Conservation and Research Institute, The Zoological Park Organization of Thailand under the Royal Patronage of H.M. The King, Bangkok, 10300, Thailand
| | - Tarasak Nipanunt
- Huai Kha Khaeng Wildlife Breeding Center, Department of National Parks, Wildlife and Plant Conservation, Uthai Thani, 61160, Thailand
| | - Chaiyan Kasorndorkbua
- Laboratory of Raptor Research and Conservation Medicine, Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Klaus-Peter Koepfli
- Smithsonian-Mason School of Conservation, George Mason University, Front Royal, VA, 22630, USA
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, 22630, USA
| | - Budhan S Pukazhenthi
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, 22630, USA
| | - Prapat Suriyaphol
- Division of Medical Bioinformatics, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Thidathip Wongsurawat
- Division of Medical Bioinformatics, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Piroon Jenjaroenpun
- Division of Medical Bioinformatics, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Gunnaporn Suriyaphol
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
45
|
Jin L, Dong L, Pei S, Chen X, Kuang Y, Chen W, Zhu W, Yin M. A BET inhibitor, NHWD-870, can downregulate dendritic cells maturation via the IRF7-mediated signaling pathway to ameliorate imiquimod-induced psoriasis-like murine skin inflammation. Eur J Pharmacol 2024; 968:176382. [PMID: 38311277 DOI: 10.1016/j.ejphar.2024.176382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/24/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Psoriasis is a chronic, recurrent, inflammatory dermatosis accompanied by excessive activation of dendritic cells (DCs), which are primarily responsible for initiating an immune response. The bromodomain and extraterminal domain (BET) family plays a pivotal role in the transcriptional regulation of inflammation and its inhibitors can downregulate DCs maturation and activation. Here we investigated the effect of NHWD-870, a potent BET inhibitor, on inflammation in an imiquimod (IMQ)-induced psoriasis-like mouse model and murine bone marrow-derived dendritic cells (BMDCs) stimulated by lipopolysaccharide (LPS) and IMQ. Application of NHWD-870 significantly ameliorated IMQ-triggered skin inflammation in mice, and markers associated with DC maturation (CD40, CD80 and CD86) were decreased in skin lesions, spleen and lymph nodes. Additionally, NHWD-870 reduced LPS or IMQ induced DCs maturation and activation in vitro, with lower expression of inflammatory cytokines [interleukin (IL)-12, IL-23, tumor necrosis factor-α, IL-6, IL-1β, chemokine (C-X-C motif) ligand (CXCL)9 and CXCL10]. In addition, we found that interferon regulatory factor 7 (IRF7) significantly increased during DCs maturation, and inhibition of IRF7 could impair BMDCs maturation and activation. What's more, IRF7 was highly expressed in both psoriatic patients and IMQ-induced psoriasis-like mice. Single-cell RNA sequencing of normal and psoriatic skin demonstrated that IRF7 expression was increased in DCs of psoriatic skin. While NHWD-870 could inhibit IRF7 and phosphorylated-IRF7 expression in vivo and in vitro. These results indicate that NHWD-870 suppresses the maturation and activation of DCs by decreasing IRF7 proteins which finally alleviates psoriasis-like skin lesions, and NHWD-870 may be a potent therapeutic drug for psoriasis.
Collapse
Affiliation(s)
- Liping Jin
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, 410008, China; Furong Laboratory, Changsha, Hunan, 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 5Lead Contact, Changsha, Hunan, 410008, China
| | - Liang Dong
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, 410008, China; Furong Laboratory, Changsha, Hunan, 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 5Lead Contact, Changsha, Hunan, 410008, China
| | - Shiyao Pei
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, 410008, China; Furong Laboratory, Changsha, Hunan, 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 5Lead Contact, Changsha, Hunan, 410008, China; Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, 410008, China; Furong Laboratory, Changsha, Hunan, 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 5Lead Contact, Changsha, Hunan, 410008, China
| | - Yehong Kuang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, 410008, China; Furong Laboratory, Changsha, Hunan, 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 5Lead Contact, Changsha, Hunan, 410008, China
| | - Wangqing Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, 410008, China; Furong Laboratory, Changsha, Hunan, 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 5Lead Contact, Changsha, Hunan, 410008, China.
| | - Wu Zhu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, 410008, China; Furong Laboratory, Changsha, Hunan, 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 5Lead Contact, Changsha, Hunan, 410008, China.
| | - Mingzhu Yin
- Clinical Research Center (CRC), Medical Pathology Center (MPC), Cancer Early Detection and Treatment Center (CEDTC), Translational Medicine Research Center (TMRC), Chongqing University Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, China.
| |
Collapse
|
46
|
Cortes DE, Escudero M, Korgan AC, Mitra A, Edwards A, Aydin SC, Munger SC, Charland K, Zhang ZW, O'Connell KMS, Reinholdt LG, Pera MF. An in vitro neurogenetics platform for precision disease modeling in the mouse. SCIENCE ADVANCES 2024; 10:eadj9305. [PMID: 38569042 PMCID: PMC10990289 DOI: 10.1126/sciadv.adj9305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/27/2024] [Indexed: 04/05/2024]
Abstract
The power and scope of disease modeling can be markedly enhanced through the incorporation of broad genetic diversity. The introduction of pathogenic mutations into a single inbred mouse strain sometimes fails to mimic human disease. We describe a cross-species precision disease modeling platform that exploits mouse genetic diversity to bridge cell-based modeling with whole organism analysis. We developed a universal protocol that permitted robust and reproducible neural differentiation of genetically diverse human and mouse pluripotent stem cell lines and then carried out a proof-of-concept study of the neurodevelopmental gene DYRK1A. Results in vitro reliably predicted the effects of genetic background on Dyrk1a loss-of-function phenotypes in vivo. Transcriptomic comparison of responsive and unresponsive strains identified molecular pathways conferring sensitivity or resilience to Dyrk1a1A loss and highlighted differential messenger RNA isoform usage as an important determinant of response. This cross-species strategy provides a powerful tool in the functional analysis of candidate disease variants identified through human genetic studies.
Collapse
Affiliation(s)
| | | | | | - Arojit Mitra
- The Jackson Laboratory, Bar Harbor, ME 04660, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Koupourtidou C, Schwarz V, Aliee H, Frerich S, Fischer-Sternjak J, Bocchi R, Simon-Ebert T, Bai X, Sirko S, Kirchhoff F, Dichgans M, Götz M, Theis FJ, Ninkovic J. Shared inflammatory glial cell signature after stab wound injury, revealed by spatial, temporal, and cell-type-specific profiling of the murine cerebral cortex. Nat Commun 2024; 15:2866. [PMID: 38570482 PMCID: PMC10991294 DOI: 10.1038/s41467-024-46625-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 02/29/2024] [Indexed: 04/05/2024] Open
Abstract
Traumatic brain injury leads to a highly orchestrated immune- and glial cell response partially responsible for long-lasting disability and the development of secondary neurodegenerative diseases. A holistic understanding of the mechanisms controlling the responses of specific cell types and their crosstalk is required to develop an efficient strategy for better regeneration. Here, we combine spatial and single-cell transcriptomics to chart the transcriptomic signature of the injured male murine cerebral cortex, and identify specific states of different glial cells contributing to this signature. Interestingly, distinct glial cells share a large fraction of injury-regulated genes, including inflammatory programs downstream of the innate immune-associated pathways Cxcr3 and Tlr1/2. Systemic manipulation of these pathways decreases the reactivity state of glial cells associated with poor regeneration. The functional relevance of the discovered shared signature of glial cells highlights the importance of our resource enabling comprehensive analysis of early events after brain injury.
Collapse
Affiliation(s)
- Christina Koupourtidou
- Chair of Cell Biology and Anatomy, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- Graduate School of Systemic Neurosciences, LMU Munich, Munich, Germany
| | - Veronika Schwarz
- Chair of Cell Biology and Anatomy, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- Graduate School of Systemic Neurosciences, LMU Munich, Munich, Germany
| | - Hananeh Aliee
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Simon Frerich
- Graduate School of Systemic Neurosciences, LMU Munich, Munich, Germany
- Institute for Stroke and Dementia Research, LMU University Hospital, LMU Munich, Munich, Germany
| | - Judith Fischer-Sternjak
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Riccardo Bocchi
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Tatiana Simon-Ebert
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Xianshu Bai
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, Germany
- Center for Gender-specific Biology and Medicine (CGBM), University of Saarland, Homburg, Germany
| | - Swetlana Sirko
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, Germany
- Center for Gender-specific Biology and Medicine (CGBM), University of Saarland, Homburg, Germany
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology SYNERGY, LMU Munich, Munich, Germany
- German Centre for Neurodegenerative Diseases, Munich, Germany
| | - Magdalena Götz
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Munich Cluster for Systems Neurology SYNERGY, LMU Munich, Munich, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Department of Mathematics, Technical University of Munich, Munich, Germany
| | - Jovica Ninkovic
- Chair of Cell Biology and Anatomy, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany.
- Institute of Stem Cell Research, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany.
- Munich Cluster for Systems Neurology SYNERGY, LMU Munich, Munich, Germany.
| |
Collapse
|
48
|
Fan S, Popli S, Chakravarty S, Chakravarti R, Chattopadhyay S. Non-transcriptional IRF7 interacts with NF-κB to inhibit viral inflammation. J Biol Chem 2024; 300:107200. [PMID: 38508315 PMCID: PMC11040127 DOI: 10.1016/j.jbc.2024.107200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/23/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024] Open
Abstract
Interferon (IFN) regulatory factors (IRF) are key transcription factors in cellular antiviral responses. IRF7, a virus-inducible IRF, expressed primarily in myeloid cells, is required for transcriptional induction of interferon α and antiviral genes. IRF7 is activated by virus-induced phosphorylation in the cytoplasm, leading to its translocation to the nucleus for transcriptional activity. Here, we revealed a nontranscriptional activity of IRF7 contributing to its antiviral functions. IRF7 interacted with the pro-inflammatory transcription factor NF-κB-p65 and inhibited the induction of inflammatory target genes. Using knockdown, knockout, and overexpression strategies, we demonstrated that IRF7 inhibited NF-κB-dependent inflammatory target genes, induced by virus infection or toll-like receptor stimulation. A mutant IRF7, defective in transcriptional activity, interacted with NF-κB-p65 and suppressed NF-κB-induced gene expression. A single-action IRF7 mutant, active in anti-inflammatory function, but defective in transcriptional activity, efficiently suppressed Sendai virus and murine hepatitis virus replication. We, therefore, uncovered an anti-inflammatory function for IRF7, independent of transcriptional activity, contributing to the antiviral response of IRF7.
Collapse
Affiliation(s)
- Shumin Fan
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Science, Toledo, Ohio, USA
| | - Sonam Popli
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Science, Toledo, Ohio, USA
| | - Sukanya Chakravarty
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Science, Toledo, Ohio, USA; Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Ritu Chakravarti
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Science, Toledo, Ohio, USA
| | - Saurabh Chattopadhyay
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Science, Toledo, Ohio, USA; Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA.
| |
Collapse
|
49
|
Scott HM, Smith MH, Coleman AK, Armijo KS, Chapman MJ, Apostalo SL, Wagner AR, Watson RO, Patrick KL. Serine/arginine-rich splicing factor 7 promotes the type I interferon response by activating Irf7 transcription. Cell Rep 2024; 43:113816. [PMID: 38393946 PMCID: PMC11056844 DOI: 10.1016/j.celrep.2024.113816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/19/2023] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Tight regulation of macrophage immune gene expression is required to fight infection without risking harmful inflammation. The contribution of RNA-binding proteins (RBPs) to shaping the macrophage response to pathogens remains poorly understood. Transcriptomic analysis reveals that a member of the serine/arginine-rich (SR) family of mRNA processing factors, SRSF7, is required for optimal expression of a cohort of interferon-stimulated genes in macrophages. Using genetic and biochemical assays, we discover that in addition to its canonical role in regulating alternative splicing, SRSF7 drives transcription of interferon regulatory transcription factor 7 (IRF7) to promote antiviral immunity. At the Irf7 promoter, SRSF7 maximizes STAT1 transcription factor binding and RNA polymerase II elongation via cooperation with the H4K20me1 histone methyltransferase KMT5a (SET8). These studies define a role for an SR protein in activating transcription and reveal an RBP-chromatin network that orchestrates macrophage antiviral gene expression.
Collapse
Affiliation(s)
- Haley M Scott
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
| | - Mackenzie H Smith
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
| | - Aja K Coleman
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
| | - Kaitlyn S Armijo
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
| | - Morgan J Chapman
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
| | - Summer L Apostalo
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
| | - Allison R Wagner
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
| | - Robert O Watson
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA
| | - Kristin L Patrick
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, TX 77807, USA.
| |
Collapse
|
50
|
Chen SJ, Hashimoto K, Fujio K, Hayashi K, Paul SK, Yuzuriha A, Qiu WY, Nakamura E, Kanashiro MA, Kabata M, Nakamura S, Sugimoto N, Kaneda A, Yamamoto T, Saito H, Takayama N, Eto K. A let-7 microRNA-RALB axis links the immune properties of iPSC-derived megakaryocytes with platelet producibility. Nat Commun 2024; 15:2588. [PMID: 38519457 PMCID: PMC10960040 DOI: 10.1038/s41467-024-46605-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 03/04/2024] [Indexed: 03/25/2024] Open
Abstract
We recently achieved the first-in-human transfusion of induced pluripotent stem cell-derived platelets (iPSC-PLTs) as an alternative to standard transfusions, which are dependent on donors and therefore variable in supply. However, heterogeneity characterized by thrombopoiesis-biased or immune-biased megakaryocytes (MKs) continues to pose a bottleneck against the standardization of iPSC-PLT manufacturing. To address this problem, here we employ microRNA (miRNA) switch biotechnology to distinguish subpopulations of imMKCLs, the MK cell lines producing iPSC-PLTs. Upon miRNA switch-based screening, we find imMKCLs with lower let-7 activity exhibit an immune-skewed transcriptional signature. Notably, the low activity of let-7a-5p results in the upregulation of RAS like proto-oncogene B (RALB) expression, which is crucial for the lineage determination of immune-biased imMKCL subpopulations and leads to the activation of interferon-dependent signaling. The dysregulation of immune properties/subpopulations, along with the secretion of inflammatory cytokines, contributes to a decline in the quality of the whole imMKCL population.
Collapse
Affiliation(s)
- Si Jing Chen
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Department of Regenerative Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuya Hashimoto
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Kosuke Fujio
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Karin Hayashi
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Sudip Kumar Paul
- Department of Regenerative Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Akinori Yuzuriha
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Wei-Yin Qiu
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Emiri Nakamura
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | | | - Mio Kabata
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Sou Nakamura
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Naoshi Sugimoto
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takuya Yamamoto
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
- Medical-risk Avoidance Based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| | - Hirohide Saito
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.
| | - Naoya Takayama
- Department of Regenerative Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | - Koji Eto
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.
- Department of Regenerative Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.
| |
Collapse
|