1
|
Guo Z, Zhang K, Wei X, Li Y, Ma X, Li Y, Han D, Du Q, Zhang T, Chen X, Wei H, Yan C, Zhang W, Pang Q, Wang P. Radiotherapy plus camrelizumab affects peripheral CD8 T-cell differentiation subsets expressing PD-1, TIGIT, and CTLA-4 in esophageal squamous cell carcinoma. J Leukoc Biol 2023; 113:11-17. [PMID: 36822161 DOI: 10.1093/jleuko/qiac018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Indexed: 01/11/2023] Open
Abstract
Our previous phase Ib trial (NCT03222440) showed that radiotherapy plus the anti-PD-1 antibody camrelizumab is a safe and feasible first-line therapy for locally advanced esophageal squamous cell carcinoma. In this study, we divided peripheral CD8 T-cell differentiation subsets into 4 subpopulations (naive T cells, central memory T cells, effector memory T cells, and CD45RA+ effector memory T cells). We then investigated the influence of radiotherapy plus camrelizumab therapy on the proportions of the 4 subsets and their PD-1, TIGIT, and CTLA-4 expression as well as their proliferative activity and compared the effects with those of concurrent chemoradiotherapy. Nineteen and 15 patients with esophageal squamous cell carcinoma who received radiotherapy plus camrelizumab therapy and concurrent chemoradiotherapy, respectively, were enrolled in this study. We isolated peripheral blood mononuclear cells from these patients before treatment and longitudinally after the delivery of 40 Gy radiotherapy. Flow cytometry was conducted to detect peripheral CD8 T-cell subsets and PD-1, TIGIT, CTLA-4, and Ki67 expression levels in patients with esophageal squamous cell carcinoma. We found that radiotherapy plus camrelizumab therapy did not change the proportions of the 4 subsets or the expression of CTLA-4, but this therapy decreased PD-1 expression by the 4 subsets and TIGIT expression by effector memory T cells, as well as significantly enhanced the proliferative activity of CD8 T cells, whereas concurrent chemoradiotherapy produced different effects. In addition, we further identified peripheral biomarkers that potentially predict the outcome of radiotherapy plus camrelizumab therapy.
Collapse
Affiliation(s)
- Zhoubo Guo
- Departments of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhu West Road, Hexi District, Tianjin, China
| | - Kunning Zhang
- Departments of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhu West Road, Hexi District, Tianjin, China
| | - Xiaoying Wei
- Departments of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhu West Road, Hexi District, Tianjin, China
| | - Yanqi Li
- Departments of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhu West Road, Hexi District, Tianjin, China
| | - Xiaoxue Ma
- Departments of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhu West Road, Hexi District, Tianjin, China
| | - Yang Li
- Departments of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhu West Road, Hexi District, Tianjin, China
| | - Dong Han
- Departments of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhu West Road, Hexi District, Tianjin, China
| | - Qingwu Du
- Departments of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhu West Road, Hexi District, Tianjin, China
| | - Tian Zhang
- Departments of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhu West Road, Hexi District, Tianjin, China
| | - Xi Chen
- Departments of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhu West Road, Hexi District, Tianjin, China
| | - Hui Wei
- Departments of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhu West Road, Hexi District, Tianjin, China
| | - Cihui Yan
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhu West Road, Hexi District, Tianjin, China
| | - Wencheng Zhang
- Departments of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhu West Road, Hexi District, Tianjin, China
| | - Qingsong Pang
- Departments of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhu West Road, Hexi District, Tianjin, China
| | - Ping Wang
- Departments of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huanhu West Road, Hexi District, Tianjin, China
| |
Collapse
|
2
|
Shen F, Geng Y, Zhang L, Luo L, Yan G, Hou R, Yue B, Zhang X. Transcriptome Analysis Reveals the Alternative Splicing Changes in the Immune-Related Genes of the Giant Panda (Ailuropoda melanoleuca), in Response to the Canine Distemper Vaccine. Zoolog Sci 2022; 39:275-285. [DOI: 10.2108/zs210078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 01/18/2022] [Indexed: 11/17/2022]
Affiliation(s)
- Fujun Shen
- The Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Yang Geng
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Liang Zhang
- The Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Li Luo
- The Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Guoqiang Yan
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Rong Hou
- The Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Bisong Yue
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Xiuyue Zhang
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| |
Collapse
|
3
|
Wang J, Fan Q, Yu T, Zhang Y. Identifying the hub genes and immune cell infiltration in synovial tissue between osteoarthritic and rheumatoid arthritic patients by bioinformatic approach. Curr Pharm Des 2021; 28:497-509. [PMID: 34736376 DOI: 10.2174/1381612827666211104154459] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/28/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Osteoarthritis (OA) and rheumatoid arthritis (RA) are two common diseases that result in limb disability and a decrease in quality of life. The major symptoms of OA and RA are pain, swelling, stiffness, and malformation of joints, and each disease also has unique characteristics. OBJECTIVE To compare the pathological mechanisms of OA and RA via weighted correlation network analysis (WGCNA) and immune infiltration analysis and find potential diagnostic and pharmaceutical targets for the treatment of OA and RA. METHODS The gene expression profiles of ten OA and ten RA synovial tissue samples were downloaded from the Gene Expression Omnibus (GEO) database (GSE55235). After obtaining differentially expressed genes (DEGs) via GEO2R, WGCNA was conducted using an R package, and modules and genes that were highly correlated with OA and RA were identified. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, and protein-protein interaction (PPI) network analyses were also conducted. Hub genes were identified using the Search Tool for the Retrieval of Interacting Genes (STRING) and Cytoscape software. Immune infiltration analysis was conducted using the Perl program and CIBERSORT software. RESULTS Two hundred ninety-nine DEGs, 24 modules, 16 GO enrichment terms, 6 KEGG pathway enrichment terms, 10 hub genes (CXCL9, CXCL10, CXCR4, CD27, CD69, CD3D, IL7R, STAT1, RGS1, and ISG20), and 8 kinds of different infiltrating immune cells (plasma cells, CD8 T cells, activated memory CD4 T cells, T helper follicular cells, M1 macrophages, Tregs, resting mast cells, and neutrophils) were found to be involved in the different pathological mechanisms of OA and RA. CONCLUSION Inflammation-associated genes were the top differentially expressed hub genes between OA and RA, and their expression was downregulated in OA. Genes associated with lipid metabolism may have upregulated expression in OA. In addition, immune cells that participate in the adaptive immune response play an important role in RA. OA mainly involves immune cells that are associated with the innate immune response.
Collapse
Affiliation(s)
- Junjie Wang
- Qingdao University, Qingdao, Shandong 266000. China
| | - Qin Fan
- Qingdao University, Qingdao, Shandong 266000. China
| | - Tengbo Yu
- Qingdao University, Qingdao, Shandong 266000. China
| | - Yingze Zhang
- Qingdao University, Qingdao, Shandong 266000. China
| |
Collapse
|
4
|
Stem cell-like memory T cells: A perspective from the dark side. Cell Immunol 2021; 361:104273. [PMID: 33422699 DOI: 10.1016/j.cellimm.2020.104273] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/10/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023]
Abstract
Much attention has been paid to a newly discovered subset of memory T (TM) cells-stem cell-like memory T (TSCM) cells for their high self-renewal ability, multi-differentiation potential and long-term effector function in adoptive therapy against tumors. Despite their application in cancer therapy, an excess of TSCM cells also contributes to the persistence of autoimmune diseases for their immune memory and HIV infection as a long-lived HIV reservoir. Signaling pathways Wnt, AMPK/mTOR and NF-κB are key determinants for TM cell generation, maintenance and proinflammatory effect. In this review, we focus on the phenotypic and functional characteristics of TSCM cells and discuss their role in autoimmune diseases and HIV-1 chronic infection. Also, we explore the potential mechanism and signaling pathways involved in immune memory and look into the future therapy strategies of targeting long-lived TM cells to suppress pathogenic immune memory.
Collapse
|
5
|
Zhang Z, Li F, Tian Y, Cao L, Gao Q, Zhang C, Zhang K, Shen C, Ping Y, Maimela NR, Wang L, Zhang B, Zhang Y. Metformin Enhances the Antitumor Activity of CD8 + T Lymphocytes via the AMPK-miR-107-Eomes-PD-1 Pathway. THE JOURNAL OF IMMUNOLOGY 2020; 204:2575-2588. [PMID: 32221038 DOI: 10.4049/jimmunol.1901213] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/01/2020] [Indexed: 01/04/2023]
Abstract
Metformin has been studied for its anticancer effects by regulating T cell functions. However, the mechanisms through which metformin stimulates the differentiation of memory T cells remain unclear. We found that the frequencies of memory stem and central memory T cells increased for both in peripheral and tumor-infiltrating CD8+ T cells in metformin-treated lung cancer patients compared with those not taking the medication. An in vitro assay showed that metformin promoted the formation of memory CD8+ T cells and enhanced their antiapoptotic abilities. In addition, AMP-activated protein kinase (AMPK) activation decreased microRNA-107 expression, thus enhancing Eomesodermin expression, which suppressed the transcription of PDCD1 in metformin-treated CD8+ T cells. In the CAR-T cell therapy model, metformin also exhibited cytotoxicity-promoting effects that led to decreased tumor growth. Metformin could reprogram the differentiation of CD8+ T cells, which may benefit the clinical therapy of cancer patients by facilitating long-lasting cytotoxic functions.
Collapse
Affiliation(s)
- Zhen Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Feng Li
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yonggui Tian
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.,School of Life Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Ling Cao
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Qun Gao
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Chaoqi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Kai Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Chunyi Shen
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yu Ping
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | | | - Liping Wang
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Bin Zhang
- Department of Hematology/Oncology, School of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611; and
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; .,School of Life Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.,Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan 450052, China
| |
Collapse
|
6
|
Marcel N, Hedrick SM. A key control point in the T cell response to chronic infection and neoplasia: FOXO1. Curr Opin Immunol 2020; 63:51-60. [PMID: 32135399 DOI: 10.1016/j.coi.2020.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/29/2020] [Accepted: 02/01/2020] [Indexed: 12/26/2022]
Abstract
T cells able to control neoplasia or chronic infections display a signature gene expression profile similar or identical to that of central memory T cells. These cells have qualities of self-renewal and a plasticity that allow them to repeatedly undergo activation (growth, proliferation, and differentiation), followed by quiescence. It is these qualities that define the ability of T cells to establish an equilibrium with chronic infectious agents, and also preserve the ability of T cells to be re-activated (by checkpoint therapy) in response to malignant cancers. Here we describe distinctions between the forms of inhibition mediated by tumors and persistent viruses, we review the properties of T cells associated with long-term immunity, and we identify the transcription factor, FOXO1, as the control point for a program of gene expression that allows CD8+ T cells to undergo serial reactivation and self-renewal.
Collapse
Affiliation(s)
- Nimi Marcel
- Molecular Biology Section, Division of Biological Sciences, Department of Cellular and Molecular Medicine, TATA Institute for Genetics and Society, University of California, San Diego, La Jolla, CA 92093-0377, United States
| | - Stephen M Hedrick
- Molecular Biology Section, Division of Biological Sciences, Department of Cellular and Molecular Medicine, TATA Institute for Genetics and Society, University of California, San Diego, La Jolla, CA 92093-0377, United States.
| |
Collapse
|
7
|
Geng Y, Shen F, Wu W, Zhang L, Luo L, Fan Z, Hou R, Yue B, Zhang X. First demonstration of giant panda's immune response to canine distemper vaccine. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 102:103489. [PMID: 31473266 DOI: 10.1016/j.dci.2019.103489] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 08/28/2019] [Accepted: 08/28/2019] [Indexed: 06/10/2023]
Abstract
The Canine Distemper Virus (CDV) is a high fatal virus to the giant panda (Ailuropoda melanoleuca), where CDV vaccination is a key preventative measure in captive giant pandas. However, the immune response of giant pandas to CDV vaccination has been little studied. In this study, we investigated the blood transcriptome expression profiles of five giant panda cubs after three inoculations, 21 days apart. Blood samples were collected before vaccination (0 Day), and 24 h after each of the three inoculations; defined here as 1 Day, 21 Day, and 42 Day. Compared to 0 Day, we obtained 1262 differentially expressed genes (DEGs) during inoculations. GO and KEGG pathways enrichment analysis of these DEGs found 222 GO terms and 40 pathways. The maximum immune-related terms were enriched by DEGs from comparisons of 21 Day and 0 Day. In the PPI analysis, we identified RSAD2, IL18, ISG15 immune-related hub genes from 1 Day and 21 Day comparison. Compared to 0 Day, innate immune-related genes, TLR4 and TLR8, were up-regulated at 1 Day, and the expressions of IRF1, RSAD2, MX1, and OAS2 were highest at 21 Day. Of the adaptive immune-related genes, IL15, promoting T cell differentiation into CD8+T cells, was up-regulated after the first two inoculations, IL12β, promoting T cell differentiation into memory cells, and IL10, promoting B cell proliferation and differentiation, were down-regulated during three inoculations. Our results indicated that the immune response of five giant panda cubs was strongest after the second inoculation, most likely protected against CDV infection through innate immunity and T cells, but did not produce enough memory cells to maintain long-term immunity after CDV vaccination.
Collapse
Affiliation(s)
- Yang Geng
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, China.
| | - Fujun Shen
- The Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, 610081, China.
| | - Wei Wu
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, China.
| | - Liang Zhang
- The Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, 610081, China.
| | - Li Luo
- The Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, 610081, China.
| | - Zhenxin Fan
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, 610064, PR China.
| | - Rong Hou
- The Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, 610081, China.
| | - Bisong Yue
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, 610064, PR China.
| | - Xiuyue Zhang
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
8
|
Enders M, Franken L, Philipp MS, Kessler N, Baumgart AK, Eichler M, Wiertz EJH, Garbi N, Kurts C. Splenic Red Pulp Macrophages Cross-Prime Early Effector CTL That Provide Rapid Defense against Viral Infections. THE JOURNAL OF IMMUNOLOGY 2019; 204:87-100. [PMID: 31776205 DOI: 10.4049/jimmunol.1900021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 10/29/2019] [Indexed: 12/13/2022]
Abstract
Cross-presentation allows dendritic cells (DCs) to present peptides derived from endocytosed Ags on MHC class I molecules, which is important for activating CTL against viral infections and tumors. Type 1 classical DCs (cDC1), which depend on the transcription factor Batf3, are considered the main cross-presenting cells. In this study, we report that soluble Ags are efficiently cross-presented also by transcription factor SpiC-dependent red pulp macrophages (RPM) of the spleen. In contrast to cDC1, RPM used the mannose receptor for Ag uptake and employed the proteasome- and TAP-dependent cytosolic cross-presentation pathway, previously shown to be used in vitro by bone marrow-derived DCs. In an in vivo vaccination model, both cDC1 and RPM cross-primed CTL efficiently but with distinct kinetics. Within a few days, RPM induced very early effector CTL of a distinct phenotype (Ly6A/E+ Ly6C(+) KLRG1- CD127- CX3CR1- Grz-B+). In an adenoviral infection model, such CTL contained the early viral spread, whereas cDC1 induced short-lived effector CTL that eventually cleared the virus. RPM-induced early effector CTL also contributed to the endogenous antiviral response but not to CTL memory generation. In conclusion, RPM can contribute to antiviral immunity by generating a rapid CTL defense force that contains the virus until cDC1-induced CTL are available to eliminate it. This function can be harnessed for improving vaccination strategies aimed at inducing CTL.
Collapse
Affiliation(s)
- Marika Enders
- Institut für Experimentelle Immunologie, Rheinische Friedrich-Wilhelms-Universität, 53127 Bonn, Germany; and
| | - Lars Franken
- Institut für Experimentelle Immunologie, Rheinische Friedrich-Wilhelms-Universität, 53127 Bonn, Germany; and
| | - Marie-Sophie Philipp
- Institut für Experimentelle Immunologie, Rheinische Friedrich-Wilhelms-Universität, 53127 Bonn, Germany; and
| | - Nina Kessler
- Institut für Experimentelle Immunologie, Rheinische Friedrich-Wilhelms-Universität, 53127 Bonn, Germany; and
| | - Ann-Kathrin Baumgart
- Institut für Experimentelle Immunologie, Rheinische Friedrich-Wilhelms-Universität, 53127 Bonn, Germany; and
| | - Melanie Eichler
- Institut für Experimentelle Immunologie, Rheinische Friedrich-Wilhelms-Universität, 53127 Bonn, Germany; and
| | - Emmanuel J H Wiertz
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Natalio Garbi
- Institut für Experimentelle Immunologie, Rheinische Friedrich-Wilhelms-Universität, 53127 Bonn, Germany; and
| | - Christian Kurts
- Institut für Experimentelle Immunologie, Rheinische Friedrich-Wilhelms-Universität, 53127 Bonn, Germany; and
| |
Collapse
|
9
|
Adoptive Transfer of Interleukin-21-stimulated Human CD8+ T Memory Stem Cells Efficiently Inhibits Tumor Growth. J Immunother 2019; 41:274-283. [PMID: 29864078 PMCID: PMC6012057 DOI: 10.1097/cji.0000000000000229] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Memory stem T (TSCM) cells, a new subset of memory T cells with self-renewal and multipotent capacities, are considered as a promising candidates for adoptive cellular therapy. However, the low proportion of human TSCM cells in total CD8+ T cells limits their utility. Here, we aimed to induce human CD8+ TSCM cells by stimulating naive precursors with interleukin-21 (IL-21). We found that IL-21 promoted the generation of TSCM cells, described as CD45RA+CD45RO−CD62L+CCR7+CD122+CD95+ cells, with a higher efficiency than that observed with other common γ-chain cytokines. Upon adoptive transfer into an A375 melanoma mouse model, these lymphocytes mediated much stronger antitumor responses. Further mechanistic analysis revealed that IL-21 activated the Janus kinase signal transducer and activator of transcription 3 pathway by upregulating signal transducer and activator of transcription 3 phosphorylation and consequently promoting the expression of T-bet and suppressor of cytokine signaling 1, but decreasing the expression of eomesodermin and GATA binding protein 3. Our findings provide novel insights into the generation of human CD8+ TSCM cells and reveal a novel potential clinical application of IL-21.
Collapse
|
10
|
Woo J, Winterhoff BJ, Starr TK, Aliferis C, Wang J. De novo prediction of cell-type complexity in single-cell RNA-seq and tumor microenvironments. Life Sci Alliance 2019; 2:2/4/e201900443. [PMID: 31266885 PMCID: PMC6607449 DOI: 10.26508/lsa.201900443] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 06/24/2019] [Indexed: 12/30/2022] Open
Abstract
This study describes a computational method for determining statistical support to varying levels of heterogeneity provided by single-cell RNA-sequencing data with applications to tumor samples. Recent single-cell transcriptomic studies revealed new insights into cell-type heterogeneities in cellular microenvironments unavailable from bulk studies. A significant drawback of currently available algorithms is the need to use empirical parameters or rely on indirect quality measures to estimate the degree of complexity, i.e., the number of subgroups present in the sample. We fill this gap with a single-cell data analysis procedure allowing for unambiguous assessments of the depth of heterogeneity in subclonal compositions supported by data. Our approach combines nonnegative matrix factorization, which takes advantage of the sparse and nonnegative nature of single-cell RNA count data, with Bayesian model comparison enabling de novo prediction of the depth of heterogeneity. We show that the method predicts the correct number of subgroups using simulated data, primary blood mononuclear cell, and pancreatic cell data. We applied our approach to a collection of single-cell tumor samples and found two qualitatively distinct classes of cell-type heterogeneity in cancer microenvironments.
Collapse
Affiliation(s)
- Jun Woo
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Boris J Winterhoff
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.,Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN, USA
| | - Timothy K Starr
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.,Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN, USA
| | - Constantin Aliferis
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
| | - Jinhua Wang
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA .,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
11
|
Pourgheysari B, Karimi L, Bagheri R, Kheiri S. Low IL-2 Expressing T Cells in Thalassemia Major Patients: Is It Immune Aging. Indian J Hematol Blood Transfus 2018; 34:653-661. [PMID: 30369736 DOI: 10.1007/s12288-018-0939-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/27/2018] [Indexed: 01/08/2023] Open
Abstract
Several studies have demonstrated T cell alteration and some features of immunosenescence in thalassemia major. Repeated alloimmunization converts naïve T-cells to memory cells and iron overload causes oxidative stress accelerating immune aging. To determine whether the alteration of T-cell cytokine is matched with early immune aging, the quantity of cytokine expressing T cells and their correlation to some immune aging markers were investigated. The proportion of IL2- and IFNγ expressing CD4+ and CD8+ T-cells was measured in 27 hepatitis B, C and HIV negative B-thalassemia patients and a control group aged 10-30 years, following stimulation for 6 h with streptococcus enterotoxin B and intracellular cytokine staining. This proportion then were analyzed versus the percentage of the T-cells expressing each phenotyping marker, CD27, CD28, CD57 and CCR7. CD4+ and CD8+ positive T cells expressing IL-2 were significantly lower in β-thalassemia major compared to matched controls, but not T cells expressing IFNγ. No significant difference was observed between splenectomized and non-splenectomized patients in cytokine expressing T cells. A negative correlation was noted between the percentage of T cells expressing IFNγ and T-cells expressing CD-27, but not other markers. Lower T cells expressing IL-2 may reveal the decline of naïve and central memory T cells and is likely to be a feature of early immune aging. Decreased antigenic stimulation and iron overload may help to prevent this phenomenon.
Collapse
Affiliation(s)
- Batoul Pourgheysari
- 1Department of Hematology, Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.,2Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Rahmatiyeh, Shahrekord, Iran
| | - Leila Karimi
- 2Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Rahmatiyeh, Shahrekord, Iran
| | - Raihaneh Bagheri
- 3School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Soleiman Kheiri
- 4Social Determinants of Health Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
12
|
Tinoco R, Carrette F, Henriquez ML, Fujita Y, Bradley LM. Fucosyltransferase Induction during Influenza Virus Infection Is Required for the Generation of Functional Memory CD4 + T Cells. THE JOURNAL OF IMMUNOLOGY 2018; 200:2690-2702. [PMID: 29491007 DOI: 10.4049/jimmunol.1701251] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 02/04/2018] [Indexed: 11/19/2022]
Abstract
T cells mediating influenza viral control are instructed in lymphoid and nonlymphoid tissues to differentiate into memory T cells that confer protective immunity. The mechanisms by which influenza virus-specific memory CD4+ T cells arise have been attributed to changes in transcription factors, cytokines and cytokine receptors, and metabolic programming. The molecules involved in these biosynthetic pathways, including proteins and lipids, are modified to varying degrees of glycosylation, fucosylation, sialation, and sulfation, which can alter their function. It is currently unknown how the glycome enzymatic machinery regulates CD4+ T cell effector and memory differentiation. In a murine model of influenza virus infection, we found that fucosyltransferase enzymatic activity was induced in effector and memory CD4+ T cells. Using CD4+ T cells deficient in the Fut4/7 enzymes that are expressed only in hematopoietic cells, we found decreased frequencies of effector cells with reduced expression of T-bet and NKG2A/C/E in the lungs during primary infection. Furthermore, Fut4/7-/- effector CD4+ T cells had reduced survival with no difference in proliferation or capacity for effector function. Although Fut4/7-/- CD4+ T cells seeded the memory pool after primary infection, they failed to form tissue-resident cells, were dysfunctional, and were unable to re-expand after secondary infection. Our findings highlight an important regulatory axis mediated by cell-intrinsic fucosyltransferase activity in CD4+ T cell effectors that ensure the development of functional memory CD4+ T cells.
Collapse
Affiliation(s)
- Roberto Tinoco
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Florent Carrette
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Monique L Henriquez
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Yu Fujita
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Linda M Bradley
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| |
Collapse
|
13
|
Cheekatla SS, Tripathi D, Venkatasubramanian S, Paidipally P, Welch E, Tvinnereim AR, Nurieva R, Vankayalapati R. IL-21 Receptor Signaling Is Essential for Optimal CD4 + T Cell Function and Control of Mycobacterium tuberculosis Infection in Mice. THE JOURNAL OF IMMUNOLOGY 2017; 199:2815-2822. [PMID: 28855309 DOI: 10.4049/jimmunol.1601231] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 08/08/2017] [Indexed: 01/05/2023]
Abstract
In this study, we determined the role of IL-21R signaling in Mycobacterium tuberculosis infection, using IL-21R knockout (KO) mice. A total of 50% of M. tuberculosis H37Rv-infected IL-21R KO mice died in 6 mo compared with no deaths in infected wild type (WT) mice. M. tuberculosis-infected IL-21R KO mice had enhanced bacterial burden and reduced infiltration of Ag-specific T cells in lungs compared with M. tuberculosis-infected WT mice. Ag-specific T cells from the lungs of M. tuberculosis-infected IL-21R KO mice had increased expression of T cell inhibitory receptors, reduced expression of chemokine receptors, proliferated less, and produced less IFN- γ, compared with Ag-specific T cells from the lungs of M. tuberculosis-infected WT mice. T cells from M. tuberculosis-infected IL-21R KO mice were unable to induce optimal macrophage responses to M. tuberculosis. This may be due to a decrease in the Ag-specific T cell population. We also found that IL-21R signaling is associated with reduced expression of a transcriptional factor Eomesodermin and enhanced functional capacity of Ag-specific T cells of M. tuberculosis-infected mice. The sum of our findings suggests that IL-21R signaling is essential for the optimal control of M. tuberculosis infection.
Collapse
Affiliation(s)
- Satyanarayana Swamy Cheekatla
- Department of Pulmonary Immunology, Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708; and
| | - Deepak Tripathi
- Department of Pulmonary Immunology, Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708; and
| | - Sambasivan Venkatasubramanian
- Department of Pulmonary Immunology, Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708; and
| | - Padmaja Paidipally
- Department of Pulmonary Immunology, Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708; and
| | - Elwyn Welch
- Department of Pulmonary Immunology, Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708; and
| | - Amy R Tvinnereim
- Department of Pulmonary Immunology, Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708; and
| | - Roza Nurieva
- Department of Immunology, M.D. Anderson Cancer Center, Houston, TX 77030
| | - Ramakrishna Vankayalapati
- Department of Pulmonary Immunology, Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708; and
| |
Collapse
|
14
|
Weigt SS, Wang X, Palchevskiy V, Gregson AL, Patel N, DerHovanessian A, Shino MY, Sayah DM, Birjandi S, Lynch JP, Saggar R, Ardehali A, Ross DJ, Palmer SM, Elashoff D, Belperio JA. Gene Expression Profiling of Bronchoalveolar Lavage Cells Preceding a Clinical Diagnosis of Chronic Lung Allograft Dysfunction. PLoS One 2017; 12:e0169894. [PMID: 28103284 PMCID: PMC5245825 DOI: 10.1371/journal.pone.0169894] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 12/22/2016] [Indexed: 11/18/2022] Open
Abstract
Background Chronic Lung Allograft Dysfunction (CLAD) is the main limitation to long-term survival after lung transplantation. Although CLAD is usually not responsive to treatment, earlier identification may improve treatment prospects. Methods In a nested case control study, 1-year post transplant surveillance bronchoalveolar lavage (BAL) fluid samples were obtained from incipient CLAD (n = 9) and CLAD free (n = 8) lung transplant recipients. Incipient CLAD cases were diagnosed with CLAD within 2 years, while controls were free from CLAD for at least 4 years following bronchoscopy. Transcription profiles in the BAL cell pellets were assayed with the HG-U133 Plus 2.0 microarray (Affymetrix). Differential gene expression analysis, based on an absolute fold change (incipient CLAD vs no CLAD) >2.0 and an unadjusted p-value ≤0.05, generated a candidate list containing 55 differentially expressed probe sets (51 up-regulated, 4 down-regulated). Results The cell pellets in incipient CLAD cases were skewed toward immune response pathways, dominated by genes related to recruitment, retention, activation and proliferation of cytotoxic lymphocytes (CD8+ T-cells and natural killer cells). Both hierarchical clustering and a supervised machine learning tool were able to correctly categorize most samples (82.3% and 94.1% respectively) into incipient CLAD and CLAD-free categories. Conclusions These findings suggest that a pathobiology, similar to AR, precedes a clinical diagnosis of CLAD. A larger prospective investigation of the BAL cell pellet transcriptome as a biomarker for CLAD risk stratification is warranted.
Collapse
Affiliation(s)
- S. Samuel Weigt
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
- * E-mail:
| | - Xiaoyan Wang
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Vyacheslav Palchevskiy
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Aric L. Gregson
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Naman Patel
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Ariss DerHovanessian
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Michael Y. Shino
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - David M. Sayah
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Shirin Birjandi
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Joseph P. Lynch
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Rajan Saggar
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Abbas Ardehali
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - David J. Ross
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Scott M. Palmer
- Department of Medicine, Duke University, Durham, North Carolina, United States of America
| | - David Elashoff
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - John A. Belperio
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| |
Collapse
|
15
|
Pallmer K, Oxenius A. Recognition and Regulation of T Cells by NK Cells. Front Immunol 2016; 7:251. [PMID: 27446081 PMCID: PMC4919350 DOI: 10.3389/fimmu.2016.00251] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/13/2016] [Indexed: 12/22/2022] Open
Abstract
Regulation of T cell responses by innate lymphoid cells (ILCs) is increasingly documented and studied. Direct or indirect crosstalk between ILCs and T cells early during and after T cell activation can affect their differentiation, polarization, and survival. Natural killer (NK) cells that belong to the ILC1 group were initially described for their function in recognizing and eliminating "altered self" and as source of early inflammatory cytokines, most notably type II interferon. Using signals conveyed by various germ-line encoded activating and inhibitory receptors, NK cells are geared to sense sudden cellular changes that can be caused by infection events, malignant transformation, or cellular stress responses. T cells, when activated by TCR engagement (signal 1), costimulation (signal 2), and cytokines (signal 3), commit to a number of cellular alterations, including entry into rapid cell cycling, metabolic changes, and acquisition of effector functions. These abrupt changes may alert NK cells, and T cells might thereby expose themselves as NK cell targets. Here, we review how activated T cells can be recognized and regulated by NK cells and what consequences such regulation bears for T cell immunity in the context of vaccination, infection, or autoimmunity. Conversely, we will discuss mechanisms by which activated T cells protect themselves against NK cell attack and outline the significance of this safeguard mechanism.
Collapse
Affiliation(s)
| | - Annette Oxenius
- Institute of Microbiology, ETH Zürich , Zürich , Switzerland
| |
Collapse
|
16
|
Stubbington MJT, Lönnberg T, Proserpio V, Clare S, Speak AO, Dougan G, Teichmann SA. T cell fate and clonality inference from single-cell transcriptomes. Nat Methods 2016; 13:329-332. [PMID: 26950746 PMCID: PMC4835021 DOI: 10.1038/nmeth.3800] [Citation(s) in RCA: 306] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 01/25/2016] [Indexed: 12/30/2022]
Abstract
We developed TraCeR, a computational method to reconstruct full-length, paired T cell receptor (TCR) sequences from T lymphocyte single-cell RNA sequence data. TraCeR links T cell specificity with functional response by revealing clonal relationships between cells alongside their transcriptional profiles. We found that T cell clonotypes in a mouse Salmonella infection model span early activated CD4(+) T cells as well as mature effector and memory cells.
Collapse
Affiliation(s)
- Michael J T Stubbington
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Tapio Lönnberg
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Valentina Proserpio
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Simon Clare
- Wellcome Trust Sanger Institute, Cambridge, UK
| | | | | | - Sarah A Teichmann
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
- Wellcome Trust Sanger Institute, Cambridge, UK
| |
Collapse
|
17
|
Clark MP, Leaman DW, Hazelhurst LA, Hwang ES, Quinn A. An aza-anthrapyrazole negatively regulates Th1 activity and suppresses experimental autoimmune encephalomyelitis. Int Immunopharmacol 2016; 31:74-87. [DOI: 10.1016/j.intimp.2015.12.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 11/16/2015] [Accepted: 12/08/2015] [Indexed: 12/24/2022]
|
18
|
McDonald PW, Read KA, Baker CE, Anderson AE, Powell MD, Ballesteros-Tato A, Oestreich KJ. IL-7 signalling represses Bcl-6 and the TFH gene program. Nat Commun 2016; 7:10285. [PMID: 26743592 PMCID: PMC4729877 DOI: 10.1038/ncomms10285] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 11/25/2015] [Indexed: 01/05/2023] Open
Abstract
The transcriptional repressor Bcl-6 is linked to the development of both CD4+ T follicular helper (TFH) and central memory T (TCM) cells. Here, we demonstrate that in response to decreased IL-2 signalling, T helper 1 (TH1) cells upregulate Bcl-6 and co-initiate TFH- and TCM-like gene programs, including expression of the cytokine receptors IL-6Rα and IL-7R. Exposure of this potentially bi-potent cell population to IL-6 favours the TFH gene program, whereas IL-7 signalling represses TFH-associated genes including Bcl6 and Cxcr5, but not the TCM-related genes Klf2 and Sell. Mechanistically, IL-7-dependent activation of STAT5 contributes to Bcl-6 repression. Importantly, antigen-specific IL-6Rα+IL-7R+ CD4+ T cells emerge from the effector population at late time points post influenza infection. These data support a novel role for IL-7 in the repression of the TFH gene program and evoke a divergent regulatory mechanism by which post-effector TH1 cells may contribute to long-term cell-mediated and humoral immunity. It remains incompletely understood how cytokines shape TH1 cell differentiation to central memory T (TCM) and follicular T helper (TFH) cells. Here the authors show that TH1 cells can co-initiate the expression of both TFH and TCM gene programs and that IL-7 signalling represses TFH-associated but not TCM-associated genes.
Collapse
Affiliation(s)
- Paul W McDonald
- Virginia Tech Carilion Research Institute, Roanoke, Virginia 24016, USA
| | - Kaitlin A Read
- Virginia Tech Carilion Research Institute, Roanoke, Virginia 24016, USA
| | - Chandra E Baker
- Virginia Tech Carilion Research Institute, Roanoke, Virginia 24016, USA
| | - Ashlyn E Anderson
- Virginia Tech Carilion Research Institute, Roanoke, Virginia 24016, USA
| | - Michael D Powell
- Virginia Tech Carilion Research Institute, Roanoke, Virginia 24016, USA
| | | | - Kenneth J Oestreich
- Virginia Tech Carilion Research Institute, Roanoke, Virginia 24016, USA.,Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia 24061, USA.,Virginia Tech Carilion School of Medicine, Roanoke, Virginia 24016, USA
| |
Collapse
|
19
|
Gerritsen B, Pandit A. The memory of a killer T cell: models of CD8(+) T cell differentiation. Immunol Cell Biol 2015; 94:236-41. [PMID: 26700072 DOI: 10.1038/icb.2015.118] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/20/2015] [Accepted: 12/21/2015] [Indexed: 12/11/2022]
Abstract
CD8(+) T cells have an important role in protection against infections and reinfections of intra-cellular pathogens like viruses. Naive CD8(+) T cells circulating in blood or lymphoid tissues can get activated upon stimulation by cognate antigen. The activated T cells undergo rapid proliferation and can expand more than 10(4)-folds comprising largely of effector T cells. Upon antigen clearance, the CD8(+) T-cell population contracts due to apoptosis, leaving behind a small population of memory T cells. The timing and mechanisms underlying the differentiation of naive cells into effector cells and memory cells is not yet clear. In this article, we review the recent quantitative studies that support different hypotheses of CD8(+) T-cell differentiation.
Collapse
Affiliation(s)
- Bram Gerritsen
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
| | - Aridaman Pandit
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands.,Laboratory of Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| |
Collapse
|
20
|
Omilusik KD, Best JA, Yu B, Goossens S, Weidemann A, Nguyen JV, Seuntjens E, Stryjewska A, Zweier C, Roychoudhuri R, Gattinoni L, Bird LM, Higashi Y, Kondoh H, Huylebroeck D, Haigh J, Goldrath AW. Transcriptional repressor ZEB2 promotes terminal differentiation of CD8+ effector and memory T cell populations during infection. J Exp Med 2015; 212:2027-39. [PMID: 26503445 PMCID: PMC4647262 DOI: 10.1084/jem.20150194] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 09/16/2015] [Indexed: 01/08/2023] Open
Abstract
ZEB2 is a multi-zinc-finger transcription factor known to play a significant role in early neurogenesis and in epithelial-mesenchymal transition-dependent tumor metastasis. Although the function of ZEB2 in T lymphocytes is unknown, activity of the closely related family member ZEB1 has been implicated in lymphocyte development. Here, we find that ZEB2 expression is up-regulated by activated T cells, specifically in the KLRG1(hi) effector CD8(+) T cell subset. Loss of ZEB2 expression results in a significant loss of antigen-specific CD8(+) T cells after primary and secondary infection with a severe impairment in the generation of the KLRG1(hi) effector memory cell population. We show that ZEB2, which can bind DNA at tandem, consensus E-box sites, regulates gene expression of several E-protein targets and may directly repress Il7r and Il2 in CD8(+) T cells responding to infection. Furthermore, we find that T-bet binds to highly conserved T-box sites in the Zeb2 gene and that T-bet and ZEB2 regulate similar gene expression programs in effector T cells, suggesting that T-bet acts upstream and through regulation of ZEB2. Collectively, we place ZEB2 in a larger transcriptional network that is responsible for the balance between terminal differentiation and formation of memory CD8(+) T cells.
Collapse
Affiliation(s)
- Kyla D Omilusik
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - J Adam Best
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Bingfei Yu
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Steven Goossens
- Mammalian Functional Genetics Laboratory, Division of Blood Cancers, Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia VIB Inflammation Research Center, Ghent University, 9052 Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Alexander Weidemann
- Department of Nephrology and Hypertension, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Jessica V Nguyen
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Eve Seuntjens
- Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Agata Stryjewska
- Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Christiane Zweier
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Rahul Roychoudhuri
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Luca Gattinoni
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Lynne M Bird
- Department of Pediatrics, Rady Children's Hospital San Diego, University of California, San Diego, La Jolla, CA 92093
| | - Yujiro Higashi
- Department of Perinatology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Aichi 480-0392, Japan
| | - Hisato Kondoh
- Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto 603-8555, Japan
| | - Danny Huylebroeck
- Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium Department of Cell Biology, Erasmus MC, 3015 CN Rotterdam, Netherlands
| | - Jody Haigh
- Mammalian Functional Genetics Laboratory, Division of Blood Cancers, Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia
| | - Ananda W Goldrath
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
21
|
Luo C, Sun L, Ma J, Wang J, Qu H, Shu D. Association of single nucleotide polymorphisms in the microRNA miR-1596 locus with residual feed intake in chickens. Anim Genet 2015; 46:265-71. [PMID: 25818998 DOI: 10.1111/age.12284] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2015] [Indexed: 02/04/2023]
Abstract
MicroRNAs are an abundant class of small non-coding RNAs that regulate gene expression. Genetic variations in microRNA sequences may be associated with phenotype differences by influencing the expression of microRNAs and/or their targets. This study identified two single nucleotide polymorphisms (SNPs) in the genomic region of the microRNA miR-1596 locus of chicken. Of the two SNPs, one was 95 bp upstream of miR-1596 (g.5678784A>T) and the other was in the middle of the sequence producing the mature microRNA gga-miR-1596-3p (g.5678944A>G). Genotypic distribution of the two SNPs had large differences among 12 chicken breeds (lines), especially between the fast-growing commercial lines and the slow-growing Chinese indigenous breeds for the g.5678784A>T SNP. Only the g.5678784A>T SNP was significantly associated with residual feed intake (RFI) in the F2 population derived from a fast-growing and a slow-growing broiler as well as in the pure Huiyang bearded chicken. The birds with the AA genotype of the g.5678784A>T SNP had lower RFI and higher expression of the mature gga-miR-1596-3p microRNA of miR-1596 than did those with the other genotypes of the same SNP. We also found that the expression of the mature gga-miR-1596-3p microRNA of miR-1596 was significantly associated with RFI. These findings suggest that miR-1596 can become a candidate gene related to RFI, and its genetic variation may contribute to changes in RFI by altering expression levels of the mature gga-miR-1596-3p microRNA in chicken.
Collapse
Affiliation(s)
- C Luo
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, 510640, China
| | | | | | | | | | | |
Collapse
|
22
|
Kim K, Bang SY, Lee HS, Cho SK, Choi CB, Sung YK, Kim TH, Jun JB, Yoo DH, Kang YM, Kim SK, Suh CH, Shim SC, Lee SS, Lee J, Chung WT, Choe JY, Shin HD, Lee JY, Han BG, Nath SK, Eyre S, Bowes J, Pappas DA, Kremer JM, Gonzalez-Gay MA, Rodriguez-Rodriguez L, Ärlestig L, Okada Y, Diogo D, Liao KP, Karlson EW, Raychaudhuri S, Rantapää-Dahlqvist S, Martin J, Klareskog L, Padyukov L, Gregersen PK, Worthington J, Greenberg JD, Plenge RM, Bae SC. High-density genotyping of immune loci in Koreans and Europeans identifies eight new rheumatoid arthritis risk loci. Ann Rheum Dis 2015; 74:e13. [PMID: 24532676 PMCID: PMC4467986 DOI: 10.1136/annrheumdis-2013-204749] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE A highly polygenic aetiology and high degree of allele-sharing between ancestries have been well elucidated in genetic studies of rheumatoid arthritis. Recently, the high-density genotyping array Immunochip for immune disease loci identified 14 new rheumatoid arthritis risk loci among individuals of European ancestry. Here, we aimed to identify new rheumatoid arthritis risk loci using Korean-specific Immunochip data. METHODS We analysed Korean rheumatoid arthritis case-control samples using the Immunochip and genome-wide association studies (GWAS) array to search for new risk alleles of rheumatoid arthritis with anticitrullinated peptide antibodies. To increase power, we performed a meta-analysis of Korean data with previously published European Immunochip and GWAS data for a total sample size of 9299 Korean and 45,790 European case-control samples. RESULTS We identified eight new rheumatoid arthritis susceptibility loci (TNFSF4, LBH, EOMES, ETS1-FLI1, COG6, RAD51B, UBASH3A and SYNGR1) that passed a genome-wide significance threshold (p<5×10(-8)), with evidence for three independent risk alleles at 1q25/TNFSF4. The risk alleles from the seven new loci except for the TNFSF4 locus (monomorphic in Koreans), together with risk alleles from previously established RA risk loci, exhibited a high correlation of effect sizes between ancestries. Further, we refined the number of single nucleotide polymorphisms (SNPs) that represent potentially causal variants through a trans-ethnic comparison of densely genotyped SNPs. CONCLUSIONS This study demonstrates the advantage of dense-mapping and trans-ancestral analysis for identification of potentially causal SNPs. In addition, our findings support the importance of T cells in the pathogenesis and the fact of frequent overlap of risk loci among diverse autoimmune diseases.
Collapse
Affiliation(s)
- Kwangwoo Kim
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA
| | - So-Young Bang
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea
| | - Hye-Soon Lee
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea
| | - Soo-Kyung Cho
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea
| | - Chan-Bum Choi
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea
| | - Yoon-Kyoung Sung
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea
| | - Tae-Hwan Kim
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea
| | - Jae-Bum Jun
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea
| | - Dae Hyun Yoo
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea
| | - Young Mo Kang
- Division of Rheumatology, Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Seong-Kyu Kim
- Division of Rheumatology, Department of Internal Medicine, Arthritis & Autoimmunity Research Center, Catholic University of Daegu School of Medicine, Daegu, Republic of Korea
| | - Chang-Hee Suh
- Department of Rheumatology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Seung-Cheol Shim
- Division of Rheumatology, Daejeon Rheumatoid & Degenerative Arthritis Center, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Shin-Seok Lee
- Division of Rheumatology, Department of Internal Medicine, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Jisoo Lee
- Division of Rheumatology, Department of Internal Medicine, Ewha Womans University School of Medicine, Seoul, Republic of Korea
| | - Won Tae Chung
- Division of Rheumatology, Department of internal medicine, Dong-A University, Busan, Republic of Korea
| | - Jung-Yoon Choe
- Division of Rheumatology, Department of Internal Medicine, Arthritis & Autoimmunity Research Center, Catholic University of Daegu School of Medicine, Daegu, Republic of Korea
| | - Hyoung Doo Shin
- Department of Life Science, Sogang University, Seoul, Republic of Korea
| | - Jong-Young Lee
- Center for Genome Science, Korea National Institute of Health, Osong Health Technology, Chungcheongbuk-do, Republic of Korea
| | - Bok-Ghee Han
- Center for Genome Science, Korea National Institute of Health, Osong Health Technology, Chungcheongbuk-do, Republic of Korea
| | - Swapan K Nath
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Steve Eyre
- Arthritis Research UK Epidemiology Unit, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
| | - John Bowes
- Arthritis Research UK Epidemiology Unit, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Dimitrios A Pappas
- Department of Medicine, Division of Rheumatology, Columbia University, New York, New York, USA
| | | | - Miguel A Gonzalez-Gay
- Department of Rheumatology, Hospital Marques de Valdecilla, IFIMAV, Santander, Spain
| | | | - Lisbeth Ärlestig
- Department of Clinical Medicine/Rheumatoloy, Umeå University, Umeå, Sweden
| | - Yukinori Okada
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Dorothée Diogo
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA
| | - Katherine P Liao
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Elizabeth W Karlson
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Soumya Raychaudhuri
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA Arthritis Research UK Epidemiology Unit, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
| | | | - Javier Martin
- Instituto de Parasitologia y Biomedicina Lopez-Neyra, CSIC, Granada, Spain
| | - Lars Klareskog
- Rheumatology Unit, Department of Medicine, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden
| | - Leonid Padyukov
- Rheumatology Unit, Department of Medicine, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden
| | - Peter K Gregersen
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, New York, USA
| | - Jane Worthington
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Jeffrey D Greenberg
- Division of Rheumatology, New York University School of Medicine, New York, New York, USA
| | - Robert M Plenge
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA
| | - Sang-Cheol Bae
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea
| |
Collapse
|
23
|
Yu SF, Zhang YN, Yang BY, Wu CY. Human memory, but not naive, CD4+ T cells expressing transcription factor T-bet might drive rapid cytokine production. J Biol Chem 2014; 289:35561-9. [PMID: 25378399 DOI: 10.1074/jbc.m114.608745] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We found that after stimulation for a few hours, memory but not naive CD4(+) T cells produced a large amount of IFN-γ; however, the mechanism of rapid response of memory CD4(+) T cells remains undefined. We compared the expression of transcription factors in resting or activated naive and memory CD4(+) T cells and found that T-bet, but not pSTAT-1 or pSTAT-4, was highly expressed in resting memory CD4(+) T cells and that phenotypic characteristics of T-bet(+)CD4(+) T cells were CD45RA(low)CD62L(low) CCR7(low). After short-term stimulation, purified memory CD4(+) T cells rapidly produced effector cytokines that were closely associated with the pre-existence of T-bet. By contrast, resting naive CD4(+) T cells did not express T-bet, and they produced cytokines only after sustained stimulation. Our further studies indicated that T-bet was expressed in the nuclei of resting memory CD4(+) T cells, which might have important implications for rapid IFN-γ production. Our results indicate that the pre-existence and nuclear mobilization of T-bet in resting memory CD4(+) T cells might be a possible transcriptional mechanism for rapid production of cytokines by human memory CD4(+) T cells.
Collapse
Affiliation(s)
- Si-fei Yu
- From the Institute of Immunology, Zhongshan School of Medicine, Key Laboratory of Tropical Disease Control Research of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Yan-nan Zhang
- From the Institute of Immunology, Zhongshan School of Medicine, Key Laboratory of Tropical Disease Control Research of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Bin-yan Yang
- From the Institute of Immunology, Zhongshan School of Medicine, Key Laboratory of Tropical Disease Control Research of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Chang-you Wu
- From the Institute of Immunology, Zhongshan School of Medicine, Key Laboratory of Tropical Disease Control Research of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
24
|
Transcriptional profiling of peripheral CD8+T cell responses to SIVΔnef and SIVmac251 challenge reveals a link between protective immunity and induction of systemic immunoregulatory mechanisms. Virology 2014; 468-470:581-591. [PMID: 25282469 DOI: 10.1016/j.virol.2014.09.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/19/2014] [Accepted: 09/10/2014] [Indexed: 01/17/2023]
Abstract
Immunization of macaques with attenuated simian immunodeficiency virus (SIV) with deletions in nef (SIVΔnef) is shown to elicit protective immunity to infection by pathogenic SIV, yet the mechanisms that orchestrate protection and prevent pathogenesis remains unknown. We utilized whole-genome transcriptional profiling to reveal molecular signatures of protective immunity in circulating CD8+ T cells of rhesus macaques vaccinated with SIVmac239Δnef and challenged with pathogenic SIVmac251. Our findings suggest that protective immunity to pathogenic SIV infection induced by SIVmac239∆nef is associated with balanced induction of T cell activation and immunoregulatory mechanisms and dampened activation of interferon-induced signaling pathways and cytolytic enzyme production as compared with pathogenic SIVmac251 infection of unvaccinated controls. We provide evidence that protective immunity to SIVmac251 correlates with induction of biomarkers of T cell activation, differentiation, signaling, and adhesion that were down regulated in unvaccinated controls. The study highlights potential immunomodulatory networks associated with protective immunity against the virus.
Collapse
|
25
|
McNamara MJ, Kasiewicz MJ, Linch SN, Dubay C, Redmond WL. Common gamma chain (γc) cytokines differentially potentiate TNFR family signaling in antigen-activated CD8(+) T cells. J Immunother Cancer 2014; 2:28. [PMID: 25411639 PMCID: PMC4236884 DOI: 10.1186/s40425-014-0028-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 07/16/2014] [Indexed: 12/30/2022] Open
Abstract
Background Several members of the common gamma chain (gc) cytokine family are already approved (IL-2) or actively being developed as vaccine adjuvants and cancer immunotherapies. Studies have indicated that co-administration of gc cytokines may enhance the efficacy of immunotherapies that function via direct activation of co-stimulatory T cell receptors. To define the specific influence of gc cytokines on the co-stimulatory capacity of CD8+ T cells and identify combinations with synergistic potential, we investigated the direct impact of gc cytokines on the differentiation and transcriptional profile of recently antigen-primed CD8+ T cells. Methods Naïve CD8+ T cells were activated with peptide-pulsed APCs. After 48 hours, CD8+ T cells were harvested and re-cultured in media supplemented with IL-2, IL-4, IL-7, IL-15 or IL-21. After 24 hours, cells were analyzed by cytokine bead array, flow cytometry, and mRNA micro-array. Gene networks responsible for specific CD8+ T cell functions were constructed through literature-meta review and publicly available annotation databases. Gene expression data from the experimental groups was imported into this network to visualize the impact of each gc cytokine on the functional polarization of recently-activated CD8+ T cells. Results Among the gc cytokines, IL-2 induced the greatest increase in the expression of co-stimulatory receptors in recently-activated CD8+ T cells. IL-2 increased significantly expression of 4-1BB, GITR, ICOS and OX40, at both the transcriptional and protein level. IL-2 also drove the greatest increase in cellular proliferation and the most robust shift towards a pro-survival phenotype, compared with the other gc cytokines. Both IL-4 and IL-21 enhanced expression of cytotoxic effector proteins, but drove distinct phenotypic polarizations, Th2/Tc2 and NK-like, respectively. Conclusions Overall, these observations suggest that among gc cytokines, IL-2 may be uniquely capable of synergizing with therapeutic strategies that combine immunization with agonists of co-stimulatory T cell receptors. Previous studies have shown that the timing of IL-2 treatment relative to immunization plays a key role in defining the CD8+ T cell response, and the findings from this study indicate that administration of exogenous IL-2 shortly after the initial antigen-priming event has concluded may augment the receptivity of these cells to subsequent TNFR co-stimulation.
Collapse
Affiliation(s)
- Michael J McNamara
- Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Portland Medical Center, 4805 NE Glisan St., 2 N35, Portland, 97213, OR, USA
| | - Melissa J Kasiewicz
- Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Portland Medical Center, 4805 NE Glisan St., 2 N35, Portland, 97213, OR, USA
| | - Stefanie N Linch
- Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Portland Medical Center, 4805 NE Glisan St., 2 N35, Portland, 97213, OR, USA
| | - Christopher Dubay
- Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Portland Medical Center, 4805 NE Glisan St., 2 N35, Portland, 97213, OR, USA
| | - William L Redmond
- Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Portland Medical Center, 4805 NE Glisan St., 2 N35, Portland, 97213, OR, USA
| |
Collapse
|
26
|
Dillon PM, Olson WC, Czarkowski A, Petroni GR, Smolkin M, Grosh WW, Chianese-Bullock KA, Deacon DH, Slingluff CL. A melanoma helper peptide vaccine increases Th1 cytokine production by leukocytes in peripheral blood and immunized lymph nodes. J Immunother Cancer 2014; 2:23. [PMID: 25126421 PMCID: PMC4131803 DOI: 10.1186/2051-1426-2-23] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 06/04/2014] [Indexed: 11/23/2022] Open
Abstract
Background Cancers produce soluble and cell-associated molecules that can suppress or alter antitumor immunity. Preclinical studies suggest the disease burden may alter the cytokine profile of helper T cell responses to cancer antigens. We studied cytokine production by helper T cells responding to vaccination with 6 melanoma helper peptides (6MHP) in blood and lymph nodes. Methods Twenty-three patients with stage IIIB-IV melanoma received a 6MHP vaccine. Antigen-reactive T cells from blood and draining lymph nodes were cultured, exposed to antigen, and then supernatants (days 2 and 5) were assayed for Th1 and Th2 cytokines. Results from 4 time points were compared to pre-vaccine levels. Results Cytokine responses to vaccinating peptides were observed in 83% of patients. Th1 favoring responses were most common (17 of 19 responders). The most abundant cytokines produced were IFN-γ and IL-5 in the PBMC’s. IL-2 responses predominated in cells obtained from draining lymph nodes in 2-day culture but not in 5-day cultures. Patients with clinically measurable disease produced similar levels of total cytokine and similar degree of Th1 polarization as patients with no evidence of disease (NED). Conclusions The MHC class II-associated peptides used in this study induced helper T cells with a Th1-biased cytokine response in both PBMC and sentinel immunized nodes. Most patients can mount a Th1 dominant response to these peptides. Future studies are needed to test newer vaccine adjuvants in combination with these peptides. Trial registration CDR0000378171, Clinicaltrials: NCT00089219.
Collapse
Affiliation(s)
- Patrick M Dillon
- Department of Medicine/Division of Hematology-Oncology, University of Virginia, Charlottesville, VA 22908, USA
| | - Walter C Olson
- Department of Surgery/Division of Surgical Oncology, University of Virginia, Charlottesville, VA 22908, USA
| | | | - Gina R Petroni
- Department of Public Health Sciences, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Mark Smolkin
- Department of Public Health Sciences, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - William W Grosh
- Department of Medicine/Division of Hematology-Oncology, University of Virginia, Charlottesville, VA 22908, USA
| | | | - Donna H Deacon
- Department of Surgery/Division of Surgical Oncology, University of Virginia, Charlottesville, VA 22908, USA
| | - Craig L Slingluff
- Department of Surgery/Division of Surgical Oncology, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
27
|
Henao-Tamayo M, Ordway DJ, Orme IM. Memory T cell subsets in tuberculosis: what should we be targeting? Tuberculosis (Edinb) 2014; 94:455-61. [PMID: 24993316 DOI: 10.1016/j.tube.2014.05.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 05/14/2014] [Indexed: 01/24/2023]
Abstract
The purpose of vaccination is to establish a stable population of long lived memory T cells. In the context of tuberculosis, the BCG vaccine has been widely used for well over 60 years, but during that time its weaknesses, particularly its ineffectiveness in adults, has been increasingly recognized. In this commentary we review what is known about memory T cells, both in general and in the context of their role in expressing specific acquired resistance to tuberculosis. Current knowledge indicates that both effector memory and central memory can be generated, depending on the experimental conditions, but both in animal models and in clinical studies it is clear that effector memory T cells are the predominant subset. These issues are of importance, given the concerted effort to make new TB vaccines, not all of which may work in precisely the same manner. At the present time whether a TB vaccine would work better if it targeted one specific T cell subset rather than another is as yet completely unknown, and this is now further complicated by new evidence that suggests other subsets such as IL-17 secreting CD4 T cells and cells with stem cell-like qualities may also play important roles.
Collapse
Affiliation(s)
- Marcela Henao-Tamayo
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| | - Diane J Ordway
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Ian M Orme
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
28
|
Knox JJ, Cosma GL, Betts MR, McLane LM. Characterization of T-bet and eomes in peripheral human immune cells. Front Immunol 2014; 5:217. [PMID: 24860576 PMCID: PMC4030168 DOI: 10.3389/fimmu.2014.00217] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 04/29/2014] [Indexed: 12/17/2022] Open
Abstract
The T-box transcription factors T-bet and Eomesodermin (Eomes) have been well defined as key drivers of immune cell development and cytolytic function. While the majority of studies have defined the roles of these factors in the context of murine T-cells, recent results have revealed that T-bet, and possibly Eomes, are expressed in other immune cell subsets. To date, the expression patterns of these factors in subsets of human peripheral blood mononuclear cells beyond T-cells remain relatively uncharacterized. In this study, we used multiparametric flow cytometry to characterize T-bet and Eomes expression in major human blood cell subsets, including total CD4(+) and CD8(+) T-cells, γδ T-cells, invariant NKT cells, natural killer cells, B-cells, and dendritic cells. Our studies identified novel cell subsets that express T-bet and Eomes and raise implications for their possible functions in the context of other human immune cell subsets besides their well-known roles in T-cells.
Collapse
Affiliation(s)
- James J Knox
- Department of Microbiology, Perelman Institute for Immunology, University of Pennsylvania , Philadelphia, PA , USA
| | - Gabriela L Cosma
- Department of Immunology, Thomas Jefferson University , Philadelphia, PA , USA
| | - Michael R Betts
- Department of Microbiology, Perelman Institute for Immunology, University of Pennsylvania , Philadelphia, PA , USA
| | - Laura M McLane
- Department of Microbiology, Perelman Institute for Immunology, University of Pennsylvania , Philadelphia, PA , USA
| |
Collapse
|
29
|
Role of tumor suppressor TSC1 in regulating antigen-specific primary and memory CD8 T cell responses to bacterial infection. Infect Immun 2014; 82:3045-57. [PMID: 24818661 DOI: 10.1128/iai.01816-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The serine/threonine kinase mammalian/mechanistic target of rapamycin (mTOR) integrates various environmental cues such as the presence of antigen, inflammation, and nutrients to regulate T cell growth, metabolism, and function. The tuberous sclerosis 1 (TSC1)/TSC2 complex negatively regulates the activity of an mTOR-containing multiprotein complex called mTOR complex 1. Recent studies have revealed an essential cell-intrinsic role for TSC1 in T cell survival, quiescence, and mitochondrial homeostasis. Given the emerging role of mTOR activity in the regulation of the quantity and quality of CD8 T cell responses, in this study, we examine the role of its suppressor, TSC1, in the regulation of antigen-specific primary and memory CD8 T cell responses to bacterial infection. Using an established model system of transgenic CD8 cell adoptive transfer and challenge with Listeria monocytogenes expressing a cognate antigen, we found that TSC1 deficiency impairs antigen-specific CD8 T cell responses, resulting in weak expansion, exaggerated contraction, and poor memory generation. Poor expansion of TSC1-deficient cells was associated with defects in survival and proliferation in vivo, while enhanced contraction was correlated with an increased ratio of short-lived effectors to memory precursors in the effector cell population. This perturbation of effector-memory differentiation was concomitant with decreased expression of eomesodermin among activated TSC1 knockout cells. Upon competitive adoptive transfer with wild-type counterparts and antigen rechallenge, TSC1-deficient memory cells showed moderate defects in expansion but not cytokine production. Taken together, these findings provide direct evidence of a CD8 T cell-intrinsic role for TSC1 in the regulation of antigen-specific primary and memory responses.
Collapse
|
30
|
He S, Tong Q, Bishop DK, Zhang Y. Histone methyltransferase and histone methylation in inflammatory T-cell responses. Immunotherapy 2014; 5:989-1004. [PMID: 23998733 DOI: 10.2217/imt.13.101] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
During immune responses, T cells require tightly controlled expression of transcriptional programs to regulate the balance between beneficial and harmful immunity. These transcriptional programs are critical for the lineage specification of effector T cells, the production of effector cytokines and molecules, and the development and maintenance of memory T cells. An emerging theme is that post-translational modification of histones by methylation plays an important role in orchestrating the expression of transcriptional programs in T cells. In this article, we provide a broad overview of histone methylation signatures for effector molecules and transcription factors in T cells, and the functional importance of histone methyltransferases in regulating T-cell immune responses.
Collapse
Affiliation(s)
- Shan He
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109-5942, USA
| | | | | | | |
Collapse
|
31
|
Pennock ND, White JT, Cross EW, Cheney EE, Tamburini BA, Kedl RM. T cell responses: naive to memory and everything in between. ADVANCES IN PHYSIOLOGY EDUCATION 2013; 37:273-83. [PMID: 24292902 PMCID: PMC4089090 DOI: 10.1152/advan.00066.2013] [Citation(s) in RCA: 310] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 08/31/2013] [Indexed: 05/08/2023]
Affiliation(s)
- Nathan D Pennock
- Integrated Department of Immunology, University of Colorado Denver, Denver, Colorado
| | | | | | | | | | | |
Collapse
|
32
|
Knudson KM, Goplen NP, Cunningham CA, Daniels MA, Teixeiro E. Low-affinity T cells are programmed to maintain normal primary responses but are impaired in their recall to low-affinity ligands. Cell Rep 2013; 4:554-65. [PMID: 23933258 DOI: 10.1016/j.celrep.2013.07.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/18/2013] [Accepted: 07/08/2013] [Indexed: 12/13/2022] Open
Abstract
T cell responses to low-affinity T cell receptor (TCR) ligands occur in the context of infection, tumors, and autoimmunity despite diminished TCR signal strength. The processes that enable such responses remain unclear. We show that distinct mechanisms drive effector/memory development in high- and low-affinity T cells. Low-affinity cells preferentially differentiate into memory precursors of a central memory phenotype that are interleukin (IL)-12R(lo), IL-7R(hi), and Eomes(hi). Strikingly, in contrast to naive cells, low-affinity memory cells were impaired in the response to low- but not high-affinity ligands, indicating that low-affinity cells are programmed to generate diverse immune responses while avoiding autoreactivity. Affinity and antigen dose directly correlated with IL-12R signal input and T-bet but not with Eomes expression because low- affinity signals were more potent inducers of Eomes at a high antigen dose. Our studies explain how weak antigenic signals induce complete primary immune responses and provide a framework for therapeutic intervention.
Collapse
Affiliation(s)
- Karin M Knudson
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | | | | | | | | |
Collapse
|
33
|
McLane LM, Banerjee PP, Cosma GL, Makedonas G, Wherry EJ, Orange JS, Betts MR. Differential localization of T-bet and Eomes in CD8 T cell memory populations. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 190:3207-15. [PMID: 23455505 PMCID: PMC3608800 DOI: 10.4049/jimmunol.1201556] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In mice, two T-box transcription factors, T-box expressed in T cells (T-bet) and eomesodermin (Eomes), drive the differentiation of CD8 T cell lineages; however, little is known regarding their role in human CD8 T cell differentiation. In this study, we characterized T-bet and Eomes expression and localization within human CD8 memory T cell populations. We find that T-bet and Eomes are broadly expressed in human memory CD8 T cells, with increasing levels of T-bet and Eomes strongly correlating with differentiation from central memory to effector memory and effector subpopulations. In resting T cells, T-bet levels directly correlate to subcellular localization, with a higher propensity for nuclear expression of T-bet within T-bet(hi) cells and predominantly cytoplasmic expression in T-bet(lo) cells. In addition, Eomes is also localized to either the nucleus or the cytoplasm. Upon TCR stimulation, the percentage of T cells that express T-bet dramatically increases, whereas the percentage of cells expressing Eomes remains largely unchanged across all memory populations. Of interest, T-bet, but not Eomes, relocalizes to the nucleus in the majority of cells across all populations within 24 h post stimulation. These data indicate that T-bet and Eomes are likely regulated at the level of subcellular localization, potentially via different mechanisms. Together, these findings suggest a novel model for CD8 T cell differentiation in humans that is based on the localization of T-bet and Eomes.
Collapse
Affiliation(s)
- Laura M. McLane
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | - Gabriela L. Cosma
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - George Makedonas
- Baylor College of Medicine, Center for Human Immunobiology, Houston, TX
| | - E. John Wherry
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jordan S. Orange
- Baylor College of Medicine, Center for Human Immunobiology, Houston, TX
| | - Michael R. Betts
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
34
|
Best JA, Blair DA, Knell J, Yang E, Mayya V, Doedens A, Dustin ML, Goldrath AW. Transcriptional insights into the CD8(+) T cell response to infection and memory T cell formation. Nat Immunol 2013; 14:404-12. [PMID: 23396170 PMCID: PMC3689652 DOI: 10.1038/ni.2536] [Citation(s) in RCA: 260] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 12/21/2012] [Indexed: 12/14/2022]
Abstract
After infection, many factors coordinate the population expansion and differentiation of CD8+ effector and memory T cells. Using data of unparalleled breadth from the Immunological Genome Project, we analyzed the CD8+ T cell transcriptome throughout infection to establish gene-expression signatures and identify putative transcriptional regulators. Notably, we found that the expression of key gene signatures can be used to predict the memory-precursor potential of CD8+ effector cells. Long-lived memory CD8+ cells ultimately expressed a small subset of genes shared by natural killer T and γδ T cells. Although distinct inflammatory milieu and T cell precursor frequencies influenced the differentiation of CD8+ effector and memory populations, core transcriptional signatures were regulated similarly, whether polyclonal or transgenic, and whether responding to bacterial or viral model pathogens. Our results provide insights into the transcriptional regulation that influence memory formation and CD8+ T cell immunity.
Collapse
Affiliation(s)
- J Adam Best
- Division of Biological Sciences, University of California San Diego, La Jolla, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Cheng J, Kane LP. Global identification of genes and pathways regulated by Akt during activation of T helper cells. F1000Res 2013; 2:109. [PMID: 24627779 PMCID: PMC3924950 DOI: 10.12688/f1000research.2-109.v2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/15/2013] [Indexed: 01/25/2023] Open
Abstract
We previously demonstrated that Akt differentially modulated a subset of NF-kB target genes during T cell activation. In the current study, we further explored the broader effects of Akt inhibition on T cell gene induction. Global microarray analysis was used to characterize T helper cell transcriptional responses following antigen receptor stimulation in the absence or presence of Akti1/2 (an allosteric inhibitor which targets Akt1 and Akt2), to identify novel targets dependent upon Akt and obtain a more comprehensive view of Akt-sensitive genes in Th2 helper T cells. Pathway analysis of microarray data from a CD4
+ Th2 T cell line revealed effects on gene networks involving ribosomal and T cell receptor signaling pathways associated with Akti1/2 treatment. Using real-time PCR analysis, we validated the differential regulation of several genes in these pathways, including
Ier3,
Il13, Egr1,
Ccl1 and
Ccl4, among others. Additionally, transcription factor target gene (TFactS) analysis revealed that NF-kB and Myc were the most significantly enriched transcription factors among Akt-dependent genes after T cell receptor and CD28 stimulation. Akt activation elicited increases in the enrichment of NF-kB- and Myc-targeted genes. The present study has identified a diverse set of genes, and possible mechanisms for their regulation, that are dependent on Akt during T cell activation.
Collapse
Affiliation(s)
- Jing Cheng
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Lawrence P Kane
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| |
Collapse
|
36
|
Fukazawa Y, Park H, Cameron MJ, Lefebvre F, Lum R, Coombes N, Mahyari E, Hagen S, Bae JY, Reyes MD, Swanson T, Legasse AW, Sylwester A, Hansen SG, Smith AT, Stafova P, Shoemaker R, Li Y, Oswald K, Axthelm MK, McDermott A, Ferrari G, Montefiori DC, Edlefsen PT, Piatak M, Lifson JD, Sékaly RP, Picker LJ. Lymph node T cell responses predict the efficacy of live attenuated SIV vaccines. Nat Med 2012; 18:1673-81. [PMID: 22961108 PMCID: PMC3493820 DOI: 10.1038/nm.2934] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 08/13/2012] [Indexed: 02/07/2023]
Abstract
Live attenuated simian immunodeficiency virus (SIV) vaccines (LAVs) remain the most efficacious of all vaccines in nonhuman primate models of HIV and AIDS, yet the basis of their robust protection remains poorly understood. Here we show that the degree of LAV-mediated protection against intravenous wild-type SIVmac239 challenge strongly correlates with the magnitude and function of SIV-specific, effector-differentiated T cells in the lymph node but not with the responses of such T cells in the blood or with other cellular, humoral and innate immune parameters. We found that maintenance of protective T cell responses is associated with persistent LAV replication in the lymph node, which occurs almost exclusively in follicular helper T cells. Thus, effective LAVs maintain lymphoid tissue-based, effector-differentiated, SIV-specific T cells that intercept and suppress early wild-type SIV amplification and, if present in sufficient frequencies, can completely control and perhaps clear infection, an observation that provides a rationale for the development of safe, persistent vectors that can elicit and maintain such responses.
Collapse
Affiliation(s)
- Yoshinori Fukazawa
- Vaccine and Gene Therapy Institute, Departments of Molecular Microbiology and Immunology and Pathology, and the Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Haesun Park
- Vaccine and Gene Therapy Institute, Departments of Molecular Microbiology and Immunology and Pathology, and the Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Mark J. Cameron
- Vaccine and Gene Therapy Institute-Florida, Port St. Lucie, FL 34987
| | - Francois Lefebvre
- Vaccine and Gene Therapy Institute-Florida, Port St. Lucie, FL 34987
| | - Richard Lum
- Vaccine and Gene Therapy Institute, Departments of Molecular Microbiology and Immunology and Pathology, and the Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Noel Coombes
- Vaccine and Gene Therapy Institute, Departments of Molecular Microbiology and Immunology and Pathology, and the Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Eisa Mahyari
- Vaccine and Gene Therapy Institute, Departments of Molecular Microbiology and Immunology and Pathology, and the Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Shoko Hagen
- Vaccine and Gene Therapy Institute, Departments of Molecular Microbiology and Immunology and Pathology, and the Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Jin Young Bae
- Vaccine and Gene Therapy Institute, Departments of Molecular Microbiology and Immunology and Pathology, and the Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Marcelo Delos Reyes
- Vaccine and Gene Therapy Institute, Departments of Molecular Microbiology and Immunology and Pathology, and the Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Tonya Swanson
- Vaccine and Gene Therapy Institute, Departments of Molecular Microbiology and Immunology and Pathology, and the Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Alfred W. Legasse
- Vaccine and Gene Therapy Institute, Departments of Molecular Microbiology and Immunology and Pathology, and the Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Andrew Sylwester
- Vaccine and Gene Therapy Institute, Departments of Molecular Microbiology and Immunology and Pathology, and the Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Scott G. Hansen
- Vaccine and Gene Therapy Institute, Departments of Molecular Microbiology and Immunology and Pathology, and the Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Andrew T. Smith
- Vaccine and Gene Therapy Institute-Florida, Port St. Lucie, FL 34987
| | - Petra Stafova
- Vaccine and Gene Therapy Institute-Florida, Port St. Lucie, FL 34987
| | - Rebecca Shoemaker
- AIDS and Cancer Virus Program, SAIC Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Yuan Li
- AIDS and Cancer Virus Program, SAIC Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Kelli Oswald
- AIDS and Cancer Virus Program, SAIC Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Michael K. Axthelm
- Vaccine and Gene Therapy Institute, Departments of Molecular Microbiology and Immunology and Pathology, and the Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Adrian McDermott
- Vaccine Research Institute, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892
| | | | | | - Paul T. Edlefsen
- Statistical Center for HIV/AIDS Research and Prevention, Vaccine and Infectious Disease Division,, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Michael Piatak
- AIDS and Cancer Virus Program, SAIC Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, SAIC Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Rafick P. Sékaly
- Vaccine and Gene Therapy Institute-Florida, Port St. Lucie, FL 34987
| | - Louis J. Picker
- Vaccine and Gene Therapy Institute, Departments of Molecular Microbiology and Immunology and Pathology, and the Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| |
Collapse
|
37
|
cAMP response element modulator α controls IL2 and IL17A expression during CD4 lineage commitment and subset distribution in lupus. Proc Natl Acad Sci U S A 2012; 109:16606-11. [PMID: 23019580 DOI: 10.1073/pnas.1210129109] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Appropriate expression of IL-2 plays a central role during the priming and differentiation of T cells. A tight balance between IL-2 and the effector cytokine IL-17A is essential for immune homeostasis. Epigenetic mechanisms have been documented as a key component of cytokine regulation during lineage commitment. The molecular mechanisms that induce chromatin remodeling are less well understood. We investigated epigenetic regulators that mediate the diametric expression of IL-2 and IL-17A in naive, central memory, and effector memory CD4(+) T cells. We demonstrate that cAMP response modulator (CREM)α contributes to epigenetic remodeling of IL2 in effector memory T cells through the recruitment of DNMT3a. CREMα also reduces CpG-DNA methylation of the IL17A promoter. CREMα expression is regulated at the epigenetic level by CpG-DNA methylation, which allows increased CREMα expression in effector memory CD4(+) T cells. T cells from patients with systemic lupus erythematosus (SLE) express increased levels of CREMα and exhibit a phenotype that is similar to effector memory CD4(+) T cells with epigenetically predetermined expression patterns of IL-2 and IL-17A. We conclude that CREMα mediates epigenetic remodeling of the IL2 and IL17A gene during T-cell differentiation in favor of effector memory T cells in health and disease.
Collapse
|
38
|
Johnson MJ, Petrovas C, Yamamoto T, Lindsay RWB, Loré K, Gall JGD, Gostick E, Lefebvre F, Cameron MJ, Price DA, Haddad E, Sekaly RP, Seder RA, Koup RA. Type I IFN induced by adenovirus serotypes 28 and 35 has multiple effects on T cell immunogenicity. THE JOURNAL OF IMMUNOLOGY 2012; 188:6109-18. [PMID: 22586038 DOI: 10.4049/jimmunol.1103717] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Recombinant adenovirus (rAd) vectors are being investigated as vaccine delivery vehicles in preclinical and clinical studies. rAds constructed from different serotypes differ in receptor usage, tropism, and ability to activate cells, aspects of which likely contribute to their different immunogenicity profiles. In this study, we compared the infectivity and cell stimulatory capacity of recombinant adenovirus serotype 5 (rAd5), recombinant adenovirus serotype 28 (rAd28), and recombinant adenovirus serotype 35 (rAd35) in association with their respective immunogenicity profiles. We found that rAd28 and rAd35 infected and led to the in vitro maturation and activation of both human and mouse dendritic cells more efficiently compared with rAd5. In stark contrast to rAd5, rAd28 and rAd35 induced production of IFN-α and stimulated IFN-related intracellular pathways. However, the in vivo immunogenicity of rAd28 and rAd35 was significantly lower than that of rAd5. Deletion of IFN-α signaling during vaccination with rAd28 and rAd35 vectors increased the magnitude of the insert-specific T cell response to levels induced by vaccination with rAd5 vector. The negative impact of IFN-α signaling on the magnitude of the T cell response could be overcome by increasing the vaccine dose, which was also associated with greater polyfunctionality and a more favorable long-term memory phenotype of the CD8 T cell response in the presence of IFN-α signaling. Taken together, our results demonstrate that rAd-induced IFN-α production has multiple effects on T cell immunogenicity, the understanding of which should be considered in the design of rAd vaccine vectors.
Collapse
Affiliation(s)
- Matthew J Johnson
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Nicholson D, Kerr EC, Jepps OG, Nicholson LB. Modelling experimental uveitis: barrier effects in autoimmune disease. Inflamm Res 2012; 61:759-73. [PMID: 22487851 DOI: 10.1007/s00011-012-0469-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 02/10/2012] [Accepted: 03/16/2012] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE AND DESIGN A mathematical analysis of leukocytes accumulating in experimental autoimmune uveitis (EAU), using ordinary differential equations (ODEs) and incorporating a barrier to cell traffic. MATERIALS AND SUBJECTS Data from an analysis of the kinetics of cell accumulation within the eye during EAU. METHODS We applied a well-established mathematical approach that uses ODEs to describe the behaviour of cells on both sides of the blood-retinal barrier and compared data from the mathematical model with experimental data from animals with EAU. RESULTS The presence of the barrier is critical to the ability of the model to qualitatively reproduce the experimental data. However, barrier breakdown is not sufficient to produce a surge of cells into the eye, which depends also on asymmetry in the rates at which cells can penetrate the barrier. Antigen-presenting cell (APC) generation also plays a critical role and we can derive from the model the ratio for APC production under inflammatory conditions relative to production in the resting state, which has a value that agrees closely with that found by experiment. CONCLUSIONS Asymmetric trafficking and the dynamics of APC production play an important role in the dynamics of cell accumulation in EAU.
Collapse
Affiliation(s)
- David Nicholson
- School of Cellular and Molecular Medicine, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | | | | | | |
Collapse
|
40
|
Identification of new hematopoietic cell subsets with a polyclonal antibody library specific for neglected proteins. PLoS One 2012; 7:e34395. [PMID: 22496798 PMCID: PMC3319577 DOI: 10.1371/journal.pone.0034395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 02/27/2012] [Indexed: 11/19/2022] Open
Abstract
The identification of new markers, the expression of which defines new phenotipically and functionally distinct cell subsets, is a main objective in cell biology. We have addressed the issue of identifying new cell specific markers with a reverse proteomic approach whereby approximately 1700 human open reading frames encoding proteins predicted to be transmembrane or secreted have been selected in silico for being poorly known, cloned and expressed in bacteria. These proteins have been purified and used to immunize mice with the aim of obtaining polyclonal antisera mostly specific for linear epitopes. Such a library, made of about 1600 different polyclonal antisera, has been obtained and screened by flow cytometry on cord blood derived CD34+CD45dim cells and on peripheral blood derived mature lymphocytes (PBLs). We identified three new proteins expressed by fractions of CD34+CD45dim cells and eight new proteins expressed by fractions of PBLs. Remarkably, we identified proteins the presence of which had not been demonstrated previously by transcriptomic analysis. From the functional point of view, looking at new proteins expressed on CD34+CD45dim cells, we identified one cell surface protein (MOSC-1) the expression of which on a minority of CD34+ progenitors marks those CD34+CD45dim cells that will go toward monocyte/granulocyte differentiation. In conclusion, we show a new way of looking at the membranome by assessing expression of generally neglected proteins with a library of polyclonal antisera, and in so doing we have identified new potential subsets of hematopoietic progenitors and of mature PBLs.
Collapse
|
41
|
Differential mTOR and ERK pathway utilization by effector CD4 T cells suggests combinatorial drug therapy of arthritis. Clin Immunol 2011; 142:127-38. [PMID: 22075384 DOI: 10.1016/j.clim.2011.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 09/14/2011] [Accepted: 09/15/2011] [Indexed: 12/11/2022]
Abstract
The signaling pathways utilized by naïve and experienced effector CD4 T cells during activation and proliferation were evaluated. While inhibition of either mTOR or MAPK alone was able to inhibit naïve T cell proliferation, both mTOR and MAPK (ERK) pathway inhibition was required to efficiently block experienced, effector CD4 T cell proliferation. This was demonstrated both in vitro, and in vivo by treating mice with collagen-induced arthritis using mTOR and/or ERK inhibitors. The combination of mTOR and ERK inhibition prevented or treated disease more efficiently than either agent alone. These data illustrate the different requirements of naïve and experienced effector CD4 T cells in the use of the mTOR and MAPK pathways in proliferation, and suggest that therapies targeting both the mTOR and MAPK pathways may be more effective than targeting either pathway alone in the treatment of CD4 T cell-mediated autoimmunity.
Collapse
|
42
|
He S, Kato K, Jiang J, Wahl DR, Mineishi S, Fisher EM, Murasko DM, Glick GD, Zhang Y. Characterization of the metabolic phenotype of rapamycin-treated CD8+ T cells with augmented ability to generate long-lasting memory cells. PLoS One 2011; 6:e20107. [PMID: 21611151 PMCID: PMC3096660 DOI: 10.1371/journal.pone.0020107] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 04/25/2011] [Indexed: 11/19/2022] Open
Abstract
Background Cellular metabolism plays a critical role in regulating T cell responses and the development of memory T cells with long-term protections. However, the metabolic phenotype of antigen-activated T cells that are responsible for the generation of long-lived memory cells has not been characterized. Design and Methods Using lymphocytic choriomeningitis virus (LCMV) peptide gp33-specific CD8+ T cells derived from T cell receptor transgenic mice, we characterized the metabolic phenotype of proliferating T cells that were activated and expanded in vitro in the presence or absence of rapamycin, and determined the capability of these rapamycin-treated T cells to generate long-lived memory cells in vivo. Results Antigen-activated CD8+ T cells treated with rapamycin gave rise to 5-fold more long-lived memory T cells in vivo than untreated control T cells. In contrast to that control T cells only increased glycolysis, rapamycin-treated T cells upregulated both glycolysis and oxidative phosphorylation (OXPHOS). These rapamycin-treated T cells had greater ability than control T cells to survive withdrawal of either glucose or growth factors. Inhibition of OXPHOS by oligomycin significantly reduced the ability of rapamycin-treated T cells to survive growth factor withdrawal. This effect of OXPHOS inhibition was accompanied with mitochondrial hyperpolarization and elevation of reactive oxygen species that are known to be toxic to cells. Conclusions Our findings indicate that these rapamycin-treated T cells may represent a unique cell model for identifying nutrients and signals critical to regulating metabolism in both effector and memory T cells, and for the development of new methods to improve the efficacy of adoptive T cell cancer therapy.
Collapse
Affiliation(s)
- Shan He
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Koji Kato
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jiu Jiang
- Department of Bioscience and Biotechnology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Daniel R. Wahl
- Chemical Biology Doctoral Program, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Shin Mineishi
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Erin M. Fisher
- Department of Bioscience and Biotechnology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Donna M. Murasko
- Department of Bioscience and Biotechnology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Gary D. Glick
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Yi Zhang
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
43
|
Conway K, Edmiston SN, Khondker ZS, Groben PA, Zhou X, Chu H, Kuan PF, Hao H, Carson C, Berwick M, Olilla DW, Thomas NE. DNA-methylation profiling distinguishes malignant melanomas from benign nevi. Pigment Cell Melanoma Res 2011; 24:352-60. [PMID: 21375697 PMCID: PMC3073305 DOI: 10.1111/j.1755-148x.2011.00828.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
DNA methylation, an epigenetic alteration typically occurring early in cancer development, could aid in the molecular diagnosis of melanoma. We determined technical feasibility for high-throughput DNA-methylation array-based profiling using formalin-fixed paraffin-embedded tissues for selection of candidate DNA-methylation differences between melanomas and nevi. Promoter methylation was evaluated in 27 common benign nevi and 22 primary invasive melanomas using a 1505 CpG site microarray. Unsupervised hierarchical clustering distinguished melanomas from nevi; 26 CpG sites in 22 genes were identified with significantly different methylation levels between melanomas and nevi after adjustment for age, sex, and multiple comparisons and with β-value differences of ≥0.2. Prediction analysis for microarrays identified 12 CpG loci that were highly predictive of melanoma, with area under the receiver operating characteristic curves of >0.95. Of our panel of 22 genes, 14 were statistically significant in an independent sample set of 29 nevi (including dysplastic nevi) and 25 primary invasive melanomas after adjustment for age, sex, and multiple comparisons. This first report of a DNA-methylation signature discriminating melanomas from nevi indicates that DNA methylation appears promising as an additional tool for enhancing melanoma diagnosis.
Collapse
Affiliation(s)
- Kathleen Conway
- Department of Epidemiology, School of Public Health, University of North Carolina, Chapel Hill, NC, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW Following the evidence that T-cell responses are crucial in the control of HIV-1 infection, vaccines targeting T-cell responses were tested in recent clinical trials. However, these vaccines showed a lack of efficacy. This review attempts to define the qualitative and quantitative features that are desirable for T-cell-induced responses by vaccines. We also describe strategies that could lead to achievement of this goal. RECENT FINDINGS Using the yellow fever vaccine as a benchmark of an efficient vaccine, recent studies identified factors of immune protection and more importantly innate immune pathways needed for the establishment of long-term protective adaptive immunity. SUMMARY To prevent or control HIV-1 infection, a vaccine must induce efficient and persistent antigen-specific T cells endowed with mucosal homing capacity. Such cells should have the capability to counteract HIV-1 diversity and its rapid spread from the initial site of infection. To achieve this goal, the activation of a diversified innate immune response is critical. New systems biology approaches will provide more precise correlates of immune protection that will pave the way for new approaches in T-cell-based vaccines.
Collapse
|
45
|
Xin A, Nutt SL, Belz GT, Kallies A. Blimp1: driving terminal differentiation to a T. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 780:85-100. [PMID: 21842367 DOI: 10.1007/978-1-4419-5632-3_8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
B lymphocyte maturation-induced protein-1 (Blimp1) is a transcriptional repressor expressed in diverse cell types. In the adaptive immune system, Blimp1 is expressed in lymphocytes that have undergone effector differentiation. Blimp1 is a master regulator of plasma cell differentiation and plays important roles in controlling T cell homeostasis and effector differentiation. Blimp1 can be induced by a variety of cytokines including IL-2, IL-4, IL-12, and IL-21 in addition to TCR and co-stimulatory signals. Blimp1-deficient mice develop spontaneous inflammatory disease mediated by infiltration of activated T cells into tissues. During immune responses Blimp1 is required for the differentiation of plasma cells as well as short-lived CD8(+) cytotoxic T cells. Mounting evidence suggests that Blimp1 plays a common role in the terminal differentiation of multiple cell subsets.
Collapse
|
46
|
Wei L, Vahedi G, Sun HW, Watford WT, Takatori H, Ramos HL, Takahashi H, Liang J, Gutierrez-Cruz G, Zang C, Peng W, O'Shea JJ, Kanno Y. Discrete roles of STAT4 and STAT6 transcription factors in tuning epigenetic modifications and transcription during T helper cell differentiation. Immunity 2010; 32:840-51. [PMID: 20620946 DOI: 10.1016/j.immuni.2010.06.003] [Citation(s) in RCA: 241] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 04/20/2010] [Accepted: 05/06/2010] [Indexed: 01/30/2023]
Abstract
Signal transducer and activator of transcription 4 (STAT4) and STAT6 are key factors in the specification of helper T cells; however, their direct roles in driving differentiation are not well understood. Using chromatin immunoprecipitation and massive parallel sequencing, we quantitated the full complement of STAT-bound genes, concurrently assessing global STAT-dependent epigenetic modifications and gene transcription by using cells from cognate STAT-deficient mice. STAT4 and STAT6 each bound over 4000 genes with distinct binding motifs. Both played critical roles in maintaining chromatin configuration and transcription of a core subset of genes through the combination of different epigenetic patterns. Globally, STAT4 had a more dominant role in promoting active epigenetic marks, whereas STAT6 had a more prominent role in antagonizing repressive marks. Clusters of genes negatively regulated by STATs were also identified, highlighting previously unappreciated repressive roles of STATs. Therefore, STAT4 and STAT6 play wide regulatory roles in T helper cell specification.
Collapse
Affiliation(s)
- Lai Wei
- Molecular Immunology and Inflammation Branch, NIAMS, National Institutes of Health, Bethesda MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Rutishauser RL, Kaech SM. Generating diversity: transcriptional regulation of effector and memory CD8 T-cell differentiation. Immunol Rev 2010; 235:219-33. [PMID: 20536566 DOI: 10.1111/j.0105-2896.2010.00901.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
SUMMARY In response to acute infections or vaccines, naive antigen-specific CD8(+) T cells proliferate and differentiate into effector cytotoxic lymphocytes that acquire the ability to kill infected cells. While the majority of differentiated effector cells die after pathogen clearance, a small number evade terminal differentiation, downregulate active effector functions, and survive as long-lived, self-renewing memory T cells. Our understanding of how effector CD8(+) T cells adopt these different cell fates has grown greatly in recent years. In this review, we discuss the transcriptional regulators that are known to support general effector differentiation, terminal effector differentiation, and memory cell formation. We propose that the diversity of activated CD8(+) T-cell differentiation states is achieved via gradients of activity or expression of transcriptional regulators that are regulated by the level of inflammation and antigenic signaling the T cells experience during infection.
Collapse
Affiliation(s)
- Rachel L Rutishauser
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
48
|
Boniface K, Blumenschein WM, Brovont-Porth K, McGeachy MJ, Basham B, Desai B, Pierce R, McClanahan TK, Sadekova S, de Waal Malefyt R. Human Th17 cells comprise heterogeneous subsets including IFN-gamma-producing cells with distinct properties from the Th1 lineage. THE JOURNAL OF IMMUNOLOGY 2010; 185:679-87. [PMID: 20511558 DOI: 10.4049/jimmunol.1000366] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Th17 cells have been named after their signature cytokine IL-17 and accumulating evidence indicates their involvement in the induction and progression of inflammatory diseases. In addition to IL-17 single-producing T cells, IL-17/IFN-gamma double-positive T cells are found in significantly elevated numbers in inflamed tissues or blood from patients with chronic inflammatory disorders. Because IFN-gamma is the classical Th1-associated cytokine, the origin and roles of these subsets remain elusive. In this paper, we show that not only IL-17(+)/IFN-gamma(+) but also IFN-gamma(+) (IL-17(-)) cells arise under Th17-inducing condition and have distinct properties from the Th1 lineage. In fact, these populations displayed characteristics reminiscent to IL-17 single-producing cells, including production of IL-22, CCL20, and induction of antimicrobial gene expression from epithelial cells. Live sorted IL-17(+) and Th17-IFN-gamma(+) cells retained expression of IL-17 or IFN-gamma after culture, respectively, whereas the IL-17(+)/IFN-gamma(+) population was less stable and could also become IL-17 or IFN-gamma single-producing cells. Interestingly, these Th17 subsets became "Th1-like" cells in the presence of IL-12. These results provide novel insights into the relationship and functionality of the Th17 and Th1 subsets and have direct implications for the analysis and relevance of IL-17 and/or IFN-gamma-producing T cells present in patients' peripheral blood and inflamed tissues.
Collapse
Affiliation(s)
- Katia Boniface
- Department of Immunology, Schering-Plough Biopharma, Palo Alto, CA 94304, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Kallies A, Xin A, Belz GT, Nutt SL. Blimp-1 transcription factor is required for the differentiation of effector CD8(+) T cells and memory responses. Immunity 2009; 31:283-95. [PMID: 19664942 DOI: 10.1016/j.immuni.2009.06.021] [Citation(s) in RCA: 389] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 05/08/2009] [Accepted: 06/09/2009] [Indexed: 10/20/2022]
Abstract
In response to viral infection, naive CD8(+) T cells proliferate and differentiate into cytotoxic and cytokine-producing effector cells. Here we showed that the transcription factor Blimp-1, a crucial regulator of plasma cell differentiation, was required for CD8(+) T cells to differentiate into functional killer T cells in response to influenza virus. Blimp-1 was not essential for the generation of memory T cells but was crucial for their efficient recall response upon reinfection. Antigen-specific Blimp-1-deficient CD8(+) T cells failed to appropriately regulate the transcriptional program essential for killer T cell responses and showed impaired migration to the site of infection. This study identifies Blimp-1 as a master regulator of the terminal differentiation of CD8(+) effector T cells and uncovers a conservation of the pathways that regulate the terminal differentiation of T and B cells.
Collapse
Affiliation(s)
- Axel Kallies
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia.
| | | | | | | |
Collapse
|
50
|
Abstract
Sarcoidosis is a chronic granulomatous disorder characterized by a massive influx of Th1 lymphocytes. Both naive and memory T cells express high levels of interleukin 7 receptor-alpha (IL7R alpha), encoded by the IL7R gene. The purpose of this study was to investigate the role of the IL7R gene region in susceptibility to sarcoidosis. Six common single-nucleotide polymorphisms (SNPs) spanning IL7R were genotyped and analyzed in 475 sarcoidosis patients and 465 healthy controls. Replication of one significant associated SNP was carried out in 206 independent sarcoidosis patients, 127 controls and 126 patients with Löfgren's disease. The rs10213865 SNP was associated with sarcoidosis (P=0.008), and in silico analysis showed a complete linkage (r(2)=1, D'=1) with a functional nonsynonymous coding SNP in exon 6 (rs6897932, T244I). Combined analysis of 663 individuals with sarcoidosis and 586 controls (homozygous carriers of risk allele, P=5 x 10(-4), odds ratio=1.49 (1.19-1.86)) provided strong statistical support for a genuine association of IL7R with the risk of sarcoidosis. In addition, we report the same trend between variation in the IL7R gene and patients with Löfgren's disease, suggesting that variation in IL7R may confer general risk for developing granulomatous lung disease.
Collapse
|