1
|
Oranger A, Colaianni G, Ingravallo G, Scarcella VS, Faienza MF, Grano M, Colucci S, Brunetti G. LIGHT/TNFSF14 Affects Adipose Tissue Phenotype. Int J Mol Sci 2024; 25:716. [PMID: 38255789 PMCID: PMC10815871 DOI: 10.3390/ijms25020716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
LIGHT/TNFSF14 is linked to several signaling pathways as a crucial member of a larger immunoregulatory network. It is primarily expressed in inflammatory effector cells, and high levels of LIGHT have been reported in obesity. Thus, with the aim of deepening the knowledge of the role of LIGHT on adipose tissue phenotype, we studied wild-type (WT), Tnfsf14-/-, Rag-/- and Rag-/Tnfsf14- (DKO) mice fed a normal diet (ND) or high-fat diet (HFD). Our results show that, although there is no significant weight gain between the mice with different genotypes, it is significant within each of them. We also detected an increase in visceral White Adipose Tissue (vWAT) weight in all mice fed HFD, together with the lowest levels of vWAT weight in Tnfsf14-/- and DKO mice fed ND with respect to the other strain. Inguinal WAT (iWAT) weight is significantly affected by genotype and HFD. The least amount of iWAT was detected in DKO mice fed ND. Histological analysis of vWAT showed that both the genotype and the diet significantly affect the adipocyte area, whereas the number is affected only by the genotype. In iWAT, the genotype and the diet significantly affect mean adipocyte area and number; interestingly, the area with the least adipocyte was detected in DKO mice fed ND, suggesting a potential browning effect due to the simultaneous lack of mature lymphocytes and LIGHT. Consistently, Uncoupling Protein 1 (UCP1) staining of iWAT demonstrated that few positive brown adipocytes appeared in DKO mice. Furthermore, LIGHT deficiency is associated with greater levels of UCP1, highlighting the lack of its expression in Rag-/- mice. Liver examination showed that all mice fed HFD had a steatotic liver, but it was particularly evident for DKO mice. In conclusion, our study demonstrates that the adipose tissue phenotype is affected by LIGHT levels but also much more by mature lymphocytes.
Collapse
Affiliation(s)
- Angela Oranger
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy; (A.O.); (G.C.); (M.G.)
| | - Graziana Colaianni
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy; (A.O.); (G.C.); (M.G.)
| | - Giuseppe Ingravallo
- Section of Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari, 70124 Bari, Italy; (G.I.); (V.S.S.)
| | - Vincenza Sara Scarcella
- Section of Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari, 70124 Bari, Italy; (G.I.); (V.S.S.)
| | - Maria Felicia Faienza
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy
| | - Maria Grano
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy; (A.O.); (G.C.); (M.G.)
| | - Silvia Colucci
- Department of Translational Biomedicine and Neuroscience, University of Bari, 70124 Bari, Italy;
| | - Giacomina Brunetti
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy
| |
Collapse
|
2
|
Faienza MF, Brunetti G, Fintini D, Grugni G, Wasniewska MG, Crinò A, D'Amato G, Piacente L, Oranger A, Dicarlo M, Colucci S, Grano M. High levels of LIGHT/TNFSF14 in patients with Prader-Willi syndrome. J Endocrinol Invest 2023:10.1007/s40618-023-02050-2. [PMID: 36917420 PMCID: PMC10371899 DOI: 10.1007/s40618-023-02050-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 02/23/2023] [Indexed: 03/16/2023]
Abstract
PURPOSE/METHODS Prader-Willi syndrome (PWS) is a rare genetic disorder displaying different clinical features, including obesity and bone impairment. LIGHT/TNFSF14 is a cytokine produced by immune cells affecting both fat and bone metabolism. The present study aimed to evaluate LIGHT serum levels in 28 children and 52 adult PWS patients compared to age and sex-matched controls, as well as correlations with parameters of bone and fat metabolism. RESULTS Median serum LIGHT levels were significantly increased in pediatric PWS with respect to controls [255.82 (284.43) pg/ml vs 168.11 (76.23) pg/ml, p ≤ 0.02] as well as in adult PWS compared to controls [296.85 (895.95) pg/ml vs 134.18 (141.18) pg/ml, p ≤ 0.001]. In pediatric PWS, LIGHT levels were positively correlated with weight-SDS, height-SDS, and glucose levels, and negatively with total 25 (OH) vitamin D, cholesterol, LDL cholesterol and triglycerides. Additionally, LIGHT levels were negatively correlated with total BMD and fat mass. In adult PWS, LIGHT levels were positively correlated with weight, HDL cholesterol and PTH, and negatively with glucose, insulin, HOMA-IR, total cholesterol, LDL cholesterol, triglycerides, calcium, phosphorus, 25(OH)Vitamin D as well as with instrumental parameters of bone and fat quality. Consistently, multiple regression analysis showed that LIGHT serum levels in pediatric and adult PWS were predicted by different parameters including 25 (OH) Vitamin D as well as DXA parameters of bone and fat quality. CONCLUSIONS In PWS children and adults the high levels of LIGHT could represent a marker of the altered bone and fat metabolism.
Collapse
Affiliation(s)
- M F Faienza
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Human Anatomy and Histology, University of Bari 'A. Moro', Bari, Italy
| | - G Brunetti
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona, 4, 70125, Bari, Italy.
| | - D Fintini
- Endocrinology Unit, Pediatric University Department, Bambino Gesù Children's Hospital, Rome, Italy
| | - G Grugni
- Division of Auxology, Istituto Auxologico Italiano, Research Institute, Verbania, Italy
| | - M G Wasniewska
- Pediatric Unit, Department of Human Pathology in Adulthood and Childhood, University of Messina, Messina, Italy
| | - A Crinò
- Reference Center for Prader-Willi Syndrome, Bambino Gesù Children's Hospital, Research Institute, Rome, Italy
| | - G D'Amato
- Neonatal Intensive Care Unit, Di Venere Hospital, Bari, Italy
| | - L Piacente
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Human Anatomy and Histology, University of Bari 'A. Moro', Bari, Italy
| | - A Oranger
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Human Anatomy and Histology, University of Bari 'A. Moro', Bari, Italy
| | - M Dicarlo
- Department of Translational Biosciences and Neurosciences, Section of Human Anatomy and Histology, University of Bari 'A. Moro', Bari, Italy
| | - S Colucci
- Department of Translational Biosciences and Neurosciences, Section of Human Anatomy and Histology, University of Bari 'A. Moro', Bari, Italy
| | - M Grano
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Human Anatomy and Histology, University of Bari 'A. Moro', Bari, Italy
| |
Collapse
|
3
|
Bekkhus T, Olofsson A, Sun Y, Magnusson PU, Ulvmar MH. Stromal transdifferentiation drives lipomatosis and induces extensive vascular remodeling in the aging human lymph node. J Pathol 2023; 259:236-253. [PMID: 36367235 PMCID: PMC10108032 DOI: 10.1002/path.6030] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/18/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Lymph node (LN) lipomatosis is a common but rarely discussed phenomenon associated with aging that involves a gradual exchange of the LN parenchyma into adipose tissue. The mechanisms behind these changes and the effects on the LN are unknown. We show that LN lipomatosis starts in the medullary regions of the human LN and link the initiation of lipomatosis to transdifferentiation of LN fibroblasts into adipocytes. The latter is associated with a downregulation of lymphotoxin beta expression. We also show that isolated medullary and CD34+ fibroblasts, in contrast to the reticular cells of the T-cell zone, display an inherently higher sensitivity for adipogenesis. Progression of lipomatosis leads to a gradual loss of the medullary lymphatic network, but at later stages, collecting-like lymphatic vessels are found inside the adipose tissue. The stromal dysregulation includes a dramatic remodeling and dilation of the high endothelial venules associated with reduced density of naïve T-cells. Abnormal clustering of plasma cells is also observed. Thus, LN lipomatosis causes widespread stromal dysfunction with consequences for the immune contexture of the human LN. Our data warrant an increased awareness of LN lipomatosis as a factor contributing to decreased immune functions in the elderly and in disease. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Tove Bekkhus
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Anna Olofsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Ying Sun
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Peetra U Magnusson
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Maria H Ulvmar
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Tews D, Brenner RE, Siebert R, Debatin KM, Fischer-Posovszky P, Wabitsch M. 20 Years with SGBS cells - a versatile in vitro model of human adipocyte biology. Int J Obes (Lond) 2022; 46:1939-1947. [PMID: 35986215 PMCID: PMC9584814 DOI: 10.1038/s41366-022-01199-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/21/2022]
Abstract
20 years ago, we described a human cell strain derived from subcutaneous adipose tissue of an infant supposed to have Simpson-Golabi-Behmel Syndrome (SGBS), thus called “SGBS cells”. Since then, these cells have emerged as the most commonly used cell model for human adipogenesis and human adipocyte biology. Although these adipocyte derived stem cells have not been genetically manipulated for transformation or immortalization, SGBS cells retain their capacity to proliferate and to differentiate into adipocytes for more than 50 population doublings, providing an almost unlimited source of human adipocyte progenitor cells. Original data obtained with SGBS cells led to more than 200 peer reviewed publications comprising investigations on adipogenesis and browning, insulin sensitivity, inflammatory response, adipokine production, as well as co-culture models and cell-cell communication. In this article, we provide an update on the characterization of SGBS cells, present basic methods for their application and summarize results of a systematic literature search on original data obtained with this cell strain.
Collapse
|
5
|
Ponce-de-Leon M, Hannemann A, Linseisen J, Nauck M, Lerch MM, Bülow R, Völzke H, Friedrich N, Kassubek J, Müller HP, Baumeister SE, Meisinger C. Links between ectopic and abdominal fat and systemic inflammation: New insights from the SHIP-Trend study. Dig Liver Dis 2022; 54:1030-1037. [PMID: 35232676 DOI: 10.1016/j.dld.2022.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Excessive fat accumulation in adipose tissue depots and organs such as the pancreas and the liver is associated with systemic low-grade chronic inflammation. AIMS To investigate the association between abdominal, hepatic, and pancreatic fat and the circulating level of inflammatory biomarkers. METHODS We used data from a subsample of the Study of Health in Pomerania (SHIP-Trend, n = 469). The plasma concentration of 37 inflammatory biomarkers was measured using the Bio-Plex-Pro™-Human-Inflammation-Panel-1. Subcutaneous and visceral adipose tissue (SAT and VAT), as well as hepatic and pancreatic fat, were determined by magnetic resonance imaging. We assessed the associations between fat content and inflammatory biomarkers using multiple linear regression. RESULTS Hepatic fat was associated with MMP-2 (β -0.11), PTX3 (β -0.14), and TNFSF12 (β -0.06). Pancreatic fat was associated with sTNFR1 (β 0.15), sTNFR2 (β 0.11), and sCD163 (β 0.13). VAT and SAT were associated with sCD163 (βVAT 0.20, βSAT 0.16), MMP-2 (βVAT -0.12, βSAT -0.10), OSTCN (βVAT -0.16, βSAT -0.10), sTNFR1 (βVAT 0.13, βSAT 0.13), sTNFR2 (βVAT 0.13, βSA 0.12), TNFSF12 (βVAT -0.11, βSAT -0.08), and TNFSF14 (βVAT 0.21, βSAT 0.20). VAT was additionally associated with TNFSF13B (β 0.08) and CHI3L1 (β 0.07). CONCLUSIONS Our findings provide new insights into the involvement of hepatic and pancreatic fat on systemic inflammation.
Collapse
Affiliation(s)
- Mariana Ponce-de-Leon
- Institute for Medical Information Processing, Biometry, and Epidemiology, Ludwig-Maximilians-Universität München, Munich 81377, Germany; Chair of Epidemiology, University of Augsburg, University Hospital Augsburg, Stenglinstr. 2, Augsburg 86156, Germany; Independent Research Group Clinical Epidemiology, Helmholtz Zentrum München, Neuherberg D-85764, Germany.
| | - Anke Hannemann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, Greifswald 17489, Germany; DZHK (German Center for Cardiovascular Research), Partner site Greifswald, Greifswald 17475, Germany
| | - Jakob Linseisen
- Institute for Medical Information Processing, Biometry, and Epidemiology, Ludwig-Maximilians-Universität München, Munich 81377, Germany; Chair of Epidemiology, University of Augsburg, University Hospital Augsburg, Stenglinstr. 2, Augsburg 86156, Germany; Independent Research Group Clinical Epidemiology, Helmholtz Zentrum München, Neuherberg D-85764, Germany
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, Greifswald 17489, Germany
| | - Markus M Lerch
- Department of Medicine A, University Medicine Greifswald, Ferdinand Sauerbruch-Straße, Greifswald 17475, Germany
| | - Robin Bülow
- Department of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, Greifswald 17475, Germany
| | - Henry Völzke
- DZHK (German Center for Cardiovascular Research), Partner site Greifswald, Greifswald 17475, Germany; Institute for Community Medicine, University Medicine Greifswald, Greifswald 17475, Germany
| | - Nele Friedrich
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, Greifswald 17489, Germany; DZHK (German Center for Cardiovascular Research), Partner site Greifswald, Greifswald 17475, Germany
| | - Jan Kassubek
- Department of Neurology, University of Ulm, Ulm 89081, Germany
| | | | | | - Christa Meisinger
- Chair of Epidemiology, University of Augsburg, University Hospital Augsburg, Stenglinstr. 2, Augsburg 86156, Germany; Independent Research Group Clinical Epidemiology, Helmholtz Zentrum München, Neuherberg D-85764, Germany
| |
Collapse
|
6
|
Liu W, Chou TF, Garrett-Thomson SC, Seo GY, Fedorov E, Ramagopal UA, Bonanno JB, Wang Q, Kim K, Garforth SJ, Kakugawa K, Cheroutre H, Kronenberg M, Almo SC. HVEM structures and mutants reveal distinct functions of binding to LIGHT and BTLA/CD160. J Exp Med 2021; 218:e20211112. [PMID: 34709351 PMCID: PMC8558838 DOI: 10.1084/jem.20211112] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/20/2021] [Accepted: 10/01/2021] [Indexed: 11/09/2022] Open
Abstract
HVEM is a TNF (tumor necrosis factor) receptor contributing to a broad range of immune functions involving diverse cell types. It interacts with a TNF ligand, LIGHT, and immunoglobulin (Ig) superfamily members BTLA and CD160. Assessing the functional impact of HVEM binding to specific ligands in different settings has been complicated by the multiple interactions of HVEM and HVEM binding partners. To dissect the molecular basis for multiple functions, we determined crystal structures that reveal the distinct HVEM surfaces that engage LIGHT or BTLA/CD160, including the human HVEM-LIGHT-CD160 ternary complex, with HVEM interacting simultaneously with both binding partners. Based on these structures, we generated mouse HVEM mutants that selectively recognized either the TNF or Ig ligands in vitro. Knockin mice expressing these muteins maintain expression of all the proteins in the HVEM network, yet they demonstrate selective functions for LIGHT in the clearance of bacteria in the intestine and for the Ig ligands in the amelioration of liver inflammation.
Collapse
MESH Headings
- Animals
- Antigens, CD/chemistry
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Crystallography, X-Ray
- Drosophila/cytology
- Drosophila/genetics
- Female
- GPI-Linked Proteins/chemistry
- GPI-Linked Proteins/genetics
- GPI-Linked Proteins/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Transgenic
- Multiprotein Complexes/chemistry
- Multiprotein Complexes/metabolism
- Mutation
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Receptors, Tumor Necrosis Factor, Member 14/chemistry
- Receptors, Tumor Necrosis Factor, Member 14/genetics
- Receptors, Tumor Necrosis Factor, Member 14/metabolism
- Tumor Necrosis Factor Ligand Superfamily Member 14/chemistry
- Tumor Necrosis Factor Ligand Superfamily Member 14/genetics
- Tumor Necrosis Factor Ligand Superfamily Member 14/metabolism
- Yersinia Infections/genetics
- Yersinia Infections/pathology
- Mice
Collapse
Affiliation(s)
- Weifeng Liu
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY
| | | | | | | | - Elena Fedorov
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY
| | - Udupi A. Ramagopal
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY
| | - Jeffrey B. Bonanno
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY
| | | | - Kenneth Kim
- La Jolla Institute for Immunology, La Jolla, CA
| | - Scott J. Garforth
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY
| | - Kiyokazu Kakugawa
- Laboratory for Immune Crosstalk, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Hilde Cheroutre
- La Jolla Institute for Immunology, La Jolla, CA
- Laboratory for Immune Crosstalk, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Mitchell Kronenberg
- La Jolla Institute for Immunology, La Jolla, CA
- Division of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Steven C. Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
7
|
Agostino M, Rooney J, Herat L, Matthews J, Simonds A, Northfield SE, Hopper D, Schlaich MP, Matthews VB. TNFSF14-Derived Molecules as a Novel Treatment for Obesity and Type 2 Diabetes. Int J Mol Sci 2021; 22:ijms221910647. [PMID: 34638990 PMCID: PMC8508965 DOI: 10.3390/ijms221910647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity is one of the most prevalent metabolic diseases in the Western world and correlates directly with glucose intolerance and insulin resistance, often culminating in Type 2 Diabetes (T2D). Importantly, our team has recently shown that the TNF superfamily (TNFSF) member protein, TNFSF14, has been reported to protect against high fat diet induced obesity and pre-diabetes. We hypothesized that mimics of TNFSF14 may therefore be valuable as anti-diabetic agents. In this study, we use in silico approaches to identify key regions of TNFSF14 responsible for binding to the Herpes virus entry mediator and Lymphotoxin β receptor. In vitro evaluation of a selection of optimised peptides identified six potentially therapeutic TNFSF14 peptides. We report that these peptides increased insulin and fatty acid oxidation signalling in skeletal muscle cells. We then selected one of these promising peptides to determine the efficacy to promote metabolic benefits in vivo. Importantly, the TNFSF14 peptide 7 reduced high fat diet-induced glucose intolerance, insulin resistance and hyperinsulinemia in a mouse model of obesity. In addition, we highlight that the TNFSF14 peptide 7 resulted in a marked reduction in liver steatosis and a concomitant increase in phospho-AMPK signalling. We conclude that TNFSF14-derived molecules positively regulate glucose homeostasis and lipid metabolism and may therefore open a completely novel therapeutic pathway for treating obesity and T2D.
Collapse
MESH Headings
- Animals
- Binding Sites
- Blood Glucose/metabolism
- Computer Simulation
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/etiology
- Diabetes Mellitus, Type 2/metabolism
- Diet, High-Fat/adverse effects
- Disease Models, Animal
- Glucose Intolerance/drug therapy
- Glucose Intolerance/metabolism
- Homeostasis/drug effects
- Hyperinsulinism/drug therapy
- Hyperinsulinism/metabolism
- Hypoglycemic Agents/administration & dosage
- Hypoglycemic Agents/chemical synthesis
- Insulin Resistance
- Lymphotoxin beta Receptor/chemistry
- Lymphotoxin beta Receptor/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Obesity/complications
- Obesity/drug therapy
- Obesity/etiology
- Obesity/metabolism
- Peptides/administration & dosage
- Peptides/chemical synthesis
- Receptors, Tumor Necrosis Factor, Member 14/chemistry
- Receptors, Tumor Necrosis Factor, Member 14/metabolism
- Signal Transduction/drug effects
- Treatment Outcome
- Tumor Necrosis Factor Ligand Superfamily Member 14/administration & dosage
- Tumor Necrosis Factor Ligand Superfamily Member 14/chemistry
- Tumor Necrosis Factor Ligand Superfamily Member 14/metabolism
Collapse
Affiliation(s)
- Mark Agostino
- Curtin Medical School, Curtin University, Bentley, WA 6102, Australia; (M.A.); (A.S.)
- Curtin Health and Innovation Research Institute, Curtin University, Perth, WA 6845, Australia
- Curtin Institute for Computation, Curtin University, Perth, WA 6845, Australia
| | - Jennifer Rooney
- Dobney Hypertension Centre, School of Biomedical Sciences—Royal Perth Hospital Unit, University of Western Australia, Perth, WA 6009, Australia; (J.R.); (L.H.); (J.M.)
| | - Lakshini Herat
- Dobney Hypertension Centre, School of Biomedical Sciences—Royal Perth Hospital Unit, University of Western Australia, Perth, WA 6009, Australia; (J.R.); (L.H.); (J.M.)
| | - Jennifer Matthews
- Dobney Hypertension Centre, School of Biomedical Sciences—Royal Perth Hospital Unit, University of Western Australia, Perth, WA 6009, Australia; (J.R.); (L.H.); (J.M.)
| | - Allyson Simonds
- Curtin Medical School, Curtin University, Bentley, WA 6102, Australia; (M.A.); (A.S.)
| | - Susan E. Northfield
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (S.E.N.); (D.H.)
| | - Denham Hopper
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (S.E.N.); (D.H.)
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Markus P. Schlaich
- Department of Cardiology, Royal Perth Hospital, Perth, WA 6000, Australia;
- Department of Nephrology, Royal Perth Hospital, Perth, WA 6000, Australia
- Department of Medicine, Royal Perth Hospital, Perth, WA 6000, Australia
| | - Vance B. Matthews
- Dobney Hypertension Centre, School of Biomedical Sciences—Royal Perth Hospital Unit, University of Western Australia, Perth, WA 6009, Australia; (J.R.); (L.H.); (J.M.)
- Correspondence: ; Tel.: +61-8-9224-0239; Fax: +61-8-9224-0374
| |
Collapse
|
8
|
Tumor Necrosis Receptor Superfamily Interact with Fusion and Fission of Mitochondria of Adipose Tissue in Obese Patients without Type 2 Diabetes. Biomedicines 2021; 9:biomedicines9091260. [PMID: 34572446 PMCID: PMC8470627 DOI: 10.3390/biomedicines9091260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 11/17/2022] Open
Abstract
Interactions between receptors and ligands of the tumor necrosis factor superfamily (TNFSF) provide costimulatory signals that control the survival, proliferation, differentiation, and effector function of immune cells. All components of the TNF superfamily are associated with NF-kB functions that are not limited to cell death and may promote survival in the face of adipose tissue inflammation in obesity. Inflammation dysfunction of mitochondria is a key factor associated with insulin resistance in obesity. The aim of the study was to analyze the relationship of soluble forms of receptors and ligands of the TNF superfamily in blood plasma with mitochondrial dynamics in adipose tissue (greater omentum (GO) and subcutaneous adipose tissue (Sat)) of obese patients with and without type 2 diabetes mellitus (T2DM). Increased plasma sTNF-R1, sTNF-R2, sTNFRSF8 receptors, and ligands TNFSF12, TNFSF13, TNFSF13B are characteristic of obese patients without T2DM. The TNF-a levels in blood plasma were associated with a decrease in MFN2 gene expression in GO and IL-10 in blood plasma. The TNFSF12 levels contributed to a decrease in glucose levels, a decrease in BMI, and an increase in IL-10 levels by influencing the MFN2 gene expression in GO, which supports mitochondrial fusion.
Collapse
|
9
|
Brunetti G, Faienza MF, Piacente L, Storlino G, Oranger A, D’Amato G, De Filippo G, Colucci S, Grano M. Shedding "LIGHT" on the Link between Bone and Fat in Obese Children and Adolescents. Int J Mol Sci 2020; 21:E4739. [PMID: 32635185 PMCID: PMC7370129 DOI: 10.3390/ijms21134739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/15/2022] Open
Abstract
Obesity may affect bone health, but literature reports are contradictory about the correlation of body mass index (BMI) and bone markers. LIGHT, one of the immunostimulatory cytokines regulating the homeostasis of bone and adipose tissue, could be involved in obesity. The study involved 111 obese subjects (12.21 ± 3.71 years) and 45 controls. Patients underwent the evaluation of bone status by quantitative ultrasonography (QUS). LIGHT amounts were evaluated in sera by ELISA, whereas its expression on peripheral blood cells was evaluated by flow cytometry. Osteoclastogenesis was performed by culturing peripheral blood mononuclear cells (PBMCs) with or without anti-LIGHT antibodies. Obese patients showed significant high BMI-standard deviation score (SDS), weight-SDS, and Homeostatic model assessment for insulin resistance (HOMA-IR) that negatively correlated with the reduced Amplitude Dependent Speed of Sound (AD-SoS)-Z-score and Bone Transmission Time (BTT-Z)-score. They displayed significantly higher serum levels of LIGHT compared with controls (497.30 ± 363.45 pg/mL vs. 186.06 ± 101.41 pg/mL, p < 0.001). LIGHT expression on monocytes, CD3+-T-cells, and neutrophils was also higher in obese patients than in the controls. Finally, in PBMC cultures, the addition of anti-LIGHT antibodies induced a significant osteoclastogenesis inhibition. Our study highlighted the high serum levels of LIGHT in obese children and adolescents, and its relationship with both the grade of obesity and bone impairment.
Collapse
Affiliation(s)
- Giacomina Brunetti
- Department of Basic and Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, 70124 Bari, Italy;
| | - Maria Felicia Faienza
- Department of Biomedical Science and Human Oncology, Paediatric Unit, University of Bari, 70100 Bari, Italy; (M.F.F.); (L.P.)
| | - Laura Piacente
- Department of Biomedical Science and Human Oncology, Paediatric Unit, University of Bari, 70100 Bari, Italy; (M.F.F.); (L.P.)
| | - Giuseppina Storlino
- Department of Emergency and Organ Transplantation, Section of Human Anatomy and Histology, University of Bari, 70124 Bari, Italy; (G.S.); (A.O.); (M.G.)
| | - Angela Oranger
- Department of Emergency and Organ Transplantation, Section of Human Anatomy and Histology, University of Bari, 70124 Bari, Italy; (G.S.); (A.O.); (M.G.)
| | - Gabriele D’Amato
- Neonatal Intensive Care Unit, Di Venere Hospital, 70131 Bari, Italy;
| | - Gianpaolo De Filippo
- Assistance Publique-Hôpitaux de Paris, Hôpital Robert Debré, Service d’Endocrinologie Diabétologie Pédiatrique, 75019 Paris, France;
| | - Silvia Colucci
- Department of Basic and Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, 70124 Bari, Italy;
| | - Maria Grano
- Department of Emergency and Organ Transplantation, Section of Human Anatomy and Histology, University of Bari, 70124 Bari, Italy; (G.S.); (A.O.); (M.G.)
| |
Collapse
|
10
|
Herrero-Cervera A, Vinué Á, Burks DJ, González-Navarro H. Genetic inactivation of the LIGHT (TNFSF14) cytokine in mice restores glucose homeostasis and diminishes hepatic steatosis. Diabetologia 2019; 62:2143-2157. [PMID: 31388695 DOI: 10.1007/s00125-019-4962-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 06/10/2019] [Indexed: 12/27/2022]
Abstract
AIMS/HYPOTHESIS Non-alcoholic fatty liver disease (NAFLD) is frequently associated with type 2 diabetes mellitus. Progression of NAFLD is mediated, among other things, by activation of inflammatory pathways. In the present study, the role of the proinflammatory cytokine LIGHT (TNFSF14) was explored in NAFLD and type 2 diabetes mellitus in mice deficient for the cytokine. METHODS Light-deficient (Light-/-) mice and WT controls were fed a regular chow diet (RCD) or a high-fat high-cholesterol diet (HFHCD) for 16 weeks. The expression of LIGHT and its receptors, herpes virus entry mediator (HVEM) and lymphotoxin β receptor (LTβR), was investigated in both dietary regimens. Glucose tolerance, insulin sensitivity, non-alcoholic fatty liver (NAFL), systemic and tissue inflammation, and metabolic gene expression were explored in Light-/- and WT mice fed an RCD and an HFHCD. The effect of Light deficiency was also evaluated in hepatic tissue and in inflammation in HFHCD-fed Irs2+/- mice with impaired insulin signalling. RESULTS Light deficiency did not have an effect on metabolism, in NAFL or in tissue and systemic inflammation, in RCD-fed WT mice. HVEM and LTβR were markedly increased in livers of HFHCD-fed WT mice compared with RCD-fed WT controls. In WT mice under HFHCD, Light deficiency improved glucose tolerance and insulin sensitivity. Non-alcoholic fatty liver disease activity (NAS) score, hepatic CD3+ T lymphocytes and F4/80+ macrophages were decreased in HFHCD-fed Light-/- mice compared with HFHCD-fed WT controls. Consistent with a potential role of adipose tissue in hepatic homeostasis, Light-/- mice exhibited augmented anti-inflammatory F4/80+CD206+ adipose tissue macrophages and reduced proinflammatory F4/80+CD11c+ adipose tissue macrophages. Moreover, adipose tissue explants from Light-/- mice showed diminished secretion of monocyte chemoattractant protein 1 (MCP1), TNF-α and IL-17 cytokines. Circulating Light-/- leucocytes consistently displayed augmented levels of the patrolling Ly6Clow monocytes, decreased Th9 T cell subset and diminished plasma TNF-α and IL-6 levels. Similarly, Light deficiency in Irs2+/- mice, which display impaired insulin signalling, also reduced NAFL as well as systemic and adipose tissue inflammation. Analysis of hepatic gene expression in Light-/- mouse livers showed reduced levels of Zbtb16, the transcription factor essential for natural killer T (NKT) cell function, and two genes related to NAFLD and fibrosis, Klf6 and Tlr4. CONCLUSIONS/INTERPRETATION These results indicate that Light deficiency in HFHCD improves hepatic glucose tolerance, and reduces hepatic inflammation and NAFL. This is accompanied by decreased systemic inflammation and adipose tissue cytokine secretion and by changes in the expression of key genes such as Klf6 and Tlr4 involved in NAFLD. These results suggest that therapies to block LIGHT-dependent signalling might be useful to restore hepatic homeostasis and to restrain NAFLD.
Collapse
Affiliation(s)
| | - Ángela Vinué
- INCLIVA Health Research Institute, Avda. Menéndez Pelayo, 4, 46010, Valencia, Spain
| | - Deborah J Burks
- The Prince Felipe Research Center (CIPF), Valencia, Spain
- CIBER Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - Herminia González-Navarro
- INCLIVA Health Research Institute, Avda. Menéndez Pelayo, 4, 46010, Valencia, Spain.
- CIBER Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain.
- Department of Didactics of Experimental and Social Sciences, University of Valencia, Valencia, Spain.
| |
Collapse
|
11
|
Faienza MF, D'Amato G, Chiarito M, Colaianni G, Colucci S, Grano M, Corbo F, Brunetti G. Mechanisms Involved in Childhood Obesity-Related Bone Fragility. Front Endocrinol (Lausanne) 2019; 10:269. [PMID: 31130918 PMCID: PMC6509993 DOI: 10.3389/fendo.2019.00269] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/11/2019] [Indexed: 01/11/2023] Open
Abstract
Childhood obesity is one of the major health problems in western countries. The excessive accumulation of adipose tissue causes inflammation, oxidative stress, apoptosis, and mitochondrial dysfunctions. Thus, obesity leads to the development of severe co-morbidities including type 2 diabetes mellitus, liver steatosis, cardiovascular, and neurodegenerative diseases which can develop early in life. Furthermore, obese children have low bone mineral density and a greater risk of osteoporosis and fractures. The knowledge about the interplay bone tissue and between adipose is still growing, although recent findings suggest that adipose tissue activity on bone can be fat-depot specific. Obesity is associated to a low-grade inflammation that alters the expression of adiponectin, leptin, IL-6, Monocyte Chemotactic Protein 1 (MCP1), TRAIL, LIGHT/TNFSF14, OPG, and TNFα. These molecules can affect bone metabolism, thus resulting in osteoporosis. The purpose of this review was to deepen the cellular mechanisms by which obesity may facilitate osteoporosis and bone fractures.
Collapse
Affiliation(s)
- Maria Felicia Faienza
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | | | - Mariangela Chiarito
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Graziana Colaianni
- Department of Emergency and Organ Transplantation, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Silvia Colucci
- Department of Basic and Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari Aldo Moro, Bari, Italy
| | - Maria Grano
- Department of Emergency and Organ Transplantation, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Filomena Corbo
- Department of Pharmacy-Drug Science, University of Bari Aldo Moro, Bari, Italy
| | - Giacomina Brunetti
- Department of Basic and Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari Aldo Moro, Bari, Italy
- *Correspondence: Giacomina Brunetti
| |
Collapse
|
12
|
Kou Y, Liu Q, Liu W, Sun H, Liang M, Kong F, Zhang B, Wei Y, Liu Z, Wang Y. LIGHT/TNFSF14 signaling attenuates beige fat biogenesis. FASEB J 2018; 33:1595-1604. [DOI: 10.1096/fj.201800792r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Yanbo Kou
- Jiangsu Key Laboratory of Immunity and MetabolismXuzhou Medical UniversityXuzhouChina
| | - Qingya Liu
- Jiangsu Key Laboratory of Immunity and MetabolismXuzhou Medical UniversityXuzhouChina
- Laboratory of Infection and ImmunityDepartment of Pathogenic Biology and ImmunologyXuzhou Medical UniversityXuzhouChina
| | - Wenli Liu
- Jiangsu Key Laboratory of Immunity and MetabolismXuzhou Medical UniversityXuzhouChina
- Laboratory of Infection and ImmunityDepartment of Pathogenic Biology and ImmunologyXuzhou Medical UniversityXuzhouChina
| | - Hongxiang Sun
- Jiangsu Key Laboratory of Immunity and MetabolismXuzhou Medical UniversityXuzhouChina
- Laboratory of Infection and ImmunityDepartment of Pathogenic Biology and ImmunologyXuzhou Medical UniversityXuzhouChina
| | - Ming Liang
- Jiangsu Key Laboratory of Immunity and MetabolismXuzhou Medical UniversityXuzhouChina
- Laboratory of Infection and ImmunityDepartment of Pathogenic Biology and ImmunologyXuzhou Medical UniversityXuzhouChina
| | - Fanyun Kong
- Jiangsu Key Laboratory of Immunity and MetabolismXuzhou Medical UniversityXuzhouChina
- Laboratory of Infection and ImmunityDepartment of Pathogenic Biology and ImmunologyXuzhou Medical UniversityXuzhouChina
| | - Bo Zhang
- Jiangsu Key Laboratory of Immunity and MetabolismXuzhou Medical UniversityXuzhouChina
- Laboratory of Infection and ImmunityDepartment of Pathogenic Biology and ImmunologyXuzhou Medical UniversityXuzhouChina
| | - Yanxia Wei
- Jiangsu Key Laboratory of Immunity and MetabolismXuzhou Medical UniversityXuzhouChina
- Laboratory of Infection and ImmunityDepartment of Pathogenic Biology and ImmunologyXuzhou Medical UniversityXuzhouChina
| | - Zhuanzhuan Liu
- Jiangsu Key Laboratory of Immunity and MetabolismXuzhou Medical UniversityXuzhouChina
- Laboratory of Infection and ImmunityDepartment of Pathogenic Biology and ImmunologyXuzhou Medical UniversityXuzhouChina
| | - Yugang Wang
- Jiangsu Key Laboratory of Immunity and MetabolismXuzhou Medical UniversityXuzhouChina
- Laboratory of Infection and ImmunityDepartment of Pathogenic Biology and ImmunologyXuzhou Medical UniversityXuzhouChina
| |
Collapse
|
13
|
Saunders BM, Rudnicka C, Filipovska A, Davies S, Ward N, Hricova J, Schlaich MP, Matthews VB. Shining LIGHT on the metabolic role of the cytokine TNFSF14 and the implications on hepatic IL-6 production. Immunol Cell Biol 2017; 96:41-53. [DOI: 10.1111/imcb.1002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/20/2017] [Accepted: 08/24/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Bernadette M Saunders
- School of Life Sciences; Faculty of Science; University of Technology Sydney; New South Wales Australia
- Tuberculosis Research Program; Centenary Institute; Newtown New South Wales Australia
| | - Caroline Rudnicka
- Research Centre; Royal Perth Hospital; Perth Western Australia Australia
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research; Nedlands Western Australia Australia
- School of Molecular Sciences; University of Western Australia; Nedlands Western Australia Australia
| | - Stefan Davies
- Harry Perkins Institute of Medical Research; Nedlands Western Australia Australia
| | - Natalie Ward
- School of Medicine; University of Western Australia; Perth Western Australia Australia
- Curtin Health and Innovation Research Institute; Curtin University; Perth Western Australia Australia
| | - Jana Hricova
- Royal Perth Hospital Unit; Dobney Hypertension Centre; School of Biomedical Sciences; University of Western Australia; Perth Western Australia Australia
| | - Markus P Schlaich
- Royal Perth Hospital Unit; Dobney Hypertension Centre; School of Biomedical Sciences; University of Western Australia; Perth Western Australia Australia
- Department of Cardiology and Department of Nephrology; Royal Perth Hospital; Perth Western Australia Australia
| | - Vance B Matthews
- Royal Perth Hospital Unit; Dobney Hypertension Centre; School of Biomedical Sciences; University of Western Australia; Perth Western Australia Australia
| |
Collapse
|
14
|
Yuan X, Gu Y, Lai X, Gu Q. LIGHT is increased in patients with coronary disease and regulates inflammatory response and lipid metabolism in oxLDL-induced THP-1 macrophages. Biochem Biophys Res Commun 2017. [PMID: 28642135 DOI: 10.1016/j.bbrc.2017.06.110] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inflammation is critical for the progression of hyperlipidemia. Although the exact mechanism through which inflammation affects hyperlipidemia is not very clear, evidence suggests that the tumor necrosis factor superfamily member 14 (TNFSF14/LIGHT)LIGHT might regulate lipid metabolism. In this study we investigated the expression of LIGHT in patients with different stages of coronary disease. The expression of lipid metabolism-related enzymes and inflammation-related proteins were further explored in oxidized low-density lipoproteins (oxLDL)-induced THP-1 macrophages. We found that LIGHT is highly expressed and companied with severe inflammations in patients with coronary disease. LIGHT significantly enhanced inflammation response in oxLDL-induced THP-1 macrophages. We further demonstrated that LIGHT markedly decreased the levels of lipolytic genes and increased the expressions of lipogenic genes in oxLDL-induced THP-1 macrophages. In addition, our results showed that LIGHT exerts its pro-inflammatory and pro-lipogenesis roles through activating nuclear factor-kappa B (NF-κB) signaling pathway. Taken together our study has demonstrated that LIGHT NF-κB-dependently exacerbates inflammation response and promotes lipid accumulation, and provided a new potential target for treatment of hyperlipidemia-related disease.
Collapse
Affiliation(s)
- Xiaomei Yuan
- Heart Failure Center, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Chengdu, 610072, China
| | - Yonglin Gu
- Department of Cardiology, Guang'an People's Hospital, Guang'an, 638099, China
| | - Xiaoyu Lai
- Department of Cardiology, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Chengdu, 610072, China
| | - Qing Gu
- Department of Geriatric Medicine, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Chengdu, 610072, China.
| |
Collapse
|
15
|
Escoté X, Gómez-Zorita S, López-Yoldi M, Milton-Laskibar I, Fernández-Quintela A, Martínez JA, Moreno-Aliaga MJ, Portillo MP. Role of Omentin, Vaspin, Cardiotrophin-1, TWEAK and NOV/CCN3 in Obesity and Diabetes Development. Int J Mol Sci 2017; 18:ijms18081770. [PMID: 28809783 PMCID: PMC5578159 DOI: 10.3390/ijms18081770] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 01/22/2023] Open
Abstract
Adipose tissue releases bioactive mediators called adipokines. This review focuses on the effects of omentin, vaspin, cardiotrophin-1, Tumor necrosis factor-like Weak Inducer of Apoptosis (TWEAK) and nephroblastoma overexpressed (NOV/CCN3) on obesity and diabetes. Omentin is produced by the stromal-vascular fraction of visceral adipose tissue. Obesity reduces omentin serum concentrations and adipose tissue secretion in adults and adolescents. This adipokine regulates insulin sensitivity, but its clinical relevance has to be confirmed. Vaspin is produced by visceral and subcutaneous adipose tissues. Vaspin levels are higher in obese subjects, as well as in subjects showing insulin resistance or type 2 diabetes. Cardiotrophin-1 is an adipokine with a similar structure as cytokines from interleukin-6 family. There is some controversy regarding the regulation of cardiotrophin-1 levels in obese -subjects, but gene expression levels of cardiotrophin-1 are down-regulated in white adipose tissue from diet-induced obese mice. It also shows anti-obesity and hypoglycemic properties. TWEAK is a potential regulator of the low-grade chronic inflammation characteristic of obesity. TWEAK levels seem not to be directly related to adiposity, and metabolic factors play a critical role in its regulation. Finally, a strong correlation has been found between plasma NOV/CCN3 concentration and fat mass. This adipokine improves insulin actions.
Collapse
Affiliation(s)
- Xavier Escoté
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, 31008 Pamplona, Spain.
- Centre for Nutrition Research, University of Navarra, 31008 Pamplona, Spain.
| | - Saioa Gómez-Zorita
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 01006 Vitoria, Spain.
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, 01006 Vitoria, Spain.
| | - Miguel López-Yoldi
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, 31008 Pamplona, Spain.
- Centre for Nutrition Research, University of Navarra, 31008 Pamplona, Spain.
| | - Iñaki Milton-Laskibar
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 01006 Vitoria, Spain.
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, 01006 Vitoria, Spain.
| | - Alfredo Fernández-Quintela
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 01006 Vitoria, Spain.
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, 01006 Vitoria, Spain.
| | - J Alfredo Martínez
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, 31008 Pamplona, Spain.
- Centre for Nutrition Research, University of Navarra, 31008 Pamplona, Spain.
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, 01006 Vitoria, Spain.
- Navarra Institute for Health Research (IdiSNa), 31008 Pamplona, Spain.
| | - María J Moreno-Aliaga
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, 31008 Pamplona, Spain.
- Centre for Nutrition Research, University of Navarra, 31008 Pamplona, Spain.
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, 01006 Vitoria, Spain.
- Navarra Institute for Health Research (IdiSNa), 31008 Pamplona, Spain.
| | - María P Portillo
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 01006 Vitoria, Spain.
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, 01006 Vitoria, Spain.
| |
Collapse
|
16
|
Wentworth JM, Zhang JG, Bandala-Sanchez E, Naselli G, Liu R, Ritchie M, Smyth GK, O'Brien PE, Harrison LC. Interferon-gamma released from omental adipose tissue of insulin-resistant humans alters adipocyte phenotype and impairs response to insulin and adiponectin release. Int J Obes (Lond) 2017; 41:1782-1789. [PMID: 28769120 DOI: 10.1038/ijo.2017.180] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 06/28/2017] [Accepted: 07/14/2017] [Indexed: 01/16/2023]
Abstract
BACKGROUND Inflammatory factors derived from adipose tissue have been implicated in mediating insulin resistance in obesity. We sought to identify these using explanted human adipose tissue exposed to innate and adaptive immune stimuli. METHODS Subcutaneous and omental adipose tissue from obese, insulin-resistant donors was cultured in the presence of macrophage and T-cell stimuli, and the conditioned medium tested for its ability to inhibit insulin-stimulated glucose uptake into human Simpson-Golabi-Behmel Syndrome (SGBS) adipocytes. The nature of the inhibitory factor in conditioned medium was characterized physicochemically, inferred by gene microarray analysis and confirmed by antibody neutralization. RESULTS Conditioned medium from omental adipose tissue exposed to a combination of macrophage- and T-cell stimuli inhibited insulin action and adiponectin secretion in SGBS adipocytes. This effect was associated with a pronounced change in adipocyte morphology, characterized by a decreased number of lipid droplets of increased size. The bioactivity of conditioned medium was abolished by trypsin treatment and had a molecular weight of 46 kDa by gel filtration. SGBS adipocytes exposed to a bioactive medium expressed multiple gene transcripts regulated by interferon-gamma (IFN-γ). Recombinant human IFN-γ recapitulated the effects of the bioactive medium and neutralizing antibody against IFN-γ but not other candidate factors abrogated medium bioactivity. CONCLUSIONS IFN-γ released from inflamed omental adipose tissue may contribute to the metabolic abnormalities seen in human obesity.
Collapse
Affiliation(s)
- J M Wentworth
- Department of Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.,Department of Medicine, University of Melbourne, Parkville, VIC, Australia.,Centre for Obesity Research and Education, Monash University, Melbourne, VIC, Australia
| | - J-G Zhang
- Department of Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - E Bandala-Sanchez
- Department of Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - G Naselli
- Department of Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - R Liu
- Department of Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - M Ritchie
- Department of Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - G K Smyth
- Department of Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Mathematics and Statistics, University of Melbourne, Parkville, VIC, Australia
| | - P E O'Brien
- Centre for Obesity Research and Education, Monash University, Melbourne, VIC, Australia
| | - L C Harrison
- Department of Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
17
|
Yeo CR, Agrawal M, Hoon S, Shabbir A, Shrivastava MK, Huang S, Khoo CM, Chhay V, Yassin MS, Tai ES, Vidal-Puig A, Toh SA. SGBS cells as a model of human adipocyte browning: A comprehensive comparative study with primary human white subcutaneous adipocytes. Sci Rep 2017; 7:4031. [PMID: 28642596 PMCID: PMC5481408 DOI: 10.1038/s41598-017-04369-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 05/19/2017] [Indexed: 01/20/2023] Open
Abstract
The Simpson Golabi Behmel Syndrome (SGBS) pre-adipocyte cell strain is widely considered to be a representative in vitro model of human white pre-adipocytes. A recent study suggested that SGBS adipocytes exhibit an unexpected transient brown phenotype. Here, we comprehensively examined key differences between SGBS adipocytes and primary human white subcutaneous (PHWSC) adipocytes. RNA-Seq analysis revealed that extracellular matrix (ECM)-receptor interaction and metabolic pathways were the top two KEGG pathways significantly enriched in SGBS adipocytes, which included positively enriched mitochondrial respiration and oxidation pathways. Compared to PHWSC adipocytes, SGBS adipocytes showed not only greater induction of adipogenic gene expression during differentiation but also increased levels of UCP1 mRNA and protein expression. Functionally, SGBS adipocytes displayed higher ISO-induced basal leak respiration and overall oxygen consumption rate, along with increased triglyceride accumulation and insulin-stimulated glucose uptake. In conclusion, we confirmed that SGBS adipocytes, which are considered of white adipose tissue origin can shift towards a brown/beige adipocyte phenotype. These differences indicate SGBS cells may help to identify mechanisms leading to browning, and inform our understanding for the use of SGBS vis-à-vis primary human subcutaneous adipocytes as a human white adipocyte model, guiding the selection of appropriate cell models in future metabolic research.
Collapse
Affiliation(s)
- Chia Rou Yeo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore, Singapore
| | - Madhur Agrawal
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore, Singapore
| | - Shawn Hoon
- Molecular Engineering Laboratory, Biomedical Sciences Institutes, A*Star, 138668, Singapore, Singapore
| | - Asim Shabbir
- Department of Surgery, National University Hospital, 119074, Singapore, Singapore
| | - Manu Kunaal Shrivastava
- Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Shiqi Huang
- Food Science and Technology Program, Department of Chemistry, National University of Singapore, Singapore, 117542, Singapore
| | - Chin Meng Khoo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore, Singapore
- Department of Medicine, National University Health System, 119228, Singapore, Singapore
| | - Vanna Chhay
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore, Singapore
| | - M Shabeer Yassin
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore, Singapore
| | - E Shyong Tai
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore, Singapore
- Department of Medicine, National University Health System, 119228, Singapore, Singapore
| | - Antonio Vidal-Puig
- Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Sue-Anne Toh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore, Singapore.
- Department of Medicine, National University Health System, 119228, Singapore, Singapore.
| |
Collapse
|
18
|
Zoller V, Funcke JB, Keuper M, Abd El Hay M, Debatin KM, Wabitsch M, Fischer-Posovszky P. TRAIL (TNF-related apoptosis-inducing ligand) inhibits human adipocyte differentiation via caspase-mediated downregulation of adipogenic transcription factors. Cell Death Dis 2016; 7:e2412. [PMID: 27735943 PMCID: PMC5133965 DOI: 10.1038/cddis.2016.286] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/13/2016] [Accepted: 08/10/2016] [Indexed: 01/20/2023]
Abstract
Tumor necrosis factor-α (TNFα) and other ligands of the TNF superfamily are potent regulators of adipose tissue metabolism and play a crucial role in the obesity-induced inflammation of adipose tissue. Adipose tissue expression levels of TRAIL (TNF-related apoptosis-inducing ligand) and its receptor were shown to be upregulated by overfeeding and decreased by fasting in mice. In the present study we aimed to elucidate the impact of TRAIL on adipogenesis. To this end, human Simpson-Golabi-Behmel syndrome (SGBS) preadipocytes as well as stromal-vascular cells isolated from human white adipose tissue were used as model systems. Human recombinant TRAIL inhibited adipogenic differentiation in a dose-dependent manner. It activated the cleavage of caspase-8 and -3, which in turn resulted in a downregulation of the key adipogenic transcription factors C/EBPα, C/EBPδ, and PPARγ. The effect was completely blocked by pharmacological or genetic inhibition of caspases. Taken together we discovered a so far unrecognized function of TRAIL in the regulation of adipogenesis. Targeting the TRAIL/TRAIL receptor system might provide a novel strategy to interfere with adipose tissue homeostasis.
Collapse
Affiliation(s)
- Verena Zoller
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatric and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Jan-Bernd Funcke
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatric and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Michaela Keuper
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatric and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Muad Abd El Hay
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatric and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Klaus-Michael Debatin
- Department of Pediatric and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatric and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Pamela Fischer-Posovszky
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatric and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| |
Collapse
|
19
|
Dumas ME, Domange C, Calderari S, Martínez AR, Ayala R, Wilder SP, Suárez-Zamorano N, Collins SC, Wallis RH, Gu Q, Wang Y, Hue C, Otto GW, Argoud K, Navratil V, Mitchell SC, Lindon JC, Holmes E, Cazier JB, Nicholson JK, Gauguier D. Topological analysis of metabolic networks integrating co-segregating transcriptomes and metabolomes in type 2 diabetic rat congenic series. Genome Med 2016; 8:101. [PMID: 27716393 PMCID: PMC5045612 DOI: 10.1186/s13073-016-0352-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 09/12/2016] [Indexed: 12/14/2022] Open
Abstract
Background The genetic regulation of metabolic phenotypes (i.e., metabotypes) in type 2 diabetes mellitus occurs through complex organ-specific cellular mechanisms and networks contributing to impaired insulin secretion and insulin resistance. Genome-wide gene expression profiling systems can dissect the genetic contributions to metabolome and transcriptome regulations. The integrative analysis of multiple gene expression traits and metabolic phenotypes (i.e., metabotypes) together with their underlying genetic regulation remains a challenge. Here, we introduce a systems genetics approach based on the topological analysis of a combined molecular network made of genes and metabolites identified through expression and metabotype quantitative trait locus mapping (i.e., eQTL and mQTL) to prioritise biological characterisation of candidate genes and traits. Methods We used systematic metabotyping by 1H NMR spectroscopy and genome-wide gene expression in white adipose tissue to map molecular phenotypes to genomic blocks associated with obesity and insulin secretion in a series of rat congenic strains derived from spontaneously diabetic Goto-Kakizaki (GK) and normoglycemic Brown-Norway (BN) rats. We implemented a network biology strategy approach to visualize the shortest paths between metabolites and genes significantly associated with each genomic block. Results Despite strong genomic similarities (95–99 %) among congenics, each strain exhibited specific patterns of gene expression and metabotypes, reflecting the metabolic consequences of series of linked genetic polymorphisms in the congenic intervals. We subsequently used the congenic panel to map quantitative trait loci underlying specific mQTLs and genome-wide eQTLs. Variation in key metabolites like glucose, succinate, lactate, or 3-hydroxybutyrate and second messenger precursors like inositol was associated with several independent genomic intervals, indicating functional redundancy in these regions. To navigate through the complexity of these association networks we mapped candidate genes and metabolites onto metabolic pathways and implemented a shortest path strategy to highlight potential mechanistic links between metabolites and transcripts at colocalized mQTLs and eQTLs. Minimizing the shortest path length drove prioritization of biological validations by gene silencing. Conclusions These results underline the importance of network-based integration of multilevel systems genetics datasets to improve understanding of the genetic architecture of metabotype and transcriptomic regulation and to characterize novel functional roles for genes determining tissue-specific metabolism. Electronic supplementary material The online version of this article (doi:10.1186/s13073-016-0352-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marc-Emmanuel Dumas
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Sir Alexander Fleming Building, Imperial College, London, SW7 2AZ, UK. .,Centre de Résonance Magnétique Nucléaire à Très Hauts Champs, 5 rue de la Doua, Villeurbanne, 69100, France. .,Metabometrix Ltd, Prince Consort Road, London, SW7 2BP, UK.
| | - Céline Domange
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs, 5 rue de la Doua, Villeurbanne, 69100, France.,UMR Modélisation Systémique Appliquée aux Ruminants, INRA, AgroParisTech, Université Paris-Saclay, Paris, 75005, France
| | - Sophie Calderari
- Sorbonne Universities, University Pierre & Marie Curie, University Paris Descartes, Sorbonne Paris Cité, INSERM, UMR_S 1138, Cordeliers Research Centre, Paris, 75006, France
| | - Andrea Rodríguez Martínez
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Sir Alexander Fleming Building, Imperial College, London, SW7 2AZ, UK
| | - Rafael Ayala
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Sir Alexander Fleming Building, Imperial College, London, SW7 2AZ, UK
| | - Steven P Wilder
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7BN, UK
| | - Nicolas Suárez-Zamorano
- Sorbonne Universities, University Pierre & Marie Curie, University Paris Descartes, Sorbonne Paris Cité, INSERM, UMR_S 1138, Cordeliers Research Centre, Paris, 75006, France
| | - Stephan C Collins
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7BN, UK
| | - Robert H Wallis
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7BN, UK
| | - Quan Gu
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Sir Alexander Fleming Building, Imperial College, London, SW7 2AZ, UK.,MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, UK
| | - Yulan Wang
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Sir Alexander Fleming Building, Imperial College, London, SW7 2AZ, UK.,Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences, Wuhan, 430071, China
| | - Christophe Hue
- UMR Modélisation Systémique Appliquée aux Ruminants, INRA, AgroParisTech, Université Paris-Saclay, Paris, 75005, France
| | - Georg W Otto
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7BN, UK
| | - Karène Argoud
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7BN, UK
| | - Vincent Navratil
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs, 5 rue de la Doua, Villeurbanne, 69100, France
| | | | - John C Lindon
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Sir Alexander Fleming Building, Imperial College, London, SW7 2AZ, UK
| | - Elaine Holmes
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Sir Alexander Fleming Building, Imperial College, London, SW7 2AZ, UK
| | - Jean-Baptiste Cazier
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7BN, UK.,Centre for Computational Biology, University of Birmingham, Haworth Building, Birmingham, B15 2TT, UK
| | - Jeremy K Nicholson
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Sir Alexander Fleming Building, Imperial College, London, SW7 2AZ, UK
| | - Dominique Gauguier
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Sir Alexander Fleming Building, Imperial College, London, SW7 2AZ, UK. .,Sorbonne Universities, University Pierre & Marie Curie, University Paris Descartes, Sorbonne Paris Cité, INSERM, UMR_S 1138, Cordeliers Research Centre, Paris, 75006, France. .,The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7BN, UK.
| |
Collapse
|
20
|
Yang Z, Hong LK, Follett J, Wabitsch M, Hamilton NA, Collins BM, Bugarcic A, Teasdale RD. Functional characterization of retromer in GLUT4 storage vesicle formation and adipocyte differentiation. FASEB J 2015; 30:1037-50. [PMID: 26581601 DOI: 10.1096/fj.15-274704] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 10/28/2015] [Indexed: 12/26/2022]
Abstract
Insulin-stimulated translocation of glucose transporter 4 (GLUT4) storage vesicles (GSVs), the specialized intracellular compartments within mature adipocytes, to the plasma membrane (PM) is a fundamental cellular process for maintaining glucose homeostasis. Using 2 independent adipocyte cell line models, human primary Simpson-Golabi-Behmel syndrome and mouse 3T3-L1 fibroblast cell lines, we demonstrate that the endosome-associated protein-sorting complex retromer colocalizes with GLUT4 on the GSVs by confocal microscopy in mature adipocytes. By use of both confocal microscopy and differential ultracentrifugation techniques, retromer is redistributed to the PM of mature adipocytes upon insulin stimulation. Furthermore, stable knockdown of the retromer subunit-vacuolar protein-sorting 35, or the retromer-associated protein sorting nexin 27, by lentivirus-delivered small hairpin RNA impaired the adipogenesis process when compared to nonsilence control. The knockdown of retromer decreased peroxisome proliferator activated receptor γ expression during differentiation, generating adipocytes with decreased levels of GSVs, lipid droplet accumulation, and insulin-stimulated glucose uptake. In conclusion, our study demonstrates a role for retromer in the GSV formation and adipogenesis.
Collapse
Affiliation(s)
- Zhe Yang
- *Institute for Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia; and Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University of Ulm, Ulm, Germany
| | - Lee Kian Hong
- *Institute for Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia; and Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University of Ulm, Ulm, Germany
| | - Jordan Follett
- *Institute for Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia; and Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University of Ulm, Ulm, Germany
| | - Martin Wabitsch
- *Institute for Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia; and Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University of Ulm, Ulm, Germany
| | - Nicholas A Hamilton
- *Institute for Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia; and Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University of Ulm, Ulm, Germany
| | - Brett M Collins
- *Institute for Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia; and Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University of Ulm, Ulm, Germany
| | - Andrea Bugarcic
- *Institute for Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia; and Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University of Ulm, Ulm, Germany
| | - Rohan D Teasdale
- *Institute for Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia; and Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University of Ulm, Ulm, Germany
| |
Collapse
|
21
|
Lu TT, Browning JL. Role of the Lymphotoxin/LIGHT System in the Development and Maintenance of Reticular Networks and Vasculature in Lymphoid Tissues. Front Immunol 2014; 5:47. [PMID: 24575096 PMCID: PMC3920476 DOI: 10.3389/fimmu.2014.00047] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 01/27/2014] [Indexed: 01/08/2023] Open
Abstract
Lymphoid organs are meeting zones where lymphocytes come together and encounter antigens present in the blood and lymph or as delivered by cells migrating from the draining tissue bed. The exquisite efficiency of this process relies heavily on highly specialized anatomy to direct and position the various players. Gated entry and exit control access to these theaters and reticular networks and associated chemokines guide cells into the proper sections. Lymphoid tissues are remarkably plastic, being able to expand dramatically and then involute upon resolution of the danger. All of the reticular scaffolds and vascular and lymphatic components adapt accordingly. As such, the lymph node (LN) is a wonderful example of a physiologic remodeling process and is potentially a guide to study such elements in pathological settings such as fibrosis, chronic infection, and tumor metastasis. The lymphotoxin/LIGHT axis delivers critical differentiation signals that direct and hone differentiation of both reticular networks and the vasculature. Considerable progress has been made recently in understanding the mesenchymal differentiation pathways leading to these specialized networks and in the remodeling that occurs in reactive LNs. In this article, we will review some new advances in the area in terms of developmental, differentiation, and maintenance events mediated by this axis.
Collapse
Affiliation(s)
- Theresa T Lu
- Autoimmunity and Inflammation Program and Pediatric Rheumatology, Hospital for Special Surgery , New York, NY , USA ; Department of Microbiology and Immunology, Weill Cornell Medical College , New York, NY , USA
| | - Jeffrey L Browning
- Department of Microbiology and Section of Rheumatology, Boston University School of Medicine , Boston, MA , USA
| |
Collapse
|
22
|
Equine adipose-derived stem cell (ASC) expresses BAFF and its receptors, which may be associated with the differentiation process of ASC towards adipocyte. Int Immunopharmacol 2014; 18:365-72. [DOI: 10.1016/j.intimp.2013.12.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 12/17/2013] [Accepted: 12/18/2013] [Indexed: 10/25/2022]
|
23
|
Vendrell J, Chacón MR. TWEAK: A New Player in Obesity and Diabetes. Front Immunol 2013; 4:488. [PMID: 24416031 PMCID: PMC3874549 DOI: 10.3389/fimmu.2013.00488] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 12/12/2013] [Indexed: 01/18/2023] Open
Abstract
Obesity and type 2 diabetes (T2D) are associated with chronic low-grade inflammation. Mounting evidence suggests the involvement of an inflammatory switch in adipose tissue, both in mature adipocytes and immune-competent cells from the stromal vascular compartment, in the progression of obesity and insulin resistance. Several inflammatory cytokines secreted by obese adipose tissue, including TNFα and IL-6 have been described as hallmark molecules involved in this process, impairing insulin signaling in insulin-responsive organs. An increasing number of new molecules affecting the local and systemic inflammatory imbalance in obesity and T2D have been identified. In this complex condition, some molecules may exhibit opposing actions, depending on the cell type and on systemic or local influences. Tumor necrosis factor weak inducer of apoptosis (TWEAK), a cytokine of the tumor necrosis (TNF) superfamily, is gaining attention as an important player in chronic inflammatory diseases. TWEAK can exist as a full-length membrane-associated (mTWEAK) form and as a soluble (sTWEAK) form and, by acting through its cognate receptor Fn14, can control many cellular activities including proliferation, migration, differentiation, apoptosis, angiogenesis, and inflammation. Notably, sTWEAK has been proposed as a biomarker of cardiovascular diseases. Here, we will review the recent findings relating to TWEAK and its receptor within the context of obesity and the associated disorder T2D.
Collapse
Affiliation(s)
- Joan Vendrell
- Research Unit, Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Hospital Universitari de Tarragona Joan XXIII, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili , Tarragona , Spain
| | - Matilde R Chacón
- Research Unit, Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Hospital Universitari de Tarragona Joan XXIII, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili , Tarragona , Spain
| |
Collapse
|
24
|
Liu C, Ding H, Zhu W, Jiang S, Xu J, Zou GM. LIGHT regulates the adipogenic differentiation of mesenchymal stem cells. J Cell Biochem 2012; 114:346-53. [DOI: 10.1002/jcb.24369] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 08/15/2012] [Indexed: 01/23/2023]
|