1
|
Xiang YY, Won JH, Lee SJ, Baek KW. The Effect of Exercise on Mesenchymal Stem Cells and their Application in Obesity Treatment. Stem Cell Rev Rep 2024; 20:1732-1751. [PMID: 38954390 DOI: 10.1007/s12015-024-10755-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2024] [Indexed: 07/04/2024]
Abstract
Mesenchymal stem cells (MSCs) have demonstrated considerable potential in tissue repair and the treatment of immune-related diseases, but there are problems with homing efficiency during MSCs transplantation. Exercise, as an intervention, has been shown to have an important impact on the properties of MSCs. This review summarizes the effects of exercise on the properties (including proliferation, apoptosis, differentiation, and homing) of bone marrow-derived MSCs and adipose-derived MSCs. Studies indicated that exercise enhances bone marrow-derived MSCs proliferation, osteogenic differentiation, and homing while reducing adipogenic differentiation. For adipose-derived MSCs, exercise enhances proliferation and reduces adipogenic differentiation. In addition, studies have investigated the therapeutic effects of combined therapy of MSCs transplantation with exercise on diseases of the bone, cardiac, and nervous systems. The combined therapy improves tissue repair by increasing the homing of transplanted MSCs and cytokine secretion (such as neurotrophin 4). Furthermore, MSCs transplantation also has potential for the treatment of obesity. Although the effect is not significant in weight loss, MSCs transplantation shows effects in controlling blood glucose, improving dyslipidemia, reducing inflammation, and improving liver disease. Finally, the potential role of combined MSCs transplantation and exercise therapy in addressing obesity is discussed.
Collapse
Affiliation(s)
- Ying-Ying Xiang
- Department of Physical Education, Gyeongsang National University, Jinju, 52828, Korea
| | - Jong-Hwa Won
- Department of Physical Education, Gyeongsang National University, Jinju, 52828, Korea
| | - Sam-Jun Lee
- Department of Sport Rehabilitation, College of Health, Tongmyong University, Welfare, and Education, Busan, 48520, Korea
| | - Kyung-Wan Baek
- Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, 52828, Korea.
| |
Collapse
|
2
|
Guo Y, Jiang S, Li H, Xie G, Pavel V, Zhang Q, Li Y, Huang C. Obesity induces osteoimmunology imbalance: Molecular mechanisms and clinical implications. Biomed Pharmacother 2024; 177:117139. [PMID: 39018871 DOI: 10.1016/j.biopha.2024.117139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024] Open
Abstract
The notion that obesity can be a protective factor for bone health is a topic of ongoing debate. Increased body weight may have a positive impact on bone health due to its mechanical effects and the production of estrogen by adipose tissue. However, recent studies have found a higher risk of bone fracture and delayed bone healing in elderly obese patients, which may be attributed to the heightened risk of bone immune regulation disruption associated with obesity. The balanced functions of bone cells such as osteoclasts, osteoblasts, and osteocytes, would be subverted by aberrant and prolonged immune responses under obese conditions. This review aims to explore the intricate relationship between obesity and bone health from the perspective of osteoimmunology, elucidate the impact of disturbances in bone immune regulation on the functioning of bone cells, including osteoclasts, osteoblasts, and osteocytes, highlighting the deleterious effects of obesity on various diseases development such as rheumatoid arthritis (RA), osteoarthritis (AS), bone fracture, periodontitis. On the one hand, weight loss may achieve significant therapeutic effects on the aforementioned diseases. On the other hand, for patients who have difficulty in losing weight, the osteoimmunological therapies could potentially serve as a viable approach in halting the progression of these disease. Additional research in the field of osteoimmunology is necessary to ascertain the optimal equilibrium between body weight and bone health.
Collapse
Affiliation(s)
- Yating Guo
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410083, China
| | - Shide Jiang
- The Central Hospital of Yongzhou, Yongzhou 425000, China
| | - Hengzhen Li
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Guangyang Xie
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410083, China
| | - Volotovski Pavel
- Republican Scientific and Practical Center of Traumatology and Orthopedics, Minsk 220024, Belarus
| | - Qidong Zhang
- Department of Orthopeadics, China-Japan Friendship Hospital, Beijing 100029, China.
| | - Yusheng Li
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Cheng Huang
- Department of Orthopeadics, China-Japan Friendship Hospital, Beijing 100029, China.
| |
Collapse
|
3
|
Zong Q, Bundkirchen K, Neunaber C, Noack S. Effect of High BMI on Human Bone Marrow-Derived Mesenchymal Stromal Cells. Cell Transplant 2024; 33:9636897241226546. [PMID: 38258516 PMCID: PMC10807335 DOI: 10.1177/09636897241226546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Bone marrow-derived mesenchymal stromal cells (BMSCs) are attractive candidates in tissue engineering and regenerative medicine. Growing evidence has suggested that a high body mass index (BMI) can affect the properties of BMSCs, resulting in a reduced quality of the cells. However, the results are not consistent. Therefore, this study aimed to investigate the influences of high BMI on human BMSCs (hBMSCs). To avoid gender bias, BMSCs from females and males were studied independently. Finally, hBMSCs from 89 females and 152 males were separately divided into the normal BMI group (18.5 kg/m2 ≤ BMI < 25 kg/m2) and the high BMI group (BMI > 25 kg/m2). The cells were analyzed for the colony-forming potential; proliferation capacity; in vitro adipogenic, osteogenic, and chondrogenic differentiation potentials; and the expression of 32 common surface antigens. The results showed that high BMI did not change the number of colonies at passage 1 in females and males. In contrast, significantly reduced colony numbers at passage 4 (P4) were found in both female and male donors with high BMI. The doubling time of hBMSCs was comparable between the normal and the high BMI groups of females and males. Furthermore, the results of trilineage differentiation did not differ between the different BMI groups of males. In females, the high and the normal BMI groups also showed similar adipogenic and chondrogenic differentiation, while osteogenic differentiation was significantly enhanced in the high-BMI group. Regarding the expression of surface antigens, the expressions of CD200 and SSEA4 on hBMSCs were reduced in the high-BMI group of females and males, respectively. In conclusion, high BMI suppressed the clonogenicity of female and male hBMSCs at P4, improved the in vitro osteogenesis of female hBMSCs, and decreased the expressions of CD200 on hBMSCs in females and SSEA4 in males.
Collapse
Affiliation(s)
- Qiang Zong
- Department of Trauma Surgery, Hannover Medical School, Hannover, Germany
| | - Katrin Bundkirchen
- Department of Trauma Surgery, Hannover Medical School, Hannover, Germany
| | - Claudia Neunaber
- Department of Trauma Surgery, Hannover Medical School, Hannover, Germany
| | - Sandra Noack
- Department of Trauma Surgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
4
|
Kim GY, Choi GT, Park J, Lee J, Do JT. Comparative Analysis of Porcine Adipose- and Wharton's Jelly-Derived Mesenchymal Stem Cells. Animals (Basel) 2023; 13:2947. [PMID: 37760347 PMCID: PMC10525484 DOI: 10.3390/ani13182947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are promising candidates for tissue regeneration, cell therapy, and cultured meat research owing to their ability to differentiate into various lineages including adipocytes, chondrocytes, and osteocytes. As MSCs display different characteristics depending on the tissue of origin, the appropriate cells need to be selected according to the purpose of the research. However, little is known of the unique properties of MSCs in pigs. In this study, we compared two types of porcine mesenchymal stem cells (MSCs) isolated from the dorsal subcutaneous adipose tissue (adipose-derived stem cells (ADSCs)) and Wharton's jelly of the umbilical cord (Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs)) of 1-day-old piglets. The ADSCs displayed a higher proliferation rate and more efficient differentiation potential into adipogenic and chondrogenic lineages than that of WJ-MSCs; conversely, WJ-MSCs showed superior differentiation capacity towards osteogenic lineages. In early passages, ADSCs displayed higher proliferation rates and mitochondrial energy metabolism (measured based on the oxygen consumption rate) compared with that of WJ-MSCs, although these distinctions diminished in late passages. This study broadens our understanding of porcine MSCs and provides insights into their potential applications in animal clinics and cultured meat science.
Collapse
Affiliation(s)
- Ga Yeon Kim
- Department of Stem Cell and Regenerative Biotechnology, KU Institute of Technology, Konkuk University, Seoul 05029, Republic of Korea; (G.Y.K.); (G.T.C.); (J.P.)
- 3D Tissue Culture Research Center, Konkuk University, Seoul 05029, Republic of Korea
| | - Gyu Tae Choi
- Department of Stem Cell and Regenerative Biotechnology, KU Institute of Technology, Konkuk University, Seoul 05029, Republic of Korea; (G.Y.K.); (G.T.C.); (J.P.)
- 3D Tissue Culture Research Center, Konkuk University, Seoul 05029, Republic of Korea
| | - Jinryong Park
- Department of Stem Cell and Regenerative Biotechnology, KU Institute of Technology, Konkuk University, Seoul 05029, Republic of Korea; (G.Y.K.); (G.T.C.); (J.P.)
- 3D Tissue Culture Research Center, Konkuk University, Seoul 05029, Republic of Korea
| | - Jeongeun Lee
- Department of Agricultural Convergency Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Jeong Tae Do
- Department of Stem Cell and Regenerative Biotechnology, KU Institute of Technology, Konkuk University, Seoul 05029, Republic of Korea; (G.Y.K.); (G.T.C.); (J.P.)
- 3D Tissue Culture Research Center, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
5
|
Ouzin M, Kogler G. Mesenchymal Stromal Cells: Heterogeneity and Therapeutical Applications. Cells 2023; 12:2039. [PMID: 37626848 PMCID: PMC10453316 DOI: 10.3390/cells12162039] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Mesenchymal stromal cells nowadays emerge as a major player in the field of regenerative medicine and translational research. They constitute, with their derived products, the most frequently used cell type in different therapies. However, their heterogeneity, including different subpopulations, the anatomic source of isolation, and high donor-to-donor variability, constitutes a major controversial issue that affects their use in clinical applications. Furthermore, the intrinsic and extrinsic molecular mechanisms underlying their self-renewal and fate specification are still not completely elucidated. This review dissects the different heterogeneity aspects of the tissue source associated with a distinct developmental origin that need to be considered when generating homogenous products before their usage for clinical applications.
Collapse
Affiliation(s)
- Meryem Ouzin
- Institute for Transplantation Diagnostics and Cell Therapeutics, University Hospital Düsseldorf, 40225 Düsseldorf, Germany;
| | | |
Collapse
|
6
|
Alkhalidy H, Al-Nabulsi A, Mhawish R, Liu D. Low-dose of phenolic rich extract from Annona squamosa Linn leaves ameliorates insulin sensitivity and reduces body weight gain in HF diet-induced obesity. Front Nutr 2023; 10:1146021. [PMID: 37538926 PMCID: PMC10394232 DOI: 10.3389/fnut.2023.1146021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023] Open
Abstract
Obesity is associated with metabolic abnormalities that increase the risk and severity of several diseases. This study aimed to explore whether the aqueous extract of Annona squamosa Linn leaves (ASE) can ameliorate metabolic abnormalities associated with high fat (HF) diet-induced obesity. Forty-eight male Wistar rats were distributed among four treatment groups: a standard low-fat diet group, a HF diet group, and two HF diet groups with a daily oral dose of ASE (100 or 200 mg/kg body weights) administered for 9 weeks. Daily energy intake, body weight, blood glucose levels and glucose tolerance, and insulin tolerance were evaluated. At the end of the study, organs, and tissues were collected and weighed for analysis, and blood samples were collected to determine the serum insulin levels and serum liver enzymes. Total phenolic and flavonoid contents and 2,2-Diphenyl-1-picrylhydrazyl free radical antioxidant activity of the ASE were evaluated. Oral administration of the low dose of ASE to HF diet-fed rats significantly reduced the long-term food intake and body weight gain without altering adiposity compared with untreated HF diet-fed rats. This outcome was accompanied by a significant improvement in insulin sensitivity and a reduction in fasting blood glucose (FBG) levels measured at weeks 6 and 9 of the study. The high dose of ASE had a short-term effect on body weight gain and food and caloric intake, and in the long-term, it improved FBG levels measured at weeks 6 and 9 of the study. The high dose of ASE resulted in hyperinsulinemia and high homeostatic model assessment for insulin resistance (HOMA-IR) value compared to healthy rats. Total phenolic and flavonoid contents were 74.9 ± 0.491 mg of gallic acid equivalent and 20.0 ± 0.091 mg quercetin equivalent per g of ASE, respectively. The antioxidant activity of ASE expressed as half-maximal inhibitory concentration (IC50) value was 8.43 ± 0.825 mg/mL. These data suggest that ASE can safely and potently reduce the development of insulin resistance induced by HF diet feeding and lowering body weight gain in a dose-dependent manner.
Collapse
Affiliation(s)
- Hana Alkhalidy
- Department of Nutrition and Food Technology, College of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - Anas Al-Nabulsi
- Department of Nutrition and Food Technology, College of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - Reham Mhawish
- Department of Nutrition and Food Technology, College of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - Dongmin Liu
- Department of Human Nutrition, Foods and Exercise, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
7
|
Sagar S, Faizan MI, Chaudhary N, Singh V, Singh P, Gheware A, Sharma K, Azmi I, Singh VP, Kharya G, Mabalirajan U, Agrawal A, Ahmad T, Sinha Roy S. Obesity impairs cardiolipin-dependent mitophagy and therapeutic intercellular mitochondrial transfer ability of mesenchymal stem cells. Cell Death Dis 2023; 14:324. [PMID: 37173333 PMCID: PMC10181927 DOI: 10.1038/s41419-023-05810-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 04/05/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023]
Abstract
Mesenchymal stem cell (MSC) transplantation alleviates metabolic defects in diseased recipient cells by intercellular mitochondrial transport (IMT). However, the effect of host metabolic conditions on IMT and thereby on the therapeutic efficacy of MSCs has largely remained unexplored. Here we found impaired mitophagy, and reduced IMT in MSCs derived from high-fat diet (HFD)-induced obese mouse (MSC-Ob). MSC-Ob failed to sequester their damaged mitochondria into LC3-dependent autophagosomes due to decrease in mitochondrial cardiolipin content, which we propose as a putative mitophagy receptor for LC3 in MSCs. Functionally, MSC-Ob exhibited diminished potential to rescue mitochondrial dysfunction and cell death in stress-induced airway epithelial cells. Pharmacological modulation of MSCs enhanced cardiolipin-dependent mitophagy and restored their IMT ability to airway epithelial cells. Therapeutically, these modulated MSCs attenuated features of allergic airway inflammation (AAI) in two independent mouse models by restoring healthy IMT. However, unmodulated MSC-Ob failed to do so. Notably, in human (h)MSCs, induced metabolic stress associated impaired cardiolipin-dependent mitophagy was restored upon pharmacological modulation. In summary, we have provided the first comprehensive molecular understanding of impaired mitophagy in obese-derived MSCs and highlight the importance of pharmacological modulation of these cells for therapeutic intervention. A MSCs obtained from (HFD)-induced obese mice (MSC-Ob) show underlying mitochondrial dysfunction with a concomitant decrease in cardiolipin content. These changes prevent LC3-cardiolipin interaction, thereby reducing dysfunctional mitochondria sequestration into LC3-autophagosomes and thus impaired mitophagy. The impaired mitophagy is associated with reduced intercellular mitochondrial transport (IMT) via tunneling nanotubes (TNTs) between MSC-Ob and epithelial cells in co-culture or in vivo. B Pyrroloquinoline quinone (PQQ) modulation in MSC-Ob restores mitochondrial health, cardiolipin content, and thereby sequestration of depolarized mitochondria into the autophagosomes to alleviate impaired mitophagy. Concomitantly, MSC-Ob shows restoration of mitochondrial health upon PQQ treatment (MSC-ObPQQ). During co-culture with epithelial cells or transplantation in vivo into the mice lungs, MSC-ObPQQ restores IMT and prevents epithelial cell death. C Upon transplantation in two independent allergic airway inflammatory mouse models, MSC-Ob failed to rescue the airway inflammation, hyperactivity, metabolic changes in epithelial cells. D PQQ modulated MSCs restored these metabolic defects and restored lung physiology and airway remodeling parameters.
Collapse
Affiliation(s)
- Shakti Sagar
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Md Imam Faizan
- Multidisciplinary Center for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, 110025, India
| | - Nisha Chaudhary
- Multidisciplinary Center for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, 110025, India
| | - Vandana Singh
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Praveen Singh
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Atish Gheware
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Khushboo Sharma
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110007, India
| | - Iqbal Azmi
- Multidisciplinary Center for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, 110025, India
| | - Vijay Pal Singh
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110007, India
| | - Gaurav Kharya
- Center for Bone Marrow Transplantation & Cellular Therapy Indraprastha Apollo Hospital, New Delhi, 110076, India
| | | | - Anurag Agrawal
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Tanveer Ahmad
- Multidisciplinary Center for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, 110025, India.
| | - Soumya Sinha Roy
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
8
|
Zong Q, Bundkirchen K, Neunaber C, Noack S. Are the Properties of Bone Marrow-Derived Mesenchymal Stem Cells Influenced by Overweight and Obesity? Int J Mol Sci 2023; 24:ijms24054831. [PMID: 36902259 PMCID: PMC10003331 DOI: 10.3390/ijms24054831] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) are promising candidates for cell-based therapies. Growing evidence has indicated that overweight/obesity can change the bone marrow microenvironment, which affects some properties of BMSCs. As the overweight/obese population rapidly increases, they will inevitably become a potential source of BMSCs for clinical application, especially when receiving autologous BMSC transplantation. Given this situation, the quality control of these cells has become particularly important. Therefore, it is urgent to characterize BMSCs isolated from overweight/obese bone marrow environments. In this review, we summarize the evidence of the effects of overweight/obesity on the biological properties of BMSCs derived from humans and animals, including proliferation, clonogenicity, surface antigen expression, senescence, apoptosis, and trilineage differentiation, as well as the underlying mechanisms. Overall, the conclusions of existing studies are not consistent. Most studies demonstrate that overweight/obesity can influence one or more characteristics of BMSCs, while the involved mechanisms are still unclear. Moreover, insufficient evidence proves that weight loss or other interventions can rescue these qualities to baseline status. Thus, further research should address these issues and prioritize developing methods to improve functions of overweight- or obesity-derived BMSCs.
Collapse
|
9
|
Xie S, Choudhari S, Wu CL, Abramson K, Corcoran D, Gregory SG, Thimmapuram J, Guilak F, Little D. Aging and obesity prime the methylome and transcriptome of adipose stem cells for disease and dysfunction. FASEB J 2023; 37:e22785. [PMID: 36794668 PMCID: PMC10561192 DOI: 10.1096/fj.202201413r] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/20/2022] [Accepted: 01/09/2023] [Indexed: 02/17/2023]
Abstract
The epigenome of stem cells occupies a critical interface between genes and environment, serving to regulate expression through modification by intrinsic and extrinsic factors. We hypothesized that aging and obesity, which represent major risk factors for a variety of diseases, synergistically modify the epigenome of adult adipose stem cells (ASCs). Using integrated RNA- and targeted bisulfite-sequencing in murine ASCs from lean and obese mice at 5- and 12-months of age, we identified global DNA hypomethylation with either aging or obesity, and a synergistic effect of aging combined with obesity. The transcriptome of ASCs in lean mice was relatively stable to the effects of age, but this was not true in obese mice. Functional pathway analyses identified a subset of genes with critical roles in progenitors and in diseases of obesity and aging. Specifically, Mapt, Nr3c2, App, and Ctnnb1 emerged as potential hypomethylated upstream regulators in both aging and obesity (AL vs. YL and AO vs. YO), and App, Ctnnb1, Hipk2, Id2, and Tp53 exhibited additional effects of aging in obese animals. Furthermore, Foxo3 and Ccnd1 were potential hypermethylated upstream regulators of healthy aging (AL vs. YL), and of the effects of obesity in young animals (YO vs. YL), suggesting that these factors could play a role in accelerated aging with obesity. Finally, we identified candidate driver genes that appeared recurrently in all analyses and comparisons undertaken. Further mechanistic studies are needed to validate the roles of these genes capable of priming ASCs for dysfunction in aging- and obesity-associated pathologies.
Collapse
Affiliation(s)
- Shaojun Xie
- Bioinformatics Core, Purdue University, 1022 Young Hall, 155 S. Grant Street, West Lafayette, IN 47907
| | - Sulbha Choudhari
- Bioinformatics Core, Purdue University, 1022 Young Hall, 155 S. Grant Street, West Lafayette, IN 47907
- Advanced Biomedical Computational Science, Bioinformatics and Computational Science, Frederick National Laboratory for Cancer Research, 8560 Progress Drive, Frederick, MD 2170
| | - Chia-Lung Wu
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester, Rochester, NY, 14611
| | - Karen Abramson
- Duke Molecular Physiology Institute, 300 North Duke Street, Durham, NC 27701
| | - David Corcoran
- Genomic Analysis and Bioinformatics Shared Resource, Duke Center for Genomic and Computational Biology, 101 Science Drive, Duke University Medical Center Box 3382, Durham, NC 27708
- Lineberger Bioinformatics Core, 5200 Marsico Hall, University of North Carolina-Chapel Hill, Chapel Hill, NC 27516
| | - Simon G. Gregory
- Duke Molecular Physiology Institute, 300 North Duke Street, Durham, NC 27701
- Department of Neurology, Duke University School of Medicine, 311 Research Drive, Durham, NC 27710
| | - Jyothi Thimmapuram
- Bioinformatics Core, Purdue University, 1022 Young Hall, 155 S. Grant Street, West Lafayette, IN 47907
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University in St. Louis, 4515 McKinley Ave., St. Louis, MO 63110
- Shriners Hospitals for Children – St. Louis, 4400 Clayton Ave, St. Louis Missouri 63110
| | - Dianne Little
- Departments of Basic Medical Sciences and Biomedical Engineering, Purdue University, 2186 Lynn Hall, 625 Harrison St, West Lafayette, IN 47907-2026
| |
Collapse
|
10
|
Pham DV, Nguyen TK, Park PH. Adipokines at the crossroads of obesity and mesenchymal stem cell therapy. Exp Mol Med 2023; 55:313-324. [PMID: 36750692 PMCID: PMC9981593 DOI: 10.1038/s12276-023-00940-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 02/09/2023] Open
Abstract
Mesenchymal stem cell (MSC) therapy is an emerging treatment strategy to counteract metabolic syndromes, including obesity and its comorbid disorders. However, its effectiveness is challenged by various factors in the obese environment that negatively impact MSC survival and function. The identification of these detrimental factors will provide opportunities to optimize MSC therapy for the treatment of obesity and its comorbidities. Dysregulated production of adipokines, a group of cytokines and hormones derived from adipose tissue, has been postulated to play a pivotal role in the development of obesity-associated complications. Intriguingly, adipokines have also been implicated in the modulation of viability, self-renewal, proliferation, and other properties of MSC. However, the involvement of adipokine imbalance in impaired MSC functionality has not been completely understood. On the other hand, treatment of obese individuals with MSC can restore the serum adipokine profile, suggesting the bidirectionality of the adipokine-MSC relationship. In this review, we aim to discuss the current knowledge on the central role of adipokines in the crosstalk between obesity and MSC dysfunction. We also summarize recent advances in the use of MSC for the treatment of obesity-associated diseases to support the hypothesis that adipokines modulate the benefits of MSC therapy in obese patients.
Collapse
Affiliation(s)
- Duc-Vinh Pham
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Thi-Kem Nguyen
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Pil-Hoon Park
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea. .,Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Republic of Korea.
| |
Collapse
|
11
|
Xia SL, Ma ZY, Wang B, Gao F, Guo SY, Chen XH. A gene expression profile for the lower osteogenic potent of bone-derived MSCs from osteoporosis with T2DM and the potential mechanism. J Orthop Surg Res 2022; 17:402. [PMID: 36050744 PMCID: PMC9438120 DOI: 10.1186/s13018-022-03291-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/17/2022] [Indexed: 11/20/2022] Open
Abstract
Background Osteoporosis (OP) patients complicated with type II diabetes mellitus (T2DM) has a higher fracture risk than the non-diabetic patients, and mesenchymal stem cells (MSCs) from T2DM patients also show a weaker osteogenic potent. The present study aimed to provide a gene expression profile in MSCs from diabetic OP and investigated the potential mechanism. Methods The bone-derived MSC (BMSC) was isolated from OP patients complicated with or without T2DM (CON-BMSC, T2DM-BMSC). Osteogenic differentiation was evaluated by qPCR analysis of the expression levels of osteogenic markers, ALP activity and mineralization level. The differentially expressed genes (DEGs) in T2DM-BMSC was identified by RNA-sequence, and the biological roles of DEGs was annotated by bioinformatics analyses. The role of silencing the transcription factor (TF), Forkhead box Q1 (FOXQ1), on the osteogenic differentiation of BMSC was also investigated. Results T2DM-BMSC showed a significantly reduced osteogenic potent compare to the CON-BMSC. A total of 448 DEGs was screened in T2DM-BMSC, and bioinformatics analyses showed that many TFs and the target genes were enriched in various OP- and diabetes-related biological processes and pathways. FOXQ1 had the highest verified fold change (abs) among the top 8 TFs, and silence of FOXQ1 inhibited the osteogenic differentiation of CON-BMSC. Conclusions Our study provided a comprehensive gene expression profile of BMSC in diabetic OP, and found that downregulated FOXQ1 was responsible for the reduced osteogenic potent of T2DM-BSMC. This is of great importance for the special mechanism researches and the treatment of diabetic OP. Supplementary Information The online version contains supplementary material available at 10.1186/s13018-022-03291-2.
Collapse
Affiliation(s)
- Sheng-Li Xia
- Department of Orthopedics, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China
| | - Zi-Yuan Ma
- Department of Orthopedics, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China
| | - Bin Wang
- Department of Orthopedics, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China
| | - Feng Gao
- Department of Orthopedics, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China
| | - Sheng-Yang Guo
- Department of Orthopedics, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China
| | - Xu-Han Chen
- Zhoupu Community Health Service Center, 163 Shenmei East Road, Pudong New Area, Shanghai, 201318, China.
| |
Collapse
|
12
|
Fayyazpour P, Alizadeh E, Hosseini V, Kalantary-Charvadeh A, Niafar M, Sadra V, Norouzi Z, Saebnazar A, Mehdizadeh A, Darabi M. Fatty acids of type 2 diabetic serum decrease the stemness properties of human adipose-derived mesenchymal stem cells. J Cell Biochem 2022; 123:1157-1170. [PMID: 35722966 DOI: 10.1002/jcb.30270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 03/26/2022] [Accepted: 04/20/2022] [Indexed: 11/11/2022]
Abstract
In type 2 diabetes, dyslipidemia and increased serum free fatty acids (FFAs) exacerbate the development of the disease through a negative effect on insulin secretion. Adipose-derived mesenchymal stem cells (AdMSCs) play a key role in regenerative medicine, and these cells can potentially be applied as novel therapeutic resources in the treatment of diabetes. In this study, AdMSCs were treated with diabetic or nondiabetic serum FFAs isolated from women of menopausal age. Serum FFAs were analyzed using gas-liquid chromatography. The expression level of the stemness markers CD49e and CD90 and the Wnt signaling target genes Axin-2 and c-Myc were evaluated using real-time PCR. The proliferation rate and colony formation were also assessed using a BrdU assay and crystal violet staining, respectively. The level of glutathione was assessed using cell fluorescence staining. Compared to nondiabetic serum, diabetic serum contained a higher percentage of oleate (1.5-fold, p < 0.01). In comparison with nondiabetic FFAs, diabetic FFAs demonstrated decreasing effects on the expression of CD90 (-51%, p < 0.001) and c-Myc (-48%, p < 0.05), and proliferation rate (-35%, p < 0.001), colony formation capacity (-50%, p < 0.01), and GSH levels (-62%, p < 0.05). The negative effect of the FFAs of diabetic serum on the stemness characteristics may impair the regenerative capabilities of AdMSCs.
Collapse
Affiliation(s)
- Parisa Fayyazpour
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Hosseini
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ashkan Kalantary-Charvadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mitra Niafar
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahideh Sadra
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Norouzi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aysan Saebnazar
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Darabi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Internal Medicine IV, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
13
|
Olmedo-Moreno L, Aguilera Y, Baliña-Sánchez C, Martín-Montalvo A, Capilla-González V. Heterogeneity of In Vitro Expanded Mesenchymal Stromal Cells and Strategies to Improve Their Therapeutic Actions. Pharmaceutics 2022; 14:1112. [PMID: 35631698 PMCID: PMC9146397 DOI: 10.3390/pharmaceutics14051112] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 12/12/2022] Open
Abstract
Beneficial properties of mesenchymal stromal cells (MSCs) have prompted their use in preclinical and clinical research. Accumulating evidence has been provided for the therapeutic effects of MSCs in several pathologies, including neurodegenerative diseases, myocardial infarction, skin problems, liver disorders and cancer, among others. Although MSCs are found in multiple tissues, the number of MSCs is low, making in vitro expansion a required step before MSC application. However, culture-expanded MSCs exhibit notable differences in terms of cell morphology, physiology and function, which decisively contribute to MSC heterogeneity. The changes induced in MSCs during in vitro expansion may account for the variability in the results obtained in different MSC-based therapy studies, including those using MSCs as living drug delivery systems. This review dissects the different changes that occur in culture-expanded MSCs and how these modifications alter their therapeutic properties after transplantation. Furthermore, we discuss the current strategies developed to improve the beneficial effects of MSCs for successful clinical implementation, as well as potential therapeutic alternatives.
Collapse
Affiliation(s)
| | | | | | | | - Vivian Capilla-González
- Department of Regeneration and Cell Therapy, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER)-CSIC-US-UPO, 41092 Seville, Spain; (L.O.-M.); (Y.A.); (C.B.-S.); (A.M.-M.)
| |
Collapse
|
14
|
Agareva M, Stafeev I, Michurina S, Sklyanik I, Shestakova E, Ratner E, Hu X, Menshikov M, Shestakova M, Parfyonova Y. Type 2 Diabetes Mellitus Facilitates Shift of Adipose-Derived Stem Cells Ex Vivo Differentiation toward Osteogenesis among Patients with Obesity. Life (Basel) 2022; 12:life12050688. [PMID: 35629356 PMCID: PMC9146836 DOI: 10.3390/life12050688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/20/2022] Open
Abstract
Objective: Sedentary behavior with overnutrition provokes the development of obesity, insulin resistance, and type 2 diabetes mellitus (T2DM). The main progenitor cells of adipose tissue are adipose-derived stem cells (ADSCs) which can change differentiation, metabolic, and secretory phenotypes under obesity conditions. The purpose of this study was to evaluate ADSC osteogenesis activity among patients with obesity in normal glucose tolerance (NGT) and T2DM conditions. Methods: In the study, ADSCs from donors with obesity were used. After clinical characterization, all patients underwent bariatric surgery and ADSCs were isolated from subcutaneous fat biopsies. ADSCs were subjected to osteogenic differentiation, stained with Alizarin Red S, and harvested for real-time PCR and Western blotting. Cell senescence was evaluated with a β-galactosidase-activity-based assay. Results: Our results demonstrated the significantly increased calcification of ADSC on day 28 of osteogenesis in the T2DM group. These data were confirmed by the statistically significant enhancement of RUNX2 gene expression, which is a master regulator of osteogenesis. Protein expression analysis showed the increased expression of syndecan 1 and collagen I before and during osteogenesis, respectively. Moreover, T2DM ADSCs demonstrated an increased level of cellular senescence. Conclusion: We suggest that T2DM-associated cellular senescence can cause ADSC differentiation to shift toward osteogenesis, the impaired formation of new fat depots in adipose tissue, and the development of insulin resistance. The balance between ADSC adipo- and osteogenesis commitment is crucial for the determination of the metabolic fate of patients and their adipose tissue.
Collapse
Affiliation(s)
- Margarita Agareva
- Institute of Fine Chemical Technologies Named after M.V. Lomonosov, 119571 Moscow, Russia;
- Department of Angiogenesis, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (S.M.); (E.R.); (M.M.); (Y.P.)
| | - Iurii Stafeev
- Department of Angiogenesis, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (S.M.); (E.R.); (M.M.); (Y.P.)
- Correspondence:
| | - Svetlana Michurina
- Department of Angiogenesis, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (S.M.); (E.R.); (M.M.); (Y.P.)
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Igor Sklyanik
- Institute of Diabetes, Endocrinology Research Centre, 117292 Moscow, Russia; (I.S.); (E.S.); (M.S.)
| | - Ekaterina Shestakova
- Institute of Diabetes, Endocrinology Research Centre, 117292 Moscow, Russia; (I.S.); (E.S.); (M.S.)
| | - Elizaveta Ratner
- Department of Angiogenesis, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (S.M.); (E.R.); (M.M.); (Y.P.)
| | - Xiang Hu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Mikhail Menshikov
- Department of Angiogenesis, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (S.M.); (E.R.); (M.M.); (Y.P.)
| | - Marina Shestakova
- Institute of Diabetes, Endocrinology Research Centre, 117292 Moscow, Russia; (I.S.); (E.S.); (M.S.)
| | - Yelena Parfyonova
- Department of Angiogenesis, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (S.M.); (E.R.); (M.M.); (Y.P.)
- Department of Biochemistry and Molecular Medicine, Faculty of Basic Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
15
|
Secco B, Saitoski K, Drareni K, Soprani A, Pechberty S, Rachdi L, Venteclef N, Scharfmann R. Loss of Human Beta Cell Identity in a Reconstructed Omental Stromal Cell Environment. Cells 2022; 11:cells11060924. [PMID: 35326375 PMCID: PMC8946101 DOI: 10.3390/cells11060924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 11/30/2022] Open
Abstract
In human type 2 diabetes, adipose tissue plays an important role in disturbing glucose homeostasis by secreting factors that affect the function of cells and tissues throughout the body, including insulin-producing pancreatic beta cells. We aimed here at studying the paracrine effect of stromal cells isolated from subcutaneous and omental adipose tissue on human beta cells. We developed an in vitro model wherein the functional human beta cell line EndoC-βH1 was treated with conditioned media from human adipose tissues. By using RNA-sequencing and western blotting, we determined that a conditioned medium derived from omental stromal cells stimulates several pathways, such as STAT, SMAD and RELA, in EndoC-βH1 cells. We also observed that upon treatment, the expression of beta cell markers decreased while dedifferentiation markers increased. Loss-of-function experiments that efficiently blocked specific signaling pathways did not reverse dedifferentiation, suggesting the implication of more than one pathway in this regulatory process. Taken together, we demonstrate that soluble factors derived from stromal cells isolated from human omental adipose tissue signal human beta cells and modulate their identity.
Collapse
Affiliation(s)
- Blandine Secco
- Institut Cochin, Université de Paris, INSERM U1016, CNRS UMR 8104, 75014 Paris, France; (B.S.); (K.S.); (S.P.); (L.R.)
| | - Kevin Saitoski
- Institut Cochin, Université de Paris, INSERM U1016, CNRS UMR 8104, 75014 Paris, France; (B.S.); (K.S.); (S.P.); (L.R.)
| | - Karima Drareni
- Cordeliers Research Centre, INSERM, Immunity and Metabolism in Diabetes Laboratory, Université de Paris, 75006 Paris, France; (K.D.); (A.S.); (N.V.)
| | - Antoine Soprani
- Cordeliers Research Centre, INSERM, Immunity and Metabolism in Diabetes Laboratory, Université de Paris, 75006 Paris, France; (K.D.); (A.S.); (N.V.)
- Clinique Geoffroy Saint-Hilaire, Ramsey General de Santé, 75005 Paris, France
| | - Severine Pechberty
- Institut Cochin, Université de Paris, INSERM U1016, CNRS UMR 8104, 75014 Paris, France; (B.S.); (K.S.); (S.P.); (L.R.)
| | - Latif Rachdi
- Institut Cochin, Université de Paris, INSERM U1016, CNRS UMR 8104, 75014 Paris, France; (B.S.); (K.S.); (S.P.); (L.R.)
| | - Nicolas Venteclef
- Cordeliers Research Centre, INSERM, Immunity and Metabolism in Diabetes Laboratory, Université de Paris, 75006 Paris, France; (K.D.); (A.S.); (N.V.)
| | - Raphaël Scharfmann
- Institut Cochin, Université de Paris, INSERM U1016, CNRS UMR 8104, 75014 Paris, France; (B.S.); (K.S.); (S.P.); (L.R.)
- Correspondence: ; Tel.: +(33)-1-76-53-55-68
| |
Collapse
|
16
|
Loopmans S, Stockmans I, Carmeliet G, Stegen S. Isolation and in vitro characterization of murine young-adult long bone skeletal progenitors. Front Endocrinol (Lausanne) 2022; 13:930358. [PMID: 35979436 PMCID: PMC9376626 DOI: 10.3389/fendo.2022.930358] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Skeletal stem and progenitor cells (SSPCs) constitute a reservoir of bone-forming cells necessary for bone development, modeling and remodeling, as well as for fracture healing. Recent advances in tools to identify and isolate SSPCs have revealed that cells with multipotent properties are present not only in neonatal bone, but also in adult bone marrow and periosteum. The long bone metaphysis and endosteum have been proposed as an additional SSPC niche, although in vitro approaches to study their cellular and molecular characteristics are still limited. Here, we describe a comprehensive procedure to isolate and culture SSPCs derived from the metaphysis and endosteum of young-adult mice. Based on flow cytometry analysis of known SSPC markers, we found the presence of putative multipotent SSPCs, similar to neonatal bone tissue. In vitro, metaphyseal/endosteal SSPCs possess self-renewing capacity, and their multipotency is underscored by the ability to differentiate into the osteogenic and adipogenic lineage, while chondrogenic potential is limited. Expansion of metaphyseal/endosteal SSPCs under low oxygen conditions increases their proliferation capacity, while progenitor properties are maintained, likely reflecting their hypoxic niche in vivo. Collectively, we propose a validated isolation and culture protocol to study metaphyseal/endosteal SSPC biology in vitro.
Collapse
|
17
|
Tang J, Ma S, Gao Y, Zeng F, Feng Y, Guo C, Hu L, Yang L, Chen Y, Zhang Q, Yuan Y, Guo X. ANGPTL8 promotes adipogenic differentiation of mesenchymal stem cells: potential role in ectopic lipid deposition. Front Endocrinol (Lausanne) 2022; 13:927763. [PMID: 36034432 PMCID: PMC9404696 DOI: 10.3389/fendo.2022.927763] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Ectopic lipid deposition plays a promoting role in many chronic metabolic diseases. Abnormal adipogenic differentiation of mesenchymal stem cells (MSCs) is an important cause of lipid deposition in organs. Studies have shown that serum angiopoietin-like protein 8 (ANGPTL8) levels are increased in patients with many chronic metabolic diseases (such as type 2 diabetes, obesity, and hepatic steatosis), while the role of ANGPTL8 in ectopic lipid accumulation has not been reported. METHODS We used the Gene Expression Omnibus (GEO) database to analyze the expression of ANGPTL8 in subcutaneous adipose tissue of obese patients and qPCR to analyze the expression of ANGPTL8 in the liver of high-fat diet (HFD)-induced obese mice. To explore the potential roles of ANGPTL8 in the progression of ectopic lipid deposition, ANGPTL8 knockout (KO) mice were constructed, and obesity models were induced by diet and ovariectomy (OVX). We analyzed lipid deposition (TG) in the liver, kidney, and heart tissues of different groups of mice by Oil Red O, Sudan black B staining, and the single reagent GPO-PAP method. We isolated and characterized MSCs to analyze the regulatory effect of ANGPTL8 on Wnt/β-Catenin, a key pathway in adipogenic differentiation. Finally, we used the pathway activator LiCl and a GSK3β inhibitor (i.e., CHIR99021) to analyze the regulatory mechanism of this pathway by ANGPTL8. RESULTS ANGPTL8 is highly expressed in the subcutaneous adipose tissue of obese patients and the liver of HFD-induced obese mice. Both normal chow diet (NCD)- and HFD-treated ANGPTL8 KO male mice gained significantly less weight than wild-type (WT) male mice and reduced ectopic lipid deposition in organs. However, the female mice of ANGPTL8 KO, especially the HFD group, did not show differences in body weight or ectopic lipid deposition because HFD could induce estrogen overexpression and then downregulate ANGPTL8 expression, thereby counteracting the reduction in HFD-induced ectopic lipid deposition by ANGPTL8 deletion, and this result was also further proven by the OVX model. Mechanistic studies demonstrated that ANGPTL8 could promote the differentiation of MSCs into adipocytes by inhibiting the Wnt/β-Catenin pathway and upregulating PPARγ and c/EBPα mRNA expression. CONCLUSIONS ANGPTL8 promotes the differentiation of MSCs into adipocytes, suggesting that ANGPTL8 may be a new target for the prevention and treatment of ectopic lipid deposition in males.
Collapse
Affiliation(s)
- Jian Tang
- Department of Neurosurgery, Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Central Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Shinan Ma
- Department of Neurosurgery, Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yujiu Gao
- Department of Neurosurgery, Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Fan Zeng
- Department of Neurosurgery, Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Ying Feng
- Department of Neurosurgery, Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Chong Guo
- Department of Neurosurgery, Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Lin Hu
- Department of Neurosurgery, Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Lingling Yang
- Department of Neurosurgery, Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Central Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Yanghui Chen
- Department of Neurosurgery, Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Qiufang Zhang
- Department of Geriatrics & General Medicine, Affiliated Taihe Hospital of Hubei University of Medicine, Shiyan, China
| | - Yahong Yuan
- Department of Neurosurgery, Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- *Correspondence: Yahong Yuan, ; Xingrong Guo,
| | - Xingrong Guo
- Department of Neurosurgery, Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Hubei Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
- *Correspondence: Yahong Yuan, ; Xingrong Guo,
| |
Collapse
|
18
|
Adipose-derived stem cells and obesity: The spear and shield relationship. Genes Dis 2021; 10:175-186. [PMID: 37013055 PMCID: PMC10066342 DOI: 10.1016/j.gendis.2021.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/11/2021] [Accepted: 09/08/2021] [Indexed: 11/24/2022] Open
Abstract
With the transformation of modern lifestyles and population ageing, obesity has become a global epidemic, as one of the important threat to human health of chronic non-communicable diseases (NCD). Stem cell therapy seems promising as an alternative strategy for managing obesity and related metabolic problems. Adipose tissue-derived stem cells (ADSCs) have received widespread attention, which provides new ideas for the treatment of obesity and various metabolic-related diseases, due to their abundant reserves, easy acquisition, rapid expansion, and multi-directional differentiation potential, low immunogenicity and many other advantages. Accordingly, there seems to be a "shield and spear paradox" in the relationship between ADSCs and obesity. In this review, we emphatically summarized the role of ADSCs in the occurrence and development of obesity and related metabolic disease processes, in order to pave the way for clinical practice.
Collapse
|
19
|
Marin C, Tuts J, Luyten FP, Vandamme K, Kerckhofs G. Impaired soft and hard callus formation during fracture healing in diet-induced obese mice as revealed by 3D contrast-enhanced computed tomography imaging. Bone 2021; 150:116008. [PMID: 33992820 DOI: 10.1016/j.bone.2021.116008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 11/21/2022]
Abstract
The impact of diabetes mellitus on bone fracture healing is clinically relevant as the patients experience delayed fracture healing. Even though efforts have been made to understand the detrimental effects of type 2 diabetes mellitus (T2DM) on the fracture healing process, the exact mechanisms causing the pathophysiological outcomes remain unclear. The aim of this study was to assess alterations in bone fracture healing (tibial fracture surgery, intramedullary pinning) of diet-induced obese (DIO) mice, and to investigate the in vitro properties of osteochondroprogenitors derived from the diabetic micro-environment. High-resolution contrast-enhanced microfocus X-ray computed tomography (CE-CT) enabled a simultaneous 3D assessment of the amount and spatial distribution of the regenerated soft and hard tissues during fracture healing and revealed that osteogenesis as well as chondrogenesis are altered in DIO mice. Compared to age-matched lean controls, DIO mice presented a decreased bone volume fraction and increased callus volume and adiposity at day 14 post-fracture. Of note, bone turnover was found altered in DIO mice relative to controls, evidenced by decreased blood serum osteocalcin and increased serum CTX levels. The in vitro data revealed that not only the osteogenic and adipogenic differentiation of periosteum-derived cells (PDCs) were altered by hyperglycemic (HG) conditions, but also the chondrogenic differentiation. Elevated PPARγ expression in HG conditions confirmed the observed increase in differentiated adipocytes in vitro. Finally, chondrogenesis-related genes COL2 and COL10 were downregulated for PDCs treated with HG medium, confirming that chondrogenic differentiation is compromised in vitro and suggesting that this may affect callus formation and maturation during the fracture healing process in vivo. Altogether, these results provide novel insights into the alterations of long bone fracture repair and suggest a link between HG-induced dysfunctionality of osteochondroprogenitor differentiation and fracture healing impairment under T2DM conditions.
Collapse
Affiliation(s)
- Carlos Marin
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium; Prometheus - Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven, Belgium; Biomaterials - BIOMAT, Department of Oral Health Sciences, KU Leuven, Leuven, Belgium
| | - Jolien Tuts
- Biomaterials - BIOMAT, Department of Oral Health Sciences, KU Leuven, Leuven, Belgium
| | - Frank P Luyten
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium; Prometheus - Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven, Belgium
| | - Katleen Vandamme
- Prometheus - Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven, Belgium; Biomaterials - BIOMAT, Department of Oral Health Sciences, KU Leuven, Leuven, Belgium
| | - Greet Kerckhofs
- Prometheus - Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven, Belgium; Department of Material Science and Engineering, KU Leuven, Leuven, Belgium; Biomechanics lab, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium; Institute for Experimental and Clinical Research, UCLouvain, Woluwe, Belgium.
| |
Collapse
|
20
|
Bi J, Li Q, Yang Z, Cai L, Lv T, Yang X, Yan L, Liu X, Wang Q, Fu X, Xiao R. CXCL2 Impairs Functions of Bone Marrow Mesenchymal Stem Cells and Can Serve as a Serum Marker in High-Fat Diet-Fed Rats. Front Cell Dev Biol 2021; 9:687942. [PMID: 34327200 PMCID: PMC8315099 DOI: 10.3389/fcell.2021.687942] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/17/2021] [Indexed: 12/27/2022] Open
Abstract
In modern society excessive consumption of a high-fat diet (HFD) is a significant risk factor for many diseases such as diabetes, osteoarthritis and certain cancers. Resolving cellular and molecular mechanisms underlying HFD-associated disorders is of great importance to human health. Mesenchymal stem cells (MSCs) are key players in tissue homeostasis and adversely affected by prolonged HFD feeding. Low-grade systemic inflammation induced by HFD is characterized by increased levels of pro-inflammatory cytokines and alters homeostasis in many organs. However, whether, which and how HFD associated inflammatory cytokines impair MSCs remain unclear. Here we demonstrated that HFD induced serum cytokines disturbances, especially a continuous elevation of serum CXCL2 level in rats. Coincidentally, the differentially expressed genes (DEGs) of bone marrow MSCs (BMSCs) which functions were impaired in HFD rats were enriched in cytokine signaling. Further mechanism analysis revealed that CXCL2 treatment in vitro suppresses the adipogenic potential of BMSCs via Rac1 activation, and promoted BMSC migration and senescence by inducing over-production of ELMO1 and reactive oxygen species (ROS) respectively. Moreover, we found that although glycolipid metabolism indicators can be corrected, the CXCL2 elevation and BMSC dysfunctions cannot be fully rescued by diet correction and anti-inflammatory aspirin treatment, indicating the long-lasting deleterious effects of HFD on serum CXCL2 levels and BMSC functions. Altogether, our findings identify CXCL2 as an important regulator in BMSCs functions and may serve as a serum marker to indicate the BMSC dysfunctions induced by HFD. In addition, our findings underscore the intricate link among high-fat intake, chronic inflammation and BMSC dysfunction which may facilitate development of protective strategies for HFD associated diseases.
Collapse
Affiliation(s)
- Jianhai Bi
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qiuchen Li
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhigang Yang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Cai
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Lv
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xun Yang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Yan
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xia Liu
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qian Wang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Fu
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ran Xiao
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
21
|
Farahani RA, Farah MC, Zhu XY, Tang H, Saadiq IM, Lerman LO, Eirin A. Metabolic Syndrome Impairs 3D Mitochondrial Structure, Dynamics, and Function in Swine Mesenchymal Stem Cells. Stem Cell Rev Rep 2021; 16:933-945. [PMID: 32556943 DOI: 10.1007/s12015-020-09988-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transplantation of autologous mesenchymal stem cells (MSCs) is an effective therapy for several diseases. Mitochondria modulate several important aspects of MSC function, but might be damaged by comorbidities and cardiovascular risk factors. We hypothesized that metabolic syndrome (MetS) compromises 3D mitochondrial structure, dynamics, and function in swine adipose tissue-derived MSCs. Domestic pigs were fed a Lean or MetS diet (n = 6 each) for 16 weeks. MSCs were collected from subcutaneous abdominal fat and their mitochondria analyzed using state-of-the-art Serial Block Face Electron Microscopy and 3D reconstruction. Mitochondrial dynamics (fusion/fission) were assessed by mRNA sequencing and Western blotting, and bioenergetics by membrane potential (TMRE), cytochrome-c oxidase (COX)-IV activity, and Seahorse Analyzer. Expression of mitochondria-associated microRNAs (mitomiRs) was measured by quantitative polymerase chain reaction (qPCR). MetS pigs developed obesity, hypertension, insulin resistance, and hyperlipidemia. Mitochondrial density was similar between the groups, but 3D mitochondrial and matrix volumes were lower in MetS-MSCs versus Lean-MSCs. Mitochondrial fission was higher, but fusion lower in MetS-MSCs versus Lean-MSCs, as were membrane potential, COX-IV activity, and ATP production. Contrarily, expression of the mitomiRs miR15a, miR-137, and miR-181c, which target mitochondrial genes that support mitochondrial structure, energy pathways, and dynamics, was higher in MetS-MSCs compared to Lean-MSCs, suggesting a potential to modulate their expression. MetS damages MSC 3D mitochondrial structure, dynamics, and function, and may modulate genes encoding for mitochondrial proteins. These observations support development of mitoprotective strategies to preserve the regenerative potency of MSCs and their suitability for autologous transplantation in patients with MetS.
Collapse
Affiliation(s)
- Rahele A Farahani
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Mohamed C Farah
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Xiang-Yang Zhu
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Hui Tang
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Ishran M Saadiq
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Lilach O Lerman
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Alfonso Eirin
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
22
|
Gui C, Parson J, Meyer GA. Harnessing adipose stem cell diversity in regenerative medicine. APL Bioeng 2021; 5:021501. [PMID: 33834153 PMCID: PMC8018797 DOI: 10.1063/5.0038101] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/26/2021] [Indexed: 12/20/2022] Open
Abstract
Since the first isolation of mesenchymal stem cells from lipoaspirate in the early 2000s, adipose tissue has been a darling of regenerative medicine. It is abundant, easy to access, and contains high concentrations of stem cells (ADSCs) exhibiting multipotency, proregenerative paracrine signaling, and immunomodulation-a winning combination for stem cell-based therapeutics. While basic science, preclinical and clinical findings back up the translational potential of ADSCs, the vast majority of these used cells from a single location-subcutaneous abdominal fat. New data highlight incredible diversity in the adipose morphology and function in different anatomical locations or depots. Even in isolation, ADSCs retain a memory of this diversity, suggesting that the optimal adipose source material for ADSC isolation may be application specific. This review discusses our current understanding of the heterogeneity in the adipose organ, how that heterogeneity translates into depot-specific ADSC characteristics, and how atypical ADSC populations might be harnessed for regenerative medicine applications. While our understanding of the breadth of ADSC heterogeneity is still in its infancy, clear trends are emerging for application-specific sourcing to improve regenerative outcomes.
Collapse
Affiliation(s)
- Chang Gui
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63110, USA
| | - Jacob Parson
- Program in Physical Therapy, Washington University in St. Louis, St. Louis, Missouri 63110, USA
| | - Gretchen A. Meyer
- Author to whom correspondence should be addressed:. Tel.: (314) 286-1425. Fax: (314) 747-0674
| |
Collapse
|
23
|
Mesenchymal stromal cells for corneal transplantation: Literature review and suggestions for successful clinical trials. Ocul Surf 2021; 20:185-194. [PMID: 33607323 PMCID: PMC9878990 DOI: 10.1016/j.jtos.2021.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 01/28/2023]
Abstract
Corneal transplantation is a routine procedure for patients with corneal blindness. Despite the streamlining of surgical techniques and deeper understanding of the cellular and molecular pathways mediating rejection, corticosteroids are still the main immunosuppressive regimen in corneal transplantation, and the 15-year survival of corneal transplants remains as low as 50%, which is poorer than that for most solid organ transplants. Recently, mesenchymal stromal cells (MSCs) with unique regenerative and immune-modulating properties have emerged as a promising cell therapy to promote transplant tolerance, minimize the use of immunosuppressants, and prevent chronic rejection. Here, we review the literature on preclinical studies of MSCs for corneal transplantation and summarize the key findings from clinical trials with MSCs in solid organ transplantation. Finally, we highlight current issues and challenges regarding MSC therapies and suggest strategies for safe and effective MSC-based therapies in clinical transplantation.
Collapse
|
24
|
Harasymowicz NS, Rashidi N, Savadipour A, Wu CL, Tang R, Bramley J, Buchser W, Guilak F. Single-cell RNA sequencing reveals the induction of novel myeloid and myeloid-associated cell populations in visceral fat with long-term obesity. FASEB J 2021; 35:e21417. [PMID: 33566380 PMCID: PMC8743141 DOI: 10.1096/fj.202001970r] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/29/2020] [Accepted: 01/21/2021] [Indexed: 12/12/2022]
Abstract
Macrophages and other immune cells are important contributors to obesity-associated inflammation; however, the cellular identities of these specific populations remain unknown. In this study, we identified individual populations of myeloid cells found in mouse epididymal/visceral adipose tissue by single-cell RNA sequencing, immunofluorescence, and flow cytometry. Multiple canonical correlation analysis identified 11 unique myeloid and myeloid-associate cell populations. In obese mice, we detected an increased percentage of monocyte-derived pro-inflammatory cells expressing Cd9 and Trem2, as well as significantly decreased percentages of multiple cell populations, including tissue-resident cells expressing Lyve1, Mafb, and Mrc1. We have identified and validated a novel myeloid/macrophage population defined by Ly6a expression, exhibiting both myeloid and mesenchymal characteristics, which increased with obesity and showed high pro-fibrotic characteristics in vitro. Our mouse adipose tissue myeloid cell atlas provides an important resource to investigate obesity-associated inflammation and fibrosis.
Collapse
Affiliation(s)
- Natalia S. Harasymowicz
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
- Shriners Hospitals for Children, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Neda Rashidi
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
- Shriners Hospitals for Children, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA
| | - Alireza Savadipour
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
- Shriners Hospitals for Children, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA
| | - Chia-Lung Wu
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
- Shriners Hospitals for Children, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Ruhang Tang
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
- Shriners Hospitals for Children, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - John Bramley
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, USA
| | - William Buchser
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
- Shriners Hospitals for Children, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
25
|
Wu CL, Dicks A, Steward N, Tang R, Katz DB, Choi YR, Guilak F. Single cell transcriptomic analysis of human pluripotent stem cell chondrogenesis. Nat Commun 2021; 12:362. [PMID: 33441552 PMCID: PMC7806634 DOI: 10.1038/s41467-020-20598-y] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 12/10/2020] [Indexed: 01/29/2023] Open
Abstract
The therapeutic application of human induced pluripotent stem cells (hiPSCs) for cartilage regeneration is largely hindered by the low yield of chondrocytes accompanied by unpredictable and heterogeneous off-target differentiation of cells during chondrogenesis. Here, we combine bulk RNA sequencing, single cell RNA sequencing, and bioinformatic analyses, including weighted gene co-expression analysis (WGCNA), to investigate the gene regulatory networks regulating hiPSC differentiation under chondrogenic conditions. We identify specific WNTs and MITF as hub genes governing the generation of off-target differentiation into neural cells and melanocytes during hiPSC chondrogenesis. With heterocellular signaling models, we further show that WNT signaling produced by off-target cells is responsible for inducing chondrocyte hypertrophy. By targeting WNTs and MITF, we eliminate these cell lineages, significantly enhancing the yield and homogeneity of hiPSC-derived chondrocytes. Collectively, our findings identify the trajectories and molecular mechanisms governing cell fate decision in hiPSC chondrogenesis, as well as dynamic transcriptome profiles orchestrating chondrocyte proliferation and differentiation.
Collapse
Affiliation(s)
- Chia-Lung Wu
- Dept. of Orthopaedic Surgery, Washington University in Saint Louis, St. Louis, MO, 63110, USA
- Shriners Hospitals for Children-St. Louis, St. Louis, MO, 63110, USA
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester, Rochester, NY, 14627, USA
| | - Amanda Dicks
- Dept. of Orthopaedic Surgery, Washington University in Saint Louis, St. Louis, MO, 63110, USA
- Shriners Hospitals for Children-St. Louis, St. Louis, MO, 63110, USA
- Dept. of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO, 63110, USA
| | - Nancy Steward
- Dept. of Orthopaedic Surgery, Washington University in Saint Louis, St. Louis, MO, 63110, USA
- Shriners Hospitals for Children-St. Louis, St. Louis, MO, 63110, USA
| | - Ruhang Tang
- Dept. of Orthopaedic Surgery, Washington University in Saint Louis, St. Louis, MO, 63110, USA
- Shriners Hospitals for Children-St. Louis, St. Louis, MO, 63110, USA
| | - Dakota B Katz
- Dept. of Orthopaedic Surgery, Washington University in Saint Louis, St. Louis, MO, 63110, USA
- Shriners Hospitals for Children-St. Louis, St. Louis, MO, 63110, USA
- Dept. of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO, 63110, USA
| | - Yun-Rak Choi
- Dept. of Orthopaedic Surgery, Washington University in Saint Louis, St. Louis, MO, 63110, USA
- Shriners Hospitals for Children-St. Louis, St. Louis, MO, 63110, USA
- Dept. of Orthopaedic Surgery, Yonsei University, Seoul, South Korea
| | - Farshid Guilak
- Dept. of Orthopaedic Surgery, Washington University in Saint Louis, St. Louis, MO, 63110, USA.
- Shriners Hospitals for Children-St. Louis, St. Louis, MO, 63110, USA.
- Dept. of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO, 63110, USA.
| |
Collapse
|
26
|
Regeneration during Obesity: An Impaired Homeostasis. Animals (Basel) 2020; 10:ani10122344. [PMID: 33317011 PMCID: PMC7763812 DOI: 10.3390/ani10122344] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Regeneration represents the biological processes that allow cells and tissues to renew and develop. During obesity, a variety of changes and reactions are seen. This includes inflammation and metabolic disorders. These obesity-induced changes do impact the regeneration processes. Such impacts that obesity has on regeneration would affect tissues and organs development and would also have consequences on the outcomes of therapies that depend on cells regeneration (such as burns, radiotherapy and leukemia) given to patients suffering from obesity. Therefore, a particular attention should be given to patients suffering from obesity in biological, therapeutic and clinical contexts that depend on regeneration ability. Abstract Obesity is a health problem that, in addition to the known morbidities, induces the generation of a biological environment with negative impacts on regeneration. Indeed, factors like DNA damages, oxidative stress and inflammation would impair the stem cell functions, in addition to some metabolic and development patterns. At the cellular and tissulaire levels, this has consequences on growth, renewal and restoration which results into an impaired regeneration. This impaired homeostasis concerns also key metabolic tissues including muscles and liver which would worsen the energy balance outcome towards further development of obesity. Such impacts of obesity on regeneration shows the need of a specific care given to obese patients recovering from diseases or conditions requiring regeneration such as burns, radiotherapy and leukemia. On the other hand, since stem cells are suggested to manage obesity, this impaired regeneration homeostasis needs to be considered towards more optimized stem cells-based obesity therapies within the context of precision medicine.
Collapse
|
27
|
Noguchi CT. Erythropoietin regulates metabolic response in mice via receptor expression in adipose tissue, brain, and bone. Exp Hematol 2020; 92:32-42. [PMID: 32950599 DOI: 10.1016/j.exphem.2020.09.190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022]
Abstract
Erythropoietin (EPO) acts by binding to erythroid progenitor cells to regulate red blood cell production. While EPO receptor (Epor) expression is highest on erythroid tissue, animal models exhibit EPO activity in nonhematopoietic tissues, mediated, in part, by tissue-specific Epor expression. This review describes the metabolic response in mice to endogenous EPO and EPO treatment associated with glucose metabolism, fat mass accumulation, and inflammation in white adipose tissue and brain during diet-induced obesity and with bone marrow fat and bone remodeling. During high-fat diet-induced obesity, EPO treatment improves glucose tolerance, decreases fat mass accumulation, and shifts white adipose tissue from a pro-inflammatory to an anti-inflammatory state. Fat mass regulation by EPO is sex dimorphic, apparent in males and abrogated by estrogen in females. Cerebral EPO also regulates fat mass and hypothalamus inflammation associated with diet-induced obesity in males and ovariectomized female mice. In bone, EPO contributes to the balance between adipogenesis and osteogenesis in both male and female mice. EPO treatment promotes bone loss mediated via Epor in osteoblasts and reduces bone marrow adipocytes before and independent of change in white adipose tissue fat mass. EPO regulation of bone loss and fat mass is independent of EPO-stimulated erythropoiesis. EPO nonhematopoietic tissue response may relate to the long-term consequences of EPO treatment of anemia in chronic kidney disease and to the alternative treatment of oral hypoxia-inducible factor prolyl hydroxylase inhibitors that increase endogenous EPO production.
Collapse
Affiliation(s)
- Constance Tom Noguchi
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
28
|
Bianconi E, Casadei R, Frabetti F, Ventura C, Facchin F, Canaider S. Sex-Specific Transcriptome Differences in Human Adipose Mesenchymal Stem Cells. Genes (Basel) 2020; 11:909. [PMID: 32784482 PMCID: PMC7464371 DOI: 10.3390/genes11080909] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/24/2020] [Accepted: 08/06/2020] [Indexed: 12/17/2022] Open
Abstract
In humans, sexual dimorphism can manifest in many ways and it is widely studied in several knowledge fields. It is increasing the evidence that also cells differ according to sex, a correlation still little studied and poorly considered when cells are used in scientific research. Specifically, our interest is on the sex-related dimorphism on the human mesenchymal stem cells (hMSCs) transcriptome. A systematic meta-analysis of hMSC microarrays was performed by using the Transcriptome Mapper (TRAM) software. This bioinformatic tool was used to integrate and normalize datasets from multiple sources and allowed us to highlight chromosomal segments and genes differently expressed in hMSCs derived from adipose tissue (hADSCs) of male and female donors. Chromosomal segments and differentially expressed genes in male and female hADSCs resulted to be related to several processes as inflammation, adipogenic and neurogenic differentiation and cell communication. Obtained results lead us to hypothesize that the donor sex of hADSCs is a variable influencing a wide range of stem cell biologic processes. We believe that it should be considered in biologic research and stem cell therapy.
Collapse
Affiliation(s)
- Eva Bianconi
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)—Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy; (E.B.); (C.V.); (S.C.)
| | - Raffaella Casadei
- Department for Life Quality Studies (QuVi), University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy;
| | - Flavia Frabetti
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
| | - Carlo Ventura
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)—Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy; (E.B.); (C.V.); (S.C.)
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
| | - Federica Facchin
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)—Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy; (E.B.); (C.V.); (S.C.)
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
| | - Silvia Canaider
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)—Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy; (E.B.); (C.V.); (S.C.)
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
| |
Collapse
|
29
|
Chen L, Wang CT, Forsyth NR, Wu P. Transcriptional profiling reveals altered biological characteristics of chorionic stem cells from women with gestational diabetes. Stem Cell Res Ther 2020; 11:319. [PMID: 32711583 PMCID: PMC7382800 DOI: 10.1186/s13287-020-01828-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/30/2020] [Accepted: 07/13/2020] [Indexed: 12/17/2022] Open
Abstract
Background Gestational diabetes (GDM) is a common complication of pregnancy. The impact of pregnancy complications on placental function suggests that extraembryonic stem cells in the placenta may also be affected during pregnancy. Neonatal tissue-derived stem cells, with the advantages of their differentiation capacity and non-invasive isolation processes, have been proposed as a promising therapeutic avenue for GDM management through potential cell therapy approaches. However, the influence of GDM on autologous stem cells remains unclear. Thus, studies that provide comprehensive understanding of stem cells isolated from women with GDM are essential to guide future clinical applications. Methods Human chorionic membrane-derived stem cells (CMSCs) were isolated from placentas of healthy and GDM pregnancies. Transcriptional profiling was performed by DNA microarray, and differentially regulated genes between GDM- and Healthy-CMSCs were used to analyse molecular functions, differentiation, and pathway enrichment. Altered genes and biological functions were validated via real-time PCR and in vitro assays. Results GDM-CMSCs displayed, vs. Healthy-CMSCs, 162 upregulated genes associated with increased migration ability, epithelial development, and growth factor-associated signal transduction while the 269 downregulated genes were strongly linked to angiogenesis and cellular metabolic processes. Notably, significantly reduced expression of detoxification enzymes belonging to the aldehyde dehydrogenase gene families (ALDH1A1/1A2, ALDH2, ALDH3) accounted for downregulation across several metabolic pathways. ALDH activity and inhibitor assays indicated that reduced gene expression of ALDHs affected ALDH enzymatic functions and resulted in oxidative stress dysregulation in GDM-CMSCs. Conclusion Our combined transcriptional analysis and in vitro functional characterisation have provided novel insights into fundamental biological differences in GDM- and Healthy-CMSCs. Enhanced mobility of GDM-CMSCs may promote MSC migration toward injured sites; however, impaired cellular metabolic activity may negatively affect any perceived benefit.
Collapse
Affiliation(s)
- Liyun Chen
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Thornburrow Drive, Stoke-on-Trent, UK.,Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO, USA
| | - Chung-Teng Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Nicholas R Forsyth
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Thornburrow Drive, Stoke-on-Trent, UK. .,School of Life Science, Guangzhou University, Guangzhou, 510006, China.
| | - Pensee Wu
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Thornburrow Drive, Stoke-on-Trent, UK.,Academic Unit of Obstetrics and Gynaecology, University Hospital of North Midlands, Stoke-on-Trent, UK.,Keele Cardiovascular Research Group, School of Primary, Community, and Social Care, Keele University, Stoke-on-Trent, UK
| |
Collapse
|
30
|
Alessio N, Acar MB, Demirsoy IH, Squillaro T, Siniscalco D, Bernardo GD, Peluso G, Özcan S, Galderisi U. Obesity is associated with senescence of mesenchymal stromal cells derived from bone marrow, subcutaneous and visceral fat of young mice. Aging (Albany NY) 2020; 12:12609-12621. [PMID: 32634118 PMCID: PMC7377882 DOI: 10.18632/aging.103606] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023]
Abstract
White adipose tissue (WAT) is distributed in several depots with distinct metabolic and inflammatory functions. In our body there are subcutaneous (sWAT), visceral (vWAT) and bone marrow (bWAT) fat depots. Obesity affects the size, function and inflammatory state of WATs. In particular, obesity may affect the activity of mesenchymal stromal cells (MSCs) present in WAT. MSCs are a heterogeneous population containing stromal cells, progenitor cells, fibroblasts and stem cells that are able to differentiate among adipocytes, chondrocytes, osteocytes and other mesodermal derivatives.In the first study of this kind, we performed a comparison of the effects of obesity on MSCs obtained from sWAT, vWAT and bWAT. Our study showed that obesity affects mainly the biological functions of MSCs obtained from bone marrow and vWAT by decreasing the proliferation rate, reducing the percentage of cells in S phase and triggering senescence. The onset of senescence was confirmed by expression of genes belonging to RB and P53 pathways.Our study revealed that the negative consequences of obesity on body physiology may also be related to impairment in the functions of the stromal compartment present in the several adipose tissues. This finding provides new insights as to the targets that should be considered for an effective treatment of obesity-related diseases.
Collapse
Affiliation(s)
- Nicola Alessio
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Luigi Vanvitelli Campania University, Naples, Italy
| | - Mustafa B. Acar
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
- Department of Biology, Faculty of Sciences, Erciyes University, Kayseri, Turkey
| | - Ibrahim H. Demirsoy
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Luigi Vanvitelli Campania University, Naples, Italy
| | - Tiziana Squillaro
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Luigi Vanvitelli Campania University, Naples, Italy
| | - Dario Siniscalco
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Luigi Vanvitelli Campania University, Naples, Italy
| | - Giovanni Di Bernardo
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Luigi Vanvitelli Campania University, Naples, Italy
| | | | - Servet Özcan
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
- Department of Biology, Faculty of Sciences, Erciyes University, Kayseri, Turkey
| | - Umberto Galderisi
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Luigi Vanvitelli Campania University, Naples, Italy
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
31
|
Abstract
Obesity disrupts physiological homeostasis and alters both systemic and local microenvironments that impact stem cell plasticity and impair regenerative capacity. We present growing evidence that reveals the bidirectionality of obesity-induced stem cell dysfunction and how the molecular changes in stem cells residing in obese environments may accelerate disease severity.
Collapse
|
32
|
Maleitzke T, Elazaly H, Festbaum C, Eder C, Karczewski D, Perka C, Duda GN, Winkler T. Mesenchymal Stromal Cell-Based Therapy-An Alternative to Arthroplasty for the Treatment of Osteoarthritis? A State of the Art Review of Clinical Trials. J Clin Med 2020; 9:jcm9072062. [PMID: 32630066 PMCID: PMC7409016 DOI: 10.3390/jcm9072062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 01/06/2023] Open
Abstract
Osteoarthritis (OA) is the most common degenerative joint disorder worldwide and to date no regenerative treatment has been established in clinical practice. This review evaluates the current literature on the clinical translation of mesenchymal stromal cell (MSC)-based therapy in OA management with a focus on safety, outcomes and procedural specifics. PubMed, Cochrane Library and clinicaltrials.gov were searched for clinical studies using MSCs for OA treatment. 290 articles were initially identified and 42 articles of interest, including a total of 1325 patients, remained for further examination. Most of the included studies used adipose tissue-derived MSCs or bone-marrow-derived MSCs to treat patients suffering from knee OA. MSC-based therapy for knee OA appears to be safe and presumably effective in selected parameters. Yet, a direct comparison between studies was difficult due to a pronounced variance regarding methodology, assessed outcomes and evidence levels. Intensive scientific engagement is needed to identify the most effective source and dosage of MSCs for OA treatment in the future. Consent on outcome measures has to be reached and eventually patient sub-populations need to be identified that will profit most from MSC-based treatment for OA.
Collapse
Affiliation(s)
- Tazio Maleitzke
- Center for Musculoskeletal Surgery, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (T.M.); (C.F.); (C.E.); (D.K.); (C.P.)
- Julius Wolff Institute, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (H.E.); (G.N.D.)
- Berlin Institute of Health (BIH), 10178 Berlin, Germany
| | - Hisham Elazaly
- Julius Wolff Institute, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (H.E.); (G.N.D.)
- Berlin Institute of Health (BIH), 10178 Berlin, Germany
| | - Christian Festbaum
- Center for Musculoskeletal Surgery, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (T.M.); (C.F.); (C.E.); (D.K.); (C.P.)
| | - Christian Eder
- Center for Musculoskeletal Surgery, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (T.M.); (C.F.); (C.E.); (D.K.); (C.P.)
| | - Daniel Karczewski
- Center for Musculoskeletal Surgery, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (T.M.); (C.F.); (C.E.); (D.K.); (C.P.)
| | - Carsten Perka
- Center for Musculoskeletal Surgery, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (T.M.); (C.F.); (C.E.); (D.K.); (C.P.)
- Berlin Institute of Health (BIH), 10178 Berlin, Germany
| | - Georg N. Duda
- Julius Wolff Institute, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (H.E.); (G.N.D.)
- Berlin Institute of Health (BIH), 10178 Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Tobias Winkler
- Center for Musculoskeletal Surgery, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (T.M.); (C.F.); (C.E.); (D.K.); (C.P.)
- Julius Wolff Institute, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (H.E.); (G.N.D.)
- Berlin Institute of Health (BIH), 10178 Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Correspondence: ; Tel.: +49-30-450-559084
| |
Collapse
|
33
|
Hillers-Ziemer LE, Arendt LM. Weighing the Risk: effects of Obesity on the Mammary Gland and Breast Cancer Risk. J Mammary Gland Biol Neoplasia 2020; 25:115-131. [PMID: 32519090 PMCID: PMC7933979 DOI: 10.1007/s10911-020-09452-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/17/2022] Open
Abstract
Obesity is a preventable risk factor for breast cancer following menopause. Regardless of menopausal status, obese women who develop breast cancer have a worsened prognosis. Breast tissue is comprised of mammary epithelial cells organized into ducts and lobules and surrounded by adipose-rich connective tissue. Studies utilizing multiple in vivo models of obesity as well as human breast tissue have contributed to our understanding of how obesity alters mammary tissue. Localized changes in mammary epithelial cell populations, elevated secretion of adipokines and angiogenic mediators, inflammation within mammary adipose tissue, and remodeling of the extracellular matrix may result in an environment conducive to breast cancer growth. Despite these significant alterations caused by obesity within breast tissue, studies have suggested that some, but not all, obesity-induced changes may be mitigated with weight loss. Here, we review our current understanding regarding the impact of obesity on the breast microenvironment, how obesity-induced changes may contribute to breast tumor progression, and the impact of weight loss on the breast microenvironment.
Collapse
Affiliation(s)
- Lauren E Hillers-Ziemer
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI, 53706, USA
| | - Lisa M Arendt
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI, 53706, USA.
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI, 53706, USA.
| |
Collapse
|
34
|
Zhong YC, Wang SC, Han YH, Wen Y. Recent Advance in Source, Property, Differentiation, and Applications of Infrapatellar Fat Pad Adipose-Derived Stem Cells. Stem Cells Int 2020; 2020:2560174. [PMID: 32215015 PMCID: PMC7081037 DOI: 10.1155/2020/2560174] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/12/2020] [Accepted: 02/20/2020] [Indexed: 12/18/2022] Open
Abstract
Infrapatellar fat pad (IPFP) can be easily obtained during knee surgery, which avoids the damage to patients for obtaining IPFP. Infrapatellar fat pad adipose-derived stem cells (IPFP-ASCs) are also called infrapatellar fat pad mesenchymal stem cells (IPFP-MSCs) because the morphology of IPFP-ASCs is similar to that of bone marrow mesenchymal stem cells (BM-MSCs). IPFP-ASCs are attracting more and more attention due to their characteristics suitable to regenerative medicine such as strong proliferation and differentiation, anti-inflammation, antiaging, secreting cytokines, multipotential capacity, and 3D culture. IPFP-ASCs can repair articular cartilage and relieve the pain caused by osteoarthritis, so most of IPFP-related review articles focus on osteoarthritis. This article reviews the anatomy and function of IPFP, as well as the discovery, amplification, multipotential capacity, and application of IPFP-ASCs in order to explain why IPFP-ASC is a superior stem cell source in regenerative medicine.
Collapse
Affiliation(s)
- Yu-chen Zhong
- Department of Histology and Embryology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, China
- Class 4, Phase 102, China Medical University, Shenyang 110122, China
| | - Shi-chun Wang
- Department of Histology and Embryology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, China
- Class 4, Phase 102, China Medical University, Shenyang 110122, China
| | - Yin-he Han
- Department of Histology and Embryology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, China
| | - Yu Wen
- Department of Histology and Embryology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, China
| |
Collapse
|
35
|
Suresh S, Alvarez JC, Dey S, Noguchi CT. Erythropoietin-Induced Changes in Bone and Bone Marrow in Mouse Models of Diet-Induced Obesity. Int J Mol Sci 2020; 21:ijms21051657. [PMID: 32121294 PMCID: PMC7084787 DOI: 10.3390/ijms21051657] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/18/2020] [Accepted: 02/26/2020] [Indexed: 12/13/2022] Open
Abstract
Obesity remodels bone and increases bone marrow adipocytes (BMAT), which negatively regulate hematopoiesis and bone. Reduced BMAT could restore altered hematopoiesis and bone features. We analyzed the potential of erythropoietin (EPO), the cytokine required for erythropoiesis, to inhibit BMAT in C57BL6/J mice fed four weeks of a high-fat diet (HFD). Acute EPO administration markedly decreased BMAT in regular chow diet (RCD) and HFD-fed mice, without affecting whole body fat mass. Micro-CT analysis showed EPO reduced trabecular bone in RCD- and HFD-fed mice, but EPO-treated HFD-fed mice maintained cortical bone mineral density and cortical bone volume, which was reduced on RCD. Despite achieving similar increased hematocrits with BMAT loss in RCD- and HFD-fed mice treated with EPO, decreased bone marrow cellularity was only observed in RCD-fed mice concomitant with an increasing percentage of bone marrow erythroid cells. In contrast, in HFD-fed mice, EPO increased endothelial cells and stromal progenitors with a trend toward the normalization of marrow homeostasis. EPO administration increased c-terminal FGF23 and intact serum FGF23 only in HFD-fed mice. These data demonstrate the distinct EPO responses of bone and marrow in normal and obese states, accompanying EPO-induced loss of BMAT.
Collapse
|
36
|
Bao M, Zhang K, Wei Y, Hua W, Gao Y, Li X, Ye L. Therapeutic potentials and modulatory mechanisms of fatty acids in bone. Cell Prolif 2020; 53:e12735. [PMID: 31797479 PMCID: PMC7046483 DOI: 10.1111/cpr.12735] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/02/2019] [Accepted: 11/05/2019] [Indexed: 02/05/2023] Open
Abstract
Bone metabolism is a lifelong process that includes bone formation and resorption. Osteoblasts and osteoclasts are the predominant cell types associated with bone metabolism, which is facilitated by other cells such as bone marrow mesenchymal stem cells (BMMSCs), osteocytes and chondrocytes. As an important component in our daily diet, fatty acids are mainly categorized as long-chain fatty acids including polyunsaturated fatty acids (LCPUFAs), monounsaturated fatty acids (LCMUFAs), saturated fatty acids (LCSFAs), medium-/short-chain fatty acids (MCFAs/SCFAs) as well as their metabolites. Fatty acids are closely associated with bone metabolism and associated bone disorders. In this review, we summarized the important roles and potential therapeutic implications of fatty acids in multiple bone disorders, reviewed the diverse range of critical effects displayed by fatty acids on bone metabolism, and elucidated their modulatory roles and mechanisms on specific bone cell types. The evidence supporting close implications of fatty acids in bone metabolism and disorders suggests fatty acids as potential therapeutic and nutritional agents for the treatment and prevention of metabolic bone diseases.
Collapse
Affiliation(s)
- Minyue Bao
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Kaiwen Zhang
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Yangyini Wei
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Weihan Hua
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Yanzi Gao
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Xin Li
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Ling Ye
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesDepartment of Cariology and EndodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
37
|
Implantation of allogenic umbilical cord blood-derived mesenchymal stem cells improves knee osteoarthritis outcomes: Two-year follow-up. Regen Ther 2020; 14:32-39. [PMID: 31988992 PMCID: PMC6965506 DOI: 10.1016/j.reth.2019.10.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/20/2019] [Accepted: 10/22/2019] [Indexed: 12/12/2022] Open
Abstract
Introduction Clinical outcomes after the implantation of allogenic human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) in osteoarthritic knees have been rarely reported. Our study aimed to investigate clinical outcomes of osteoarthritic patients who underwent hUCB-MSC implantation. Methods In this case series (level of evidence: 4), from January 2014 to December 2015, 128 patients with full-thickness cartilage lesions (International Cartilage Repair Society grade 4 and Kellgren–Lawrence grade ≤3) who underwent hUCB-MSC implantation were retrospectively evaluated with a minimum of 2-year follow-up. After removing the sclerotic subchondral bone with an arthroscopic burr, 4-mm-diameter holes were created at 2-mm intervals, and hyaluronic acid and hUCB-MSCs were subsequently mixed and implanted in the holes and other articular defect sites. Clinical outcomes were evaluated preoperatively, 1 year postoperatively, and 2 years postoperatively (minimum) using visual analog scale (VAS), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), and International Knee Documentation Committee (IKDC) scores. To assess clinical outcomes, patients were divided into two or three groups according to the lesion size, lesion location, number of lesions, body mass index, and age; statistical analyses were performed using these data. Results The mean (±standard deviation) VAS, WOMAC, and IKDC scores at 1 and 2 years after surgery including hUCB-MSC implantation improved significantly compared to the preoperative scores (P < 0.001). There were significant differences in the lesion location (P < 0.05). Medial femoral condyle lesions resulted in worse outcomes compared with lateral femoral condyle and trochlea lesions. No adverse reactions or postoperative complications were noted. Conclusions Implantation of hUCB-MSCs is effective for treating knee osteoarthritis based on a follow-up lasting a minimum of 2 years.
Collapse
Key Words
- ACI, autologous chondrocyte implantation
- AT-MSCs, adipose tissue-derived MSCs
- Allogenic
- BM-MSCs, bone marrow-derived MSCs
- BMI, body mass index
- HA, hyaluronic acid
- Human umbilical cord blood
- IKDC, International Knee Documentation Committee
- KL, Kellgren–Lawrence
- Knee osteoarthritis
- LFC, lateral femoral condyle
- MFC, medial femoral condyle
- MRI, magnetic resonance imaging
- Mesenchymal stem cells
- OA, osteoarthritis
- OAT, osteochondral autologous transplantation
- VAS, visual analog scale
- WOMAC, Western Ontario and McMaster Universities Osteoarthritis Index
- hUCB-MSCs, human umbilical cord blood-derived mesenchymal stem cells
Collapse
|
38
|
Human dental pulp stem cells differentiation to neural cells, osteocytes and adipocytes-An in vitro study. Heliyon 2020; 6:e03054. [PMID: 32042932 PMCID: PMC7002807 DOI: 10.1016/j.heliyon.2019.e03054] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/04/2019] [Accepted: 12/11/2019] [Indexed: 12/19/2022] Open
Abstract
Human dental pulp stem cells (hDPSCs) are promising source of cells for numerous and varied regenerative medicine applications as those possess high proliferation potential with multilineage differentiation capacity compare to other sources of adult stem cells; therefore, hDPSCs could be the good source for autologous transplantation in tissue engineering and regenerative medicine. In this study stem cells were isolated from dental pulp and were characterised by flowcytometry and immunocytochemistry. The controlled cells as well as, 7-day cultured cells were positive for transcription factors, OCT 4 and SOX 2 thatconfirmed isolated cellsasmesenchymal stem cells (MSCs). These cells showed positive expression for CD 19, CD 73, CD 90, CD 105 and are negative for CD 34, CD 45. Viability of hDPSCS were studied by trypan blue (TB) staining and fluorescent microscopic study. After 7 days of passaging by using several growth factors, cells express neural cell markers oligodendrocyte and glial fibrillary acidic protein. Specifically, osteocytes were grown from dental pulp MSCSsin vitro with the help of growth factors, dexamethasone, ascorbic acid-2- phosphate and β-glycerophosphate whereas, adipocytes were grown with indomethacin, 3-isobutyl-1-methylxanthine and insulin. Osteocytes and adipocytes were characterized by von Kossa and Oil red O staining, respectively. Chromosomal analysis of dental pulp-MSCs was done for qualitative assessment of MSCs. Karyotyping indicated diploid chromosome number in dental pulp derived MSCs. In vitro grown osteocytes could be used for bone fracture reunion cases, and adipocytes could be used for further research purposes.
Collapse
|
39
|
Saint-Laurent C, Garde-Etayo L, Gouze E. Obesity in achondroplasia patients: from evidence to medical monitoring. Orphanet J Rare Dis 2019; 14:253. [PMID: 31727132 PMCID: PMC6854721 DOI: 10.1186/s13023-019-1247-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 10/30/2019] [Indexed: 12/11/2022] Open
Abstract
Achondroplasia is a rare genetic disease representing the most common form of short-limb dwarfism. It is characterized by bone growth abnormalities that are well characterized and by a strong predisposition to abdominal obesity for which causes are unknown. Despite having aroused interest at the end of the 20 h century, there are still only very little data available on this aspect of the pathology. Today, interest is rising again, and some studies are now proposing mechanistic hypotheses and guidance for patient management. These data confirm that obesity is a major health problem in achondroplasia necessitating an early yet complex clinical management. Anticipatory care should be directed at identifying children who are at high risk to develop obesity and intervening to prevent the metabolic complications in adults. In this review, we are regrouping available data characterizing obesity in achondroplasia and we are identifying the current tools used to monitor obesity in these patients.
Collapse
Affiliation(s)
| | | | - Elvire Gouze
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France. .,iBV, institute de Biologie Valrose, Univ. Cote d'Azur, Batiment Sciences Naturelles, UFR Sciences; Parc Valrose, 28 avenue Valrose, 06108, Nice Cedex 2, France.
| |
Collapse
|
40
|
miR-21 deficiency contributes to the impaired protective effects of obese rat mesenchymal stem cell-derived exosomes against spinal cord injury. Biochimie 2019; 167:171-178. [PMID: 31605737 DOI: 10.1016/j.biochi.2019.10.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/03/2019] [Indexed: 02/06/2023]
Abstract
The therapeutic effect of stem cell transplantation in traumatic spinal cord injury (SCI) has been extensively studied these days, and evidence has shown that stem cell-derived exosomes and exosome-shuttled miRNA (e.g. miR-21) contribute to the protective effects of stem cell transplantation against SCI. It has been reported that obesity, a prevalent metabolic disorder, reshapes stem cells and their extracellular vesicles. However, the effects of exosomes derived from obese rat stem cells on SCI and its underlying mechanism remain unknown. Here, we examined the effects of exosomes derived from obese rat mesenchymal stem cells (MSCs) on SCI, and tested the role of miR-21 in their effects. We found that exosomes derived from obese rat MSCs showed decreased miR-21 levels and did not exert protective effects against SCI. Overexpression of miR-21 in obese rat MSCs restored the protective effects of exosomes purified from obese rat MSCs against SCI. In addition, obese rat MSCs showed insulin resistance, and MSC insulin resistance decreased miR-21 levels in its secreted exosomes. These results suggested that miR-21 deficiency in obese rat MSCs contributes to the impaired protective effects of obese rat MSCs-derived exosomes against SCI, and further reinforced the notion that miR-21 is a potential molecule for treatment of SCI.
Collapse
|
41
|
Guilak F, Pferdehirt L, Ross AK, Choi YR, Collins KH, Nims RJ, Katz DB, Klimak M, Tabbaa S, Pham CT. Designer Stem Cells: Genome Engineering and the Next Generation of Cell-Based Therapies. J Orthop Res 2019; 37:1287-1293. [PMID: 30977548 PMCID: PMC6546536 DOI: 10.1002/jor.24304] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 02/04/2023]
Abstract
Stem cells provide tremendous promise for the development of new therapeutic approaches for musculoskeletal conditions. In addition to their multipotency, certain types of stem cells exhibit immunomodulatory effects that can mitigate inflammation and enhance tissue repair. However, the translation of stem cell therapies to clinical practice has proven difficult due to challenges in intradonor and interdonor variability, engraftment, variability in recipient microenvironment and patient indications, and limited therapeutic biological activity. In this regard, the success of stem cell-based therapies may benefit from cellular engineering approaches to enhance factors such as purification, homing and cell survival, trophic effects, or immunomodulatory signaling. By combining recent advances in gene editing, synthetic biology, and tissue engineering, the potential exists to create new classes of "designer" cells that have prescribed cell-surface molecules and receptors as well as synthetic gene circuits that provide for autoregulated drug delivery or enhanced tissue repair. Published by Wiley Periodicals, Inc. J Orthop Res 37:1287-1293, 2019.
Collapse
Affiliation(s)
- Farshid Guilak
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110,Shriners Hospitals for Children – St. Louis, St. Louis, MO 63110,Department of Biomedical Engineering, Washington University, St. Louis, MO 63110,Correspondence: Farshid Guilak, Ph.D. Center of Regenerative Medicine, Washington University, St. Louis, Campus Box 8233, McKinley Research Bldg, Room 3121, St. Louis, MO 63110-1624.
| | - Lara Pferdehirt
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110,Shriners Hospitals for Children – St. Louis, St. Louis, MO 63110,Department of Biomedical Engineering, Washington University, St. Louis, MO 63110
| | - Alison K. Ross
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110,Shriners Hospitals for Children – St. Louis, St. Louis, MO 63110,Department of Biomedical Engineering, Washington University, St. Louis, MO 63110
| | - Yun-Rak Choi
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110,Shriners Hospitals for Children – St. Louis, St. Louis, MO 63110,Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Kelsey H. Collins
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110,Shriners Hospitals for Children – St. Louis, St. Louis, MO 63110
| | - Robert J. Nims
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110,Shriners Hospitals for Children – St. Louis, St. Louis, MO 63110
| | - Dakota B. Katz
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110,Shriners Hospitals for Children – St. Louis, St. Louis, MO 63110,Department of Biomedical Engineering, Washington University, St. Louis, MO 63110
| | - Molly Klimak
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110,Shriners Hospitals for Children – St. Louis, St. Louis, MO 63110,Department of Biomedical Engineering, Washington University, St. Louis, MO 63110
| | | | - Christine T.N. Pham
- Division of Rheumatology, Department of Medicine, Washington University in St. Louis, MO, 63110
| |
Collapse
|
42
|
Silva KR, Baptista LS. Adipose-derived stromal/stem cells from different adipose depots in obesity development. World J Stem Cells 2019; 11:147-166. [PMID: 30949294 PMCID: PMC6441940 DOI: 10.4252/wjsc.v11.i3.147] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 01/27/2019] [Accepted: 02/28/2019] [Indexed: 02/06/2023] Open
Abstract
The increasing prevalence of obesity is alarming because it is a risk factor for cardiovascular and metabolic diseases (such as type 2 diabetes). The occurrence of these comorbidities in obese patients can arise from white adipose tissue (WAT) dysfunctions, which affect metabolism, insulin sensitivity and promote local and systemic inflammation. In mammals, WAT depots at different anatomical locations (subcutaneous, preperitoneal and visceral) are highly heterogeneous in their morpho-phenotypic profiles and contribute differently to homeostasis and obesity development, depending on their ability to trigger and modulate WAT inflammation. This heterogeneity is likely due to the differential behavior of cells from each depot. Numerous studies suggest that adipose-derived stem/stromal cells (ASC; referred to as adipose progenitor cells, in vivo) with depot-specific gene expression profiles and adipogenic and immunomodulatory potentials are keys for the establishment of the morpho-functional heterogeneity between WAT depots, as well as for the development of depot-specific responses to metabolic challenges. In this review, we discuss depot-specific ASC properties and how they can contribute to the pathophysiology of obesity and metabolic disorders, to provide guidance for researchers and clinicians in the development of ASC-based therapeutic approaches.
Collapse
Affiliation(s)
- Karina Ribeiro Silva
- Laboratory of Tissue Bioengineering, Directory of Metrology Applied to Life Sciences, National Institute of Metrology, Quality and Technology, Duque de Caxias, RJ 25250-020, Brazil
- Post-Graduation Program of Biotechnology, National Institute of Metrology, Quality and Technology, Duque de Caxias, RJ 25250-020, Brazil
| | - Leandra Santos Baptista
- Laboratory of Tissue Bioengineering, Directory of Metrology Applied to Life Sciences, National Institute of Metrology, Quality and Technology, Duque de Caxias, RJ 25250-020, Brazil
- Post-Graduation Program of Biotechnology, National Institute of Metrology, Quality and Technology, Duque de Caxias, RJ 25250-020, Brazil
- Multidisciplinary Center for Biological Research (Numpex-Bio), Federal University of Rio de Janeiro Campus Duque de Caxias, Duque de Caxias, RJ 25245-390, Brazil
| |
Collapse
|
43
|
Harasymowicz NS, Dicks A, Wu CL, Guilak F. Physiologic and pathologic effects of dietary free fatty acids on cells of the joint. Ann N Y Acad Sci 2019; 1440:36-53. [PMID: 30648276 DOI: 10.1111/nyas.13999] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/08/2018] [Accepted: 12/14/2018] [Indexed: 12/14/2022]
Abstract
Fatty acids (FAs) are potent organic compounds that not only can be used as an energy source during nutrient deprivation but are also involved in several essential signaling cascades in cells. Therefore, a balanced intake of different dietary FAs is critical for the maintenance of cellular functions and tissue homeostasis. A diet with an imbalanced fat composition creates a risk for developing metabolic syndrome and various musculoskeletal diseases, including osteoarthritis (OA). In this review, we summarize the current state of knowledge and mechanistic insights regarding the role of dietary FAs, such as saturated FAs, omega-6 polyunsaturated FAs (PUFAs), and omega-3 PUFAs on joint inflammation and OA pathogeneses. In particular, we review how different types of dietary FAs and their derivatives distinctly affect a variety of cells within the joint, including chondrocytes, osteoblasts, osteoclasts, and synoviocytes. Understanding the molecular mechanisms underlying the effects of FAs on metabolic behavior, anabolic, and catabolic processes, as well as the inflammatory response of joint cells, may help identify therapeutic targets for the prevention of metabolic joint diseases.
Collapse
Affiliation(s)
- Natalia S Harasymowicz
- Department of Orthopaedic Surgery, Washington University, St. Louis, Missouri.,Shriners Hospitals for Children-St. Louis, St. Louis, Missouri
| | - Amanda Dicks
- Department of Orthopaedic Surgery, Washington University, St. Louis, Missouri.,Shriners Hospitals for Children-St. Louis, St. Louis, Missouri.,Department of Biomedical Engineering, Washington University, St. Louis, Missouri
| | - Chia-Lung Wu
- Department of Orthopaedic Surgery, Washington University, St. Louis, Missouri.,Shriners Hospitals for Children-St. Louis, St. Louis, Missouri
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University, St. Louis, Missouri.,Shriners Hospitals for Children-St. Louis, St. Louis, Missouri.,Department of Biomedical Engineering, Washington University, St. Louis, Missouri
| |
Collapse
|
44
|
Effects of palmitate and astaxanthin on cell viability and proinflammatory characteristics of mesenchymal stem cells. Int Immunopharmacol 2019; 68:164-170. [PMID: 30639962 DOI: 10.1016/j.intimp.2018.12.063] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/16/2018] [Accepted: 12/28/2018] [Indexed: 12/18/2022]
Abstract
Mesenchymal stem cells (MSCs) have broad immunomodulatory activities. These cells are a stable source of cytokine production such as interleukin-6 (IL6), monocyte chemoattractant protein-1 (MCP-1/CCL2) and vascular endothelial growth factor (VEGF). Fatty acid elevation in chronic metabolic diseases alters the microenvironment of MSCs and thereby, might affect their survival and cytokine production. In the present study, we investigated the effects of palmitate, the most abundant saturated free fatty acid (FFA) in plasma, and astaxanthin, a potent antioxidant, on cell viability and apoptosis in human bone marrow-driven mesenchymal stem cells. We also elucidated how palmitate and astaxanthin influence the inflammation in MSCs. Human mesenchymal stem cells were collected from an aspirate of the femurs and tibias marrow compartment. The effect of palmitate on cell viability, caspase activity and pro-inflammatory cytokines expression and secretion were evaluated. In addition, activation of the MAP kinases and NF-kB signaling pathways were investigated. The results showed that astaxanthin protected MSCs from palmitate-induced cell death. We found that palmitate significantly enhanced IL-6, VEGF and MCP-1 expression, and secretion in MSC cells. Increased cytokine expression was parallel to the enhanced phosphorylation of P38, ERK and IKKα-IKKβ. In addition, pretreatment with JNK, ERK, P38, and NF-kB inhibitors could correspondingly attenuate palmitate-induced expression of VEGF, IL-6, and MCP-1. Our results demonstrated that fatty acid exposure causes inflammatory responses in MSCs that can be alleviated favorably by astaxanthin treatment.
Collapse
|
45
|
Neonatal overfeeding impairs differentiation potential of mice subcutaneous adipose mesenchymal stem cells. Stem Cell Rev Rep 2018; 14:535-545. [PMID: 29667027 DOI: 10.1007/s12015-018-9812-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nutritional changes in the development (intrauterine life and postnatal period) may trigger long-term pathophysiological complications such as obesity and cardiovascular disease. Metabolic programming leads to organs and tissues modifications, including adipose tissue, with increased lipogenesis, production of inflammatory cytokines, and decreased glucose uptake. However, stem cells participation in adipose tissue dysfunctions triggered by overfeeding during lactation has not been elucidated. Therefore, this study was the first to evaluate the effect of metabolic programming on adipose mesenchymal stem cells (ASC) from mice submitted to overfeeding during lactation, using the litter reduction model. Cells were evaluated for proliferation capacity, viability, immunophenotyping, and reactive oxygen species (ROS) production. The content of UCP-2 and PGC1-α was determined by Western Blot. ASC differentiation potential in adipogenic and osteogenic environments was also evaluated, as well the markers of adipogenic differentiation (PPAR-γ and FAB4) and osteogenic differentiation (osteocalcin) by RT-qPCR. Results indicated that neonatal overfeeding does not affect ASC proliferation, ROS production, and viability. However, differentiation potential and proteins related to metabolism were altered. ASC from overfed group presented increased adipogenic differentiation, decreased osteogenic differentiation, and also showed increased PGC1-α protein content and reduced UCP-2 expression. Thus, ASC may be involved with the increased adiposity observed in neonatal overfeeding, and its therapeutic potential may be affected.
Collapse
|
46
|
Kornicka K, Houston J, Marycz K. Dysfunction of Mesenchymal Stem Cells Isolated from Metabolic Syndrome and Type 2 Diabetic Patients as Result of Oxidative Stress and Autophagy may Limit Their Potential Therapeutic Use. Stem Cell Rev Rep 2018; 14:337-345. [PMID: 29611042 PMCID: PMC5960487 DOI: 10.1007/s12015-018-9809-x] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Mesenchymal stem cells (MSC) have become a promising tool for therapeutic intervention. Their unique features, including self-renewal, multipotency and immunomodulatory properties draw the worldwide attention of researchers and physicians with respect to their application in disease treatment. However, the environment (so-called niche) from which MSCs are isolated may determine their usefulness. Many studies indicated the involvement of MSCs in ageing and disease. In this review, we have focused on how type 2 diabetes (T2D) and metabolic syndrome (MS) affect MSC properties, and thus limit their therapeutic potential. Herein, we mainly focus on apoptosis, autophagy and mitochondria deterioration processes that indirectly affect MSC fate. Based on the data presented, special attention should be paid when considering autologous MSC therapy in T2D or MS treatments, as their therapeutic potential may be restricted.
Collapse
Affiliation(s)
- Katarzyna Kornicka
- Department of Experimental Biology, The Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland.
| | - Jenny Houston
- PferdePraxis Dr. Med. Vet. Daniel Weiss, Postmatte 14, CH-8807, Freienbach, Switzerland
| | - Krzysztof Marycz
- Department of Experimental Biology, The Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland.,Wroclaw Research Centre EIT+, 54-066, Wroclaw, Poland
| |
Collapse
|
47
|
Sun Y, Chen S, Pei M. Comparative advantages of infrapatellar fat pad: an emerging stem cell source for regenerative medicine. Rheumatology (Oxford) 2018; 57:2072-2086. [PMID: 29373763 PMCID: PMC6256334 DOI: 10.1093/rheumatology/kex487] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 11/13/2017] [Indexed: 12/15/2022] Open
Abstract
Growing evidence indicates that infrapatellar fat pad (IPFP)-derived stem cells (IPFSCs) exert robust proliferation capacities and multilineage differentiation potentials. However, few papers summarize the advantages that the IPFP and IPFSCs have in regenerative medicine. In this review we delineate the development and anatomy of the IPFP by comparing it with an adjacent fibrous tissue, synovium, and a more frequently harvested fat depot, subcutaneous adipose tissue. Furthermore, we explore the similarities and differences of stem cells from these three tissues in terms of IPFSCs, synovium-derived stem cells and subcutaneous adipose tissue-derived stem cells in proliferation capacity and tri-lineage differentiation potentials, including chondrogenesis, osteogenesis and adipogenesis. Finally, we highlight the advantages of IPFSCs in regenerative medicine, such as the abundant accessibility and the ability to resist inflammation and senescence, two hurdles for cell-based tissue regeneration. Considering the comparative advantages of IPFSCs, the IPFP can serve as an excellent stem cell source for regenerative medicine, particularly for cartilage regeneration.
Collapse
Affiliation(s)
- Yu Sun
- Department of Orthopaedics, Orthopaedics Institute, Subei People’s Hospital of Jiangsu Province, Yangzhou, Jiangsu, China
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, USA
| | - Song Chen
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, USA
- Department of Orthopaedics, Chengdu Military General Hospital, Chengdu, Sichuan, China
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, USA
- Exercise Physiology, West Virginia University, Morgantown, WV, USA
- Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
48
|
The Effect of Chronic Inflammation and Oxidative and Endoplasmic Reticulum Stress in the Course of Metabolic Syndrome and Its Therapy. Stem Cells Int 2018; 2018:4274361. [PMID: 30425746 PMCID: PMC6217741 DOI: 10.1155/2018/4274361] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/26/2018] [Accepted: 10/03/2018] [Indexed: 12/14/2022] Open
Abstract
Metabolic syndrome (MetS) is highly associated with a modern lifestyle. The prevalence of MetS has reached epidemic proportion and is still rising. The main cause of MetS and finally type 2 diabetes occurrence is excessive nutrient intake, lack of physical activity, and inflammatory cytokines secretion. These factors lead to redistribution of body fat and oxidative and endoplasmic reticulum (ER) stress occurrence, resulting in insulin resistance, increase adipocyte differentiation, and much elevated levels of proinflammatory cytokines. Cellular therapies, especially mesenchymal stem cell (MSC) transplantation, seem to be promising in the MetS and type 2 diabetes treatments, due to their immunomodulatory effect and multipotent capacity; adipose-derived stem cells (ASCs) play a crucial role in MSC-based cellular therapies. In this review, we focused on etiopathology of MetS, especially on the crosstalk between chronic inflammation, oxidative stress, and ER stress and their effect on MetS-related disease occurrence, as well as future perspectives of cellular therapies. We also provide an overview of therapeutic approaches that target endoplasmic reticulum and oxidative stress.
Collapse
|
49
|
Hillers LE, D'Amato JV, Chamberlin T, Paderta G, Arendt LM. Obesity-Activated Adipose-Derived Stromal Cells Promote Breast Cancer Growth and Invasion. Neoplasia 2018; 20:1161-1174. [PMID: 30317122 PMCID: PMC6187054 DOI: 10.1016/j.neo.2018.09.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 09/09/2018] [Accepted: 09/16/2018] [Indexed: 01/07/2023] Open
Abstract
Obese women diagnosed with breast cancer have an increased risk for metastasis, and the underlying mechanisms are not well established. Within the mammary gland, adipose-derived stromal cells (ASCs) are heterogeneous cells with the capacity to differentiate into multiple mesenchymal lineages. To study the effects of obesity on ASCs, mice were fed a control diet (CD) or high-fat diet (HFD) to induce obesity, and ASCs were isolated from the mammary glands of lean and obese mice. We observed that obesity increased ASCs proliferation, decreased differentiation potential, and upregulated expression of α-smooth muscle actin, a marker of activated fibroblasts, compared to ASCs from lean mice. To determine how ASCs from obese mice impacted tumor growth, we mixed ASCs isolated from CD- or HFD-fed mice with mammary tumor cells and injected them into the mammary glands of lean mice. Tumor cells mixed with ASCs from obese mice grew significantly larger tumors and had increased invasion into surrounding adipose tissue than tumor cells mixed with control ASCs. ASCs from obese mice demonstrated enhanced tumor cell invasion in culture, a phenotype associated with increased expression of insulin-like growth factor-1 (IGF-1) and abrogated by IGF-1 neutralizing antibodies. Weight loss induced in obese mice significantly decreased expression of IGF-1 from ASCs and reduced the ability of the ASCs to induce an invasive phenotype. Together, these results suggest that obesity enhances local invasion of breast cancer cells through increased expression of IGF-1 by mammary ASCs, and weight loss may reverse this tumor-promoting phenotype.
Collapse
Affiliation(s)
- Lauren E Hillers
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI 53706
| | - Joseph V D'Amato
- Department of Comparative Biosciences, School of Veterinary Medicine, University Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706
| | - Tamara Chamberlin
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI 53706
| | - Gretchen Paderta
- Department of Comparative Biosciences, School of Veterinary Medicine, University Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706
| | - Lisa M Arendt
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI 53706; Department of Comparative Biosciences, School of Veterinary Medicine, University Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706.
| |
Collapse
|
50
|
Louwen F, Ritter A, Kreis NN, Yuan J. Insight into the development of obesity: functional alterations of adipose-derived mesenchymal stem cells. Obes Rev 2018. [PMID: 29521029 DOI: 10.1111/obr.12679] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Obesity is associated with a variety of disorders including cardiovascular diseases, diabetes mellitus and cancer. Obesity changes the composition and structure of adipose tissue, linked to pro-inflammatory environment, endocrine/metabolic dysfunction, insulin resistance and oxidative stress. Adipose-derived mesenchymal stem cells (ASCs) have multiple functions like cell renewal, spontaneous repair and homeostasis in adipose tissue. In this review article, we have summarized the recent data highlighting that ASCs in obesity are defective in various functionalities and properties including differentiation, angiogenesis, motility, multipotent state, metabolism and immunomodulation. Inflammatory milieu, hypoxia and abnormal metabolites in obese tissue are crucial for impairing the functions of ASCs. Further work is required to explore the precise molecular mechanisms underlying its alterations and impairments. Based on these data, we suggest that deregulated ASCs, possibly also other mesenchymal stem cells, are important in promoting the development of obesity. Restoration of ASCs/mesenchymal stem cells might be an additional strategy to combat obesity and its associated diseases.
Collapse
Affiliation(s)
- F Louwen
- Department of Gynecology and Obstetrics, J. W. Goethe-University, Frankfurt, Germany
| | - A Ritter
- Department of Gynecology and Obstetrics, J. W. Goethe-University, Frankfurt, Germany
| | - N N Kreis
- Department of Gynecology and Obstetrics, J. W. Goethe-University, Frankfurt, Germany
| | - J Yuan
- Department of Gynecology and Obstetrics, J. W. Goethe-University, Frankfurt, Germany
| |
Collapse
|