1
|
Vakayil M, Madani AY, Agha MV, Majeed Y, Hayat S, Yonuskunju S, Mohamoud YA, Malek J, Suhre K, Mazloum NA. The E3 ubiquitin-protein ligase UHRF1 promotes adipogenesis and limits fibrosis by suppressing GPNMB-mediated TGF-β signaling. Sci Rep 2024; 14:11886. [PMID: 38789534 PMCID: PMC11126700 DOI: 10.1038/s41598-024-62508-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
The E3 ubiquitin-ligase UHRF1 is an epigenetic regulator coordinating DNA methylation and histone modifications. However, little is known about how it regulates adipogenesis or metabolism. In this study, we discovered that UHRF1 is a key regulatory factor for adipogenesis, and we identified the altered molecular pathways that UHRF1 targets. Using CRISPR/Cas9-based knockout strategies, we discovered the whole transcriptomic changes upon UHRF1 deletion. Bioinformatics analyses revealed that key adipogenesis regulators such PPAR-γ and C/EBP-α were suppressed, whereas TGF-β signaling and fibrosis markers were upregulated in UHRF1-depleted differentiating adipocytes. Furthermore, UHRF1-depleted cells showed upregulated expression and secretion of TGF-β1, as well as the glycoprotein GPNMB. Treating differentiating preadipocytes with recombinant GPNMB led to an increase in TGF-β protein and secretion levels, which was accompanied by an increase in secretion of fibrosis markers such as MMP13 and a reduction in adipogenic conversion potential. Conversely, UHRF1 overexpression studies in human cells demonstrated downregulated levels of GPNMB and TGF-β, and enhanced adipogenic potential. In conclusion, our data show that UHRF1 positively regulates 3T3-L1 adipogenesis and limits fibrosis by suppressing GPNMB and TGF-β signaling cascade, highlighting the potential relevance of UHRF1 and its targets to the clinical management of obesity and linked metabolic disorders.
Collapse
Affiliation(s)
- Muneera Vakayil
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, PO Box 34110, Doha, Qatar
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar (WCM-Q), Qatar Foundation, PO Box 24144, Doha, Qatar
| | - Aisha Y Madani
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar (WCM-Q), Qatar Foundation, PO Box 24144, Doha, Qatar
| | - Maha V Agha
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, Qatar
| | - Yasser Majeed
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar (WCM-Q), Qatar Foundation, PO Box 24144, Doha, Qatar
| | - Shahina Hayat
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar (WCM-Q), Qatar Foundation, PO Box 24144, Doha, Qatar
| | - Shameem Yonuskunju
- Department of Genetic Medicine, Weill Cornell Medicine-Qatar (WCM-Q), Qatar Foundation, PO Box 24144, Doha, Qatar
| | - Yasmin Ali Mohamoud
- Department of Genetic Medicine, Weill Cornell Medicine-Qatar (WCM-Q), Qatar Foundation, PO Box 24144, Doha, Qatar
| | - Joel Malek
- Department of Genetic Medicine, Weill Cornell Medicine-Qatar (WCM-Q), Qatar Foundation, PO Box 24144, Doha, Qatar
| | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar (WCM-Q), Qatar Foundation, PO Box 24144, Doha, Qatar
| | - Nayef A Mazloum
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar (WCM-Q), Qatar Foundation, PO Box 24144, Doha, Qatar.
| |
Collapse
|
2
|
Drygalski K, Higos R, Merabtene F, Mojsak P, Grubczak K, Ciborowski M, Razak H, Clément K, Dugail I. Extracellular matrix hyaluronan modulates fat cell differentiation and primary cilia dynamics. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159470. [PMID: 38423452 DOI: 10.1016/j.bbalip.2024.159470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/02/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Hyaluronan is an important extracellular matrix component, with poorly documented physiological role in the context of lipid-rich adipose tissue. We have investigated the global impact of hyaluronan removal from adipose tissue environment by in vitro exposure to exogenous hyaluronidase (or heat inactivated enzyme). Gene set expression analysis from RNA sequencing revealed downregulated adipogenesis as a main response to hyaluronan removal from human adipose tissue samples, which was confirmed by hyaluronidase-mediated inhibition of adipocyte differentiation in the 3T3L1 adipose cell line. Hyaluronidase exposure starting from the time of induction with the differentiation cocktail reduced lipid accumulation in mature adipocytes, limited the expression of terminal differentiation marker genes, and impaired the early induction of co-regulated Cebpa and Pparg mRNA. Reduction of Cebpa and Pparg expression by exogenous hyaluronidase was also observed in cultured primary preadipocytes from subcutaneous, visceral or brown adipose tissue of mice. Mechanistically, inhibition of adipogenesis by hyaluronan removal was not caused by changes in osmotic pressure or cell inflammatory status, could not be mimicked by exposure to threose, a metabolite generated by hyaluronan degradation, and was not linked to alteration in endogenous Wnt ligands expression. Rather, we observed that hyaluronan removal associated with disrupted primary cilia dynamics, with elongated cilium and higher proportions of preadipocytes that remained ciliated in hyaluronidase-treated conditions. Thus, our study points to a new link between ciliogenesis and hyaluronan impacting adipose tissue development.
Collapse
Affiliation(s)
- Krzysztof Drygalski
- INSERM, Sorbonne Université, NutriOmics team : Nutrition/Obesities- systemic approaches, Paris 75013, France; Department of Hypertension and Diabetology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Romane Higos
- INSERM, Sorbonne Université, NutriOmics team : Nutrition/Obesities- systemic approaches, Paris 75013, France
| | - Fatiha Merabtene
- INSERM, Sorbonne Université, NutriOmics team : Nutrition/Obesities- systemic approaches, Paris 75013, France
| | - Patrycja Mojsak
- Clinical Research Centre, Medical University of Bialystok, 15-276 Białystok, Poland
| | - Kamil Grubczak
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Michal Ciborowski
- Clinical Research Centre, Medical University of Bialystok, 15-276 Białystok, Poland
| | - Hady Razak
- Department of General and Endocrine Surgery, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Karine Clément
- INSERM, Sorbonne Université, NutriOmics team : Nutrition/Obesities- systemic approaches, Paris 75013, France; Assistance Publique-Hopitaux de Paris, Nutrition department, Pitié-Salpetrière Hospital, 75013 Paris, France
| | - Isabelle Dugail
- INSERM, Sorbonne Université, NutriOmics team : Nutrition/Obesities- systemic approaches, Paris 75013, France.
| |
Collapse
|
3
|
He R, Zhao S, Cui M, Chen Y, Ma J, Li J, Wang X. Cutaneous manifestations of inflammatory bowel disease: basic characteristics, therapy, and potential pathophysiological associations. Front Immunol 2023; 14:1234535. [PMID: 37954590 PMCID: PMC10637386 DOI: 10.3389/fimmu.2023.1234535] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease typically involving the gastrointestinal tract but not limited to it. IBD can be subdivided into Crohn's disease (CD) and ulcerative colitis (UC). Extraintestinal manifestations (EIMs) are observed in up to 47% of patients with IBD, with the most frequent reports of cutaneous manifestations. Among these, pyoderma gangrenosum (PG) and erythema nodosum (EN) are the two most common skin manifestations in IBD, and both are immune-related inflammatory skin diseases. The presence of cutaneous EIMs may either be concordant with intestinal disease activity or have an independent course. Despite some progress in research on EIMs, for instance, ectopic expression of gut-specific mucosal address cell adhesion molecule-1 (MAdCAM-1) and chemokine CCL25 on the vascular endothelium of the portal tract have been demonstrated in IBD-related primary sclerosing cholangitis (PSC), little is understood about the potential pathophysiological associations between IBD and cutaneous EIMs. Whether cutaneous EIMs are inflammatory events with a commonly shared genetic background or environmental risk factors with IBD but independent of IBD or are the result of an extraintestinal extension of intestinal inflammation, remains unclear. The review aims to provide an overview of the two most representative cutaneous manifestations of IBD, describe IBD's epidemiology, clinical characteristics, and histology, and discuss the immunopathophysiology and existing treatment strategies with biologic agents, with a focus on the potential pathophysiological associations between IBD and cutaneous EIMs.
Collapse
Affiliation(s)
- Ronghua He
- Department of Gastroenterology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Subei Zhao
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mingyu Cui
- Department of Gastroenterology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Yanhao Chen
- Department of Gastroenterology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jinrong Ma
- Department of Gastroenterology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jintao Li
- Department of Gastroenterology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaodong Wang
- Department of Gastroenterology, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
4
|
Gopan G, Jose J, Khot KB, Bandiwadekar A. The use of cellulose, chitosan and hyaluronic acid in transdermal therapeutic management of obesity: A review. Int J Biol Macromol 2023:125374. [PMID: 37330096 DOI: 10.1016/j.ijbiomac.2023.125374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/29/2023] [Accepted: 06/11/2023] [Indexed: 06/19/2023]
Abstract
Obesity is a clinical condition with rising popularity and detrimental impacts on human health. According to the World Health Organization, obesity is the sixth most common cause of death worldwide. It is challenging to combat obesity because medications that are successful in the clinical investigation have harmful side effects when administered orally. The conventional approaches for treating obesity primarily entail synthetic compounds and surgical techniques but possess severe adverse effects and recurrences. As a result, a safe and effective strategy to combat obesity must be initiated. Recent studies have shown that biological macromolecules of the carbohydrate class, such as cellulose, hyaluronic acid, and chitosan, can enhance the release and efficacy of medications for obesity but due to their short biological half-lives and poor oral bioavailability, their distribution rate is affected. This helps to comprehend the need for an effective therapeutic approach via a transdermal drug delivery system. This review focuses on the transdermal administration, utilizing cellulose, chitosan, and hyaluronic acid via microneedles, as it offers a promising solution to overcome existing therapy limitations in managing obesity and it also highlights how microneedles can effectively deliver therapeutic substances through the skin's outer layer, bypassing pain receptors and specifically targeting adipose tissue.
Collapse
Affiliation(s)
- Gopika Gopan
- NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore 575018, India
| | - Jobin Jose
- NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore 575018, India.
| | - Kartik Bhairu Khot
- NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore 575018, India
| | - Akshay Bandiwadekar
- NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore 575018, India
| |
Collapse
|
5
|
Guo Y, Cheng Y, Li H, Guan H, Xiao H, Li Y. The Potential of Artemisinins as Novel Treatment for Thyroid Eye Disease by Inhibiting Adipogenesis in Orbital Fibroblasts. Invest Ophthalmol Vis Sci 2023; 64:28. [PMID: 37326592 DOI: 10.1167/iovs.64.7.28] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Abstract
Purpose Thyroid eye disease (TED) causes cosmetic defect and even threatens eyesight due to tissue remodeling in which orbital fibroblast (OF) plays a central role mainly by differentiating into adipocytes. Repurposing old drugs to novel applications is of particular interest. Here, we aimed to evaluate the effects of the antimalarials artemisinin (ARS) and the derivatives on the OFs isolated from patients with TED and their counterparts. Methods OFs isolated from patients with TED or their counterparts were cultured and passaged in proliferation medium (PM) and stimulated by differentiation medium (DM) for adipogenesis. OFs were treated with or without ARS, dihydroartemisinin (DHA), and artesunate (ART) at different concentrations, before being examined in vitro. CCK-8 were used to assess cellular viability. Cell proliferation was determined by EdU incorporation and flow cytometry. Lipid accumulation within the cells was evaluated by Oil Red O staining. Hyaluronan production was determined by ELISA. RNAseq, qPCR, and Western blot analysis were performed to illustrate the underlying mechanisms. Results ARSs dose-dependently interfered with lipid accumulation of TED-OFs, rather than non-TED-OFs. Meanwhile, the expression of key adipogenic markers, such as PLIN1, PPARG, FABP4, and CEBPA, was suppressed. During adipogenesis as being cultivated in DM, instead of PM, ARSs also inhibited cell cycle, hyaluronan production and the expression of hyaluronan synthase 2 (HAS2) in a concentration-dependent manner. Mechanically, the favorable effects were potentially mediated by the repression of IGF1R-PI3K-AKT signaling by dampening IGF1R expression. Conclusions Collectedly, our data evidenced that the conventional antimalarials ARSs were potentially therapeutic for TED.
Collapse
Affiliation(s)
- Yan Guo
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yanglei Cheng
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hai Li
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hongyu Guan
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Haipeng Xiao
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yanbing Li
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
6
|
Jääskeläinen I, Petäistö T, Mirzarazi Dahagi E, Mahmoodi M, Pihlajaniemi T, Kaartinen MT, Heljasvaara R. Collagens Regulating Adipose Tissue Formation and Functions. Biomedicines 2023; 11:biomedicines11051412. [PMID: 37239083 DOI: 10.3390/biomedicines11051412] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
The globally increasing prevalence of obesity is associated with the development of metabolic diseases such as type 2 diabetes, dyslipidemia, and fatty liver. Excess adipose tissue (AT) often leads to its malfunction and to a systemic metabolic dysfunction because, in addition to storing lipids, AT is an active endocrine system. Adipocytes are embedded in a unique extracellular matrix (ECM), which provides structural support to the cells as well as participating in the regulation of their functions, such as proliferation and differentiation. Adipocytes have a thin pericellular layer of a specialized ECM, referred to as the basement membrane (BM), which is an important functional unit that lies between cells and tissue stroma. Collagens form a major group of proteins in the ECM, and some of them, especially the BM-associated collagens, support AT functions and participate in the regulation of adipocyte differentiation. In pathological conditions such as obesity, AT often proceeds to fibrosis, characterized by the accumulation of large collagen bundles, which disturbs the natural functions of the AT. In this review, we summarize the current knowledge on the vertebrate collagens that are important for AT development and function and include basic information on some other important ECM components, principally fibronectin, of the AT. We also briefly discuss the function of AT collagens in certain metabolic diseases in which they have been shown to play central roles.
Collapse
Affiliation(s)
- Iida Jääskeläinen
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014 Oulu, Finland
| | - Tiina Petäistö
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014 Oulu, Finland
| | - Elahe Mirzarazi Dahagi
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC H3A 0C7, Canada
| | - Mahdokht Mahmoodi
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, QC H3A 0C7, Canada
| | - Taina Pihlajaniemi
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014 Oulu, Finland
| | - Mari T Kaartinen
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC H3A 0C7, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, QC H3A 0C7, Canada
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC H3A 0C7, Canada
| | - Ritva Heljasvaara
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014 Oulu, Finland
| |
Collapse
|
7
|
Drygalski K, Lecoutre S, Clément K, Dugail I. Hyaluronan in Adipose Tissue, Metabolic Inflammation, and Diabetes: Innocent Bystander or Guilty Party? Diabetes 2023; 72:159-169. [PMID: 36668999 DOI: 10.2337/db22-0676] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/03/2022] [Indexed: 01/21/2023]
Abstract
Hyaluronic acid, or hyaluronan (HA), is a nonsulfated glucosaminoglycan that has long been recognized for its hydrophilic properties and is widely used as a dermal filler. Despite much attention given to the study of other extracellular matrix (ECM) components, in the field of ECM properties and their contribution to tissue fibroinflammation, little is known of HA's potential role in the extracellular milieu. However, recent studies suggest that it is involved in inflammatory response, diet-induced insulin resistance, adipogenesis, and autoimmunity in type 1 diabetes. Based on its unique physical property as a regulator of osmotic pressure, we emphasize underestimated implications in adipose tissue function, adipogenesis, and obesity-related dysfunction.
Collapse
Affiliation(s)
- Krzysztof Drygalski
- Nutrition and Obesities: Systemic Approaches Research Group, NutriOmics, Sorbonne Université, INSERM, Paris, France
- Clinical Research Center, Medical University of Bialystok, Bialystok, Poland
| | - Simon Lecoutre
- Nutrition and Obesities: Systemic Approaches Research Group, NutriOmics, Sorbonne Université, INSERM, Paris, France
| | - Karine Clément
- Nutrition and Obesities: Systemic Approaches Research Group, NutriOmics, Sorbonne Université, INSERM, Paris, France
- Nutrition Department, Assistance Publique Hôpitaux de Paris, Centre de Recherche en Nutrition Humaine Ile-de-France, Pitié-Salpêtrière Hospital, Paris, France
| | - Isabelle Dugail
- Nutrition and Obesities: Systemic Approaches Research Group, NutriOmics, Sorbonne Université, INSERM, Paris, France
| |
Collapse
|
8
|
Nurlaila I, Roh K, Yeom CH, Kang H, Lee S. Acquired lymphedema: Molecular contributors and future directions for developing intervention strategies. Front Pharmacol 2022; 13:873650. [PMID: 36386144 PMCID: PMC9640931 DOI: 10.3389/fphar.2022.873650] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 10/13/2022] [Indexed: 08/05/2023] Open
Abstract
Lymphedema is a debilitating chronic disease that mostly develops as an adverse reaction to cancer treatment modalities such as chemotherapy, surgery, and radiotherapy. Lymphedema also appears to be a deteriorating consequence of roundworm infections, as best represented by filariasis. According to its origin, lymphedema is classified as primary lymphedema and acquired lymphedema. The latter is an acquired condition that, hitherto, received a considerably low attention owing to the less number of fatal cases been reported. Notably, despite the low mortality rate in lymphedema, it has been widely reported to reduce the disease-free survival and thus the quality of life of affected patients. Hence, in this review, we focused on acquired lymphedema and orchestration of molecular interplays associated with either stimulation or inhibition of lymphedema development that were, in vast majority, clearly depicted in animal models with their specific and distinct technical approaches. We also discussed some recent progress made in phytochemical-based anti-lymphedema intervention strategies and the specific mechanisms underlying their anti-lymphedema properties. This review is crucial to understand not only the comprehensive aspects of the disease but also the future directions of the intervention strategies that can address the quality of life of affected patients rather than alleviating apparent symptoms only.
Collapse
Affiliation(s)
- Ika Nurlaila
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
- Department of Vaccine and Drugs, The National Research and Innovation Agency, Jakarta, Indonesia
| | - Kangsan Roh
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Division of Cardiology and Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | | | - Hee Kang
- Humanitas College, Kyung Hee University, Yongin, South Korea
| | - Sukchan Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
9
|
Suppressive Effect of Fraxetin on Adipogenesis and Reactive Oxygen Species Production in 3T3-L1 Cells by Regulating MAPK Signaling Pathways. Antioxidants (Basel) 2022; 11:antiox11101893. [PMID: 36290616 PMCID: PMC9598290 DOI: 10.3390/antiox11101893] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/18/2022] Open
Abstract
Recent studies have identified obesity as one of the world’s most serious chronic disorders. Adipogenesis, in which preadipocytes are differentiated into mature adipocytes, has a decisive role in establishing the number of adipocytes and determining the lipid storage capacity of adipose tissue and fat mass in adults. Fat accumulation in obesity is implicated with elevated oxidative stress in adipocytes induced by reactive oxygen species (ROS). Adipogenesis regulation by inhibiting adipogenic differentiation and ROS production has been selected as the strategy to treat obesity. The conventional anti-obesity drugs allowed by the U.S. Food and Drug Administration have severe adverse effects. Therefore, various natural products have been developed as a solution for obesity, suppressing adipogenic differentiation. Fraxetin is a major component extracted from the stem barks of Fraxinus rhynchophylla, with various bioactivities, including anti-inflammatory, anticancer, antioxidant, and antibacterial functions. However, the effect of fraxetin on adipogenesis is still not clearly understood. We studied the pharmacological functions of fraxetin in suppressing lipid accumulation and its underlying molecular mechanisms involving 3T3-L1 preadipocytes. Moreover, increased ROS production induced by a mixture of insulin, dexamethasone, and 3-isobutylmethylxanthine (MDI) in 3T3-L1 was attenuated by fraxetin during adipogenesis. These effects were regulated by mitogen-activated protein kinase (MAPK) signaling pathways. Therefore, our findings imply that fraxetin possesses inhibitory roles in adipogenesis and can be a potential anti-obesity drug.
Collapse
|
10
|
Dokoshi T, Seidman JS, Cavagnero KJ, Li F, Liggins MC, Taylor BC, Olvera J, Knight R, Chang JT, Salzman NH, Gallo RL. Skin inflammation activates intestinal stromal fibroblasts and promotes colitis. J Clin Invest 2021; 131:147614. [PMID: 34720087 DOI: 10.1172/jci147614] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 09/16/2021] [Indexed: 01/01/2023] Open
Abstract
Inflammatory disorders of the skin are frequently associated with inflammatory bowel diseases (IBDs). To explore mechanisms by which these organs communicate, we performed single-cell RNA-Seq analysis on fibroblasts from humans and mice with IBD. This analysis revealed that intestinal inflammation promoted differentiation of a subset of intestinal stromal fibroblasts into preadipocytes with innate antimicrobial host defense activity. Furthermore, this process of reactive adipogenesis was exacerbated if mouse skin was inflamed as a result of skin wounding or infection. Since hyaluronan (HA) catabolism is activated during skin injury and fibroblast-to-adipocyte differentiation is dependent on HA, we tested the hypothesis that HA fragments could alter colon fibroblast function by targeted expression of human hyaluronidase-1 in basal keratinocytes from mouse skin. Hyaluronidase expression in the skin activated intestinal stromal fibroblasts, altered the fecal microbiome, and promoted excessive reactive adipogenesis and increased inflammation in the colon after challenge with dextran sodium sulfate. The response to digested HA was dependent on expression of TLR4 by preadipocytes. Collectively, these results suggest that the association between skin inflammation and IBD may be due to recognition by mesenchymal fibroblasts in the colon of HA released during inflammation of the skin.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rob Knight
- Department of Pediatrics, UCSD, La Jolla, California, USA
| | | | - Nita H Salzman
- Departments of Pediatrics, Microbiology, and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | |
Collapse
|
11
|
Lee DK, Jang HD. Carnosic Acid Attenuates an Early Increase in ROS Levels during Adipocyte Differentiation by Suppressing Translation of Nox4 and Inducing Translation of Antioxidant Enzymes. Int J Mol Sci 2021; 22:ijms22116096. [PMID: 34198827 PMCID: PMC8201016 DOI: 10.3390/ijms22116096] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 12/19/2022] Open
Abstract
The objective of this study was to investigate molecular mechanisms underlying the ability of carnosic acid to attenuate an early increase in reactive oxygen species (ROS) levels during MDI-induced adipocyte differentiation. The levels of superoxide anion and ROS were determined using dihydroethidium (DHE) and 2′-7′-dichlorofluorescin diacetate (DCFH-DA), respectively. Both superoxide anion and ROS levels peaked on the second day of differentiation. They were suppressed by carnosic acid. Carnosic acid attenuates the translation of NADPH (nicotinamide adenine dinucleotide phosphate) oxidase 4 (Nox4), p47phox, and p22phox, and the phosphorylation of nuclear factor-kappa B (NF-κB) and NF-κB inhibitor (IkBa). The translocation of NF-κB into the nucleus was also decreased by carnosic acid. In addition, carnosic acid increased the translation of heme oxygenase-1 (HO-1), γ–glutamylcysteine synthetase (γ-GCSc), and glutathione S-transferase (GST) and both the translation and nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2). Taken together, these results indicate that carnosic acid could down-regulate ROS level in an early stage of MPI-induced adipocyte differentiation by attenuating ROS generation through suppression of NF-κB-mediated translation of Nox4 enzyme and increasing ROS neutralization through induction of Nrf2-mediated translation of phase II antioxidant enzymes such as HO-1, γ-GCS, and GST, leading to its anti-adipogenetic effect.
Collapse
|
12
|
Zheng Z, Lei X, Yang Y, Tan X, Cheng B, Huang W. Changes in Human Fat Injected Alongside Hyaluronic Acid in the Backs of Nude Mice. Aesthet Surg J 2021; 41:NP631-NP642. [PMID: 33326559 DOI: 10.1093/asj/sjaa351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Cross-linked hyaluronic acid (HA) is an active anti-aging cosmetic filler. The combination of cross-linked HA and preadipocytes or adipose-derived stem cells has been previously investigated, but the effects of agglomerated cross-linked HA injection on the vascularization of fat grafts remain unclear. OBJECTIVES The aim of this study was to explore the effects of agglomerated cross-linked HA injection on the vascularization of fat grafts. METHODS The backs of nude mice were divided into 4 regions that received different treatments: nothing (control group), agglomerated Biohyalux (HA group), agglomerated fat (FAT group), and lumps formed by the sequential injection of Biohyalux and fat (HA/FAT group). Samples were collected after 1 month for weighing and hematoxylin and eosin staining, immunohistochemistry, image analysis, and Western blotting. RESULTS The weight of fat and the mean number of adipocytes in the HA/FAT group did not significantly differ from those in the FAT group. No living tissue was found in agglomerated HA. Some tiny HA particles were surrounded by tissue rich in blood vessels. The expression levels of CD31 and vascular endothelial growth factor (VEGF) in the HA/FAT group were higher than those in the FAT group, but the difference was only significant for VEGF expression. CONCLUSIONS Cross-linked HA had minimal effect on the early retention rate of surrounding fat grafts, but enhanced their vascularization. Fat grafts should be not injected into lumps of cross-linked HA. Therefore, agglomerated cross-linked HA should be dissolved before fat transplantation.
Collapse
Affiliation(s)
- Zhifang Zheng
- Department of Anatomy, School of Basic Medicine Sciences, Southern Medical University, Guangzhou, China
| | - Xiaoxuan Lei
- Department of Plastic Surgery, General Hospital of Southern Theater Command, Guangzhou, China
| | - Yu Yang
- Department of Plastic Surgery, General Hospital of Southern Theater Command, Guangzhou, China
| | - Xi Tan
- Department of Plastic Surgery, General Hospital of Southern Theater Command, Guangzhou, China
| | - Biao Cheng
- Department of Plastic Surgery, General Hospital of Southern Theater Command, Guangzhou, China
| | - Wenhua Huang
- Department of Anatomy, School of Basic Medicine Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
13
|
Horder H, Guaza Lasheras M, Grummel N, Nadernezhad A, Herbig J, Ergün S, Teßmar J, Groll J, Fabry B, Bauer-Kreisel P, Blunk T. Bioprinting and Differentiation of Adipose-Derived Stromal Cell Spheroids for a 3D Breast Cancer-Adipose Tissue Model. Cells 2021; 10:cells10040803. [PMID: 33916870 PMCID: PMC8066030 DOI: 10.3390/cells10040803] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Biofabrication, including printing technologies, has emerged as a powerful approach to the design of disease models, such as in cancer research. In breast cancer, adipose tissue has been acknowledged as an important part of the tumor microenvironment favoring tumor progression. Therefore, in this study, a 3D-printed breast cancer model for facilitating investigations into cancer cell-adipocyte interaction was developed. First, we focused on the printability of human adipose-derived stromal cell (ASC) spheroids in an extrusion-based bioprinting setup and the adipogenic differentiation within printed spheroids into adipose microtissues. The printing process was optimized in terms of spheroid viability and homogeneous spheroid distribution in a hyaluronic acid-based bioink. Adipogenic differentiation after printing was demonstrated by lipid accumulation, expression of adipogenic marker genes, and an adipogenic ECM profile. Subsequently, a breast cancer cell (MDA-MB-231) compartment was printed onto the adipose tissue constructs. After nine days of co-culture, we observed a cancer cell-induced reduction of the lipid content and a remodeling of the ECM within the adipose tissues, with increased fibronectin, collagen I and collagen VI expression. Together, our data demonstrate that 3D-printed breast cancer-adipose tissue models can recapitulate important aspects of the complex cell–cell and cell–matrix interplay within the tumor-stroma microenvironment.
Collapse
Affiliation(s)
- Hannes Horder
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, University of Würzburg, 97080 Würzburg, Germany; (H.H.); (M.G.L.); (P.B.-K.)
| | - Mar Guaza Lasheras
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, University of Würzburg, 97080 Würzburg, Germany; (H.H.); (M.G.L.); (P.B.-K.)
| | - Nadine Grummel
- Department of Physics, Friedrich-Alexander University Erlangen-Nürnberg, 91052 Erlangen, Germany; (N.G.); (B.F.)
| | - Ali Nadernezhad
- Chair for Functional Materials in Medicine and Dentistry, Bavarian Polymer Institute, University of Würzburg, 97080 Würzburg, Germany; (A.N.); (J.H.); (J.T.); (J.G.)
| | - Johannes Herbig
- Chair for Functional Materials in Medicine and Dentistry, Bavarian Polymer Institute, University of Würzburg, 97080 Würzburg, Germany; (A.N.); (J.H.); (J.T.); (J.G.)
| | - Süleyman Ergün
- Department of Medicine, Institute of Anatomy and Cell Biology, University of Würzburg, 97070 Würzburg, Germany;
| | - Jörg Teßmar
- Chair for Functional Materials in Medicine and Dentistry, Bavarian Polymer Institute, University of Würzburg, 97080 Würzburg, Germany; (A.N.); (J.H.); (J.T.); (J.G.)
| | - Jürgen Groll
- Chair for Functional Materials in Medicine and Dentistry, Bavarian Polymer Institute, University of Würzburg, 97080 Würzburg, Germany; (A.N.); (J.H.); (J.T.); (J.G.)
| | - Ben Fabry
- Department of Physics, Friedrich-Alexander University Erlangen-Nürnberg, 91052 Erlangen, Germany; (N.G.); (B.F.)
| | - Petra Bauer-Kreisel
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, University of Würzburg, 97080 Würzburg, Germany; (H.H.); (M.G.L.); (P.B.-K.)
| | - Torsten Blunk
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, University of Würzburg, 97080 Würzburg, Germany; (H.H.); (M.G.L.); (P.B.-K.)
- Correspondence: ; Tel.: +49-931-201-37115
| |
Collapse
|
14
|
Jo A, Kim M, Kim JI, Ha J, Hwang YS, Nam H, Hwang I, Kim JB, Park SB. Phenotypic Discovery of SB1501, an Anti-obesity Agent, through Modulating Mitochondrial Activity. ChemMedChem 2021; 16:1104-1115. [PMID: 33538065 DOI: 10.1002/cmdc.202100062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Indexed: 11/08/2022]
Abstract
Obesity has become a pandemic that threatens the quality of life and discovering novel therapeutic agents that can reverse obesity and obesity-related metabolic disorders are necessary. Here, we aimed to identify new anti-obesity agents using a phenotype-based approach. We performed image-based high-content screening with a fluorogenic bioprobe (SF44), which visualizes cellular lipid droplets (LDs), to identify initial hit compounds. A structure-activity relationship study led us to yield a bioactive compound SB1501, which reduces cellular LDs in 3T3-L1 adipocytes without cytotoxicity. SB1501 induced the expression of gene products that regulate mitochondrial biogenesis and fatty acid oxidation in 3T3-L1 adipocytes. Daily treatment with SB1501 improved the metabolic states of db/db mice by reducing body fat mass, adipose tissue mass, food intake, and increasing glucose tolerance. The anti-obesity effect of SB1501 may result from perturbation of the PGC-1α-UCP1 regulatory axis in inguinal white adipose tissue and brown adipose tissue. These data suggest the therapeutic potential of SB1501 as an anti-obesity agent via modulating mitochondrial activities.
Collapse
Affiliation(s)
- Ala Jo
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Mingi Kim
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Jong In Kim
- CRI Center for Adipocyte Structure-Function, School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
| | - Jaeyoung Ha
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul, 08826, Korea
| | - Yoon Soo Hwang
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Hyunsung Nam
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Injae Hwang
- CRI Center for Adipocyte Structure-Function, School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
| | - Jae Bum Kim
- CRI Center for Adipocyte Structure-Function, School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
| | - Seung Bum Park
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul, 08826, Korea.,Department of Biophysics and Chemical Biology, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
15
|
GRIM19 Impedes Obesity by Regulating Inflammatory White Fat Browning and Promoting Th17/Treg Balance. Cells 2021; 10:cells10010162. [PMID: 33467683 PMCID: PMC7829987 DOI: 10.3390/cells10010162] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 02/06/2023] Open
Abstract
Obesity, a condition characterized by excessive accumulation of body fat, is a metabolic disorder related to an increased risk of chronic inflammation. Obesity is mediated by signal transducer and activator of transcription (STAT) 3, which is regulated by genes associated with retinoid-interferon-induced mortality (GRIM) 19, a protein ubiquitously expressed in various human tissues. In this study, we investigated the role of GRIM19 in diet-induced obese C57BL/6 mice via intravenous or intramuscular administration of a plasmid encoding GRIM19. Splenocytes from wild-type and GRIM19-overexpressing mice were compared using enzyme-linked immunoassay, real-time polymerase chain reaction, Western blotting, flow cytometry, and histological analyses. GRIM19 attenuated the progression of obesity by regulating STAT3 activity and enhancing brown adipose tissue (BAT) differentiation. GRIM19 regulated the differentiation of mouse-derived 3T3-L1 preadipocytes into adipocytes, while modulating gene expression in white adipose tissue (WAT) and BAT. GRIM19 overexpression reduced diet-induced obesity and enhanced glucose and lipid metabolism in the liver. Moreover, GRIM19 overexpression reduced WAT differentiation and induced BAT differentiation in obese mice. GRIM19-transgenic mice exhibited reduced mitochondrial superoxide levels and a reciprocal balance between Th17 and Treg cells. These results suggest that GRIM19 attenuates the progression of obesity by controlling adipocyte differentiation.
Collapse
|
16
|
Dokoshi T, Zhang LJ, Li F, Nakatsuji T, Butcher A, Yoshida H, Shimoda M, Okada Y, Gallo RL. Hyaluronan Degradation by Cemip Regulates Host Defense against Staphylococcus aureus Skin Infection. Cell Rep 2021; 30:61-68.e4. [PMID: 31914398 PMCID: PMC7029423 DOI: 10.1016/j.celrep.2019.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/06/2019] [Accepted: 11/27/2019] [Indexed: 12/11/2022] Open
Abstract
Staphylococcus aureus is a major human bacterial pathogen responsible for deep tissue skin infections. Recent observations have suggested that rapid, localized digestion of hyaluronic acid in the extracellular matrix (ECM) of the dermis may influence bacterial invasion and tissue inflammation. In this study we find that cell migration-inducing protein (Cemip) is the major inducible gene responsible for hyaluronan catabolism in mice. Cemip−/− mice failed to digest hyaluronan and had significantly less evidence of infection after intradermal bacterial challenge by S. aureus. Stabilization of large-molecular-weight hyaluronan enabled increased expression of cathelicidin antimicrobial peptide (Camp) that was due in part to enhanced differentiation of preadipocytes to adipocytes, as seen histologically and by increased expression of Pref1, PPARg, and Adipoq. Cemip−/− mice challenged with S. aureus also had greater IL-6 expression and neutrophil infiltration. These observations describe a mechanism for hyaluronan in the dermal ECM to regulate tissue inflammation and host antimicrobial defense. In this paper, Dokoshi et al. describe how the mammalian hyaluronidase Cemip is induced in the dermis during S. aureus infection. Cemip digests hyaluronan in the skin to regulate reactive adipogenesis and subsequent antimicrobial activity and skin inflammation.
Collapse
Affiliation(s)
- Tatsuya Dokoshi
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Ling-Juan Zhang
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Fengwu Li
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Teruaki Nakatsuji
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Anna Butcher
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Hiroyuki Yoshida
- Biological Science Research, Kao Corporation, Odawara-shi, Kanagawa, Japan
| | - Masayuki Shimoda
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Yasunori Okada
- Department of Pathophysiology for Locomotive and Neoplastic Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Richard L Gallo
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92037, USA.
| |
Collapse
|
17
|
Chen WY, Lin FH. Oxidized Hyaluronic Acid Hydrogels as a Carrier for Constant-Release Clenbuterol Against High-Fat Diet-Induced Obesity in Mice. Front Endocrinol (Lausanne) 2021; 12:572690. [PMID: 33776904 PMCID: PMC7996091 DOI: 10.3389/fendo.2021.572690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 01/25/2021] [Indexed: 11/25/2022] Open
Abstract
The global obesity population is increasing year-by-year, and the related cost is sharply increasing annually. There are several methods available to combat obesity; however, there is a lack of a single tool that is both safe and efficacious. The use of Clenbuterol in bodybuilding and by professional athletes is controversial owing to its side effects, including hepatotoxicity. This study administered Clenbuterol at a much lower dose than the established safety level, and rather than through oral administration, the treatments were delivered through controlled-release intra-adipose injection. The different dosing and mode of administration will lower the risk of side effects, increase the safety profile, and could facilitate use in the anti-obesity market. A thermo-sensitive hydrogel was used as the carrier uploaded with Clenbuterol to achieve controlled-release. In the in vitro study, the developed new formulae were not cytotoxic to 3T3-L1 cells and could inhibit lipogenesis effectively. In the animal study, the mice were fed a high-fat diet and treated with Clenbuterol by oral administration, or injected with Clenbuterol-modified hyaluronate hydrogel (HAC) regularly. Both groups showed reduction in whole-body, visceral, and gonadal fat contents and body weight. The abdominal fat was analyzed using MRI imaging in adipose mode and water mode. The abdominal fat ratio in the mice treated with normal diet and those given intra-adipose injections with HAC had the lowest value among the test groups. The mice treated with high-fat diet (HFD) showed the highest value of 53.78%. The chronic toxicity in-vivo test proved that controlled-release injections of 2-10 µg Clenbuterol daily were safe, as demonstrated in the blood elements and serological analyses. This study developed a new and promising method for anti-obesity treatment, using a monthly intra-adipose controlled-release injection of HAC. The developed new formulae of Clenbuterol not only effectively decreased body weight and body fat content but also inhibited lipogenesis on the harvested visceral tissue and reduced adipose tissue around the gonadal fat area. The side effects induced by traditional oral administration of Clenbuterol were not observed in this research; this has excellent potential to be a useful tool for future obesity treatment without safety concerns.
Collapse
Affiliation(s)
- Wei-Yao Chen
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Feng-Huei Lin
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli County, Taiwan
- *Correspondence: Feng-Huei Lin,
| |
Collapse
|
18
|
Liu M, Qin J, Cong J, Yang Y. Chlorogenic Acids Inhibit Adipogenesis: Implications of Wnt/ β-Catenin Signaling Pathway. Int J Endocrinol 2021; 2021:2215274. [PMID: 34845409 PMCID: PMC8627359 DOI: 10.1155/2021/2215274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/19/2021] [Accepted: 11/05/2021] [Indexed: 11/18/2022] Open
Abstract
In our previous in vitro study, we found that chlorogenic acid (CGA) inhibited adipocyte differentiation and triglyceride (TG) accumulation, but the underlying mechanism is still unclear. Accumulative genetic evidence supports that canonical Wnt signaling is a key modulator on adipogenesis. Methods. In this study, 3T3-L1 cells were induced adipogenic differentiation and then treated with CGA. We investigate the effect of CGA in inhibiting adipogenesis and evaluate its role in modulating Wnt10b (wingless integration1 10b), β-catenin, glycogen synthase kinase-3β (GSK-3β), and peroxisome proliferator-activated receptor γ (PPAR-γ) involved in the Wnt (wingless integration1)/β-catenin signaling pathway. Results. The result showed that after CGA treatment, lipid accumulation and TG level decreased significantly in 3T3-L1 cells, indicating that CGA could inhibit adipogenesis. In addition, CGA repressed the induction of adipocyte differentiation biomarkers as PPAR-γ, adipocyte protein 2 (aP2), fatty acid synthase (FAS), and lipoprotein lipase (LPL), and the secretion of GSK-3β in a dose-dependent manner upregulated the expression of β-catenin and Wnt10b both in gene and protein levels. Moreover, CGA induced phosphorylation of GSK-3β and promoted the accumulation of free cytosolic β-catenin in 3T3-L1 adipocytes. Conclusion. Overall, these findings gave us the implications that CGA inhibits adipogenesis via the canonical Wnt signaling pathway.
Collapse
Affiliation(s)
- Mengting Liu
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Jian Qin
- The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518000, China
| | - Jing Cong
- Academic Department, Giant Praise (HK) Pharmaceutical Group Limited, Changchun 130033, China
| | - Yubin Yang
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| |
Collapse
|
19
|
Analysis of the intricate effects of polyunsaturated fatty acids and polyphenols on inflammatory pathways in health and disease. Food Chem Toxicol 2020; 143:111558. [PMID: 32640331 PMCID: PMC7335494 DOI: 10.1016/j.fct.2020.111558] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/16/2020] [Accepted: 06/24/2020] [Indexed: 02/08/2023]
Abstract
Prevention and treatment of non-communicable diseases (NCDs), including cardiovascular disease, diabetes, obesity, cancer, Alzheimer's and Parkinson's disease, arthritis, non-alcoholic fatty liver disease and various infectious diseases; lately most notably COVID-19 have been in the front line of research worldwide. Although targeting different organs, these pathologies have common biochemical impairments - redox disparity and, prominently, dysregulation of the inflammatory pathways. Research data have shown that diet components like polyphenols, poly-unsaturated fatty acids (PUFAs), fibres as well as lifestyle (fasting, physical exercise) are important factors influencing signalling pathways with a significant potential to improve metabolic homeostasis and immune cells' functions. In the present manuscript we have reviewed scientific data from recent publications regarding the beneficial cellular and molecular effects induced by dietary plant products, mainly polyphenolic compounds and PUFAs, and summarize the clinical outcomes expected from these types of interventions, in a search for effective long-term approaches to improve the immune system response.
Collapse
|
20
|
Galgoczi E, Jeney F, Katko M, Erdei A, Gazdag A, Sira L, Bodor M, Berta E, Ujhelyi B, Steiber Z, Gyory F, Nagy EV. Characteristics of Hyaluronan Synthesis Inhibition by 4-Methylumbelliferone in Orbital Fibroblasts. Invest Ophthalmol Vis Sci 2020; 61:27. [PMID: 32084270 PMCID: PMC7326567 DOI: 10.1167/iovs.61.2.27] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose Hyaluronan (HA) overproduction by orbital fibroblasts (OFs) is a major factor in the pathogenesis of Graves' orbitopathy (GO). 4-methylumbelliferone (4-MU) is an inhibitor of HA synthesis in different cell types in vitro and has beneficial effects in animal models of autoimmune diseases. Methods HA production and mRNA expression of HA synthases (HAS1, HAS2, and HAS3) and hyaluronidases (HYAL1 and HYAL2) were measured in the presence and absence of 4-MU in unstimulated and transforming growth factor-β-stimulated fibroblasts from GO orbital (n = 4), non-GO orbital (n = 4), and dermal origin (n = 4). Results The 4-MU treatment (1 mM) for 24 hours resulted in an average 87% reduction (P < 0.001) of HA synthesis, decreased the expression of the dominant HAS isoform (HAS2) by 80% (P < 0.0001), and increased the HYAL2 expression by 2.5-fold (P < 0.001) in control OFs, GO OFs, and dermal fibroblasts (DFs) regardless of the origin of the cells. The proliferation rate of all studied cell lines was reduced to an average 16% by 4-MU (P < 0.0001) without any effects on cell viability. HA production stimulated by transforming growth factor-β was decreased by 4-MU via inhibition of stimulated HAS1 expression in addition to the observed effects of 4-MU in unstimulated cases. Characteristics of HA synthesis inhibition by 4-MU did not differ in OFs compared with DFs. Conclusions 4-MU has been found to inhibit the HA synthesis and the proliferation rate in OFs in vitro, adding it to the list of putative therapeutic agents in a disease the cure of which is largely unresolved.
Collapse
|
21
|
4-Methylumbelliferone suppresses hyaluronan and adipogenesis in primary cultured orbital fibroblasts from Graves' orbitopathy. Graefes Arch Clin Exp Ophthalmol 2020; 258:1095-1102. [PMID: 31900640 DOI: 10.1007/s00417-019-04528-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/28/2019] [Accepted: 10/28/2019] [Indexed: 10/25/2022] Open
Abstract
PURPOSE In Graves' orbitopathy (GO), hyaluronan secreted by orbital fibroblasts contributes to orbital tissue expansion. The goal of this research was to evaluate the potential benefit of 4-methylumbelliferone (4-MU), a hyaluronan synthase (HAS) inhibitor, in primary cultured orbital fibroblasts from Graves' orbitopathy. METHODS We assessed the viability of orbital fibroblasts using a live/dead cell assay. Hyaluronan synthesis was evaluated by enzyme-linked immunosorbent assay (ELISA) and quantitative real-time PCR (qPCR). Adipogenesis was assessed by Oil Red O staining and qPCR of adipogenic transcription factors. RESULTS In orbital fibroblasts treated with 4-MU (up to 1000 μM), cell viability was preserved by 90%. 4-MU significantly inhibited HAS gene expression and hyaluronan production (*P < 0.05). With respect to adipogenesis, 4-MU suppressed the accumulation of lipids and reduced the number of adipocytes, while decreasing expression of adipogenic transcription factors. CONCLUSIONS 4-MU represents a promising new therapeutic agent for GO based on its ability to inhibit hyaluronan production and adipogenesis, without decreasing cell viability.
Collapse
|
22
|
Abstract
Butein is a plant flavonoid chalcone, with presumed anti-adipogenic properties. It was reported to impair preadipocyte differentiation, limit adipose tissue (AT) development and enhance white AT browning in rodents. In this study, we investigated the hypothesis that these effects of butein may occur via reduction of ADAMTS5 (A Disintegrin And Metalloproteinase with ThromboSpondin motifs 5) expression. Murine 3T3-L1 or 3T3-F442A preadipocytes were differentiated into mature adipocytes in the presence of butein or vehicle. At regular time intervals RNA was collected for gene expression studies. Male hemizygous mice for Tg(Ucp1-luc2,-tdTomato)1Kajim (ThermoMouse) were exposed to butein or vehicle, after which ATs were analyzed for Adamts5 and uncoupling protein-1 (Ucp-1) mRNA level changes. During preadipocyte differentiation, butein (25 – 50 mM) did not affect Adamts5 or Ucp-1 expression. Oil Red O analysis and monitoring of differentiation markers failed to demonstrate effects of butein on the differentiation extent. Furthermore, butein administration to the ThermoMouse (10 or 20 mg/kg, 4 days) or to the C57BL6/Rj mice (20 mg/kg, 4 weeks) did not enhance Adamts5 or Ucp-1 expression. Thus, we could not demonstrate marked effects of butein on the preadipocyte differentiation extent or AT development and browning, nor on Adamts5 or Ucp-1 gene expression during these processes.
Collapse
Affiliation(s)
- Bianca Hemmeryckx
- Department Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| | - Christine Vranckx
- Department Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| | - Dries Bauters
- Department Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| | - H. Roger Lijnen
- Department Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| | - Ilse Scroyen
- Department Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
23
|
Zheng Y, Lee J, Shin KO, Park K, Kang IJ. Synergistic action of Erigeron annuus L. Pers and Borago officinalis L. enhances anti-obesity activity in a mouse model of diet-induced obesity. Nutr Res 2019; 69:58-66. [PMID: 31670067 DOI: 10.1016/j.nutres.2019.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 07/10/2019] [Accepted: 07/25/2019] [Indexed: 02/07/2023]
Abstract
Prior studies show that Borago officinalis L. (BO) can suppress lipid accumulation in 3 T3-L1 adipocytes. Similarly, we recently revealed that Erigeron annuus L. Pers (EA) can significantly diminish both lipid accumulation and adipocyte differentiation in 3 T3-L1 cells through an AMPK (AMP-activated protein kinase)-dependent mechanism. Accordingly, the objective of this present study was to evaluate the anti-obesity activity of EA and/or BO using an animal model of obesity. Obesity was induced in C57BL/6 J mice by feeding a high-fat diet (HFD; 60 kcal% fat) for 3 weeks, followed by administration of EA and/or BO (100-200 mg/kg body weight) or positive control Garcinia Cambogia (GC) (100 mg/kg body weight) for an additional 8 weeks. The anti-obesity effect of EA and/or BO was assessed by measuring body weight, adipocyte size, lipid accumulation, and expression level of genes associated with adipogenesis. We found the administration of EA and/or BO significantly attenuated increases in body weight gain, adipocyte size, and lipid accumulation in obese mice induced by HFD. In addition, western blot analysis revealed that HFD-mediated increases in expressions levels of adipogenic genes such as PPARγ, C/EBPα, and SREBP-1c were diminished by EA and/or BO. Moreover, EA and/or BO significantly stimulated the production of adiponectin, a unique adipokine known to stimulate the breakdown of fat/lipids, whereas adiponectin levels were reduced in mice fed a HFD. Notably, a combination of EA and BO was more effective at modulating such parameters than EA or BO alone. Taken together, these results demonstrate that an anti-obesity effect of EA and/or BO can reduce adipocyte hypertrophy and modulate the expression of adipogenesis-associated genes.
Collapse
Affiliation(s)
- Yulong Zheng
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Republic of Korea
| | - Jaesun Lee
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Republic of Korea
| | - Kyong-Oh Shin
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Republic of Korea
| | - Kyungho Park
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Republic of Korea
| | - Il-Jun Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Republic of Korea.
| |
Collapse
|
24
|
Ruiz-Ojeda FJ, Méndez-Gutiérrez A, Aguilera CM, Plaza-Díaz J. Extracellular Matrix Remodeling of Adipose Tissue in Obesity and Metabolic Diseases. Int J Mol Sci 2019; 20:ijms20194888. [PMID: 31581657 PMCID: PMC6801592 DOI: 10.3390/ijms20194888] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/25/2019] [Accepted: 09/29/2019] [Indexed: 12/15/2022] Open
Abstract
The extracellular matrix (ECM) is a network of different proteins and proteoglycans that controls differentiation, migration, repair, survival, and development, and it seems that its remodeling is required for healthy adipose tissue expansion. Obesity drives an excessive lipid accumulation in adipocytes, which provokes immune cells infiltration, fibrosis (an excess of deposition of ECM components such as collagens, elastin, and fibronectin) and inflammation, considered a consequence of local hypoxia, and ultimately insulin resistance. To understand the mechanism of this process is a challenge to treat the metabolic diseases. This review is focused at identifying the putative role of ECM in adipose tissue, describing its structure and components, its main tissue receptors, and how it is affected in obesity, and subsequently the importance of an appropriate ECM remodeling in adipose tissue expansion to prevent metabolic diseases.
Collapse
Affiliation(s)
- Francisco Javier Ruiz-Ojeda
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain.
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain.
- RG Adipocytes and metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Center Munich, 85764 Neuherberg, Munich, Germany.
| | - Andrea Méndez-Gutiérrez
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain.
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain.
- Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. 18016 Armilla, Granada, Spain.
- CIBEROBN (CIBER Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Concepción María Aguilera
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain.
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain.
- Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. 18016 Armilla, Granada, Spain.
- CIBEROBN (CIBER Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Julio Plaza-Díaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain.
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain.
- Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. 18016 Armilla, Granada, Spain.
| |
Collapse
|
25
|
Wilson N, Steadman R, Muller I, Draman M, Rees DA, Taylor P, Dayan CM, Ludgate M, Zhang L. Role of Hyaluronan in Human Adipogenesis: Evidence from in-Vitro and in-Vivo Studies. Int J Mol Sci 2019; 20:ijms20112675. [PMID: 31151314 PMCID: PMC6600677 DOI: 10.3390/ijms20112675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/21/2019] [Accepted: 05/29/2019] [Indexed: 12/19/2022] Open
Abstract
Hyaluronan (HA), an extra-cellular matrix glycosaminoglycan, may play a role in mesenchymal stem cell differentiation to fat but results using murine models and cell lines are conflicting. Our previous data, illustrating decreased HA production during human adipogenesis, suggested an inhibitory role. We have investigated the role of HA in adipogenesis and fat accumulation using human primary subcutaneous preadipocyte/fibroblasts (PFs, n = 12) and subjects of varying body mass index (BMI). The impact of HA on peroxisome proliferator-activated receptor gamma (PPARγ) expression was analysed following siRNA knockdown or HA synthase (HAS)1 and HAS2 overexpression. PFs were cultured in complete or adipogenic medium (ADM) with/without 4-methylumbelliferone (4-MU = HA synthesis inhibitor). Adipogenesis was evaluated using oil red O (ORO), counting adipogenic foci, and measurement of a terminal differentiation marker. Modulating HA production by HAS2 knockdown or overexpression increased (16%, p < 0.04) or decreased (30%, p = 0.01) PPARγ transcripts respectively. The inhibition of HA by 4-MU significantly enhanced ADM-induced adipogenesis with 1.52 ± 0.18- (ORO), 4.09 ± 0.63- (foci) and 2.6 ± 0.21-(marker)-fold increases compared with the controls, also increased PPARγ protein expression (40%, (p < 0.04)). In human subjects, circulating HA correlated negatively with BMI and triglycerides (r = −0.396 (p = 0.002), r = −0.269 (p = 0.038), respectively), confirming an inhibitory role of HA in human adipogenesis. Thus, enhancing HA action may provide a therapeutic target in obesity.
Collapse
Affiliation(s)
- Nicholas Wilson
- School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | - Robert Steadman
- School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | - Ilaria Muller
- School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | - Mohd Draman
- Faculty of Medicine, Universiti Sultan Zainal Abidin, Jalan Sultan Mahmud, Kuala Terengganu 20400, Malaysia.
| | - D Aled Rees
- School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | - Peter Taylor
- School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | - Colin M Dayan
- School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | - Marian Ludgate
- School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | - Lei Zhang
- School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| |
Collapse
|
26
|
Grandoch M, Flögel U, Virtue S, Maier JK, Jelenik T, Kohlmorgen C, Feldmann K, Ostendorf Y, Castañeda TR, Zhou Z, Yamaguchi Y, Nascimento EB, Sunkari VG, Goy C, Kinzig M, Sörgel F, Bollyky PL, Schrauwen P, Al-Hasani H, Roden M, Keipert S, Vidal-Puig A, Jastroch M, Haendeler J, Fischer JW. 4-Methylumbelliferone improves the thermogenic capacity of brown adipose tissue. Nat Metab 2019; 1:546-559. [PMID: 31602424 PMCID: PMC6786893 DOI: 10.1038/s42255-019-0055-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Therapeutic increase of brown adipose tissue (BAT) thermogenesis is of great interest as BAT activation counteracts obesity and insulin resistance. Hyaluronan (HA) is a glycosaminoglycan, found in the extracellular matrix, which is synthesized by HA synthases (Has1/Has2/Has3) from sugar precursors and accumulates in diabetic conditions. Its synthesis can be inhibited by the small molecule 4-methylumbelliferone (4-MU). Here, we show that the inhibition of HA-synthesis by 4-MU or genetic deletion of Has2/Has3 improves BAT`s thermogenic capacity, reduces body weight gain, and improves glucose homeostasis independently from adrenergic stimulation in mice on diabetogenic diet, as shown by a magnetic resonance T2 mapping approach. Inhibition of HA synthesis increases glycolysis, BAT respiration and uncoupling protein 1 expression. In addition, we show that 4-MU increases BAT capacity without inducing chronic stimulation and propose that 4-MU, a clinically approved prescription-free drug, could be repurposed to treat obesity and diabetes.
Collapse
Affiliation(s)
- Maria Grandoch
- Institute of Pharmacology and Clinical Pharmacology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- corresponding author: Dr. Maria Grandoch, Institute of Pharmacology and Clinical Pharmacology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany,
| | - Ulrich Flögel
- Experimental Cardiovascular Imaging, Molecular Cardiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Sam Virtue
- MRC Metabolic Diseases Unit, Metabolic Research Laboratories, University of Cambridge, Cambridge, United Kingdom
| | - Julia K. Maier
- Institute of Pharmacology and Clinical Pharmacology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Tomas Jelenik
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at the Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Christina Kohlmorgen
- Institute of Pharmacology and Clinical Pharmacology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Kathrin Feldmann
- Institute of Pharmacology and Clinical Pharmacology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Yanina Ostendorf
- Institute of Pharmacology and Clinical Pharmacology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Tamara R. Castañeda
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center, Leibniz Center for Diabetes Research at the Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Zhou Zhou
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center, Leibniz Center for Diabetes Research at the Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Yu Yamaguchi
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Emmani B.M. Nascimento
- Department of Nutrition and Movement Sciences, Maastricht Medical Centre, NUTRIM School of Nutrition and Translational Research in Metabolism, The Netherlands
| | - Vivekananda G. Sunkari
- Division of Infectious Diseases and Geographic Medicine, Dept. of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Christine Goy
- Institute for Clinical Chemistry, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Martina Kinzig
- Institute for Biomedical and Pharmaceutical Research, Nürnberg-Heroldsberg, Germany
| | - Fritz Sörgel
- Institute for Biomedical and Pharmaceutical Research, Nürnberg-Heroldsberg, Germany
| | - Paul L. Bollyky
- Division of Infectious Diseases and Geographic Medicine, Dept. of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Patrick Schrauwen
- Department of Nutrition and Movement Sciences, Maastricht Medical Centre, NUTRIM School of Nutrition and Translational Research in Metabolism, The Netherlands
| | - Hadi Al-Hasani
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, Medical Faculty, German Diabetes Center, Leibniz Center for Diabetes Research at the Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at the Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Susanne Keipert
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Antonio Vidal-Puig
- MRC Metabolic Diseases Unit, Metabolic Research Laboratories, University of Cambridge, Cambridge, United Kingdom
- WT-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Martin Jastroch
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Judith Haendeler
- Institute for Clinical Chemistry, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- IUF - Leibniz Research Institute for Environmental Medicine, Heisenberg Group - Environmentally-induced Cardiovascular Degeneration, Düsseldorf, Germany
| | - Jens W. Fischer
- Institute of Pharmacology and Clinical Pharmacology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
27
|
Differential effects of a combination of Hibiscus sabdariffa and Lippia citriodora polyphenols in overweight/obese subjects: A randomized controlled trial. Sci Rep 2019; 9:2999. [PMID: 30816148 PMCID: PMC6395806 DOI: 10.1038/s41598-019-39159-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 12/18/2018] [Indexed: 12/31/2022] Open
Abstract
Plant-polyphenols have shown the capacity to ameliorate obesity-induced metabolic disturbances, both in cell and animal models, where most therapeutic approaches have failed. On the basis of previous research, a dietary supplement containing 500 mg of a combination of polyphenolic extracts from Lippia citriodora L. and Hibiscus sabdariffa L. (LC-HS), in the context of an equilibrated isocaloric diet, was evaluated in a double blind, placebo-controlled and randomized trial in 56 obese/overweight subjects for two months. Compared to controls, the consumption of the LC-HS polyphenols showed significant improvements in body weight, abdominal circumference of overweight subjects (−6.79 ± 0.80 cm in overweight LC-HS group vs −1.85 ± 0.83 cm in controls, p < 0.001) and body fat % (−1.33 ± 0.15% in overweight LC-HS group vs −0.66 ± 0.17% in controls, p < 0.05). Heart rate and systolic blood pressure also presented significant improvements in overweight LC-HS participants. However, changes were more modest in obese subjects. Further, LC-HS extract significantly reduced lipid content and increased AMPK activity in a hypertrophied adipocyte cell model. Therefore, consumption of 500 mg/day of LC-HS extracts enriched in polyphenols for two months in the context of an isocaloric diet by overweight subjects decreased symptoms associated to obesity-related diseases. Modulation of fat metabolism in adipose tissue, probably mediated by AMPK activation, is proposed as a molecular target to be explored in future research.
Collapse
|
28
|
Dokoshi T, Zhang LJ, Nakatsuji T, Adase CA, Sanford JA, Paladini RD, Tanaka H, Fujiya M, Gallo RL. Hyaluronidase inhibits reactive adipogenesis and inflammation of colon and skin. JCI Insight 2018; 3:123072. [PMID: 30385720 DOI: 10.1172/jci.insight.123072] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/13/2018] [Indexed: 12/16/2022] Open
Abstract
In this study we evaluated the role of hyaluronan (HA) in reactive adipogenesis, a local expansion of preadipocytes that provides host defense by release of antimicrobial peptides. We observed that HA accumulated during maturation of adipocytes in vitro and was associated with increased expression of preadipocyte factor 1, zinc finger protein 423, and early B cell factor 1. Although HA is normally abundant in the extracellular matrix, a further increase in HA staining occurred in mice at sites of reactive adipogenesis following injury of colon by dextran sodium sulfate or injury of skin from infection with Staphylococcus aureus. HA also abundantly accumulated around adipocytes seen in the colons of patients with inflammatory bowel disease. This HA was necessary for adipocyte maturation because digestion of HA by administration of soluble hyaluronidase or transgenic expression of hyaluronidase 1 inhibited adipogenesis in vitro and in vivo. Furthermore, hyaluronidase also suppressed inflammation of both skin and colon and decreased antimicrobial peptide expression by developing preadipocytes. This resulted in increased bacterial transit across the epithelial barrier despite decreased tissue injury from inflammation. These observations suggest HA plays an important role in reactive adipogenesis and host defense after injury.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hiroki Tanaka
- Department of Legal Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Mikihiro Fujiya
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | | |
Collapse
|
29
|
Wong JSC, Chu WK, Li BFL, Pang CP, Chong KKL. Depot-specific characteristics of adipose tissue-derived stromal cells in thyroid-associated orbitopathy. Br J Ophthalmol 2018; 102:1173-1178. [PMID: 29666119 DOI: 10.1136/bjophthalmol-2017-311339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 03/02/2018] [Accepted: 03/22/2018] [Indexed: 11/04/2022]
Abstract
BACKGROUND Thyroid-associated orbitopathy (TAO) causes inflammatory fibroproliferation of periocular connective tissues. We compared adipose tissue-derived stem/stromal cells (ADSCs) from three adipose depots of each patient with TAO on mesenchymal, myofibrogenic, adipogenic properties and associated hyaluronan (HA) synthesis. METHODS ADSCs were generated from periocular (eyelid, orbital) and subcutaneous (abdominal) adipose tissues of three patients with TAO. Mesenchymal markers were characterised by reverse transcription-PCR and immunofluorescent staining. A 3-week adipogenic induction was evaluated by Nile red staining and quantitative PCR (qPCR) of peroxisome proliferator-activated receptor (PPARγ), adiponectin and hyaluronan synthase (HAS)-2. A 7-day myofibrogenic induction was assayed by immunofluorescent staining and qPCR of α-smooth muscle actin (α-SMA). RESULTS ADSCs from all depots expressed similar levels of mesenchymal markers CD44, CD90 and CD105 (p=0.288, p=0.43 and p=0.837, respectively). After adipogenic induction, intracellular lipid increased for more than 32% and PPARγ mRNA showed more than twofold increase from all three depots. However, adiponectin and HAS-2 mRNA levels were significantly higher in the eyelid and orbital ADSCs than those from the subcutaneous ADSCs after induction (2.4×107, 3.9×106 folds vs below detection limit; 63.3-fold, 26.1-fold, vs 33% reduction, respectively; all p=0.002). Significantly more myofibroblasts and higher mRNA level of α-SMA were obtained from the orbital and eyelid compared with the subcutaneous ADSCs during myofibrogenic induction (80.2%, 70.6% vs 29.3%; 30.2-fold, 24.2-fold vs 1.7-fold, respectively; all p=0.002). CONCLUSION ADSCs from different adipose depots of the same donors exhibited similar mesenchymal phenotypes but differed significantly in adipogenic, myofibrogenic potentials and associated HA synthesis. These depot-specific characteristics of ADSCs may contribute to site-specific adipose tissue involvement in TAO.
Collapse
Affiliation(s)
- Janice Siu Chong Wong
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Wai Kit Chu
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Benjamin Fuk-Loi Li
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi-Pui Pang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Kelvin Kam-Lung Chong
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China .,Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, China
| |
Collapse
|
30
|
Balan D, Chan KL, Murugan D, AbuBakar S, Wong PF. Antiadipogenic effects of a standardized quassinoids-enriched fraction and eurycomanone fromEurycoma longifolia. Phytother Res 2018. [DOI: 10.1002/ptr.6065] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- D. Balan
- Department of Pharmacology, Faculty of Medicine; University of Malaya; 50603 Kuala Lumpur Malaysia
| | - Kit-Lam Chan
- School of Pharmaceutical Sciences; University of Science Malaysia; 11800 Penang Malaysia
| | - D. Murugan
- Department of Pharmacology, Faculty of Medicine; University of Malaya; 50603 Kuala Lumpur Malaysia
| | - Sazaly AbuBakar
- Department of Medical Microbiology, Faculty of Medicine; University of Malaya; 50603 Kuala Lumpur Malaysia
| | - Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine; University of Malaya; 50603 Kuala Lumpur Malaysia
| |
Collapse
|
31
|
Zhu Y, Kruglikov IL, Akgul Y, Scherer PE. Hyaluronan in adipogenesis, adipose tissue physiology and systemic metabolism. Matrix Biol 2018; 78-79:284-291. [PMID: 29458140 PMCID: PMC6534160 DOI: 10.1016/j.matbio.2018.02.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/12/2018] [Accepted: 02/12/2018] [Indexed: 02/07/2023]
Abstract
Hyaluronic acid (HA, also known as hyaluronan), is a non-sulfated linear glycosaminoglycan polymer consisting of repeating disaccharide units of d-glucuronic acid and N-acetyl-d-glucosamine abundantly present in the extracellular matrix. The sizes of hyaluronic acid polymers range from 5000 to 20,000,000 Da in vivo, and the functions of HA are largely dictated by its size. Due to its high biocompatibility, HA has been commonly used as soft tissue filler as well as a major component of biomaterial scaffolds in tissue engineering. Several studies have implicated that HA may promote differentiation of adipose tissue derived stem cells in vitro or in vivo when used as a supporting scaffold. However, whether HA actually promotes adipogenesis in vivo and the subsequent metabolic effects of this process are unclear. This review summarizes some recent publications in the field and discusses the possible directions and approaches for future studies, focusing on the role of HA in the adipose tissue.
Collapse
Affiliation(s)
- Yi Zhu
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Yucel Akgul
- Department of Plastic Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
32
|
An SM, Seong KY, Yim SG, Hwang YJ, Bae SH, Yang SY, An BS. Intracutaneous delivery of gelatins induces lipolysis and suppresses lipogenesis of adipocytes. Acta Biomater 2018; 67:238-247. [PMID: 29208554 DOI: 10.1016/j.actbio.2017.11.050] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/24/2017] [Accepted: 11/28/2017] [Indexed: 12/21/2022]
Abstract
Due to growing interest in cosmetics and medical applications, therapeutic medications that reduce the amount of local subcutaneous adipose tissue have potential for obesity treatment. However, conventional methods such as surgical operation are restricted due to risk of complications. Here, we report a simple and effective method for local reduction of subcutaneous adipose tissue (AT) by using microneedle-assisted transdermal delivery of natural polymers. After in vitro screening tests, gelatin was selected as a therapeutic polymer to reduce accumulation of AT. An in vitro study showed that the level of released glycerol as an indicator of lipolysis was elevated in isolated adipocytes after gelatin treatment. In addition, gelatins suppressed expression levels of lipogenesis-associated genes. Following application of gelatin microneedle (GMN) patches to high-fat diet (HD)-induced obese rats, the amount of subcutaneous AT at the site of GMN application was significantly reduced, which was also confirmed by histological analysis and micro-computed tomography scanning. In addition, lipogenesis-associated genes were down-regulated in GMN-treated subcutaneous AT. These findings suggest that GMN patches induce lipolysis and simultaneously inhibit lipogenesis, thereby reducing deposition of subcutaneous AT. This platform using GMNs may provide a new strategy to treat excess subcutaneous AT with minimal complications. STATEMENT OF SIGNIFICANCE: (1) Significance This work reports a new approach for the local reduction of subcutaneous adipose tissue using a dissolving microneedle patch prepared using gelatin to enable suppression of lipogenesis and acceleration of lipolysis in adipocytes. The gelatin microneedle patch exhibited a significant reduction of local subcutaneous fat up to 60% compared to control groups without any change in total weight. (2) Scientific impact This is the first report demonstrating the direct anti-obesity effects of gelatin administrated in a transdermal route and the feasibility of natural polymer therapeutics for regional reduction of subcutaneous fat. We believe that our work will excite interdisciplinary readers of Acta Biomaterialia, those who are interested in the natural polymers, drug delivery, and obesity.
Collapse
Affiliation(s)
- Sung-Min An
- Department of Biomaterials Science, Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Keum-Yong Seong
- Department of Biomaterials Science, Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Sang-Gu Yim
- Department of Biomaterials Science, Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Young Jun Hwang
- Department of Biomaterials Science, Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Seong Hwan Bae
- Department of Plastic and Reconstructive Surgery, Pusan National University, Busan 46241, Republic of Korea
| | - Seung Yun Yang
- Department of Biomaterials Science, Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Republic of Korea.
| | - Beum-Soo An
- Department of Biomaterials Science, Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Republic of Korea.
| |
Collapse
|
33
|
Youn CS, Hong JY, Park KY, Kim BJ, Nam Kim M. A review of hydrolifting: A new modality for skin rejuvenation. J COSMET LASER THER 2017; 20:28-33. [DOI: 10.1080/14764172.2017.1358459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Ji Yeon Hong
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Kui Young Park
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Beom Joon Kim
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Myeung Nam Kim
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
34
|
Sato E, Zhang LJ, Dorschner RA, Adase CA, Choudhury BP, Gallo RL. Activation of Parathyroid Hormone 2 Receptor Induces Decorin Expression and Promotes Wound Repair. J Invest Dermatol 2017; 137:1774-1783. [PMID: 28454729 DOI: 10.1016/j.jid.2017.03.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 03/25/2017] [Accepted: 03/27/2017] [Indexed: 01/05/2023]
Abstract
In this study, we report that TIP39, a parathyroid hormone ligand family member that was recently identified to be expressed in the skin, can induce decorin expression and enhance wound repair. Topical treatment of mice with TIP39 accelerated wound repair, whereas TIP39-deficient mice had delayed repair that was associated with formation of abnormal collagen bundles. To study the potential mechanism responsible for the action of TIP39 in the dermis, fibroblasts were cultured in three-dimensional collagen gels, a process that results in enhanced decorin expression unless activated to differentiate to adipocytes, whereupon these cells reduce expression of several proteoglycans, including decorin. Small interfering RNA-mediated silencing of parathyroid hormone 2 receptor (PTH2R), the receptor for TIP39, suppressed the expression of extracellular matrix-related genes, including decorin, collagens, fibronectin, and matrix metalloproteases. Skin wounds in TIP39-/- mice had decreased decorin expression, and addition of TIP39 to cultured fibroblasts induced decorin and increased phosphorylation and nuclear translocation of CREB. Fibroblasts differentiated to adipocytes and treated with TIP39 also showed increased decorin and production of chondroitin sulfate. Furthermore, the skin of PTH2R-/- mice showed abnormal extracellular matrix structure, decreased decorin expression, and skin hardness. Thus, the TIP39-PTH2R system appears to be a previously unrecognized mechanism for regulation of extracellular matrix formation and wound repair.
Collapse
Affiliation(s)
- Emi Sato
- Department of Dermatology, University of California-San Diego, La Jolla, California, USA
| | - Ling-Juan Zhang
- Department of Dermatology, University of California-San Diego, La Jolla, California, USA
| | - Robert A Dorschner
- Department of Dermatology, University of California-San Diego, La Jolla, California, USA
| | - Christopher A Adase
- Department of Dermatology, University of California-San Diego, La Jolla, California, USA
| | - Biswa P Choudhury
- Glycotechnology Core Resource, University of California-San Diego, La Jolla, California, USA
| | - Richard L Gallo
- Department of Dermatology, University of California-San Diego, La Jolla, California, USA.
| |
Collapse
|
35
|
Doğan A, Demirci S, Apdik H, Bayrak OF, Gulluoglu S, Tuysuz EC, Gusev O, Rizvanov AA, Nikerel E, Şahin F. A new hope for obesity management: Boron inhibits adipogenesis in progenitor cells through the Wnt/β-catenin pathway. Metabolism 2017; 69:130-142. [PMID: 28285642 DOI: 10.1016/j.metabol.2017.01.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/07/2017] [Accepted: 01/12/2017] [Indexed: 11/25/2022]
Abstract
Obesity is a worldwide medical problem resulting in serious morbidity and mortality involving differentiation of pre-adipocytes into mature adipocytes (adipogenesis). Boron treatment has been reported to be associated with weight reduction in experimental animals; however, its effects on pre-adipocyte differentiation and anti-adipogenic molecular mechanisms are unknown. In this study, we demonstrate the inhibitory activities of boric acid (BA) and sodium pentaborate pentahydrate (NaB) on adipogenesis using common cellular models. Boron treatment repressed the expression of adipogenesis-related genes and proteins, including CCAAT-enhancer-binding protein α and peroxisome proliferator-activated receptor γ, by regulating critical growth factors and the β-catenin, AKT, and extracellular signal-regulated kinase signaling pathways. In addition, although boron treatment did not induce apoptosis in pre-adipocytes, it depressed mitotic clonal expansion by regulation of cell cycle genes. Overall, these data offer promising insights into the prevention/treatment of obesity and associated diseases.
Collapse
Affiliation(s)
- Ayşegül Doğan
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Kayisdagi Cad. 26 Agustos Yerlesimi, 34755 Atasehir, Istanbul, Turkey; National Cancer Instıtute, CDBL, NIH, Frederıck, MD
| | - Selami Demirci
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Kayisdagi Cad. 26 Agustos Yerlesimi, 34755 Atasehir, Istanbul, Turkey; National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD.
| | - Hüseyin Apdik
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Kayisdagi Cad. 26 Agustos Yerlesimi, 34755 Atasehir, Istanbul, Turkey
| | - Omer Faruk Bayrak
- Department of Medical Genetics, Yeditepe University Medical School Inonu Mah, Kayisdagi Cad. 26 Agustos Yerlesimi, 34755 Atasehir, Istanbul, Turkey
| | - Sukru Gulluoglu
- Department of Medical Genetics, Yeditepe University Medical School Inonu Mah, Kayisdagi Cad. 26 Agustos Yerlesimi, 34755 Atasehir, Istanbul, Turkey
| | - Emre Can Tuysuz
- Department of Medical Genetics, Yeditepe University Medical School Inonu Mah, Kayisdagi Cad. 26 Agustos Yerlesimi, 34755 Atasehir, Istanbul, Turkey
| | - Oleg Gusev
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia; Riken Innovation Center, Riken, Yokohama, Japan
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Emrah Nikerel
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Kayisdagi Cad. 26 Agustos Yerlesimi, 34755 Atasehir, Istanbul, Turkey
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Kayisdagi Cad. 26 Agustos Yerlesimi, 34755 Atasehir, Istanbul, Turkey
| |
Collapse
|
36
|
Bahrami SB, Tolg C, Peart T, Symonette C, Veiseh M, Umoh JU, Holdsworth DW, McCarthy JB, Luyt LG, Bissell MJ, Yazdani A, Turley EA. Receptor for hyaluronan mediated motility (RHAMM/HMMR) is a novel target for promoting subcutaneous adipogenesis. Integr Biol (Camb) 2017; 9:223-237. [PMID: 28217782 DOI: 10.1039/c7ib00002b] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hyaluronan, CD44 and the Receptor for Hyaluronan-Mediated Motility (RHAMM, gene name HMMR) regulate stem cell differentiation including mesenchymal progenitor differentiation. Here, we show that CD44 expression is required for subcutaneous adipogenesis, whereas RHAMM expression suppresses this process. We designed RHAMM function blocking peptides to promote subcutaneous adipogenesis as a clinical and tissue engineering tool. Adipogenic RHAMM peptides were identified by screening for their ability to promote adipogenesis in culture assays using rat bone marrow mesenchymal stem cells, mouse pre-adipocyte cell lines and primary human subcutaneous pre-adipocytes. Oil red O uptake into fat droplets and adiponectin production were used as biomarkers of adipogenesis. Positive peptides were formulated in either collagen I or hyaluronan (Orthovisc) gels then assessed for their adipogenic potential in vivo following injection into dorsal rat skin and mammary fat pads. Fat content was quantified and characterized using micro CT imaging, morphometry, histology, RT-PCR and ELISA analyses of adipogenic gene expression. Injection of screened peptides increased dorsal back subcutaneous fat pad area (208.3 ± 10.4 mm2versus control 84.11 ± 4.2 mm2; p < 0.05) and mammary fat pad size (45 ± 11 mg above control background, p = 0.002) in female rats. This effect lasted >5 weeks as detected by micro CT imaging and perilipin 1 mRNA expression. RHAMM expression suppresses while blocking peptides promote expression of PPARγ, C/EBP and their target genes. Blocking RHAMM function by peptide injection or topical application is a novel and minimally invasive method for potentially promoting subcutaneous adipogenesis in lipodystrophic diseases and a complementary tool to subcutaneous fat augmentation techniques.
Collapse
Affiliation(s)
- S B Bahrami
- Biological Systems and Engineering Division, BioSciences Area, Lawrence Berkeley National Laboratories, 977R225A, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Place RF, Krieger CC, Neumann S, Gershengorn MC. Inhibiting thyrotropin/insulin-like growth factor 1 receptor crosstalk to treat Graves' ophthalmopathy: studies in orbital fibroblasts in vitro. Br J Pharmacol 2017; 174:328-340. [PMID: 27987211 DOI: 10.1111/bph.13693] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 12/05/2016] [Accepted: 12/14/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Crosstalk between thyrotropin (TSH) receptors and insulin-like growth factor 1 (IGF-1) receptors initiated by activation of TSH receptors could be important in the development of Graves' ophthalmopathy (GO). Specifically, TSH receptor activation alone is sufficient to stimulate hyaluronic acid (HA) secretion, a major component of GO, through both IGF-1 receptor-dependent and -independent pathways. Although an anti-IGF-1 receptor antibody is in clinical trials, its effectiveness depends on the relative importance of IGF-1 versus TSH receptor signalling in GO pathogenesis. EXPERIMENTAL APPROACH TSH and IGF-1 receptor antagonists were used to probe TSH/IGF-1 receptor crosstalk in primary cultures of Graves' orbital fibroblasts (GOFs) following activation with monoclonal TSH receptor antibody, M22. Inhibition of HA secretion following TSH receptor stimulation was measured by modified HA elisa. KEY RESULTS TSH receptor antagonist, ANTAG3 (NCGC00242364), inhibited both IGF-1 receptor -dependent and -independent pathways at all doses of M22; whereas IGF-1 receptor antagonists linsitinib and 1H7 (inhibitory antibody) lost efficacy at high M22 doses. Combining TSH and IGF-1 receptor antagonists exhibited Loewe additivity within the IGF-1 receptor-dependent component of the M22 concentration-response. Similar effects were observed in GOFs activated by autoantibodies from GO patients' sera. CONCLUSIONS AND IMPLICATIONS Our data support TSH and IGF-1 receptors as therapeutic targets for GO, but reveal putative conditions for anti-IGF-1 receptor resistance. Combination treatments antagonizing both receptors yield additive effects by inhibiting crosstalk triggered by TSH receptor stimulatory antibodies. Combination therapy may be an effective strategy for dose reduction and/or compensate for any loss of anti-IGF-1 receptor efficacy.
Collapse
Affiliation(s)
- Robert F Place
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Christine C Krieger
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Susanne Neumann
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Marvin C Gershengorn
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
38
|
Liu M, Liu H, Xie J, Xu Q, Pan C, Wang J, Wu X, Sanabil S, Zheng M, Liu J. Anti-obesity effects of zeaxanthin on 3T3-L1 preadipocyte and high fat induced obese mice. Food Funct 2017; 8:3327-3338. [DOI: 10.1039/c7fo00486a] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Zeaxanthin inhibited lipogenesis in adipocytes and attenuated progression of obesity in mice by inducing AMPK activation and suppressing adipocyte-specific factors.
Collapse
|
39
|
Kruglikov IL, Scherer PE. Skin aging: are adipocytes the next target? Aging (Albany NY) 2016; 8:1457-69. [PMID: 27434510 PMCID: PMC4993342 DOI: 10.18632/aging.100999] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/07/2016] [Indexed: 01/09/2023]
Abstract
Dermal white adipose tissue (dWAT) is increasingly appreciated as a special fat depot. The adipocytes in this depot exert a variety of unique effects on their surrounding cells and can undergo massive phenotypic changes. Significant modulation of dWAT content can be observed both in intrinsically and extrinsically aged skin. Specifically, skin that has been chronically photo-damaged displays a reduction of the dWAT volume, caused by the replacement of adipocytes by fibrotic structures. This is likely to be caused by the recently uncovered process described as "adipocyte-myofibroblast transition" (AMT). In addition, contributions of dermal adipocytes to the skin aging processes are also indirectly supported by spatial correlations between the prevalence of hypertrophic scarring and the appearance of signs of skin aging in different ethnic groups. These observations could elevate dermal adipocytes to prime targets in strategies aimed at counteracting skin aging.
Collapse
Affiliation(s)
| | - Philipp E. Scherer
- Touchstone Diabetes Center, Departments of Internal Medicine and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
40
|
Lin D, Chun TH, Kang L. Adipose extracellular matrix remodelling in obesity and insulin resistance. Biochem Pharmacol 2016; 119:8-16. [PMID: 27179976 DOI: 10.1016/j.bcp.2016.05.005] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/10/2016] [Indexed: 12/15/2022]
Abstract
The extracellular matrix (ECM) of adipose tissues undergoes constant remodelling to allow adipocytes and their precursor cells to change cell shape and function in adaptation to nutritional cues. Abnormal accumulation of ECM components and their modifiers in adipose tissues has been recently demonstrated to cause obesity-associated insulin resistance, a hallmark of type 2 diabetes. Integrins and other ECM receptors (e.g. CD44) that are expressed in adipose tissues have been shown to regulate insulin sensitivity. It is well understood that a hypoxic response is observed in adipose tissue expansion during obesity progression and that hypoxic response accelerates fibrosis and inflammation in white adipose tissues. The expansion of adipose tissues should require angiogenesis; however, the excess deposition of ECM limits the angiogenic response of white adipose tissues in obesity. While recent studies have focused on the metabolic consequences and the mechanisms of adipose tissue expansion and remodelling, little attention has been paid to the role played by the interaction between peri-adipocyte ECM and their cognate cell surface receptors. This review will address what is currently known about the roles played by adipose ECM, their modifiers, and ECM receptors in obesity and insulin resistance. Understanding how excess ECM deposition in the adipose tissue deteriorates insulin sensitivity would provide us hints to develop a new therapeutic strategy for the treatment of insulin resistance and type 2 diabetes.
Collapse
Affiliation(s)
- De Lin
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee, UK
| | - Tae-Hwa Chun
- Division of Metabolism, Endocrinology & Diabetes (MEND), Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Li Kang
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, UK.
| |
Collapse
|
41
|
Anti-obesity potential of enzymatic fragments of hyaluronan on high-fat diet-induced obesity in C57BL/6 mice. Biochem Biophys Res Commun 2016; 473:290-295. [PMID: 27012203 DOI: 10.1016/j.bbrc.2016.03.098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/20/2016] [Indexed: 11/22/2022]
Abstract
Hyaluronan has diverse biological activities depending on its molecular size. The hyaluronan fragments (50 kDa) can decrease adipogenic differentiation in vitro. However, in vivo anti-obesitic effects of hyaluronan fragments have not been elucidated. Therefore, we examined the anti-obesity effects of hyaluronan fragments on high-fat diet induced obesity in C57BL/6 mice. Oral administration of hyaluronan fragments (200 mg/kg for 8 weeks) decreased body weight, adipose tissues, serum lipid (low-density lipoprotein cholesterol, triglyceride), and leptin level. Hyaluronan fragments decreased the hypertrophy of adipose tissue and ameliorated liver steatosis. The mRNA expression of leptin was reduced in adipocyte by treatment with hyaluronan fragments. Additionally, hyaluronan fragments enhanced the mRNA expression of PPAR-α and its target genes UCP-2 and decreased mRNA expression of PPAR- γ and fatty acid synthase in liver. In conclusions, hyaluronan fragments had marked effects on inhibiting the development of obesity in obese mice fed the high-fat diet. It suggested that enhancing PPAR-α and suppressing PPAR-γ expression are two possible mechanisms for the anti-obesitic effect of hyaluronan fragments.
Collapse
|
42
|
Volz AC, Huber B, Kluger PJ. Adipose-derived stem cell differentiation as a basic tool for vascularized adipose tissue engineering. Differentiation 2016; 92:52-64. [PMID: 26976717 DOI: 10.1016/j.diff.2016.02.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 01/08/2016] [Accepted: 02/10/2016] [Indexed: 12/13/2022]
Abstract
The development of in vitro adipose tissue constructs is highly desired to cope with the increased demand for substitutes to replace damaged soft tissue after high graded burns, deformities or tumor removal. To achieve clinically relevant dimensions, vascularization of soft tissue constructs becomes inevitable but still poses a challenge. Adipose-derived stem cells (ASCs) represent a promising cell source for the setup of vascularized fatty tissue constructs as they can be differentiated into adipocytes and endothelial cells in vitro and are thereby available in sufficiently high cell numbers. This review summarizes the currently known characteristics of ASCs and achievements in adipogenic and endothelial differentiation in vitro. Further, the interdependency of adipogenesis and angiogenesis based on the crosstalk of endothelial cells, stem cells and adipocytes is addressed at the molecular level. Finally, achievements and limitations of current co-culture conditions for the construction of vascularized adipose tissue are evaluated.
Collapse
Affiliation(s)
- Ann-Cathrin Volz
- Process Analysis and Technology (PA&T), Reutlingen University, Alteburgstraße 150, 72762 Reutlingen, Germany
| | - Birgit Huber
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Nobelstraße 12, 70569 Stuttgart, Germany
| | - Petra J Kluger
- Process Analysis and Technology (PA&T), Reutlingen University, Alteburgstraße 150, 72762 Reutlingen, Germany; Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstraße 12, 70569 Stuttgart, Germany
| |
Collapse
|
43
|
Zhu Y, Crewe C, Scherer PE. Hyaluronan in adipose tissue: Beyond dermal filler and therapeutic carrier. Sci Transl Med 2016; 8:323ps4. [PMID: 26819194 DOI: 10.1126/scitranslmed.aad6793] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Adipose hyaluronan is increasingly recognized as an active player in adipose tissue fibrosis and metabolic dysfunction. However, this role poses as many challenges as opportunities for therapeutic targeting of adipose tissue dysfunction during nutrient oversupply.
Collapse
Affiliation(s)
- Yi Zhu
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. LIFA Diabetes, Lilly Research Laboratories, Division of Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Clair Crewe
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
44
|
Kruglikov IL, Scherer PE. Dermal Adipocytes: From Irrelevance to Metabolic Targets? Trends Endocrinol Metab 2016; 27:1-10. [PMID: 26643658 PMCID: PMC4698208 DOI: 10.1016/j.tem.2015.11.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 01/12/2023]
Abstract
Dermal white adipose tissue (dWAT) has received little appreciation in the past as a distinct entity from the better recognized subcutaneous white adipose tissue (sWAT). However, recent work has established dWAT as an important contributor to a multitude of processes, including immune response, wound healing and scarring, hair follicle (HF) growth, and thermoregulation. Unique metabolic contributions have also been attributed to dWAT, at least in part due to its thermic insulation properties and response to cold exposure. Dermal adipocytes can also undergo an adipocyte-myofibroblast transition (AMT), a process that is suspected to have an important role in several pathophysiological processes within the skin. Here, we discuss emerging concepts regarding dWAT physiology and its significance to a variety of cellular processes.
Collapse
Affiliation(s)
| | - Philipp E Scherer
- Touchstone Diabetes Center, Departments of Internal Medicine and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
45
|
Kruglikov IL, Wollina U. Soft tissue fillers as non-specific modulators of adipogenesis: change of the paradigm? Exp Dermatol 2015; 24:912-5. [PMID: 26309229 DOI: 10.1111/exd.12852] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2015] [Indexed: 12/15/2022]
Abstract
Dermal filler injection is a cornerstone of facial rejuvenation procedures. Based on available data in animal and human studies, we suppose that the activation and proliferation of adipose-derived stem cells and expansion of mature adipocytes play a crucial role in long-term effects of volumizing, tissue tightening and beautification.
Collapse
Affiliation(s)
| | - Uwe Wollina
- Hospital Dresden-Friedrichstadt, Academic Teaching Hospital of the Technical University of Dresden, Dresden, Germany
| |
Collapse
|
46
|
Enzymatic fragments of hyaluronan inhibit adipocyte differentiation in 3T3-L1 pre-adipocytes. Biochem Biophys Res Commun 2015; 467:623-8. [PMID: 26525853 DOI: 10.1016/j.bbrc.2015.10.104] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 10/20/2015] [Indexed: 11/21/2022]
Abstract
Hyaluronan has diverse biological activities depending on its molecular size. High molecular weight hyaluronan (2000 kDa) is a major component of extracellular matrix, and has been used in wounding healing, extracellular matrix regeneration, and in the treatment of osteoarthritis. Hyaluronan fragments can stimulate inflammation or induce loss of extracellular matrix. Hyaluronan is expressed during adipocyte differentiation, and down regulation of hyaluronan synthesis can reduce adipogenic differentiation. However, the direct effects of hyaluronan fragments on adipocyte differentiation have not been elucidated. Therefore, we prepared hyaluronan fragments by enzymatic digestion, and examined the inhibitory effects of these hyaluronan fragments on the accumulation of lipid droplets and on adipogenic gene mRNA expression in differentiating 3T3-L1 pre-adipocytes. Medium sized hyaluronan fragments (50 kDa) decreased lipid droplet accumulation in a dose-dependent manner. However, high molecular weight hyaluronan did not inhibit lipid droplet accumulation when used at a concentration of 600 μg/ml. Two or 4 day treatments with medium molecular weight of hyaluronan resulted in similar inhibitory levels of lipid accumulation as did treatment for 8 days. Medium sized hyaluronan inhibited the differentiation of 3T3-L1 pre-adipocytes during the early stages of adipogenesis. When 3T3-L1 cells were treated with 180 μg/ml of medium sized hyaluronan, the mRNAs for the master adipogenic transcription factors PPAR-γ and C/EBP-α were inhibited. Additionally, medium molecular weight hyaluronan suppressed mRNA expression of PPAR-γ target genes, including aP2 and FAS. This study is the first to report that medium molecular weight hyaluronan fragments can inhibit adipocyte differentiation.
Collapse
|
47
|
Herranz-López M, Barrajón-Catalán E, Segura-Carretero A, Menéndez JA, Joven J, Micol V. Lemon verbena (Lippia citriodora) polyphenols alleviate obesity-related disturbances in hypertrophic adipocytes through AMPK-dependent mechanisms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:605-614. [PMID: 26055125 DOI: 10.1016/j.phymed.2015.03.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 03/06/2015] [Accepted: 03/23/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND There is growing evidence that natural products, mostly plant-derived polyphenols, are important in the relationship between nutrients and health in humans. PURPOSE We aimed to investigate if verbascoside (VB) and other lemon verbena polyphenols could ameliorate obesity-induced metabolic disturbances, as well as their putative mechanism. STUDY DESIGN We used an insulin-resistant hypertrophic 3T3-L1-adipocyte model to test the effects of VB or lemon verbena extract on triglyceride accumulation, inflammation and oxidative stress and a murine model of diet-induced obesity to assess the in vivo metabolic response. RESULTS Polyphenols decreased triglyceride accumulation, the generation of reactive oxygen species (ROS) and restored mitochondrial membrane potential in adipocytes. The underlying mechanisms seemed to occur via ROS-mediated downregulation of nuclear factor kappa-B transcription factor (NF-κB) and peroxisome proliferator-activated receptor gamma (PPAR-γ)-dependent transcriptional upregulation of adiponectin. We also observed a potent activation of AMP-activated protein kinase (AMPK), the mRNA expression upregulation of PPAR-α and the mRNA expression downregulation of fatty acid synthase. Experiments in mice suggested a significant improvement in fat metabolism. CONCLUSION Decreased lipogenesis, enhanced fatty acid oxidation and the activation of the energy sensor AMPK, probably through activating transcriptional factors, are involved in the observed beneficial effects. VB effects were less potent than those observed with the extract, so a potential synergistic, multi-targeted action is proposed. The polypharmacological effects of plant-derived polyphenols from lemon verbena may have the potential for clinical applications in obesity.
Collapse
Affiliation(s)
- María Herranz-López
- Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández, Elche, Alicante, Spain
| | - Enrique Barrajón-Catalán
- Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández, Elche, Alicante, Spain
| | | | - Javier A Menéndez
- Metabolism & Cancer Group, Translational Research Laboratory, Catalan Institute of Oncology and Biomedical Research Institute, Girona, Spain
| | - Jorge Joven
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, IISPV, Universitat Rovira i Virgili, C/ Sant Joan s/n, 43201 Reus, Spain
| | - Vicente Micol
- Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández, Elche, Alicante, Spain; CIBER (CB12/03/30038, Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Instituto de Salud Carlos III), Spain.
| |
Collapse
|