1
|
Wang HL, Chen ZZ, Koski TM, Zhang B, Wang XF, Zhang RB, Li RQ, Wang SX, Zeng JY, Li HP. Emerald Ash Borer Infestation-Induced Elevated Negative Correlations and Core Genera Shift in the Endophyte Community of Fraxinus bungeana. INSECTS 2024; 15:534. [PMID: 39057267 PMCID: PMC11277034 DOI: 10.3390/insects15070534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
Endophytes, prevalent in plants, mediate plant-insect interactions. Nevertheless, our understanding of the key members of endophyte communities involved in inhibiting or assisting EAB infestation remains limited. Employing ITS and 16S rRNA high-throughput sequencing, along with network analysis techniques, we conducted a comprehensive investigation into the reaction of endophytic fungi and bacteria within F. bungeana phloem by comparing EAB-infested and uninfected samples. Our findings reveal that EAB infestation significantly impacts the endophytic communities, altering both their diversity and overall structure. Interestingly, both endophytic fungi and bacteria exhibited distinct patterns in response to the infestation. For instance, in the EAB-infested phloem, the fungi abundance remained unchanged, but diversity decreased significantly. Conversely, bacterial abundance increased, without significant diversity changes. The fungi community structure altered significantly, which was not observed in bacteria. The bacterial composition in the infested phloem underwent significant changes, characterized by a substantial decrease in beneficial species abundance, whereas the fungal composition remained largely unaffected. In network analysis, the endophytes in infested phloem exhibited a modular topology, demonstrating greater complexity due to an augmented number of network nodes, elevated negative correlations, and a core genera shift compared to those observed in healthy phloem. Our findings increase understanding of plant-insect-microorganism relationships, crucial for pest control, considering endophytic roles in plant defense.
Collapse
Affiliation(s)
- Hua-Ling Wang
- College of Forestry, Hebei Agricultural University, Baoding 071001, China
- Hebei Urban Forest Health Technology Innovation Center, Hebei Agricultural University, Baoding 071001, China
| | - Zhen-Zhu Chen
- College of Forestry, Hebei Agricultural University, Baoding 071001, China
| | | | - Bin Zhang
- College of Life Sciences, Hebei University, Baoding 071002, China
| | - Xue-Fei Wang
- College of Forestry, Hebei Agricultural University, Baoding 071001, China
| | - Rui-Bo Zhang
- College of Forestry, Hebei Agricultural University, Baoding 071001, China
| | - Ruo-Qi Li
- College of Forestry, Hebei Agricultural University, Baoding 071001, China
| | - Shi-Xian Wang
- College of Forestry, Hebei Agricultural University, Baoding 071001, China
| | - Jian-Yong Zeng
- College of Forestry, Hebei Agricultural University, Baoding 071001, China
- Key Laboratory of Forest Germplasm Resources and Protection of Hebei Province, Hebei Agricultural University, Baoding 071001, China
| | - Hui-Ping Li
- College of Forestry, Hebei Agricultural University, Baoding 071001, China
- Hebei Urban Forest Health Technology Innovation Center, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|
2
|
Li L, Luo Z, Li L, Niu Y, Zhang Y, He R, Liu J, Nian L. Long-term phosphorus fertilization reveals the phosphorus limitation shaping the soil micro-food web stability in the Loess Plateau. Front Microbiol 2024; 14:1256269. [PMID: 38274741 PMCID: PMC10808297 DOI: 10.3389/fmicb.2023.1256269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
The intricate decomposition pathways within soil micro-food webs are vital for cycling soil organic carbon and nutrients, influencing the quality, productivity, and sustainability of soil systems. However, the impact of diverse phosphorus addition on these organic decomposition pathways still needs to be explored. In an 8-year experiment, phosphorus (P) fertilizer was added at varying levels (0 kg ha-1, CK; 60 kg ha-1, P60; 120 kg ha-1, P120; and 180 kg ha-1, P180), to investigate the response of the soil micro-food web. The results revealed a significant effect of phosphorus addition on soil microorganisms and nematodes, with P60 exerting a greater influence than other treatments. At P60, the Shannon index of nematodes and fungi surpassed other treatments, indicating higher diversity, while the Shannon index of bacteria was lower. The Chao1 index of bacteria and fungi at P60 was higher, contrasting with the lower index for nematodes. Metabolic footprints of bacterivores and omnivores-predators (BFMF and OPMF) were higher at P60, while metabolic footprints of fungivores and plant parasites (FFMF and PPMF) were lower, signifying altered energy flow. Functional metabolic footprints and energy flow analysis unveiled a stable soil micro-food web structure at P60, with enhanced energy conversion efficiency. Network analysis illustrated positive correlations between fungi, fungivorous nematodes (FF), and omnivorous-predatory nematodes (OP) at P60, while P120 and P180 showed positive correlations among bacteria, bacterivorous nematodes (BF), and OP. Path analysis underscored the higher contribution rate of BF-C, FF-C, and OP-C to soil organic carbon at P60 compared with P120 and P180. These findings suggest that nutrient interactions between fungi and nematodes regulate soil micro-food web decomposition under low phosphorus concentrations. In contrast, interactions between bacteria and nematodes dominate at high phosphorus concentrations. The study indicates that adding phosphorus has nuanced bottom-up effects, intricately shaping the structure and activity of the pathways and underscoring the need for a comprehensive understanding of nutrient dynamics in soil ecosystems.
Collapse
Affiliation(s)
- Liangliang Li
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, China
| | - Zhuzhu Luo
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, China
- State Key Laboratory of Arid Habitat Crop Science, Lanzhou, China
| | - Lingling Li
- State Key Laboratory of Arid Habitat Crop Science, Lanzhou, China
| | - Yining Niu
- State Key Laboratory of Arid Habitat Crop Science, Lanzhou, China
| | - Yaoquan Zhang
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Renyuan He
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Jiahe Liu
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Lili Nian
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
3
|
Qiu Z, Li J, Wang P, Wang D, Han L, Gao X, Shu J. Response of soil bacteria on habitat-specialization and abundance gradient to different afforestation types. Sci Rep 2023; 13:18181. [PMID: 37875517 PMCID: PMC10598043 DOI: 10.1038/s41598-023-44468-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023] Open
Abstract
Studies involving response of subgroups of soil microorganisms to forest change, especially comparative studies on habitat-specialization and abundance gradient were still lack. In this study, we analyzed the response of soil bacterial diversity and structure to afforestation types and its relationship to environment of Fanggan ecological restoration area under the classification of subgroups by habitat-specialization and abundance gradient based on abundance ratio respectively. The results were: (1) On the habitat-specialization gradient, the variation of OTUs species number and abundance was consistent and positively correlated with habitat-specialization; on the abundance gradient, the variation was opposite and OTUs species number was negatively correlated with abundance gradient; (2) The distribution frequency of each subgroup on both gradients was the highest in broad-leaved forests, but the abundance was the opposite. The distribution frequency of the same stand showed no difference among habitat-specialization subgroups, but the abundant subgroup in broad-leaved forests was the highest among the abundance subgroups; (3) α-diversity was positively correlated with habitat-specialization but negatively with abundance, with the highest mostly in broad-leaved and mixed forests; (4) Community structure among stands on habitat-specialization gradient showed no significant difference, but that of rare subgroup between broad-leaved forests and other stands significantly differed. Plant diversity and vegetation composition correlated stronger with community structure than spatial distance and soil physicochemical properties on both gradients. Our results provided a new perspective for revealing the effects of afforestation types on soil bacteria from the comparison of habitat specialization and abundance gradient.
Collapse
Affiliation(s)
- Zhenlu Qiu
- College of Forestry Engineering, Shandong Agricultural and Engineering University, Jinan, 250100, China
| | - Jie Li
- College of Forestry Engineering, Shandong Agricultural and Engineering University, Jinan, 250100, China
| | - Peng Wang
- College of Forestry Engineering, Shandong Agricultural and Engineering University, Jinan, 250100, China
| | - Dong Wang
- College of Forestry Engineering, Shandong Agricultural and Engineering University, Jinan, 250100, China
| | - Li Han
- College of Biological and Chemical Enginering, Qilu Institute of Technology, Jinan, 250200, China
| | - Xiaojuan Gao
- College of Biological and Chemical Enginering, Qilu Institute of Technology, Jinan, 250200, China
| | - Jing Shu
- College of Forestry Engineering, Shandong Agricultural and Engineering University, Jinan, 250100, China.
| |
Collapse
|
4
|
Zhu N, Yu Q, Song L, Sheng H. The Inhibiting Effects of High-Dose Biochar Application on Soil Microbial Metagenomics and Rice ( Oryza sativa L.) Production. Int J Mol Sci 2023; 24:15043. [PMID: 37894726 PMCID: PMC10606461 DOI: 10.3390/ijms242015043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Biochar is usually considered as an organic improver which can improve soil and increase crop yields. However, the unrestricted application of biochar to normal-fertility farmland will cause chemical stress on crops and affect agricultural production. At present, the effects and mechanisms of high-dose applications of biochar on rice (Oryza sativa L.) production and soil biological characteristics have not been fully studied. In this greenhouse pot experiment, combined with soil microbial metagenomics, three treatments in triplicates were conducted to explore the responses of rice production, soil chemical properties, and soil biological properties to high-dose applications of biochar (5%, w/w) prepared using peanut waste (peanut hulls and straw). The results show that peanut hulls, with a loose texture and pore structure, are a raw material with stronger effects for preparing biochar than peanut straw in terms of its physical structure. In a rice monoculture system, high-dose applications of biochar (5%, w/w) can slightly increase the grains per spike, while significantly inhibiting the spike number per pot and the percentage of setting. High-dose applications of biochar also have significant negative effects on the diversity and stability of soil bacterial and archaeal communities. Moreover, the microbial metabolism and nutrient cycling processes are also significantly affected by changing the soil carbon/nitrogen ratio. This study discusses the response mechanisms of rice production and soil biology to high-dose biochar applications, and complements the understanding of irrational biochar application on agricultural production and land sustainability.
Collapse
Affiliation(s)
- Nanyan Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China;
| | - Qiaoqiao Yu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225000, China;
| | - Lingqi Song
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, China;
| | - Haijun Sheng
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, China;
| |
Collapse
|
5
|
Zhang J, Chen C, Guo H, Huang Z, Urynowicz M. The variation of microorganisms and organics during methane production from lignite under an electric field. Biotechnol Lett 2023; 45:83-94. [PMID: 36441275 DOI: 10.1007/s10529-022-03327-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/24/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVES The succession of microbial communities and intermediates during methane production was determined by pyrosequencing and GC-MS to investigate the mechanism of biomethanation enhancement from coal. RESULTS The maximum methane production at 1.2 V was significantly higher than that at 0 V. Bacterial flora have been changed as a result of the addition of an electric field, e.g., the abundance of Pseudomonas significantly increased to enhance the coal degradation which improved the methane yield by facilitating the electron transfer. The fungal structure was also found stabilized by the electric field when compared to the control after 7 days of cultivation. The predominance of Methanosarcina could also stimulate interspecies electron transfer. The GC-MS analysis revealed that the electric field can selectively promote the metabolism of refractory intermediates such as esters and aromatics during coal biodegradation. CONCLUSION The application of an electric field could enhance methane production from coal by changing the structure and succession of microbial communities, improving electron transfer, and enhancing the fermentation of intermediates during coal biodegradation.
Collapse
Affiliation(s)
- Jiayan Zhang
- College of Safety and Emergency Management and Engineering, Taiyuan University of Technology, 79 Yingze West Road, Taiyuan, 030024, People's Republic of China
- Key Lab of In-Situ Property-Improving Mining of Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Chao Chen
- College of Safety and Emergency Management and Engineering, Taiyuan University of Technology, 79 Yingze West Road, Taiyuan, 030024, People's Republic of China
- Key Lab of In-Situ Property-Improving Mining of Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Hongguang Guo
- College of Safety and Emergency Management and Engineering, Taiyuan University of Technology, 79 Yingze West Road, Taiyuan, 030024, People's Republic of China.
- Key Lab of In-Situ Property-Improving Mining of Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Zaixing Huang
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, 221116, China
- Department of Civil & Architectural Engineering, University of Wyoming, Laramie, WY, 82071, USA
| | - Michael Urynowicz
- Department of Civil & Architectural Engineering, University of Wyoming, Laramie, WY, 82071, USA
| |
Collapse
|
6
|
Cheng H, Zhou X, Dong R, Wang X, Liu G, Li Q. Priming of soil organic carbon mineralization and its temperature sensitivity in response to vegetation restoration in a karst area of Southwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158400. [PMID: 36049694 DOI: 10.1016/j.scitotenv.2022.158400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Plant residue input alters native soil organic carbon (SOC) mineralization through the priming effect, which strongly controls C sequestration during vegetation restoration. However, the effects of different vegetation types on SOC priming and the underlying microbial mechanisms due to global warming are poorly understood. To elucidate these unknowns, the current study quantified soil priming effects using 13C-labeled maize residue amendments and analyzed the community structure and abundances in the soils of a vegetation succession gradient (maize field (MF), grassland (GL), and secondary forest (SF)) from a karst region under two incubation temperatures (15 °C and 25 °C). Results revealed that after 120 d of incubation, vegetation restoration increased the soil priming effects. Compared to MF, the priming effects of SF at 15 °C and 25 °C increased by 142.36 % and 161.09 %, respectively. This may be attributed to a high C/N ratio and low-N availability (NO3-), which supports the "microbial nitrogen mining" theory. Variations in soil priming were linked to changes in microbial properties. Moreover, with vegetation restoration, the relative abundance of Actinobacteria (copiotrophs) increased, while Ascomycota (oligotrophs) decreased, which accelerated native SOC decomposition. Co-occurrence network analysis indicated that the cooperative interactions of co-existing keystone taxa may facilitate SOC priming. Furthermore, structural equation modeling (SEM) indicated that changes in the priming effects were directly related to the fungal Shannon index and microbial biomass C (MBC), which were affected by soil C/N and NO3-. Warming significantly decreased soil priming, which may be attributed to the increase in microbial respiration (qCO2) and decreased MBC. The temperature sensitivity (Q10) of SOC mineralization was higher after residue amendment, but significant differences were not detected among the vegetation types. Collectively, our results indicated that the intensity of priming effects was dependent on vegetation type and temperature. Microbial community alterations and physicochemical interactions played important roles in SOC decomposition and sequestration.
Collapse
Affiliation(s)
- Hanting Cheng
- Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; Hainan Provincial Key Laboratory of Tropical Eco-cycle Agriculture, Haikou, Hainan, China; Agricultural Environmental Science Observation and Experiment Station, Ministry of Agriculture, Danzhou, Hainan, China
| | - Xiaohui Zhou
- Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; Hainan Provincial Key Laboratory of Tropical Eco-cycle Agriculture, Haikou, Hainan, China; Agricultural Environmental Science Observation and Experiment Station, Ministry of Agriculture, Danzhou, Hainan, China
| | - Rongshu Dong
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Xiaomin Wang
- Institute of Subtropical Crops, Guizhou Academy of Agricultural Sciences, Xingyi, Guizhou 562400, China
| | - Guodao Liu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Qinfen Li
- Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; Hainan Provincial Key Laboratory of Tropical Eco-cycle Agriculture, Haikou, Hainan, China; Agricultural Environmental Science Observation and Experiment Station, Ministry of Agriculture, Danzhou, Hainan, China.
| |
Collapse
|
7
|
Xie L, Yin C. Seasonal variations of soil fungal diversity and communities in subalpine coniferous and broadleaved forests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157409. [PMID: 35850334 DOI: 10.1016/j.scitotenv.2022.157409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Soil fungi have essential roles in ecosystems, but the seasonal dynamics of soil fungal communities in forests remain unclear. To explore the pattern and variation of soil fungal community diversity and structural composition across forest types and seasons, and identify the main contributors to soil fungal communities, we collected soil samples from subalpine coniferous (Picea asperata and Larix gmelinii) and broadleaved plantations (Betula albosinensis and Quercus aquifolioides) in southwest China in different seasons. Soil fungal community structural composition was determined using the Illumina MiSeq sequencing platform. The results showed that soil fungal diversity and richness in broadleaved forests were higher than in conifer forests. From heatmap cluster analysis, distinct differences in fungal community composition among forest types (coniferous and broadleaved forests) and seasons (May and July, September) were observed. Fungal communities were dominated by Basidiomycota and Ascomycota regardless of forest type and season. Helotiales and Atheliales were abundant in coniferous forests, while Agaricales, Russulales and Thelephorales predominated in broadleaved forests. Fungal community diversity and composition were significantly driven by soil pH, moisture, organic carbon, ammonium (NH4+-N), fine root biomass and root tissue density, when controlling for the effects of forest type and season. Thus, forest type and season significantly affected soil fungal community diversity and composition by altering soil properties and root variables.
Collapse
Affiliation(s)
- Lulu Xie
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu 610041, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China
| | - Chunying Yin
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu 610041, PR China.
| |
Collapse
|
8
|
Yin G, Chen F, Chen G, Yang X, Huang Q, Chen L, Chen M, Zhang W, Ou M, Cao M, Lin H, Chen M, Xu H, Ren J, Chen Y, Chen Z. Alterations of bacteriome, mycobiome and metabolome characteristics in PCOS patients with normal/overweight individuals. J Ovarian Res 2022; 15:117. [PMID: 36303234 PMCID: PMC9613448 DOI: 10.1186/s13048-022-01051-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/15/2022] [Indexed: 02/05/2023] Open
Abstract
To characterize the gut bacteriome, mycobiome and serum metabolome profiles in polycystic ovary syndrome (PCOS) patients with normal/overweight individuals and evaluate a potential microbiota-related diagnostic method development for PCOS, 16S rRNA and ITS2 gene sequencing using 88 fecal samples and 87 metabolome analysis from serum samples are conducted and PCOS classifiers based on multiomics markers are constructed. There are significant bacterial, fungal community and metabolite differences among PCOS patients and healthy volunteers with normal/overweight individuals. Healthy individuals with overweight/obesity display less abnormal metabolism than PCOS patients and uniquely higher abundance of the fungal genus Mortierella. Nine bacterial genera, 4 predicted pathways, 11 fungal genera and top 30 metabolites are screened out which distinguish PCOS from healthy controls, with AUCs of 0.84, 0.64, 0.85 and 1, respectively. The metabolite-derived model is more accurate than the microbe-based model in discriminating normal BMI PCOS (PCOS-LB) from normal BMI healthy (Healthy-LB), PCOS-HB from Healthy-HB. Featured bacteria, fungi, predicted pathways and serum metabolites display higher associations with free androgen index (FAI) in the cooccurrence network. In conclusion, our data reveal that hyperandrogenemia plays a central role in the dysbiosis of intestinal microecology and the change in metabolic status in patients with PCOS and that its effect exceeds the role of BMI. Healthy women with high BMI showed unique microbiota and metabolic features.The priority of predictive models in discriminating PCOS from healthy status in this study were serum metabolites, fungal taxa and bacterial taxa.
Collapse
Affiliation(s)
- Guoshu Yin
- Department of Endocrinology, the First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Fu Chen
- Department of Clinical Nutrition, the First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Guishan Chen
- Department of Endocrinology, the First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Xiaoping Yang
- Department of Endocrinology, the First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Qingxia Huang
- Department of Endocrinology, the First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Lan Chen
- Department of Endocrinology, the First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Minjie Chen
- Department of Endocrinology, Chaoyang Dafeng Hospital, Shantou, 515154, China
| | - Weichun Zhang
- Department of Endocrinology, the First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Miaoqiong Ou
- Department of Clinical Nutrition, the First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Man Cao
- Department of Mathematics and Numerical Simulation and High-Performance Computing Laboratory, School of Sciences, Nanchang University, Nanchang, 330031, China
| | - Hong Lin
- Department of Reproductive Center, the First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Man Chen
- Department of Reproductive Center, the First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Hongzhi Xu
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, 361005, China
| | - Jianlin Ren
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, 361005, China
| | - Yongsong Chen
- Department of Endocrinology, the First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Zhangran Chen
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
9
|
Su L, Bai T, Wu G, Zhao Q, Tan L, Xu Y. Characteristics of soil microbiota and organic carbon distribution in jackfruit plantation under different fertilization regimes. Front Microbiol 2022; 13:980169. [PMID: 36204620 PMCID: PMC9530185 DOI: 10.3389/fmicb.2022.980169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Manure amendment to improve soil organic carbon (SOC) content is an important strategy to sustain ecosystem health and crop production. Here, we utilize an 8-year field experiment to evaluate the impacts of organic and chemical fertilizers on SOC and its labile fractions as well as soil microbial and nematode communities in different soil depths of jackfruit (Artocarpus heterophyllus Lam.). Three treatments were designed in this study, including control with no amendment (CK), organic manure (OM), and chemical fertilizer (CF). Results showed that OM significantly increased the abundance of total nematodes, bacterivores, bacteria, and fungi as well as the value of nematode channel ratio (NCR) and maturity index (MI), but decreased plant-parasites and Shannon diversity (H′). Soil microbial and nematode communities in three soil depths were significantly altered by fertilizer application. Acidobacteria and Chloroflexi dominated the bacterial communities of OM soil, while Nitrospira was more prevalent in CF treatment. Organic manure application stimulated some functional groups of the bacterial community related to the C cycle and saprotroph-symbiotroph fungi, while some groups related to the nitrogen cycle, pathotroph-saprotroph-symbiotroph and pathotroph-saprotroph fungi were predominated in CF treatment. Furthermore, OM enhanced the soil pH, contents of total soil N, P, K, and SOC components, as well as jackfruit yield. Chemical fertilizers significantly affected available N, P, and K contents. The results of network analyses show that more significant co-occurrence relationships between SOC components and nematode feeding groups were found in CK and CF treatments. In contrast, SOC components were more related to microbial communities than to nematode in OM soils. Partial least-squares-path modeling (PLS-PM) revealed that fertilization had significant effects on jackfruit yield, which was composed of positive direct (73.6%) and indirect effects (fertilization → fungal community → yield). It was found that the long-term manure application strategy improves soil quality by increasing SOM, pH, and nutrient contents, and the increased microbivorous nematodes abundance enhanced the grazing pressure on microorganisms and concurrently promoted microbial-derived SOC turnover.
Collapse
Affiliation(s)
- Lanxi Su
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan, China
- National Tropical Plants Germplasm Resource Center-Sub Centre of Germplasm Resource for Woody Grain, Wanning, Hainan, China
- Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops of Hainan Province, Wanning, Hainan, China
| | - Tingyu Bai
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan, China
- National Tropical Plants Germplasm Resource Center-Sub Centre of Germplasm Resource for Woody Grain, Wanning, Hainan, China
- Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops of Hainan Province, Wanning, Hainan, China
| | - Gang Wu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan, China
- National Tropical Plants Germplasm Resource Center-Sub Centre of Germplasm Resource for Woody Grain, Wanning, Hainan, China
- Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops of Hainan Province, Wanning, Hainan, China
| | - Qingyun Zhao
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan, China
- Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops of Hainan Province, Wanning, Hainan, China
| | - Lehe Tan
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan, China
- National Tropical Plants Germplasm Resource Center-Sub Centre of Germplasm Resource for Woody Grain, Wanning, Hainan, China
- *Correspondence: Lehe Tan,
| | - Yadong Xu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- Yadong Xu,
| |
Collapse
|
10
|
Goss-Souza D, Tsai SM, Rodrigues JLM, Klauberg-Filho O, Sousa JP, Baretta D, Mendes LW. Biogeographic responses and niche occupancy of microbial communities following long-term land-use change. Antonie Van Leeuwenhoek 2022; 115:1129-1150. [DOI: 10.1007/s10482-022-01761-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 06/29/2022] [Indexed: 10/17/2022]
|
11
|
Zhang C, Liu H, Liu S, Hussain S, Zhang L, Yu X, Cao K, Xin X, Cao H, Zhu A. Response of Fungal Sub-Communities in a Maize-Wheat Rotation Field Subjected to Long-Term Conservation Tillage Management. Front Microbiol 2022; 13:829152. [PMID: 35422775 PMCID: PMC9002332 DOI: 10.3389/fmicb.2022.829152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
Conservation tillage is an advanced agricultural technology that seeks to minimize soil disturbance by reducing, or even eliminating tillage. Straw or stubble mulching in conservation tillage systems help to increase crop yield, maintain biodiversity and increase levels of exogenous nutrients, all of which may influence the structure of fungal communities in the soil. Currently, however, the assembly processes and co-occurrence patterns of fungal sub-communities remain unknown. In this paper, we investigated the effects of no-tillage and straw mulching on the composition, assembly process, and co-occurrence patterns of soil fungal sub-communities in a long-term experimental plot (15 years). The results revealed that combine straw mulching with no-tillage significantly increased the richness of fungi but not their diversity. Differential abundance analysis and principal component analysis (PCA) indicated that tillage management had a greater effect on the fungal communities of abundant and intermediate taxa than on the rare taxa. Available phosphorus (AP) and total nitrogen (TN) were the major determinants of fungal sub-communities in NT treatment. The abundant fungal sub-communities were assembled by deterministic processes under medium strength selection, while strong conservation tillage strength shifts the abundant sub-community assembly process from deterministic to stochastic. Overall, the investigation of the ecological network indicated that no-tillage and straw mulching practices decreased the complexity of the abundant and intermediate fungal networks, while not significantly influencing rare fungal networks. These findings refine our knowledge of the response of fungal sub-communities to conservation tillage management techniques and provide new insights into understanding fungal sub-community assembly.
Collapse
Affiliation(s)
- Cunzhi Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Hao Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Senlin Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Sarfraz Hussain
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Liting Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xiaowei Yu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Kaixun Cao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xiuli Xin
- Fengqiu Agro-Ecological Experimental Station, State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Hui Cao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Anning Zhu
- Fengqiu Agro-Ecological Experimental Station, State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
12
|
Wei G, Li M, Zhang G, Chen Z, Wei F, Jiao S, Qian J, Wang Y, Wei J, Wang Y, Meng X, Fitzgerald M, Yu Y, Dong L, Chen S. Temporal Dynamics of Rhizosphere Communities Across the Life Cycle of Panax notoginseng. Front Microbiol 2022; 13:853077. [PMID: 35432289 PMCID: PMC9010977 DOI: 10.3389/fmicb.2022.853077] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/02/2022] [Indexed: 12/13/2022] Open
Abstract
Rhizosphere microbiome promotes plant growth; however, the succession of rhizosphere microbial community during the growth stages of perennial medicinal plant Panax notoginseng (P. notoginseng) is still unclear. Here, amplicon sequencing was performed to assess the succession characteristics of rhizosphere microbiomes during developmental stages. Results showed that bacterial and fungal communities were mainly shaped by the development stages. The microbial α-diversities first increased and then decreased with plant growth and the variation in microbial composition was active at the 3-year root growth (3YR) stage. The variation trend of cross-domain co-occurrence network complexity was similar to that of α-diversities. Cross-domain nodes decreased at the 3YR stage and fungal nodes increased at the 3YR stage. This study provided a detailed and systematic survey of rhizosphere microbiomes during the growth stages of P. notoginseng. The findings revealed that the development stages of P. notoginseng drove the temporal dynamics of rhizosphere communities. This study helps in harnessing the power of microbiomes to evaluate herbal medicine growth and provides valuable information to guide the microbial breeding of medical plants.
Collapse
Affiliation(s)
- Guangfei Wei
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mengzhi Li
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guozhuang Zhang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhongjian Chen
- Institute of Sanqi Research, Wenshan University, Wenshan, China
| | - Fugang Wei
- Wenshan Miaoxiang Notoginseng Technology, Co., Ltd., Wenshan, China
| | - Shuo Jiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Jun Qian
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yong Wang
- Institute of Sanqi Research, Wenshan University, Wenshan, China
| | - Jianhe Wei
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
| | - Xiangxiao Meng
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | | | - Yuqi Yu
- Wenshan Miaoxiang Notoginseng Technology, Co., Ltd., Wenshan, China
| | - Linlin Dong
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
13
|
Han Q, Guo H, Zhang J, Huang Z, Urynowicz MA, Ali MI. Methane Generation from Anthracite by Fungi and Methanogen Mixed Flora Enriched from Produced Water Associated with the Qinshui Basin in China. ACS OMEGA 2021; 6:31935-31944. [PMID: 34870016 PMCID: PMC8638023 DOI: 10.1021/acsomega.1c04705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Biogenic coalbed methane (CBM) is generally believed to be formed by anaerobic bacteria and methanogens, while a few studies took fungi into account. Here, the microflora consisting of fungi and methanogens was enriched from the produced water associated with the Qinshui Basin using anthracite as the only carbon source. The maximum methane yield of 231 μmol/g coal was obtained after 22 days of cultivation under the optimum temperature of 35 °C, pH of 8, salinity of 0-2%, particle size of 0.075-0.150 mm, and the solid-liquid ratio of 1:30. It could remain active even after exposure to air for 24 h. Miseq results showed that the archaea were mainly composed of Methanocella, a hydrogenotrophic methanogen, followed by acetoclastic methanogen Methanosaeta and Methanosarcina, which could use various methanogenic substrates. The fungal communities mainly included Amorphotheca, Alternaria, Aspergillus, and Penicilium, which are all able to degrade complex organics such as aromatics and lignin. After cultivation, the crystal structure of anthracite became looser, as shown by XRD results, which might be due to the swelling effect caused by the destruction of the aromatic ring structure of coal under the function of fungi. The stretching vibration intensity of each functional group in coal decreased with cultivation, as revealed by FTIR. The GC-MS results showed that the concentration of alkanes and alcohols decreased significantly, which are the products of ring-opening of aromatics by fungi. These results suggested that fungi and methanogens in the coalbed also can syntrophically degrade coal effectively, especially for aromatics in coal.
Collapse
Affiliation(s)
- Qing Han
- College
of Safety and Emergency Management and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Hongguang Guo
- College
of Safety and Emergency Management and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Key
Lab of In-Situ Property-Improving Mining of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jinlong Zhang
- College
of Safety and Emergency Management and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zaixing Huang
- School
of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
- Department
of Civil & Architectural Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Michael Allan Urynowicz
- Department
of Civil & Architectural Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Muhammad Ishtiaq Ali
- Environmental
Microbiology Lab, Department of Microbiology, Quaid-I-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
14
|
Liang Y, Wei G, Ning K, Zhang G, Liu Y, Dong L, Chen S. Contents of lobetyolin, syringin, and atractylolide III in Codonopsis pilosula are related to dynamic changes of endophytes under drought stress. Chin Med 2021; 16:122. [PMID: 34809641 PMCID: PMC8607676 DOI: 10.1186/s13020-021-00533-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 11/09/2021] [Indexed: 01/07/2023] Open
Abstract
Background Codonopsis pilosula, an important medicinal plant, can accumulate certain metabolites under moderate drought stress. Endophytes are involved in the metabolite accumulations within medicinal plants. It is still unknown that the endophytes of C. pilosula are associated with the accumulations of metabolites. This study aims to investigate the promoting effect of endophytes on the accumulations of active substances in C. pilosula under drought stress. Methods High–performance liquid chromatography and high–throughput sequencing technology were performed to investigate changes in the contents of secondary metabolite and endophyte abundances of C. pilosula under drought stress, respectively. Spearman’s correlation analysis was further conducted to identify the endophytic biomarkers related to accumulations of pharmacodynamic compounds. Culture-dependent experiments were performed to confirm the functions of endophytes in metabolite accumulations. Results The distribution of pharmacological components and diversity and composition of endophytes showed tissue specificity within C. pilosula. The contents of lobetyolin, syringin, and atractylolide III in C. pilosula under drought stress were increased by 8.47%‒86.47%, 28.78%‒230.98%, and 32.17%‒177.86%, respectively, in comparison with those in untreated groups. The Chao 1 and Shannon indices in different parts of drought–stressed C. pilosula increased compared with those in untreated parts. The composition of endophytic communities in drought treatment parts of C. pilosula was different from that in control parts. A total of 226 microbial taxa were identified as potential biomarkers, of which the abundances of 42 taxa were significantly and positively correlated to the pharmacodynamic contents. Culture-dependent experiments confirmed that the contents of lobetyolin and atractylolide III were increased by the application of Epicoccum thailandicum, Filobasidium magnum, and Paraphoma rhaphiolepidis at the rates of 11.12%‒46.02%, and that the content of syringin was increased by Pseudomonas nitroreducens at the rates of 118.61%‒119.36%. Conclusions Certain endophytes participated in the accumulations of bioactive metabolites, which provided a scientific evidence for the development and application of microorganisms to improve the quality of traditional Chinese medicine. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-021-00533-z.
Collapse
Affiliation(s)
- Yichuan Liang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.,Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei Ave., Beijing, 100700, China
| | - Guangfei Wei
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei Ave., Beijing, 100700, China
| | - Kang Ning
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei Ave., Beijing, 100700, China
| | - Guozhuang Zhang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei Ave., Beijing, 100700, China
| | - Youping Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Linlin Dong
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei Ave., Beijing, 100700, China.
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei Ave., Beijing, 100700, China.
| |
Collapse
|
15
|
Soil Fungal Community Composition Correlates with Site-Specific Abiotic Factors, Tree Community Structure, and Forest Age in Regenerating Tropical Rainforests. BIOLOGY 2021; 10:biology10111120. [PMID: 34827113 PMCID: PMC8614695 DOI: 10.3390/biology10111120] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 01/16/2023]
Abstract
Simple Summary Regenerating forests represent over half of all tropical forests. While regeneration processes of trees and animal groups have been studied, there is surprisingly little information about how the diversity and community composition of fungi and other microorganisms change and what ecological roles play in tropical forest regeneration. In this study, we compared the diversity and community composition of trees and soil fungi among primary forests and regenerating forests of different ages in two sampling areas in southern Costa Rica. Our study shows that while forest age has a significant influence, environmental factors, such as mesoclimate and soil chemistry, have stronger effects on both fungal and tree communities. Moreover, we observed that the more dissimilar tree communities are between any two sites, the more dissimilar the composition of fungal communities. The results presented here contribute to a better understanding of the successional processes of tropical forests in different regions and inform land use and forest management strategies, including, but not limited to, conservation, restoration, and sustainable use. Abstract Successional dynamics of plants and animals during tropical forest regeneration have been thoroughly studied, while fungal compositional dynamics during tropical forest succession remain unknown, despite the crucial roles of fungi in ecological processes. We combined tree data and soil fungal DNA metabarcoding data to compare richness and community composition along secondary forest succession in Costa Rica and assessed the potential roles of abiotic factors influencing them. We found a strong coupling of tree and soil fungal community structure in wet tropical primary and regenerating secondary forests. Forest age, edaphic variables, and regional differences in climatic conditions all had significant effects on tree and fungal richness and community composition in all functional groups. Furthermore, we observed larger site-to-site compositional differences and greater influence of edaphic and climatic factors in secondary than in primary forests. The results suggest greater environmental heterogeneity and greater stochasticity in community assembly in the early stages of secondary forest succession and a certain convergence on a set of taxa with a competitive advantage in the more persisting environmental conditions in old-growth forests. Our work provides unprecedented insights into the successional dynamics of fungal communities during secondary tropical forest succession.
Collapse
|
16
|
Yin Y, Li Q, Du H. Near-natural transformation of Pinus tabuliformis better improve soil nutrients and soil microbial community. PeerJ 2021; 9:e12098. [PMID: 34631311 PMCID: PMC8465996 DOI: 10.7717/peerj.12098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/10/2021] [Indexed: 11/24/2022] Open
Abstract
Pinus tabulaeformis plantations have been established around northern China to restore degraded land and provide timber or fuelwood. In recent years, widely distributed monoculture P. tabulaeformis forests have been transformed into mixed forests due to various ecological problems. However, the current research on the influence of near-natural transformation of P. tabulaeformis on soil microbial diversity and community composition remains limited. Therefore, we examined the effect of forest conversion from monoculture Pinus tabuliformis (PT) to P. tabuliformis-Armeniaca vulgaris (PTAU), P. tabuliformis - Robinia pseudoacacia (PTRP), P. tabuliformis - Vitex negundo L. var. heterophylla (PTVN) forests on soil microbial community diversity and composition. The results indicated that compared to PT, PTAU, PTVN, and PTRP could enhance the soil pH, TC, TN, AN, and AK in different degrees, the most obvious in PTAU. Near-natural transformation of P. tabuliformis could improve soil bacterial Pielou_e index, and Simpson index, as well as soil fungal Chao1 index. Proteobacteria and Ascomycota were the dominant soil microbial community at the phylum level. What’s more, both soil bacterial and fungal community among PT, PTAU, PTRP and PTVN showed clear different, and PTAU obviously altered the soil microbial community structure. Proteobacteria was the predominant group in PT, while, Gemmatimonadetes enriched in PTVN. Ascomycota was the predominant group in PTAU, while, Basidiomycota was the predominant group in PTRP. Near-natural transformation of P. tabuliformis could change soil microbial community via altering soil characteristics. In brief, our research results revealed the influence of tree composition and soil nutrient availability on soil microbial diversity and composition, and provided management guidance for introduction soil microbial community in forest protection and management.
Collapse
Affiliation(s)
- You Yin
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China.,Research Station of Liaohe-River Plain Forest Ecosystem, Chinese Forest Ecosystem Research Network (CFERN), Shenyang Agricultural University, Tieling, Liaoning, China
| | - Qiuli Li
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Haitao Du
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
| |
Collapse
|
17
|
Zhang CB, Wang J, Liu WL, Jiang H, Wang M, Ge Y, Chang J. Denitrifying bacterial community dominantly drove nitrogen removals in vertical flow constructed wetlands as impacted by macrophyte planting patterns. CHEMOSPHERE 2021; 281:130418. [PMID: 34020189 DOI: 10.1016/j.chemosphere.2021.130418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/11/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
The study aims to identify relations of denitrifying bacterial and fungal communities to nitrogen removals in vertical flow wetland microcosms (VFWMs) using four macrophyte species (Iris pseudacorus, Canna glauca, Scirpus validus and Cyperus alternifolius) and three species richness levels (unplanted, monocultured and 4-species mixture) as fixed factors. Results showed that among four macrophyte species, only Canna glauca planting significantly decreased nitrate removal by 87.7% in the VFWMs. The 4-species mixture improved TN and nitrate removals by 84.0% and 91.3%, but decreased ammonium removal by 94.5%. Heatmap and nonmetric multidimensional scaling analyses identified a significant difference in denitrifying bacterial community structure across macrophyte richness levels, but did not identify the difference in denitrifying fungal communities. The redundancy analysis revealed that denitrifying bacterial community individually explained 99.4% and 93.0% variance of nitrogen removals among four macrophyte species and across macrophyte richness levels, while the fungal community only explained 30.7% and 21.8% variance of nitrogen removals. Overall, the macrophyte richness and bacterial denitrifiers are the critical factors of nitrogen removals in the VFWMs, thus providing useful data to design a vertical flow constructed wetland at a full scale.
Collapse
Affiliation(s)
- Chong-Bang Zhang
- School of Life Sciences, Taizhou University, Jiaojiang, 318000, PR China.
| | - Jiang Wang
- School of Life Sciences, Taizhou University, Jiaojiang, 318000, PR China
| | - Wen-Li Liu
- School of Civil Engineering and Architecture, Taizhou University, Jiaojiang, 318000, PR China
| | - Hang Jiang
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Meng Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Institute for Peat and Mire Research, Northeast Normal University, Changchun, Jilin, Jilin, 130024, PR China
| | - Ying Ge
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Jie Chang
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, PR China
| |
Collapse
|
18
|
Dockx Y, Täubel M, Bijnens EM, Witters K, Valkonen M, Jayaprakash B, Hogervorst J, Nawrot TS, Casas L. Residential green space can shape the indoor microbial environment. ENVIRONMENTAL RESEARCH 2021; 201:111543. [PMID: 34157273 DOI: 10.1016/j.envres.2021.111543] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The influence of outdoor green space on microbial communities indoors has scarcely been investigated. Here, we study the associations between nearby residential green space and residential indoor microbiota. METHODS We collected settled dust from 176 living rooms of participants of the ENVIRONAGE birth cohort. We performed 16S and ITS amplicon sequencing, and quantitative PCR measurements of total bacterial and fungal loads to calculate bacterial and fungal diversity measures (Chao1 richness, Shannon and Simpson diversity indices) and relative abundance of individual taxa. Green spaces were estimated within 50m and 100m buffers around the residential address. We defined total residential green space using high-resolution land-cover data, further stratified in low-growing (height<3m) and high-growing green (height>3m). We used land-use data to calculate the residential nature. We ran linear regression models, adjusting for confounders and other potential determinants. Results are expressed as units change for an interquartile range (IQR) increase in residential green space and their 95% confidence intervals (CI). RESULTS After adjustment, we observed statistically significant associations between the indoor microbial diversity indices and nearby residential green space. For bacteria, the Shannon index was directly associated with residential nature (e.g. 0.08 units increase (CI:0.02,0.13) per IQR increase in nature within a 50m buffer). Fungal diversity was directly associated with high-growing residential green and inversely with low-growing green. For example, an IQR increase in high-growing green within a 50m buffer was associated with increases in 0.14 (CI:0.01,0.27) and 0.02 (CI:0.008,0.04) units in the Shannon and Simpson indices, respectively. CONCLUSIONS Nearby green space determines the diversity of indoor environment microbiota, and the type of green differently impacts bacterial and fungal diversity. Further research is needed to investigate in more detail possible microbial taxa compositions underlying the observed changes in indoor microbiota diversity and to explore their contribution to beneficial health effects associated with green space exposure.
Collapse
Affiliation(s)
- Yinthe Dockx
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Martin Täubel
- Environmental Health Unit, Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Esmée M Bijnens
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Katrien Witters
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Maria Valkonen
- Environmental Health Unit, Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| | | | - Janneke Hogervorst
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium; Center for Environment and Health, Department of Public Health, Leuven University (KU Leuven) , Belgium.
| | - Lidia Casas
- Center for Environment and Health, Department of Public Health, Leuven University (KU Leuven) , Belgium; Social Epidemiology and Health Policy, Department of Family Medicine and Population Health, University of Antwerp; Belgium; Institute for Environment and Sustainable Development (IMDO), University of Antwerp, Belgium
| |
Collapse
|
19
|
Malviya MK, Solanki MK, Li CN, Wang Z, Zeng Y, Verma KK, Singh RK, Singh P, Huang HR, Yang LT, Song XP, Li YR. Sugarcane-Legume Intercropping Can Enrich the Soil Microbiome and Plant Growth. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.606595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Soil microbes have a direct impact on plant metabolism and health. The current study investigates the comparative rhizobiome between sugarcane monoculture and sugarcane–soybean intercropping. A greenhouse experiment was performed with two treatments: (1) sugarcane monoculture and (2) sugarcane–soybean intercropped. We used a high-throughput sequencing (HTS) platform to analyze the microbial community. We used the 16S rRNA gene and internal transcribed spacer region primers to identify the microbial diversity. HTS results revealed that a total of 2,979 and 124 bacterial and fungal operational taxonomic units (OTUs) were observed, respectively. Microbial diversity results concluded that the intercropping system has a beneficial impact on soil microbes. The highest numbers of bacterial and fungal OTUs were found in the intercropping system, and these results also collaborated with quantitative PCR results. Additionally, intercropped sugarcane plants showed a higher weight of above- and below-ground parts than the monoculture. Soil chemical analysis results also complemented that the intercropping system nourished organic carbon, total nitrogen, and soil enzyme activities. Correlation analysis of the diversity index and abundance concluded that soil nutrient content positively influenced the microbial abundance that improves plant growth. The present study frames out the profound insights of microbial community interaction under the sugarcane–soybean intercropping system. This information could help improve or increase the sugarcane crop production without causing any negative impact on sugarcane plant growth and development.
Collapse
|
20
|
Influence of Tall Fescue Epichloë Endophytes on Rhizosphere Soil Microbiome. Microorganisms 2021; 9:microorganisms9091843. [PMID: 34576739 PMCID: PMC8468716 DOI: 10.3390/microorganisms9091843] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 01/04/2023] Open
Abstract
Tall fescue (Lolium arundinaceum (Schreb.) S.J. Darbyshire) often forms a symbiotic relationship with fungal endophytes (Epichloë coenophiala), which provides increased plant performance and greater tolerance to environmental stress compared to endophyte-free tall fescue. Whether this enhanced performance of tall fescue exclusively results from the grass–fungus symbiosis, or this symbiosis additionally results in the recruitment of soil microbes in the rhizosphere that in turn promote plant growth, remain a question. We investigated the soil bacterial and fungal community composition in iron-rich soil in the southeastern USA, and possible community shifts in soil microbial populations based on endophyte infection in tall fescue by analyzing the 16s rRNA gene and ITS specific region. Our data revealed that plant-available phosphorus (P) was significantly (p < 0.05) influenced by endophyte infection in tall fescue. While the prominent soil bacterial phyla were similar, a clear fungal community shift was observed between endophyte-infected (E+) and endophyte-free (E−) tall fescue soil at the phylum level. Moreover, compared to E− soil, E+ soil showed a greater fungal diversity at the genus level. Our results, thus, indicate a possible three-way interaction between tall fescue, fungal endophyte, and soil fungal communities resulting in improved tall fescue performance.
Collapse
|
21
|
Qiu L, Zhang Q, Zhu H, Reich PB, Banerjee S, van der Heijden MGA, Sadowsky MJ, Ishii S, Jia X, Shao M, Liu B, Jiao H, Li H, Wei X. Erosion reduces soil microbial diversity, network complexity and multifunctionality. THE ISME JOURNAL 2021; 15:2474-2489. [PMID: 33712698 PMCID: PMC8319411 DOI: 10.1038/s41396-021-00913-1] [Citation(s) in RCA: 187] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 01/18/2021] [Accepted: 01/25/2021] [Indexed: 01/31/2023]
Abstract
While soil erosion drives land degradation, the impact of erosion on soil microbial communities and multiple soil functions remains unclear. This hinders our ability to assess the true impact of erosion on soil ecosystem services and our ability to restore eroded environments. Here we examined the effect of erosion on microbial communities at two sites with contrasting soil texture and climates. Eroded plots had lower microbial network complexity, fewer microbial taxa, and fewer associations among microbial taxa, relative to non-eroded plots. Soil erosion also shifted microbial community composition, with decreased relative abundances of dominant phyla such as Proteobacteria, Bacteroidetes, and Gemmatimonadetes. In contrast, erosion led to an increase in the relative abundances of some bacterial families involved in N cycling, such as Acetobacteraceae and Beijerinckiaceae. Changes in microbiota characteristics were strongly related with erosion-induced changes in soil multifunctionality. Together, these results demonstrate that soil erosion has a significant negative impact on soil microbial diversity and functionality.
Collapse
Affiliation(s)
- Liping Qiu
- grid.144022.10000 0004 1760 4150State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi China ,CAS Center for Excellence in Quaternary Science and Global Change, Xi’an, Shaanxi China ,grid.144022.10000 0004 1760 4150College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi China
| | - Qian Zhang
- grid.17635.360000000419368657BioTechnology Institute, University of Minnesota, St. Paul, MN USA ,grid.12955.3a0000 0001 2264 7233College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Hansong Zhu
- grid.144022.10000 0004 1760 4150State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi China ,grid.144022.10000 0004 1760 4150College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi China
| | - Peter B. Reich
- grid.17635.360000000419368657Department of Forest Resources, University of Minnesota, St. Paul, MN USA ,grid.1029.a0000 0000 9939 5719Hawkesbury Institute for the Environment, Western Sydney University, Penrith South DC, NSW Australia
| | - Samiran Banerjee
- grid.261055.50000 0001 2293 4611Department of Microbiological Sciences, North Dakota State University, Fargo, ND USA
| | - Marcel G. A. van der Heijden
- grid.417771.30000 0004 4681 910XAgroscope, Department of Agroecology & Environment, Zürich, Switzerland ,grid.7400.30000 0004 1937 0650Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
| | - Michael J. Sadowsky
- grid.17635.360000000419368657BioTechnology Institute, University of Minnesota, St. Paul, MN USA ,grid.17635.360000000419368657Department of Soil, Water, and Climate, University of Minnesota, St. Paul, MN USA
| | - Satoshi Ishii
- grid.17635.360000000419368657BioTechnology Institute, University of Minnesota, St. Paul, MN USA ,grid.17635.360000000419368657Department of Soil, Water, and Climate, University of Minnesota, St. Paul, MN USA
| | - Xiaoxu Jia
- grid.144022.10000 0004 1760 4150State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi China ,grid.9227.e0000000119573309Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Mingan Shao
- grid.144022.10000 0004 1760 4150State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi China ,grid.9227.e0000000119573309Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Baoyuan Liu
- grid.144022.10000 0004 1760 4150State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi China
| | - Huan Jiao
- grid.144022.10000 0004 1760 4150State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi China ,grid.144022.10000 0004 1760 4150College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi China
| | - Haiqiang Li
- grid.144022.10000 0004 1760 4150State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi China ,grid.144022.10000 0004 1760 4150College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi China
| | - Xiaorong Wei
- grid.144022.10000 0004 1760 4150State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi China ,CAS Center for Excellence in Quaternary Science and Global Change, Xi’an, Shaanxi China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
22
|
Liang Y, Wei G, Ning K, Li M, Zhang G, Luo L, Zhao G, Wei J, Liu Y, Dong L, Chen S. Increase in carbohydrate content and variation in microbiome are related to the drought tolerance of Codonopsis pilosula. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 165:19-35. [PMID: 34034158 DOI: 10.1016/j.plaphy.2021.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
Drought stress is one of the main limiting factors in geographical distribution and production of Codonopsis pilosula. Understanding the biochemical and genetic information of the response of C. pilosula to drought stress is urgently needed for breeding tolerant varieties. Here, carbohydrates, namely trehalose, raffinose, maltotetraose, sucrose, and melezitose, significantly accumulated in C. pilosula roots under drought stress and thus served as biomarkers for drought stress response. Compared with those in the control group, the expression levels of key genes such as adenosine diphosphate glucose pyrophosphorylase, starch branching enzyme, granule-bound starch synthase, soluble starch synthase, galacturonate transferase, cellulose synthase A catalytic subunit, cellulase Korrigan in the carbohydrate biosynthesis pathway were markedly up-regulated in C. pilosula roots in the drought treatment group, some of them even exceeded 70%. Notably, and that of key genes including trehalose-6-phosphatase, trehalose-6-phosphate phosphatase, galactinol synthase, and raffinose synthase in the trehalose and raffinose biosynthesis pathways was improved by 12.6%-462.2% in C. pilosula roots treated by drought stress. The accumulation of carbohydrates in C. pilosula root or rhizosphere soil was correlated with microbiome variations. Analysis of exogenous trehalose and raffinose confirmed that increased carbohydrate content improved the drought tolerance of C. pilosula in a dose-dependent manner. This study provided solid foundation for breeding drought-tolerant C. pilosula varieties and developing drought-resistant microbial fertilizers.
Collapse
Affiliation(s)
- Yichuan Liang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Guangfei Wei
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Kang Ning
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Mengzhi Li
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Guozhuang Zhang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Lu Luo
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Guanghui Zhao
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Jianhe Wei
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, 570311, China.
| | - Youping Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Linlin Dong
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
23
|
Wei X, Cao P, Wang G, Liu Y, Song J, Han J. CuO, ZnO, and γ-Fe 2O 3 nanoparticles modified the underground biomass and rhizosphere microbial community of Salvia miltiorrhiza (Bge.) after 165-day exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 217:112232. [PMID: 33864980 DOI: 10.1016/j.ecoenv.2021.112232] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
To investigate whether metal oxide nanoparticles exhibit toxicity or positive effects on medicinal plants, CuO, ZnO, and γ-Fe2O3 nanoparticles (NPs), at concentrations of 100 and 700 mg kg-1, were introduced into the cultivation of Salvia miltiorrhiza (Bge.). Metal elemental contents, chemical constituents, biomass and the structure of the rhizosphere microbial community was used to estimate this effect. The results indicated CuO NPs increased the Cu content and ZnO NPs increased the Zn content significantly as exposure increased, γ-Fe2O3 NPs had no significant effect on Fe content in S. miltiorrhiza roots, while 100 mg kg-1 ZnO and CuO NPs significantly decreased the Fe content in roots. Additionally, ZnO and γ-Fe2O3 NPs increased the underground biomass, and diameter of S. miltiorrhiza roots. However, these three metal oxide nanoparticles had no significant effect on total tanshinones, while the 700 mg kg-1 γ-Fe2O3 NPs treatment increased salvianolic acid B content by 36.46%. High-throughput sequencing indicated at 700 mg kg-1 ZnO NPs, the relative abundance of Humicola (Zn superoxide dismutase producer), was notably increased by 97.46%, and that of Arenimonas, Thiobacillus and Methylobacillus (taxa related to heavy metal tolerance) was significantly increased by 297.14%, 220.26% and 107.00%. The 700 mg kg-1 CuO NPs exposure caused a significant increase in the relative abundances of Sphingomonas (a copper-resistant and N2-fixing genus) and Flavisolibacter (stripe rust biocontrol bacteria) by 127.32% and 118.33%. To our best knowledge, this is the first study to examine the potential impact of NPs on the growth and rhizosphere microorganisms of S. miltiorrhiza.
Collapse
Affiliation(s)
- Xuemin Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Pei Cao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Gang Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jingyuan Song
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Lab of Chinese Medicine Resources Conservation, National Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Jianping Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Key Lab of Chinese Medicine Resources Conservation, National Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China.
| |
Collapse
|
24
|
Navarro-Noya YE, Montoya-Ciriaco N, Muñoz-Arenas LC, Hereira-Pacheco S, Estrada-Torres A, Dendooven L. Conversion of a High-Altitude Temperate Forest for Agriculture Reduced Alpha and Beta Diversity of the Soil Fungal Communities as Revealed by a Metabarcoding Analysis. Front Microbiol 2021; 12:667566. [PMID: 34234759 PMCID: PMC8255801 DOI: 10.3389/fmicb.2021.667566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 05/03/2021] [Indexed: 11/13/2022] Open
Abstract
Land-use change is one of the most important drivers of change in biodiversity. Deforestation for grazing or agriculture has transformed large areas of temperate forest in the central highlands of Mexico, but its impact on soil fungal communities is still largely unknown. In this study, we determined how deforestation of a high-altitude temperate forest for cultivation of maize (Zea mays L.) or husbandry altered the taxonomic, phylogenetic, functional, and beta diversity of soil fungal communities using a 18S rRNA metabarcoding analysis. The true taxonomic and phylogenetic diversity at order q = 1, i.e., considering frequent operational taxonomic units, decreased significantly in the arable, but not in the pasture soil. The beta diversity decreased in the order forest > pasture > arable soil. The ordination analysis showed a clear effect of intensity of land-use as the forest soil clustered closer to pasture than to the arable soil. The most abundant fungal phyla in the studied soils were Ascomycota, Basidiomycota, and Mucoromycota. Deforestation more than halved the relative abundance of Basidiomycota; mostly Agaricomycetes, such as Lactarius and Inocybe. The relative abundance of Glomeromycota decreased in the order pasture > forest > arable soil. Symbiotrophs, especially ectomycorrhizal fungi, were negatively affected by deforestation while pathotrophs, especially animal pathogens, were enriched in the pasture and arable soil. Ectomycorrhizal fungi were more abundant in the forest soil as they are usually associated with conifers. Arbuscular mycorrhizal fungi were more abundant in the pasture than in the arable soil as the higher plant diversity provided more suitable hosts. Changes in fungal communities resulting from land-use change can provide important information for soil management and the assessment of the environmental impact of deforestation and conversion of vulnerable ecosystems such as high-altitude temperate forests.
Collapse
Affiliation(s)
- Yendi E Navarro-Noya
- Laboratory of Biotic Interactions, Centro de Investigación en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Nina Montoya-Ciriaco
- Doctorado en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Ligia C Muñoz-Arenas
- Doctorado en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico.,Facultad de Ingeniería Ambiental, UPAEP, Puebla, Mexico
| | | | - Arturo Estrada-Torres
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Luc Dendooven
- Laboratory of Soil Ecology, CINVESTAV-IPN, Ciudad de México, Mexico
| |
Collapse
|
25
|
Zheng Y, Maitra P, Gan HY, Chen L, Li S, Tu T, Chen L, Mi X, Gao C, Zhang D, Guo LD. Soil fungal diversity and community assembly: affected by island size or type? FEMS Microbiol Ecol 2021; 97:6247622. [PMID: 33890666 DOI: 10.1093/femsec/fiab062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/21/2021] [Indexed: 11/14/2022] Open
Abstract
Fungi have a huge biodiversity and play important roles in soil biogeochemical cycling in island ecosystems. Although island biogeography has been widely studied for macroorganisms, fungal community assembly in true islands and its relationship with island area are less documented. We examined soil fungal communities in 18 oceanic islands of two types (eight non-coral islands and 10 coral islands) using the Illumina MiSeq sequencing technique. Our results showed that fungal α-diversity (species richness) was substantially different among the oceanic islands, with a higher value in non-coral islands than in coral islands. Fungal α-diversity was significantly affected by soil potassium and magnesium (Mg) and plant communities in non-coral islands, whereas only soil Mg significantly affected it in coral islands. Soil fungal community composition was significantly different in the non-coral and coral islands and was influenced by soil property, plant community and spatial distance. The ecological stochasticity model showed that the fungal community assembly was mainly governed by deterministic processes regardless of island type. Fungal β-diversity, but not α-diversity, increased significantly with increasing island area. These findings have implications for the better prediction of soil fungal community dynamics in island systems and biodiversity conservation in fragmented habitats.
Collapse
Affiliation(s)
- Yong Zheng
- State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China.,State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Pulak Maitra
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui-Yun Gan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shengchun Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Tieyao Tu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Lei Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xiangcheng Mi
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Cheng Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dianxiang Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Liang-Dong Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
26
|
Xue N, Fang Q, Pan X, Zhang D. Distinct fungal plastisphere across different river functional zones: A watershed scale study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:141879. [PMID: 33207490 DOI: 10.1016/j.scitotenv.2020.141879] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
Fungi not only play important roles in biogeochemical processes but also can form biofilm on plastic debris. However, knowledge of structure composition and spatiotemporal pattern of fungal plastisphere on different kinds of plastic debris in river with specific usages, known as river functional zones, is still missing. In this study, we investigated the spatial distribution of the fungal plastisphere across a complete urban river with different functional zones (drinking, farm irrigation, aquaculture, and tail lake). Our research was performed based on both field residual plastic debris collection and a 30-day field in situ incubation experiments. Our study revealed that plastic debris enriched distinct fungal communities (including pathogenic fungi) significantly different from the surrounding water. Tracking the source of the fungi colonized on plastic debris suggested that the fungal taxa colonized on the different kinds of plastic debris were not from the surrounding water. Human activities had considerable effects on the fungal community structure on plastic debris, and the plastisphere fungal community structure strikingly varied across different river functional zones. Plastisphere may be used as an indicator for fungi biogeography and pathogenic fungi pollution in river with different functional zones. These findings are essential for ecological risk assessment and management decisions for pollution control of plastic debris and maintaining ecological health.
Collapse
Affiliation(s)
- Nana Xue
- Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qunkai Fang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiangliang Pan
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China..
| | - Daoyong Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
27
|
Galitskaya P, Biktasheva L, Blagodatsky S, Selivanovskaya S. Response of bacterial and fungal communities to high petroleum pollution in different soils. Sci Rep 2021; 11:164. [PMID: 33420266 PMCID: PMC7794381 DOI: 10.1038/s41598-020-80631-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 12/21/2020] [Indexed: 01/29/2023] Open
Abstract
Petroleum pollution of soils is a major environmental problem. Soil microorganisms can decompose a significant fraction of petroleum hydrocarbons in soil at low concentrations (1-5%). This characteristic can be used for soil remediation after oil pollution. Microbial community dynamics and functions are well studied in cases of moderate petroleum pollution, while cases with heavy soil pollution have received much less attention. We studied bacterial and fungal successions in three different soils with high petroleum contents (6 and 25%) in a laboratory experiment. The proportion of aliphatic and aromatic compounds decreased by 4-7% in samples with 6% pollution after 120 days of incubation but remained unchanged in samples with 25% hydrocarbons. The composition of the microbial community changed significantly in all cases. Oil pollution led to an increase in the relative abundance of bacteria such as Actinobacteria and the candidate TM7 phylum (Saccaribacteria) and to a decrease in that of Bacteroidetes. The gene abundance (number of OTUs) of oil-degrading bacteria (Rhodococcus sp., candidate class TM7-3 representative) became dominant in all soil samples, irrespective of the petroleum pollution level and soil type. The fungal communities in unpolluted soil samples differed more significantly than the bacterial communities. Nonmetric multidimensional scaling revealed that in the polluted soil, successions of fungal communities differed between soils, in contrast to bacterial communities. However, these successions showed similar trends: fungi capable of lignin and cellulose decomposition, e.g., from the genera Fusarium and Mortierella, were dominant during the incubation period.
Collapse
Affiliation(s)
- Polina Galitskaya
- grid.77268.3c0000 0004 0543 9688Institute of Environmental Sciences, Kazan Federal University, Kazan, 420008 Russia
| | - Liliya Biktasheva
- grid.77268.3c0000 0004 0543 9688Institute of Environmental Sciences, Kazan Federal University, Kazan, 420008 Russia
| | - Sergey Blagodatsky
- grid.9464.f0000 0001 2290 1502Institute of Plant Production and Agroecology in the Tropics and Subtropics, University of Hohenheim, 70599 Stuttgart, Germany ,grid.451005.5Institute of Physico-Chemical and Biological Problems of Soil Science, Pushchino, 142290 Russia
| | - Svetlana Selivanovskaya
- grid.77268.3c0000 0004 0543 9688Institute of Environmental Sciences, Kazan Federal University, Kazan, 420008 Russia
| |
Collapse
|
28
|
Xu L, Nicolaisen M, Larsen J, Zeng R, Gao S, Dai F. Pathogen Infection and Host-Resistance Interactively Affect Root-Associated Fungal Communities in Watermelon. Front Microbiol 2020; 11:605622. [PMID: 33424807 PMCID: PMC7793699 DOI: 10.3389/fmicb.2020.605622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/27/2020] [Indexed: 01/23/2023] Open
Abstract
Interactions of pathogen infection, host plant resistance, and fungal communities are poorly understood. Although the use of resistant watermelon cultivars is an effective control measure of watermelon wilt disease, fungal communities may also have significant effects on the development of the soil-borne pathogen complexes. We characterized the root and rhizosphere fungal communities associated with healthy and diseased watermelons of three different cultivars with different susceptibilities toward wilt disease by paired-end Illumina MiSeq sequencing. Thirty watermelon plants including highly wilt-resistant, moderately resistant, and susceptible cultivars were collected from a greenhouse, half of which showing clear wilt symptoms and the other half with no symptoms. Patterns of watermelon wilt disease and the response of the fungal communities varied among the three cultivars. The amount of the pathogen Fusarium oxysporum f. sp. niveum was higher in diseased root and rhizosphere samples, particularly in the susceptible cultivar, and was significantly positively correlated with the disease index of Fusarium wilt. Plant health had significant effects on root-associated fungal communities, whereas only the highly resistant cultivar had significant effects only on the rhizosphere fungal communities. Co-occurrence networks revealed a higher complexity of fungal communities in the symptom-free roots compared to diseased roots. In addition, networks from roots of the highly resistant plants showing symptoms had a higher complexity compared to the susceptible cultivars. Keystone species were identified for the plants with different symptom severity and the different cultivars in the root and rhizosphere, such as Fusarium oxysporum, Monosporascus cannonballus, and Mortierella alpina. Overall, the most important factor determining fungal communities in the roots was plant symptom severity, whereas in the rhizosphere, plant genotype was the most important factor determining fungal communities.
Collapse
Affiliation(s)
- Lihui Xu
- Institute of Eco-Environmental Protection, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai, China
| | - Mogens Nicolaisen
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Slagelse, Denmark
| | - John Larsen
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, México
| | - Rong Zeng
- Institute of Eco-Environmental Protection, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai, China
| | - Shigang Gao
- Institute of Eco-Environmental Protection, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai, China
| | - Fuming Dai
- Institute of Eco-Environmental Protection, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai, China
| |
Collapse
|
29
|
Schappe T, Albornoz FE, Turner BL, Jones FA. Co-occurring Fungal Functional Groups Respond Differently to Tree Neighborhoods and Soil Properties Across Three Tropical Rainforests in Panama. MICROBIAL ECOLOGY 2020; 79:675-685. [PMID: 31654106 DOI: 10.1007/s00248-019-01446-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
Abiotic and biotic drivers of co-occurring fungal functional guilds across regional-scale environmental gradients remain poorly understood. We characterized fungal communities using Illumina sequencing from soil cores collected across three Neotropical rainforests in Panama that vary in soil properties and plant community composition. We classified each fungal OTU into different functional guilds, namely plant pathogens, saprotrophs, arbuscular mycorrhizal (AM), or ectomycorrhizal (ECM). We measured soil properties and nutrients within each core and determined the tree community composition and richness around each sampling core. Canonical correspondence analyses showed that soil pH and moisture were shared potential drivers of fungal communities for all guilds. However, partial the Mantel tests showed different strength of responses of fungal guilds to composition of trees and soils. Plant pathogens and saprotrophs were more strongly correlated with soil properties than with tree composition; ECM fungi showed a stronger correlation with tree composition than with soil properties; and AM fungi were correlated with soil properties, but not with trees. In conclusion, we show that co-occurring fungal guilds respond differently to abiotic and biotic environmental factors, depending on their ecological function. This highlights the joint role that abiotic and biotic factors play in determining composition of fungal communities, including those associated with plant hosts.
Collapse
Affiliation(s)
- Tyler Schappe
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA.
- Present address: Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Felipe E Albornoz
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
- Present address: School of Agriculture and Environment, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Benjamin L Turner
- Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panama
| | - F Andrew Jones
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA.
- Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panama.
| |
Collapse
|
30
|
Wei X, Cao P, Wang G, Han J. Microbial inoculant and garbage enzyme reduced cadmium (Cd) uptake in Salvia miltiorrhiza (Bge.) under Cd stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 192:110311. [PMID: 32061988 DOI: 10.1016/j.ecoenv.2020.110311] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 06/10/2023]
Abstract
The uptake and accumulation of cadmium (Cd) in Salvia miltiorrhiza (Bge.) negatively affects the quality of its harvested roots, and seriously threatens human health. This study investigates the effect of a microbial inoculant (MI) and garbage enzyme (GE) on Cd uptake, the accumulation of bioactive compounds, and the community composition of microbes in the rhizosphere soil of S. miltiorrhiza under Cd stress. S. miltiorrhiza seedlings were transplanted to Cd-contaminated pots and irrigated with an MI, GE, a combination of an MI and GE (MIGE) or water (control). The results indicated that treatments with an MI, GE or MIGE can reduce Cd uptake in S. miltiorrhiza. The MIGE treatment had greater efficiency in reducing Cd uptake than the control (reduction by 37.90%), followed by the GE (25.31%) and MI (5.84%) treatments. Treatments with an MI, GE and MIGE had no significant impact on fresh and dry root biomass. Relative to the control, the MI treatment had the highest efficiency in increasing the accumulation of total tanshinones (an increase of 40.45%), followed by the GE treatment (40.08%), with the MIGE treatment (9.90%) treatment not having a more favorable effect than the separate application of an MI or GE. The salvianolic acid content for all groups was higher than the standard prescribed by Chinese pharmacopoeia, notwithstanding a slightly lower level in the treated groups relative to the control. In addition, metagenomic analysis indicated changes in the relative abundance of soil microbes associated with the bioremediation of heavy metals. The relative abundances of Brevundimonas, Microbacterium, Cupriavidus and Aspergillus were significantly greater in the treated groups than in the Control. These results suggest that using MI and GE, either separately or together, may not only improve the quality of S. miltiorrhiza but may also facilitate the microbial remediation of soil contaminated with Cd.
Collapse
Affiliation(s)
- Xuemin Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Pei Cao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Gang Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Jianping Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
31
|
Abstract
Soils are home to more than 25% of the earth’s total biodiversity and supports life on land and water, nutrient cycling and retention, food production, pollution remediation, and climate regulation. Accumulating evidence demonstrates that multiple sustainability goals can be simultaneously addressed when soil biota are put at the center of land management assessments; this is because the activity and interactions of soil organisms are intimately tied to multiple processes that ecosystems and society rely on. With soil biodiversity at the center of multiple globally relevant sustainability programs, we will be able to more efficiently and holistically achieve the Sustainable Development Goals and Aichi Biodiversity Targets. Here we review scenarios where soil biota can clearly support global sustainability targets, global changes and pressures that threaten soil biodiversity, and actions to conserve soil biodiversity and advance sustainability goals. This synthesis shows how the latest empirical evidence from soil biological research can shape tangible actions around the world for a sustainable future.
Collapse
|
32
|
Kivlin SN, Hawkes CV. Spatial and temporal turnover of soil microbial communities is not linked to function in a primary tropical forest. Ecology 2020; 101:e02985. [PMID: 31958139 DOI: 10.1002/ecy.2985] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/21/2019] [Accepted: 12/20/2019] [Indexed: 11/06/2022]
Abstract
The spatial and temporal linkages between turnover of soil microbial communities and their associated functions remain largely unexplored in terrestrial ecosystems. Yet defining these relationships and how they vary across ecosystems and microbial lineages is key to incorporating microbial communities into ecological forecasts and ecosystem models. To define linkages between turnover of soil bacterial and fungal communities and their function we sampled fungal and bacterial composition, abundance, and enzyme activities across a 3-ha area of wet tropical primary forest over 2 yr. We show that fungal and bacterial communities both exhibited temporal turnover, but turnover of both groups was much lower than in temperate ecosystems. Turnover over time was driven by gain and loss of microbial taxa and not changes in abundance of individual species present in multiple samples. Only fungi varied over space with idiosyncratic variation that did not increase linearly with distance among sampling locations. Only phosphorus-acquiring enzyme activities were linked to shifts in septate, decomposer fungal abundance; no enzymes were affected by composition or diversity of fungi or bacteria. Although temporal and spatial variation in composition was appreciable, because turnover of microbial communities did not alter the functional repertoire of decomposing enzymes, functional redundancy among taxa may be high in this ecosystem. Slow temporal turnover of tropical soil microbial communities and large functional redundancy suggests that shifts in abundance of particular functional groups may capture ecosystem function more accurately than composition in these heterogeneous ecosystems.
Collapse
Affiliation(s)
- Stephanie N Kivlin
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, 78712, USA
| | - Christine V Hawkes
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, 78712, USA
| |
Collapse
|
33
|
Microbial Community Changes in the Rhizosphere Soil of Healthy and Rusty Panax ginseng and Discovery of Pivotal Fungal Genera Associated with Rusty Roots. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8018525. [PMID: 32016120 PMCID: PMC6985933 DOI: 10.1155/2020/8018525] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/18/2019] [Accepted: 12/26/2019] [Indexed: 12/14/2022]
Abstract
Panax ginseng Meyer, a valuable medicinal plant, is severely threatened by rusty root, a condition that greatly affects its yield and quality. Studies investigating the relationship between soil microbial community composition and rusty roots are vital for the production of high-quality ginseng. Here, high-throughput sequencing was employed to systematically characterize changes in the soil microbial community associated with rusty roots. Fungal diversity was lower in the soils of rusty root-affected P. ginseng than in those of healthy plants. Importantly, principal coordinate analysis separated the fungal communities in the rhizosphere soils of rusty root-affected ginseng from those of healthy plants. The dominant bacterial and fungal genera differed significantly between rhizosphere soils of healthy and rusty root-affected P. ginseng, and linear discriminant analysis effect size (LEfSe) further indicated a strong imbalance in the soil microbial community of diseased plants. Significantly enriched bacterial genera (including Rhodomicrobium, Knoellia, Nakamurella, Asticcacaulis, and Actinomadura) were mainly detected in the soil of rusty root-affected P. ginseng, whereas significantly enriched fungal genera (including Xenopolyscytalum, Arthrobotrys, Chalara, Cryptococcus, and Scutellinia) were primarily detected in the soil of healthy plants. Importantly, five fungal genera (Cylindrocarpon, Acrophialophora, Alternaria, Doratomyces, and Fusarium) were significantly enriched in the soil of rusty root-affected plants compared with that of healthy plants, suggesting that an increase in the relative abundance of these pathogenic fungi (Cylindrocarpon, Alternaria, and Fusarium) may be associated with ginseng rusty roots. Additionally, this study is the first to report that an increase in the relative abundances of Acrophialophora and Doratomyces in the rhizosphere of P. ginseng may be associated with the onset of rusty root symptoms in this plant. Our findings provide potentially useful information for developing biological control strategies against rusty root, as well as scope for future screening of fungal pathogens in rusty roots of P. ginseng.
Collapse
|
34
|
Goss-Souza D, Mendes LW, Rodrigues JLM, Tsai SM. Ecological Processes Shaping Bulk Soil and Rhizosphere Microbiome Assembly in a Long-Term Amazon Forest-to-Agriculture Conversion. MICROBIAL ECOLOGY 2020; 79:110-122. [PMID: 31250077 DOI: 10.1007/s00248-019-01401-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/11/2019] [Indexed: 05/25/2023]
Abstract
Forest-to-agriculture conversion has been identified as a major threat to soil biodiversity and soil processes resilience, although the consequences of long-term land use change to microbial community assembly and ecological processes have been often neglected. Here, we combined metagenomic approach with a large environmental dataset, to (i) identify the microbial assembly patterns and, (ii) to evaluate the ecological processes governing microbial assembly, in bulk soil and soybean rhizosphere, along a long-term forest-to-agriculture conversion chronosequence, in Eastern Amazon. We hypothesized that (i) microbial communities in bulk soil and rhizosphere have different assembly patterns and (ii) the weight of the four ecological processes governing assembly differs between bulk soil and rhizosphere and along the chronosequence in the same fraction. Community assembly in bulk soil fitted most the zero-sum multinomial (ZSM) neutral-based model, regardless of time. Low to intermediate dispersal was observed. Decreasing influence of abiotic factors was counterbalanced by increasing influence of biotic factors, as the chronosequence advanced. Undominated ecological processes of dispersal limitation and variable selection governing community assembly were observed in this soil fraction. For soybean rhizosphere, community assembly fitted most the lognormal niche-based model in all chronosequence areas. High dispersal and an increasing influence of abiotic factors coupled with a decreasing influence of biotic factors were found along the chronosequence. Thus, we found a dominant role of dispersal process governing microbial assembly with a secondary effect of homogeneous selection process, mainly driven by decreasing aluminum and increased cations saturation in soil solution, due to long-term no-till cropping. Together, our results indicate that long-term no-till lead community abundances in bulk soil to be in a transient and conditional state, while for soybean rhizosphere, community abundances reach a periodic and permanent distribution state. Dominant dispersal process in rhizosphere, coupled with homogeneous selection, brings evidences that soybean root system selects microbial taxa via trade-offs in order to keep functional resilience of soil processes.
Collapse
Affiliation(s)
- Dennis Goss-Souza
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, 13400-970, Brazil
- Department of Land, Air and Water Resources, University of California - Davis, Davis, CA, 95616, USA
- Department of Soils and Natural Resources, Santa Catarina State University, Lages, SC, 88523-000, Brazil
| | - Lucas William Mendes
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, 13400-970, Brazil.
| | - Jorge Luiz Mazza Rodrigues
- Department of Land, Air and Water Resources, University of California - Davis, Davis, CA, 95616, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Siu Mui Tsai
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, 13400-970, Brazil
| |
Collapse
|
35
|
Ritter CD, Faurby S, Bennett DJ, Naka LN, Ter Steege H, Zizka A, Haenel Q, Nilsson RH, Antonelli A. The pitfalls of biodiversity proxies: Differences in richness patterns of birds, trees and understudied diversity across Amazonia. Sci Rep 2019; 9:19205. [PMID: 31844092 PMCID: PMC6915760 DOI: 10.1038/s41598-019-55490-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/25/2019] [Indexed: 01/09/2023] Open
Abstract
Most knowledge on biodiversity derives from the study of charismatic macro-organisms, such as birds and trees. However, the diversity of micro-organisms constitutes the majority of all life forms on Earth. Here, we ask if the patterns of richness inferred for macro-organisms are similar for micro-organisms. For this, we barcoded samples of soil, litter and insects from four localities on a west-to-east transect across Amazonia. We quantified richness as Operational Taxonomic Units (OTUs) in those samples using three molecular markers. We then compared OTU richness with species richness of two relatively well-studied organism groups in Amazonia: trees and birds. We find that OTU richness shows a declining west-to-east diversity gradient that is in agreement with the species richness patterns documented here and previously for birds and trees. These results suggest that most taxonomic groups respond to the same overall diversity gradients at large spatial scales. However, our results show a different pattern of richness in relation to habitat types, suggesting that the idiosyncrasies of each taxonomic group and peculiarities of the local environment frequently override large-scale diversity gradients. Our findings caution against using the diversity distribution of one taxonomic group as an indication of patterns of richness across all groups.
Collapse
Affiliation(s)
- Camila D Ritter
- Department of Eukaryotic Microbiology, University of Duisburg-Essen, Universitätsstrasse 5 S05 R04 H83, D-45141, Essen, Germany. .,Gothenburg Global Biodiversity Centre, Box 461, SE-405 30, Göteborg, Sweden. .,Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30, Göteborg, Sweden.
| | - Søren Faurby
- Gothenburg Global Biodiversity Centre, Box 461, SE-405 30, Göteborg, Sweden.,Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30, Göteborg, Sweden
| | - Dominic J Bennett
- Gothenburg Global Biodiversity Centre, Box 461, SE-405 30, Göteborg, Sweden.,Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30, Göteborg, Sweden
| | - Luciano N Naka
- Laboratório de Ornitologia, Departamento de Zoologia, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Hans Ter Steege
- Naturalis Biodiversity Center, Leiden, Netherlands.,Systems Ecology, Free University, Amsterdam, Netherlands
| | - Alexander Zizka
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| | - Quiterie Haenel
- Zoological Institute, University of Basel, Vesalgasse 1, CH-4051, Basel, Switzerland
| | - R Henrik Nilsson
- Gothenburg Global Biodiversity Centre, Box 461, SE-405 30, Göteborg, Sweden.,Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30, Göteborg, Sweden
| | - Alexandre Antonelli
- Gothenburg Global Biodiversity Centre, Box 461, SE-405 30, Göteborg, Sweden.,Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30, Göteborg, Sweden.,Royal Botanic Gardens, Kew, TW9 3AE, Richmond, Surrey, UK
| |
Collapse
|
36
|
Petersen IAB, Meyer KM, Bohannan BJM. Meta-Analysis Reveals Consistent Bacterial Responses to Land Use Change Across the Tropics. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00391] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
37
|
Grossman JJ, Butterfield AJ, Cavender-Bares J, Hobbie SE, Reich PB, Gutknecht J, Kennedy PG. Non-symbiotic soil microbes are more strongly influenced by altered tree biodiversity than arbuscular mycorrhizal fungi during initial forest establishment. FEMS Microbiol Ecol 2019; 95:5553462. [PMID: 31437281 DOI: 10.1093/femsec/fiz134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 08/21/2019] [Indexed: 11/13/2022] Open
Abstract
While the relationship between plant and microbial diversity has been well studied in grasslands, less is known about similar relationships in forests, especially for obligately symbiotic arbuscular mycorrhizal (AM) fungi. To assess the effect of varying tree diversity on microbial alpha- and beta-diversity, we sampled soil from plots in a high-density tree diversity experiment in Minnesota, USA, 3 years after establishment. About 3 of 12 tree species are AM hosts; the other 9 primarily associate with ectomycorrhizal fungi. We used phospho- and neutral lipid fatty acid analysis to characterize the biomass and functional identity of the whole soil bacterial and fungal community and high throughput sequencing to identify the species-level richness and composition of the AM fungal community. We found that plots of differing tree composition had different bacterial and fungal communities; plots with conifers, and especially Juniperus virginiana, had lower densities of several bacterial groups. In contrast, plots with a higher density or diversity of AM hosts showed no sign of greater AM fungal abundance or diversity. Our results indicate that early responses to plant diversity vary considerably across microbial groups, with AM fungal communities potentially requiring longer timescales to respond to changes in host tree diversity.
Collapse
Affiliation(s)
- Jake J Grossman
- Arnold Arboretum, Harvard University, 1300 Centre St., Boston, MA 02131, USA.,Department of Ecology, Evolution, and Behavior, University of Minnesota -- Twin Cities, 1475 Gortner Ave., St. Paul, MN, 55108, USA
| | - Allen J Butterfield
- Department of Chemical Engeineering, University of Minnesota -- Duluth, 1303 Ordean Ct., Duluth, MN 55812, USA
| | - Jeannine Cavender-Bares
- Department of Ecology, Evolution, and Behavior, University of Minnesota -- Twin Cities, 1475 Gortner Ave., St. Paul, MN, 55108, USA
| | - Sarah E Hobbie
- Department of Ecology, Evolution, and Behavior, University of Minnesota -- Twin Cities, 1475 Gortner Ave., St. Paul, MN, 55108, USA
| | - Peter B Reich
- Department of Forest Resources, University of Minnesota -- Twin Cities, 1530 Cleveland Ave. N., St. Paul, MN 55108, USA.,Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith 2751, NSW, Australia
| | - Jessica Gutknecht
- Department of Soil, Water, and Climate, University of Minnesota --Twin Cities, 1991 Upper Buford Circle, St. Paul, MN 55108, USA
| | - Peter G Kennedy
- Department of Plant and Microbial Biology, University of Minnesota -- Twin Cities, 1475 Gortner Ave., St. Paul, MN 55108, USA
| |
Collapse
|
38
|
Borg Dahl M, Brejnrod AD, Russel J, Sørensen SJ, Schnittler M. Different Degrees of Niche Differentiation for Bacteria, Fungi, and Myxomycetes Within an Elevational Transect in the German Alps. MICROBIAL ECOLOGY 2019; 78:764-780. [PMID: 30903202 DOI: 10.1007/s00248-019-01347-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/17/2019] [Indexed: 06/09/2023]
Abstract
We used direct DNA amplification from soil extracts to analyze microbial communities from an elevational transect in the German Alps by parallel metabarcoding of bacteria (16S rRNA), fungi (ITS2), and myxomycetes (18S rRNA). For the three microbial groups, 5710, 6133, and 261 operational taxonomic units (OTU) were found. For the latter group, we can relate OTUs to barcodes from fruit bodies sampled over a 4-year period. The alpha diversity of myxomycetes was positively correlated with that of bacteria. Vegetation type was found to be the main explanatory parameter for the community composition of all three groups and a substantial species turnover with elevation was observed. Bacteria and fungi display similar community responses, driven by symbiont species and plant substrate quality. Myxamoebae show a more patchy distribution, though still clearly stratified between taxa, which seems to be a response to both structural properties of the habitat and interaction with specific bacterial and fungal taxa. Finally, we report a high number of myxomycete OTUs not represented in a reference database from fructifications, which might represent novel species.
Collapse
Affiliation(s)
- Mathilde Borg Dahl
- Institute of Botany and Landscape Ecology, University of Greifswald, Soldmannstrasse 15, 17487, Greifswald, Mecklenburg-Vorpommern, Germany.
| | - Asker Daniel Brejnrod
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Russel
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Søren Johannes Sørensen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Martin Schnittler
- Institute of Botany and Landscape Ecology, University of Greifswald, Soldmannstrasse 15, 17487, Greifswald, Mecklenburg-Vorpommern, Germany
| |
Collapse
|
39
|
Meyer KM, Petersen IAB, Tobi E, Korte L, Bohannan BJM. Use of RNA and DNA to Identify Mechanisms of Bacterial Community Homogenization. Front Microbiol 2019; 10:2066. [PMID: 31572314 PMCID: PMC6749020 DOI: 10.3389/fmicb.2019.02066] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 08/22/2019] [Indexed: 12/26/2022] Open
Abstract
Biotic homogenization, i.e., the increase in community similarity through time or space, is a commonly observed response following conversion of native ecosystems to agriculture, but our understanding of the ecological mechanisms underlying this process is limited for bacterial communities. Identifying mechanisms of bacterial community homogenization following rapid environmental change may be complicated by the fact only a minority of taxa is active at any time. Here we used RNA- and DNA-based metabarcoding to distinguish putatively active taxa in the bacterial community from inactive taxa. We asked how soil bacterial communities respond to land use change following a rapid transition from rainforest to agriculture in the Congo Basin using a chronosequence that spans from roughly 1 week following slash-and-burn to an active plantation roughly 1.5 years post-conversion. Our results indicate that the magnitude of community homogenization is larger in the RNA-inferred community than the DNA-inferred perspective. We show that as the soil environment changes, the RNA-inferred community structure tracks environmental variation and loses spatial structure. The DNA-inferred community does not respond to environmental variability to the same degree, and is instead homogenized by a subset of taxa that is shared between forest and conversion sites. Our results suggest that complementing DNA-based surveys with RNA can provide insights into the way bacterial communities respond to environmental change.
Collapse
Affiliation(s)
- Kyle M. Meyer
- Department of Biology, Institute of Ecology and Evolution, University of Oregon, Eugene, OR, United States
| | - Ian A. B. Petersen
- Department of Biology, Institute of Ecology and Evolution, University of Oregon, Eugene, OR, United States
| | - Elie Tobi
- Smithsonian Institute, Gabon Biodiversity Program, Gamba, Gabon
| | - Lisa Korte
- Smithsonian Institute, Gabon Biodiversity Program, Gamba, Gabon
| | - Brendan J. M. Bohannan
- Department of Biology, Institute of Ecology and Evolution, University of Oregon, Eugene, OR, United States
| |
Collapse
|
40
|
|
41
|
Duhamel M, Wan J, Bogar LM, Segnitz RM, Duncritts NC, Peay KG. Plant selection initiates alternative successional trajectories in the soil microbial community after disturbance. ECOL MONOGR 2019. [DOI: 10.1002/ecm.1367] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Marie Duhamel
- Department of Biology Stanford University Stanford California 94305 USA
| | - Joe Wan
- Department of Biology Stanford University Stanford California 94305 USA
| | - Laura M. Bogar
- Department of Biology Stanford University Stanford California 94305 USA
| | - R. Max Segnitz
- Department of Biology Stanford University Stanford California 94305 USA
| | - Nora C. Duncritts
- Department of Botany University of Wisconsin Madison Wisconsin 53706 USA
| | - Kabir G. Peay
- Department of Biology Stanford University Stanford California 94305 USA
| |
Collapse
|
42
|
Brinkmann N, Schneider D, Sahner J, Ballauff J, Edy N, Barus H, Irawan B, Budi SW, Qaim M, Daniel R, Polle A. Intensive tropical land use massively shifts soil fungal communities. Sci Rep 2019; 9:3403. [PMID: 30833601 PMCID: PMC6399230 DOI: 10.1038/s41598-019-39829-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 01/30/2019] [Indexed: 12/02/2022] Open
Abstract
Soil fungi are key players in nutrient cycles as decomposers, mutualists and pathogens, but the impact of tropical rain forest transformation into rubber or oil palm plantations on fungal community structures and their ecological functions are unknown. We hypothesized that increasing land use intensity and habitat loss due to the replacement of the hyperdiverse forest flora by nonendemic cash crops drives a drastic loss of diversity of soil fungal taxa and impairs the ecological soil functions. Unexpectedly, rain forest conversion was not associated with strong diversity loss but with massive shifts in soil fungal community composition. Fungal communities clustered according to land use system and loss of plant species. Network analysis revealed characteristic fungal genera significantly associated with different land use systems. Shifts in soil fungal community structure were particularly distinct among different trophic groups, with substantial decreases in symbiotrophic fungi and increases in saprotrophic and pathotrophic fungi in oil palm and rubber plantations in comparison with rain forests. In conclusion, conversion of rain forests and current land use systems restructure soil fungal communities towards enhanced pathogen pressure and, thus, threaten ecosystem health functions.
Collapse
Affiliation(s)
- Nicole Brinkmann
- Forest Botany and Tree Physiology, University of Goettingen, Göttingen, Germany.
| | - Dominik Schneider
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, University of Goettingen, Göttingen, Germany
| | - Josephine Sahner
- Forest Botany and Tree Physiology, University of Goettingen, Göttingen, Germany
| | - Johannes Ballauff
- Forest Botany and Tree Physiology, University of Goettingen, Göttingen, Germany
| | - Nur Edy
- Forest Botany and Tree Physiology, University of Goettingen, Göttingen, Germany
- Department of Agrotechnology, Faculty of Agriculture, Tadulako University, Palu, Indonesia
| | - Henry Barus
- Department of Agrotechnology, Faculty of Agriculture, Tadulako University, Palu, Indonesia
| | - Bambang Irawan
- Department of Forestry, University of Jambi, Jambi, Indonesia
| | - Sri Wilarso Budi
- Department of Silviculture, Faculty of Forestry, Bogor Agriculture University, Bogor, Indonesia
| | - Matin Qaim
- Department of Agricultural Economics and Rural Development, University of Goettingen, Göttingen, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, University of Goettingen, Göttingen, Germany
| | - Andrea Polle
- Forest Botany and Tree Physiology, University of Goettingen, Göttingen, Germany
| |
Collapse
|
43
|
Goss-Souza D, Mendes LW, Borges CD, Rodrigues JLM, Tsai SM. Amazon forest-to-agriculture conversion alters rhizosphere microbiome composition while functions are kept. FEMS Microbiol Ecol 2019; 95:fiz009. [PMID: 30715365 DOI: 10.1093/femsec/fiz009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 01/31/2019] [Indexed: 12/17/2023] Open
Abstract
The conversion of native forest to agriculture is the main cause of microbial biodiversity loss in Amazon soils. In order to better understand this effect, we used metagenomics to investigate microbial patterns and functions in bulk soil and rhizosphere of soybean, in a long-term forest-to-agriculture conversion. Long-term forest-to-agriculture led to microbial homogenization and loss of diversity in both bulk soil and rhizosphere, mainly driven by decreasing aluminum concentration and increased cations saturation in soil, due to liming and fertilization in long-term no-till cropping. Data revealed that long-term no-till cropping culminated in a decrease in Acidobacteria, Actinobacteria and Proteobacteria abundances. However, α- and β-Proteobacteria abundances were higher in the rhizosphere than in bulk soil, regardless of the time after forest-to-agriculture conversion. Changes in functional potential occurred predominantly in bulk soil, with decreases in functions related to potassium metabolism and virulence, disease and defense, while functions related to nucleic acids metabolism increased. Functions in the soybean rhizosphere remained stable, except for those related to potassium metabolism, which decreased after 20-year no-till cropping. Together, our results show that the soybean root system selects microbial taxa via trade-offs, to maintain functional resilience in the rhizosphere microbiome over time.
Collapse
Affiliation(s)
- Dennis Goss-Souza
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, 13400-970, Brazil
- Department of Land, Air and Water Resources, University of California - Davis, Davis, CA 95616, USA
- Department of Soils and Natural Resources, Santa Catarina State University, Lages, SC 88523-000, Brazil
| | - Lucas William Mendes
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, 13400-970, Brazil
| | - Clovis Daniel Borges
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, 13400-970, Brazil
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jorge L M Rodrigues
- Department of Land, Air and Water Resources, University of California - Davis, Davis, CA 95616, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Siu Mui Tsai
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, 13400-970, Brazil
| |
Collapse
|
44
|
Kroeger ME, Delmont TO, Eren AM, Meyer KM, Guo J, Khan K, Rodrigues JLM, Bohannan BJM, Tringe SG, Borges CD, Tiedje JM, Tsai SM, Nüsslein K. New Biological Insights Into How Deforestation in Amazonia Affects Soil Microbial Communities Using Metagenomics and Metagenome-Assembled Genomes. Front Microbiol 2018; 9:1635. [PMID: 30083144 PMCID: PMC6064768 DOI: 10.3389/fmicb.2018.01635] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/30/2018] [Indexed: 11/17/2022] Open
Abstract
Deforestation in the Brazilian Amazon occurs at an alarming rate, which has broad effects on global greenhouse gas emissions, carbon storage, and biogeochemical cycles. In this study, soil metagenomes and metagenome-assembled genomes (MAGs) were analyzed for alterations to microbial community composition, functional groups, and putative physiology as it related to land-use change and tropical soil. A total of 28 MAGs were assembled encompassing 10 phyla, including both dominant and rare biosphere lineages. Amazon Acidobacteria subdivision 3, Melainabacteria, Microgenomates, and Parcubacteria were found exclusively in pasture soil samples, while Candidatus Rokubacteria was predominant in the adjacent rainforest soil. These shifts in relative abundance between land-use types were supported by the different putative physiologies and life strategies employed by the taxa. This research provides unique biological insights into candidate phyla in tropical soil and how deforestation may impact the carbon cycle and affect climate change.
Collapse
Affiliation(s)
- Marie E Kroeger
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA, United States
| | - Tom O Delmont
- Department of Medicine, University of Chicago, Chicago, IL, United States
| | - A M Eren
- Department of Medicine, University of Chicago, Chicago, IL, United States.,Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, United States
| | - Kyle M Meyer
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, United States
| | - Jiarong Guo
- Center for Microbial Ecology, Michigan State University, East Lansing, MI, United States
| | - Kiran Khan
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA, United States
| | - Jorge L M Rodrigues
- Department of Land, Air, and Water Resources, University of California, Davis, Davis, CA, United States
| | - Brendan J M Bohannan
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, United States
| | | | - Clovis D Borges
- Centro de Energia Nuclear na Agricultura, University of São Paulo, Piracicaba, Brazil
| | - James M Tiedje
- Center for Microbial Ecology, Michigan State University, East Lansing, MI, United States
| | - Siu M Tsai
- Centro de Energia Nuclear na Agricultura, University of São Paulo, Piracicaba, Brazil
| | - Klaus Nüsslein
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
45
|
Zhang H, Feng J, Chen S, Li B, Sekar R, Zhao Z, Jia J, Wang Y, Kang P. Disentangling the Drivers of Diversity and Distribution of Fungal Community Composition in Wastewater Treatment Plants Across Spatial Scales. Front Microbiol 2018; 9:1291. [PMID: 29967600 PMCID: PMC6015911 DOI: 10.3389/fmicb.2018.01291] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 05/28/2018] [Indexed: 12/17/2022] Open
Abstract
Activated sludge microbial community composition is a key bio-indicator of the sustainability of wastewater treatment systems. Therefore, a thorough understanding of the activated sludge microbial community dynamics is critical for environmental engineers to effectively manage the wastewater treatment plants (WWTPs). However, fungal communities associated with activated sludge have been poorly elucidated. Here, the activated sludge fungal community in 18 geographically distributed WWTPs was determined by using Illumina sequencing. The results showed that differences in activated sludge fungal community composition were observed among all WWTPs and also between oxidation ditch and anaerobic-anoxic-aerobic (A/A/O) systems. Ascomycota was the largest phyla, followed by Basidiomycota in all samples. Sporidiobolales and Pezizales were the most abundant order in oxidation ditch and A/A/O systems, respectively. The network analysis indicated cooperative and co-occurrence interactions between fungal taxa in order to accomplish the wastewater treatment process. Hygrocybe sp., Sporobolomyces sp., Rhodotorula sp., Stemphylium sp., Parascedosporium sp., and Cylindrocarpon sp., were found to have statistically significant interactions. Redundancy analysis revealed that temperature, total phosphorus, pH, and ammonia nitrogen were significantly affected the fungal community. This study sheds light on providing the ecological characteristics of activated sludge fungal communities and useful guidance for improving wastewater treatment performance efficiency.
Collapse
Affiliation(s)
- Haihan Zhang
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi’an University of Architecture and Technology, Xi’an, China
- Shaanxi Key Laboratory of Environmental Engineering, Xi’an University of Architecture and Technology, Xi’an, China
- Institute of Environmental Microbial Technology, Xi’an University of Architecture and Technology, Xi’an, China
| | - Ji Feng
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi’an University of Architecture and Technology, Xi’an, China
- Shaanxi Key Laboratory of Environmental Engineering, Xi’an University of Architecture and Technology, Xi’an, China
- Institute of Environmental Microbial Technology, Xi’an University of Architecture and Technology, Xi’an, China
| | - Shengnan Chen
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi’an University of Architecture and Technology, Xi’an, China
- Shaanxi Key Laboratory of Environmental Engineering, Xi’an University of Architecture and Technology, Xi’an, China
- Institute of Environmental Microbial Technology, Xi’an University of Architecture and Technology, Xi’an, China
| | - Baoqin Li
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science and Technology, Guangzhou, China
| | - Raju Sekar
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, China
| | - Zhenfang Zhao
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi’an University of Architecture and Technology, Xi’an, China
- Shaanxi Key Laboratory of Environmental Engineering, Xi’an University of Architecture and Technology, Xi’an, China
- Institute of Environmental Microbial Technology, Xi’an University of Architecture and Technology, Xi’an, China
| | - Jingyu Jia
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi’an University of Architecture and Technology, Xi’an, China
- Shaanxi Key Laboratory of Environmental Engineering, Xi’an University of Architecture and Technology, Xi’an, China
- Institute of Environmental Microbial Technology, Xi’an University of Architecture and Technology, Xi’an, China
| | - Yue Wang
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi’an University of Architecture and Technology, Xi’an, China
- Shaanxi Key Laboratory of Environmental Engineering, Xi’an University of Architecture and Technology, Xi’an, China
- Institute of Environmental Microbial Technology, Xi’an University of Architecture and Technology, Xi’an, China
| | - Pengliang Kang
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi’an University of Architecture and Technology, Xi’an, China
- Shaanxi Key Laboratory of Environmental Engineering, Xi’an University of Architecture and Technology, Xi’an, China
- Institute of Environmental Microbial Technology, Xi’an University of Architecture and Technology, Xi’an, China
| |
Collapse
|
46
|
Wood JR, Holdaway RJ, Orwin KH, Morse C, Bonner KI, Davis C, Bolstridge N, Dickie IA. No single driver of biodiversity: divergent responses of multiple taxa across land use types. Ecosphere 2017. [DOI: 10.1002/ecs2.1997] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Jamie R. Wood
- Landcare Research; P.O. Box 69040 Lincoln 7640 New Zealand
| | | | - Kate H. Orwin
- Landcare Research; P.O. Box 69040 Lincoln 7640 New Zealand
| | - Chris Morse
- Landcare Research; P.O. Box 69040 Lincoln 7640 New Zealand
| | | | - Carina Davis
- Landcare Research; P.O. Box 69040 Lincoln 7640 New Zealand
| | | | - Ian A. Dickie
- Bio-Protection Research Centre; School of Biological Sciences, University of Canterbury; Private Bag 4800 Christchurch 8140 New Zealand
| |
Collapse
|
47
|
Yang Y, Dou Y, Huang Y, An S. Links between Soil Fungal Diversity and Plant and Soil Properties on the Loess Plateau. Front Microbiol 2017; 8:2198. [PMID: 29163460 PMCID: PMC5682006 DOI: 10.3389/fmicb.2017.02198] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/26/2017] [Indexed: 01/28/2023] Open
Abstract
Previous studies have revealed inconsistent correlations between fungal diversity and plant/soil properties from local to global scales. Here, we investigated the internal relationships between soil fungal diversity and plant/soil properties on the Loess Plateau following vegetation restoration, using Illumina sequencing of the internal transcribed spacer 2 (ITS2) region for fungal identification. We found significant effects of land use types (Af, Artificial forest; Ns, Natural shrub; Ag, Artificial grassland; Ng, Natural grassland; Sc, slope cropland) on soil fungal communities composition, and the dominant phyla were Ascomycota, Basidiomycota, and Zygomycota, which transitioned from Basidiomycota-dominant to Ascomycota-dominant community due to vegetation restoration. The Chao1 richness, Shannon's diversity and ACE indices were significantly influenced by land use types with the order of Ns > Af > Ng > Ag > Sc, and the total number of OTUs varied widely. In contrast, Good's coverage and Simpson's diversity indicated no significant difference among land use types (p > 0.05). Correlation analysis showed that plant and soil properties were closely related to fungal diversity regardless of land use types. In addition, soil organic carbon (SOC) and Hplant (plant richness, Shannon-Wiener index) were strong driving factors that explained fungal diversity. As revealed by the structural equation model (SEM) and generalized additive models (GAMs), fungal diversity was directly and indirectly affected by soil and plant properties, respectively, providing evidence for strong links between soil fungal diversity and plant and soil properties on the Loess Plateau.
Collapse
Affiliation(s)
- Yang Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Yanxing Dou
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
| | - Yimei Huang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Shaoshan An
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
| |
Collapse
|
48
|
Goss-Souza D, Mendes LW, Borges CD, Baretta D, Tsai SM, Rodrigues JLM. Soil microbial community dynamics and assembly under long-term land use change. FEMS Microbiol Ecol 2017; 93:4102335. [DOI: 10.1093/femsec/fix109] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/31/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
- Dennis Goss-Souza
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, 13400–970, Brazil
- Applied Ecology Graduate Program, Luiz de Queiroz School of Agriculture, University of São Paulo, Piracicaba, SP, 13418–900, Brazil
- Department of Land, Air and Water Resources, University of California – Davis, Davis, CA 95616, USA
| | - Lucas William Mendes
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, 13400–970, Brazil
| | - Clovis Daniel Borges
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, 13400–970, Brazil
- Applied Ecology Graduate Program, Luiz de Queiroz School of Agriculture, University of São Paulo, Piracicaba, SP, 13418–900, Brazil
| | - Dilmar Baretta
- Department of Soils and Sustainability, Santa Catarina State University, Chapecó, SC, 89815-630, Brazil
| | - Siu Mui Tsai
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, 13400–970, Brazil
| | - Jorge L. M. Rodrigues
- Department of Land, Air and Water Resources, University of California – Davis, Davis, CA 95616, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
49
|
Soil Bacterial and Fungal Communities Show Distinct Recovery Patterns during Forest Ecosystem Restoration. Appl Environ Microbiol 2017; 83:AEM.00966-17. [PMID: 28476769 DOI: 10.1128/aem.00966-17] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 01/06/2023] Open
Abstract
Bacteria and fungi are important mediators of biogeochemical processes and play essential roles in the establishment of plant communities, which makes knowledge about their recovery after extreme disturbances valuable for understanding ecosystem development. However, broad ecological differences between bacterial and fungal organisms, such as growth rates, stress tolerance, and substrate utilization, suggest they could follow distinct trajectories and show contrasting dynamics during recovery. In this study, we analyzed both the intra-annual variability and decade-scale recovery of bacterial and fungal communities in a chronosequence of reclaimed mined soils using next-generation sequencing to quantify their abundance, richness, β-diversity, taxonomic composition, and cooccurrence network properties. Bacterial communities shifted gradually, with overlapping β-diversity patterns across chronosequence ages, while shifts in fungal communities were more distinct among different ages. In addition, the magnitude of intra-annual variability in bacterial β-diversity was comparable to the changes across decades of chronosequence age, while fungal communities changed minimally across months. Finally, the complexity of bacterial cooccurrence networks increased with chronosequence age, while fungal networks did not show clear age-related trends. We hypothesize that these contrasting dynamics of bacteria and fungi in the chronosequence result from (i) higher growth rates for bacteria, leading to higher intra-annual variability; (ii) higher tolerance to environmental changes for fungi; and (iii) stronger influence of vegetation on fungal communities.IMPORTANCE Both bacteria and fungi play essential roles in ecosystem functions, and information about their recovery after extreme disturbances is important for understanding whole-ecosystem development. Given their many differences in phenotype, phylogeny, and life history, a comparison of different bacterial and fungal recovery patterns improves the understanding of how different components of the soil microbiota respond to ecosystem recovery. In this study, we highlight key differences between soil bacteria and fungi during the restoration of reclaimed mine soils in the form of long-term diversity patterns, intra-annual variability, and potential interaction networks. Cooccurrence networks revealed increasingly complex bacterial community interactions during recovery, in contrast to much simpler and more isolated fungal network patterns. This study compares bacterial and fungal cooccurrence networks and reveals cooccurrences persisting through successional ages.
Collapse
|
50
|
Zhou Y, Zhu H, Fu S, Yao Q. Variation in Soil Microbial Community Structure Associated with Different Legume Species Is Greater than that Associated with Different Grass Species. Front Microbiol 2017; 8:1007. [PMID: 28620371 PMCID: PMC5449475 DOI: 10.3389/fmicb.2017.01007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 05/19/2017] [Indexed: 11/13/2022] Open
Abstract
Plants are the essential factors shaping soil microbial community (SMC) structure. When most studies focus on the difference in the SMC structure associated different plant species, the variation in the SMC structure associated with phylogenetically close species is less investigated. Legume (Fabaceae) and grass (Poaceae) are functionally important plant groups; however, their influences on the SMC structure are seldom compared, and the variation in the SMC structure among legume or grass species is largely unknown. In this study, we grew three legume species vs. three grass species in mesocosms, and monitored the soil chemical property, quantified the abundance of bacteria and fungi. The SMC structure was also characterized using PCR-DGGE and Miseq sequencing. Results showed that legume and grass differentially affected soil pH, dissolved organic C, total N content, and available P content, and that legume enriched fungi more greatly than grass. Both DGGE profiling and Miseq-sequencing indicated that the bacterial diversity associated with legume was higher than that associated with grass. When legume increased the abundance of Verrucomicrobia, grass decreased it, and furthermore, linear discriminant analysis identified some group-specific microbial taxa as potential biomarkers of legume or grass. These data suggest that legume and grass differentially select for the SMC. More importantly, clustering analysis based on both DGGE profiling and Miseq-sequencing demonstrated that the variation in the SMC structure associated with three legume species was greater than that associated with three grass species.
Collapse
Affiliation(s)
- Yang Zhou
- College of Horticulture, South China Agricultural University, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangdong Engineering Research Center for Litchi, Guangdong Engineering Research Center for Grass ScienceGuangzhou, China
| | - Honghui Zhu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of MicrobiologyGuangzhou, China
| | - Shenglei Fu
- College of Environment and Planning, Henan UniversityKaifeng, China
| | - Qing Yao
- College of Horticulture, South China Agricultural University, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangdong Engineering Research Center for Litchi, Guangdong Engineering Research Center for Grass ScienceGuangzhou, China
| |
Collapse
|