1
|
Jiang N, Yang T, Han H, Shui J, Hou M, Wei W, Kumar G, Song L, Ma C, Li X, Ding Z. Exploring Research Trend and Hotspots on Oxidative Stress in Ischemic Stroke (2001-2022): Insights from Bibliometric. Mol Neurobiol 2024; 61:6200-6216. [PMID: 38285289 DOI: 10.1007/s12035-023-03909-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 12/25/2023] [Indexed: 01/30/2024]
Abstract
Oxidative stress is widely involved in the pathological process of ischemic stroke and ischemia-reperfusion. Several research have demonstrated that eliminating or reducing oxidative stress can alleviate the pathological changes of ischemic stroke. However, current clinical antioxidant treatment did not always perform as expected. This bibliometric research aims to identify research trends, topics, hotspots, and evolution on oxidative stress in the field of ischemic stroke, and to find potentially antioxidant strategies in future clinical treatment. Relevant publications were searched from the Web of Science (WOS) Core Collection databases (2001-2022). VOSviewer was used to visualize and analyze the development trends and hotspots. In the field of oxidative stress and ischemic stroke, the number of publications increased significantly from 2001 to 2022. China and the USA were the leading countries for publication output. The most prolific institutions were Stanford University. Journal of Cerebral Blood Flow and Metabolism and Stroke were the most cited journals. The research topics in this field include inflammation with oxidative stress, mitochondrial damage with oxidative stress, oxidative stress in reperfusion injury, oxidative stress in cognitive impairment and basic research and clinical translation of oxidative stress. Moreover, "NLRP3 inflammasome," "autophagy," "mitophagy," "miRNA," "ferroptosis," and "signaling pathway" are the emerging research hotspots in recent years. At present, multi-target regulation focusing on multi-mechanism crosstalk has progressed across this period, while challenges come from the transformation of basic research to clinical application. New detection technology and new nanomaterials are expected to integrate oxidative stress into the clinical treatment of ischemic stroke better.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, Shanxi, China
| | - Ting Yang
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, Shanxi, China
| | - Hongxia Han
- Shanxi Cardiovascular Hospital, Shanxi Medical University, Taiyuan, 030024, Shanxi, China
| | - Jing Shui
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, Shanxi, China
| | - Miaomiao Hou
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, Shanxi, China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, 030032, Shanxi, China
| | - Wenyue Wei
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, 037009, Shanxi Province, China
| | - Gajendra Kumar
- Department of Neuroscience, City University of Hong Kong, Hong Kong, 999077, Hong Kong SAR, China
| | - Lijuan Song
- Shanxi Cardiovascular Hospital, Shanxi Medical University, Taiyuan, 030024, Shanxi, China
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China
| | - Cungen Ma
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, 037009, Shanxi Province, China.
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China.
| | - Xinyi Li
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, Shanxi, China.
- Shanxi Cardiovascular Hospital, Shanxi Medical University, Taiyuan, 030024, Shanxi, China.
| | - Zhibin Ding
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, Shanxi, China.
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China.
| |
Collapse
|
2
|
Maida CD, Norrito RL, Rizzica S, Mazzola M, Scarantino ER, Tuttolomondo A. Molecular Pathogenesis of Ischemic and Hemorrhagic Strokes: Background and Therapeutic Approaches. Int J Mol Sci 2024; 25:6297. [PMID: 38928006 PMCID: PMC11203482 DOI: 10.3390/ijms25126297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Stroke represents one of the neurological diseases most responsible for death and permanent disability in the world. Different factors, such as thrombus, emboli and atherosclerosis, take part in the intricate pathophysiology of stroke. Comprehending the molecular processes involved in this mechanism is crucial to developing new, specific and efficient treatments. Some common mechanisms are excitotoxicity and calcium overload, oxidative stress and neuroinflammation. Furthermore, non-coding RNAs (ncRNAs) are critical in pathophysiology and recovery after cerebral ischemia. ncRNAs, particularly microRNAs, and long non-coding RNAs (lncRNAs) are essential for angiogenesis and neuroprotection, and they have been suggested to be therapeutic, diagnostic and prognostic tools in cerebrovascular diseases, including stroke. This review summarizes the intricate molecular mechanisms underlying ischemic and hemorrhagic stroke and delves into the function of miRNAs in the development of brain damage. Furthermore, we will analyze new perspectives on treatment based on molecular mechanisms in addition to traditional stroke therapies.
Collapse
Affiliation(s)
- Carlo Domenico Maida
- Department of Internal Medicine, S. Elia Hospital, 93100 Caltanissetta, Italy;
- Molecular and Clinical Medicine Ph.D. Programme, University of Palermo, 90133 Palermo, Italy
| | - Rosario Luca Norrito
- U.O.C di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, University of Palermo, 90133 Palermo, Italy; (R.L.N.); (M.M.); (A.T.)
| | - Salvatore Rizzica
- Department of Internal Medicine, S. Elia Hospital, 93100 Caltanissetta, Italy;
| | - Marco Mazzola
- U.O.C di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, University of Palermo, 90133 Palermo, Italy; (R.L.N.); (M.M.); (A.T.)
| | - Elisa Rita Scarantino
- Division of Geriatric and Intensive Care Medicine, Azienda Ospedaliera Universitaria Careggi, University of Florence, 50134 Florence, Italy;
| | - Antonino Tuttolomondo
- U.O.C di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, University of Palermo, 90133 Palermo, Italy; (R.L.N.); (M.M.); (A.T.)
| |
Collapse
|
3
|
Tak H, Chattopadhyay A, Banavath HN. A meta-analysis of differentially expressed circulatory micro-RNAs in chronic traumatic encephalopathy and other tauopathies: A significant role of miR-181c-5p. Ir J Med Sci 2024; 193:999-1007. [PMID: 37540332 DOI: 10.1007/s11845-023-03469-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/18/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND Micro-RNA (miRs) targeting kinases and phosphatases regulate the hyper-phosphorylation of tau protein, which is a characteristic feature of Chronic Traumatic Encephalopathy (CTE). PRIMARY OBJECTIVE Identification of lead dysregulated miR expressed in CTE, and other similar tauopathies. METHODS A search strategy was devised using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines to mine into multiple indexing databases such as Web of Science, Google Scholar, and PubMed spanning from 2005 to June 2022. Seven articles were screened out of 34,221 publications based on inclusion criteria and were categorized into two groups i.e., (1) CTE and its risk factors and (2) Age-related neurodegenerative disorders. RESULTS Statistical analysis [RevMan 5.4.1] results showed that the overall risk ratio (RR) of the first group is significant (RR = 0.62, 95% CI = [0.38, 1.00], z = 1.95, p = 0.05) whereas, the second group favours the control population (RR = 1.64, 95% CI = [0.85, 3.16], z = 1.14, p = 0.14). CONCLUSION We observed that among all other dysregulated miRs, miR-181c-5p is significantly overexpressed in Alzhimers disease (AD) and CTE. Further, we found that miR-210-3p is also upregulated notably in all groups. In sum, we conclude that these miRs can be considered as potential target and biomarker in the diagnosis and treatment of various tauopathies.
Collapse
Affiliation(s)
- Harshita Tak
- Department of Sports Biosciences, School of Sports Science, Central University of Rajasthan, Ajmer, India
| | - Arpan Chattopadhyay
- Department of Sports Biosciences, School of Sports Science, Central University of Rajasthan, Ajmer, India
| | - Hemanth Naick Banavath
- Department of Sports Biosciences, School of Sports Science, Central University of Rajasthan, Ajmer, India.
| |
Collapse
|
4
|
She Y, Chen Z, Zhang L, Wang Y. MiR-181a-5p knockdown ameliorates sevoflurane anesthesia-induced neuron injury via regulation of the DDX3X/Wnt/β-catenin signaling axis. Exp Brain Res 2024; 242:571-583. [PMID: 38218948 DOI: 10.1007/s00221-023-06739-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/02/2023] [Indexed: 01/15/2024]
Abstract
Sevoflurane is one of the most widely used inhaled anesthetics. MicroRNAs (miRNAs) have been demonstrated to affect sevoflurane anesthesia-induced neuron damage. The purpose of this study was to investigate the role and mechanism of miR-181a-5p in sevoflurane-induced hippocampal neuronal injury. Primary hippocampal neurons were identified using microscopy and immunofluorescence. The viability and apoptosis of sevoflurane anesthesia-induced neurons were detected by cell counting kit-8 (CCK-8) assay and terminal-deoxynucleoitidyl transferase-mediated nick end-labeling (TUNEL) staining assay, respectively. The levels of apoptosis- and oxidative stress-related proteins as well as the markers in the Wnt/β-catenin signaling pathway were examined by immunoblotting. Enzyme-linked immuno-sorbent assays were performed to examine the levels of inflammatory cytokines. Luciferase reporter assay was conducted to validate the combination between miR-181a-5p and DEAD-box helicase 3, X-linked (DDX3X). Sevoflurane exposure led to significantly inhibited hippocampal neuron viability and elevated miR-181a-5p expression. Knockdown of miR-181a-5p alleviated sevoflurane-induced neuron injury by reducing cell apoptosis, inflammatory response, and oxidative stress. Additionally, DDX3X was targeted and negatively regulated by miR-181a-5p. Moreover, miR-181a-5p inhibitor activated the Wnt/β-catenin pathway via DDX3X in sevoflurane-treated cells. Rescue experiments revealed that DDX3X knockdown or overexpression of Wnt antagonist Dickkopf-1 (DKK1) reversed the suppressive effects of miR-181a-5p inhibitor on cell apoptosis, inflammatory response, and oxidative stress in sevoflurane-treated neuronal cells. MiR-181a-5p ameliorated sevoflurane-triggered neuron injury by regulating the DDX3X/Wnt/β-catenin axis, suggesting the potential of miR-181a-5p as a novel and promising therapeutic target for the treatment of sevoflurane-evoked neurotoxicity.
Collapse
Affiliation(s)
- Yuqi She
- Department of Anesthesiology, Wuhan No 1 Hospital, No. 215 Zhongshan Avenue, Qiaokou District, Wuhan, 430030, Hebei, China
| | - Zhijun Chen
- Department of Anesthesiology, Wuhan No 1 Hospital, No. 215 Zhongshan Avenue, Qiaokou District, Wuhan, 430030, Hebei, China.
| | - Li Zhang
- Department of Anesthesiology, Wuhan No 1 Hospital, No. 215 Zhongshan Avenue, Qiaokou District, Wuhan, 430030, Hebei, China
| | - Yuan Wang
- Department of Neurosurgery, Wuhan No 1 Hospital, No. 215 Zhongshan Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
| |
Collapse
|
5
|
Adam M, Ozcan S, Dalkilic S, Tektemur NK, Tekin S, Bilgin B, Hekim MG, Bulut F, Kelestemur MM, Canpolat S, Ozcan M. Modulation of Neuronal Damage in DRG by Asprosin in a High-Glucose Environment and Its Impact on miRNA181-a Expression in Diabetic DRG. Neurotox Res 2023; 42:5. [PMID: 38133838 DOI: 10.1007/s12640-023-00678-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/09/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023]
Abstract
Asprosin, a hormone secreted from adipose tissue, has been implicated in the modulation of cell viability. Current studies suggest that neurological impairments are increased in individuals with obesity-linked diabetes, likely due to the presence of excess adipose tissue, but the precise molecular mechanism behind this association remains poorly understood. In this study, our hypothesis that asprosin has the potential to mitigate neuronal damage in a high glucose (HG) environment while also regulating the expression of microRNA (miRNA)-181a, which is involved in critical biological processes such as cellular survival, apoptosis, and autophagy. To investigate this, dorsal root ganglion (DRG) neurons were exposed to asprosin in a HG (45 mmol/L) environment for 24 hours, with a focus on the role of the protein kinase A (PKA) pathway. Expression of miRNA-181a was measured by using real-time polymerase chain reaction (RT-PCR) in diabetic DRG. Our findings revealed a decline in cell viability and an upregulation of apoptosis under HG conditions. However, pretreatment with asprosin in sensory neurons effectively improved cell viability and reduced apoptosis by activating the PKA pathway. Furthermore, we observed that asprosin modulated the expression of miRNA-181a in diabetic DRG. Our study demonstrates that asprosin has the potential to protect DRG neurons from HG-induced damage while influencing miRNA-181a expression in diabetic DRG. These findings provide valuable insights for the development of clinical interventions targeting neurotoxicity in diabetes, with asprosin emerging as a promising therapeutic target for managing neurological complications in affected individuals.
Collapse
Affiliation(s)
- Muhammed Adam
- Faculty of Medicine (TIP FAKULTESI), Department of Biophysics, University of Firat, Elazig, TR23119, Turkey
| | - Sibel Ozcan
- Department of Anaesthesiology and Reanimation, University of Firat, Elazig, Turkey
| | - Semih Dalkilic
- Department of Biology, University of Firat, Elazig, Turkey
| | | | - Suat Tekin
- Department of Physiology, University of Inonu, Malatya, Turkey
| | - Batuhan Bilgin
- Faculty of Medicine (TIP FAKULTESI), Department of Biophysics, University of Firat, Elazig, TR23119, Turkey
| | | | - Ferah Bulut
- Faculty of Medicine (TIP FAKULTESI), Department of Biophysics, University of Firat, Elazig, TR23119, Turkey
| | | | - Sinan Canpolat
- Department of Physiology, University of Firat, Elazig, Turkey
| | - Mete Ozcan
- Faculty of Medicine (TIP FAKULTESI), Department of Biophysics, University of Firat, Elazig, TR23119, Turkey.
| |
Collapse
|
6
|
Li WA, Efendizade A, Ding Y. The role of microRNA in neuronal inflammation and survival in the post ischemic brain: a review. Neurol Res 2023; 45:1-9. [PMID: 28552032 DOI: 10.1080/01616412.2017.1327505] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 04/15/2017] [Indexed: 12/21/2022]
Abstract
Each year, more than 790 000 people in the United States suffer from a stroke. Although progress has been made in diagnosis and treatment of ischemic stroke (IS), new therapeutic interventions to protect the brain during an ischemic insult is highly needed. MicroRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression post-transcriptionally. Growing evidence suggests that miRNAs have a profound impact on ischemic stroke progression and are potential targets of novel treatments. Notably, inflammatory pathways play an important role in the pathogenesis of ischemic stroke and its pathophysiologic progression. Experimental and clinical studies have illustrated that inflammatory molecular events collaboratively contribute to neuronal and glial cell survival, edema formation and regression, and vascular integrity. In the present review, we examine recent discoveries regarding miRNAs and their roles in post-ischemic stroke neuropathogenesis.
Collapse
Affiliation(s)
- William A Li
- Department of Neurosurgery, Wayne State University School of Medicine , Detroit, MI, USA
| | - Aslan Efendizade
- Department of Neurosurgery, Wayne State University School of Medicine , Detroit, MI, USA
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine , Detroit, MI, USA
| |
Collapse
|
7
|
Zhong Y, Wang S, Yin Y, Yu J, Liu Y, Gao H. Dexmedetomidine suppresses hippocampal astrocyte pyroptosis in cerebral hypoxic-ischemic neonatal rats by upregulating microRNA-148a-3p to inactivate the STAT/JMJD3 axis. Int Immunopharmacol 2023; 121:110440. [PMID: 37327511 DOI: 10.1016/j.intimp.2023.110440] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/18/2023]
Abstract
OBJECTIVE Dexmedetomidine (DEX), a selective α2-adrenoceptor agonist, is an anesthetic and sedative agent and has been reported to confer neuroprotective effects after cerebral hypoxic ischemia (CHI). This study was undertaken to elucidate the mechanisms by which microRNA (miR)-148a-3p is involved in the neuroprotective effect of DEX on hypoxic-ischemic brain damage in neonatal rats. METHODS Neonatal rats were exposed to CHI conditions, a miR-148a-3p inhibitor, and DEX. Hippocampal astrocytes were isolated to construct an oxygen-glucose deprivation (OGD) model. qRT-PCR and western blot were utilized to inspect miR-148a-3p, STAT1, STAT3, JMJD3, cleaved-Caspase-1, ASC, NLRP3, GSDMD, and GSDMD-N expression in rats and astrocytes. TUNEL staining was employed to measure astrocyte apoptosis rate, immunofluorescence to inspect cleaved-Caspase-1 and ASC levels, and ELISA to determine IL-1β and IL-18 expression. The target genes of miR-148a-3p were predicted using online software and verified by a dual-luciferase reporter gene assay. RESULTS A prominent increase in astrocyte apoptosis rate and the expression of pyroptosis- and inflammation-related factors were found in rats with CHI and OGD-treated astrocytes. DEX suppressed astrocyte apoptosis rate and decreased expression of pyroptosis- and inflammation-related factors. Knockdown of miR-148a-3p facilitated astrocyte pyroptosis, indicating that DEX exerted its protective effect by upregulating miR-148a-3p. miR-148a-3p negatively mediated STAT to inactivate JMJD3. Overexpression of STAT1 and STAT3 facilitated pyroptosis in astrocytes, which was negated by the overexpression of miR-148a-3p. CONCLUSION DEX inhibited hippocampal astrocyte pyroptosis by upregulating miR-148a-3p to inactivate the STAT/JMJD3 axis, thereby alleviating cerebral damage in neonatal rats with CHI.
Collapse
Affiliation(s)
- Yi Zhong
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PR China.
| | - Shengzhao Wang
- Institute of Anesthesia, Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Yongqiang Yin
- Institute of Anesthesia, Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Jialu Yu
- Institute of Anesthesia, Guizhou Medical University, Guiyang, Guizhou 550004, PR China
| | - Yang Liu
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PR China.
| | - Hong Gao
- The Third Affiliated Hospital of Guizhou Medical University, Duyun, Guizhou 558000, PR China.
| |
Collapse
|
8
|
Yan F, Wang P, Yang X, Wang F. Long non-coding RNA HOXA11-AS regulates ischemic neuronal death by targeting miR-337-3p/YBX1 signaling pathway: protective effect of dexmedetomidine. Aging (Albany NY) 2023; 15:2797-2811. [PMID: 37059588 PMCID: PMC10120896 DOI: 10.18632/aging.204648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/24/2023] [Indexed: 04/16/2023]
Abstract
Cerebral ischemia/reperfusion (I/R) is a common neurological disease. Homeobox A11 antisense RNA (HOXA11-AS), a long non-coding RNA (lncRNA), has been demonstrated as an important regulator in diverse human cancers. However, its function and regulatory mechanism in ischemic stroke remains largely unknown. Dexmedetomidine (Dex) have received wide attraction because of its neuroprotective effects. This study aimed to explore the possible link between Dex and HOXA11-AS in protecting neuronal cells from by ischemia/reperfusion-induced apoptosis. We used oxygen-glucose deprivation and reoxygenation (OGD/R) in mouse neuroblastoma Neuro-2a cells and middle cerebral artery occlusion (MACO) mouse model to test the link. We found that Dex significantly alleviated OGD/R-induced DNA fragmentation, cell viability and apoptosis, and rescued the decreased HOXA11-AS expression after ischemic damage in Neuro-2a cells. Gain-/loss-of-function studies revealed that HOXA11-AS promoted proliferation, inhibited apoptosis in Neuro-2a cells exposed to OGD/R. Knockdown of HOXA11-AS decreased the protective effect of Dex on OGD/R cells. HOXA11-AS was found to transcriptionally regulate microRNA-337-3p (miR-337-3p) expression as evidenced by luciferase reporter assay, while miR-337-3p expression was upregulated following ischemia in vitro and in vivo. Besides, knockdown of miR-337-3p protected OGD/R-induced apoptotic death of Neuro-2a cells. Furthermore, HOXA11-AS functioned as a competing endogenous RNA (ceRNA) and competed with Y box protein 1 (Ybx1) mRNA for directly binding to miR-337-3p, which protected ischemic neuronal death. Dex treatment protected against ischemic damage and improved overall neurological functions in vivo. Our data suggest a novel mechanism of Dex neuroprotection for ischemic stroke through regulating lncRNA HOXA11-AS by targeting the miR-337-3p/Ybx1 signaling pathway, which might help develop new strategies for the therapeutic interventions in cerebral ischemic stroke.
Collapse
Affiliation(s)
- Fei Yan
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi 710115, China
| | - Pinxiao Wang
- Department of Urology, Xi’an Medical University, Xi’an, Shaanxi 710068, China
| | - Xiaojian Yang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710000, China
| | - Fuli Wang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710000, China
| |
Collapse
|
9
|
Li Y, Song R, Shen G, Huang L, Xiao D, Ma Q, Zhang L. MicroRNA-210 Downregulates TET2 (Ten-Eleven Translocation Methylcytosine Dioxygenase 2) and Contributes to Neuroinflammation in Ischemic Stroke of Adult Mice. Stroke 2023; 54:857-867. [PMID: 36734233 PMCID: PMC10151037 DOI: 10.1161/strokeaha.122.041651] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 12/16/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Stroke is a leading cause of morbidity and mortality worldwide. Neuroinflammation plays a key role in acute brain injury of ischemic stroke. MicroRNA-210 (miR210) is the master hypoxamir and regulates microglial activation and inflammation in a variety of diseases. In this study, we uncovered the mechanism of miR210 in orchestrating ischemic stroke-induced neuroinflammation through repression of TET2 (ten-eleven translocation methylcytosine dioxygenase 2) in the adult mouse brain. METHODS Ischemic stroke was induced in adult WT (wild type) or miR210 KO (miR210 deficient) mice by transient intraluminal middle cerebral artery occlusion. Injection of TET2 silencing RNA or miR210 complementary locked nucleic acid oligonucleotides, or miR210 KO mice were used to validate miR210-TET2 axis and its role in ischemic brain injury. Furthermore, the effect of TET2 overexpression on miR210-stimulated proinflammatory cytokines was examined in BV2 microglia. Post assays included magnetic resonance imaging scan for brain infarct size; neurobehavioral tests, reverse transcription-quantitative polymerase chain reaction, and Western blot for miR210; and TET2 levels, flow cytometry, and ELISA for neuroinflammation in the brain after stroke or microglia in vitro. RESULTS miR210 injection significantly reduced TET2 protein abundance in the brain, while miR210 complementary locked nucleic acid oligonucleotides or miR210 KO preserved TET2 regardless of ischemic brain injury. TET2 knockdown reversed the protective effects of miR210 inhibition or miR210 KO on ischemic stroke-induced brain infarct size and neurobehavioral deficits. Moreover, flow cytometry and ELISA assays showed that TET2 knockdown also significantly dampened the anti-inflammatory effect of miR210 inhibition on microglial activation and IL (interleukin)-6 release after stroke. In addition, overexpression of TET2 in BV2 microglia counteracted miR210-induced increase in cytokines. CONCLUSIONS miR210 inhibition reduced ischemic stroke-induced neuroinflammatory response via repression of TET2 in the adult mouse brain, suggesting that miR210 is a potential treatment target for acute brain injury after ischemic stroke.
Collapse
Affiliation(s)
- Yong Li
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Rui Song
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Guofang Shen
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Lei Huang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - DaLiao Xiao
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Qingyi Ma
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| |
Collapse
|
10
|
Wang H, Ma ZW, Ho FM, Sethi G, Tang FR. Dual Effects of miR-181b-2-3p/SOX21 Interaction on Microglia and Neural Stem Cells after Gamma Irradiation. Cells 2023; 12:cells12040649. [PMID: 36831315 PMCID: PMC9954616 DOI: 10.3390/cells12040649] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/26/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Ionizing radiation induces brain inflammation and the impairment of neurogenesis by activating microglia and inducing apoptosis in neurogenic zones. However, the causal relationship between microglial activation and the impairment of neurogenesis as well as the relevant molecular mechanisms involved in microRNA (miR) remain unknown. In the present study, we employed immunohistochemistry and real-time RT-PCR to study the microglial activation and miRNA expression in mouse brains. Real-time RT-PCR, western blot, ELISA, cell proliferation and cytotoxicity assay were used in BV2 and mouse neural stem cells (NSCs). In the mouse model, we found the acute activation of microglia at 1 day and an increased number of microglial cells at 1, 7 and 120 days after irradiation at postnatal day 3 (P3), day 10 (P10) and day 21 (P21), respectively. In cell models, the activation of BV2, a type of microglial cell line, was observed after gamma irradiation. Real-time RT-PCR analysis revealed a deceased expression of miR-181b-2-3p and an increased expression of its target SRY-related high-mobility group box transcription factor 21 (SOX21) in a dose- and time-dependent fashion. The results of the luciferase reporter assay confirmed that SOX21 was the target of miR-181b-2-3p. Furthermore, SOX21 knockdown by siRNA inhibited the activation of microglia, thereby suggesting that the direct interaction of 181b-2-3p with SOX21 might be involved in radiation-induced microglial activation and proliferation. Interestingly, the gamma irradiation of NSCs increased miR-181b-2-3p expression but decreased SOX21 mRNA, which was the opposite of irradiation-induced expression in BV2 cells. As irradiation reduced the viability and proliferation of NSCs, whereas the overexpression of SOX21 restored the impaired cell viability and promoted the proliferation of NSCs, the findings suggest that the radiation-induced interaction of miR-181b-2-3p with SOX21 may play dual roles in microglia and NSCs, respectively, leading to the impairment of brain neurogenesis.
Collapse
Affiliation(s)
- Hong Wang
- Radiation Physiology Lab, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore 138602, Singapore
| | - Zhao-Wu Ma
- The School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou 434023, China
| | - Feng-Ming Ho
- Radiation Physiology Lab, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore 138602, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Feng Ru Tang
- Radiation Physiology Lab, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore 138602, Singapore
- Correspondence:
| |
Collapse
|
11
|
Lu ZG, Shen J, Yang J, Wang JW, Zhao RC, Zhang TL, Guo J, Zhang X. Nucleic acid drug vectors for diagnosis and treatment of brain diseases. Signal Transduct Target Ther 2023; 8:39. [PMID: 36650130 PMCID: PMC9844208 DOI: 10.1038/s41392-022-01298-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/08/2022] [Accepted: 12/21/2022] [Indexed: 01/18/2023] Open
Abstract
Nucleic acid drugs have the advantages of rich target selection, simple in design, good and enduring effect. They have been demonstrated to have irreplaceable superiority in brain disease treatment, while vectors are a decisive factor in therapeutic efficacy. Strict physiological barriers, such as degradation and clearance in circulation, blood-brain barrier, cellular uptake, endosome/lysosome barriers, release, obstruct the delivery of nucleic acid drugs to the brain by the vectors. Nucleic acid drugs against a single target are inefficient in treating brain diseases of complex pathogenesis. Differences between individual patients lead to severe uncertainties in brain disease treatment with nucleic acid drugs. In this Review, we briefly summarize the classification of nucleic acid drugs. Next, we discuss physiological barriers during drug delivery and universal coping strategies and introduce the application methods of these universal strategies to nucleic acid drug vectors. Subsequently, we explore nucleic acid drug-based multidrug regimens for the combination treatment of brain diseases and the construction of the corresponding vectors. In the following, we address the feasibility of patient stratification and personalized therapy through diagnostic information from medical imaging and the manner of introducing contrast agents into vectors. Finally, we take a perspective on the future feasibility and remaining challenges of vector-based integrated diagnosis and gene therapy for brain diseases.
Collapse
Affiliation(s)
- Zhi-Guo Lu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
| | - Jie Shen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jun Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jing-Wen Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Rui-Chen Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Tian-Lu Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Jing Guo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Xin Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
| |
Collapse
|
12
|
Wu ZD, Feng Y, Ma ZX, Liu Z, Xiong HH, Zhou ZP, Ouyang LS, Xie FK, Tang YM. MicroRNAs: protective regulators for neuron growth and development. Neural Regen Res 2023; 18:734-745. [DOI: 10.4103/1673-5374.353481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
13
|
Transcription Factor YY1 Ameliorates Liver Ischemia-reperfusion Injury Through Modulating the miR-181a-5p/ESR1/ERBB2 Axis. Transplantation 2022; 107:878-889. [PMID: 36413144 DOI: 10.1097/tp.0000000000004356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Liver ischemia/reperfusion injury (I/RI) is characterized by inflammatory actions. Understanding the mechanistic insights underpinning inflammation is critical to developing treatment strategies. In this study, we illustrated the mechanistic insights of transcription factor Yin-Yang 1 (YY1)-mediated microRNA (miR)-181a-5p/estrogen receptor alpha (ESR1)/epidermal growth factor receptor 2 (ERBB2) axis in liver I/RI. METHODS First, we established liver I/RI models in mice and hypoxia-reperfusion (H/R) cell models in mouse hepatocytes (AML12). Subsequently, the expression of YY1, miR-181a-5p, and ESR1 was determined in the 2 models. I/RI mouse models were further injected with lentivirus carrying oe-YY1' and H/R-exposed AML12 cells were subjected to a series of inhibitors, mimics, and shRNAs to validate the mechanisms of YY1 in controlling miR-181a-5p and ESR1 in liver I/RI. RESULTS Upregulated expression of miR-181a-5p and downregulated expression of YY1 were identified in the liver tissues of liver I/RI mice and H/R-exposed hepatocytes. Moreover, overexpression of YY1 inhibited the miR-181a-5p expression and thus repressed the H/R-induced hepatocyte apoptosis and inflammation. ESR1 was further validated as a target gene of miR-181a-5p and could be negatively regulated by miR-181a-5p. miR-181a-5p inhibition elevated ESR1 expression, which consequently enhanced the ERBB2 expression and reduced H/R-induced hepatocyte apoptosis and inflammation. CONCLUSIONS Overall, these findings highlighted that YY1 repressed the miR-181a-5p expression and stimulated ESR1-mediated activation of ERBB2, thereby ameliorating liver I/RI. This study provides insight into the development of novel targets for liver I/RI.
Collapse
|
14
|
Integrated Approaches to Identify miRNA Biomarkers Associated with Cognitive Dysfunction in Multiple Sclerosis Using Text Mining, Gene Expression, Pathways, and GWAS. Diagnostics (Basel) 2022; 12:diagnostics12081914. [PMID: 36010264 PMCID: PMC9406323 DOI: 10.3390/diagnostics12081914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Multiple sclerosis (MS), a chronic autoimmune disorder, affects the central nervous system of many young adults. More than half of MS patients develop cognition problems. Although several genomic and transcriptomic studies are currently reported in MS cognitive impairment, a comprehensive repository dealing with all the experimental data is still underdeveloped. In this study, we combined text mining, gene regulation, pathway analysis, and genome-wide association studies (GWAS) to identify miRNA biomarkers to explore the cognitive dysfunction in MS, and to understand the genomic etiology of the disease. We first identified the dysregulated miRNAs associated with MS and cognitive dysfunction using PubTator (text mining), HMDD (experimental associations), miR2Disease, and PhenomiR database (differentially expressed miRNAs). Our results suggest that miRNAs such as hsa-mir-148b-3p, hsa-mir-7b-5p, and hsa-mir-7a-5p are commonly associated with MS and cognitive dysfunction. Next, we retrieved GWAS signals from GWAS Catalog, and analyzed the enrichment analysis of association signals in genes/miRNAs and their association networks. Then, we identified susceptible genetic loci, rs17119 (chromosome 6; p = 1 × 10−10), rs1843938 (chromosome 7; p = 1 × 10−10), and rs11637611 (chromosome 15; p = 1.00 × 10−15), associated with significant genetic risk. Lastly, we conducted a pathway analysis for the susceptible genetic variants and identified novel risk pathways. The ECM receptor signaling pathway (p = 3.98 × 10−8) and PI3K/Akt signaling pathway (p = 5.98 × 10−5) were found to be associated with differentially expressed miRNA biomarkers.
Collapse
|
15
|
Shu J, Yang L, Wei W, Zhang L. Identification of programmed cell death-related gene signature and associated regulatory axis in cerebral ischemia/reperfusion injury. Front Genet 2022; 13:934154. [PMID: 35991562 PMCID: PMC9385974 DOI: 10.3389/fgene.2022.934154] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Numerous studies have suggested that programmed cell death (PCD) pathways play vital roles in cerebral ischemia/reperfusion (I/R) injury. However, the specific mechanisms underlying cell death during cerebral I/R injury have yet to be completely clarified. There is thus a need to identify the PCD-related gene signatures and the associated regulatory axes in cerebral I/R injury, which should provide novel therapeutic targets against cerebral I/R injury. Methods: We analyzed transcriptome signatures of brain tissue samples from mice subjected to middle cerebral artery occlusion/reperfusion (MCAO/R) and matched controls, and identified differentially expressed genes related to the three types of PCD(apoptosis, pyroptosis, and necroptosis). We next performed functional enrichment analysis and constructed PCD-related competing endogenous RNA (ceRNA) regulatory networks. We also conducted hub gene analysis to identify hub nodes and key regulatory axes. Results: Fifteen PCD-related genes were identified. Functional enrichment analysis showed that they were particularly associated with corresponding PCD-related biological processes, inflammatory response, and reactive oxygen species metabolic processes. The apoptosis-related ceRNA regulatory network was constructed, which included 24 long noncoding RNAs (lncRNAs), 41 microRNAs (miRNAs), and 4 messenger RNAs (mRNAs); the necroptosis-related ceRNA regulatory network included 16 lncRNAs, 20 miRNAs, and 6 mRNAs; and the pyroptosis-related ceRNA regulatory network included 15 lncRNAs, 18 miRNAs, and 6 mRNAs. Hub gene analysis identified hub nodes in each PCD-related ceRNA regulatory network and seven key regulatory axes in total, namely, lncRNA Malat1/miR-181a-5p/Mapt, lncRNA Malat1/miR-181b-5p/Mapt, lncRNA Neat1/miR-181a-5p/Mapt, and lncRNA Neat1/miR-181b-5p/Mapt for the apoptosis-related ceRNA regulatory network; lncRNA Neat1/miR-181a-5p/Tnf for the necroptosis-related ceRNA regulatory network; lncRNA Malat1/miR-181c-5p/Tnf for the pyroptosis-related ceRNA regulatory network; and lncRNAMalat1/miR-181a-5p for both necroptosis-related and pyroptosis-related ceRNA regulatory networks. Conclusion: The results of this study supported the hypothesis that these PCD pathways (apoptosis, necroptosis, pyroptosis, and PANoptosis) and crosstalk among them might be involved in ischemic stroke and that the key nodes and regulatory axes identified in this study might play vital roles in regulating the above processes. This may offer new insights into the potential mechanisms underlying cell death during cerebral I/R injury and provide new therapeutic targets for neuroprotection.
Collapse
Affiliation(s)
| | | | - Wenshi Wei
- *Correspondence: Wenshi Wei, ; Li Zhang,
| | - Li Zhang
- *Correspondence: Wenshi Wei, ; Li Zhang,
| |
Collapse
|
16
|
Zhao Y, Qin F, Han S, Li S, Zhao Y, Wang H, Tian J, Cen X. MicroRNAs in drug addiction: Current status and future perspectives. Pharmacol Ther 2022; 236:108215. [DOI: 10.1016/j.pharmthera.2022.108215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 12/21/2022]
|
17
|
Can U, Marzioglu E, Akdu S. Some miRNA expressions and their targets in ischemic stroke. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 41:1224-1262. [PMID: 35876186 DOI: 10.1080/15257770.2022.2098974] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/15/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Ischemic stroke (IS) is a global health challenge leading to life-long disabilities or the deaths of patients. IS is a complex disease where genetic and environmental factors are both concerned with the pathophysiology of the condition. Here, we aimed to investigate various microRNA (miRNA) expressions and their targets in IS. A rapid and accurate diagnosis of acute IS is important to perform appropriate treatment. Therefore, there is a need for a more rapid and simple tool to carry out an acute diagnosis of IS. miRNAs are small RNA molecules serving as precious biomarkers due to their easy detection and stability in blood samples. The present systematic review aimed to summarize previous studies investigating several miRNA expressions and their targets in IS.
Collapse
Affiliation(s)
- Ummugulsum Can
- Department of Biochemistry, Konya City Hospital, Konya, Türkiye
| | - Ebru Marzioglu
- Department of Genetics, Konya Training and Research Hospital, Konya, Türkiye
| | - Sadinaz Akdu
- Department of Biochemistry, Fethiye State Hospital, Muğla, Turkey
| |
Collapse
|
18
|
Li Y, Zhang Y, Walayat A, Fu Y, Liu B, Zhang L, Xiao D. The Regulatory Role of H19/miR-181a/ATG5 Signaling in Perinatal Nicotine Exposure-Induced Development of Neonatal Brain Hypoxic-Ischemic Sensitive Phenotype. Int J Mol Sci 2022; 23:6885. [PMID: 35805891 PMCID: PMC9266802 DOI: 10.3390/ijms23136885] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 12/18/2022] Open
Abstract
Nicotine exposure either from maternal cigarette smoking or e-cigarette vaping is one of the most common risk factors for neurodevelopmental disease in offspring. Previous studies revealed that perinatal nicotine exposure programs a sensitive phenotype to neonatal hypoxic-ischemic encephalopathy (HIE) in postnatal life, yet the underlying mechanisms remain undetermined. The goal of the present study was to determine the regulatory role of H19/miR-181a/ATG5 signaling in perinatal nicotine exposure-induced development of neonatal brain hypoxic-ischemic sensitive phenotype. Nicotine was administered to pregnant rats via subcutaneous osmotic minipumps. All experiments were conducted in offspring pups at postnatal day 9 (P9). Perinatal nicotine exposure significantly enhanced expression of miR-181a but attenuated autophagy-related protein 5 (ATG5) mRNA and protein levels in neonatal brains. Of interest, miR-181a mimicking administration in the absence of nicotine exposure also produced dose-dependent increased hypoxia/ischemia (H/I)-induced brain injury associated with a decreased ATG5 expression, closely resembling perinatal nicotine exposure-mediated effects. Locked nucleic acid (LNA)-miR-181a antisense reversed perinatal nicotine-mediated increase in H/I-induced brain injury and normalized aberrant ATG5 expression. In addition, nicotine exposure attenuated a long non-coding RNA (lncRNA) H19 expression level. Knockdown of H19 via siRNA increased the miR-181a level and enhanced H/I-induced neonatal brain injury. In conclusion, the present findings provide a novel mechanism that aberrant alteration of the H19/miR-181a/AGT5 axis plays a vital role in perinatal nicotine exposure-mediated ischemia-sensitive phenotype in offspring and suggests promising molecular targets for intervention and rescuing nicotine-induced adverse programming effects in offspring.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Daliao Xiao
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (Y.L.); (Y.Z.); (A.W.); (Y.F.); (B.L.); (L.Z.)
| |
Collapse
|
19
|
Noncoding RNA as Diagnostic and Prognostic Biomarkers in Cerebrovascular Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8149701. [PMID: 35498129 PMCID: PMC9042605 DOI: 10.1155/2022/8149701] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/22/2022] [Indexed: 02/06/2023]
Abstract
Noncoding RNAs (ncRNAs), such as microRNAs, long noncoding RNAs, and circular RNAs, play an important role in the pathophysiology of cerebrovascular diseases (CVDs). They are effectively detectable in body fluids, potentially suggesting new biomarkers for the early detection and prognosis of CVDs. In this review, the physiological functions of circulating ncRNAs and their potential role as diagnostic and prognostic markers in patients with cerebrovascular diseases are discussed, especially in acute ischemic stroke, subarachnoid hemorrhage, and moyamoya disease.
Collapse
|
20
|
Uphaus T, Audebert HJ, Graner MW, Tiedt S, Kowalski RG. Editorial: Blood-Based Biomarkers in Acute Ischemic Stroke and Hemorrhagic Stroke. Front Neurol 2022; 13:866166. [PMID: 35280278 PMCID: PMC8907417 DOI: 10.3389/fneur.2022.866166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Timo Uphaus
- Department of Neurology, Focus Program Translational Neuroscience, Rhine Main Neuroscience Network, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- *Correspondence: Timo Uphaus
| | - Heinrich J. Audebert
- Center for Stroke Research Berlin and Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Michael W. Graner
- Department of Neurosurgery, Anschutz Medical Campus, University of Colorado, Aurora, CO, United States
| | - Steffen Tiedt
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany
| | - Robert G. Kowalski
- Department of Neurosurgery, Anschutz Medical Campus, University of Colorado, Aurora, CO, United States
- Department of Neurology, Anschutz Medical Campus, University of Colorado, Aurora, CO, United States
| |
Collapse
|
21
|
Hu Y, Bian X, Wu C, Wang Y, Wu Y, Gu X, Zhuo S, Sun S. Genome-wide analysis of circular RNAs and validation of hsa_circ_0086354 as a promising biomarker for early diagnosis of cerebral palsy. BMC Med Genomics 2022; 15:13. [PMID: 35062922 PMCID: PMC8783515 DOI: 10.1186/s12920-022-01163-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/12/2022] [Indexed: 11/17/2022] Open
Abstract
Background Cerebral palsy (CP) is a spectrum of non-progressive motor disorders caused by brain injury during fetal or postnatal periods. Current diagnosis of CP mainly relies on neuroimaging and motor assessment. Here, we aimed to explore novel biomarkers for early diagnosis of CP. Methods Blood plasma from five children with CP and their healthy twin brothers/sisters was analyzed by gene microarray to screen out differentially expressed RNAs. Selected differentially expressed circular RNAs (circRNAs) were further validated using quantitative real-time PCR. Receiver operating characteristic (ROC) curve analysis was used to assess the specificity and sensitivity of hsa_circ_0086354 in discriminating children with CP and healthy controls. Results 43 up-regulated circRNAs and 2 down-regulated circRNAs were obtained by difference analysis (fold change > 2, p < 0.05), among which five circRNAs related to neuron differentiation and neurogenesis were chosen for further validation. Additional 30 pairs of children with CP and healthy controls were recruited and five selected circRNAs were further detected, showing that hsa_circ_0086354 was significantly down-regulated in CP plasma compared with control, which was highly in accord with microarray analysis. ROC curve analysis showed that the area under curve (AUC) to discriminate children with CP and healthy controls using hsa_circ_0086354 was 0.967, the sensitivity was 0.833 and the specificity was 0.966. Moreover, hsa_circ_0086354 was predicted as a competitive endogenous RNA for miR-181a, and hsa_circ_0086354 expression was negatively correlated to miR-181a expression in children with CP. Conclusion Hsa_circ_0086354 was significantly down-regulated in blood plasma of children with CP, which may be a novel competent biomarker for early diagnosis of CP. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01163-6.
Collapse
|
22
|
MicroRNA Cues from Nature: A Roadmap to Decipher and Combat Challenges in Human Health and Disease? Cells 2021; 10:cells10123374. [PMID: 34943882 PMCID: PMC8699674 DOI: 10.3390/cells10123374] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/22/2021] [Accepted: 11/27/2021] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs are small non-coding RNA (18–24 nt long) that fine-tune gene expression at the post-transcriptional level. With the advent of “multi-omics” analysis and sequencing approaches, they have now been implicated in every facet of basic molecular networks, including metabolism, homeostasis, and cell survival to aid cellular machinery in adapting to changing environmental cues. Many animals must endure harsh environmental conditions in nature, including cold/freezing temperatures, oxygen limitation (anoxia/hypoxia), and food or water scarcity, often requiring them to revamp their metabolic organization, frequently on a seasonal or life stage basis. MicroRNAs are important regulatory molecules in such processes, just as they are now well-known to be involved in many human responses to stress or disease. The present review outlines the role of miRNAs in natural animal models of environmental stress and adaptation including torpor/hibernation, anoxia/hypoxia tolerance, and freeze tolerance. We also discuss putative medical applications of advances in miRNA biology including organ preservation for transplant, inflammation, ageing, metabolic disorders (e.g., obesity), mitochondrial dysfunction (mitoMirs) as well as specialized miRNA subgroups respective to low temperature (CryomiRs) and low oxygen (OxymiRs). The review also covers differential regulation of conserved and novel miRNAs involved at cell, tissue, and stress specific levels across multiple species and their roles in survival. Ultimately, the species-specific comparison and conserved miRNA responses seen in evolutionarily disparate animal species can help us to understand the complex miRNA network involved in regulating and reorganizing metabolism to achieve diverse outcomes, not just in nature, but in human health and disease.
Collapse
|
23
|
Islam MR, Kaurani L, Berulava T, Heilbronner U, Budde M, Centeno TP, Elerdashvili V, Zafieriou M, Benito E, Sertel SM, Goldberg M, Senner F, Kalman JL, Burkhardt S, Oepen AS, Sakib MS, Kerimoglu C, Wirths O, Bickeböller H, Bartels C, Brosseron F, Buerger K, Cosma N, Fliessbach K, Heneka MT, Janowitz D, Kilimann I, Kleinedam L, Laske C, Metzger CD, Munk MH, Perneczky R, Peters O, Priller J, Rauchmann BS, Roy N, Schneider A, Spottke A, Spruth EJ, Teipel S, Tscheuschler M, Wagner M, Wiltfang J, Düzel E, Jessen F, Rizzoli SO, Zimmermann W, Schulze TG, Falkai P, Sananbenesi F, Fischer A. A microRNA signature that correlates with cognition and is a target against cognitive decline. EMBO Mol Med 2021; 13:e13659. [PMID: 34633146 PMCID: PMC8573587 DOI: 10.15252/emmm.202013659] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 12/25/2022] Open
Abstract
While some individuals age without pathological memory impairments, others develop age-associated cognitive diseases. Since changes in cognitive function develop slowly over time in these patients, they are often diagnosed at an advanced stage of molecular pathology, a time point when causative treatments fail. Thus, there is great need for the identification of inexpensive and minimal invasive approaches that could be used for screening with the aim to identify individuals at risk for cognitive decline that can then undergo further diagnostics and eventually stratified therapies. In this study, we use an integrative approach combining the analysis of human data and mechanistic studies in model systems to identify a circulating 3-microRNA signature that reflects key processes linked to neural homeostasis and inform about cognitive status. We furthermore provide evidence that expression changes in this signature represent multiple mechanisms deregulated in the aging and diseased brain and are a suitable target for RNA therapeutics.
Collapse
|
24
|
Kim M, Lee Y, Lee M. Hypoxia-specific anti-RAGE exosomes for nose-to-brain delivery of anti-miR-181a oligonucleotide in an ischemic stroke model. NANOSCALE 2021; 13:14166-14178. [PMID: 34477698 DOI: 10.1039/d0nr07516g] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ischemic stroke is caused by a reduction in blood flow to the brain due to narrowed cerebral arteries. Thrombolytic agents have been used to induce reperfusion of occluded cerebral arteries. However, brain damage continues to progress after reperfusion and induces ischemia-reperfusion (I/R) injury. The receptor for advanced glycation end-products (RAGE) is overexpressed in hypoxic cells of the ischemic brain. In this study, an exosome linked to RAGE-binding-peptide (RBP-Exo) was developed as a hypoxia-specific carrier for nose-to-brain delivery of anti-microRNA oligonucleotide (AMO). The RBP-Exos were less than 50 nm in size and had negative surface charge. In vitro studies showed that RBP-Exos delivered AMO181a to Neuro2A cells more efficiently than unmodified exosomes (Unmod-Exos). In addition, RAGE was downregulated by RBP-Exos, suggesting that the RBP moiety of the RBP-Exos reduced the RAGE-mediated signal pathway. MicroRNA-181a (miR-181a) is one of the upregulated miRNAs in the ischemic brain and its downregulation can reduce the damage to the ischemic brain. Cholesterol-modified AMO181a (AMO181a-chol) was loaded onto the RBP-Exo by hydrophobic interaction. The AMO181a-chol-loaded RBP-Exo (RBP-Exo/AMO181a-chol) was administered intranasally to a rat middle cerebral artery occlusion (MCAO) model. MiR-181a was knocked down and Bcl-2 was upregulated by intranasal delivery of RBP-Exo/AMO181a-chol. In addition, tumor necrosis factor-α (TNF-α) expression and apoptosis were reduced by RBP-Exo/AMO181a-chol. As a result, RBP-Exo/AMO181a-chol significantly suppressed infarct size compared with the controls. In conclusion, RBP-Exo was a hypoxia-specific carrier for nose-to-brain delivery of AMO181a-chol in an ischemic stroke model. Furthermore, the combined effects of RBP and AMO181a-chol exerted neuroprotective effects in the ischemic brain.
Collapse
Affiliation(s)
- Minkyung Kim
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seondong-gu, Seoul 04763, Korea.
| | | | | |
Collapse
|
25
|
Kashif H, Shah D, Sukumari-Ramesh S. Dysregulation of microRNA and Intracerebral Hemorrhage: Roles in Neuroinflammation. Int J Mol Sci 2021; 22:8115. [PMID: 34360881 PMCID: PMC8347974 DOI: 10.3390/ijms22158115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/23/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a major public health problem and devastating subtype of stroke with high morbidity and mortality. Notably, there is no effective treatment for ICH. Neuroinflammation, a pathological hallmark of ICH, contributes to both brain injury and repair and hence, it is regarded as a potential target for therapeutic intervention. Recent studies document that microRNAs, small non-coding RNA molecules, can regulate inflammatory brain response after ICH and are viable molecular targets to alter brain function. Therefore, there is an escalating interest in studying the role of microRNAs in the pathophysiology of ICH. Herein, we provide, for the first time, an overview of the microRNAs that play roles in ICH-induced neuroinflammation and identify the critical knowledge gap in the field, as it would help design future studies.
Collapse
Affiliation(s)
| | | | - Sangeetha Sukumari-Ramesh
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (H.K.); (D.S.)
| |
Collapse
|
26
|
Sung HY, Choi EN, Han J, Chae YJ, Im SW, Kim HS, Park EM, Ahn JH. Protective role of ABCA1 in ischemic preconditioning is mediated by downregulation of miR-33-5p and miR-135-5p. Sci Rep 2021; 11:12511. [PMID: 34131232 PMCID: PMC8206355 DOI: 10.1038/s41598-021-91982-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 06/03/2021] [Indexed: 11/22/2022] Open
Abstract
Ischemic preconditioning (IPC) significantly reduces ischemia–reperfusion injury in the brain by inducing ischemic tolerance. Although emerging evidence suggests that microRNAs (miRNAs) contribute to the pathogenesis of brain ischemia and IPC-induced neuroprotection, the role of miRNAs and their underlying mechanisms are still unclear. IPC was induced in male C57BL/6 mice by brief bilateral common carotid artery occlusion. After 24 h, mice underwent transient middle cerebral artery occlusion followed by 3 h of reperfusion. Expression levels of messenger RNAs (mRNAs) and proteins were examined in the ipsilateral cortex, and mimics and inhibitors of selective miRNAs were transfected into Neuro-2a cells before oxygen–glucose deprivation (OGD). Post-IPC miRNA expression profiling identified neuroprotection-associated changes in miRNA expression in the ipsilateral cortex after ischemic stroke. Among them, miR-33-5p and miR-135b-5p were significantly downregulated by IPC. Inhibition of miR-33-5p and miR-135b-5p expression protected Neuro-2a cells from OGD-induced apoptosis. Inhibition of these two miRNAs significantly increased mRNA and protein levels of ATP-binding cassette subfamily A member 1 (ABCA1), and a binding assay showed that these two miRNAs showed specificity for Abca1 mRNA. Overexpression of ABCA1 decreased the Bax/Bcl2 mRNA ratio and activation of caspase-9 and caspase-3, whereas knockdown of ABCA1 expression increased the Bax/Bcl2 mRNA ratio and the percentage of Neuro-2a cells with a loss of mitochondrial membrane potential after OGD-treatment. In conclusion, ABCA1 expression is regulated by miR-33-5p and miR-135b-5p. Increased ABCA1 expression following IPC exerts a protective influence against cerebral ischemia via suppression of a mitochondria-dependent apoptosis pathway.
Collapse
Affiliation(s)
- Hye Youn Sung
- Department of Biochemistry, College of Medicine, Ewha Womans University, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804, Korea
| | - Eun Nam Choi
- Department of Biochemistry, College of Medicine, Ewha Womans University, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804, Korea
| | - Jihye Han
- Department of Biochemistry, College of Medicine, Ewha Womans University, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804, Korea
| | - Yun Ju Chae
- Department of Biochemistry, College of Medicine, Ewha Womans University, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804, Korea
| | - Sun-Wha Im
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Korea
| | - Hee-Sun Kim
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, Korea
| | - Eun-Mi Park
- Department of Pharmacology, College of Medicine, Ewha Womans University, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804, Korea.
| | - Jung-Hyuck Ahn
- Department of Biochemistry, College of Medicine, Ewha Womans University, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804, Korea.
| |
Collapse
|
27
|
New epigenetic players in stroke pathogenesis: From non-coding RNAs to exosomal non-coding RNAs. Biomed Pharmacother 2021; 140:111753. [PMID: 34044272 PMCID: PMC8222190 DOI: 10.1016/j.biopha.2021.111753] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/22/2021] [Accepted: 05/19/2021] [Indexed: 12/17/2022] Open
Abstract
Non-coding RNAs (ncRNAs) have critical role in the pathophysiology as well as recovery after ischemic stroke. ncRNAs, particularly microRNAs, and the long non-coding RNAs (lncRNAs) are critical for angiogenesis and neuroprotection, and they have been suggested to be therapeutic, diagnostic and prognostic tools in cerebrovascular diseases, including stroke. Moreover, exosomes have been considered as nanocarriers capable of transferring various cargos, such as lncRNAs and miRNAs to recipient cells, with prominent inter-cellular roles in the mediation of neuro-restorative events following strokes and neural injuries. In this review, we summarize the pathogenic role of ncRNAs and exosomal ncRNAs in the stroke.
Collapse
|
28
|
Long Noncoding RNA H19 Overexpression Protects against Hypoxic-Ischemic Brain Damage by Inhibiting miR-107 and Up-Regulating Vascular Endothelial Growth Factor. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:503-514. [PMID: 33608066 DOI: 10.1016/j.ajpath.2020.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/22/2020] [Accepted: 11/16/2020] [Indexed: 02/05/2023]
Abstract
Long noncoding RNAs play critical roles in cellular homeostasis, and long noncoding RNA H19 (H19) is implicated in several pathologic conditions. The putative role of H19 in the pathogenesis and progression of hypoxic-ischemic brain damage (HIBD) is not yet understood. Therefore, a series of in vivo and in vitro experiments were designed to investigate the potential roles of H19 in neuronal apoptosis and cognitive dysfunction in HIBD. H19 expression was decreased in HIBD rat models established by partial occlusion of carotid artery. H19 bound to and decreased the expression of miR-107, which also increased VEGF expression. H19 overexpression reduced neuronal apoptosis and alleviated cognitive dysfunction in HIBD rats. The up-regulation of miR-107 reversed the protective effects conferred by H19. In addition, the cell model of HIBD was established by oxygen-glucose deprivation in neuronal cells used. H19 overexpression in oxygen-glucose deprivation neurons increased B-cell lymphoma-2 and decreased B-cell lymphoma-2-associated X, total and cleaved caspase-3 expressions. Taken together, the results showed that H19 expresses at a low level in HIBD. H19 overexpression decreased miR-107 and increased VEGF expression, which resulted in repressed neuronal apoptosis and alleviated cognitive dysfunction. Thus, H19 may serve as a molecular target for translational research for HIBD therapy.
Collapse
|
29
|
Zhang RY, Luo SH, Lin XM, Hu XM, Zhang Y, Zhang XH, Wu CM, Zheng L, Wang Q. A novel electrochemical biosensor for exosomal microRNA-181 detection based on a catalytic hairpin assembly circuit. Anal Chim Acta 2021; 1157:338396. [PMID: 33832593 DOI: 10.1016/j.aca.2021.338396] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/02/2021] [Accepted: 03/07/2021] [Indexed: 10/21/2022]
Abstract
Exosomal microRNAs (miRNAs) derived from different cells are proposed to be important noninvasive biomarkers for the diagnosis of cardiovascular disease. Recently, sensitive and reliable sensing of exosomal miRNAs has been garnered significant attention. Herein, a novel electrochemical biosensor based on a step polymerization catalytic hairpin assembly (SP-CHA) circuit is designed for exosomal miR-181 detection. Exosomal miR-181 as a trigger, induced SP-CHA process and generated a large number of T shaped concatemers with different length on the electrode surface. These ultra-concatemers could provide a much enhanced signal-to-noise ratio with the linear range from 10 fM to 100 nM and the detection limit of 7.94 fM. Furthermore, this assay was successfully applied to the detection of exosomal miR-181 in serum samples of normal healthy controls and patients with coronary heart disease (CHD) and the results were consistent with those analysis collected from qRT-PCR. The assembly demonstrated great performance in differentiating CHD patients from healthy controls (AUC:0.9867). Collectively, this sensing system possessed high stability and sensitivity with ease of operation and cost efficiency, leading to great potential for exosomal miRNAs detection in cardiovascular disease.
Collapse
Affiliation(s)
- Ru-Yi Zhang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, PR China
| | - Shi-Hua Luo
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, PR China
| | - Xiao-Min Lin
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, PR China
| | - Xiu-Mei Hu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, PR China
| | - Ye Zhang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, PR China
| | - Xiao-He Zhang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, PR China
| | - Chang-Meng Wu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, PR China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, PR China.
| | - Qian Wang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, PR China; Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong Province, PR China.
| |
Collapse
|
30
|
Hussein M, Magdy R. MicroRNAs in central nervous system disorders: current advances in pathogenesis and treatment. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2021. [DOI: 10.1186/s41983-021-00289-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AbstractMicroRNAs (miRNAs) are a class of short, non-coding, regulatory RNA molecules that function as post transcriptional regulators of gene expression. Altered expression of multiple miRNAs was found to be extensively involved in the pathogenesis of different neurological disorders including Alzheimer’s disease, Parkinson’s disease, stroke, epilepsy, multiple sclerosis, amyotrophic lateral sclerosis, and Huntington’s disease. miRNAs are implicated in the pathogenesis of excitotoxicity, apoptosis, oxidative stress, inflammation, neurogenesis, angiogenesis, and blood–brain barrier protection. Consequently, miRNAs can serve as biomarkers for different neurological disorders. In recent years, advances in the miRNA field led to identification of potentially novel prospects in the development of new therapies for incurable CNS disorders. MiRNA-based therapeutics include miRNA mimics and inhibitors that can decrease or increase the expression of target genes. Better understanding of the mechanisms by which miRNAs are implicated in the pathogenesis of neurological disorders may provide novel targets to researchers for innovative therapeutic strategies.
Collapse
|
31
|
Insights from a vertebrate model organism on the molecular mechanisms of whole-body dehydration tolerance. Mol Cell Biochem 2021; 476:2381-2392. [PMID: 33595794 DOI: 10.1007/s11010-021-04072-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/16/2021] [Indexed: 10/25/2022]
Abstract
Studies on the molecular mechanisms of dehydration tolerance have been largely limited to plants and invertebrates. Currently, research in whole body dehydration of complex animals is limited to cognitive and behavioral effects in humans, leaving the molecular mechanisms of vertebrate dehydration relatively unexplored. The present review summarizes studies to date on the African clawed frog (Xenopus laevis) and examines whole-body dehydration on physiological, cellular and molecular levels. This aquatic frog is exposed to seasonal droughts in its native habitat and can endure a loss of over 30% of its total body water. When coping with dehydration, osmoregulatory processes prioritize water retention in skeletal tissues and vital organs over plasma volume. Although systemic blood circulation is maintained in the vital organs and even elevated in the brain during dehydration, it is done so at the expense of reduced circulation to the skeletal muscles. Increased hemoglobin affinity for oxygen helps to counteract impaired blood circulation and metabolic enzymes show altered kinetic and regulatory parameters that support the use of anaerobic glycolysis. Recent studies with X. laevis also show that pro-survival pathways such as antioxidant defenses and heat shock proteins are activated in an organ-specific manner during dehydration. These pathways are tightly coordinated at the post-transcriptional level by non-coding RNAs, and at the post-translational level by reversible protein phosphorylation. Paired with ongoing research on the X. laevis genome, the African clawed frog is poised to be an ideal animal model with which to investigate the molecular adaptations for dehydration tolerance much more deeply.
Collapse
|
32
|
Cao Y, Liu H, Zhang J, Dong Y. Circular RNA cZNF292 silence alleviates OGD/R-induced injury through up-regulation of miR-22 in rat neural stem cells (NSCs). ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:594-601. [PMID: 32052645 DOI: 10.1080/21691401.2020.1725536] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background: Hypoxic-ischaemic encephalopathy (HIE) is a prevailing severe brain damage disease in newborns, and caused by perinatal asphyxia cerebral ischaemia and reperfusion. Here, we investigated the role of cZNF292 in oxygen-glucose deprivation/reperfusion (OGD/R)-induced neural stem cells (NSCs) injury, and explored the underlying molecular mechanism.Methods: Before NSCs were subjected to OGD/R treatment, NSCs were transfected with or without overexpressing cZNF292, si-cZNF292 or miR-22 inhibitor. Viability, apoptosis and potential molecular mechanism were examined. Cell viability and apoptotic rate were evaluated utilizing cell counting kit-8 (CCK-8) and flow cytometry. The cZNF292 and miR-22 expression was determined utilizing quantitative reverse transcription-PCR (qRT-PCR). Moreover, apoptosis and Wnt/β-catenin and PKC/ERK pathways-associated proteins were quantified applying western blot.Results: OGD/R repressed viability and promoted apoptosis of NSCs. Also, cZNF292 expression was promoted by OGD/R treatment. Moreover, cZNF292 overexpression further caused OGD/R-stimulated damage. Inversely, silencing cZNF292 alleviated OGD/R-stimulated damage in NSCs. In addition, miR-22 expression was negatively regulated by cZNF292. It was confirmed that silencing cZNF292 attenuated OGD/R-induced NSCs injury and promoted the activation of Wnt/β-catenin and PKC/ERK pathways via the up-regulation of miR-22.Conclusions: The cZNF292 silence alleviated OGD/R-induced injury through the up-regulation of miR-22 in NSCs, and which furnished the theoretical basis for further research on HIE progression.
Collapse
Affiliation(s)
- Yaqin Cao
- Neonatal Intensive Care Unit, Zhoukou Central Hospital, Zhoukou, China
| | - Hui Liu
- Neonatal Intensive Care Unit, Zhoukou Central Hospital, Zhoukou, China
| | - Jun Zhang
- Neonatal Intensive Care Unit, Zhoukou Central Hospital, Zhoukou, China
| | - Yubin Dong
- Neonatal Intensive Care Unit, Zhoukou Central Hospital, Zhoukou, China
| |
Collapse
|
33
|
Popa N, Boyer F, Jaouen F, Belzeaux R, Gascon E. Social Isolation and Enrichment Induce Unique miRNA Signatures in the Prefrontal Cortex and Behavioral Changes in Mice. iScience 2020; 23:101790. [PMID: 33294798 PMCID: PMC7701176 DOI: 10.1016/j.isci.2020.101790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 09/14/2020] [Accepted: 11/06/2020] [Indexed: 01/19/2023] Open
Abstract
An extensive body of evidence supports the notion that exposure to an enriched/impoverished environment alters brain functions via epigenetic changes. However, how specific modifications of social environment modulate brain functions remains poorly understood. To address this issue, we investigate the molecular and behavioral consequences of briefly manipulating social settings in young and middle-aged wild-type mice. We observe that, modifications of the social context, only affect the performance in socially related tasks. Social enrichment increases sociability whereas isolation leads to the opposite effect. Our work also pointed out specific miRNA signatures associated to each social environment. These miRNA alterations are reversible and found selectively in the medial prefrontal cortex. Finally, we show that miRNA modifications linked to social enrichment or isolation might target rather different intracellular pathways. Together, these observations suggest that the prefrontal cortex may be a key brain area integrating social information via the modification of precise miRNA networks.
Collapse
Affiliation(s)
- Natalia Popa
- Aix-Marseille Université, CNRS, INT, Inst Neurosci Timone, UMR7289, 27, Boulevard Jean Moulin, 13005 Marseille, France
| | - Flora Boyer
- Aix-Marseille Université, CNRS, INT, Inst Neurosci Timone, UMR7289, 27, Boulevard Jean Moulin, 13005 Marseille, France
| | - Florence Jaouen
- Aix-Marseille Université, CNRS, INT, Inst Neurosci Timone, UMR7289, 27, Boulevard Jean Moulin, 13005 Marseille, France
- NeuroBioTools Facility (NeuroVir), Aix Marseille Université, CNRS, INT, Inst Neurosci Timone, Marseille, France
| | - Raoul Belzeaux
- Aix-Marseille Université, CNRS, INT, Inst Neurosci Timone, UMR7289, 27, Boulevard Jean Moulin, 13005 Marseille, France
- Assistance Publique Hôpitaux de Marseille, Sainte Marguerite Hospital, Pôle de Psychiatrie Universitaire Solaris, Marseille, France
| | - Eduardo Gascon
- Aix-Marseille Université, CNRS, INT, Inst Neurosci Timone, UMR7289, 27, Boulevard Jean Moulin, 13005 Marseille, France
- Corresponding author
| |
Collapse
|
34
|
Vahidinia Z, Karimian M, Joghataei MT. Neurosteroids and their receptors in ischemic stroke: From molecular mechanisms to therapeutic opportunities. Pharmacol Res 2020; 160:105163. [DOI: 10.1016/j.phrs.2020.105163] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 01/09/2023]
|
35
|
Can miRNAs Be Considered as Diagnostic and Therapeutic Molecules in Ischemic Stroke Pathogenesis?-Current Status. Int J Mol Sci 2020; 21:ijms21186728. [PMID: 32937836 PMCID: PMC7555634 DOI: 10.3390/ijms21186728] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke is one of the leading causes of death worldwide. Clinical manifestations of stroke are long-lasting and causing economic burden on the patients and society. Current therapeutic modalities to treat ischemic stroke (IS) are unsatisfactory due to the intricate pathophysiology and poor functional recovery of brain cellular compartment. MicroRNAs (miRNA) are endogenously expressed small non-coding RNA molecules, which can act as translation inhibitors and play a pivotal role in the pathophysiology associated with IS. Moreover, miRNAs may be used as potential diagnostic and therapeutic tools in clinical practice; yet, the complete role of miRNAs is enigmatic during IS. In this review, we explored the role of miRNAs in the regulation of stroke risk factors viz., arterial hypertension, metabolic disorders, and atherosclerosis. Furthermore, the role of miRNAs were reviewed during IS pathogenesis accompanied by excitotoxicity, oxidative stress, inflammation, apoptosis, angiogenesis, neurogenesis, and Alzheimer's disease. The functional role of miRNAs is a double-edged sword effect in cerebral ischemia as they could modulate pathological mechanisms associated with risk factors of IS. miRNAs pertaining to IS pathogenesis could be potential biomarkers for stroke; they could help researchers to identify a particular stroke type and enable medical professionals to evaluate the severity of brain injury. Thus, ascertaining the role of miRNAs may be useful in deciphering their diagnostic role consequently it is plausible to envisage a suitable therapeutic modality against IS.
Collapse
|
36
|
Yan Y, Chen L, Zhou J, Xie L. SNHG12 inhibits oxygen‑glucose deprivation‑induced neuronal apoptosis via the miR‑181a‑5p/NEGR1 axis. Mol Med Rep 2020; 22:3886-3894. [PMID: 33000228 PMCID: PMC7533499 DOI: 10.3892/mmr.2020.11459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/09/2020] [Indexed: 12/28/2022] Open
Abstract
Emerging evidence has indicated that long non-coding RNAs (lncRNAs) are closely associated with the pathogenesis of ischemic stroke. It has been reported that small nucleolar RNA host gene 12 (SNHG12) serves a critical role in ischemic stroke by acting as a competitive endogenous RNA (ceRNA). SNHG12 competes with various microRNAs (miRs) to regulate RNA transcription of specific targets. However, the effect of SNHG12 on oxygen-glucose deprivation (OGD)-induced neuronal apoptosis has rarely been reported. The present study demonstrated that SNHG12 expression was downregulated in OGD-injured SH-SY5Y cells. Furthermore, miR-181a-5p was reported as a target of SNHG12 and was negatively regulated by SNHG12. Moreover, NEGR1 was a target of miR-181a-5p, which functions as a negative regulator of NEGR1 in OGD-induced neuronal apoptosis. In summary, the results strongly confirmed the hypothesis that SNHG12 functions as a ceRNA for miR-181a-5p and regulates the expression of NEGR1 thus inhibiting OGD-induced apoptosis of SH-SY5Y cells. Neuronal apoptosis aggravates brain damage during ischemic stroke, indicating that the activation of SNHG12 and NEGR1 expression and inhibition of miR-181a-5p may be a novel strategy for the clinical treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yangtian Yan
- Department of Neurology, Wenling Hospital of Traditional Chinese Medicine, Wenling, Zhejiang 317500, P.R. China
| | - Li Chen
- Department of Neurosurgery, the Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310005, P.R. China
| | - Jiajun Zhou
- Department of Neurology, Xixi Hospital of Hangzhou, Hangzhou, Zhejiang 310023, P.R. China
| | - Liquan Xie
- Department of Gerontology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, P.R. China
| |
Collapse
|
37
|
Wang QS, Luo XY, Fu H, Luo Q, Wang MQ, Zou DY. MiR-139 protects against oxygen-glucose deprivation/reoxygenation (OGD/R)-induced nerve injury through targeting c-Jun to inhibit NLRP3 inflammasome activation. J Stroke Cerebrovasc Dis 2020; 29:105037. [PMID: 32807449 DOI: 10.1016/j.jstrokecerebrovasdis.2020.105037] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/27/2020] [Accepted: 06/05/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Cerebral ischemia/reperfusion (I/R) injury after ischemic stroke is usually accompanied with the activation of inflammasome which seriously impairs neurological function. MiR-139 has been reported to be associated with inflammatory regulation in multiple diseases. However, its effect and mechanism on inflammation regulation after cerebral I/R injury are still poorly understood. METHODS An in vitro model of cerebral I/R injury was constructed with oxygen-glucose deprivation/reoxygenation (OGD/R) treatment. TargetScan bioinformatics analysis and dual luciferase reporter assay were utilized to confirm the targeted relationship between miR-139 and c-Jun. Cell pyroptosis was verified by flow cytometry and Caspase-1 Detection Kit. qRT-PCR assay was performed to detect the expression levels of miR-139, c-Jun, NLRP3 and ASC. Western blotting was applied to measure the protein levels of c-Jun and pyroptosis-related markers NLRP3, ASC, caspase-1, GSDMDNterm. The ELISA assay was applied to measure the release of IL-1β, IL-18 and LDH. RESULTS MiR-139 was significantly downregulated whereas c-Jun was obviously upregulated after OGD/R treatment. TargetScan analysis predicted that c-Jun was a potential target of miR-139, which was verified by the dual-luciferase reporter assay. Also, overexpression of miR-139 repressed c-Jun expression. Furthermore, miR-139 inhibited OGD/R-induced cell pyroptosis and the upregulation of NLRP3, caspase-1, ASC, GSDMDNterm, and the release of IL-1β, IL-18 and LDH, while miR-139 inhibition exerted the opposite effects. However, overexpression of c-Jun aggravated OGD/R-induced nerve injury and partly abolished the neuroprotective effect of miR-139. CONCLUSION Upregulation of miR-139 exerted neuroprotection against OGD/R-induced nerve injury by negatively regulating c-Jun/NLRP3 inflammasome signaling. This study offered insights for providing potential therapeutic targets for treating cerebral I/R injury.
Collapse
Affiliation(s)
- Qiao-Sheng Wang
- Department of Critical Care Medicine, The First Affiliated Hospital, University of South China, Hengyang 421001, Hunan Province, PR China.
| | - Xiao-Yan Luo
- Department of Medical service, Affiliated Nanhua Hospital, University of South China, Hengyang 421001, Hunan Province, PR China.
| | - Hui Fu
- Department of Critical Care Medicine, The First Affiliated Hospital, University of South China, Hengyang 421001, Hunan Province, PR China.
| | - Qiong Luo
- Department of Critical Care Medicine, The First Affiliated Hospital, University of South China, Hengyang 421001, Hunan Province, PR China.
| | - Mei-Qiu Wang
- Department of Critical Care Medicine, The First Affiliated Hospital, University of South China, Hengyang 421001, Hunan Province, PR China; Graduate School of University of South China, Hengyang 421101, Hunan Province, PR China.
| | - Dian-Yi Zou
- Department of Critical Care Medicine, The First Affiliated Hospital, University of South China, Hengyang 421001, Hunan Province, PR China; Graduate School of University of South China, Hengyang 421101, Hunan Province, PR China.
| |
Collapse
|
38
|
Non-coding RNAs in Ischemic Stroke: Roles in the Neuroinflammation and Cell Death. Neurotox Res 2020; 38:564-578. [DOI: 10.1007/s12640-020-00236-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/10/2020] [Accepted: 06/07/2020] [Indexed: 12/11/2022]
|
39
|
Yao K, Yang Q, Li Y, Lan T, Yu H, Yu Y. MicroRNA-9 mediated the protective effect of ferulic acid on hypoxic-ischemic brain damage in neonatal rats. PLoS One 2020; 15:e0228825. [PMID: 32470970 PMCID: PMC7259979 DOI: 10.1371/journal.pone.0228825] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/13/2020] [Indexed: 01/17/2023] Open
Abstract
Neonatal hypoxic-ischemic brain damage (HIBD) is prone to cognitive and memory impairments, and there is no effective clinical treatment until now. Ferulic acid (FA) is found within members of the genus Angelica, reportedly shows protective effects on neuronal damage. However, the protective effects of FA on HIBD remains unclear. In this study, using the Morris water maze task, we herein found that the impairment of spatial memory formation in adult rats exposed to HIBD was significantly reversed by FA treatment and the administration of LNA-miR-9. The expression of miRNA-9 was detected by RT-PCR analyses, and the results shown that miRNA-9 was significantly increased in the hippocampus of neonatal rats following HIBD and in the PC12 cells following hypoxic-ischemic injury, while FA and LNA-miR-9 both inhibited the expression of miRNA-9, suggesting that the therapeutic effect of FA was mainly attributed to the inhibition of miRNA-9 expression. Indeed, the silencing of miR-9 by LNA-miR-9 or FA similarly attenuated neuronal damage and cerebral atrophy in the rat hippocampus after HIBD, which was consistent with the restored expression levels of brain-derived neurotrophic factor (BDNF). Therefore, our findings indicate that FA treatment may protect against neuronal death through the inhibition of miRNA-9 induction in the rat hippocampus following hypoxic-ischemic damage.
Collapse
Affiliation(s)
- Keli Yao
- Department of Histology and Embryology, School of Basic Medical Sciences, Southwest Medical University, Sichuan Province, China
| | - Qin Yang
- Department of Histology and Embryology, School of Basic Medical Sciences, Southwest Medical University, Sichuan Province, China
| | - Yajuan Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Southwest Medical University, Sichuan Province, China
| | - Ting Lan
- Department of Histology and Embryology, School of Basic Medical Sciences, Southwest Medical University, Sichuan Province, China
| | - Hong Yu
- Department of Histology and Embryology, School of Basic Medical Sciences, Southwest Medical University, Sichuan Province, China
- * E-mail: (HY); (YY)
| | - Yang Yu
- Department of Histology and Embryology, School of Basic Medical Sciences, Southwest Medical University, Sichuan Province, China
- * E-mail: (HY); (YY)
| |
Collapse
|
40
|
Raza SHA, Kaster N, Khan R, Abdelnour SA, El-Hack MEA, Khafaga AF, Taha A, Ohran H, Swelum AA, Schreurs NM, Zan L. The Role of MicroRNAs in Muscle Tissue Development in Beef Cattle. Genes (Basel) 2020; 11:genes11030295. [PMID: 32168744 PMCID: PMC7140828 DOI: 10.3390/genes11030295] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/28/2020] [Accepted: 03/06/2020] [Indexed: 02/06/2023] Open
Abstract
In this review, we highlight information on microRNA (miRNA) identification and functional characterization in the beef for muscle and carcass composition traits, with an emphasis on Qinchuan beef cattle, and discuss the current challenges and future directions for the use of miRNA as a biomarker in cattle for breeding programs to improve meat quality and carcass traits. MicroRNAs are endogenous and non-coding RNA that have the function of making post-transcriptional modifications during the process of preadipocyte differentiation in mammals. Many studies claim that diverse miRNAs have an impact on adipogenesis. Furthermore, their target genes are associated with every phase of adipocyte differentiation. It has been confirmed that, during adipogenesis, several miRNAs are differentially expressed, including miR-204, miR-224, and miR-33. The development of mammalian skeletal muscle is sequentially controlled by somite commitment into progenitor cells, followed by their fusion and migration, the proliferation of myoblasts, and final modification into fast- and slow-twitch muscle fibers. It has been reported that miRNA in the bovine MEG3-DIO3 locus has a regulatory function for myoblast differentiation. Likewise, miR-224 has been associated with controlling the differentiation of bovine adipocytes by targeting lipoprotein lipase. Through the posttranscriptional downregulation of KLF6, miR-148a-3p disrupts the proliferation of bovine myoblasts and stimulates apoptosis while the miR-23a~27a~24-2 cluster represses adipogenesis. Additional to influences on muscle and fat, bta-mir-182, bta-mir-183, and bta-mir-338 represent regulators of proteolysis in muscle, which influences meat tenderness.
Collapse
Affiliation(s)
- Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China; (S.H.A.R.); (N.K.); (R.K.)
| | - Nurgulsim Kaster
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China; (S.H.A.R.); (N.K.); (R.K.)
| | - Rajwali Khan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China; (S.H.A.R.); (N.K.); (R.K.)
| | - Sameh A. Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt;
| | - Mohamed E. Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt;
| | - Asmaa F. Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt;
| | - Ayman Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina 22578, Egypt;
| | - Husein Ohran
- Department of Physiology, University of Sarajevo, Veterinary Faculty, Zmaja od Bosne 90, 71 000 Sarajevo, Bosnia and Herzegovina;
| | - Ayman A. Swelum
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
| | - Nicola M. Schreurs
- Animal Science, School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand;
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China; (S.H.A.R.); (N.K.); (R.K.)
- National Beef Cattle Improvement Center, Northwest A&F University, Yangling 712100, Shaanxi, China
- Correspondence: ; Tel.: +86-2987-091-923
| |
Collapse
|
41
|
Bertogliat MJ, Morris-Blanco KC, Vemuganti R. Epigenetic mechanisms of neurodegenerative diseases and acute brain injury. Neurochem Int 2020; 133:104642. [PMID: 31838024 PMCID: PMC8074401 DOI: 10.1016/j.neuint.2019.104642] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/25/2019] [Accepted: 12/09/2019] [Indexed: 12/22/2022]
Abstract
Epigenetic modifications are emerging as major players in the pathogenesis of neurodegenerative disorders and susceptibility to acute brain injury. DNA and histone modifications act together with non-coding RNAs to form a complex gene expression machinery that adapts the brain to environmental stressors and injury response. These modifications influence cell-level operations like neurogenesis and DNA repair to large, intricate processes such as brain patterning, memory formation, motor function and cognition. Thus, epigenetic imbalance has been shown to influence the progression of many neurological disorders independent of aberrations in the genetic code. This review aims to highlight ways in which epigenetics applies to several commonly researched neurodegenerative diseases and forms of acute brain injury as well as shed light on the benefits of epigenetics-based treatments.
Collapse
Affiliation(s)
- Mario J Bertogliat
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Kahlilia C Morris-Blanco
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA; William S. Middleton VA Hospital, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA; William S. Middleton VA Hospital, Madison, WI, USA.
| |
Collapse
|
42
|
Wallach T, Wetzel M, Dembny P, Staszewski O, Krüger C, Buonfiglioli A, Prinz M, Lehnardt S. Identification of CNS Injury-Related microRNAs as Novel Toll-Like Receptor 7/8 Signaling Activators by Small RNA Sequencing. Cells 2020; 9:E186. [PMID: 31940779 PMCID: PMC7017345 DOI: 10.3390/cells9010186] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 12/26/2022] Open
Abstract
Toll-like receptors (TLRs) belong to pattern recognition receptors, which respond to danger signals such as pathogen-associated molecular patterns or damage-associated molecular patterns. Upon TLR activation in microglia, the major immune cells in the brain, distinct signaling cascades trigger the production of inflammatory molecules, being a critical feature in neuroinflammation and neurodegenerative processes. Recently, individual microRNAs (miRNAs) were shown to act as endogenous TLR ligands. Here, we conducted systematic screening for miRNAs as potential TLR7/8 ligands by small RNA sequencing of apoptotic neurons and their corresponding supernatants. Several miRNA species were identified in both supernatants and injured neurons, and 83.3% of the media-enriched miRNAs activated murine and/or human TLR7/8 expressed in HEK293-derived TLR reporter cells. Among the detected extracellular miRNAs, distinct miRNAs such as miR-340-3p and miR-132-5p induced cytokine and chemokine release from microglia and triggered neurotoxicity in vitro. Taken together, our systematic study establishes miRNAs released from injured neurons as new TLR7/8 activators, which contribute to inflammatory and neurodegenerative responses in the central nervous system (CNS).
Collapse
Affiliation(s)
- Thomas Wallach
- Institute of Cell Biology and Neurobiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany; (T.W.); (M.W.); (P.D.); (C.K.); (A.B.)
| | - Max Wetzel
- Institute of Cell Biology and Neurobiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany; (T.W.); (M.W.); (P.D.); (C.K.); (A.B.)
| | - Paul Dembny
- Institute of Cell Biology and Neurobiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany; (T.W.); (M.W.); (P.D.); (C.K.); (A.B.)
| | - Ori Staszewski
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (O.S.); (M.P.)
- Berta-Ottenstein-Programme for Clinician Scientists, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Christina Krüger
- Institute of Cell Biology and Neurobiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany; (T.W.); (M.W.); (P.D.); (C.K.); (A.B.)
| | - Alice Buonfiglioli
- Institute of Cell Biology and Neurobiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany; (T.W.); (M.W.); (P.D.); (C.K.); (A.B.)
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (O.S.); (M.P.)
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79106 Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Seija Lehnardt
- Institute of Cell Biology and Neurobiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany; (T.W.); (M.W.); (P.D.); (C.K.); (A.B.)
- Department of Neurology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
| |
Collapse
|
43
|
Protective effect inhibiting the expression of miR-181a on the diabetic corneal nerve in a mouse model. Exp Eye Res 2020; 192:107925. [PMID: 31926967 DOI: 10.1016/j.exer.2020.107925] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/11/2019] [Accepted: 01/06/2020] [Indexed: 01/07/2023]
Abstract
To investigate the protective effect of inhibiting miR-181a on diabetic corneal nerve in mice, we chose male C57BL/6 mice with streptozotocin (STZ) -induced diabetes as animal models. The expression of miR-181a in trigeminal ganglion tissue (TG) of diabetic mice was detected by real-time PCR. In vitro, we cultured mouse trigeminal ganglion neurons and measured the neuronal axon growth when treated under miR-181a antagomir and negative conditions (NTC). Immunofluorescence showed a significant increase in neuronal axon length in trigeminal ganglion cells treated with miR-181a antagomir. In animal models, we performed epithelial scraping and subconjunctival injection of the miR-181a antagomir and miRNA antagomir NTC to observe the corneal nerve repair by corneal nerve staining. miR-181a antagomir subconjunctival injection significantly increased the corneal epithelium healing of diabetic mice compared with that of the NTC group. Meanwhile, corneal nerve staining showed that the repair of corneal nerve endings was significantly promoted. As the targets of the 181a, ATG5 and BCL-2 were previously identified. The results of Western blot showed that the expression of autophagy associated protein ATG5 and LC3B-II and the expression of anti-apoptotic protein Bcl-2 were decreased in the high-glucose cell culture environment and the diabetic TG tissue. The expression of ATG5, LC3B-II and Bcl-2 were significantly increased after miR-181a antagomir treatment compared with negative control group. This study showed that inhibition of miR-181a expression in diabetic mice could increase ATG5-mediated autophagic activation, BCL-2-mediated inhibition of apoptosis, and promote the growth of trigeminal sensory neurons and the regeneration of corneal nerve fibers. It has a protective effect on diabetic corneal neuropathy.
Collapse
|
44
|
Gareev IF, Novikova LB, Beylerli OA. Application of microRNA in the therapy of ischemic stroke. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2019. [DOI: 10.15829/1728-8800-2019-5-66-73] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
45
|
Silva JPD, Lizarte Neto FS, Cirino MLDA, Carvalho CAMD, Carlotti CG, Colli BO, Tirapelli DPDC, Tirapelli LF. Analysis of Caspase-9 protein and microRNAs miR-21, miR-126 and miR-155 related to the apoptosis mechanism in the cerebellum of rats submitted to focal cerebral ischemia associated with an alcoholism model. ARQUIVOS DE NEURO-PSIQUIATRIA 2019; 77:689-695. [PMID: 31664344 DOI: 10.1590/0004-282x20190126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/07/2019] [Indexed: 01/30/2023]
Abstract
OBJECTIVE This study aimed to analyze the cerebellum of rats submitted to an experimental focal cerebral ischemia, by middle cerebral artery occlusion for 90 minutes, followed by reperfusion for 48 hours, associated with an alcoholism model. METHODS Fifty adult Wistar rats were used, subdivided into five experimental groups: control group (C): animals submitted to anesthesia only; sham group (S): animals submitted to complete simulation of the surgical procedure; ischemic group (I): animals submitted to focal cerebral ischemia for 90 minutes followed by reperfusion for 48 hours; alcoholic group (A): animals that received daily absolute ethanol diluted 20% in water for four weeks; and, ischemic and alcoholic group (I + A): animals receiving the same treatment as group A and, after four weeks, submitted to focal cerebral ischemia for 90 minutes, followed by reperfusion for 48 hours. The cerebellum samples were collected and immunohistochemical analysis of Caspase-9 protein and serum analysis by RT-PCR of microRNAs miR-21, miR-126 and miR155 were performed. RESULTS The expression of Caspase-9 was higher in groups I, A and I + A. In the microRNAs analyses, miR-126 was higher in groups A and I + A, miR-155 was higher in groups I and I + A. CONCLUSIONS We conclude that apoptosis occurs in the cerebellar cortex, even if it is distant from the ischemic focus, and that microRNAs 126 and 155 show a correlation with cellular apoptosis in ischemic rats and those submitted to the chronic alcohol model.
Collapse
Affiliation(s)
- Jairo Pinheiro da Silva
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Cirurgia e Anatomia, Ribeirão Preto SP, Brasil
| | - Fermino Sanches Lizarte Neto
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Cirurgia e Anatomia, Ribeirão Preto SP, Brasil
| | - Mucio Luiz de Assis Cirino
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Cirurgia e Anatomia, Ribeirão Preto SP, Brasil
| | | | - Carlos Gilberto Carlotti
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Cirurgia e Anatomia, Ribeirão Preto SP, Brasil
| | - Benedicto Oscar Colli
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Cirurgia e Anatomia, Ribeirão Preto SP, Brasil
| | | | - Luís Fernando Tirapelli
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Cirurgia e Anatomia, Ribeirão Preto SP, Brasil
| |
Collapse
|
46
|
Rao VTS, Fuh SC, Karamchandani JR, Woulfe JMJ, Munoz DG, Ellezam B, Blain M, Ho MK, Bedell BJ, Antel JP, Ludwin SK. Astrocytes in the Pathogenesis of Multiple Sclerosis: An In Situ MicroRNA Study. J Neuropathol Exp Neurol 2019; 78:1130-1146. [DOI: 10.1093/jnen/nlz098] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Abstract
Astrocytes are increasingly recognized as active contributors to the disease process in multiple sclerosis (MS), rather than being merely reactive. We investigated the expression of a selected microRNA (miRNA) panel that could contribute both to the injury and to the recovery phases of the disease. Individual astrocytes were laser microdissected from brain sections. We then compared the miRNAs’ expressions in MS and control brain samples at different lesional stages in white versus grey matter regions. In active MS lesions, we found upregulation of ischemia-related miRNAs in white but not grey matter, often with reversion to the normal state in inactive lesions. In contrast to our previous findings on MS macrophages, expression of 2 classical inflammatory-related miRNAs, miRNA-155 and miRNA-146a, was reduced in astrocytes from active and chronic active MS lesions in white and grey matter, suggesting a lesser direct pathogenetic role for these miRNAs in astrocytes. miRNAs within the categories regulating aquaporin4 (-100, -145, -320) and glutamate transport/apoptosis/neuroprotection (-124a, -181a, and -29a) showed some contrasting responses. The regional and lesion-stage differences of expression of these miRNAs indicate the remarkable ability of astrocytes to show a wide range of selective responses in the face of differing insults and phases of resolution.
Collapse
Affiliation(s)
- Vijayaraghava T S Rao
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University
| | - Shih-Chieh Fuh
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | | | - John M J Woulfe
- Department of Pathology, The Ottawa Hospital, University of Ottawa
| | - David G Munoz
- Department of Pathology, St. Michaels Hospital, Toronto University, Toronto
| | | | - Manon Blain
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON, Canada
| | - Ming-Kai Ho
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University
| | - Barry J Bedell
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Jack P Antel
- Department of Neuropathology, Montreal Neurological Institute
| | - Samuel K Ludwin
- Department of Pathology, The Ottawa Hospital, University of Ottawa
| |
Collapse
|
47
|
Klatt CL, Theis V, Hahn S, Theiss C, Matschke V. Deregulated miR-29b-3p Correlates with Tissue-Specific Activation of Intrinsic Apoptosis in An Animal Model of Amyotrophic Lateral Sclerosis. Cells 2019; 8:cells8091077. [PMID: 31547454 PMCID: PMC6770833 DOI: 10.3390/cells8091077] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/06/2019] [Accepted: 09/11/2019] [Indexed: 12/18/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is one of the most common incurable motor neuron disorders in adults. The majority of all ALS cases occur sporadically (sALS). Symptoms of ALS are caused by a progressive degeneration of motor neurons located in the motor cortex and spinal cord. The question arises why motor neurons selectively degenerate in ALS, while other cells and systems appear to be spared the disease. Members of the intrinsic apoptotic pathway are frequent targets of altered microRNA expression. Therefore, microRNAs and their effects on cell survival are subject of controversial debates. In this study, we investigated the expression of numerous members of the intrinsic apoptotic cascade by qPCR, western blot, and immunostaining in two different regions of the CNS of wobbler mice. Further we addressed the expression of miR-29b-3p targeting BMF, Bax, and, Bak, members of the apoptotic pathway. We show a tissue-specific differential expression of BMF, Bax, and cleaved-Caspase 3 in wobbler mice. An opposing regulation of miR-29b-3p expression in the cerebellum and cervical spinal cord of wobbler mice suggests different mechanisms regulating the intrinsic apoptotic pathway. Based on our findings, it could be speculated that miR-29b-3p might regulate antiapoptotic survival mechanisms in CNS areas that are not affected by neurodegeneration in the wobbler mouse ALS model.
Collapse
Affiliation(s)
- Christina L Klatt
- Ruhr University Bochum, Medical Faculty, Institute of Anatomy, Department of Cytology, 44801 Bochum, Germany.
| | - Verena Theis
- Ruhr University Bochum, Medical Faculty, Institute of Anatomy, Department of Cytology, 44801 Bochum, Germany.
| | - Stephan Hahn
- Ruhr University Bochum, Clinical Research Center, Department of Molecular Gastrointestinal Oncology, 44801 Bochum, Germany.
| | - Carsten Theiss
- Ruhr University Bochum, Medical Faculty, Institute of Anatomy, Department of Cytology, 44801 Bochum, Germany.
| | - Veronika Matschke
- Ruhr University Bochum, Medical Faculty, Institute of Anatomy, Department of Cytology, 44801 Bochum, Germany.
| |
Collapse
|
48
|
Griffiths BB, Ouyang YB, Xu L, Sun X, Giffard RG, Stary CM. Postinjury Inhibition of miR-181a Promotes Restoration of Hippocampal CA1 Neurons after Transient Forebrain Ischemia in Rats. eNeuro 2019; 6:ENEURO.0002-19.2019. [PMID: 31427401 PMCID: PMC6727148 DOI: 10.1523/eneuro.0002-19.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 12/25/2022] Open
Abstract
The cellular and molecular mechanisms regulating postinjury neurogenesis in the adult hippocampus remain undefined. We have previously demonstrated that preinjury treatment with anti-microRNA (miR)-181a preserved neurons and prevented astrocyte dysfunction in the hippocampal cornu ammonis-1 (CA1) following transient forebrain ischemia. In the present study, we assessed postinjury treatment with anti-miR-181a on recovery of CA1 neurons following transient forebrain ischemia in rats. Stereotactic CA1 injection of miR-181a antagomir at either 2 h or 7 d postinjury resulted in improved restoration of CA1 measured at 28 d postinjury. Treatment with antagomir was associated with overexpression of the mir-181a target cell adhesion-associated, oncogene-related protein and enhanced expression of the neuroprogenitor cell marker doublecortin (DCX) in the CA1. Assessment of GFAP+ cell fate by Cre/Lox-mediated deletion demonstrated that some GFAP+ cells in CA1 exhibited de novo DCX expression in response to injury. In vitro experiments using primary neuronal stem cells confirmed that miR-181a inhibition augmented the expression of DCX and directed cellular differentiation toward a neuronal fate. These results suggest that miR-181a inhibition plays a central role in the restoration of CA1 neurons via augmentation of early latent neurogenic gene activation in neural progenitor cells, including some reactive astrocytes. Therapeutic interventions targeting this restorative process may represent a novel postinjury approach to improve clinical outcomes in survivors of forebrain ischemia.
Collapse
Affiliation(s)
- Brian B Griffiths
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305-5117
| | - Yi-Bing Ouyang
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305-5117
| | - Lijun Xu
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305-5117
| | - Xiaoyun Sun
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305-5117
| | - Rona G Giffard
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305-5117
| | - Creed M Stary
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305-5117
| |
Collapse
|
49
|
Yuan L, Fan L, Li Q, Cui W, Wang X, Zhang Z. Inhibition of miR‐181b‐5p protects cardiomyocytes against ischemia/reperfusion injury by targeting AKT3 and PI3KR3. J Cell Biochem 2019; 120:19647-19659. [PMID: 31297863 DOI: 10.1002/jcb.29271] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 04/08/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Limei Yuan
- College of Acupuncture and Message Henan University of Traditional Chinese Medicine Zhengzhou Henan Province China
| | - Lihua Fan
- Departement of Cardiovascular Third Affiliated Hospital of Henan University of Traditional Chinese Medicine Zhengzhou Henan Province China
| | - Qinghai Li
- Departement of Cardiovascular Third Affiliated Hospital of Henan University of Traditional Chinese Medicine Zhengzhou Henan Province China
| | - Wei Cui
- Departement of Cardiovascular Third Affiliated Hospital of Henan University of Traditional Chinese Medicine Zhengzhou Henan Province China
| | - Xuechen Wang
- Departement of Cardiovascular Third Affiliated Hospital of Henan University of Traditional Chinese Medicine Zhengzhou Henan Province China
| | - Zhiguo Zhang
- Departement of Cardiovascular Third Affiliated Hospital of Henan University of Traditional Chinese Medicine Zhengzhou Henan Province China
| |
Collapse
|
50
|
Hippocampal sub-regional differences in the microRNA response to forebrain ischemia. Mol Cell Neurosci 2019; 98:164-178. [DOI: 10.1016/j.mcn.2019.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 12/17/2022] Open
|