1
|
Plakas K, Hsieh CJ, Guarino DS, Hou C, Chia WK, Young A, Schmitz A, Ho YP, Weng CC, Lee H, Li S, Graham TJA, Mach RH. A Small-molecule Antagonist Radiotracer for Positron Emission Tomography Imaging of the Mu Opioid Receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.12.618019. [PMID: 39415998 PMCID: PMC11482899 DOI: 10.1101/2024.10.12.618019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The opioid crisis is a catastrophic health emergency catalyzed by the misuse of opioids that target and activate the mu opioid receptor. Traditional radioligands used to study the mu opioid receptor are often tightly regulated owing to their abuse and respiratory depression potential. In the present study, we sought to design and characterize a library of 24 non-agonist ligands for the mu opioid receptor. Ligands were evaluated for the binding affinity, intrinsic activity, and predicted blood-brain barrier permeability. Several ligands demonstrated single-digit nM binding affinity for the mu opioid receptor while also demonstrating selectivity over the delta and kappa opioid receptors. The antagonist behavior of 1A and 3A at the mu opioid receptor indicate that these ligands would likely not induce opioid-dependent respiratory depression. Therefore, these ligands can enable a safer means to interrogate the endogenous opioid system. Based on binding affinity, selectivity, and potential off-target binding, [ 11 C] 1A was prepared via metallophotoredox of the aryl-bromide functional group to [ 11 C]methyl iodide. The nascent radiotracer demonstrated brain uptake in a rhesus macaque model and accumulation in the caudate and putamen. Naloxone was able to reduce [ 11 C] 1A binding, though the interactions were not as pronounced as naloxone's ability to displace [ 11 C]carfentanil. These results suggest that GSK1521498 and related congeners are amenable to radioligand design and can offer a safer way to query opioid neurobiology.
Collapse
|
2
|
Kelleher AC, Pearson TD, Ramsey J, Zhao W, O'Conor KA, Bakhoda A, Stodden T, Guo M, Eisenberg SM, Shah SV, Freaney ML, Kim W, Kang Y, Tomasi D, Johnson C, Fang CA, Volkow ND, Kim SW. Investigation of [ 11C]carfentanil for mu opioid receptor quantification in the rat brain. Sci Rep 2024; 14:16250. [PMID: 39009645 PMCID: PMC11250808 DOI: 10.1038/s41598-024-66144-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024] Open
Abstract
[11C]Carfentanil ([11C]CFN) is the only selective carbon-11 labeled radiotracer currently available for positron emission tomography (PET) imaging of mu opioid receptors (MORs). Though used extensively in clinical research, [11C]CFN has not been thoroughly characterized as a tool for preclinical PET imaging. As we were occasionally observing severe vital sign instability in rat [11C]CFN studies, we set out to investigate physiological effects of CFN mass and to explore its influence on MOR quantification. In anesthetized rats (n = 15), significant dose-dependent PCO2 increases and heart rate decreases were observed at a conventional tracer dose range (IV, > 100 ng/kg). Next, we conducted baseline and retest [11C]CFN PET scans over a wide range of molar activities. Baseline [11C]CFN PET studies (n = 27) found that nondisplaceable binding potential (BPND) in the thalamus was positively correlated to CFN injected mass, demonstrating increase of MOR availability at higher injected CFN mass. Consistently, when CFN injected mass was constrained < 40 ng/kg (~ 10% MOR occupancy in rats), baseline MOR availability was significantly decreased. For test-retest variability (TRTV), better reproducibility was achieved by controlling CFN injected mass to limit the difference between scans. Taken together, we report significant cardiorespiratory depression and a paradoxical influence on baseline MOR availability at conventional tracer doses in rats. Our findings might reflect changes in cerebral blood flow, changes in receptor affinity, or receptor internalization, and merits further mechanistic investigation. In conclusion, rat [11C]CFN PET requires stringent quality assurance of radiotracer synthesis and mass injected to avoid pharmacological effects and limit potential influences on MOR quantification and reproducibility.
Collapse
Affiliation(s)
- Andrew C Kelleher
- Laboratory of Neuroimaging, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Torben D Pearson
- Laboratory of Neuroimaging, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Joseph Ramsey
- Laboratory of Neuroimaging, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Wenjing Zhao
- Laboratory of Neuroimaging, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kelly A O'Conor
- Laboratory of Neuroimaging, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Abolghasem Bakhoda
- Laboratory of Neuroimaging, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tyler Stodden
- Laboratory of Neuroimaging, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Min Guo
- Laboratory of Neuroimaging, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Seth M Eisenberg
- Laboratory of Neuroimaging, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sarthak V Shah
- Laboratory of Neuroimaging, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Michael L Freaney
- Laboratory of Neuroimaging, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Woochan Kim
- Laboratory of Neuroimaging, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yeona Kang
- Laboratory of Neuroimaging, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Mathematics, Howard University, Washington, DC, 20059, USA
| | - Dardo Tomasi
- Laboratory of Neuroimaging, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Christopher Johnson
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chung-An Fang
- Laboratory of Neuroimaging, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nora D Volkow
- Laboratory of Neuroimaging, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Sung Won Kim
- Laboratory of Neuroimaging, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
3
|
Mandeville JB, Weigand-Whittier J, Wey HY, Chen YCI. Amphetamine pretreatment blunts dopamine-induced D2/D3-receptor occupancy by an arrestin-mediated mechanism: A PET study in internalization compromised mice. Neuroimage 2023; 283:120416. [PMID: 37866759 PMCID: PMC10841768 DOI: 10.1016/j.neuroimage.2023.120416] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/29/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023] Open
Abstract
While all reversible receptor-targeting radioligands for positron emission tomography (PET) can be displaced by competition with an antagonist at the receptor, many radiotracers show limited occupancies using agonists even at high doses. [11C]Raclopride, a D2/D3 receptor radiotracer with rapid kinetics, can identify the direction of changes in the neurotransmitter dopamine, but quantitative interpretation of the relationship between dopamine levels and radiotracer binding has proven elusive. Agonist-induced receptor desensitization and internalization, a homeostatic mechanism to downregulate neurotransmitter-mediated function, can shift radioligand-receptor binding affinity and confound PET interpretations of receptor occupancy. In this study, we compared occupancies induced by amphetamine (AMP) in drug-naive wild-type (WT) and internalization-compromised β-arrestin-2 knockout (KO) mice using a within-scan drug infusion to modulate the kinetics of [11C]raclopride. We additionally performed studies at 3 h following AMP pretreatment, with the hypothesis that receptor internalization should markedly attenuate occupancy on the second challenge, because dopamine cannot access internalized receptors. Without prior AMP treatment, WT mice exhibited somewhat larger binding potential than KO mice but similar AMP-induced occupancy. At 3 h after AMP treatment, WT mice exhibited binding potentials that were 15 % lower than KO mice. At this time point, occupancy was preserved in KO mice but suppressed by 60 % in WT animals, consistent with a model in which most receptors contributing to binding potential in WT animals were not functional. These results demonstrate that arrestin-mediated receptor desensitization and internalization produce large effects in PET [11C]raclopride occupancy studies using agonist challenges.
Collapse
Affiliation(s)
- Joseph B Mandeville
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Jonah Weigand-Whittier
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Hsiao-Ying Wey
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Yin-Ching I Chen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Kang Y, O'Conor KA, Kelleher AC, Ramsey J, Bakhoda A, Eisenberg SM, Zhao W, Stodden T, Pearson TD, Guo M, Brown N, Liow JS, Fowler JS, Kim SW, Volkow ND. Naloxone's dose-dependent displacement of [ 11C]carfentanil and duration of receptor occupancy in the rat brain. Sci Rep 2022; 12:6429. [PMID: 35440607 PMCID: PMC9018944 DOI: 10.1038/s41598-022-09601-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/23/2022] [Indexed: 11/09/2022] Open
Abstract
The continuous rise in opioid overdoses in the United States is predominantly driven by very potent synthetic opioids, mostly fentanyl and its derivatives (fentanyls). Although naloxone (NLX) has been shown to effectively reverse overdoses by conventional opioids, there may be a need for higher or repeated doses of NLX to revert overdoses from highly potent fentanyls. Here, we used positron emission tomography (PET) to assess NLX's dose-dependence on both its rate of displacement of [11C]carfentanil ([11C]CFN) binding and its duration of mu opioid receptor (MOR) occupancy in the male rat brain. We showed that clinically relevant doses of intravenously (IV) administered NLX (0.035 mg/kg, Human Equivalent Dose (HED) 0.4 mg; 0.17 mg/kg, HED 2 mg) rapidly displaced the specific binding of [11C]CFN in the thalamus in a dose-dependent manner. Brain MOR occupancy by IV NLX was greater than 90% at 5 min after NLX administration for both doses, but at 27.3 min after 0.035 mg/kg dose and at 85 min after 0.17 mg/kg NLX, only 50% occupancy remained. This indicates that the duration of NLX occupancy at MORs is short-lived. Overall, these results show that clinically relevant doses of IV NLX can promptly displace fentanyls at brain MORs, but repeated or higher NLX doses may be required to prevent re-narcotization following overdoses with long-acting fentanyls.
Collapse
Affiliation(s)
- Yeona Kang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892-1013, USA.,Department of Mathematics, Howard University, Washington, DC, 20059, USA
| | - Kelly A O'Conor
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892-1013, USA
| | - Andrew C Kelleher
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892-1013, USA
| | - Joseph Ramsey
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892-1013, USA
| | - Abolghasem Bakhoda
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892-1013, USA
| | - Seth M Eisenberg
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892-1013, USA
| | - Wenjing Zhao
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892-1013, USA
| | - Tyler Stodden
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892-1013, USA
| | - Torben D Pearson
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892-1013, USA
| | - Min Guo
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892-1013, USA
| | - Nina Brown
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892-1013, USA.,Department of Mathematics, Howard University, Washington, DC, 20059, USA
| | - Jeih-San Liow
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Joanna S Fowler
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892-1013, USA
| | - Sung Won Kim
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892-1013, USA.
| | - Nora D Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892-1013, USA. .,National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, 20892-1013, USA.
| |
Collapse
|
5
|
Seasonal Variation in the Brain μ-Opioid Receptor Availability. J Neurosci 2021; 41:1265-1273. [PMID: 33361461 PMCID: PMC7888218 DOI: 10.1523/jneurosci.2380-20.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/19/2020] [Accepted: 12/07/2020] [Indexed: 02/08/2023] Open
Abstract
Seasonal rhythms influence mood and sociability. The brain μ-opioid receptor (MOR) system modulates a multitude of seasonally varying socioemotional functions, but its seasonal variation remains elusive with no previously reported in vivo evidence. Here, we first conducted a cross-sectional study with previously acquired human [11C]carfentanil PET imaging data (132 male and 72 female healthy subjects) to test whether there is seasonal variation in MOR availability. We then investigated experimentally whether seasonal variation in daylength causally influences brain MOR availability in rats. Rats (six male and three female rats) underwent daylength cycle simulating seasonal changes; control animals (two male and one female rats) were kept under constant daylength. Animals were scanned repeatedly with [11C]carfentanil PET imaging. Seasonally varying daylength had an inverted U-shaped functional relationship with brain MOR availability in humans. Brain regions sensitive to daylength spanned the socioemotional brain circuits, where MOR availability peaked during spring. In rats, MOR availabilities in the brain neocortex, thalamus, and striatum peaked at intermediate daylength. Varying daylength also affected the weight gain and stress hormone levels. We conclude that cerebral MOR availability in humans and rats shows significant seasonal variation, which is predominately associated with seasonal photoperiodic variation. Given the intimate links between MOR signaling and socioemotional behavior, these results suggest that the MOR system might underlie seasonal variation in human mood and social behavior.SIGNIFICANCE STATEMENT Seasonal rhythms influence emotion and sociability. The central μ-opioid receptor (MOR) system modulates numerous seasonally varying socioemotional functions, but its seasonal variation remains elusive. Here we used positron emission tomography to show that MOR levels in both human and rat brains show daylength-dependent seasonal variation. The highest MOR availability was observed at intermediate daylengths. Given the intimate links between MOR signaling and socioemotional behavior, these results suggest that the MOR system might underlie seasonal variation in human mood and social behavior.
Collapse
|
6
|
Townsend EA, Negus SS, Banks ML. Medications Development for Treatment of Opioid Use Disorder. Cold Spring Harb Perspect Med 2021; 11:a039263. [PMID: 31932466 PMCID: PMC7778216 DOI: 10.1101/cshperspect.a039263] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review describes methods for preclinical evaluation of candidate medications to treat opioid use disorder (OUD). The review is founded on the propositions that (1) drug self-administration procedures provide the most direct method for assessment of medication effectiveness, (2) procedures that assess choice between opioid and nondrug reinforcers are especially useful, and (3) states of opioid dependence and withdrawal profoundly influence both opioid reinforcement and effects of candidate medications. Effects of opioid medications and vaccines on opioid choice in nondependent and opioid-dependent subjects are reviewed. Various nonopioid medications have also been examined, but none yet have been identified that safely and reliably reduce opioid choice. Future research will focus on (1) strategies for increasing safety and/or effectiveness of opioid medications (e.g., G-protein-biased μ-opioid agonists), and (2) continued development of nonopioid medications (e.g., clonidine) that might serve as adjunctive agents to current opioid medications.
Collapse
Affiliation(s)
- E Andrew Townsend
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | - S Stevens Negus
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | - Matthew L Banks
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| |
Collapse
|
7
|
Turtonen O, Saarinen A, Nummenmaa L, Tuominen L, Tikka M, Armio RL, Hautamäki A, Laurikainen H, Raitakari O, Keltikangas-Järvinen L, Hietala J. Adult Attachment System Links With Brain Mu Opioid Receptor Availability In Vivo. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 6:360-369. [PMID: 33431346 DOI: 10.1016/j.bpsc.2020.10.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/05/2020] [Accepted: 10/22/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Secure attachment is important in maintaining an individual's health and well-being. Attachment disturbances increase the risk for developing psychiatric disorders such as affective disorders. Yet, the neurobiological correlates of human attachment are poorly understood at the neurotransmitter level. We investigated whether adult attachment style is linked to functioning of the opioid and serotonergic systems in the human brain. METHODS We used positron emission tomography with radioligands [11C]carfentanil and [11C]MADAM to quantify mu opioid receptor (n = 39) and serotonin transporter (n = 37) availability in volunteers with no current psychiatric disorders. Attachment style was determined according to the Dynamic-Maturational Model of Attachment and Adaptation with the structured Adult Attachment Interview. RESULTS Secure attachment was associated with higher mu opioid receptor availability in the hippocampus, amygdala, thalamus, and prefrontal cortex when compared with insecure (i.e., avoidant or ambivalent groups combined) attachment. In contrast, attachment style was not associated with serotonin transporter availability. CONCLUSIONS Our results provide preliminary in vivo evidence that the opioid system may be involved in the neurocircuits associated with individual differences in adult attachment behavior. The results suggest that variation in mu opioid receptor availability may be linked with the individuals' social relationships and psychosocial well-being and thus contributes to risk for psychiatric morbidity.
Collapse
Affiliation(s)
- Otto Turtonen
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Aino Saarinen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Research Unit of Psychology, University of Oulu, Oulu, Finland
| | - Lauri Nummenmaa
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland; Department of Psychology, University of Turku, Turku, Finland
| | - Lauri Tuominen
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland; Department of Psychiatry, Turku University Hospital and University of Turku, Turku, Finland; Institute of Mental Health Research, Royal Ottawa Mental Health Centre, Ottawa, Ontario, Canada
| | - Maria Tikka
- Department of Psychiatry, Turku University Hospital and University of Turku, Turku, Finland
| | - Reetta-Liina Armio
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland; Department of Psychiatry, Turku University Hospital and University of Turku, Turku, Finland
| | - Airi Hautamäki
- Swedish School of Social Science, University of Helsinki, Helsinki, Finland
| | - Heikki Laurikainen
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland; Department of Psychiatry, Turku University Hospital and University of Turku, Turku, Finland
| | - Olli Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, Faculty of Medicine, University of Turku, Turku, Finland; Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland; Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | | | - Jarmo Hietala
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland; Department of Psychiatry, Turku University Hospital and University of Turku, Turku, Finland.
| |
Collapse
|
8
|
Ott J, Spilhaug MM, Maschauer S, Rafique W, Jakobsson JE, Hartvig K, Hübner H, Gmeiner P, Prante O, Riss PJ. Pharmacological Characterization of Low-to-Moderate Affinity Opioid Receptor Agonists and Brain Imaging with 18F-Labeled Derivatives in Rats. J Med Chem 2020; 63:9484-9499. [PMID: 32787100 PMCID: PMC7497404 DOI: 10.1021/acs.jmedchem.0c00683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The 3,4-dichloro-N-(1-(dimethylamino)cyclohexyl)methyl benzamide scaffold was studied as a template for 18F-positron emission tomography (18F-PET) radiotracer development emphasizing sensitivity to changes in opioid receptor (OR) occupancy over high affinity. Agonist potency, binding affinity, and relevant pharmacological parameters of 15 candidates were investigated. Two promising compounds 3b and 3e with μ-OR (MOR) selective agonist activity in the moderate range (EC50 = 1-100 nM) were subjected to 18F-fluorination, autoradiography, and small-animal PET imaging. Radioligands [18F]3b and [18F]3e were obtained in activity yields of 21 ± 5 and 23 ± 4% and molar activities of 25-40 and 200-300 GBq/μmol, respectively. Displaceable binding matching MOR distribution in the brain was confirmed by imaging. Radioligands showed a rapid pharmacokinetic profile; however, metabolite-corrected, blood-based modeling was required for data analysis. Observed BPND was low, although treatment with naloxone leads to a marked decrease in specific binding, confirming the discovery of a new template for 18F-labeled OR-agonist PET ligands.
Collapse
Affiliation(s)
- Julian Ott
- Department of Nuclear Medicine, Molecular Imaging and Radiochemistry, Translational Research Center, Friedrich Alexander University Erlangen-Nürnberg (FAU), Schwabachanlage 12, D-91054 Erlangen, Germany
| | - Mona M Spilhaug
- Realomics SRI, Kjemisk Institutt, Universitetet i Oslo, N-0376 Oslo, Norway
| | - Simone Maschauer
- Department of Nuclear Medicine, Molecular Imaging and Radiochemistry, Translational Research Center, Friedrich Alexander University Erlangen-Nürnberg (FAU), Schwabachanlage 12, D-91054 Erlangen, Germany
| | - Waqas Rafique
- Realomics SRI, Kjemisk Institutt, Universitetet i Oslo, N-0376 Oslo, Norway
| | - Jimmy E Jakobsson
- Realomics SRI, Kjemisk Institutt, Universitetet i Oslo, N-0376 Oslo, Norway
| | - Karoline Hartvig
- Realomics SRI, Kjemisk Institutt, Universitetet i Oslo, N-0376 Oslo, Norway
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center, Friedrich Alexander University Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Straße 10, D-91058 Erlangen, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center, Friedrich Alexander University Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Straße 10, D-91058 Erlangen, Germany
| | - Olaf Prante
- Department of Nuclear Medicine, Molecular Imaging and Radiochemistry, Translational Research Center, Friedrich Alexander University Erlangen-Nürnberg (FAU), Schwabachanlage 12, D-91054 Erlangen, Germany
| | - Patrick J Riss
- Realomics SRI, Kjemisk Institutt, Universitetet i Oslo, N-0376 Oslo, Norway.,Division of Clinical Neuroscience, Neuroscience Research Unit, OUS-UllevÅl, N-0450 Oslo, Norway
| |
Collapse
|
9
|
Turton S, Myers JF, Mick I, Colasanti A, Venkataraman A, Durant C, Waldman A, Brailsford A, Parkin MC, Dawe G, Rabiner EA, Gunn RN, Lightman SL, Nutt DJ, Lingford-Hughes A. Blunted endogenous opioid release following an oral dexamphetamine challenge in abstinent alcohol-dependent individuals. Mol Psychiatry 2020; 25:1749-1758. [PMID: 29942043 PMCID: PMC6169731 DOI: 10.1038/s41380-018-0107-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 05/09/2018] [Accepted: 05/14/2018] [Indexed: 01/12/2023]
Abstract
Addiction has been proposed as a 'reward deficient' state, which is compensated for with substance use. There is growing evidence of dysregulation in the opioid system, which plays a key role in reward, underpinning addiction. Low levels of endogenous opioids are implicated in vulnerability for developing alcohol dependence (AD) and high mu-opioid receptor (MOR) availability in early abstinence is associated with greater craving. This high MOR availability is proposed to be the target of opioid antagonist medication to prevent relapse. However, changes in endogenous opioid tone in AD are poorly characterised and are important to understand as opioid antagonists do not help everyone with AD. We used [11C]carfentanil, a selective MOR agonist positron emission tomography (PET) radioligand, to investigate endogenous opioid tone in AD for the first time. We recruited 13 abstinent male AD and 15 control participants who underwent two [11C]carfentanil PET scans, one before and one 3 h following a 0.5 mg/kg oral dose of dexamphetamine to measure baseline MOR availability and endogenous opioid release. We found significantly blunted dexamphetamine-induced opioid release in 5 out of 10 regions-of-interest including insula, frontal lobe and putamen in AD compared with controls, but no significantly higher MOR availability AD participants compared with HC in any region. This study is comparable to our previous results of blunted dexamphetamine-induced opioid release in gambling disorder, suggesting that this dysregulation in opioid tone is common to both behavioural and substance addictions.
Collapse
Affiliation(s)
- Samuel Turton
- Neuropsychopharmacology Unit, Centre for Psychiatry, Imperial College London, London, UK
| | - James Fm Myers
- Neuropsychopharmacology Unit, Centre for Psychiatry, Imperial College London, London, UK
| | - Inge Mick
- Neuropsychopharmacology Unit, Centre for Psychiatry, Imperial College London, London, UK
- Institute for Clinical Teratology and Drug Risk Assessment in Pregnancy, Charité Universitätsmedizin, Berlin, Germany
| | - Alessandro Colasanti
- Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, UK
- Centre for Affective Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Ashwin Venkataraman
- Neuropsychopharmacology Unit, Centre for Psychiatry, Imperial College London, London, UK
| | - Claire Durant
- Neuropsychopharmacology Unit, Centre for Psychiatry, Imperial College London, London, UK
| | - Adam Waldman
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Alan Brailsford
- Analytical and Environmental Sciences, King's College London, London, UK
| | - Mark C Parkin
- Analytical and Environmental Sciences, King's College London, London, UK
| | - Gemma Dawe
- Department of Neuroradiology, Imperial College Healthcare NHS Trust, London, UK
| | - Eugenii A Rabiner
- Imanova Limited, London, UK
- Centre for Neuroimaging Sciences, King's College London, London, UK
| | - Roger N Gunn
- Imanova Limited, London, UK
- Centre for Restorative Neuroscience, Division of Brain Sciences, Imperial College London, London, UK
| | - Stafford L Lightman
- Henry Wellcome Laboratories for Integrative Neuroscience & Endocrinology, University of Bristol, Bristol, UK
| | - David J Nutt
- Neuropsychopharmacology Unit, Centre for Psychiatry, Imperial College London, London, UK
| | - Anne Lingford-Hughes
- Neuropsychopharmacology Unit, Centre for Psychiatry, Imperial College London, London, UK.
| |
Collapse
|
10
|
Kantonen T, Karjalainen T, Isojärvi J, Nuutila P, Tuisku J, Rinne J, Hietala J, Kaasinen V, Kalliokoski K, Scheinin H, Hirvonen J, Vehtari A, Nummenmaa L. Interindividual variability and lateralization of μ-opioid receptors in the human brain. Neuroimage 2020; 217:116922. [PMID: 32407992 DOI: 10.1016/j.neuroimage.2020.116922] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 12/19/2022] Open
Abstract
Alterations in the brain's μ-opioid receptor (MOR) system have been associated with several neuropsychiatric disorders. Central MOR availability also varies considerably in healthy individuals. Multiple epidemiological factors have been proposed to influence the MOR system, but due to small sample sizes the magnitude of their influence remains inconclusive. We compiled [11C]carfentanil positron emission tomography scans from 204 individuals with no neurologic or psychiatric disorders, and estimated the effects of sex, age, body mass index (BMI) and smoking on [11C]carfentanil binding potential using between-subject regression analysis. We also examined hemispheric differences in MOR availability. Older age was associated with increase in MOR availability in frontotemporal areas but decrease in amygdala, thalamus, and nucleus accumbens. The age-dependent increase was stronger in males. MOR availability was globally lowered in smokers but independent of BMI. Finally, MOR availability was higher in the right versus the left hemisphere. The presently observed variation in MOR availability may explain why some individuals are prone to develop MOR-linked pathological states, such as chronic pain or psychiatric disorders. Lateralized MOR system may reflect hemispheric work specialization in central emotion and pain processes.
Collapse
Affiliation(s)
- Tatu Kantonen
- Turku PET Centre, University of Turku, Finland; Clinical Neurosciences, University of Turku and Turku University Hospital, Finland.
| | - Tomi Karjalainen
- Turku PET Centre, University of Turku, Finland; Turku PET Centre, Turku University Hospital, Finland
| | | | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Finland; Department of Endocrinology, Turku University Hospital, Finland
| | | | - Juha Rinne
- Turku PET Centre, University of Turku, Finland; Clinical Neurosciences, University of Turku and Turku University Hospital, Finland
| | - Jarmo Hietala
- Turku PET Centre, University of Turku, Finland; Department of Psychiatry, University of Turku and Turku University Hospital, Finland
| | - Valtteri Kaasinen
- Turku PET Centre, University of Turku, Finland; Clinical Neurosciences, University of Turku and Turku University Hospital, Finland
| | | | | | | | - Aki Vehtari
- Helsinki Institute for Information Technology HIIT, Department of Computer Science, Aalto University, Finland
| | - Lauri Nummenmaa
- Turku PET Centre, University of Turku, Finland; Department of Psychology, University of Turku, Finland
| |
Collapse
|
11
|
|
12
|
A Survey of Molecular Imaging of Opioid Receptors. Molecules 2019; 24:molecules24224190. [PMID: 31752279 PMCID: PMC6891617 DOI: 10.3390/molecules24224190] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 01/09/2023] Open
Abstract
The discovery of endogenous peptide ligands for morphine binding sites occurred in parallel with the identification of three subclasses of opioid receptor (OR), traditionally designated as μ, δ, and κ, along with the more recently defined opioid-receptor-like (ORL1) receptor. Early efforts in opioid receptor radiochemistry focused on the structure of the prototype agonist ligand, morphine, although N-[methyl-11C]morphine, -codeine and -heroin did not show significant binding in vivo. [11C]Diprenorphine ([11C]DPN), an orvinol type, non-selective OR antagonist ligand, was among the first successful PET tracers for molecular brain imaging, but has been largely supplanted in research studies by the μ-preferring agonist [11C]carfentanil ([11C]Caf). These two tracers have the property of being displaceable by endogenous opioid peptides in living brain, thus potentially serving in a competition-binding model. Indeed, many clinical PET studies with [11C]DPN or [11C]Caf affirm the release of endogenous opioids in response to painful stimuli. Numerous other PET studies implicate μ-OR signaling in aspects of human personality and vulnerability to drug dependence, but there have been very few clinical PET studies of μORs in neurological disorders. Tracers based on naltrindole, a non-peptide antagonist of the δ-preferring endogenous opioid enkephalin, have been used in PET studies of δORs, and [11C]GR103545 is validated for studies of κORs. Structures such as [11C]NOP-1A show selective binding at ORL-1 receptors in living brain. However, there is scant documentation of δ-, κ-, or ORL1 receptors in healthy human brain or in neurological and psychiatric disorders; here, clinical PET research must catch up with recent progress in radiopharmaceutical chemistry.
Collapse
|
13
|
Ashok AH, Myers J, Reis Marques T, Rabiner EA, Howes OD. Reduced mu opioid receptor availability in schizophrenia revealed with [ 11C]-carfentanil positron emission tomographic Imaging. Nat Commun 2019; 10:4493. [PMID: 31582737 PMCID: PMC6776653 DOI: 10.1038/s41467-019-12366-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 09/04/2019] [Indexed: 12/16/2022] Open
Abstract
Negative symptoms, such as amotivation and anhedonia, are a major cause of functional impairment in schizophrenia. There are currently no licensed treatments for negative symptoms, highlighting the need to understand the molecular mechanisms underlying them. Mu-opioid receptors (MOR) in the striatum play a key role in hedonic processing and reward function and are reduced post-mortem in schizophrenia. However, it is unknown if mu-opioid receptor availability is altered in-vivo or related to negative symptoms in schizophrenia. Using [11 C]-carfentanil positron emission tomography (PET) scans in 19 schizophrenia patients and 20 age-matched healthy controls, here we show a significantly lower MOR availability in patients with schizophrenia in the striatum (Cohen's d = 0.7), and the hedonic network. In addition, we report a marked global increase in inter-regional covariance of MOR availability in schizophrenia, largely due to increased cortical-subcortical covariance.
Collapse
Affiliation(s)
- Abhishekh H Ashok
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London, UK
- Faculty of Medicine, Psychiatric Imaging Group, Institute of Clinical Sciences (ICS), Imperial College London, London, UK
- Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Jim Myers
- Faculty of Medicine, Imperial College London, London, UK
| | - Tiago Reis Marques
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London, UK
- Faculty of Medicine, Psychiatric Imaging Group, Institute of Clinical Sciences (ICS), Imperial College London, London, UK
- Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
| | - Eugenii A Rabiner
- Invicro, London, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
| | - Oliver D Howes
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London, UK.
- Faculty of Medicine, Psychiatric Imaging Group, Institute of Clinical Sciences (ICS), Imperial College London, London, UK.
- Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK.
| |
Collapse
|
14
|
DaSilva AF, Zubieta JK, DosSantos MF. Positron emission tomography imaging of endogenous mu-opioid mechanisms during pain and migraine. Pain Rep 2019; 4:e769. [PMID: 31579860 PMCID: PMC6727995 DOI: 10.1097/pr9.0000000000000769] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/04/2019] [Accepted: 05/25/2019] [Indexed: 11/26/2022] Open
Abstract
The enormous advancements in the medical imaging methods witnessed in the past decades have allowed clinical researchers to study the function of the human brain in vivo, both in health and disease. In addition, a better understanding of brain responses to different modalities of stimuli such as pain, reward, or the administration of active or placebo interventions has been achieved through neuroimaging methods. Although magnetic resonance imaging has provided important information regarding structural, hemodynamic, and metabolic changes in the central nervous system related to pain, magnetic resonance imaging does not address modulatory pain systems at the molecular level (eg, endogenous opioid). Such important information has been obtained through positron emission tomography, bringing insights into the neuroplastic changes that occur in the context of the pain experience. Positron emission tomography studies have not only confirmed the brain structures involved in pain processing and modulation but also have helped elucidate the neural mechanisms that underlie healthy and pathological pain regulation. These data have shown some of the biological basis of the interindividual variability in pain perception and regulation. In addition, they provide crucial information to the mechanisms that drive placebo and nocebo effects, as well as represent an important source of variability in clinical trials. Positron emission tomography studies have also permitted exploration of the dynamic interaction between behavior and genetic factors and between different pain modulatory systems. This narrative review will present a summary of the main findings of the positron emission tomography studies that evaluated the functioning of the opioidergic system in the context of pain.
Collapse
Affiliation(s)
- Alexandre F. DaSilva
- Headache & Orofacial Pain Effort (H.O.P.E.), Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Jon-Kar Zubieta
- Department of Psychiatry, University of Utah Health, Salt Lake City, UT, USA
| | - Marcos F. DosSantos
- Instituto de Ciências Biomédicas (ICB), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Shalgunov V, van Waarde A, Booij J, Michel MC, Dierckx RAJO, Elsinga PH. Hunting for the high-affinity state of G-protein-coupled receptors with agonist tracers: Theoretical and practical considerations for positron emission tomography imaging. Med Res Rev 2018; 39:1014-1052. [PMID: 30450619 PMCID: PMC6587759 DOI: 10.1002/med.21552] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/02/2018] [Accepted: 10/19/2018] [Indexed: 12/15/2022]
Abstract
The concept of the high‐affinity state postulates that a certain subset of G‐protein‐coupled receptors is primarily responsible for receptor signaling in the living brain. Assessing the abundance of this subset is thus potentially highly relevant for studies concerning the responses of neurotransmission to pharmacological or physiological stimuli and the dysregulation of neurotransmission in neurological or psychiatric disorders. The high‐affinity state is preferentially recognized by agonists in vitro. For this reason, agonist tracers have been developed as tools for the noninvasive imaging of the high‐affinity state with positron emission tomography (PET). This review provides an overview of agonist tracers that have been developed for PET imaging of the brain, and the experimental paradigms that have been developed for the estimation of the relative abundance of receptors configured in the high‐affinity state. Agonist tracers appear to be more sensitive to endogenous neurotransmitter challenge than antagonists, as was originally expected. However, other expectations regarding agonist tracers have not been fulfilled. Potential reasons for difficulties in detecting the high‐affinity state in vivo are discussed.
Collapse
Affiliation(s)
- Vladimir Shalgunov
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Aren van Waarde
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan Booij
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Martin C Michel
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Department of Nuclear Medicine, Ghent University, University Hospital, Ghent, Belgium
| | - Philip H Elsinga
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
16
|
Molecular imaging in dementia: Past, present, and future. Alzheimers Dement 2018; 14:1522-1552. [DOI: 10.1016/j.jalz.2018.06.2855] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 06/02/2018] [Accepted: 06/03/2018] [Indexed: 12/14/2022]
|
17
|
Nummenmaa L, Tuominen L. Opioid system and human emotions. Br J Pharmacol 2018; 175:2737-2749. [PMID: 28394427 PMCID: PMC6016642 DOI: 10.1111/bph.13812] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/07/2017] [Accepted: 03/24/2017] [Indexed: 12/31/2022] Open
Abstract
Emotions are states of vigilant readiness that guide human and animal behaviour during survival-salient situations. Categorical models of emotions posit neurally and physiologically distinct basic human emotions (anger, fear, disgust, happiness, sadness and surprise) that govern different survival functions. Opioid receptors are expressed abundantly in the mammalian emotion circuit, and the opioid system modulates a variety of functions related to arousal and motivation. Yet, its specific contribution to different basic emotions has remained poorly understood. Here, we review how the endogenous opioid system and particularly the μ receptor contribute to emotional processing in humans. Activation of the endogenous opioid system is consistently associated with both pleasant and unpleasant emotions. In general, exogenous opioid agonists facilitate approach-oriented emotions (anger, pleasure) and inhibit avoidance-oriented emotions (fear, sadness). Opioids also modulate social bonding and affiliative behaviour, and prolonged opioid abuse may render both social bonding and emotion recognition circuits dysfunctional. However, there is no clear evidence that the opioid system is able to affect the emotions associated with surprise and disgust. Taken together, the opioid systems contribute to a wide array of positive and negative emotions through their general ability to modulate the approach versus avoidance motivation associated with specific emotions. Because of the protective effects of opioid system-mediated prosociality and positive mood, the opioid system may constitute an important factor contributing to psychological and psychosomatic resilience. LINKED ARTICLES This article is part of a themed section on Emerging Areas of Opioid Pharmacology. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.14/issuetoc.
Collapse
Affiliation(s)
- Lauri Nummenmaa
- Turku PET Centre and Department of PsychologyUniversity of TurkuTurkuFinland
| | - Lauri Tuominen
- Department of PsychiatryMassachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
| |
Collapse
|
18
|
Faraone SV. The pharmacology of amphetamine and methylphenidate: Relevance to the neurobiology of attention-deficit/hyperactivity disorder and other psychiatric comorbidities. Neurosci Biobehav Rev 2018; 87:255-270. [PMID: 29428394 DOI: 10.1016/j.neubiorev.2018.02.001] [Citation(s) in RCA: 325] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/25/2018] [Accepted: 02/05/2018] [Indexed: 12/20/2022]
Abstract
Psychostimulants, including amphetamines and methylphenidate, are first-line pharmacotherapies for individuals with attention-deficit/hyperactivity disorder (ADHD). This review aims to educate physicians regarding differences in pharmacology and mechanisms of action between amphetamine and methylphenidate, thus enhancing physician understanding of psychostimulants and their use in managing individuals with ADHD who may have comorbid psychiatric conditions. A systematic literature review of PubMed was conducted in April 2017, focusing on cellular- and brain system-level effects of amphetamine and methylphenidate. The primary pharmacologic effect of both amphetamine and methylphenidate is to increase central dopamine and norepinephrine activity, which impacts executive and attentional function. Amphetamine actions include dopamine and norepinephrine transporter inhibition, vesicular monoamine transporter 2 (VMAT-2) inhibition, and monoamine oxidase activity inhibition. Methylphenidate actions include dopamine and norepinephrine transporter inhibition, agonist activity at the serotonin type 1A receptor, and redistribution of the VMAT-2. There is also evidence for interactions with glutamate and opioid systems. Clinical implications of these actions in individuals with ADHD with comorbid depression, anxiety, substance use disorder, and sleep disturbances are discussed.
Collapse
Affiliation(s)
- Stephen V Faraone
- Departments of Psychiatry and of Neuroscience and Physiology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States; K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen, Bergen, Norway.
| |
Collapse
|
19
|
Linnman C, Catana C, Petkov MP, Chonde DB, Becerra L, Hooker J, Borsook D. Molecular and functional PET-fMRI measures of placebo analgesia in episodic migraine: Preliminary findings. NEUROIMAGE-CLINICAL 2017; 17:680-690. [PMID: 29255671 PMCID: PMC5725156 DOI: 10.1016/j.nicl.2017.11.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/03/2017] [Accepted: 11/13/2017] [Indexed: 12/18/2022]
Abstract
Pain interventions with no active ingredient, placebo, are sometimes effective in treating chronic pain conditions. Prior studies on the neurobiological underpinnings of placebo analgesia indicate endogenous opioid release and changes in brain responses and functional connectivity during pain anticipation and pain experience in healthy subjects. Here, we investigated placebo analgesia in healthy subjects and in interictal migraine patients (n = 9) and matched healthy controls (n = 9) using 11C-diprenoprhine Positron Emission Tomography (PET) and simultaneous functional Magnetic Resonance Imaging (fMRI). Intravenous saline injections (the placebo) led to lower pain ratings, but we did not find evidence for an altered placebo response in interictal migraine subjects as compared to healthy subjects.
Collapse
Affiliation(s)
- Clas Linnman
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Harvard Medical School, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, USA.
| | - Ciprian Catana
- Athinoula A Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Mike P Petkov
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Harvard Medical School, USA; Center for Pain and the Brain, Boston Children's Hospital and Massachusetts General Hospital (MGH), Harvard Medical School, Boston, MA, USA
| | - Daniel Burje Chonde
- Athinoula A Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Lino Becerra
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Harvard Medical School, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, USA; Athinoula A Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.; Center for Pain and the Brain, Boston Children's Hospital and Massachusetts General Hospital (MGH), Harvard Medical School, Boston, MA, USA
| | - Jacob Hooker
- Athinoula A Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - David Borsook
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Harvard Medical School, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, USA; Athinoula A Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.; Center for Pain and the Brain, Boston Children's Hospital and Massachusetts General Hospital (MGH), Harvard Medical School, Boston, MA, USA
| |
Collapse
|
20
|
Hankir MK, Patt M, Patt JTW, Becker GA, Rullmann M, Kranz M, Deuther-Conrad W, Schischke K, Seyfried F, Brust P, Hesse S, Sabri O, Krügel U, Fenske WK. Suppressed Fat Appetite after Roux-en-Y Gastric Bypass Surgery Associates with Reduced Brain μ-opioid Receptor Availability in Diet-Induced Obese Male Rats. Front Neurosci 2017; 10:620. [PMID: 28133443 PMCID: PMC5233681 DOI: 10.3389/fnins.2016.00620] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/30/2016] [Indexed: 01/02/2023] Open
Abstract
Brain μ-opioid receptors (MORs) stimulate high-fat (HF) feeding and have been implicated in the distinct long term outcomes on body weight of bariatric surgery and dieting. Whether alterations in fat appetite specifically following these disparate weight loss interventions relate to changes in brain MOR signaling is unknown. To address this issue, diet-induced obese male rats underwent either Roux-en-Y gastric bypass (RYGB) or sham surgeries. Postoperatively, animals were placed on a two-choice diet consisting of low-fat (LF) and HF food and sham-operated rats were further split into ad libitum fed (Sham-LF/HF) and body weight-matched (Sham-BWM) to RYGB groups. An additional set of sham-operated rats always only on a LF diet (Sham-LF) served as lean controls, making four experimental groups in total. Corresponding to a stage of weight loss maintenance for RYGB rats, two-bottle fat preference tests in conjunction with small-animal positron emission tomography (PET) imaging studies with the selective MOR radioligand [11C]carfentanil were performed. Brains were subsequently collected and MOR protein levels in the hypothalamus, striatum, prefrontal cortex and orbitofrontal cortex were analyzed by Western Blot. We found that only the RYGB group presented with intervention-specific changes: having markedly suppressed intake and preference for high concentration fat emulsions, a widespread reduction in [11C]carfentanil binding potential (reflecting MOR availability) in various brain regions, and a downregulation of striatal and prefrontal MOR protein levels compared to the remaining groups. These findings suggest that the suppressed fat appetite caused by RYGB surgery is due to reduced brain MOR signaling, which may contribute to sustained weight loss unlike the case for dieting.
Collapse
Affiliation(s)
- Mohammed K Hankir
- Department of Medicine, Integrated Research and Treatment Centre for Adiposity Diseases, University of Leipzig Leipzig, Germany
| | - Marianne Patt
- Department of Nuclear Medicine, University of Leipzig Leipzig, Germany
| | - Jörg T W Patt
- Department of Nuclear Medicine, University of Leipzig Leipzig, Germany
| | - Georg A Becker
- Department of Nuclear Medicine, University of Leipzig Leipzig, Germany
| | - Michael Rullmann
- Department of Medicine, Integrated Research and Treatment Centre for Adiposity Diseases, University of LeipzigLeipzig, Germany; Department of Nuclear Medicine, University of LeipzigLeipzig, Germany
| | - Mathias Kranz
- Helmholtz-Zentrum Dresden-Rossendorf, Research Site Leipzig Leipzig, Germany
| | | | - Kristin Schischke
- Department of Medicine, Integrated Research and Treatment Centre for Adiposity Diseases, University of Leipzig Leipzig, Germany
| | - Florian Seyfried
- Department of General and Visceral, Vascular and Paediatric Surgery, University of Würzburg Würzburg, Germany
| | - Peter Brust
- Helmholtz-Zentrum Dresden-Rossendorf, Research Site Leipzig Leipzig, Germany
| | - Swen Hesse
- Department of Medicine, Integrated Research and Treatment Centre for Adiposity Diseases, University of LeipzigLeipzig, Germany; Department of Nuclear Medicine, University of LeipzigLeipzig, Germany
| | - Osama Sabri
- Department of Medicine, Integrated Research and Treatment Centre for Adiposity Diseases, University of LeipzigLeipzig, Germany; Department of Nuclear Medicine, University of LeipzigLeipzig, Germany
| | - Ute Krügel
- Rudolf-Boehm Institute of Pharmacology and Toxicology, University of Leipzig Leipzig, Germany
| | - Wiebke K Fenske
- Department of Medicine, Integrated Research and Treatment Centre for Adiposity Diseases, University of Leipzig Leipzig, Germany
| |
Collapse
|
21
|
Sims-Williams H, Matthews JC, Talbot PS, Love-Jones S, Brooks JC, Patel NK, Pickering AE. Deep brain stimulation of the periaqueductal gray releases endogenous opioids in humans. Neuroimage 2016; 146:833-842. [PMID: 27554530 PMCID: PMC5312788 DOI: 10.1016/j.neuroimage.2016.08.038] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/25/2016] [Accepted: 08/18/2016] [Indexed: 12/11/2022] Open
Abstract
Deep brain stimulation (DBS) of the periaqueductal gray (PAG) is used in the treatment of severe refractory neuropathic pain. We tested the hypothesis that DBS releases endogenous opioids to exert its analgesic effect using [11C]diprenorphine (DPN) positron emission tomography (PET). Patients with de-afferentation pain (phantom limb pain or Anaesthesia Dolorosa (n=5)) who obtained long-lasting analgesic benefit from DBS were recruited. [11C]DPN and [15O]water PET scanning was performed in consecutive sessions; first without, and then with PAG stimulation. The regional cerebral tracer distribution and kinetics were quantified for the whole brain and brainstem. Analysis was performed on a voxel-wise basis using statistical parametric mapping (SPM) and also within brainstem regions of interest and correlated to the DBS-induced improvement in pain score and mood. Brain-wide analysis identified a single cluster of reduced [11C]DPN binding (15.5% reduction) in the caudal, dorsal PAG following DBS from effective electrodes located in rostral dorsal/lateral PAG. There was no evidence for an accompanying focal change in blood flow within the PAG. No correlation was found between the change in PAG [11C]DPN binding and the analgesic effect or the effect on mood (POMSSV) of DBS. The analgesic effect of DBS in these subjects was not altered by systemic administration of the opioid antagonist naloxone (400 ug). These findings indicate that DBS of the PAG does indeed release endogenous opioid peptides focally within the midbrain of these neuropathic pain patients but we are unable to further resolve the question of whether this release is responsible for the observed analgesic benefit. Sequential opioid-PET imaging study of deafferentation pain patients. All obtained analgesic benefit from deep brain stimulators (DBS) in periaqueductal grey (PAG). PET imaging with diprenorphine showed DBS reduced binding of the radioligand in the PAG. Change in binding consistent with DBS-evoked release of endogenous opioids.
Collapse
Affiliation(s)
- Hugh Sims-Williams
- School of Physiology, Pharmacology & Neuroscience, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, United Kingdom; Department of Neurosurgery & Pain Medicine, North Bristol NHS Trust, Bristol BS10 5NB, United Kingdom
| | - Julian C Matthews
- Imaging Sciences, MAHSC, University of Manchester, M20 3LJ, United Kingdom
| | - Peter S Talbot
- Imaging Sciences, MAHSC, University of Manchester, M20 3LJ, United Kingdom
| | - Sarah Love-Jones
- Department of Neurosurgery & Pain Medicine, North Bristol NHS Trust, Bristol BS10 5NB, United Kingdom
| | - Jonathan Cw Brooks
- Clinical Research Imaging Centre (CRiCBristol), University of Bristol, Bristol BS2 8DZ, United Kingdom
| | - Nikunj K Patel
- Department of Neurosurgery & Pain Medicine, North Bristol NHS Trust, Bristol BS10 5NB, United Kingdom
| | - Anthony E Pickering
- School of Physiology, Pharmacology & Neuroscience, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, United Kingdom; Department of Anaesthesia, University Hospitals Bristol, Bristol BS2 8HW, United Kingdom.
| |
Collapse
|
22
|
Abstract
This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (endogenous opioids and receptors), and the roles of these opioid peptides and receptors in pain and analgesia (pain and analgesia); stress and social status (human studies); tolerance and dependence (opioid mediation of other analgesic responses); learning and memory (stress and social status); eating and drinking (stress-induced analgesia); alcohol and drugs of abuse (emotional responses in opioid-mediated behaviors); sexual activity and hormones, pregnancy, development and endocrinology (opioid involvement in stress response regulation); mental illness and mood (tolerance and dependence); seizures and neurologic disorders (learning and memory); electrical-related activity and neurophysiology (opiates and conditioned place preferences (CPP)); general activity and locomotion (eating and drinking); gastrointestinal, renal and hepatic functions (alcohol and drugs of abuse); cardiovascular responses (opiates and ethanol); respiration and thermoregulation (opiates and THC); and immunological responses (opiates and stimulants). This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (endogenous opioids and receptors), and the roles of these opioid peptides and receptors in pain and analgesia (pain and analgesia); stress and social status (human studies); tolerance and dependence (opioid mediation of other analgesic responses); learning and memory (stress and social status); eating and drinking (stress-induced analgesia); alcohol and drugs of abuse (emotional responses in opioid-mediated behaviors); sexual activity and hormones, pregnancy, development and endocrinology (opioid involvement in stress response regulation); mental illness and mood (tolerance and dependence); seizures and neurologic disorders (learning and memory); electrical-related activity and neurophysiology (opiates and conditioned place preferences (CPP)); general activity and locomotion (eating and drinking); gastrointestinal, renal and hepatic functions (alcohol and drugs of abuse); cardiovascular responses (opiates and ethanol); respiration and thermoregulation (opiates and THC); and immunological responses (opiates and stimulants).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
23
|
Gunn RN, Slifstein M, Searle GE, Price JC. Quantitative imaging of protein targets in the human brain with PET. Phys Med Biol 2015; 60:R363-411. [DOI: 10.1088/0031-9155/60/22/r363] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Burghardt PR, Rothberg AE, Dykhuis KE, Burant CF, Zubieta JK. Endogenous Opioid Mechanisms Are Implicated in Obesity and Weight Loss in Humans. J Clin Endocrinol Metab 2015; 100:3193-201. [PMID: 26108093 PMCID: PMC4524998 DOI: 10.1210/jc.2015-1783] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Successful long-term weight loss is challenging. Brain endogenous opioid systems regulate associated processes; however, their role in the maintenance of weight loss has not been adequately explored in humans. OBJECTIVE In a preliminary study, the objective was to assess central μ-opioid receptor (MOR) system involvement in eating behaviors and their relationship to long-term maintenance of weight loss. DESIGN This was a case-control study with follow-up of the treatment group at 1 year after intervention. SETTING The study was conducted at a tertiary care university medical center. PARTICIPANTS Lean healthy (n = 7) and chronically obese (n = 7) men matched for age and ethnicity participated in the study. INTERVENTIONS MOR availability measures were acquired with positron emission tomography and [(11)C]carfentanil. Lean healthy men were scanned twice under both fasted and fed conditions. Obese men were placed on a very low-calorie diet to achieve 15% weight loss from baseline weight and underwent two positron emission tomography scans before and two after weight loss, incorporating both fasted and fed states. MAIN OUTCOME MEASURES Brain MOR availability and activation were measured by reductions in MOR availability (nondisplaceable binding potential) from the fed compared with the fasted-state scans. RESULTS Baseline MOR nondisplaceable binding potential was reduced in obese compared with the lean and partially recovered obese after weight loss in regions that regulate homeostatic, hedonic, and emotional responses to feeding. Reductions in negative affect and feeding-induced MOR system activation in the right temporal pole were highly correlated in leans but not in obese men. A trend for an association between MOR activation in the right temporal pole before weight loss and weight regain 1 year was found. CONCLUSIONS Although these preliminary studies have a small sample size, these results suggest that obesity and diet-induced weight loss impact central MOR binding and endogenous opioid system function. MOR system activation in response to an acute meal may be related to the risk of weight regain.
Collapse
|
25
|
Optimising PET approaches to measuring 5-HT release in human brain. Synapse 2015; 69:505-11. [DOI: 10.1002/syn.21835] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 05/28/2015] [Accepted: 06/08/2015] [Indexed: 01/16/2023]
|
26
|
Finnema SJ, Scheinin M, Shahid M, Lehto J, Borroni E, Bang-Andersen B, Sallinen J, Wong E, Farde L, Halldin C, Grimwood S. Application of cross-species PET imaging to assess neurotransmitter release in brain. Psychopharmacology (Berl) 2015; 232:4129-57. [PMID: 25921033 PMCID: PMC4600473 DOI: 10.1007/s00213-015-3938-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/09/2015] [Indexed: 01/03/2023]
Abstract
RATIONALE This review attempts to summarize the current status in relation to the use of positron emission tomography (PET) imaging in the assessment of synaptic concentrations of endogenous mediators in the living brain. OBJECTIVES Although PET radioligands are now available for more than 40 CNS targets, at the initiation of the Innovative Medicines Initiative (IMI) "Novel Methods leading to New Medications in Depression and Schizophrenia" (NEWMEDS) in 2009, PET radioligands sensitive to an endogenous neurotransmitter were only validated for dopamine. NEWMEDS work-package 5, "Cross-species and neurochemical imaging (PET) methods for drug discovery", commenced with a focus on developing methods enabling assessment of changes in extracellular concentrations of serotonin and noradrenaline in the brain. RESULTS Sharing the workload across institutions, we utilized in vitro techniques with cells and tissues, in vivo receptor binding and microdialysis techniques in rodents, and in vivo PET imaging in non-human primates and humans. Here, we discuss these efforts and review other recently published reports on the use of radioligands to assess changes in endogenous levels of dopamine, serotonin, noradrenaline, γ-aminobutyric acid, glutamate, acetylcholine, and opioid peptides. The emphasis is on assessment of the availability of appropriate translational tools (PET radioligands, pharmacological challenge agents) and on studies in non-human primates and human subjects, as well as current challenges and future directions. CONCLUSIONS PET imaging directed at investigating changes in endogenous neurochemicals, including the work done in NEWMEDS, have highlighted an opportunity to further extend the capability and application of this technology in drug development.
Collapse
Affiliation(s)
- Sjoerd J. Finnema
- />Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - Mika Scheinin
- />Department of Pharmacology, Drug Development and Therapeutics, University of Turku, Turku, Finland , />Unit of Clinical Pharmacology, Turku University Hospital, Turku, Finland
| | - Mohammed Shahid
- />Research and Development, Orion Corporation, Orion Pharma, Turku, Finland
| | - Jussi Lehto
- />Department of Pharmacology, Drug Development and Therapeutics, University of Turku, Turku, Finland
| | - Edilio Borroni
- />Neuroscience Department, Hoffman-La Roche, Basel, Switzerland
| | | | - Jukka Sallinen
- />Research and Development, Orion Corporation, Orion Pharma, Turku, Finland
| | - Erik Wong
- />Neuroscience Innovative Medicine Unit, AstraZeneca, Wilmington, DE USA
| | - Lars Farde
- />Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden , />Translational Science Center at Karolinska Institutet, AstraZeneca, Stockholm, Sweden
| | - Christer Halldin
- />Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - Sarah Grimwood
- Neuroscience Research Unit, Pfizer Inc, Cambridge, MA, USA. .,, 610 Main Street, Cambridge, MA, 02139, USA.
| |
Collapse
|
27
|
Quelch D, De Santis V, Strege A, Myers J, Wells L, Nutt D, Lingford-Hughes A, Parker C, Tyacke R. Influence of agonist induced internalization on [3H]Ro15-4513 binding-an application to imaging fluctuations in endogenous GABA with positron emission tomography. Synapse 2014; 69:60-5. [DOI: 10.1002/syn.21780] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/12/2014] [Accepted: 08/27/2014] [Indexed: 02/05/2023]
Affiliation(s)
- Darren Quelch
- Centre for Neuropsychopharmacology; Division of Brain Sciences; Imperial College; London UK
| | | | | | - James Myers
- Centre for Neuropsychopharmacology; Division of Brain Sciences; Imperial College; London UK
| | - Lisa Wells
- Imanova Centro for Imaging Sciences; London UK
| | - David Nutt
- Centre for Neuropsychopharmacology; Division of Brain Sciences; Imperial College; London UK
| | - Anne Lingford-Hughes
- Centre for Neuropsychopharmacology; Division of Brain Sciences; Imperial College; London UK
| | | | - Robin Tyacke
- Centre for Neuropsychopharmacology; Division of Brain Sciences; Imperial College; London UK
| |
Collapse
|