1
|
Hristov M, Nankova A, Andreeva-Gateva P. Alterations of the glutamatergic system in diabetes mellitus. Metab Brain Dis 2024; 39:321-333. [PMID: 37747631 DOI: 10.1007/s11011-023-01299-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/17/2023] [Indexed: 09/26/2023]
Abstract
Diabetes mellitus (DM) is a chronic disease characterized by elevated blood glucose levels caused by a lack of insulin production (type 1 diabetes) or insulin resistance (type 2 diabetes). It is well known that DM is associated with cognitive deficits and metabolic and neurophysiological changes in the brain. Glutamate is the main excitatory neurotransmitter in the central nervous system that plays a key role in synaptic plasticity, learning, and memory processes. An increasing number of studies have suggested that abnormal activity of the glutamatergic system is implicated in the pathophysiology of DM. Dysfunction of glutamatergic neurotransmission in the central nervous system can provide an important neurobiological substrate for many disorders. Magnetic resonance spectroscopy (MRS) is a non-invasive technique that allows a better understanding of the central nervous system factors by measuring in vivo the concentrations of brain metabolites within the area of interest. Here, we briefly review the MRS studies that have examined glutamate levels in the brain of patients with DM. The present article also summarizes the available data on abnormalities in glutamatergic neurotransmission observed in different animal models of DM. In addition, the role of gut microbiota in the development of glutamatergic alterations in DM is addressed. We speculate that therapeutic strategies targeting the glutamatergic system may be beneficial in the treatment of central nervous system-related changes in diabetic patients.
Collapse
Affiliation(s)
- Milen Hristov
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, 2 "Zdrave" St, Sofia, 1431, Bulgaria.
| | - Anelia Nankova
- Department of Endocrinology, Faculty of Medicine, Medical University of Sofia, Sofia, 1431, Bulgaria
| | - Pavlina Andreeva-Gateva
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, 2 "Zdrave" St, Sofia, 1431, Bulgaria
| |
Collapse
|
2
|
Wu K, Xie W, Chen Z, Zhou L, Wang L, Zhou Y, Liu L. Disturbed hippocampal histidine metabolism contributes to cognitive impairment induced by recurrent nonsevere hypoglycemia in diabetes. Biochem Biophys Res Commun 2023; 682:325-334. [PMID: 37837753 DOI: 10.1016/j.bbrc.2023.10.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/29/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
Hypoglycemia is a common adverse reaction to glucose-lowering treatment. Diabetes mellitus (DM) combined with recurrent nonsevere hypoglycemia (RH) can accelerate cognitive decline. Currently, the metabolic pattern changes in cognition-related brain regions caused by this combined effect of DM and RH (DR) remain unclear. In this study, we first characterized the metabolic profiles of the hippocampus in mice exposed to DR using non-targeted metabolomic platforms. Our results showed that DR induced a unique metabolic pattern in the hippocampus, and several significant differences in metabolite levels belonging to the histidine metabolism pathway were discovered. Based on these findings, in the follow-up experiment, we found that histidine treatment could attenuate the cognitive impairment and rescue the neuronal and synaptic damage induced by DR in the hippocampus, which are closely related to ameliorated mitochondrial injury. These findings provide new insights into the metabolic mechanisms of the hippocampus in the progression of DR, and l-histidine supplementation may be a potential metabolic therapy in the future.
Collapse
Affiliation(s)
- Kejun Wu
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Wenhuo Xie
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Zhou Chen
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Linying Zhou
- Public Technology Service Center, Fujian Medical University, Fuzhou, China
| | - Lijing Wang
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yu Zhou
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fujian Medical University, Fuzhou, China.
| | - Libin Liu
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, China.
| |
Collapse
|
3
|
Chambers ME, Nuibe EH, Reno-Bernstein CM. Brain Regulation of Cardiac Function during Hypoglycemia. Metabolites 2023; 13:1089. [PMID: 37887414 PMCID: PMC10608630 DOI: 10.3390/metabo13101089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/02/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
Hypoglycemia occurs frequently in people with type 1 and type 2 diabetes. Hypoglycemia activates the counter-regulatory response. Besides peripheral glucose sensors located in the pancreas, mouth, gastrointestinal tract, portal vein, and carotid body, many brain regions also contain glucose-sensing neurons that detect this fall in glucose. The autonomic nervous system innervates the heart, and during hypoglycemia, can cause many changes. Clinical and animal studies have revealed changes in electrocardiograms during hypoglycemia. Cardiac repolarization defects (QTc prolongation) occur during moderate levels of hypoglycemia. When hypoglycemia is severe, it can be fatal. Cardiac arrhythmias are thought to be the major mediator of sudden death due to severe hypoglycemia. Both the sympathetic and parasympathetic nervous systems of the brain have been implicated in regulating these arrhythmias. Besides cardiac arrhythmias, hypoglycemia can have profound changes in the heart and most of these changes are exacerbated in the setting of diabetes. A better understanding of how the brain regulates cardiac changes during hypoglycemia will allow for better therapeutic intervention to prevent cardiovascular death associated with hypoglycemia in people with diabetes. The aim of this paper is to provide a narrative review of what is known in the field regarding how the brain regulates the heart during hypoglycemia.
Collapse
Affiliation(s)
| | | | - Candace M. Reno-Bernstein
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, UT 84112, USA (E.H.N.)
| |
Collapse
|
4
|
Hone-Blanchet A, Antal B, McMahon L, Lithen A, Smith NA, Stufflebeam S, Yen YF, Lin A, Jenkins BG, Mujica-Parodi LR, Ratai EM. Acute administration of ketone beta-hydroxybutyrate downregulates 7T proton magnetic resonance spectroscopy-derived levels of anterior and posterior cingulate GABA and glutamate in healthy adults. Neuropsychopharmacology 2023; 48:797-805. [PMID: 35995971 PMCID: PMC10066400 DOI: 10.1038/s41386-022-01364-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/08/2022]
Abstract
Glucose metabolism is impaired in brain aging and several neurological conditions. Beneficial effects of ketones have been reported in the context of protecting the aging brain, however, their neurophysiological effect is still largely uncharacterized, hurdling their development as a valid therapeutic option. In this report, we investigate the neurochemical effect of the acute administration of a ketone d-beta-hydroxybutyrate (D-βHB) monoester in fasting healthy participants with ultrahigh-field proton magnetic resonance spectroscopy (MRS). In two within-subject metabolic intervention experiments, 7 T MRS data were obtained in fasting healthy participants (1) in the anterior cingulate cortex pre- and post-administration of D-βHB (N = 16), and (2) in the posterior cingulate cortex pre- and post-administration of D-βHB compared to active control glucose (N = 26). Effect of age and blood levels of D-βHB and glucose were used to further explore the effect of D-βHB and glucose on MRS metabolites. Results show that levels of GABA and Glu were significantly reduced in the anterior and posterior cortices after administration of D-βHB. Importantly, the effect was specific to D-βHB and not observed after administration of glucose. The magnitude of the effect on GABA and Glu was significantly predicted by older age and by elevation of blood levels of D-βHB. Together, our results show that administration of ketones acutely impacts main inhibitory and excitatory transmitters in the whole fasting cortex, compared to normal energy substrate glucose. Critically, such effects have an increased magnitude in older age, suggesting an increased sensitivity to ketones with brain aging.
Collapse
Affiliation(s)
- Antoine Hone-Blanchet
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Botond Antal
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Liam McMahon
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Andrew Lithen
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Nathan A Smith
- Center for Neuroscience Research, Children's National Research Institute, Children's National Hospital, George Washington University School of Medicine and Health Sciences, Washington, DC, 20012, USA
- Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Steven Stufflebeam
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Yi-Fen Yen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Alexander Lin
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Bruce G Jenkins
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Lilianne R Mujica-Parodi
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, 11794, USA
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Eva-Maria Ratai
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA.
| |
Collapse
|
5
|
Ramos-Riera KP, Pérez-Severiano F, López-Meraz ML. Oxidative stress: a common imbalance in diabetes and epilepsy. Metab Brain Dis 2023; 38:767-782. [PMID: 36598703 DOI: 10.1007/s11011-022-01154-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023]
Abstract
The brain requires a large amount of energy. Its function can be altered when energy demand exceeds supply or during metabolic disturbances such as diabetes mellitus. Diabetes, a chronic disease with a high incidence worldwide, is characterized by high glucose levels (hyperglycemia); however, hypoglycemic states may also occur due to insulin treatment or poor control of the disease. These alterations in glucose levels affect the brain and could cause epileptic seizures and status epilepticus. In addition, it is known that oxidative stress states emerge as diabetes progresses, contributing to the development of diseases secondary to diabetes, including retinopathy, nephropathy, cardiovascular alterations, and alterations in the central nervous system, such as epileptic seizures. Seizures are a complex of transient signs and symptoms resulting from abnormal, simultaneous, and excessive activity of a population of neurons, and they can be both a cause and a consequence of oxidative stress. This review aims to outline studies linking diabetes mellitus and seizures to oxidative stress, a condition that may be relevant to the development of severe seizures in diabetes mellitus patients.
Collapse
Affiliation(s)
- Karen Paola Ramos-Riera
- Doctorado de Investigaciones Cerebrales, Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Dr. Luis Castelazo Ayala s/n, Industrial Animas, 91190, Xalapa, Veracruz, México
| | - Francisca Pérez-Severiano
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, "Manuel Velasco Suarez," Insurgentes Sur 3877, 14269, La Fama, CDMX, México
| | - María Leonor López-Meraz
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Dr. Luis Castelazo Ayala s/n, Industrial Animas, 91190, Xalapa, Veracruz, México.
| |
Collapse
|
6
|
Sanchez-Rangel E, Deajon-Jackson J, Hwang JJ. Pathophysiology and management of hypoglycemia in diabetes. Ann N Y Acad Sci 2022; 1518:25-46. [PMID: 36202764 DOI: 10.1111/nyas.14904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In the century since the discovery of insulin, diabetes has changed from an early death sentence to a manageable chronic disease. This change in longevity and duration of diabetes coupled with significant advances in therapeutic options for patients has fundamentally changed the landscape of diabetes management, particularly in patients with type 1 diabetes mellitus. However, hypoglycemia remains a major barrier to achieving optimal glycemic control. Current understanding of the mechanisms of hypoglycemia has expanded to include not only counter-regulatory hormonal responses but also direct changes in brain glucose, fuel sensing, and utilization, as well as changes in neural networks that modulate behavior, mood, and cognition. Different strategies to prevent and treat hypoglycemia have been developed, including educational strategies, new insulin formulations, delivery devices, novel technologies, and pharmacologic targets. This review article will discuss current literature contributing to our understanding of the myriad of factors that lead to the development of clinically meaningful hypoglycemia and review established and novel therapies for the prevention and treatment of hypoglycemia.
Collapse
Affiliation(s)
- Elizabeth Sanchez-Rangel
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jelani Deajon-Jackson
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Janice Jin Hwang
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA.,Division of Endocrinology, Department of Internal Medicine, University of North Carolina - Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
7
|
Park YW, Deelchand DK, Joers JM, Kumar A, Alvear AB, Moheet A, Seaquist ER, Öz G. Monitoring the Neurotransmitter Response to Glycemic Changes Using an Advanced Magnetic Resonance Spectroscopy Protocol at 7T. Front Neurol 2021; 12:698675. [PMID: 34484102 PMCID: PMC8416271 DOI: 10.3389/fneur.2021.698675] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/02/2021] [Indexed: 12/28/2022] Open
Abstract
The primary excitatory and inhibitory neurotransmitters glutamate (Glu) and gamma-aminobutyric acid (GABA) are thought to be involved in the response of the brain to changes in glycemia. Therefore, their reliable measurement is critical for understanding the dynamics of these responses. The concentrations of Glu and GABA, as well as glucose (Glc) in brain tissue, can be measured in vivo using proton (1H) magnetic resonance spectroscopy (MRS). Advanced MRS methodology at ultrahigh field allows reliable monitoring of these metabolites under changing metabolic states. However, the long acquisition times needed for these experiments while maintaining blood Glc levels at predetermined targets present many challenges. We present an advanced MRS acquisition protocol that combines commercial 7T hardware (Siemens Scanner and Nova Medical head coil), BaTiO3 dielectric padding, optical motion tracking, and dynamic frequency and B0 shim updates to ensure the acquisition of reproducibly high-quality data. Data were acquired with a semi-LASER sequence [repetition time/echo time (TR/TE) = 5,000/26 ms] from volumes of interest (VOIs) in the prefrontal cortex (PFC) and hypothalamus (HTL). Five healthy volunteers were scanned to evaluate the effect of the BaTiO3 pads on B 1 + distribution. Use of BaTiO3 padding resulted in a 60% gain in signal-to-noise ratio in the PFC VOI over the acquisition without the pad. The protocol was tested in six patients with type 1 diabetes during a clamp study where euglycemic (~100 mg/dL) and hypoglycemic (~50 mg/dL) blood Glc levels were maintained in the scanner. The new protocol allowed retention of all HTL data compared with our prior experience of having to exclude approximately half of the HTL data in similar clamp experiments in the 7T scanner due to subject motion. The advanced MRS protocol showed excellent data quality (reliable quantification of 11-12 metabolites) and stability (p > 0.05 for both signal-to-noise ratio and water linewidths) between euglycemia and hypoglycemia. Decreased brain Glc levels under hypoglycemia were reliably detected in both VOIs. In addition, mean Glu level trended lower at hypoglycemia than euglycemia for both VOIs, consistent with prior observations in the occipital cortex. This protocol will allow robust mechanistic investigations of the primary neurotransmitters, Glu and GABA, under changing glycemic conditions.
Collapse
Affiliation(s)
- Young Woo Park
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| | - Dinesh K Deelchand
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| | - James M Joers
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| | - Anjali Kumar
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Alison Bunio Alvear
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Amir Moheet
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | | | - Gülin Öz
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
8
|
Henriksen MM, Andersen HU, Thorsteinsson B, Pedersen-Bjergaard U. Effects of continuous glucose monitor-recorded nocturnal hypoglycaemia on quality of life and mood during daily life in type 1 diabetes. Diabetologia 2021; 64:903-913. [PMID: 33443591 DOI: 10.1007/s00125-020-05360-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS The aim of this work was to assess the effect of spontaneous nocturnal hypoglycaemia on quality of life and mood during subsequent days in type 1 diabetes. METHODS A total of 153 people with type 1 diabetes participated in 6 days of blinded continuous glucose monitoring while documenting hypoglycaemic symptoms, quality of life and mood, daily. Hypoglycaemia was defined by interstitial glucose ≤3.9 mmol/l (IG3.9) and ≤ 3.0 mmol/l (IG3.0) for ≥15 min and was classified as asymptomatic if no hypoglycaemic symptoms were reported. RESULTS Self-estimated quality of life assessed by the EQ-5D VAS (but not by the WHO Well-Being Index) was higher the day after asymptomatic (but not after symptomatic) hypoglycaemic nights, as compared with non-hypoglycaemic nights (IG3.9, p = 0.021; IG3.0, p = 0.048). The effect increased with lower glucose nadir and longer duration of nocturnal hypoglycaemia (IG3.9, p = 0.03). The finding was confined to participants with impaired hypoglycaemia awareness. There was no effect of nocturnal hypoglycaemia on mood or self-estimated effectiveness at work the following day. CONCLUSIONS/INTERPRETATION Individuals with type 1 diabetes and impaired hypoglycaemia awareness reported higher quality of life on days preceded by nights with asymptomatic (but not symptomatic) hypoglycaemia. The effect was amplified by lower glucose nadir and longer duration of the episodes and may help explain resistance to implementation of interventions to reduce hypoglycaemia in many people with impaired hypoglycaemia awareness.
Collapse
Affiliation(s)
- Marie M Henriksen
- Department of Endocrinology and Nephrology, Nordsjællands Hospital, Hillerød, Denmark.
| | | | - Birger Thorsteinsson
- Department of Endocrinology and Nephrology, Nordsjællands Hospital, Hillerød, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ulrik Pedersen-Bjergaard
- Department of Endocrinology and Nephrology, Nordsjællands Hospital, Hillerød, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Pitchaimani V, Arumugam S, Thandavarayan RA, Karuppagounder V, Afrin MR, Sreedhar R, Harima M, Nakamura M, Watanabe K, Kodama S, Fujihara K, Sone H. Brain adaptations of insulin signaling kinases, GLUT 3, p-BADser155 and nitrotyrosine expression in various hypoglycemic models of mice. Neurochem Int 2020; 137:104745. [DOI: 10.1016/j.neuint.2020.104745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/06/2020] [Accepted: 04/13/2020] [Indexed: 12/29/2022]
|
10
|
Lei H, Gruetter R. Metabolic and perfusion responses to acute hypoglycemia in the rat cortex: A non-invasive magnetic resonance approach. J Neurochem 2020; 154:71-83. [PMID: 32306383 DOI: 10.1111/jnc.15028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 11/30/2022]
Abstract
Hypoglycemia is critical condition during diabetic treatment that involves intensive insulin therapy, and it may impair brain function. We aimed to compare cortical responses of three hypoglycemic phases and the restoration of glycemia to control levels after a severe episode in rats using non-invasive perfusion magnetic resonance (MR) imaging and localized 1 H MR spectroscopy. Under light α-chloralose anesthesia, cortical blood flow (cCBF) was 42 ± 3 ml/100 g/min at euglycemia (~ 5 mM plasma glucose), was not altered at mild hypoglycemia I (42 ± 4 ml/100 g/min, 2-3.5 mM), increased to 60 ± 8 ml/100 g/min under moderate hypoglycemia II (1-2 mM) and amplified to 190 ± 35 ml/100 g/min at severe hypoglycemia III (< 1 mM). 1 H MRS revealed metabolic changes at hypoglycemia I without any perfusion alteration. At hypoglycemia III, glutamine and glutamate decreased, whereas aspartate increased. When animals subsequently regained glycemic control, not all metabolites returned to their control levels, for example, glutamine. Meanwhile, ascorbate was increased with amplified hypoglycemic severity, whereas glutathione was reduced; these compounds did not return to normal levels upon the restoration of glycemia. Our study is the first to report cCBF and neurochemical changes in cortex upon five glycemic stages. The cortical responses of different hypoglycemic phases would explain variable neuronal damages after hypoglycemia and might help identify the degrees of hypoglycemic insults and further improve alternative therapies.
Collapse
Affiliation(s)
- Hongxia Lei
- Animal Imaging Technology (AIT), Center for Biomedical Imaging Research (CIBM), Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Rolf Gruetter
- Animal Imaging Technology (AIT), Center for Biomedical Imaging Research (CIBM), Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland.,Wuhan United Imaging Life Science Instruments Ltd., Wuhan, P.R.China.,Laboratory of Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland.,Department of Radiology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
11
|
Microglial metabolic flexibility supports immune surveillance of the brain parenchyma. Nat Commun 2020; 11:1559. [PMID: 32214088 PMCID: PMC7096448 DOI: 10.1038/s41467-020-15267-z] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/27/2020] [Indexed: 02/07/2023] Open
Abstract
Microglia are highly motile cells that continuously monitor the brain environment and respond to damage-associated cues. While glucose is the main energy substrate used by neurons in the brain, the nutrients metabolized by microglia to support surveillance of the parenchyma remain unexplored. Here, we use fluorescence lifetime imaging of intracellular NAD(P)H and time-lapse two-photon imaging of microglial dynamics in vivo and in situ, to show unique aspects of the microglial metabolic signature in the brain. Microglia are metabolically flexible and can rapidly adapt to consume glutamine as an alternative metabolic fuel in the absence of glucose. During insulin-induced hypoglycemia in vivo or in aglycemia in acute brain slices, glutaminolysis supports the maintenance of microglial process motility and damage-sensing functions. This metabolic shift sustains mitochondrial metabolism and requires mTOR-dependent signaling. This remarkable plasticity allows microglia to maintain their critical surveillance and phagocytic roles, even after brain neuroenergetic homeostasis is compromised. Glucose is the main source of fuel in the brain. Here, the authors show that in the absence of glucose, glutamine is required for microglia to maintain their immune surveillance function.
Collapse
|
12
|
Vaudano AE, Olivotto S, Ruggieri A, Gessaroli G, Talami F, Parmeggiani A, De Giorgis V, Veggiotti P, Meletti S. The effect of chronic neuroglycopenia on resting state networks in GLUT1 syndrome across the lifespan. Hum Brain Mapp 2020; 41:453-466. [PMID: 31710770 PMCID: PMC7313681 DOI: 10.1002/hbm.24815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 12/20/2022] Open
Abstract
Glucose transporter type I deficiency syndrome (GLUT1DS) is an encephalopathic disorder due to a chronic insufficient transport of glucose into the brain. PET studies in GLUT1DS documented a widespread cortico‐thalamic hypometabolism and a signal increase in the basal ganglia, regardless of age and clinical phenotype. Herein, we captured the pattern of functional connectivity of distinct striatal, cortical, and cerebellar regions in GLUT1DS (10 children, eight adults) and in healthy controls (HC, 19 children, 17 adults) during rest. Additionally, we explored for regional connectivity differences in GLUT1 children versus adults and according to the clinical presentation. Compared to HC, GLUT1DS exhibited increase connectivity within the basal ganglia circuitries and between the striatal regions with the frontal cortex and cerebellum. The excessive connectivity was predominant in patients with movement disorders and in children compared to adults, suggesting a correlation with the clinical phenotype and age at fMRI study. Our findings highlight the primary role of the striatum in the GLUT1DS pathophysiology and confirm the dependency of symptoms to the patients' chronological age. Despite the reduced chronic glucose uptake, GLUT1DS exhibit increased connectivity changes in regions highly sensible to glycopenia. Our results may portrait the effect of neuroprotective brain strategy to overcome the chronic poor energy supply during vulnerable ages.
Collapse
Affiliation(s)
- Anna Elisabetta Vaudano
- Neurology Unit, OCSAE Hospital, AOU Modena, Modena, Italy.,Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Sara Olivotto
- Pediatric Neurology Unit, V. Buzzi Hospital, University of Milan, Milan, Italy
| | - Andrea Ruggieri
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Francesca Talami
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Antonia Parmeggiani
- Child Neurology and Psychiatry Unit, Policlinico S. Orsola-Malpighi, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Italy
| | | | | | - Stefano Meletti
- Neurology Unit, OCSAE Hospital, AOU Modena, Modena, Italy.,Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
13
|
Bednařík P, Henry PG, Khowaja A, Rubin N, Kumar A, Deelchand D, Eberly LE, Seaquist E, Öz G, Moheet A. Hippocampal Neurochemical Profile and Glucose Transport Kinetics in Patients With Type 1 Diabetes. J Clin Endocrinol Metab 2020; 105:5601935. [PMID: 31637440 PMCID: PMC7046023 DOI: 10.1210/clinem/dgz062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 09/27/2019] [Indexed: 01/28/2023]
Abstract
CONTEXT Longstanding type 1 diabetes (T1D) may lead to alterations in hippocampal neurochemical profile. Upregulation of hippocampal glucose transport as a result of recurrent exposure to hypoglycemia may preserve cognitive function during future hypoglycemia in subjects with T1D and impaired awareness of hypoglycemia (IAH). The effect of T1D on hippocampal neurochemical profile and glucose transport is unknown. OBJECTIVE To test the hypothesis that hippocampal neurochemical composition is altered in T1D and glucose transport is upregulated in T1D with IAH. DESIGN AND PARTICIPANTS Hippocampal neurochemical profile was measured with single-voxel magnetic resonance spectroscopy at 3T during euglycemia in 18 healthy controls (HC), 10 T1D with IAH, and 12 T1D with normal awareness to hypoglycemia (NAH). Additionally, 12 HC, 8 T1D-IAH, and 6 T1D-NAH were scanned during hyperglycemia to assess hippocampal glucose transport with metabolic modeling. SETTING University medical center. MAIN OUTCOME MEASURES Concentrations of hippocampal neurochemicals measured during euglycemia and ratios of maximal transport rate to cerebral metabolic rate of glucose (Tmax/CMRGlc), derived from magnetic resonance spectroscopy-measured hippocampal glucose as a function of plasma glucose. RESULTS Comparison of hippocampal neurochemical profile revealed no group differences (HC, T1D, T1D-IAH, and T1D-NAH). The ratio Tmax/CMRGlc was not significantly different between the groups, T1D-IAH (1.58 ± 0.09) and HC (1.65 ± 0.07, P = 0.54), between T1D-NAH (1.50 ± 0.09) and HC (P = 0.19), and between T1D-IAH and T1D-NAH (P = 0.53). CONCLUSIONS Subjects with T1D with sufficient exposure to recurrent hypoglycemia to create IAH did not have alteration of Tmax/CMRglc or neurochemical profile compared with participants with T1D-NAH or HC.
Collapse
Affiliation(s)
- Petr Bednařík
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
- High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
- Department of Imaging Methods, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Pierre-Gilles Henry
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota
| | - Amir Khowaja
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Nathan Rubin
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Anjali Kumar
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Dinesh Deelchand
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota
| | - Lynn E Eberly
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Elizabeth Seaquist
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Gülin Öz
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota
| | - Amir Moheet
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
- Correspondence and Reprint Requests: Amir Moheet, MBBS, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Minnesota, MMC 101, 420 Delaware St. SE, Minneapolis, MN 55455. E-mail:
| |
Collapse
|
14
|
Wiegers EC, Rooijackers HM, Tack CJ, Philips BW, Heerschap A, van der Graaf M, de Galan BE. Effect of lactate administration on brain lactate levels during hypoglycemia in patients with type 1 diabetes. J Cereb Blood Flow Metab 2019; 39:1974-1982. [PMID: 29749805 PMCID: PMC6775588 DOI: 10.1177/0271678x18775884] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Administration of lactate during hypoglycemia suppresses symptoms and counterregulatory responses, as seen in patients with type 1 diabetes and impaired awareness of hypoglycemia (IAH), presumably because lactate can substitute for glucose as a brain fuel. Here, we examined whether lactate administration, in a dose sufficient to impair awareness of hypoglycemia, affects brain lactate levels in patients with normal awareness of hypoglycemia (NAH). Patients with NAH (n = 6) underwent two euglycemic-hypoglycemic clamps (2.8 mmol/L), once with sodium lactate infusion (NAH w|lac) and once with saline infusion (NAH w|placebo). Results were compared to those obtained during lactate administration in patients with IAH (n = 7) (IAH w|lac). Brain lactate levels were determined continuously with J-difference editing 1H-MRS. During lactate infusion, symptom and adrenaline responses to hypoglycemia were considerably suppressed in NAH. Infusion of lactate increased brain lactate levels modestly, but comparably, in both groups (mean increase in NAH w|lac: 0.12 ± 0.05 µmol/g and in IAH w|lac: 0.06 ± 0.04 µmol/g). The modest increase in brain lactate may suggest that the excess of lactate is immediately metabolized by the brain, which in turn may explain the suppressive effects of lactate on awareness of hypoglycemia observed in patients with NAH.
Collapse
Affiliation(s)
- Evita C Wiegers
- Department of Radiology and Nuclear Medicine, Radboud university medical center, Nijmegen, The Netherlands
| | - Hanne M Rooijackers
- Department of Internal Medicine, Radboud university medical center, Nijmegen, The Netherlands
| | - Cees J Tack
- Department of Internal Medicine, Radboud university medical center, Nijmegen, The Netherlands
| | - Bart Wj Philips
- Department of Radiology and Nuclear Medicine, Radboud university medical center, Nijmegen, The Netherlands
| | - Arend Heerschap
- Department of Radiology and Nuclear Medicine, Radboud university medical center, Nijmegen, The Netherlands
| | - Marinette van der Graaf
- Department of Radiology and Nuclear Medicine, Radboud university medical center, Nijmegen, The Netherlands.,Department of Pediatrics, Radboud university medical center, Nijmegen, The Netherlands
| | - Bastiaan E de Galan
- Department of Internal Medicine, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
15
|
Wiegers EC, Rooijackers HM, van Asten JJA, Tack CJ, Heerschap A, de Galan BE, van der Graaf M. Elevated brain glutamate levels in type 1 diabetes: correlations with glycaemic control and age of disease onset but not with hypoglycaemia awareness status. Diabetologia 2019; 62:1065-1073. [PMID: 31001674 PMCID: PMC6509078 DOI: 10.1007/s00125-019-4862-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/04/2019] [Indexed: 12/27/2022]
Abstract
AIMS/HYPOTHESIS Chronic hyperglycaemia in type 1 diabetes affects the structure and functioning of the brain, but the impact of recurrent hypoglycaemia is unclear. Changes in the neurochemical profile have been linked to loss of neuronal function. We therefore aimed to investigate the impact of type 1 diabetes and burden of hypoglycaemia on brain metabolite levels, in which we assumed the burden to be high in individuals with impaired awareness of hypoglycaemia (IAH) and low in those with normal awareness of hypoglycaemia (NAH). METHODS We investigated 13 non-diabetic control participants, 18 individuals with type 1 diabetes and NAH and 13 individuals with type 1 diabetes and IAH. Brain metabolite levels were determined by analysing previously obtained 1H magnetic resonance spectroscopy data, measured under hyperinsulinaemic-euglycaemic conditions. RESULTS Brain glutamate levels were higher in participants with diabetes, both with NAH (+15%, p = 0.013) and with IAH (+19%, p = 0.003), compared with control participants. Cerebral glutamate levels correlated with HbA1c levels (r = 0.40; p = 0.03) and correlated inversely (r = -0.36; p = 0.04) with the age at diagnosis of diabetes. Other metabolite levels did not differ between groups, apart from an increase in aspartate in IAH. CONCLUSIONS/INTERPRETATION In conclusion, brain glutamate levels are elevated in people with type 1 diabetes and correlate with glycaemic control and age of disease diagnosis, but not with burden of hypoglycaemia as reflected by IAH. This suggests a potential role for glutamate as an early marker of hyperglycaemia-induced cerebral complications of type 1 diabetes. ClinicalTrials.gov NCT03286816; NCT02146404; NCT02308293.
Collapse
Affiliation(s)
- Evita C Wiegers
- Department of Radiology and Nuclear Medicine (766), Radboud university medical center, PO Box 9101, 6500 HB, Nijmegen, the Netherlands.
| | - Hanne M Rooijackers
- Department of Internal Medicine, Radboud university medical center, Nijmegen, the Netherlands
| | - Jack J A van Asten
- Department of Radiology and Nuclear Medicine (766), Radboud university medical center, PO Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Cees J Tack
- Department of Internal Medicine, Radboud university medical center, Nijmegen, the Netherlands
| | - Arend Heerschap
- Department of Radiology and Nuclear Medicine (766), Radboud university medical center, PO Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Bastiaan E de Galan
- Department of Internal Medicine, Radboud university medical center, Nijmegen, the Netherlands
| | - Marinette van der Graaf
- Department of Radiology and Nuclear Medicine (766), Radboud university medical center, PO Box 9101, 6500 HB, Nijmegen, the Netherlands
- Department of Pediatrics, Radboud university medical center, Nijmegen, the Netherlands
| |
Collapse
|
16
|
Stanley S, Moheet A, Seaquist ER. Central Mechanisms of Glucose Sensing and Counterregulation in Defense of Hypoglycemia. Endocr Rev 2019; 40:768-788. [PMID: 30689785 PMCID: PMC6505456 DOI: 10.1210/er.2018-00226] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/17/2019] [Indexed: 12/12/2022]
Abstract
Glucose homeostasis requires an organism to rapidly respond to changes in plasma glucose concentrations. Iatrogenic hypoglycemia as a result of treatment with insulin or sulfonylureas is the most common cause of hypoglycemia in humans and is generally only seen in patients with diabetes who take these medications. The first response to a fall in glucose is the detection of impending hypoglycemia by hypoglycemia-detecting sensors, including glucose-sensing neurons in the hypothalamus and other regions. This detection is then linked to a series of neural and hormonal responses that serve to prevent the fall in blood glucose and restore euglycemia. In this review, we discuss the current state of knowledge about central glucose sensing and how detection of a fall in glucose leads to the stimulation of counterregulatory hormone and behavior responses. We also review how diabetes and recurrent hypoglycemia impact glucose sensing and counterregulation, leading to development of impaired awareness of hypoglycemia in diabetes.
Collapse
Affiliation(s)
- Sarah Stanley
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Amir Moheet
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Elizabeth R Seaquist
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
17
|
Bednarik P, Moheet AA, Grohn H, Kumar AF, Eberly LE, Seaquist ER, Mangia S. Type 1 Diabetes and Impaired Awareness of Hypoglycemia Are Associated with Reduced Brain Gray Matter Volumes. Front Neurosci 2017; 11:529. [PMID: 28993722 PMCID: PMC5622182 DOI: 10.3389/fnins.2017.00529] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 09/11/2017] [Indexed: 12/31/2022] Open
Abstract
In this study, we retrospectively analyzed the anatomical MRI data acquired from 52 subjects with type 1 diabetes (26M/26F, 36 ± 11 years old, A1C = 7.2 ± 0.9%) and 50 age, sex and BMI frequency-matched non-diabetic controls (25M/25F, 36 ± 14 years old). The T1D group was further sub-divided based on whether subjects had normal, impaired, or indeterminate awareness of hypoglycemia (n = 31, 20, and 1, respectively). Our goals were to test whether the gray matter (GM) volumes of selected brain regions were associated with diabetes status as well as with the status of hypoglycemia awareness. T1D subjects were found to have slightly smaller volume of the whole cortex as compared to controls (-2.7%, p = 0.016), with the most affected brain region being the frontal lobe (-3.6%, p = 0.024). Similar differences of even larger magnitude were observed among the T1D subjects based on their hypoglycemia awareness status. Indeed, compared to the patients with normal awareness of hypoglycemia, patients with impaired awareness had smaller volume of the whole cortex (-7.9%, p = 0.0009), and in particular of the frontal lobe (-9.1%, p = 0.006), parietal lobe (-8.0%, p = 0.015) and temporal lobe (-8.2%, p = 0.009). Such differences were very similar to those observed between patients with impaired awareness and controls (-7.6%, p = 0.0002 in whole cortex, -9.1%, p = 0.0003 in frontal lobe, -7.8%, p = 0.002 in parietal lobe, and -6.4%, p = 0.019 in temporal lobe). On the other hand, patients with normal awareness did not present significant volume differences compared to controls. No group-differences were observed in the occipital lobe or in the anterior cingulate, posterior cingulate, hippocampus, and thalamus. We conclude that diabetes status is associated with a small but statistically significant reduction of the whole cortex volume, mainly in the frontal lobe. The most prominent structural effects occurred in patients with impaired awareness of hypoglycemia (IAH) as compared to those with normal awareness, perhaps due to the long-term exposure to recurrent episodes of hypoglycemia. Future studies aimed at quantifying relationships of structural outcomes with functional outcomes, with cognitive performance, as well as with parameters describing glucose variability and severity of hypoglycemia episodes, will be necessary to further understand the impact of T1D on the brain.
Collapse
Affiliation(s)
- Petr Bednarik
- Department of Radiology, Center for Magnetic Resonance Research, University of MinnesotaMinneapolis, MN, United States
| | - Amir A Moheet
- Department of Medicine, University of MinnesotaMinneapolis, MN, United States
| | - Heidi Grohn
- Department of Radiology, Center for Magnetic Resonance Research, University of MinnesotaMinneapolis, MN, United States
| | - Anjali F Kumar
- Department of Medicine, University of MinnesotaMinneapolis, MN, United States
| | - Lynn E Eberly
- Division of Biostatistics, University of MinnesotaMinneapolis, MN, United States
| | | | - Silvia Mangia
- Department of Radiology, Center for Magnetic Resonance Research, University of MinnesotaMinneapolis, MN, United States
| |
Collapse
|
18
|
Chowdhury GMI, Wang P, Ciardi A, Mamillapalli R, Johnson J, Zhu W, Eid T, Behar K, Chan O. Impaired Glutamatergic Neurotransmission in the Ventromedial Hypothalamus May Contribute to Defective Counterregulation in Recurrently Hypoglycemic Rats. Diabetes 2017; 66:1979-1989. [PMID: 28416628 PMCID: PMC5482086 DOI: 10.2337/db16-1589] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 04/10/2017] [Indexed: 12/11/2022]
Abstract
The objectives of this study were to understand the role of glutamatergic neurotransmission in the ventromedial hypothalamus (VMH) in response to hypoglycemia and to elucidate the effects of recurrent hypoglycemia (RH) on this neurotransmitter. We 1) measured changes in interstitial VMH glutamate levels by using microdialysis and biosensors, 2) identified the receptors that mediate glutamate's stimulatory effects on the counterregulatory responses, 3) quantified glutamate metabolic enzyme levels in the VMH, 4) examined astrocytic glutamate reuptake mechanisms, and 5) used 1H-[13C]-nuclear magnetic resonance (NMR) spectroscopy to evaluate the effects of RH on neuronal glutamate metabolism. We demonstrated that glutamate acts through kainic acid receptors in the VMH to augment counterregulatory responses. Biosensors showed that the normal transient rise in glutamate levels in response to hypoglycemia is absent in RH animals. More importantly, RH reduced extracellular glutamate concentrations partly as a result of decreased glutaminase expression. Decreased glutamate was also associated with reduced astrocytic glutamate transport in the VMH. NMR analysis revealed a decrease in [4-13C]glutamate but unaltered [4-13C]glutamine concentrations in the VMH of RH animals. The data suggest that glutamate release is important for proper activation of the counterregulatory response to hypoglycemia and that impairment of glutamate metabolic and resynthetic pathways with RH may contribute to counterregulatory failure.
Collapse
Affiliation(s)
- Golam M I Chowdhury
- Department of Psychiatry, Yale School of Medicine, New Haven, CT
- Magnetic Resonance Research Center, Yale School of Medicine, New Haven, CT
| | - Peili Wang
- Section of Endocrinology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Alisha Ciardi
- Section of Endocrinology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Ramanaiah Mamillapalli
- Section of Endocrinology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Justin Johnson
- Section of Endocrinology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Wanling Zhu
- Section of Endocrinology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Tore Eid
- Departments of Neurosurgery and Laboratory Medicine, Yale School of Medicine, New Haven, CT
| | - Kevin Behar
- Department of Psychiatry, Yale School of Medicine, New Haven, CT
- Magnetic Resonance Research Center, Yale School of Medicine, New Haven, CT
| | - Owen Chan
- Section of Endocrinology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
- Division of Endocrinology, Metabolism, and Diabetes, Department of Internal Medicine, University of Utah, Salt Lake City, UT
| |
Collapse
|
19
|
Rooijackers HM, Wiegers EC, van der Graaf M, Thijssen DH, Kessels RPC, Tack CJ, de Galan BE. A Single Bout of High-Intensity Interval Training Reduces Awareness of Subsequent Hypoglycemia in Patients With Type 1 Diabetes. Diabetes 2017; 66:1990-1998. [PMID: 28420673 DOI: 10.2337/db16-1535] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/11/2017] [Indexed: 11/13/2022]
Abstract
High-intensity interval training (HIIT) has gained increasing popularity in patients with diabetes. HIIT acutely increases plasma lactate levels. This may be important, since the administration of lactate during hypoglycemia suppresses symptoms and counterregulation while preserving cognitive function. We tested the hypothesis that, in the short term, HIIT reduces awareness of hypoglycemia and attenuates hypoglycemia-induced cognitive dysfunction. In a randomized crossover trial, patients with type 1 diabetes and normal awareness of hypoglycemia (NAH), patients with impaired awareness of hypoglycemia (IAH), and healthy participants (n = 10 per group) underwent a hyperinsulinemic-hypoglycemic (2.6 mmol/L) clamp, either after a HIIT session or after seated rest. Compared with rest, HIIT reduced symptoms of hypoglycemia in patients with NAH but not in healthy participants or patients with IAH. HIIT attenuated hypoglycemia-induced cognitive dysfunction, which was mainly driven by changes in the NAH subgroup. HIIT suppressed cortisol and growth hormone responses, but not catecholamine responses to hypoglycemia. The present findings demonstrate that a single HIIT session rapidly reduces awareness of subsequent hypoglycemia in patients with type 1 diabetes and NAH, but does not in patients with IAH, and attenuates hypoglycemia-induced cognitive dysfunction. The role of exercise-induced lactate in mediating these effects, potentially serving as an alternative fuel for the brain, should be further explored.
Collapse
Affiliation(s)
- Hanne M Rooijackers
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Evita C Wiegers
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marinette van der Graaf
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Pediatrics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Dick H Thijssen
- Department of Physiology, Radboud University Medical Center, Nijmegen, the Netherlands
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, U.K
| | - Roy P C Kessels
- Department of Medical Psychology, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Cees J Tack
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Bastiaan E de Galan
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
20
|
Functional outcome of patients with prolonged hypoglycemic encephalopathy. Ann Intensive Care 2017; 7:54. [PMID: 28534234 PMCID: PMC5440422 DOI: 10.1186/s13613-017-0277-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 05/08/2017] [Indexed: 11/22/2022] Open
Abstract
Background Little is known about the causes, clinical course and long-term outcome of comatose patients with prolonged hypoglycemic encephalopathy. Methods In a multicenter retrospective study conducted in patients hospitalized from July 1, 2004, to July 1, 2014, we investigated functional long-term prognosis and identified prognosis factors of patients admitted in an intensive care unit (ICU) with prolonged neurological manifestations related to hypoglycemia. Eligible patients were adults admitted to the ICU with a Glasgow Coma Score <8 due to hypoglycemia and persistent consciousness disorders after normalizing blood glucose levels. Patients with possible other causes of consciousness disorders, previous cognitive disorders, hypothermia <35 °C or circulatory arrest within 24 h after ICU admission, were excluded. Follow-up phone call was used to determine patients’ functional outcome using modified Rankin Scale (mRS) at a minimum of 1-year follow-up with mRS 0–3 defining good and mRS 4–6 poor outcomes. Results Forty-nine patients were included. Causes of hypoglycemia were various, mainly including insulin or oral antidiabetic drugs abuse (65%) and neuroendocrine carcinoma (16%). Twenty (41%) patients died in the ICU, two (4%) patients further died and nine (18%) patients had a poor outcome at long-term follow-up. Five patients discharged from the ICU with mRS > 3 improved enough to be in the good outcome group 1 year later. Twenty-two (45%) patients underwent therapeutic limitation, mainly related to no expected hope for improvement. On multivariate analysis, only low mRS prior to ICU admission (OR 2.6; 95% CI 1.1–6.3; P = 0.03) and normal brain imaging (OR 7.1; 95% CI 1.1–44; P = 0.03) were significantly predictive of a good outcome. All patients (n = 15) who remained hypoglycemic >480 min had a poor outcome. Conclusion Poor outcome was observed in about 60% of this population of hypoglycemic encephalopathy. However, some patients can recover satisfactorily over time.
Collapse
|
21
|
Wiegers EC, Rooijackers HM, Tack CJ, Heerschap A, de Galan BE, van der Graaf M. Brain Lactate Concentration Falls in Response to Hypoglycemia in Patients With Type 1 Diabetes and Impaired Awareness of Hypoglycemia. Diabetes 2016; 65:1601-5. [PMID: 26993070 DOI: 10.2337/db16-0068] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/09/2016] [Indexed: 11/13/2022]
Abstract
Brain lactate may be involved in the development of impaired awareness of hypoglycemia (IAH), a condition that affects approximately 25% of patients with type 1 diabetes and increases the risk of severe hypoglycemia. The aim of this study was to investigate the effect of acute hypoglycemia on brain lactate concentration in patients with IAH as compared with those with normal awareness of hypoglycemia (NAH) and healthy control subjects (n = 7 per group). After an overnight fast, all subjects underwent a two-step hyperinsulinemic euglycemic (5.0 mmol/L)-hypoglycemic (2.8 mmol/L) glucose clamp. Brain lactate concentrations were measured continuously with (1)H-MRS using a specific lactate detection method. Hypoglycemia generated symptoms in patients with NAH and healthy control subjects but not in patients with IAH. Brain lactate fell significantly by ∼20% in response to hypoglycemia in patients with type 1 diabetes with IAH but remained stable in both healthy control subjects and in patients with NAH. The fall in brain lactate is compatible with increased brain lactate oxidation providing an alternative fuel source during hypoglycemia, which may contribute to the impaired detection of hypoglycemia.
Collapse
Affiliation(s)
- Evita C Wiegers
- Department of Radiology and Nuclear Medicine, Radboud university medical center, Nijmegen, the Netherlands
| | - Hanne M Rooijackers
- Department of Internal Medicine, Radboud university medical center, Nijmegen, the Netherlands
| | - Cees J Tack
- Department of Internal Medicine, Radboud university medical center, Nijmegen, the Netherlands
| | - Arend Heerschap
- Department of Radiology and Nuclear Medicine, Radboud university medical center, Nijmegen, the Netherlands
| | - Bastiaan E de Galan
- Department of Internal Medicine, Radboud university medical center, Nijmegen, the Netherlands
| | - Marinette van der Graaf
- Department of Radiology and Nuclear Medicine, Radboud university medical center, Nijmegen, the Netherlands Department of Pediatrics, Radboud university medical center, Nijmegen, the Netherlands
| |
Collapse
|
22
|
Rooijackers HMM, Wiegers EC, Tack CJ, van der Graaf M, de Galan BE. Brain glucose metabolism during hypoglycemia in type 1 diabetes: insights from functional and metabolic neuroimaging studies. Cell Mol Life Sci 2016; 73:705-22. [PMID: 26521082 PMCID: PMC4735263 DOI: 10.1007/s00018-015-2079-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 10/16/2015] [Accepted: 10/20/2015] [Indexed: 12/30/2022]
Abstract
Hypoglycemia is the most frequent complication of insulin therapy in patients with type 1 diabetes. Since the brain is reliant on circulating glucose as its main source of energy, hypoglycemia poses a threat for normal brain function. Paradoxically, although hypoglycemia commonly induces immediate decline in cognitive function, long-lasting changes in brain structure and cognitive function are uncommon in patients with type 1 diabetes. In fact, recurrent hypoglycemia initiates a process of habituation that suppresses hormonal responses to and impairs awareness of subsequent hypoglycemia, which has been attributed to adaptations in the brain. These observations sparked great scientific interest into the brain's handling of glucose during (recurrent) hypoglycemia. Various neuroimaging techniques have been employed to study brain (glucose) metabolism, including PET, fMRI, MRS and ASL. This review discusses what is currently known about cerebral metabolism during hypoglycemia, and how findings obtained by functional and metabolic neuroimaging techniques contributed to this knowledge.
Collapse
Affiliation(s)
- Hanne M M Rooijackers
- Department of Internal Medicine 463, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | - Evita C Wiegers
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Cees J Tack
- Department of Internal Medicine 463, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Marinette van der Graaf
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Pediatrics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bastiaan E de Galan
- Department of Internal Medicine 463, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| |
Collapse
|
23
|
Dagogo-Jack S. Philip E. Cryer, MD: Seminal Contributions to the Understanding of Hypoglycemia and Glucose Counterregulation and the Discovery of HAAF (Cryer Syndrome). Diabetes Care 2015; 38:2193-9. [PMID: 26604275 PMCID: PMC4876742 DOI: 10.2337/dc15-0533] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Optimized glycemic control prevents and slows the progression of long-term complications in patients with type 1 and type 2 diabetes. In healthy individuals, a decrease in plasma glucose below the physiological range triggers defensive counterregulatory responses that restore euglycemia. Many individuals with diabetes harbor defects in their defenses against hypoglycemia, making iatrogenic hypoglycemia the Achilles heel of glycemic control. This Profile in Progress focuses on the seminal contributions of Philip E. Cryer, MD, to our understanding of hypoglycemia and glucose counterregulation, particularly his discovery of the syndrome of hypoglycemia-associated autonomic failure (HAAF).
Collapse
Affiliation(s)
- Samuel Dagogo-Jack
- Division of Endocrinology, Diabetes and Metabolism, The University of Tennessee Health Science Center, Memphis, TN
| |
Collapse
|
24
|
Functional Connectivity of Insula, Basal Ganglia, and Prefrontal Executive Control Networks during Hypoglycemia in Type 1 Diabetes. J Neurosci 2015; 35:11012-23. [PMID: 26245963 DOI: 10.1523/jneurosci.0319-15.2015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
UNLABELLED Human brain networks mediating interoceptive, behavioral, and cognitive aspects of glycemic control are not well studied. Using group independent component analysis with dual-regression approach of functional magnetic resonance imaging data, we examined the functional connectivity changes of large-scale resting state networks during sequential euglycemic-hypoglycemic clamp studies in patients with type 1 diabetes and nondiabetic controls and how these changes during hypoglycemia were related to symptoms of hypoglycemia awareness and to concurrent glycosylated hemoglobin (HbA1c) levels. During hypoglycemia, diabetic patients showed increased functional connectivity of the right anterior insula and the prefrontal cortex within the executive control network, which was associated with higher HbA1c. Controls showed decreased functional connectivity of the right anterior insula with the cerebellum/basal ganglia network and of temporal regions within the temporal pole network and increased functional connectivity in the default mode and sensorimotor networks. Functional connectivity reductions in the right basal ganglia were correlated with increases of self-reported hypoglycemic symptoms in controls but not in patients. Resting state networks that showed different group functional connectivity during hypoglycemia may be most sensitive to glycemic environment, and their connectivity patterns may have adapted to repeated glycemic excursions present in type 1 diabetes. Our results suggest that basal ganglia and insula mediation of interoceptive awareness during hypoglycemia is altered in type 1 diabetes. These changes could be neuroplastic adaptations to frequent hypoglycemic experiences. Functional connectivity changes in the insula and prefrontal cognitive networks could also reflect an adaptation to changes in brain metabolic pathways associated with chronic hyperglycemia. SIGNIFICANCE STATEMENT The major factor limiting improved glucose control in type 1 diabetes is the significant increase in hypoglycemia associated with insulin treatment. Repeated exposure to hypoglycemia alters patients' ability to recognize the autonomic and neuroglycopenic symptoms associated with low plasma glucose levels. We examined brain resting state networks during the induction of hypoglycemia in diabetic and control subjects and found differences in networks involved in sensorimotor function, cognition, and interoceptive awareness that were related to chronic levels of glycemic control. These findings identify brain regions that are sensitive to variations in plasma glucose levels and may also provide a basis for understanding the mechanisms underlying the increased incidence of cognitive impairment and affective disorders seen in patients with diabetes.
Collapse
|
25
|
Region-specific cerebral metabolic alterations in streptozotocin-induced type 1 diabetic rats: an in vivo proton magnetic resonance spectroscopy study. J Cereb Blood Flow Metab 2015; 35:1738-45. [PMID: 26036938 PMCID: PMC4635228 DOI: 10.1038/jcbfm.2015.111] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 04/01/2015] [Accepted: 05/06/2015] [Indexed: 12/26/2022]
Abstract
Clinical and experimental in vivo (1)H-magnetic resonance spectroscopy ((1)H-MRS) studies have demonstrated that type 1 diabetes mellitus (T1DM) is associated with cerebral metabolic abnormalities. However, less is known whether T1DM induces different metabolic disturbances in different brain regions. In this study, in vivo (1)H-MRS was used to measure metabolic alterations in the visual cortex, striatum, and hippocampus of streptozotocin (STZ)-induced uncontrolled T1DM rats at 4 days and 4 weeks after induction. It was observed that altered neuronal metabolism occurred in STZ-treated rats as early as 4 days after induction. At 4 weeks, T1DM-related metabolic disturbances were clearly region specific. The diabetic visual cortex had more or less normal-appearing metabolic profile; while the striatum and hippocampus showed similar abnormalities in neuronal metabolism involving N-acetyl aspartate and glutamate; but only the hippocampus exhibited significant changes in glial markers such as taurine and myo-inositol. It is concluded that cerebral metabolic perturbations in STZ-induced T1DM rats are region specific at 4 weeks after induction, perhaps as a manifestation of varied vulnerability among the brain regions to sustained hyperglycemia.
Collapse
|