1
|
Wu N, Zhang X, Li Y, Zhang J, Cui M. Fluorinated Coumarin Derivatives as Selective PET Tracer for MAO-B Imaging. J Med Chem 2025; 68:324-337. [PMID: 39699074 DOI: 10.1021/acs.jmedchem.4c01952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Monoamine oxidase-B (MAO-B), predominantly exists on the outer mitochondrial membrane of astrocytes, serves as a crucial biomarker for reactive astrocytes during neuroinflammatory responses and various neurodegenerative diseases. In this study, we synthesized a series of fluorinated coumarin derivatives and evaluated their structure-activity relationship and subtype selectivity for MAO-B. Following this, the preclinical bioevaluation containing in vivo positron emission tomography (PET) imaging and ex vivo autoradiography studies led to the identification of the novel PET tracer, [18F]8, which demonstrated high affinity for MAO-B (IC50 = 0.59 nM) and appreciable brain pharmacokinetics (SUVmax = 2.15 at 2 min, brain2min/60min = 7.67) in rats. Furthermore, the radioactivates from [18F]8 in regions of MAO-B expression could be effectively inhibited by Selegiline. All these positive findings supported that [18F]8 is a promising candidate for MAO-B PET imaging, which merits further evaluation.
Collapse
Affiliation(s)
- Nan Wu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiaojun Zhang
- Department of Nuclear Medicine, Chinese PLA General Hospital, Beijing 100853, China
| | - Yuying Li
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jinming Zhang
- Department of Nuclear Medicine, Chinese PLA General Hospital, Beijing 100853, China
| | - Mengchao Cui
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
2
|
Chauveau F, Winkeler A, Chalon S, Boutin H, Becker G. PET imaging of neuroinflammation: any credible alternatives to TSPO yet? Mol Psychiatry 2025; 30:213-228. [PMID: 38997465 DOI: 10.1038/s41380-024-02656-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024]
Abstract
Over the last decades, the role of neuroinflammation in neuropsychiatric conditions has attracted an exponentially growing interest. A key driver for this trend was the ability to image brain inflammation in vivo using PET radioligands targeting the Translocator Protein 18 kDa (TSPO), which is known to be expressed in activated microglia and astrocytes upon inflammatory events as well as constitutively in endothelial cells. TSPO is a mitochondrial protein that is expressed mostly by microglial cells upon activation but is also expressed by astrocytes in some conditions and constitutively by endothelial cells. Therefore, our current understanding of neuroinflammation dynamics is hampered by the lack of alternative targets available for PET imaging. We performed a systematic search and review on radiotracers developed for neuroinflammation PET imaging apart from TSPO. The following targets of interest were identified through literature screening (including previous narrative reviews): P2Y12R, P2X7R, CSF1R, COX (microglial targets), MAO-B, I2BS (astrocytic targets), CB2R & S1PRs (not specific of a single cell type). We determined the level of development and provided a scoping review for each target. Strikingly, astrocytic biomarker MAO-B has progressed in clinical investigations the furthest, while few radiotracers (notably targeting S1P1Rs, CSF1R) are being implemented in clinical investigations. Other targets such as CB2R and P2X7R have proven disappointing in clinical studies (e.g. poor signal, lack of changes in disease conditions, etc.). While astrocytic targets are promising, development of new biomarkers and tracers specific for microglial activation has proven challenging.
Collapse
Affiliation(s)
- Fabien Chauveau
- Université Claude Bernard Lyon 1, Centre de Recherche en Neurosciences de Lyon, Inserm U1028, CNRS UMR5292, BIORAN, Groupement Hospitalier Est - CERMEP, 59 boulevard Pinel, 69677, Bron, Cedex, France
| | - Alexandra Winkeler
- Université Paris-Saclay, Inserm, CNRS, CEA, BioMaps, Service Hospitalier Frédéric Joliot, 4 place du général Leclerc, 91401, Orsay, France
| | - Sylvie Chalon
- UMR 1253 iBrain, Université de Tours - INSERM, Bâtiment Planiol, UFR de Médecine, 10 Boulevard Tonnellé, 37032, Tours, Cedex 01, France
| | - Hervé Boutin
- UMR 1253 iBrain, Université de Tours - INSERM, Bâtiment Planiol, UFR de Médecine, 10 Boulevard Tonnellé, 37032, Tours, Cedex 01, France.
| | - Guillaume Becker
- Université Claude Bernard Lyon 1, Centre de Recherche en Neurosciences de Lyon, Inserm U1028, CNRS UMR5292, BIORAN, Groupement Hospitalier Est - CERMEP, 59 boulevard Pinel, 69677, Bron, Cedex, France
- Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail, 14 rue Pierre et Marie Curie, 94701, Maisons-Alfort, Cedex, France
| |
Collapse
|
3
|
Nisha Aji K, Lalang N, Ramos-Jiménez C, Rahimian R, Mechawar N, Turecki G, Chartrand D, Boileau I, Meyer JH, Rusjan PM, Mizrahi R. Evidence of altered monoamine oxidase B, an astroglia marker, in early psychosis and high-risk state. Mol Psychiatry 2024:10.1038/s41380-024-02816-x. [PMID: 39511452 DOI: 10.1038/s41380-024-02816-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 11/15/2024]
Abstract
A novel radiotracer, [11C]SL25.1188, targets monoamine oxidase-B (MAO-B) enzyme, found primarily in astrocytes, which metabolizes monoamines (including dopamine), particularly in subcortical regions. Altered astrocyte function in schizophrenia is supported by convergent evidence from post-mortem, genetic, transcriptomic, peripheral and preclinical findings. We aimed to test whether levels of MAO-B, an index of astrocyte function are low in the living brains of early psychosis and their high-risk states. Thirty-eight participants including antipsychotic-free/minimally exposed clinical participants with first-episode psychosis (FEP), clinical high-risk (CHR) individuals and healthy volunteers (HVs) underwent a 90-min positron emission tomography (PET) scan with [11C]SL25.1188, to measure MAO-B VT, an index of MAO-B concentration. Participants were excluded if tested positive on urine drug screen (except for cannabis). This study of 14 FEP (mean[SD] age, 25.7[5.7] years; 6 F), 7 CHR (mean[SD] age, 20.9[3.7] years; 4 F) and 17 HV (mean[SD] age, 31.2[13.9] years; 9 F) demonstrated significant group differences in regional MAO-B VT (F(2,37.42) = 4.56, p = 0.02, Cohen's f = 0.49), controlling for tobacco (F (1,37.42) = 5.37, p = 0.03) and cannabis use (F(1,37.42) = 5.11, p = 0.03) with significantly lower MAO-B VT in CHR compared to HV (Cohen's d = 0.99). We report a significant cannabis effect on MAO-B VT (F(1,39.19) = 12.57, p = 0.001, Cohen's f = 0.57), with a significant group-by-cannabis interaction (F(2,37.30) = 3.82, p = 0.03, Cohen's f = 0.45), indicating lower MAO-B VT in cannabis-using clinical groups. Lower MAO-B VT levels were more robust in striatal than cortical regions, in both clinical groups (F(12,46.84) = 2.08, p = 0.04, Cohen's f = 0.73) and in cannabis users (F(6,46.84) = 6.42, p < 0.001, Cohen's f = 0.91). Lower MAO-B concentration supports astrocyte dysfunction in cannabis-using CHR and FEP clinical populations. Lower MAO-B is consistent with replicated striatal dopamine elevation in psychosis, as well as astrocyte dysfunction in schizophrenia.
Collapse
Affiliation(s)
- Kankana Nisha Aji
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
- Clinical and Translational Sciences Lab, Douglas Research Centre, Montreal, QC, Canada
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Nittha Lalang
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
- Vertex Pharmaceuticals, Boston, MA, USA
| | - Christian Ramos-Jiménez
- Clinical and Translational Sciences Lab, Douglas Research Centre, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Reza Rahimian
- Douglas Mental Health University Institute, McGill Group for Suicide Studies, Verdun, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Naguib Mechawar
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- Douglas Mental Health University Institute, McGill Group for Suicide Studies, Verdun, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Gustavo Turecki
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- Douglas Mental Health University Institute, McGill Group for Suicide Studies, Verdun, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Daniel Chartrand
- Department of Anesthesia, McGill University, Montreal, QC, Canada
- Department of Anesthesia, Montreal Neurological Institute, Montreal, QC, Canada
| | - Isabelle Boileau
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Jeffrey H Meyer
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Pablo M Rusjan
- Clinical and Translational Sciences Lab, Douglas Research Centre, Montreal, QC, Canada.
- Department of Psychiatry, McGill University, Montreal, QC, Canada.
| | - Romina Mizrahi
- Clinical and Translational Sciences Lab, Douglas Research Centre, Montreal, QC, Canada.
- Department of Psychiatry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
4
|
Lopresti BJ, Stehouwer J, Reese AC, Mason NS, Royse SK, Narendran R, Laymon CM, Lopez OL, Cohen AD, Mathis CA, Villemagne VL. Kinetic modeling of the monoamine oxidase-B radioligand [ 18F]SMBT-1 in human brain with positron emission tomography. J Cereb Blood Flow Metab 2024; 44:1262-1276. [PMID: 38735059 PMCID: PMC11542143 DOI: 10.1177/0271678x241254679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/29/2024] [Accepted: 04/07/2024] [Indexed: 05/14/2024]
Abstract
This paper describes pharmacokinetic analyses of the monoamine-oxidase-B (MAO-B) radiotracer [18F](S)-(2-methylpyrid-5-yl)-6-[(3-fluoro-2-hydroxy)propoxy]quinoline ([18F]SMBT-1) for positron emission tomography (PET) brain imaging. Brain MAO-B expression is widespread, predominantly within astrocytes. Reactive astrogliosis in response to neurodegenerative disease pathology is associated with MAO-B overexpression. Fourteen elderly subjects (8 control, 5 mild cognitive impairment, 1 Alzheimer's disease) with amyloid ([11C]PiB) and tau ([18F]flortaucipir) imaging assessments underwent dynamic [18F]SMBT-1 PET imaging with arterial input function determination. [18F]SMBT-1 showed high brain uptake and a retention pattern consistent with the known MAO-B distribution. A two-tissue compartment (2TC) model where the K1/k2 ratio was fixed to a whole brain value best described [18F]SMBT-1 kinetics. The 2TC total volume of distribution (VT) was well identified and highly correlated (r2∼0.8) with post-mortem MAO-B indices. Cerebellar grey matter (CGM) showed the lowest mean VT of any region and is considered the optimal pseudo-reference region. Simplified analysis methods including reference tissue models, non-compartmental models, and standard uptake value ratios (SUVR) agreed with 2TC outcomes (r2 > 0.9) but with varying bias. We found the CGM-normalized 70-90 min SUVR to be highly correlated (r2 = 0.93) with the 2TC distribution volume ratio (DVR) with acceptable bias (∼10%), representing a practical alternative for [18F]SMBT-1 analyses.
Collapse
Affiliation(s)
- Brian J Lopresti
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jeffrey Stehouwer
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alexandria C Reese
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Neale S Mason
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sarah K Royse
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rajesh Narendran
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Charles M Laymon
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Dept. of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Oscar L Lopez
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Clinical and Translational Sciences Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ann D Cohen
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Chester A Mathis
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Victor L Villemagne
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
5
|
Braga J, Kuik EJY, Lepra M, Rusjan PM, Kish SJ, Vieira EL, Nasser Z, Verhoeff N, Vasdev N, Chao T, Bagby M, Boileau I, Kloiber S, Husain MI, Kolla N, Koshimori Y, Faiz K, Wang W, Meyer JH. Astrogliosis Marker [ 11C]SL25.1188 After COVID-19 With Ongoing Depressive and Cognitive Symptoms. Biol Psychiatry 2024:S0006-3223(24)01656-1. [PMID: 39395470 DOI: 10.1016/j.biopsych.2024.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/30/2024] [Accepted: 09/25/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND After acute COVID-19, 5% of people experience persistent depressive symptoms and reduced cognitive function (COVID-DC). Theoretical models propose that astrogliosis is important in long COVID, but measures primarily indicative of astrogliosis have not been studied in the brain of long COVID or COVID-DC. The objective of the current study was to measure [11C]SL25.1188 total distribution volume ([11C]SL25.1188 VT), an index of monoamine oxidase B density and a marker of astrogliosis, with positron emission tomography in participants with COVID-DC and compare with healthy control participants. METHODS In 21 COVID-DC cases and 21 healthy control participants, [11C]SL25.1188 VT was measured in the prefrontal cortex, anterior cingulate cortex, hippocampus, dorsal putamen, and ventral striatum. Depressive symptoms were measured with the Beck Depression Inventory-II, and cognitive symptoms were measured with neuropsychological tests. RESULTS [11C]SL25.1188 VT was higher in participants with COVID-DC in the prefrontal cortex, anterior cingulate cortex, hippocampus, dorsal putamen, and ventral striatum than in healthy control participants. Depressive symptom severity negatively correlated with [11C]SL25.1188 VT across prioritized brain regions. More recent acute COVID-19 positively correlated with [11C]SL25.1188 VT, reflecting higher values since predominance of the Omicron variant. Exploratory analyses found greater [11C]SL25.1188 VT in the hippocampus, dorsal putamen, and ventral striatum of COVID-DC participants than control participants with a major depressive episode with no history of COVID-19, and there was no relationship to cognitive testing in prioritized regions. CONCLUSIONS Results strongly support the presence of monoamine oxidase B-labeled astrogliosis in COVID-DC throughout the regions assessed, although the association of greater astrogliosis with fewer symptoms raises the possibility of a protective role. The magnitude of astrogliosis in COVID-DC is greater since the emergence of the Omicron variant.
Collapse
Affiliation(s)
- Joeffre Braga
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Emily J Y Kuik
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Mariel Lepra
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Pablo M Rusjan
- Douglas Research Centre and Department of Psychiatry, McGill University, Montreal, Québec, Canada
| | - Stephen J Kish
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Erica L Vieira
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Zahra Nasser
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Natasha Verhoeff
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Neil Vasdev
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Thomas Chao
- Institute of Mental Health, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael Bagby
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Isabelle Boileau
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Stefan Kloiber
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - M Ishrat Husain
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Nathan Kolla
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Waypoint Centre for Mental Health Care, Penetanguishene, Ontario, Canada
| | - Yuko Koshimori
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Khunsa Faiz
- Department of Diagnostic Radiology, Hamilton Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Wei Wang
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Jeffrey H Meyer
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
6
|
Lee N, Choi JY, Ryu YH. The development status of PET radiotracers for evaluating neuroinflammation. Nucl Med Mol Imaging 2024; 58:160-176. [PMID: 38932754 PMCID: PMC11196502 DOI: 10.1007/s13139-023-00831-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/16/2023] [Accepted: 12/05/2023] [Indexed: 06/28/2024] Open
Abstract
Neuroinflammation is associated with the pathophysiologies of neurodegenerative and psychiatric disorders. Evaluating neuroinflammation using positron emission tomography (PET) plays an important role in the early diagnosis and determination of proper treatment of brain diseases. To quantify neuroinflammatory responses in vivo, many PET tracers have been developed using translocator proteins, imidazole-2 binding site, cyclooxygenase, monoamine oxidase-B, adenosine, cannabinoid, purinergic P2X7, and CSF-1 receptors as biomarkers. In this review, we introduce the latest developments in PET tracers that can image neuroinflammation, focusing on clinical trials, and further consider their current implications.
Collapse
Affiliation(s)
- Namhun Lee
- Division of Applied RI, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812 Korea
| | - Jae Yong Choi
- Division of Applied RI, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812 Korea
- Radiological and Medico-Oncological Sciences, University of Science and Technology (UST), Seoul, Korea
| | - Young Hoon Ryu
- Department of Nuclear Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
7
|
Koshimori Y, Cusimano MD, Vieira EL, Rusjan PM, Kish SJ, Vasdev N, Moriguchi S, Boileau I, Chao T, Nasser Z, Ishrat Husain M, Faiz K, Braga J, Meyer JH. Astrogliosis marker 11C-SL25.1188 PET in traumatic brain injury with persistent symptoms. Brain 2023; 146:4469-4475. [PMID: 37602426 PMCID: PMC10629767 DOI: 10.1093/brain/awad279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 06/22/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Traumatic brain injury (TBI) is common but little is known why up to a third of patients have persisting symptoms. Astrogliosis, a pathophysiological response to brain injury, may be a potential therapeutic target, but demonstration of astrogliosis in the brain of humans with TBI and persistent symptoms is lacking. Astroglial marker monoamine oxidase B (MAO-B) total distribution volume (11C-SL25.1188 VT), an index of MAO-B density, was measured in 29 TBI and 29 similarly aged healthy control cases with 11C-SL25.1188 PET, prioritizing prefrontal cortex (PFC) and cortex proximal to cortical convexity. Correlations of PFC 11C-SL25.1188 VT with psychomotor and processing speed; and serum blood measures implicated in astrogliosis were determined. 11C-SL25.1188 VT was greater in TBI in PFC (P = 0.00064) and cortex (P = 0.00038). PFC 11C-SL25.1188 VT inversely correlated with Comprehensive Trail Making Test psychomotor and processing speed (r = -0.48, P = 0.01). In participants scanned within 2 years of last TBI, PFC 11C-SL25.1188 VT correlated with serum glial fibrillary acid protein (r = 0.51, P = 0.037) and total tau (r = 0.74, P = 0.001). Elevated 11C-SL25.1188 VT argues strongly for astrogliosis and therapeutics modifying astrogliosis towards curative phenotypes should be tested in TBI with persistent symptoms. Given substantive effect size, astrogliosis PET markers should be applied to stratify cases and/or assess target engagement for putative therapeutics targeting astrogliosis.
Collapse
Affiliation(s)
- Yuko Koshimori
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, CAMH, Toronto, M5T 1R8, Canada
| | - Michael D Cusimano
- Neurosurgery, St. Michael’s Hospital, University of Toronto, Toronto, M5B 1W8, Canada
| | - Erica L Vieira
- Molecular Neurobiology and Campbell Family Mental Health Research Institute, CAMH, Toronto, M5T 1R8Canada
- Department of Psychiatry, University of Toronto, Toronto, M5T 1R8Canada
| | - Pablo M Rusjan
- Douglas Research Centre and Department of Psychiatry, McGill University, Montreal, H3A 1A1, Canada
| | - Stephen J Kish
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, CAMH, Toronto, M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, M5T 1R8Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Neil Vasdev
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, CAMH, Toronto, M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, M5T 1R8Canada
| | - Sho Moriguchi
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, CAMH, Toronto, M5T 1R8, Canada
| | - Isabelle Boileau
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, CAMH, Toronto, M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, M5T 1R8Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Thomas Chao
- Institute of Mental Health, Department of Psychiatry, University of British Columbia, Vancouver, V6T 2A1, Canada
| | - Zahra Nasser
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, CAMH, Toronto, M5T 1R8, Canada
| | - M Ishrat Husain
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, CAMH, Toronto, M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, M5T 1R8Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Khunsa Faiz
- Department of Diagnostic Radiology, Hamilton Health Sciences, McMaster University, Hamilton, L8S 4K1, Canada
| | - Joeffre Braga
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, CAMH, Toronto, M5T 1R8, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Jeffrey H Meyer
- Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, and Campbell Family Mental Health Research Institute, CAMH, Toronto, M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, M5T 1R8Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, M5S 1A8, Canada
| |
Collapse
|
8
|
Desmond KL, Lindberg A, Garcia A, Tong J, Harkness MB, Dobrota E, Smart K, Uribe C, Meyer JH, Houle S, Strafella AP, Li S, Huang Y, Vasdev N. First-in-Human PET Imaging of [ 18F]SDM-4MP3: A Cautionary Tale. Mol Imaging 2023; 2023:8826977. [PMID: 37719326 PMCID: PMC10504053 DOI: 10.1155/2023/8826977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/06/2023] [Accepted: 07/31/2023] [Indexed: 09/19/2023] Open
Abstract
[18F]SynVesT-1 is a PET radiopharmaceutical that binds to the synaptic vesicle protein 2A (SV2A) and serves as a biomarker of synaptic density with widespread clinical research applications in psychiatry and neurodegeneration. The initial goal of this study was to concurrently conduct PET imaging studies with [18F]SynVesT-1 at our laboratories. However, the data in the first two human PET studies had anomalous biodistribution despite the injected product meeting all specifications during the prerelease quality control protocols. Further investigation, including imaging in rats as well as proton and carbon 2D-NMR spectroscopic studies, led to the discovery that a derivative of the precursor had been received from the manufacturer. Hence, we report our investigation and the first-in-human study of [18F]SDM-4MP3, a structural variant of [18F]SynVesT-1, which does not have the requisite characteristics as a PET radiopharmaceutical for imaging SV2A in the central nervous system.
Collapse
Affiliation(s)
- Kimberly L. Desmond
- Azrieli Centre for Neuro-Radiochemistry & Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Ontario, Canada
| | - Anton Lindberg
- Azrieli Centre for Neuro-Radiochemistry & Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
| | - Armando Garcia
- Azrieli Centre for Neuro-Radiochemistry & Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
| | - Junchao Tong
- Azrieli Centre for Neuro-Radiochemistry & Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
| | - Michael B. Harkness
- Azrieli Centre for Neuro-Radiochemistry & Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
| | - Elena Dobrota
- Azrieli Centre for Neuro-Radiochemistry & Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
| | - Kelly Smart
- Azrieli Centre for Neuro-Radiochemistry & Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Ontario, Canada
| | - Carme Uribe
- Azrieli Centre for Neuro-Radiochemistry & Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
| | - Jeffrey H. Meyer
- Azrieli Centre for Neuro-Radiochemistry & Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Ontario, Canada
| | - Sylvain Houle
- Azrieli Centre for Neuro-Radiochemistry & Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Ontario, Canada
| | - Antonio P. Strafella
- Azrieli Centre for Neuro-Radiochemistry & Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
- Krembil Brain Institute, University Health Network, University of Toronto, Ontario, Canada
| | - Songye Li
- PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, USA
| | - Yiyun Huang
- PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, USA
| | - Neil Vasdev
- Azrieli Centre for Neuro-Radiochemistry & Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Ontario, Canada
| |
Collapse
|
9
|
Varnäs K, Nag S, Halldin C, Farde L. PET Evaluation of the Novel F-18 Labeled Reversible Radioligand [ 18F]GEH200449 for Detection of Monoamine Oxidase-B in the Non-Human Primate Brain. ACS Chem Neurosci 2023; 14:3206-3211. [PMID: 37587571 PMCID: PMC10485887 DOI: 10.1021/acschemneuro.3c00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023] Open
Abstract
Positron emission tomography (PET) using radioligands for the enzyme monoamine oxidase B (MAO-B) is increasingly applied as a marker for astrogliosis in neurodegenerative disorders. In the present study, a novel reversible fluorine-18 labeled MAO-B compound, [18F]GEH200449, was evaluated as a PET radioligand in non-human primates. PET studies of [18F]GEH200449 at baseline showed brain exposure (maximum concentration: 3.4-5.2 SUV; n = 5) within the range of that for suitable central nervous system radioligands and a regional distribution consistent with the known localization of MAO-B. Based on the quantitative assessment of [18F]GEH200449 data using the metabolite-corrected arterial plasma concentration as input function, the Logan graphical analysis was selected as the preferred method of quantification. The binding of [18F]GEH200449, as calculated based on regional estimates of the total distribution volume, was markedly inhibited (occupancy >80%) by the administration of the selective MAO-B ligands L-deprenyl (0.5 and 1.0 mg/kg) or rasagiline (0.75 mg/kg) prior to radioligand injection. Radioligand binding was displaceable by the administration of L-deprenyl (0.5 mg/kg) at 25 min after radioligand injection, thus supporting reversible binding to MAO-B. These observations support that [18F]GEH200449 is a reversible MAO-B radioligand suitable for applied studies in humans.
Collapse
Affiliation(s)
- Katarina Varnäs
- Karolinska Institutet,
Department
of Clinical Neuroscience, Center for Psychiatry Research and Stockholm
County Council, BioClinicum J:15, Visionsgatan 4, SE-171
64 Solna, Sweden
| | - Sangram Nag
- Karolinska Institutet,
Department
of Clinical Neuroscience, Center for Psychiatry Research and Stockholm
County Council, BioClinicum J:15, Visionsgatan 4, SE-171
64 Solna, Sweden
| | - Christer Halldin
- Karolinska Institutet,
Department
of Clinical Neuroscience, Center for Psychiatry Research and Stockholm
County Council, BioClinicum J:15, Visionsgatan 4, SE-171
64 Solna, Sweden
| | - Lars Farde
- Karolinska Institutet,
Department
of Clinical Neuroscience, Center for Psychiatry Research and Stockholm
County Council, BioClinicum J:15, Visionsgatan 4, SE-171
64 Solna, Sweden
| |
Collapse
|
10
|
Smart K, Uribe C, Desmond KL, Martin SL, Vasdev N, Strafella AP. Preliminary Assessment of Reference Region Quantification and Reduced Scanning Times for [ 18F]SynVesT-1 PET in Parkinson's Disease. Mol Imaging 2023; 2023:1855985. [PMID: 37622164 PMCID: PMC10445483 DOI: 10.1155/2023/1855985] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/02/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
Synaptic density in the central nervous system can be measured in vivo using PET with [18F]SynVesT-1. While [18F]SynVesT-1 has been proven to be a powerful radiopharmaceutical for PET imaging of neurodegenerative disorders such as Parkinson's disease (PD), its currently validated acquisition and quantification protocols are invasive and technically challenging in these populations due to the arterial sampling and relatively long scanning times. The objectives of this work were to evaluate a noninvasive (reference tissue) quantification method for [18F]SynVesT-1 in PD patients and to determine the minimum scan time necessary for accurate quantification. [18F]SynVesT-1 PET scans were acquired in 5 patients with PD and 3 healthy control subjects for 120 min with arterial blood sampling. Quantification was performed using the one-tissue compartment model (1TCM) with arterial input function, as well as with the simplified reference tissue model (SRTM) to estimate binding potential (BPND) using centrum semiovale (CS) as a reference region. The SRTM2 method was used with k2' fixed to either a sample average value (0.037 min-1) or a value estimated first through coupled fitting across regions for each participant. Direct SRTM estimation and the Logan reference region graphical method were also evaluated. There were no significant group differences in CS volume, radiotracer uptake, or efflux (ps > 0.47). Each fitting method produced BPND estimates in close agreement with those derived from the 1TCM (subject R2s > 0.98, bias < 10%), with no difference in bias between the control and PD groups. With SRTM2, BPND estimates from truncated scan data as short as 80 min produced values in excellent agreement with the data from the full 120 min scans (bias < 6%). While these are preliminary results from a small sample of patients with PD (n = 5), this work suggests that accurate synaptic density quantification may be performed without blood sampling and with scan time under 90 minutes. If further validated, these simplified procedures for [18F]SynVesT-1 PET quantification can facilitate its application as a clinical research imaging technology and allow for larger study samples and include a broader scope of patients including those with neurodegenerative diseases.
Collapse
Affiliation(s)
- Kelly Smart
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, Canada M5T 1R8
- Department of Psychiatry, University of Toronto, 250 College St., Toronto, ON, Canada M5T 1R8
| | - Carme Uribe
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, Canada M5T 1R8
- Unitat de Psicologia Medica, Departament de Medicina, Institute of Neuroscience, Universitat de Barcelona, Barcelona, Spain
| | - Kimberly L. Desmond
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, Canada M5T 1R8
- Department of Psychiatry, University of Toronto, 250 College St., Toronto, ON, Canada M5T 1R8
| | - Sarah L. Martin
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, Canada M5T 1R8
| | - Neil Vasdev
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, Canada M5T 1R8
- Department of Psychiatry, University of Toronto, 250 College St., Toronto, ON, Canada M5T 1R8
| | - Antonio P. Strafella
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, Canada M5T 1R8
- Edmond J. Safra Parkinson Disease Program, Neurology Division, Toronto Western Hospital & Krembil Brain Institute, University Health Network, University of Toronto, 399 Bathurst Street, Toronto, ON, Canada M5T 2S8
| |
Collapse
|
11
|
Ballweg A, Klaus C, Vogler L, Katzdobler S, Wind K, Zatcepin A, Ziegler SI, Secgin B, Eckenweber F, Bohr B, Bernhardt A, Fietzek U, Rauchmann BS, Stoecklein S, Quach S, Beyer L, Scheifele M, Simmet M, Joseph E, Lindner S, Berg I, Koglin N, Mueller A, Stephens AW, Bartenstein P, Tonn JC, Albert NL, Kümpfel T, Kerschensteiner M, Perneczky R, Levin J, Paeger L, Herms J, Brendel M. [ 18F]F-DED PET imaging of reactive astrogliosis in neurodegenerative diseases: preclinical proof of concept and first-in-human data. J Neuroinflammation 2023; 20:68. [PMID: 36906584 PMCID: PMC10007845 DOI: 10.1186/s12974-023-02749-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/23/2023] [Indexed: 03/13/2023] Open
Abstract
OBJECTIVES Reactive gliosis is a common pathological hallmark of CNS pathology resulting from neurodegeneration and neuroinflammation. In this study we investigate the capability of a novel monoamine oxidase B (MAO-B) PET ligand to monitor reactive astrogliosis in a transgenic mouse model of Alzheimer`s disease (AD). Furthermore, we performed a pilot study in patients with a range of neurodegenerative and neuroinflammatory conditions. METHODS A cross-sectional cohort of 24 transgenic (PS2APP) and 25 wild-type mice (age range: 4.3-21.0 months) underwent 60 min dynamic [18F]fluorodeprenyl-D2 ([18F]F-DED), static 18 kDa translocator protein (TSPO, [18F]GE-180) and β-amyloid ([18F]florbetaben) PET imaging. Quantification was performed via image derived input function (IDIF, cardiac input), simplified non-invasive reference tissue modelling (SRTM2, DVR) and late-phase standardized uptake value ratios (SUVr). Immunohistochemical (IHC) analyses of glial fibrillary acidic protein (GFAP) and MAO-B were performed to validate PET imaging by gold standard assessments. Patients belonging to the Alzheimer's disease continuum (AD, n = 2), Parkinson's disease (PD, n = 2), multiple system atrophy (MSA, n = 2), autoimmune encephalitis (n = 1), oligodendroglioma (n = 1) and one healthy control underwent 60 min dynamic [18F]F-DED PET and the data were analyzed using equivalent quantification strategies. RESULTS We selected the cerebellum as a pseudo-reference region based on the immunohistochemical comparison of age-matched PS2APP and WT mice. Subsequent PET imaging revealed that PS2APP mice showed elevated hippocampal and thalamic [18F]F-DED DVR when compared to age-matched WT mice at 5 months (thalamus: + 4.3%; p = 0.048), 13 months (hippocampus: + 7.6%, p = 0.022) and 19 months (hippocampus: + 12.3%, p < 0.0001; thalamus: + 15.2%, p < 0.0001). Specific [18F]F-DED DVR increases of PS2APP mice occurred earlier when compared to signal alterations in TSPO and β-amyloid PET and [18F]F-DED DVR correlated with quantitative immunohistochemistry (hippocampus: R = 0.720, p < 0.001; thalamus: R = 0.727, p = 0.002). Preliminary experience in patients showed [18F]F-DED VT and SUVr patterns, matching the expected topology of reactive astrogliosis in neurodegenerative (MSA) and neuroinflammatory conditions, whereas the patient with oligodendroglioma and the healthy control indicated [18F]F-DED binding following the known physiological MAO-B expression in brain. CONCLUSIONS [18F]F-DED PET imaging is a promising approach to assess reactive astrogliosis in AD mouse models and patients with neurological diseases.
Collapse
Affiliation(s)
- Anna Ballweg
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistr.15, 81377, Munich, Germany
| | - Carolin Klaus
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Letizia Vogler
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistr.15, 81377, Munich, Germany
| | - Sabrina Katzdobler
- Department of Neurology, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Karin Wind
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistr.15, 81377, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Artem Zatcepin
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistr.15, 81377, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Sibylle I Ziegler
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistr.15, 81377, Munich, Germany
| | - Birkan Secgin
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistr.15, 81377, Munich, Germany
| | - Florian Eckenweber
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistr.15, 81377, Munich, Germany
| | - Bernd Bohr
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistr.15, 81377, Munich, Germany
| | - Alexander Bernhardt
- Department of Neurology, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Urban Fietzek
- Department of Neurology, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Boris-Stephan Rauchmann
- Department of Radiology, University Hospital of Munich, LMU Munich, Munich, Germany.,Department of Psychiatry and Psychotherapy, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Sophia Stoecklein
- Department of Radiology, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Stefanie Quach
- Department of Neurosurgery, University Hospital, LMU Munich, Munich, Germany
| | - Leonie Beyer
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistr.15, 81377, Munich, Germany
| | - Maximilian Scheifele
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistr.15, 81377, Munich, Germany
| | - Marcel Simmet
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistr.15, 81377, Munich, Germany
| | - Emanuel Joseph
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistr.15, 81377, Munich, Germany
| | - Simon Lindner
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistr.15, 81377, Munich, Germany
| | - Isabella Berg
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistr.15, 81377, Munich, Germany
| | | | | | | | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistr.15, 81377, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Joerg C Tonn
- Department of Neurosurgery, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistr.15, 81377, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Tania Kümpfel
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany
| | - Martin Kerschensteiner
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany.,Biomedical Center, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Robert Perneczky
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Department of Psychiatry and Psychotherapy, University Hospital of Munich, LMU Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College, London, UK.,Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Johannes Levin
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Department of Neurology, University Hospital of Munich, LMU Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Lars Paeger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Jochen Herms
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Center for Neuropathology and Prion Research, LMU Munich, Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Marchioninistr.15, 81377, Munich, Germany. .,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany. .,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
12
|
Raval NR, Wetherill RR, Wiers CE, Dubroff JG, Hillmer AT. Positron Emission Tomography of Neuroimmune Responses in Humans: Insights and Intricacies. Semin Nucl Med 2023; 53:213-229. [PMID: 36270830 PMCID: PMC11261531 DOI: 10.1053/j.semnuclmed.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 08/30/2022] [Indexed: 11/06/2022]
Abstract
The brain's immune system plays a critical role in responding to immune challenges and maintaining homeostasis. However, dysregulated neuroimmune function contributes to neurodegenerative disease and neuropsychiatric conditions. In vivo positron emission tomography (PET) imaging of the neuroimmune system has facilitated a greater understanding of its physiology and the pathology of some neuropsychiatric conditions. This review presents an in-depth look at PET findings from human neuroimmune function studies, highlighting their importance in current neuropsychiatric research. Although the majority of human PET studies feature radiotracers targeting the translocator protein 18 kDa (TSPO), this review also considers studies with other neuroimmune targets, including monoamine oxidase B, cyclooxygenase-1 and cyclooxygenase-2, nitric oxide synthase, and the purinergic P2X7 receptor. Promising new targets, such as colony-stimulating factor 1, Sphingosine-1-phosphate receptor 1, and the purinergic P2Y12 receptor, are also discussed. The significance of validating neuroimmune targets and understanding their function and expression is emphasized in this review to better identify and interpret PET results.
Collapse
Affiliation(s)
- Nakul R Raval
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT; Yale PET Center, Yale University, New Haven, CT
| | - Reagan R Wetherill
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Corinde E Wiers
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jacob G Dubroff
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ansel T Hillmer
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT; Yale PET Center, Yale University, New Haven, CT; Department of Psychiatry, Yale University, New Haven, CT.
| |
Collapse
|
13
|
Nisha Aji K, Meyer JH, Rusjan PM, Mizrahi R. Monoamine Oxidase B (MAO-B): A Target for Rational Drug Development in Schizophrenia Using PET Imaging as an Example. ADVANCES IN NEUROBIOLOGY 2023; 30:335-362. [PMID: 36928857 DOI: 10.1007/978-3-031-21054-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Monoamine oxidase B (MAO-B) is an important high-density enzyme involved in the generation of oxidative stress and central in the catabolism of dopamine, particularly in brain subcortical regions with putative implications in the pathophysiology of schizophrenia. In this chapter, we review postmortem studies, preclinical models, and peripheral and genetic studies implicating MAO-B in psychosis. A literature search in PubMed was conducted and 64 studies were found to be eligible for systematic review. We found that MAO-B could be identified as a potential target in schizophrenia. Evidence comes mostly from studies of peripheral markers, showing reduced platelet MAO-B activity in schizophrenia, together with preclinical results from MAO-B knock-out mice resulting in a hyperdopaminergic state and behavioral disinhibition. However, whether brain MAO-B is altered in vivo in patients with schizophrenia remains unknown. We therefore review methodological studies involving MAO-B positron emission tomography (PET) radioligands used to quantify MAO-B in vivo in the human brain. Given the limitations of currently available treatments for schizophrenia, elucidating whether MAO-B could be used as a target for risk stratification or clinical staging in schizophrenia could allow for a rational search for newer antipsychotics and the development of new treatments.
Collapse
Affiliation(s)
- Kankana Nisha Aji
- Douglas Research Centre, Clinical and Translational Sciences Lab, Montreal, QC, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
| | - Jeffrey H Meyer
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Pablo M Rusjan
- Douglas Research Centre, Clinical and Translational Sciences Lab, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Romina Mizrahi
- Douglas Research Centre, Clinical and Translational Sciences Lab, Montreal, QC, Canada.
- Department of Psychiatry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
14
|
Lindberg A, Vasdev N. Ring-opening of non-activated aziridines with [ 11C]CO 2 via novel ionic liquids. RSC Adv 2022; 12:21417-21421. [PMID: 35975081 PMCID: PMC9345297 DOI: 10.1039/d2ra03966d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/14/2022] [Indexed: 11/23/2022] Open
Abstract
Novel ionic liquids based on DBU and DBN halide salts were developed as a catalytic system for ring-opening of non-activated aziridines with [11C]CO2. The ability of ionic liquids to activate aziridines represents a simple methodology for the synthesis of 11C-carbamates and can be extended for CO2-fixation in organic and radiochemistry. Novel ionic liquids based on DBU and DBN halide salts were developed as a catalytic system for ring-opening of non-activated aziridines with [11C]CO2.![]()
Collapse
Affiliation(s)
- Anton Lindberg
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health Toronto ON M5T 1R8 Canada
| | - Neil Vasdev
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health Toronto ON M5T 1R8 Canada .,Department of Psychiatry, University of Toronto Toronto ON M5T 1R8 Canada
| |
Collapse
|
15
|
Meyer JH, Braga J. Development and Clinical Application of Positron Emission Tomography Imaging Agents for Monoamine Oxidase B. Front Neurosci 2022; 15:773404. [PMID: 35280341 PMCID: PMC8914088 DOI: 10.3389/fnins.2021.773404] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Monoamine oxidase B (MAO-B) is a high-density protein in the brain mainly found on outer mitochondrial membranes, primarily in astroglia, but additionally in serotonergic neurons and in the substantia nigra in the midbrain. It is an enzyme that participates in the oxidative metabolism of important monoamines including dopamine, norepinephrine, benzylamine, and phenylethylamine. Elevated MAO-B density may be associated with astrogliosis and inhibiting MAO-B may reduce astrogliosis. MAO-B density is elevated in postmortem sampling of pathology for many neuropsychiatric diseases including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, and alcohol use disorder. Initial development of positron emission tomography (PET) imaging agents focused on analogs of [11C]L-deprenyl, with the most commonly applied being the deuterium substituted [11C]L-deprenyl-D2. This latter radiotracer was modeled with an irreversible trapping compartment reflecting its irreversible binding to MAO-B. Subsequently, [11C]SL25.1188, a reversible binding MAO-B radioligand with outstanding properties including high specific binding and excellent reversibility was developed. [11C]SL25.1188 PET was applied to discover a substantive elevation of MAO-B binding in the prefrontal cortex in major depressive disorder (MDD) with an effect size of more than 1.5. Longer duration of MDD was associated with greater MAO-B binding throughout most gray matter regions in the brain, suggesting progressive astrogliosis. Important applications of [11C]L-deprenyl-D2 PET are detecting a 40% loss in radiotracer accumulation in cigarette smokers, and substantial occupancy of novel therapeutics like EVT301 and sembragiline. Given the number of diseases with elevations of MAO-B density and astrogliosis, and the advance of [11C]SL25.1188, clinical applications of MAO-B imaging are still at an early stage.
Collapse
Affiliation(s)
- Jeffrey H. Meyer
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- *Correspondence: Jeffrey H. Meyer,
| | - Joeffre Braga
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
16
|
Harada R, Furumoto S, Kudo Y, Yanai K, Villemagne VL, Okamura N. Imaging of Reactive Astrogliosis by Positron Emission Tomography. Front Neurosci 2022; 16:807435. [PMID: 35210989 PMCID: PMC8862631 DOI: 10.3389/fnins.2022.807435] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/14/2022] [Indexed: 11/13/2022] Open
Abstract
Many neurodegenerative diseases are neuropathologically characterized by neuronal loss, gliosis, and the deposition of misfolded proteins such as β-amyloid (Aβ) plaques and tau tangles in Alzheimer’s disease (AD). In postmortem AD brains, reactive astrocytes and activated microglia are observed surrounding Aβ plaques and tau tangles. These activated glial cells secrete pro-inflammatory cytokines and reactive oxygen species, which may contribute to neurodegeneration. Therefore, in vivo imaging of glial response by positron emission tomography (PET) combined with Aβ and tau PET would provide new insights to better understand the disease process, as well as aid in the differential diagnosis, and monitoring glial response disease-specific therapeutics. There are two promising targets proposed for imaging reactive astrogliosis: monoamine oxidase-B (MAO-B) and imidazoline2 binding site (I2BS), which are predominantly expressed in the mitochondrial membranes of astrocytes and are upregulated in various neurodegenerative conditions. PET tracers targeting these two MAO-B and I2BS have been evaluated in humans. [18F]THK-5351, which was originally designed to target tau aggregates in AD, showed high affinity for MAO-B and clearly visualized reactive astrocytes in progressive supranuclear palsy (PSP). However, the lack of selectivity of [18F]THK-5351 binding to both MAO-B and tau, severely limits its clinical utility as a biomarker. Recently, [18F]SMBT-1 was developed as a selective and reversible MAO-B PET tracer via compound optimization of [18F]THK-5351. In this review, we summarize the strategy underlying molecular imaging of reactive astrogliosis and clinical studies using MAO-B and I2BS PET tracers.
Collapse
Affiliation(s)
- Ryuichi Harada
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
- *Correspondence: Ryuichi Harada,
| | - Shozo Furumoto
- Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan
| | - Yukitsuka Kudo
- Department of New Therapeutics Innovation for Alzheimer’s and Dementia, Institute of Development and Aging, Tohoku University, Sendai, Japan
| | - Kazuhiko Yanai
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Victor L. Villemagne
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC, Australia
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Nobuyuki Okamura
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
- Nobuyuki Okamura,
| |
Collapse
|
17
|
Varlow C, Knight AC, McQuade P, Vasdev N. Characterization of neuroinflammatory positron emission tomography biomarkers in chronic traumatic encephalopathy. Brain Commun 2022; 4:fcac019. [PMID: 35198978 PMCID: PMC8856182 DOI: 10.1093/braincomms/fcac019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/10/2021] [Accepted: 02/01/2022] [Indexed: 11/12/2022] Open
Abstract
Chronic traumatic encephalopathy is a neurological disorder associated with head trauma and is confirmed upon autopsy. PET imaging of chronic traumatic encephalopathy may provide a means to move towards ante-mortem diagnosis and therapeutic intervention following brain injuries. Characterization of the neuroinflammatory PET biomarkers, 18 kDa translocator protein and monoamine oxidase-B was conducted using [3H]PBR-28 and [3H]L-deprenyl, respectively, in post-mortem chronic traumatic encephalopathy brain tissue. [3H]PBR-28 displayed high specific binding in both chronic traumatic encephalopathy (95.40 ± 1.87%; n = 11 cases) and healthy controls (89.89 ± 8.52%, n = 3 cases). Cell-type expression of the 18 kDa translocator protein was confirmed by immunofluorescence to microglia, astrocyte and macrophage markers. [3H]L-deprenyl also displayed high specific binding in chronic traumatic encephalopathy (96.95 ± 1.43%; n = 12 cases) and healthy controls (93.24 ± 0.43%; n = 2 cases), with the distribution co-localized to astrocytes by immunofluorescence. Saturation analysis was performed to quantify the target density of the 18 kDa translocator protein and monoamine oxidase-B in both chronic traumatic encephalopathy and healthy control tissue. Using [3H]PBR-28, the target density of the 18 kDa translocator protein in healthy controls was 177.91 ± 56.96 nM (n = 7 cases; mean ± standard deviation); however, a highly variable target density (345.84 ± 372.42 nM; n = 11 cases; mean ± standard deviation) was measured in chronic traumatic encephalopathy. [3H]L-deprenyl quantified a monoamine oxidase-B target density of 304.23 ± 115.93 nM (n = 8 cases; mean ± standard deviation) in healthy control tissue and is similar to the target density in chronic traumatic encephalopathy tissues (365.80 ± 128.55 nM; n = 12 cases; mean ± standard deviation). A two-sample t-test determined no significant difference in the target density values of the 18 kDa translocator protein and monoamine oxidase-B between healthy controls and chronic traumatic encephalopathy (P > 0.05), albeit a trend towards increased expression of both targets was observed in chronic traumatic encephalopathy. To our knowledge, this work represents the first in vitro characterization of 18 kDa translocator protein and monoamine oxidase-B in chronic traumatic encephalopathy and reveals the variability in neuroinflammatory pathology following brain injuries. These preliminary findings will be considered when designing PET imaging studies after brain injury and for the ultimate goal of imaging chronic traumatic encephalopathy in vivo.
Collapse
Affiliation(s)
- Cassis Varlow
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada M5T 1R8
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Ashley C. Knight
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada M5T 1R8
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Paul McQuade
- Takeda Pharmaceutical Company, Cambridge, MA 02139, USA
| | - Neil Vasdev
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada M5T 1R8
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada M5S 1A8
| |
Collapse
|
18
|
Harada R, Shimizu Y, Du Y, Ishikawa Y, Iwata R, Kudo Y, Yanai K, Okamura N, Furumoto S. The Role of Chirality of [ 18F]SMBT-1 in Imaging of Monoamine Oxidase-B. ACS Chem Neurosci 2022; 13:322-329. [PMID: 35049267 DOI: 10.1021/acschemneuro.1c00655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
(S)-(2-Methylpyrid-5-yl)-6-[(3-[18F]fluoro-2-hydroxy)propoxy]quinoline ([18F]SMBT-1) was recently developed as a novel class of selective and reversible monoamine oxidase-B (MAO-B) tracers for in vivo imaging of reactive astrogliosis via positron emission tomography. To investigate the effect of the chirality of [18F]SMBT-1 on tracer performance, we synthesized (S)-[18F]6 ([18F]SMBT-1) and (R)-[18F]6 and compared their binding properties, pharmacokinetics, and metabolism. (S)-6 showed higher binding affinity to MAO-B and lower binding affinity to MAO-A than (R)-6, demonstrating a higher selectivity ratio (MAO-B/MAO-A). A pharmacokinetic study in mice demonstrated that both (S)-[18F]6 and (R)-[18F]6 showed sufficient initial brain uptake. However, (S)-[18F]6 was cleared significantly faster from the body. An abundant sulfoconjugate metabolite M2 was observed in plasma for (S)-[18F]6 but not for (R)-[18F]6. In vitro sulfation assays confirmed that (S)-6 was more reactive than (R)-6, consistent with the in vivo findings. Mefenamic acid, a selective sulfotransferase 1A1 (SULT1A1) inhibitor, strongly inhibited the in vitro sulfation of (S)-6 by mouse liver fractions, human liver cytosol fractions, and human recombinant SULT1A1 enzyme. Genetic polymorphisms of SULT1A1 did not affect the sulfation of (S)-6 in vitro. In conclusion, (S)-[18F]6 had a more favorable binding affinity and binding selectivity for MAO-B than (R)-[18F]6. Additionally, (S)-[18F]6 also possessed better pharmacological and metabolic properties than (R)-[18F]6. These results suggest that (S)-[18F]6 ([18F]SMBT-1) is a promising candidate for application in the imaging of MAO-B in vivo.
Collapse
Affiliation(s)
- Ryuichi Harada
- Department of Pharmacology, Graduate School of Medicine, Tohoku University, 2-1 Seiryomachi, Aobaku, Sendai 980-8575, Japan
- Department of New Therapeutics Innovation for Alzheimer’s and Dementia, Institute of Development Aging and Cancer (IDAC), Tohoku University, 2-1 Seiryomachi, Aobaku, Sendai 980-8575, Japan
| | - Yuki Shimizu
- Cyclotron and Radioisotope Center (CYRIC), Tohoku University, 6-3 Aoba, Aramaki, Aobaku, Sendai 980-8578, Japan
| | - Yiqing Du
- Department of Pharmacology, Graduate School of Medicine, Tohoku University, 2-1 Seiryomachi, Aobaku, Sendai 980-8575, Japan
| | - Yoichi Ishikawa
- Cyclotron and Radioisotope Center (CYRIC), Tohoku University, 6-3 Aoba, Aramaki, Aobaku, Sendai 980-8578, Japan
| | - Ren Iwata
- Cyclotron and Radioisotope Center (CYRIC), Tohoku University, 6-3 Aoba, Aramaki, Aobaku, Sendai 980-8578, Japan
| | - Yukitsuka Kudo
- Department of New Therapeutics Innovation for Alzheimer’s and Dementia, Institute of Development Aging and Cancer (IDAC), Tohoku University, 2-1 Seiryomachi, Aobaku, Sendai 980-8575, Japan
| | - Kazuhiko Yanai
- Department of Pharmacology, Graduate School of Medicine, Tohoku University, 2-1 Seiryomachi, Aobaku, Sendai 980-8575, Japan
| | - Nobuyuki Okamura
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyaginoku, Sendai 983-8536, Japan
| | - Shozo Furumoto
- Cyclotron and Radioisotope Center (CYRIC), Tohoku University, 6-3 Aoba, Aramaki, Aobaku, Sendai 980-8578, Japan
| |
Collapse
|
19
|
Gill T, Watling SE, Richardson JD, McCluskey T, Tong J, Meyer JH, Warsh J, Jetly R, Hutchison MG, Rhind SG, Houle S, Vasdev N, Kish SJ, Boileau I. Imaging of astrocytes in posttraumatic stress disorder: A PET study with the monoamine oxidase B radioligand [ 11C]SL25.1188. Eur Neuropsychopharmacol 2022; 54:54-61. [PMID: 34773851 DOI: 10.1016/j.euroneuro.2021.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 02/05/2023]
Abstract
Posttraumatic stress disorder (PTSD) is a debilitating mental health condition that results from exposure to traumatic event(s). Decreased astrocyte-related proteins (e.g., glial fibrillary acidic protein, GFAP) and atrophic astrocytes in corticolimbic brain areas implicated in PTSD have been reported in experimental models suggesting that astrocyte pathology may be a feature of this disorder. We used positron emission tomography (PET) of the monoamine oxidase (MAO)-B probe [11C]SL25.1188 to test the hypothesis that levels of MAO-B, an index of astrocyte levels is decreased in PTSD. MAO-B availability ([11C]SL25.1188 distribution volume) was measured in 13 participants with PTSD (∼39 years, 6F) and 17 healthy controls (HC) (∼31 years, 9F). A magnetic resonance image was acquired to delineate 6 cortiolimbic brain regions. PTSD was associated with a trending reduction in [11C]SL25.1188 availability across regions (8-17%; p = 0.067) implicating the ventral striatum (p uncorrected = 0.015) and medial prefrontal cortex (p uncorrected = 0.060). [11C]SL25.1188 availability was ∼30% lower in corticolimbic regions in PTSD with co-morbid major depressive disorder (MDD) (n = 4) vs HC (p = 0.001) and vs PTSD without MDD (p = 0.005). Our preliminary results do not suggest astrogliosis (inferred from elevated availability) in PTSD, but rather point to a loss of astrocytes or an independent downregulation of MAO-B in PTSD with more severe negative affect. These exploratory findings, which are partly in line with preclinical literature and recent PET observations of decreased microglia marker, Translocator Protein, in PTSD, warrant replication in a larger PTSD cohort.
Collapse
Affiliation(s)
- Talwinder Gill
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada; Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Sarah E Watling
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada; Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - J Don Richardson
- The MacDonald Franklin OSI Research Centre, Lawson Health Research Institute, London, ON, Canada; Department of Psychiatry, Western University, London, Ontario, Canada; Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada; St Joseph's, London OSI, Parkwood Institute, St. Joseph's Health Care, London, Ontario, Canada
| | - Tina McCluskey
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Junchao Tong
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey H Meyer
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada; Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Jerry Warsh
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada; Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Rakesh Jetly
- Directorate of Mental Health, Canadian Forces Health Services, Ottawa, ON, Canada; Department of Psychiatry, Faculty of Medicine, University of Ottawa, Ontario, Canada; Department of Psychiatry, Faculty of Medicine, Dalhousie University, Nova Scotia, Canada
| | - Michael G Hutchison
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, ON, Canada; David L. MacIntosh Sport Medicine Clinic, Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, ON, Canada; Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, Canada
| | - Shawn G Rhind
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, ON, Canada; Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada
| | - Sylvain Houle
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Neil Vasdev
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Azrieli Centre for Neuro-Radiochemistry, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Stephen J Kish
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada; Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Isabelle Boileau
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada; Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
20
|
Chen Z, Haider A, Chen J, Xiao Z, Gobbi L, Honer M, Grether U, Arnold SE, Josephson L, Liang SH. The Repertoire of Small-Molecule PET Probes for Neuroinflammation Imaging: Challenges and Opportunities beyond TSPO. J Med Chem 2021; 64:17656-17689. [PMID: 34905377 PMCID: PMC9094091 DOI: 10.1021/acs.jmedchem.1c01571] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Neuroinflammation is an adaptive response of the central nervous system to diverse potentially injurious stimuli, which is closely associated with neurodegeneration and typically characterized by activation of microglia and astrocytes. As a noninvasive and translational molecular imaging tool, positron emission tomography (PET) could provide a better understanding of neuroinflammation and its role in neurodegenerative diseases. Ligands to translator protein (TSPO), a putative marker of neuroinflammation, have been the most commonly studied in this context, but they suffer from serious limitations. Herein we present a repertoire of different structural chemotypes and novel PET ligand design for classical and emerging neuroinflammatory targets beyond TSPO. We believe that this Perspective will support multidisciplinary collaborations in academic and industrial institutions working on neuroinflammation and facilitate the progress of neuroinflammation PET probe development for clinical use.
Collapse
Affiliation(s)
- Zhen Chen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Ahmed Haider
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Jiahui Chen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Zhiwei Xiao
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Luca Gobbi
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Michael Honer
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Uwe Grether
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Steven E. Arnold
- Department of Neurology and the Massachusetts Alzheimer’s Disease Research Center, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, Massachusetts 02129, USA
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Steven H. Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| |
Collapse
|
21
|
Zhou R, Ji B, Kong Y, Qin L, Ren W, Guan Y, Ni R. PET Imaging of Neuroinflammation in Alzheimer's Disease. Front Immunol 2021; 12:739130. [PMID: 34603323 PMCID: PMC8481830 DOI: 10.3389/fimmu.2021.739130] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/27/2021] [Indexed: 12/15/2022] Open
Abstract
Neuroinflammation play an important role in Alzheimer's disease pathogenesis. Advances in molecular imaging using positron emission tomography have provided insights into the time course of neuroinflammation and its relation with Alzheimer's disease central pathologies in patients and in animal disease models. Recent single-cell sequencing and transcriptomics indicate dynamic disease-associated microglia and astrocyte profiles in Alzheimer's disease. Mitochondrial 18-kDa translocator protein is the most widely investigated target for neuroinflammation imaging. New generation of translocator protein tracers with improved performance have been developed and evaluated along with tau and amyloid imaging for assessing the disease progression in Alzheimer's disease continuum. Given that translocator protein is not exclusively expressed in glia, alternative targets are under rapid development, such as monoamine oxidase B, matrix metalloproteinases, colony-stimulating factor 1 receptor, imidazoline-2 binding sites, cyclooxygenase, cannabinoid-2 receptor, purinergic P2X7 receptor, P2Y12 receptor, the fractalkine receptor, triggering receptor expressed on myeloid cells 2, and receptor for advanced glycation end products. Promising targets should demonstrate a higher specificity for cellular locations with exclusive expression in microglia or astrocyte and activation status (pro- or anti-inflammatory) with highly specific ligand to enable in vivo brain imaging. In this review, we summarised recent advances in the development of neuroinflammation imaging tracers and provided an outlook for promising targets in the future.
Collapse
Affiliation(s)
- Rong Zhou
- Department of Nephrology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bin Ji
- Department of Radiopharmacy and Molecular Imaging, School of Pharmacy, Fudan University, Shanghai, China
| | - Yanyan Kong
- Positron Emission Tomography (PET) Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Limei Qin
- Inner Mongolia Baicaotang Qin Chinese Mongolia Hospital, Hohhot, China
| | - Wuwei Ren
- School of Information Science and Technology, Shanghaitech University, Shanghai, China
| | - Yihui Guan
- Positron Emission Tomography (PET) Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, University of Zurich & Eidgenössische Technische Hochschule Zürich (ETH Zurich), Zurich, Switzerland
| |
Collapse
|
22
|
Uzbekov MG. Monoamine Oxidase as a Potential Biomarker of the Efficacy of Treatment of Mental Disorders. BIOCHEMISTRY (MOSCOW) 2021; 86:773-783. [PMID: 34225599 DOI: 10.1134/s0006297921060146] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The review summarizes the results of our own studies and published data on the biological markers of psychiatric disorders, with special emphasis on the activity of platelet monoamine oxidase. Pharmacotherapy studies in patients with the mixed anxiety-depressive disorder and first episode of schizophrenia have shown that the activity of platelet monoamine oxidase could serve as a potential biomarker of the efficacy of therapeutic interventions in these diseases.
Collapse
Affiliation(s)
- Marat G Uzbekov
- Moscow Research Institute of Psychiatry, Branch of Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, 107076, Russia.
| |
Collapse
|
23
|
In vitro and in vivo evaluation of fluorinated indanone derivatives as potential positron emission tomography agents for the imaging of monoamine oxidase B in the brain. Bioorg Med Chem Lett 2021; 48:128254. [PMID: 34256118 DOI: 10.1016/j.bmcl.2021.128254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 12/30/2022]
Abstract
Monoamine oxidases (MAOs) play a key role in the metabolism of major monoamine neurotransmitters. In particular, the upregulation of MAO-B in Parkinson's disease, Alzheimer's disease and cancer augmented the development of selective MAO-B inhibitors for diagnostic and therapeutic purposes, such as the anti-parkinsonian MAO-B irreversible binder l-deprenyl (Selegiline®). Herein we report on the synthesis of novel fluorinated indanone derivatives for PET imaging of MAO-B in the brain. Out of our series, the derivatives 6, 8, 9 and 13 are amongst the most affine and selective ligands for MAO-B reported so far. For the derivative 6-((3-fluorobenzyl)oxy)-2,3-dihydro-1H-inden-1-one (6) exhibiting an outstanding affinity (KiMAO-B = 6 nM), an automated copper-mediated radiofluorination starting from the pinacol boronic ester 17 is described. An in vitro screening in different species revealed a MAO-B region-specific accumulation of [18F]6 in rats and piglets in comparison to L-[3H]deprenyl. The pre-clinical in vivo assessment of [18F]6 in mice demonstrated the potential of indanones to readily cross the blood-brain barrier. Nonetheless, parallel in vivo metabolism studies indicated the presence of blood-brain barrier metabolites, thus arguing for further structural modifications. With the matching analytical profiles of the radiometabolite analysis from the in vitro liver microsome studies and the in vivo evaluation, the structure's elucidation of the blood-brain barrier penetrant radiometabolites is possible and will serve as basis for the development of new indanone derivatives suitable for the PET imaging of MAO-B.
Collapse
|
24
|
Imaging Biomarkers for Monitoring the Inflammatory Redox Landscape in the Brain. Antioxidants (Basel) 2021; 10:antiox10040528. [PMID: 33800685 PMCID: PMC8065574 DOI: 10.3390/antiox10040528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/21/2021] [Accepted: 03/25/2021] [Indexed: 12/27/2022] Open
Abstract
Inflammation is one key process in driving cellular redox homeostasis toward oxidative stress, which perpetuates inflammation. In the brain, this interplay results in a vicious cycle of cell death, the loss of neurons, and leakage of the blood–brain barrier. Hence, the neuroinflammatory response fuels the development of acute and chronic inflammatory diseases. Interrogation of the interplay between inflammation, oxidative stress, and cell death in neurological tissue in vivo is very challenging. The complexity of the underlying biological process and the fragility of the brain limit our understanding of the cause and the adequate diagnostics of neuroinflammatory diseases. In recent years, advancements in the development of molecular imaging agents addressed this limitation and enabled imaging of biomarkers of neuroinflammation in the brain. Notable redox biomarkers for imaging with positron emission tomography (PET) tracers are the 18 kDa translocator protein (TSPO) and monoamine oxygenase B (MAO–B). These findings and achievements offer the opportunity for novel diagnostic applications and therapeutic strategies. This review summarizes experimental as well as established pharmaceutical and biotechnological tools for imaging the inflammatory redox landscape in the brain, and provides a glimpse into future applications.
Collapse
|
25
|
Narayanaswami V, Tong J, Schifani C, Bloomfield PM, Dahl K, Vasdev N. Preclinical Evaluation of TSPO and MAO-B PET Radiotracers in an LPS Model of Neuroinflammation. PET Clin 2021; 16:233-247. [PMID: 33648665 DOI: 10.1016/j.cpet.2020.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Discovery of novel PET radiotracers targeting neuroinflammation (microglia and astrocytes) is actively pursued. Employing a lipopolysaccharide (LPS) rat model, this longitudinal study evaluated the translocator protein 18-kDa radiotracer [18F]FEPPA (primarily microglia) and monoamine oxidase B radiotracers [11C]L-deprenyl and [11C]SL25.1188 (astrocytes preferred). Increased [18F]FEPPA binding peaked at 1 week in LPS-injected striatum whereas increased lazabemide-sensitive [11C]L-deprenyl binding developed later. No increase in radiotracer uptake was observed for [11C]SL25.1188. The unilateral intrastriatal LPS rat model may serve as a useful tool for benchmarking PET tracers targeted toward distinct phases of neuroinflammatory reactions involving both microglia and astrocytes.
Collapse
Affiliation(s)
- Vidya Narayanaswami
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Room 270, Toronto, Ontario M5T 1R8, Canada
| | - Junchao Tong
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Room 339, Toronto, Ontario M5T 1R8, Canada
| | - Christin Schifani
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Room 270, Toronto, Ontario M5T 1R8, Canada
| | - Peter M Bloomfield
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Room B26A, Toronto, Ontario M5T 1R8, Canada
| | - Kenneth Dahl
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Room B02, Toronto, Ontario M5T 1R8, Canada
| | - Neil Vasdev
- Department of Psychiatry, Brain Health Imaging Centre, Azrieli Centre for Neuro-Radiochemistry, Centre for Addiction and Mental Health, University of Toronto, 250 College Street, Room PET G2, Toronto, Ontario M5T 1R8, Canada.
| |
Collapse
|
26
|
Solnes LB, Jacobs AH, Coughlin JM, Du Y, Goel R, Hammoud DA, Pomper MG. Central Nervous System Molecular Imaging. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00088-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
27
|
Nag S, Jia Z, Svedberg M, Jackson A, Ahmad R, Luthra S, Varnäs K, Farde L, Halldin C. Synthesis and Autoradiography of Novel F-18 Labeled Reversible Radioligands for Detection of Monoamine Oxidase B. ACS Chem Neurosci 2020; 11:4398-4404. [PMID: 33284012 PMCID: PMC7747220 DOI: 10.1021/acschemneuro.0c00631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
![]()
Monoamine oxidase B (MAO-B) is an
important enzyme regulating the
levels of monoaminergic neurotransmitters. Selective MAO-B inhibitors
have been labeled with carbon-11 or fluorine-18 to visualize the localization
of MAO-B in vivo by positron emission tomography
(PET) and thereby have been useful for studying neurodegenerative
diseases. The aim of this study was to develop promising fluorine-18
labeled reversible MAO-B PET radioligands and their biological evaluation in vitro by autoradiography. Radiolabeling was achieved
by classical one-step fluorine-18 nucleophilic substitution reaction.
The stability and radiochemical yield was analyzed with HPLC. All
five fluorine-18 labeled compounds were tested in human whole hemisphere
autoradiography experiments. Five compounds (GEH200439, GEH200448,
GEH200449, GEH200431A, and GEH200431B) were successfully radiolabeled
with fluorine-18, and the incorporation yield of the fluorination
reactions varied from 10 to 45% depending on the compound. The radiochemical
purity was higher than 99% for all at the end of synthesis. Radioligands
were found to be stable, with a radiochemical purity of >99% in
a
sterile phosphate buffered saline (pH = 7.4) over the duration of
the study. The ARG binding density of only 18F-GEH200449
was consistent with known MAO-B expression in the human brain. Radiolabeling
of five new fluorine-18 MAO-B reversible inhibitors was successfully
accomplished. Compound 18F-GEH200449 binds specifically
to MAO-B in vitro postmortem brain and could be a
potential candidate for in vivo PET investigation.
Collapse
Affiliation(s)
- Sangram Nag
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm 17176, Sweden
| | - Zhisheng Jia
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm 17176, Sweden
| | - Marie Svedberg
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm 17176, Sweden
| | - Alex Jackson
- GE Healthcare Pharmaceutical Diagnostics, Little Chalfont HP8 4SP, United Kingdom
| | - Rabia Ahmad
- GE Healthcare Pharmaceutical Diagnostics, Little Chalfont HP8 4SP, United Kingdom
| | - Sajinder Luthra
- GE Healthcare Pharmaceutical Diagnostics, Little Chalfont HP8 4SP, United Kingdom
| | - Katarina Varnäs
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm 17176, Sweden
| | - Lars Farde
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm 17176, Sweden
| | - Christer Halldin
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm 17176, Sweden
| |
Collapse
|
28
|
Meyer JH, Cervenka S, Kim MJ, Kreisl WC, Henter ID, Innis RB. Neuroinflammation in psychiatric disorders: PET imaging and promising new targets. Lancet Psychiatry 2020; 7:1064-1074. [PMID: 33098761 PMCID: PMC7893630 DOI: 10.1016/s2215-0366(20)30255-8] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 01/14/2023]
Abstract
Neuroinflammation is a multifaceted physiological and pathophysiological response of the brain to injury and disease. Given imaging findings of 18 kDa translocator protein (TSPO) and the development of radioligands for other inflammatory targets, PET imaging of neuroinflammation is at a particularly promising stage. This Review critically evaluates PET imaging results of inflammation in psychiatric disorders, including major depressive disorder, schizophrenia and psychosis disorders, substance use, and obsessive-compulsive disorder. We also consider promising new targets that can be measured in the brain, such as monoamine oxidase B, cyclooxygenase-1 and cyclooxygenase-2, colony stimulating factor 1 receptor, and the purinergic P2X7 receptor. Thus far, the most compelling TSPO imaging results have arguably been found in major depressive disorder, for which consistent increases have been observed, and in schizophrenia and psychosis, for which patients show reduced TSPO levels. This pattern highlights the importance of validating brain biomarkers of neuroinflammation for each condition separately before moving on to patient stratification and treatment monitoring trials.
Collapse
Affiliation(s)
- Jeffrey H Meyer
- Campbell Family Mental Health Research Institute, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Simon Cervenka
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Stockholm, Sweden
| | - Min-Jeong Kim
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - William C Kreisl
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Ioline D Henter
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA.
| |
Collapse
|
29
|
Harada R, Hayakawa Y, Ezura M, Lerdsirisuk P, Du Y, Ishikawa Y, Iwata R, Shidahara M, Ishiki A, Kikuchi A, Arai H, Kudo Y, Yanai K, Furumoto S, Okamura N. 18F-SMBT-1: A Selective and Reversible PET Tracer for Monoamine Oxidase-B Imaging. J Nucl Med 2020; 62:253-258. [PMID: 32646880 DOI: 10.2967/jnumed.120.244400] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/15/2020] [Indexed: 11/16/2022] Open
Abstract
Reactive astrocytes play a key role in the pathogenesis of various neurodegenerative diseases. Monoamine oxidase-B (MAO-B) is one of the promising targets for the imaging of astrogliosis in the human brain. A novel selective and reversible MAO-B tracer, (S)-(2-methylpyrid-5-yl)-6-[(3-18F-fluoro-2-hydroxy)propoxy]quinoline (18F-SMBT-1), was successfully developed via lead optimization from the first-generation tau PET tracer 18F-THK-5351. Methods: SMBT-1 was radiolabeled with 18F using the corresponding precursor. The binding affinity of radiolabeled compounds to MAO-B was assessed using saturation and competitive binding assays. The binding selectivity of 18F-SMBT-1 to MAO-B was evaluated by autoradiography of frozen human brain tissues. The pharmacokinetics and metabolism were assessed in normal mice after intravenous administration of 18F-SMBT-1. A 14-d toxicity study after the intravenous administration of 18F-SMBT-1 was performed using rats and mice. Results: In vitro binding assays demonstrated a high binding affinity of 18F-SMBT-1 to MAO-B (dissociation constant, 3.7 nM). In contrast, it showed low binding affinity to MAO-A and protein aggregates such as amyloid-β and tau fibrils. Autoradiographic analysis showed higher amounts of 18F-SMBT-1 binding in the Alzheimer disease brain sections than in the control brain sections. 18F-SMBT-1 binding was completely displaced with the reversible MAO-B inhibitor lazabemide, demonstrating the high selectivity of 18F-SMBT-1 for MAO-B. Furthermore, 18F-SMBT-1 showed a high uptake by brain, rapid washout, and no radiolabeled metabolites in the brain of normal mice. 18F-SMBT-1 showed no significant binding to various receptors, ion channels, or transporters, and no toxic effects related to its administration were observed in mice and rats. Conclusion: 18F-SMBT-1 is a promising and selective MAO-B PET tracer candidate, which would be useful for quantitative monitoring of astrogliosis in the human brain.
Collapse
Affiliation(s)
- Ryuichi Harada
- Department of Pharmacology, Tohoku University School of Medicine, Sendai, Japan .,Department of Geriatrics and Gerontology, Division of Brain Sciences, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| | - Yoshimi Hayakawa
- Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan
| | - Michinori Ezura
- Department of Neurology, Tohoku University Graduate School of Medicine. 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan
| | | | - Yiqing Du
- Department of Pharmacology, Tohoku University School of Medicine, Sendai, Japan
| | - Yoichi Ishikawa
- Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan
| | - Ren Iwata
- Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan
| | - Miho Shidahara
- Department of Quantum Science and Energy Engineering, Tohoku University, Sendai, Japan; and
| | - Aiko Ishiki
- Department of Geriatrics and Gerontology, Division of Brain Sciences, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| | - Akio Kikuchi
- Department of Neurology, Tohoku University Graduate School of Medicine. 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan
| | - Hiroyuki Arai
- Department of Geriatrics and Gerontology, Division of Brain Sciences, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| | - Yukitsuka Kudo
- Department of Geriatrics and Gerontology, Division of Brain Sciences, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| | - Kazuhiko Yanai
- Department of Pharmacology, Tohoku University School of Medicine, Sendai, Japan.,Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan
| | - Shozo Furumoto
- Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan
| | - Nobuyuki Okamura
- Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan.,Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
30
|
Rusjan P, Sabioni P, Di Ciano P, Mansouri E, Boileau I, Laveillé A, Capet M, Duvauchelle T, Schwartz JC, Robert P, Le Foll B. Exploring occupancy of the histamine H 3 receptor by pitolisant in humans using PET. Br J Pharmacol 2020; 177:3464-3472. [PMID: 32293706 DOI: 10.1111/bph.15067] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/30/2020] [Accepted: 03/23/2020] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE BF2.649 (pitolisant, Wakix®) is a novel histamine H3 receptor inverse agonist/antagonist recently approved for the treatment of narcolepsy disorder. The objective of the study was to investigate in vivo occupancy of H3 receptors by BF2.649 using PET brain imaging with the H3 receptor antagonist radioligand [11 C]GSK189254. EXPERIMENTAL APPROACH Six healthy adult participants were scanned with [11 C]GSK189254. Participants underwent a total of two PET scans on separate days, 3 h after oral administration of placebo or after pitolisant hydrochloride (40 mg). [11 C]GSK189254 regional total distribution volumes were estimated in nine brain regions of interest with the two tissue-compartment model with arterial input function using a common VND across the regions. Brain receptor occupancies were calculated with the Lassen plot. KEY RESULTS Pitolisant, at the dose administered, provided high (84 ± 7%; mean ± SD) occupancy of H3 receptors. The drug was well-tolerated, and participants experienced few adverse events. CONCLUSION AND IMPLICATIONS The administration of pitolisant (40 mg) produces a high occupancy of H3 receptors and may be a new tool for the treatment of a variety of CNS disorders that are associated with mechanisms involving H3 receptors.
Collapse
Affiliation(s)
- Pablo Rusjan
- Research Imaging Centre, CAMH, Toronto, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada.,Campbell Family Mental Health Research Institute, CAMH, Toronto, Canada
| | - Pamela Sabioni
- Translational Addiction Research Laboratory, CAMH, Toronto, Canada
| | - Patricia Di Ciano
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada.,Translational Addiction Research Laboratory, CAMH, Toronto, Canada.,Institute for Mental Health Policy Research, CAMH, Toronto, Canada.,Campbell Family Mental Health Research Institute, CAMH, Toronto, Canada
| | - Esmaeil Mansouri
- Research Imaging Centre, CAMH, Toronto, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - Isabelle Boileau
- Research Imaging Centre, CAMH, Toronto, Canada.,Campbell Family Mental Health Research Institute, CAMH, Toronto, Canada.,Division of Brain and Therapeutics, Department of Psychiatry, University of Toronto, Toronto, Canada
| | | | | | | | | | | | - Bernard Le Foll
- Research Imaging Centre, CAMH, Toronto, Canada.,Acute Care Program, CAMH, Toronto, Canada.,Campbell Family Mental Health Research Institute, CAMH, Toronto, Canada.,Department of Family and Community Medicine, University of Toronto, Toronto, Canada.,Division of Brain and Therapeutics, Department of Psychiatry, University of Toronto, Toronto, Canada
| |
Collapse
|
31
|
Tong J, Williams B, Rusjan PM, Mizrahi R, Lacapère JJ, McCluskey T, Furukawa Y, Guttman M, Ang LC, Boileau I, Meyer JH, Kish SJ. Concentration, distribution, and influence of aging on the 18 kDa translocator protein in human brain: Implications for brain imaging studies. J Cereb Blood Flow Metab 2020; 40:1061-1076. [PMID: 31220997 PMCID: PMC7181090 DOI: 10.1177/0271678x19858003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Positron emission tomography (PET) imaging of the translocator protein (TSPO) is widely used as a biomarker of microglial activation. However, TSPO protein concentration in human brain has not been optimally quantified nor has its regional distribution been compared to TSPO binding. We determined TSPO protein concentration, change with age, and regional distribution by quantitative immunoblotting in autopsied human brain. Brain TSPO protein concentration (>0.1 ng/µg protein) was higher than those reported by in vitro binding assays by at least 2 to 70 fold. TSPO protein distributed widely in both gray and white matter regions, with distribution in major gray matter areas ranked generally similar to that of PET binding in second-generation radiotracer studies. TSPO protein concentration in frontal cortex was high at birth, declined precipitously during the first three months, and increased modestly during adulthood/senescence (10%/decade; vs. 30% for comparison astrocytic marker GFAP). As expected, TSPO protein levels were significantly increased (+114%) in degenerating putamen in multiple system atrophy, providing further circumstantial support for TSPO as a gliosis marker. Overall, findings show some similarities between TSPO protein and PET binding characteristics in the human brain but also suggest that part of the TSPO protein pool might be less available for radioligand binding.
Collapse
Affiliation(s)
- Junchao Tong
- Preclinical Imaging, Research Imaging
Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Human Brain Laboratory, Research Imaging
Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Research Imaging Centre and Campbell
Family Mental Health Research Institute, Centre for Addiction and Mental Health,
Toronto, Ontario, Canada
- Junchao Tong, Preclinical Imaging, Centre
for Addiction and Mental Health, 250 College Street, Toronto, Ontario M5T 1R8,
Canada.
| | - Belinda Williams
- Human Brain Laboratory, Research Imaging
Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Addiction Imaging Research Group,
Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario,
Canada
| | - Pablo M. Rusjan
- Research Imaging Centre and Campbell
Family Mental Health Research Institute, Centre for Addiction and Mental Health,
Toronto, Ontario, Canada
| | - Romina Mizrahi
- Research Imaging Centre and Campbell
Family Mental Health Research Institute, Centre for Addiction and Mental Health,
Toronto, Ontario, Canada
| | - Jean-Jacques Lacapère
- Sorbonne Universités-UPMC University of
Paris 06, Département de Chimie, École Normale Supérieure-PSL Research University,
Paris, France
| | - Tina McCluskey
- Human Brain Laboratory, Research Imaging
Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Research Imaging Centre and Campbell
Family Mental Health Research Institute, Centre for Addiction and Mental Health,
Toronto, Ontario, Canada
| | - Yoshiaki Furukawa
- Department of Neurology, Juntendo Tokyo
Koto Geriatric Medical Center, and Faculty of Medicine, University & Post
Graduate University of Juntendo, Tokyo, Japan
| | - Mark Guttman
- Centre for Movement Disorders, Toronto,
Ontario, Canada
| | - Lee-Cyn Ang
- Division of Neuropathology, London
Health Science Centre, University of Western Ontario, London, Ontario, Canada
| | - Isabelle Boileau
- Research Imaging Centre and Campbell
Family Mental Health Research Institute, Centre for Addiction and Mental Health,
Toronto, Ontario, Canada
- Addiction Imaging Research Group,
Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario,
Canada
| | - Jeffrey H Meyer
- Research Imaging Centre and Campbell
Family Mental Health Research Institute, Centre for Addiction and Mental Health,
Toronto, Ontario, Canada
| | - Stephen J Kish
- Human Brain Laboratory, Research Imaging
Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Research Imaging Centre and Campbell
Family Mental Health Research Institute, Centre for Addiction and Mental Health,
Toronto, Ontario, Canada
| |
Collapse
|
32
|
Duffy IR, Vasdev N, Dahl K. Copper(I)-Mediated 11C-Carboxylation of (Hetero)arylstannanes. ACS OMEGA 2020; 5:8242-8250. [PMID: 32309734 PMCID: PMC7161067 DOI: 10.1021/acsomega.0c00524] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
A novel copper-mediated carboxylation strategy of aryl- and heteroaryl-stannanes is described. The method serves as a mild (i.e., 1 atm) carboxylation method using stable carbon dioxide and is transferable as a radiosynthetic approach for carbon-11-labeled aromatic and heteroaromatic carboxylic acids using sub-stoichiometric quantities of [11C]CO2. The methodology was applied to the radiosynthesis of the retinoid X receptor agonist, [11C]bexarotene, with a decay-corrected radiochemical yield of 32 ± 5% and molar activity of 38 ± 23 GBq/μmol (n = 3).
Collapse
Affiliation(s)
- Ian R. Duffy
- Azrieli
Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T
1R8, Canada
| | - Neil Vasdev
- Azrieli
Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T
1R8, Canada
- Department
of Psychiatry, University of Toronto, 250 College Street, Toronto, ON M5T
1R8, Canada
| | - Kenneth Dahl
- Azrieli
Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T
1R8, Canada
| |
Collapse
|
33
|
Dahl K, Bernard-Gauthier V, Nag S, Varnäs K, Narayanaswami V, Mahdi Moein M, Arakawa R, Vasdev N, Halldin C. Synthesis and preclinical evaluation of [18F]FSL25.1188, a reversible PET radioligand for monoamine oxidase-B. Bioorg Med Chem Lett 2019; 29:1624-1627. [DOI: 10.1016/j.bmcl.2019.04.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 10/26/2022]
|
34
|
Moriguchi S, Wilson AA, Miler L, Rusjan PM, Vasdev N, Kish SJ, Rajkowska G, Wang J, Bagby M, Mizrahi R, Varughese B, Houle S, Meyer JH. Monoamine Oxidase B Total Distribution Volume in the Prefrontal Cortex of Major Depressive Disorder: An [11C]SL25.1188 Positron Emission Tomography Study. JAMA Psychiatry 2019; 76:634-641. [PMID: 30840042 PMCID: PMC6551845 DOI: 10.1001/jamapsychiatry.2019.0044] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
IMPORTANCE Monoamine oxidase B (MAO-B) is an important, high-density enzyme in the brain that generates oxidative stress by hydrogen peroxide production, alters mitochondrial function, and metabolizes nonserotonergic monoamines. Recent advances in positron emission tomography radioligand development for MAO-B in humans enable highly quantitative measurement of MAO-B distribution volume (MAO-B VT), an index of MAO-B density. To date, this is the first investigation of MAO-B in the brain of major depressive disorder that evaluates regions beyond the raphe and amygdala. OBJECTIVE To investigate whether MAO-B VT is elevated in the prefrontal cortex in major depressive episodes (MDEs) of major depressive disorder. DESIGN, SETTING, AND PARTICIPANTS This case-control study was performed at a tertiary care psychiatric hospital from April 1, 2014, to August 30, 2018. Twenty patients with MDEs without current psychiatric comorbidities and 20 age-matched controls underwent carbon 11-labeled [11C]SL25.1188 positron emission tomography scanning to measure MAO-B VT. All participants were drug and medication free, nonsmoking, and otherwise healthy. MAIN OUTCOMES AND MEASURES The MAO-B VT in the prefrontal cortex (PFC). The second main outcome was to evaluate the association between MAO-B VT in the PFC and duration of major depressive disorder illness. RESULTS Twenty patients with MDEs (mean [SD] age, 34.2 [13.2] years; 11 women) and 20 healthy controls (mean [SD] age, 33.7 [13.1] years; 10 women) were recruited. Patients with MDEs had significantly greater MAO-B VT in the PFC (mean, 26%; analysis of variance, F1,38 = 19.6, P < .001). In individuals with MDEs, duration of illness covaried positively with MAO-B VT in the PFC (analysis of covariance, F1,18 = 15.2, P = .001), as well as most other cortex regions and the thalamus. CONCLUSIONS AND RELEVANCE Fifty percent (10 of 20) of patients with MDEs had MAO-B VT values in the PFC exceeding those of healthy controls. Greater MAO-B VT is an index of MAO-B overexpression, which may contribute to pathologies of mitochondrial dysfunction, elevated synthesis of neurotoxic products, and increased metabolism of nonserotonergic monoamines. Hence, this study identifies a common pathological marker associated with downstream consequences poorly targeted by the common selective serotonin reuptake inhibitor treatments. It is also recommended that the highly selective MAO-B inhibitor medications that are compatible for use with other antidepressants and have low risk for hypertensive crisis should be developed or repurposed as adjunctive treatment for MDEs.
Collapse
Affiliation(s)
- Sho Moriguchi
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Alan A. Wilson
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Laura Miler
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Pablo M. Rusjan
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Neil Vasdev
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Stephen J. Kish
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Grazyna Rajkowska
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson
| | - Junming Wang
- Department of Pathology, University of Mississippi Medical Center, Jackson
| | - Michael Bagby
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Romina Mizrahi
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Ben Varughese
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Sylvain Houle
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey H. Meyer
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
35
|
Ishiki A, Harada R, Kai H, Sato N, Totsune T, Tomita N, Watanuki S, Hiraoka K, Ishikawa Y, Funaki Y, Iwata R, Furumoto S, Tashiro M, Sasano H, Kitamoto T, Kudo Y, Yanai K, Furukawa K, Okamura N, Arai H. Neuroimaging-pathological correlations of [ 18F]THK5351 PET in progressive supranuclear palsy. Acta Neuropathol Commun 2018; 6:53. [PMID: 29958546 PMCID: PMC6025736 DOI: 10.1186/s40478-018-0556-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 06/19/2018] [Indexed: 11/10/2022] Open
Abstract
Recent positron emission tomography (PET) studies have demonstrated the accumulation of tau PET tracer in the affected region of progressive supranuclear palsy (PSP) cases. To confirm the binding target of radiotracer in PSP, we performed an imaging-pathology correlation study in two autopsy-confirmed PSP patients who underwent [18F]THK5351 PET before death. One patient with PSP Richardson syndrome showed elevated tracer retention in the globus pallidus and midbrain. In a patient with PSP-progressive nonfluent aphasia, [18F]THK5351 retention also was observed in the cortical areas, particularly the temporal cortex. Neuropathological examination confirmed PSP in both patients. Regional [18F]THK5351 standardized uptake value ratio (SUVR) in antemortem PET was significantly correlated with monoamine oxidase-B (MAO-B) level, reactive astrocytes density, and tau pathology at postmortem examination. In in vitro autoradiography, specific THK5351 binding was detected in the area of antemortem [18F]THK5351 retention, and binding was blocked completely by a reversible selective MAO-B inhibitor, lazabemide, in brain samples from these patients. In conclusion, [18F]THK5351 PET signals reflect MAO-B expressing reactive astrocytes, which may be associated with tau accumulation in PSP.
Collapse
|
36
|
|
37
|
Dahl K, Collier TL, Chang R, Zhang X, Sadovski O, Liang SH, Vasdev N. "In-loop" [ 11 C]CO 2 fixation: Prototype and proof of concept. J Labelled Comp Radiopharm 2018; 61:252-262. [PMID: 28600835 PMCID: PMC5723245 DOI: 10.1002/jlcr.3528] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/06/2017] [Accepted: 06/07/2017] [Indexed: 12/15/2022]
Abstract
Carbon-11-labeled carbon dioxide is the most common feedstock for the synthesis of positron emission tomography radiotracers and can be directly used for 11 C-carbonylation. Herein, we report the development of an apparatus that takes advantage of "in-loop" technologies to facilitate robust and reproducible syntheses of 11 C-carbonyl-based radiotracers by [11 C]CO2 -fixation. Our "in-loop" [11 C]CO2 -fixation method is simple, efficient, and proceeds smoothly at ambient pressure and temperature. We selected model 11 C-carbonyl-labeled carbamates as well as symmetrical and unsymmetrical ureas based on their widespread use in radiotracer design and our clinical research interests for proof of concept. Utility of this method is demonstrated by the synthesis of a reversible radiopharmaceutical for monoamine oxidase B, [11 C]SL25.1188, and 2 novel fatty acid amide hydrolase inhibitors. These radiotracers were isolated and formulated (>3.5 GBq; 100 mCi) with radiochemical purities (>99%) and molar radioactivity (≥80 GBq/μmol; ≥2162 mCi/μmol).
Collapse
Affiliation(s)
- Kenneth Dahl
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, and Department of Radiology, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Thomas L. Collier
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, and Department of Radiology, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
- Advion Inc., 10 Brown Road, Ithaca, NY 14850, USA
| | - Ran Chang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, and Department of Radiology, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Xiaofei Zhang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, and Department of Radiology, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Oleg Sadovski
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada MST 1R8
| | - Steven H. Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, and Department of Radiology, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Neil Vasdev
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, and Department of Radiology, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| |
Collapse
|
38
|
Rusjan PM, Knezevic D, Boileau I, Tong J, Mizrahi R, Wilson AA, Houle S. Voxel level quantification of [11C]CURB, a radioligand for Fatty Acid Amide Hydrolase, using high resolution positron emission tomography. PLoS One 2018; 13:e0192410. [PMID: 29444138 PMCID: PMC5812639 DOI: 10.1371/journal.pone.0192410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 01/23/2018] [Indexed: 11/18/2022] Open
Abstract
[11C]CURB is a novel irreversible radioligand for imaging fatty acid amide hydrolase in the human brain. In the present work, we validate an algorithm for generating parametric map images of [11C]CURB acquired with a high resolution research tomograph (HRRT) scanner. This algorithm applies the basis function method on an irreversible two-tissue compartment model (k4 = 0) with arterial input function, i.e., BAFPIC. Monte Carlo simulations are employed to assess bias and variability of the binding macroparameters (Ki and λk3) as a function of the voxel noise level and the range of basis functions. The results show that for a [11C]CURB time activity curve with noise levels corresponding to a voxel of an image acquired with the HRRT and reconstructed with the filtered back projection algorithm, the implementation of BAFPIC requires the use of a constant vascular fraction of tissue (5%) and a cutoff for slow frequencies (0.06 min-1). With these settings, BAFPIC maintains the probabilistic distributions of the binding macroparameters with approximately Gaussian shape and minimizes the bias and variability for large physiological ranges of the rate constants of [11C]CURB. BAFPIC reduces the variability of Ki to a third of that given by Patlak plot, the standard graphical method for irreversible radioligands. Application to real data demonstrated an excellent correlation between region of interest and BAFPIC parametric data and agreed with the simulations results. Therefore, BAFPIC with a constant vascular fraction can be used to generate parametric maps of [11C]CURB images acquired with an HRRT provided that the limits of the basis functions are carefully selected.
Collapse
Affiliation(s)
- Pablo M. Rusjan
- Research Imaging Centre, CAMH Campbell Family Mental Health Research Institute, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| | - Dunja Knezevic
- Research Imaging Centre, CAMH Campbell Family Mental Health Research Institute, Toronto, Ontario, Canada
| | - Isabelle Boileau
- Research Imaging Centre, CAMH Campbell Family Mental Health Research Institute, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Junchao Tong
- Research Imaging Centre, CAMH Campbell Family Mental Health Research Institute, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Romina Mizrahi
- Research Imaging Centre, CAMH Campbell Family Mental Health Research Institute, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Alan A. Wilson
- Research Imaging Centre, CAMH Campbell Family Mental Health Research Institute, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Sylvain Houle
- Research Imaging Centre, CAMH Campbell Family Mental Health Research Institute, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
39
|
Narayanaswami V, Dahl K, Bernard-Gauthier V, Josephson L, Cumming P, Vasdev N. Emerging PET Radiotracers and Targets for Imaging of Neuroinflammation in Neurodegenerative Diseases: Outlook Beyond TSPO. Mol Imaging 2018; 17:1536012118792317. [PMID: 30203712 PMCID: PMC6134492 DOI: 10.1177/1536012118792317] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 05/31/2018] [Accepted: 07/09/2018] [Indexed: 11/16/2022] Open
Abstract
The dynamic and multicellular processes of neuroinflammation are mediated by the nonneuronal cells of the central nervous system, which include astrocytes and the brain's resident macrophages, microglia. Although initiation of an inflammatory response may be beneficial in response to injury of the nervous system, chronic or maladaptive neuroinflammation can have harmful outcomes in many neurological diseases. An acute neuroinflammatory response is protective when activated neuroglia facilitate tissue repair by releasing anti-inflammatory cytokines and neurotrophic factors. On the other hand, chronic neuroglial activation is a major pathological mechanism in neurodegenerative diseases, likely contributing to neuronal dysfunction, injury, and disease progression. Therefore, the development of specific and sensitive probes for positron emission tomography (PET) studies of neuroinflammation is attracting immense scientific and clinical interest. An early phase of this research emphasized PET studies of the prototypical imaging biomarker of glial activation, translocator protein-18 kDa (TSPO), which presents difficulties for quantitation and lacks absolute cellular specificity. Many alternate molecular targets present themselves for PET imaging of neuroinflammation in vivo, including enzymes, intracellular signaling molecules as well as ionotropic, G-protein coupled, and immunoglobulin receptors. We now review the lead structures in radiotracer development for PET studies of neuroinflammation targets for neurodegenerative diseases extending beyond TSPO, including glycogen synthase kinase 3, monoamine oxidase-B, reactive oxygen species, imidazoline-2 binding sites, cyclooxygenase, the phospholipase A2/arachidonic acid pathway, sphingosine-1-phosphate receptor-1, cannabinoid-2 receptor, the chemokine receptor CX3CR1, purinergic receptors: P2X7 and P2Y12, the receptor for advanced glycation end products, Mer tyrosine kinase, and triggering receptor expressed on myeloid cells-1. We provide a brief overview of the cellular expression and function of these targets, noting their selectivity for astrocytes and/or microglia, and highlight the classes of PET radiotracers that have been investigated in early-stage preclinical or clinical research studies of neuroinflammation.
Collapse
Affiliation(s)
- Vidya Narayanaswami
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
- Azrieli Centre for Neuro-Radiochemistry, Research Imaging Centre, Centre for Addiction and Mental Health & Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Kenneth Dahl
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
- Azrieli Centre for Neuro-Radiochemistry, Research Imaging Centre, Centre for Addiction and Mental Health & Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Vadim Bernard-Gauthier
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Paul Cumming
- School of Psychology and Counselling and IHBI, Queensland University of Technology, Brisbane, Queensland, Australia
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Neil Vasdev
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
- Azrieli Centre for Neuro-Radiochemistry, Research Imaging Centre, Centre for Addiction and Mental Health & Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
40
|
Boscutti G, Huiban M, Passchier J. Use of carbon-11 labelled tool compounds in support of drug development. DRUG DISCOVERY TODAY. TECHNOLOGIES 2017; 25:3-10. [PMID: 29233265 DOI: 10.1016/j.ddtec.2017.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 06/07/2023]
Abstract
The pharmaceutical industry is facing key challenges to improve return on R&D investment. Positron emission tomography (PET), by itself or in combination with complementary technologies such as magnetic resonance imaging (MRI), provides a unique opportunity to confirm a candidate's ability to meet the so-called 'three pillars' of drug development. Positive confirmation provides confidence for go/no-go decision making at an early stage of the development process and enables informed clinical progression. Whereas fluorine-18 has probably gained wider use in the community, there are benefits to using carbon-11 given the greater flexibility the use of this isotope permits in adaptive clinical study design. This review explores the scope of available carbon-11 chemistries and provides clinical examples to highlight its value in PET studies in support of drug development.
Collapse
Affiliation(s)
- Giulia Boscutti
- Imanova Ltd., Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Mickael Huiban
- Imanova Ltd., Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Jan Passchier
- Imanova Ltd., Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK.
| |
Collapse
|
41
|
Tong J, Rathitharan G, Meyer JH, Furukawa Y, Ang LC, Boileau I, Guttman M, Hornykiewicz O, Kish SJ. Brain monoamine oxidase B and A in human parkinsonian dopamine deficiency disorders. Brain 2017; 140:2460-2474. [PMID: 29050386 DOI: 10.1093/brain/awx172] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/30/2017] [Indexed: 11/13/2022] Open
Abstract
See Jellinger (doi:10.1093/awx190) for a scientific commentary on this article. The enzyme monoamine oxidases (B and A subtypes, encoded by MAOB and MAOA, respectively) are drug targets in the treatment of Parkinson's disease. Inhibitors of MAOB are used clinically in Parkinson's disease for symptomatic purposes whereas the potential disease-modifying effect of monoamine oxidase inhibitors is debated. As astroglial cells express high levels of MAOB, the enzyme has been proposed as a brain imaging marker of astrogliosis, a cellular process possibly involved in Parkinson's disease pathogenesis as elevation of MAOB in astrocytes might be harmful. Since brain monoamine oxidase status in Parkinson's disease is uncertain, our objective was to measure, by quantitative immunoblotting in autopsied brain homogenates, protein levels of both monoamine oxidases in three different degenerative parkinsonian disorders: Parkinson's disease (n = 11), multiple system atrophy (n = 11), and progressive supranuclear palsy (n = 16) and in matched controls (n = 16). We hypothesized that if MAOB is 'substantially' localized to astroglial cells, MAOB levels should be generally associated with standard astroglial protein measures (e.g. glial fibrillary acidic protein). MAOB levels were increased in degenerating putamen (+83%) and substantia nigra (+10%, non-significant) in multiple system atrophy; in caudate (+26%), putamen (+27%), frontal cortex (+31%) and substantia nigra (+23%) of progressive supranuclear palsy; and in frontal cortex (+33%), but not in substantia nigra of Parkinson's disease, a region we previously reported no increase in astrocyte protein markers. Although the magnitude of MAOB increase was less than those of standard astrocytic markers, significant positive correlations were observed amongst the astrocyte proteins and MAOB. Despite suggestions that MAOA (versus MAOB) is primarily responsible for metabolism of dopamine in dopamine neurons, there was no loss of the enzyme in the parkinsonian substantia nigra; instead, increased nigral levels of a MAOA fragment and 'turnover' of the enzyme were observed in the conditions. Our findings provide support that MAOB might serve as a biochemical imaging marker, albeit not entirely specific, for astrocyte activation in human brain. The observation that MAOB protein concentration is generally increased in degenerating brain areas in multiple system atrophy (especially putamen) and in progressive supranuclear palsy, but not in the nigra in Parkinson's disease, also distinguishes astrocyte behaviour in Parkinson's disease from that in the two 'Parkinson-plus' conditions. The question remains whether suppression of either MAOB in astrocytes or MAOA in dopamine neurons might influence progression of the parkinsonian disorders.
Collapse
Affiliation(s)
- Junchao Tong
- Preclinical Imaging Unit, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Human Brain Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Gausiha Rathitharan
- Human Brain Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Jeffrey H Meyer
- Research Imaging Centre and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Yoshiaki Furukawa
- Department of Neurology, Juntendo Tokyo Koto Geriatric Medical Center, and Faculty of Medicine, University and Post Graduate University of Juntendo, Tokyo, Japan
| | - Lee-Cyn Ang
- Division of Neuropathology, London Health Science Centre, University of Western Ontario, London, Ontario, Canada
| | - Isabelle Boileau
- Addiction Imaging Research Group, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Mark Guttman
- Centre for Movement Disorders, Markham, Ontario, Canada
| | - Oleh Hornykiewicz
- Centre for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria
| | - Stephen J Kish
- Human Brain Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| |
Collapse
|
42
|
Bernard-Gauthier V, Collier TL, Liang SH, Vasdev N. Discovery of PET radiopharmaceuticals at the academia-industry interface. DRUG DISCOVERY TODAY. TECHNOLOGIES 2017; 25:19-26. [PMID: 29233263 DOI: 10.1016/j.ddtec.2017.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 09/18/2017] [Indexed: 01/24/2023]
Abstract
Project-specific collaborations between academia and pharmaceutical partners are a growing phenomenon within molecular imaging and in particular in the positron emission tomography (PET) radiopharmaceutical community. This cultural shift can be attributed in part to decreased public funding in academia in conjunction with the increased reliance on outsourcing of chemistry, radiochemistry, pharmacology and molecular imaging studies by the pharmaceutical industry. This account highlights some of our personal experiences working with industrial partners to develop new PET radiochemistry methodologies for drug discovery and neuro-PET research studies. These symbiotic academic-industrial partnerships have not only led to novel radiotracers for new targets but also to the application of new carbon-11 and fluorine-18 labeling methodologies and technologies to label previously unprecedented compounds for in vivo evaluations.
Collapse
Affiliation(s)
- Vadim Bernard-Gauthier
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA 02114, USA
| | - Thomas L Collier
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA 02114, USA; Advion Inc., Research and Development, Ithaca, NY 14850, USA
| | - Steven H Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA 02114, USA
| | - Neil Vasdev
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
43
|
Dahl K, Halldin C, Schou M. New methodologies for the preparation of carbon-11 labeled radiopharmaceuticals. Clin Transl Imaging 2017; 5:275-289. [PMID: 28596949 PMCID: PMC5437136 DOI: 10.1007/s40336-017-0223-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 02/01/2017] [Indexed: 12/04/2022]
Abstract
PURPOSE This short review aims to cover the more recent and promising developments of carbon-11 (11C) labeling radiochemistry and its utility in the production of novel radiopharmaceuticals, with special emphasis on methods that have the greatest potential to be translated for clinical positron emission tomography (PET) imaging. METHODS A survey of the literature was undertaken to identify articles focusing on methodological development in 11C chemistry and their use within novel radiopharmaceutical preparation. However, since 11C-labeling chemistry is such a narrow field of research, no systematic literature search was therefore feasible. The survey was further restricted to a specific timeframe (2000-2016) and articles in English. RESULTS From the literature, it is clear that the majority of 11C-labeled radiopharmaceuticals prepared for clinical PET studies have been radiolabeled using the standard heteroatom methylation reaction. However, a number of methodologies have been developed in recent years, both from a technical and chemical point of view. Amongst these, two protocols may have the greatest potential to be widely adapted for the preparation of 11C-radiopharmaceuticals in a clinical setting. First, a novel method for the direct formation of 11C-labeled carbonyl groups, where organic bases are utilized as [11C]carbon dioxide-fixation agents. The second method of clinical importance is a low-pressure 11C-carbonylation technique that utilizes solvable xenon gas to effectively transfer and react [11C]carbon monoxide in a sealed reaction vessel. Both methods appear to be general and provide simple paths to 11C-labeled products. CONCLUSION Radiochemistry is the foundation of PET imaging which relies on the administration of a radiopharmaceutical. The demand for new radiopharmaceuticals for clinical PET imaging is increasing, and 11C-radiopharmaceuticals are especially important within clinical research and drug development. This review gives a comprehensive overview of the most noteworthy 11C-labeling methods with clinical relevance to the field of PET radiochemistry.
Collapse
Affiliation(s)
- Kenneth Dahl
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Hospital, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Christer Halldin
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Hospital, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Magnus Schou
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Hospital, Karolinska Institutet, 171 76 Stockholm, Sweden
- Department of Clinical Neuroscience, AstraZeneca Translational Science Centre, Karolinska Institutet, 171 76 Stockholm, Sweden
| |
Collapse
|
44
|
Ghadery C, Koshimori Y, Coakeley S, Harris M, Rusjan P, Kim J, Houle S, Strafella AP. Microglial activation in Parkinson's disease using [ 18F]-FEPPA. J Neuroinflammation 2017; 14:8. [PMID: 28086916 PMCID: PMC5234135 DOI: 10.1186/s12974-016-0778-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 12/13/2016] [Indexed: 11/12/2022] Open
Abstract
Background Neuroinflammatory processes including activated microglia have been reported to play an important role in Parkinson’s disease (PD). Increased expression of translocator protein (TSPO) has been observed after brain injury and inflammation in neurodegenerative diseases. Positron emission tomography (PET) radioligand targeting TSPO allows for the quantification of neuroinflammation in vivo. Methods Based on the genotype of the rs6791 polymorphism in the TSPO gene, we included 25 mixed-affinity binders (MABs) (14 PD patients and 11 age-matched healthy controls (HC)) and 27 high-affinity binders (HABs) (16 PD patients and 11 age-matched HC) to assess regional differences in the second-generation radioligand [18F]-FEPPA between PD patients and HC. FEPPA total distribution volume (VT) values in cortical as well as subcortical brain regions were derived from a two-tissue compartment model with arterial plasma as an input function. Results Our results revealed a significant main effect of genotype on [18F]-FEPPA VT in every brain region, but no main effect of disease or disease × genotype interaction in any brain region. The overall percentage difference of the mean FEPPA VT between HC-MABs and HC-HABs was 32.6% (SD = 2.09) and for PD-MABs and PD-HABs was 43.1% (SD = 1.21). Conclusions Future investigations are needed to determine the significance of [18F]-FEPPA as a biomarker of neuroinflammation as well as the importance of the rs6971 polymorphism and its clinical consequence in PD.
Collapse
Affiliation(s)
- Christine Ghadery
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada.,Division of Brain, Imaging and Behaviour - Systems Neuroscience, Krembil Research Institute, UHN, University of Toronto, Ontario, Canada
| | - Yuko Koshimori
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada.,Division of Brain, Imaging and Behaviour - Systems Neuroscience, Krembil Research Institute, UHN, University of Toronto, Ontario, Canada
| | - Sarah Coakeley
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada.,Division of Brain, Imaging and Behaviour - Systems Neuroscience, Krembil Research Institute, UHN, University of Toronto, Ontario, Canada
| | - Madeleine Harris
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - Pablo Rusjan
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - Jinhee Kim
- Neurology Division, Department of Medicine, Morton and Gloria Shulman Movement Disorder Unit & E.J. Safra Parkinson Disease Program, Toronto Western Hospital, UHN, University of Toronto, Ontario, Canada.,Division of Brain, Imaging and Behaviour - Systems Neuroscience, Krembil Research Institute, UHN, University of Toronto, Ontario, Canada
| | - Sylvain Houle
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - Antonio P Strafella
- Neurology Division, Department of Medicine, Morton and Gloria Shulman Movement Disorder Unit & E.J. Safra Parkinson Disease Program, Toronto Western Hospital, UHN, University of Toronto, Ontario, Canada. .,Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada. .,Division of Brain, Imaging and Behaviour - Systems Neuroscience, Krembil Research Institute, UHN, University of Toronto, Ontario, Canada. .,Toronto Western Hospital and Institute, CAMH-Research Imaging Centre, University of Toronto, Toronto, Ontario, M5T 2S8, Canada.
| |
Collapse
|
45
|
Rotstein BH, Liang SH, Placzek MS, Hooker JM, Gee AD, Dollé F, Wilson AA, Vasdev N. (11)C[double bond, length as m-dash]O bonds made easily for positron emission tomography radiopharmaceuticals. Chem Soc Rev 2016; 45:4708-26. [PMID: 27276357 PMCID: PMC5000859 DOI: 10.1039/c6cs00310a] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The positron-emitting radionuclide carbon-11 ((11)C, t1/2 = 20.3 min) possesses the unique potential for radiolabeling of any biological, naturally occurring, or synthetic organic molecule for in vivo positron emission tomography (PET) imaging. Carbon-11 is most often incorporated into small molecules by methylation of alcohol, thiol, amine or carboxylic acid precursors using [(11)C]methyl iodide or [(11)C]methyl triflate (generated from [(11)C]carbon dioxide or [(11)C]methane). Consequently, small molecules that lack an easily substituted (11)C-methyl group are often considered to have non-obvious strategies for radiolabeling and require a more customized approach. [(11)C]Carbon dioxide itself, [(11)C]carbon monoxide, [(11)C]cyanide, and [(11)C]phosgene represent alternative reactants to enable (11)C-carbonylation. Methodologies developed for preparation of (11)C-carbonyl groups have had a tremendous impact on the development of novel PET tracers and provided key tools for clinical research. (11)C-Carbonyl radiopharmaceuticals based on labeled carboxylic acids, amides, carbamates and ureas now account for a substantial number of important imaging agents that have seen translation to higher species and clinical research of previously inaccessible targets, which is a testament to the creativity, utility and practicality of the underlying radiochemistry.
Collapse
Affiliation(s)
| | - Steven H Liang
- Massachusetts General Hospital, Harvard Medical School, Boston, USA.
| | - Michael S Placzek
- Athinoula A. Martinos Center for Biomedical Imaging, MGH, HMS, Charlestown, USA and McLean Hospital, Belmont, USA
| | - Jacob M Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, MGH, HMS, Charlestown, USA
| | | | - Frédéric Dollé
- CEA - Institut d'imagerie biomédicale, Service hospitalier Frédéric Joliot, Université Paris-Saclay, Orsay, France
| | - Alan A Wilson
- Centre for Addiction and Mental Health, Toronto, Canada
| | - Neil Vasdev
- Massachusetts General Hospital, Harvard Medical School, Boston, USA.
| |
Collapse
|
46
|
Janssen B, Vugts DJ, Funke U, Molenaar GT, Kruijer PS, van Berckel BNM, Lammertsma AA, Windhorst AD. Imaging of neuroinflammation in Alzheimer's disease, multiple sclerosis and stroke: Recent developments in positron emission tomography. Biochim Biophys Acta Mol Basis Dis 2015; 1862:425-41. [PMID: 26643549 DOI: 10.1016/j.bbadis.2015.11.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/09/2015] [Accepted: 11/19/2015] [Indexed: 12/13/2022]
Abstract
Neuroinflammation is thought to play a pivotal role in many diseases affecting the brain, including Alzheimer's disease, multiple sclerosis and stroke. Neuroinflammation is characterised predominantly by microglial activation, which can be visualised using positron emission tomography (PET). Traditionally, translocator protein 18kDa (TSPO) is the target for imaging of neuroinflammation using PET. In this review, recent preclinical and clinical research using PET in Alzheimer's disease, multiple sclerosis and stroke is summarised. In addition, new molecular targets for imaging of neuroinflammation, such as monoamine oxidases, adenosine receptors and cannabinoid receptor type 2, are discussed. This article is part of a Special Issue entitled: Neuro Inflammation edited by Helga E. de Vries and Markus Schwaninger.
Collapse
Affiliation(s)
- Bieneke Janssen
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands.
| | - Danielle J Vugts
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Uta Funke
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands; BV Cyclotron VU, Amsterdam, The Netherlands
| | - Ger T Molenaar
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands; BV Cyclotron VU, Amsterdam, The Netherlands
| | | | - Bart N M van Berckel
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Adriaan A Lammertsma
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Albert D Windhorst
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
47
|
Nag S, Fazio P, Lehmann L, Kettschau G, Heinrich T, Thiele A, Svedberg M, Amini N, Leesch S, Catafau AM, Hannestad J, Varrone A, Halldin C. In Vivo and In Vitro Characterization of a Novel MAO-B Inhibitor Radioligand, 18F-Labeled Deuterated Fluorodeprenyl. J Nucl Med 2015; 57:315-20. [DOI: 10.2967/jnumed.115.161083] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 10/19/2015] [Indexed: 11/16/2022] Open
|
48
|
Koshimori Y, Ko JH, Mizrahi R, Rusjan P, Mabrouk R, Jacobs MF, Christopher L, Hamani C, Lang AE, Wilson AA, Houle S, Strafella AP. Imaging Striatal Microglial Activation in Patients with Parkinson's Disease. PLoS One 2015; 10:e0138721. [PMID: 26381267 PMCID: PMC4575151 DOI: 10.1371/journal.pone.0138721] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/02/2015] [Indexed: 01/22/2023] Open
Abstract
This study investigated whether the second-generation translocator protein 18kDa (TSPO) radioligand, [18F]-FEPPA, could be used in neurodegenerative parkinsonian disorders as a biomarker for detecting neuroinflammation in the striatum. Neuroinflammation has been implicated as a potential mechanism for the progression of Parkinson’s disease (PD). Positron Emission Tomography (PET) radioligand targeting for TSPO allows for the quantification of neuroinflammation in vivo. Based on genotype of the rs6791 polymorphism in the TSPO gene, 16 mixed-affinity binders (MABs) (8 PD and age-matched 8 healthy controls (HCs)), 16 high-affinity binders (HABs) (8 PD and age-matched 8 HCs) and 4 low-affinity binders (LABs) (3 PD and 1 HCs) were identified. Total distribution volume (VT) values in the striatum were derived from a two-tissue compartment model with arterial plasma as an input function. There was a significant main effect of genotype on [18F]-FEPPA VT values in the caudate nucleus (p = 0.001) and putamen (p < 0.001), but no main effect of disease or disease x genotype interaction in either ROI. In the HAB group, the percentage difference between PD and HC was 16% in both caudate nucleus and putamen; in the MAB group, it was -8% and 3%, respectively. While this PET study showed no evidence of increased striatal TSPO expression in PD patients, the current findings provide some insights on the possible interactions between rs6791 polymorphism and neuroinflammation in PD.
Collapse
Affiliation(s)
- Yuko Koshimori
- Division of Brain, Imaging and Behaviour—Systems Neuroscience, Toronto Western Research Institute, University Hospital Network, University of Toronto, Toronto, Ontario, Canada
- Research Imaging Centre, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - Ji-Hyun Ko
- Department of Human Anatomy and Cell Science, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Romina Mizrahi
- Research Imaging Centre, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - Pablo Rusjan
- Research Imaging Centre, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - Rostom Mabrouk
- Research Imaging Centre, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - Mark F. Jacobs
- Research Imaging Centre, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - Leigh Christopher
- Division of Brain, Imaging and Behaviour—Systems Neuroscience, Toronto Western Research Institute, University Hospital Network, University of Toronto, Toronto, Ontario, Canada
- Research Imaging Centre, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - Clement Hamani
- Division of Neurosurgery, Toronto Western Hospital, University Hospital Network, University of Toronto, Toronto, Ontario, Canada
| | - Anthony E. Lang
- Morton and Gloria Shulman Movement Disorder Unit & Edmond.J. Safra Program in Parkinson Disease, Toronto Western Hospital, University Hospital Network, University of Toronto, Toronto, Ontario, Canada
| | - Alan A. Wilson
- Research Imaging Centre, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - Sylvain Houle
- Research Imaging Centre, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - Antonio P. Strafella
- Division of Brain, Imaging and Behaviour—Systems Neuroscience, Toronto Western Research Institute, University Hospital Network, University of Toronto, Toronto, Ontario, Canada
- Research Imaging Centre, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
- Morton and Gloria Shulman Movement Disorder Unit & Edmond.J. Safra Program in Parkinson Disease, Toronto Western Hospital, University Hospital Network, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
49
|
Abstract
The logic of total synthesis transformed a stagnant state of medicinal and synthetic organic chemistry when there was a paucity of methods and reagents to synthesize drug molecules and/or natural products. Molecular imaging by positron emission tomography (PET) is now experiencing a renaissance in the way radiopharmaceuticals for molecular imaging are synthesized, however, a paradigm shift is desperately needed in the discovery pipeline to accelerate in vivo imaging studies. A significant challenge in radiochemistry is the limited choice of labeled reagents (or building blocks) available for the synthesis of novel radiopharmaceuticals with the most commonly used short-lived radionuclides carbon-11 (11C; half-life ~20 minutes) and fluorine-18 (18F; half-life ~2 hours). In fact, most drugs cannot be labeled with 11C or 18F due to a lack of efficient and diverse radiosynthetic methods. In general, routine radiopharmaceutical production relies on the incorporation of the isotope at the last or penultimate step of synthesis, ideally within one half-life of the radionuclide, to maximize radiochemical yields and specific activities thereby reducing losses due to radioactive decay. Reliance on radiochemistry conducted within the constraints of an automated synthesis unit ("box") has stifled the exploration of multi-step reactions with short-lived radionuclides. Radiopharmaceutical synthesis can be transformed by considering logic of total synthesis to develop novel approaches for 11C- and 18F-radiolabeling complex molecules via retrosynthetic analysis and multi-step reactions. As a result of such exploration, new methods, reagents and radiopharmaceuticals for in vivo imaging studies are discovered. A new avenue to develop radiotracers that were previously unattainable due to the lack of efficient radiosynthetic methods is necessary to work towards our ultimate, albeit impossible goal - the concept we term total radiosynthesis - to radiolabel virtually any molecule. As with the vast majority of drugs, most radiotracers also fail, therefore expeditious evaluation of tracers in preclinical models prior to optimization or derivatization of the lead molecules/drugs is necessary. Furthermore the exact position of the 11C and 18F radionuclide in tracers is often critical for metabolic considerations, and flexible methodologies to introduce the radiolabel are needed. Using the principles of total synthesis our laboratory and others have shown that multi-step radiochemical reactions are indeed suitable for preclinical and even clinical use. As the goal of total synthesis is to be concise, we have also simplified the syntheses of radiopharmaceuticals. We are presently developing new strategies via [11C]CO2 fixation which has enabled library radiosynthesis as well as labeling non-activated arenes using [18F]fluoride via iodonium ylides. Both of which have proven to be suitable for human PET imaging. We concurrently utilize state-of-the-art automation technologies including microfluidic flow chemistry and rapid purification strategies for radiopharmaceutical production. In this account we highlight how total radiosynthesis has impacted our radiochemistry program, with prominent examples from others, focusing on its impact towards preclinical and clinical research studies.
Collapse
Affiliation(s)
- Steven H. Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, 55 Fruit St., Boston, MA, 02114, USA
| | - Neil Vasdev
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, 55 Fruit St., Boston, MA, 02114, USA
| |
Collapse
|
50
|
Matthews PM, Datta G. Positron-emission tomography molecular imaging of glia and myelin in drug discovery for multiple sclerosis. Expert Opin Drug Discov 2015; 10:557-70. [PMID: 25843125 DOI: 10.1517/17460441.2015.1032240] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Therapies acting on glial cells are being explored for new drug development for multiple sclerosis. Molecular imaging using positron-emission tomography (PET) could address relevant questions in early phase clinical trials. AREAS COVERED In this article, the authors critically review human PET methods that can be applied in specialised centres for imaging activated microglia and astrocytes and myelin. EXPERT OPINION Strengths of PET lie in the molecular selectivity, sensitivity and potential for absolute quantitation. Even now, translocator protein PET radioligands could be used in exploratory studies for interventions targeting brain microglial activation. The clinical and neuropathological meaningfulness of signal from PET radioligands reporting on astrocyte activation through cellular expression of either monoamine oxidase B or the I2-imidazoline receptor or metabolism of [(11)C]acetate can now explored. [(11)C] N-methyl-4,4'-diaminostilbene, a PET marker for myelin, could soon enter first human trials. However, use of any of these PET glial markers demands a well-focused hypothesis and a commitment to validation in the context of use. Enhanced access to these radioligands, standardisation of analyses and lowering the costs of using them are needed if their full promise is to be realised.
Collapse
Affiliation(s)
- Paul M Matthews
- Imperial College London, Division of Brain Sciences, Department of Medicine , E515, Burlington Danes Building, Du Cane Road, W12 0NN London , UK +44 02075942612 ; +44 02075946548 ;
| | | |
Collapse
|