1
|
Dow C, Lorthe E, Bernard JY, Galera C, Marchand-Martin L, Tafflet M, Ancel PY, Charles MA, Heude B. Maternal Prepregnancy Obesity and Offspring Intelligence Quotient at 5 Years: A Multicohort Analysis. Paediatr Perinat Epidemiol 2025. [PMID: 39777691 DOI: 10.1111/ppe.13157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/20/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND The relationship between maternal obesity and childhood cognitive development remains unclear. Prior studies did not adjust for important confounders, and preterm infants are a developmentally distinct group that remains scarcely examined. OBJECTIVES To determine whether maternal prepregnancy body mass index (BMI) is associated with offspring intelligence quotient (IQ) up to 5 years and whether this relationship varies with gestational age. METHODS Data from two French birth cohorts, EDEN (all gestational ages) and EPIPAGE-2 (preterm children born between 24 and 34 weeks of gestation), were used for this study. Maternal prepregnancy weight and height were used to calculate prepregnancy BMI. The Wechsler Preschool and Primary Scale of Intelligence was used to assess child IQ around 5 years. Multivariable models were adjusted for confounders, including socioeconomic status and paternal BMI. RESULTS Analytical cohorts included 1100 children from EDEN and 2629 from EPIPAGE-2. Lower intellectual functioning (full-scale IQ < 85) was observed in 8.1% of children in EDEN and 19.6% in EPIPAGE-2. The prevalence of maternal obesity was 13.6% (EDEN) and 21.3% (EPIPAGE-2) among children with lower intellectual functioning compared to 8.9% (EDEN) and 12.9% (EPIPAGE-2) among children with normal intellectual functioning. Maternal prepregnancy obesity was associated with an approximately 3-point decrease in full-scale IQ scores in fully adjusted models (adjusted β -2.8, 95% confidence interval [CI] -5.6, -0.1 and -2.6, 95% CI -4.7, -0.6 in EDEN and EPIPAGE-2, respectively). In EDEN, maternal obesity was associated with lower scores in the verbal IQ domain. Among infants born preterm (EPIPAGE-2), maternal obesity was associated with lower scores in the processing, reasoning, and verbal IQ domains. Adjustment for paternal BMI did not change the magnitude of the relationship with maternal obesity. CONCLUSIONS High maternal prepregnancy BMI is associated with child cognitive development around 5 years of age.
Collapse
Affiliation(s)
- Courtney Dow
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Centre for Research in Epidemiology and StatisticS (CRESS), Paris, France
| | - Elsa Lorthe
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Centre for Research in Epidemiology and StatisticS (CRESS), Paris, France
- Unit of Population Epidemiology, Division of Primary Care Medicine, Geneva University Hospitals, Geneva, Switzerland
- Geneva School of Health Sciences, HES-SO University of Applied Sciences and Arts Western Switzerland, Geneva, Switzerland
| | - Jonathan Y Bernard
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Centre for Research in Epidemiology and StatisticS (CRESS), Paris, France
| | - Cédric Galera
- University Bordeaux, Inserm, Bordeaux Population Health Center, UMR 1219, Bordeaux, France
- Centre Hospitalier Perrens, Bordeaux, France
- Unit on Children's Psychosocial Maladjustment, Université de Montreal, Montreal, Quebec, Canada
| | - Laetitia Marchand-Martin
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Centre for Research in Epidemiology and StatisticS (CRESS), Paris, France
| | - Muriel Tafflet
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Centre for Research in Epidemiology and StatisticS (CRESS), Paris, France
| | - Pierre-Yves Ancel
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Centre for Research in Epidemiology and StatisticS (CRESS), Paris, France
| | - Marie-Aline Charles
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Centre for Research in Epidemiology and StatisticS (CRESS), Paris, France
| | - Barbara Heude
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Centre for Research in Epidemiology and StatisticS (CRESS), Paris, France
| |
Collapse
|
2
|
Takeoka E, Carlson AA, Madan N, Azimirad A, Mahmoud T, Kitano R, Akiyama S, Yun HJ, Tucker R, Im K, O'Tierney-Ginn P, Tarui T. Impact of high maternal body mass index on fetal cerebral cortical and cerebellar volumes. J Perinat Med 2025:jpm-2024-0222. [PMID: 39754513 DOI: 10.1515/jpm-2024-0222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 11/27/2024] [Indexed: 01/06/2025]
Abstract
OBJECTIVES Maternal obesity increases a child's risk of neurodevelopmental impairment. However, little is known about the impact of maternal obesity on fetal brain development. METHODS We prospectively recruited 20 healthy pregnant women across the range of pre-pregnancy or first-trimester body mass index (BMI) and performed fetal brain magnetic resonance imaging (MRI) of their healthy singleton fetuses. We examined correlations between early pregnancy maternal BMI and regional brain volume of living fetuses using volumetric MRI analysis. RESULTS Of 20 fetuses, there were 8 males and 12 females (median gestational age at MRI acquisition was 24.3 weeks, range: 19.7-33.3 weeks, median maternal age was 33.3 years, range: 22.0-37.4 years). There were no significant differences in clinical demographics between overweight (OW, 25≤BMI<30)/obese (OB, BMI≥30 kg/m2) (n=12) and normal BMI (18.5≤BMI<25) (n=8) groups. Fetuses in the OW/OB group had significantly larger left cortical plate (p=0.0003), right cortical plate (p=0.0002), and whole cerebellum (p=0.049) compared to the normal BMI group. In the OW/OB BMI group, cortical plate volume was larger relative to other brain regions after 28 weeks. CONCLUSIONS This pilot study supports the concept that maternal obesity impacts fetal brain volume, detectable via MRI in living fetuses using quantitative analysis.
Collapse
Affiliation(s)
- Emiko Takeoka
- Tufts Medical Center, Mother Infant Research Institute, Boston, MA, USA
- Department of Neonatology, Hyogo Prefectural Kobe Children's Hospital, Kobe, Hyogo, Japan
| | - April A Carlson
- Tufts Medical Center, Mother Infant Research Institute, Boston, MA, USA
- Department of Surgery, University of California Irvine, Irvine, CA, USA
| | - Neel Madan
- Department of Radiology, Mass General Brigham, Boston, MA, USA
| | - Afshin Azimirad
- Tufts Medical Center, Mother Infant Research Institute, Boston, MA, USA
- Department of Obstetrics and Gynecology, Tufts Medical Center, Boston, MA, USA
| | - Taysir Mahmoud
- Tufts Medical Center, Mother Infant Research Institute, Boston, MA, USA
| | - Rie Kitano
- Tufts Medical Center, Mother Infant Research Institute, Boston, MA, USA
- Department of Obstetrics and Gynecology, Tsuchiura Kyodo General Hospital, Tsuchiura, Ibaragi, Japan
| | - Shizuko Akiyama
- Tufts Medical Center, Mother Infant Research Institute, Boston, MA, USA
- Center for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Hyuk Jin Yun
- Fetal-Neonatal Neuroimaging Developmental Science Center, Boston Children's Hospital, Boston, MA, USA
| | - Richard Tucker
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, Providence, RI, USA
| | - Kiho Im
- Fetal-Neonatal Neuroimaging Developmental Science Center, Boston Children's Hospital, Boston, MA, USA
| | | | - Tomo Tarui
- Tufts Medical Center, Mother Infant Research Institute, Boston, MA, USA
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, Providence, RI, USA
- Pediatric Neurology, Hasbro Children's, Providence, RI, USA
| |
Collapse
|
3
|
Duko B, Mengistu TS, Stacey D, Moran LJ, Tessema G, Pereira G, Bedaso A, Gebremedhin AT, Alati R, Ayonrinde OT, Benyamin B, Lee SH, Hyppönen E. Associations between maternal preconception and pregnancy adiposity and neuropsychiatric and behavioral outcomes in the offspring: A systematic review and meta-analysis. Psychiatry Res 2024; 342:116149. [PMID: 39278191 DOI: 10.1016/j.psychres.2024.116149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 06/29/2024] [Accepted: 08/13/2024] [Indexed: 09/18/2024]
Abstract
Maternal adiposity (overweight or obesity) has been associated with adverse perinatal outcomes, although the potential risks of long-term neuropsychiatric and behavioral outcomes in the offspring remain unclear. Using the PRISMA guidelines, we searched PubMed, EMBASE, Scopus, and Web of Science to identify studies on maternal adiposity and offspring neuropsychiatric outcomes. Inverse variance-weighted random-effects meta-analyses were used to pool effect estimates with 95 % confidence intervals (95 % CIs) from adjusted odds ratios (OR) and hazard ratios (HR). Estimates were computed separately for preconception and pregnancy maternal overweight and obesity, with outcomes stratified by the type of neuropsychiatric outcome. In our meta-analyses of 42 epidemiological studies involving 3,680,937 mother-offspring pairs, we found increased risks of ADHD [OR=1.57, 95 % CI: 1.42-1.74], autism spectrum disorder [OR=1.42, 95 % CI: 1.22-1.65], conduct disorder [OR=1.16, 95 % CI: 1.00-1.35], Psychotic disorder [HR=1.61, 95 % CI: 1.41-1.83], externalizing behaviors [OR=1.30, 95 % CI: 1.07-1.56] and peer relationship problems [OR=1.25, 95 % CI: 1.04-1.27] in the offspring of preconception obese mothers. Similar increased risks were found in the offspring of preconception overweight mothers and those exposed to maternal adiposity during pregnancy. However, no association was found with offspring mood, anxiety, personality, eating, sleep disorders or prosocial problems. Preconception weight management may mitigate such adverse effects in the offspring.
Collapse
Affiliation(s)
- Bereket Duko
- Australian Centre for Precision Health, Unit of Clinical & Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; Curtin School of Population Health, Curtin University, Kent St, Bentley, Perth, WA 6102, Australia; South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia.
| | - Tesfaye S Mengistu
- Australian Centre for Precision Health, Unit of Clinical & Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; School of Public Health, Faculty of Medicine, The University of Queensland, Herston Queensland, Australia
| | - David Stacey
- Australian Centre for Precision Health, Unit of Clinical & Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Lisa J Moran
- Monash Centre for Health Research and Implementation, Monash University, Clayton, Victoria, Australia
| | - Gizachew Tessema
- Curtin School of Population Health, Curtin University, Kent St, Bentley, Perth, WA 6102, Australia; enAble Institute, Curtin University, Kent Street, Bentley, WA 6102, Australia
| | - Gavin Pereira
- Curtin School of Population Health, Curtin University, Kent St, Bentley, Perth, WA 6102, Australia; enAble Institute, Curtin University, Kent Street, Bentley, WA 6102, Australia
| | - Asres Bedaso
- The Daffodil Centre, University of Sydney, A Joint Venture with Cancer Council NSW, Sydney, Australia
| | - Amanuel Tesfay Gebremedhin
- Curtin School of Population Health, Curtin University, Kent St, Bentley, Perth, WA 6102, Australia; School of Nursing and Midwifery, Edith Cowan University, 270 Joondalup Drive, WA 6027, Australia
| | - Rosa Alati
- Curtin School of Population Health, Curtin University, Kent St, Bentley, Perth, WA 6102, Australia; enAble Institute, Curtin University, Kent Street, Bentley, WA 6102, Australia
| | - Oyekoya T Ayonrinde
- Medical School, The University of Western Australia, Perth, WA 6009, Australia; Department of Gastroenterology and Hepatology, Fiona Stanley Hospital, WA 6150, Australia
| | - Beben Benyamin
- Australian Centre for Precision Health, Unit of Clinical & Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia; Unit of Allied Health and Human Performance, University of South Australia, Adelaide, SA 5001, Australia
| | - S Hong Lee
- Australian Centre for Precision Health, Unit of Clinical & Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia; Unit of Allied Health and Human Performance, University of South Australia, Adelaide, SA 5001, Australia
| | - Elina Hyppönen
- Australian Centre for Precision Health, Unit of Clinical & Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| |
Collapse
|
4
|
Schmidt RJ, Goodrich AJ, Granillo L, Huang Y, Krakowiak P, Widaman A, Dienes JE, Bennett DH, Walker CK, Tancredi DJ. Reliability of a short diet and vitamin supplement questionnaire for retrospective collection of maternal nutrient intake. GLOBAL EPIDEMIOLOGY 2024; 8:100150. [PMID: 38983951 PMCID: PMC11231718 DOI: 10.1016/j.gloepi.2024.100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 05/29/2024] [Accepted: 06/12/2024] [Indexed: 07/11/2024] Open
Abstract
Background Gestational nutrition can protect against adverse neurodevelopmental outcomes. Objectives We developed a short tool for collecting maternal nutritional intake during pregnancy to facilitate research in this area and compared its retrospective use to prospectively-collected food frequency questionnaires (FFQ). Methods Maternal nutritional intake was retrospectively assessed using three versions (full interview, full self-administered online, and shortened interview) of the Early Life Exposure Assessment Tool (ELEAT) among participants of the MARBLES pregnancy cohort study of younger siblings of autistic children. Retrospective responses were compared with responses to supplement questions and the validated 2005 Block FFQ prospectively collected in MARBLES during pregnancies 2-7 years prior. ELEAT nutrient values were calculated using reported food intake frequencies and nutrient values from the USDA nutrient database. Correlations between retrospectively- and prospectively-reported intake were evaluated using Kappa coefficients, Youden's J, and Spearman Rank Correlation Coefficients (rs). Results MARBLES FFQ dietary intakes were compared among 54 women who completed the ELEAT full form including 12 online, and among 23 who completed the ELEAT short form. Correlations across most foods were fair to moderate. Most ELEAT quantified nutrient values were moderately correlated (rs = 0.3-0.6) with those on the Block FFQ. Supplement questions in both MARBLES and the ELEAT were completed by 114 women. Kappas were moderate for whether or not supplements were taken, but modest for timing. Correlations varied by version and child diagnosis or concerns, and were higher when mothers completed the ELEAT when their child was 4 years old or younger. Conclusions With recall up to several years, ELEAT dietary and supplement module responses were modestly to moderately reliable and produced nutrient values moderately correlated with prospectively-collected measures. The ELEAT dietary and vitamin supplements modules can be used to rank participants in terms of intake of several nutrients relevant for neurodevelopment.
Collapse
Affiliation(s)
- Rebecca J Schmidt
- Department of Public Health Sciences, University of California Davis School of Medicine, Davis, CA, United States of America
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA, United States of America
| | - Amanda J Goodrich
- Department of Public Health Sciences, University of California Davis School of Medicine, Davis, CA, United States of America
| | - Lauren Granillo
- Graduate Group in Epidemiology, University of California Davis, Davis, CA, United States of America
| | - Yunru Huang
- Graduate Group in Epidemiology, University of California Davis, Davis, CA, United States of America
| | - Paula Krakowiak
- Department of Public Health Sciences, University of California Davis School of Medicine, Davis, CA, United States of America
| | - Adrianne Widaman
- Graduate Group in Nutritional Biology, University of California Davis, Davis, CA, United States of America
| | - J Erin Dienes
- Department of Statistics, University of California Davis, Davis, CA, United States of America
| | - Deborah H Bennett
- Department of Public Health Sciences, University of California Davis School of Medicine, Davis, CA, United States of America
| | - Cheryl K Walker
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA, United States of America
- Department of Obstetrics and Gynecology, University of California Davis School of Medicine, Davis, CA, United States of America
| | - Daniel J Tancredi
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, United States of America
| |
Collapse
|
5
|
Al-Gailani L, Al-Kaleel A. The Relationship Between Prenatal, Perinatal, and Postnatal Factors and ADHD: The Role of Nutrition, Diet, and Stress. Dev Psychobiol 2024; 66:e70004. [PMID: 39508433 DOI: 10.1002/dev.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 10/14/2024] [Accepted: 10/25/2024] [Indexed: 11/15/2024]
Abstract
Attention-Deficit Hyperactive Disorder (ADHD) is a neurobehavioral syndrome affecting children aged 6-17 with symptoms manifesting before age 12. ADHD presents heterogeneously and is associated with various psychiatric disorders. The cause remains elusive, but genetic and environmental factors, brain region maturation delays, and neurotransmitter dysregulation are implicated. Effective treatment requires a multi-disciplinary approach, primarily involving pharmacological and behavioral intervention. Stimulants like methylphenidate and amphetamines are first-line medications, but non-stimulants may be considered for some patients. However, stimulants face challenges related to misuse, dependence, and long-term tolerability issues. The etiology of ADHD involved genetic predisposition, environmental influences, and prenatal, perinatal, and postnatal factors. Prenatal causes encompass maternal diet, alcohol consumption, viral infections, and stress. Postnatal factors include head trauma, meningitis, toxin, nutritional deficiencies, as well as iodine deficiency and hypothyroidism. The gut microbiome's role in ADHD is emerging, influencing neurodevelopment through microbiota-gut-brain axis. Understanding these diverse etiological factors is essential for comprehensive ADHD management.
Collapse
Affiliation(s)
- Lubna Al-Gailani
- Faculty of Medicine, Cyprus International University, Nicosia, Cyprus
| | - Ali Al-Kaleel
- Faculty of Medicine, Cyprus International University, Nicosia, Cyprus
| |
Collapse
|
6
|
Nilsson IAK, Ozsvar J, Gissler M, Lavebratt C. Maternal Eating Disorders, Body Mass Index, and Offspring Psychiatric Diagnoses. JAMA Netw Open 2024; 7:e2440517. [PMID: 39436646 PMCID: PMC11581519 DOI: 10.1001/jamanetworkopen.2024.40517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/28/2024] [Indexed: 10/23/2024] Open
Abstract
Importance Maternal nutrition is essential in fetal development; thus, disordered eating may influence this process and contribute to the development of offspring psychiatric disorders. Objective To investigate the association of maternal eating disorders and prepregnancy body mass index (BMI) with offspring psychiatric diagnoses. Design, Setting, and Participants This population-based cohort study used Finnish national registers to assess all live births from January 1, 2004, through December 31, 2014, with follow-up until December 31, 2021. The data analyses were conducted from September 1, 2023, to September 30, 2024. Exposures Maternal eating disorder and prepregnancy BMI. Main Outcomes and Measures Primary outcomes were 9 neurodevelopmental and psychiatric offspring diagnoses. Cox proportional hazards modeling adjusted for potential risk factors in the development of the outcome disorders was applied in 2 models. Secondary analyses were stratified for adverse birth outcomes (prematurity, small size for gestational age, and low Apgar score) or comorbid offspring eating disorders. Categories of BMI (calculated as weight in kilograms divided by height in meters squared) included underweight (BMI <18.5), normal weight (18.5-24.9), overweight (25.0-29.9), obesity (30.0-34.9), and severe obesity (≥35.0). Results The mean (SD) age of 392 098 included mothers was 30.15 (5.38) years, 42 590 mothers (10.86%) were born outside of Finland, 6273 mothers (1.60%) had a history of an eating disorder, 23 114 mothers (5.89%) had prepregnancy underweight, and 208 335 (53.13%) mothers had overweight or obesity. Among 649 956 included offspring, 332 359 (51.14%) were male, and 106 777 (16.43%) had received a neurodevelopmental or psychiatric diagnosis. Maternal eating disorders, prepregnancy underweight, and overweight or obesity were associated with most of the studied mental diagnoses in offspring, even after adjusting for potential covariates. The largest effect sizes were observed for maternal eating disorders not otherwise specified in association with offspring sleep disorders (hazard ratio [HR], 3.34 [95% CI, 2.39-4.67]) and social functioning and tic disorders (HR, 2.79 [95% CI, 2.21-3.52]), while for maternal severe prepregnancy obesity, offspring intellectual disabilities (HR, 2.04 [95% CI, 1.83-2.28]) had the largest effect size. Adverse birth outcomes further increased the risk of offspring having other feeding disturbances of childhood and infancy (eg, HR, 4.53 [95% CI, 2.97-6.89] for maternal eating disorders) and attention-deficit/hyperactivity disorder and conduct disorder (eg, HR, 2.27 [95% CI, 1.74-2.96] for maternal anorexia nervosa). Conclusions and Relevance In this population-based cohort study including 392 098 mothers and 649 956 offspring, offspring from mothers with an eating disorder history or prepregnancy BMI outside normal weight were at higher risk of psychiatric disorders. The results differed somewhat between the 2 exposures with regard to which offspring diagnoses had associations, and effect sizes were typically larger for maternal eating disorders vs BMI. These findings suggest a need to consider these 2 exposures clinically to help prevent offspring mental illness.
Collapse
Affiliation(s)
- Ida A. K. Nilsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
- Centre for Eating Disorders Innovation, Karolinska Institutet, Stockholm, Sweden
| | - Judit Ozsvar
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Mika Gissler
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Knowledge Brokers, Finnish Institute for Health and Welfare, Helsinki, Finland
- Research Centre for Child Psychiatry, University of Turku, Turku, Finland
| | - Catharina Lavebratt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
7
|
Michalczyk J, Miłosz A, Gesek M, Fornal A. Prenatal Diabetes and Obesity: Implications for Autism Spectrum Disorders in Offspring - A Comprehensive Review. Med Sci Monit 2024; 30:e945087. [PMID: 39180197 DOI: 10.12659/msm.945087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024] Open
Abstract
Fetal brain development is an important determinant of neuropsychological performance in children. Any alterations in the intrauterine environment at different stages of pregnancy, such as maternal metabolic disorders, can lead to the development of chronic conditions in the offspring. Therefore, maternal diabetes, especially gestational diabetes mellitus, is an important factor in the development of pathological changes, such as miscarriage, fetal macrosomia, or neurodevelopmental disorders. During pregnancy, the hyperglycemic intrauterine environment adversely affects fetal brain development. A growing body of scientific research indicates that prenatal environmental factors, by affecting fetal brain development, can contribute to the appearance of autism spectrum disorders. According to the latest estimates from the International Diabetes Federation (2021), approximately 21.1 million live births worldwide (16.7%) have been affected by some form of hyperglycemia during pregnancy. The condition is more prevalent in low- and middle-income countries, where access to obstetric care is limited. The following factors have been identified as potential risk factors for gestational diabetes: advanced maternal age, overweight and obesity, family history of diabetes, and any form of diabetes. The purpose of this review is to summarize recent studies evaluating the effect of prenatal and maternal risk factors such as maternal pre-pregnancy diabetes, gestational diabetes, and obesity on the risk of developing autism spectrum disorder in offspring.
Collapse
Affiliation(s)
- Justyna Michalczyk
- Student Scientific Association at the Department of Pediatrics and Pediatric Nursing, Medical University of Lublin, Lublin, Poland
| | - Agata Miłosz
- Student Scientific Association at the Department of Pediatrics and Pediatric Nursing, Medical University of Lublin, Lublin, Poland
| | - Monika Gesek
- Department of Pediatric and Pediatric Nursing, Faculty of Health Sciences, Medical University of Lublin, Lublin, Poland
- Department of Integrated Nursing Care, Faculty of Health Sciences, Medical University of Lublin, Lublin, Poland
| | - Aleksandra Fornal
- Department of Pediatric and Pediatric Nursing, Faculty of Health Sciences, Medical University of Lublin, Lublin, Poland
- Department of Integrated Nursing Care, Faculty of Health Sciences, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
8
|
Cattaneo A, Begni V, Zonca V, Riva MA. Early life adversities, psychopathologies and novel pharmacological strategies. Pharmacol Ther 2024; 260:108686. [PMID: 38969307 DOI: 10.1016/j.pharmthera.2024.108686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/05/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Exposure to adversities during early life stages (early life adversities - ELA), ranging from pregnancy to adolescence, represents a major risk factor for the vulnerability to mental disorders. Hence, it is important to understand the molecular and functional underpinning of such relationship, in order to develop strategies aimed at reducing the psychopathologic burden associated with ELA, which may eventually lead to a significant improvement in clinical practice. In this review, we will initially recapitulate clinical and preclinical evidence supporting the link between ELA and psychopathology and we will primarily discuss the main biological mechanisms that have been described as potential mediators of the effects of ELA on the psychopathologic risk, including the role for genetic factors as well as sex differences. The knowledge emerging from these studies may be instrumental for the development of novel therapeutic strategies aimed not only at correcting the deficits that emerge from ELA exposure, but also in preventing the manifestation of a full-blown psychopathologic condition. With this respect, we will specifically focus on adolescence as a key time frame for disease onset as well as for early therapeutic intervention. We believe that incorporating clinical and preclinical research data in the context of early life adversities can be instrumental to elucidate the mechanisms contributing to the risk for psychopathology or that may promote resilience. This will ultimately allow the identification of 'at risk' individuals who may benefit from specific forms of interventions that, by interfering with disease trajectories, could result in more benign clinical outcomes.
Collapse
Affiliation(s)
- Annamaria Cattaneo
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Veronica Begni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Valentina Zonca
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Marco A Riva
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| |
Collapse
|
9
|
Camacho-Morales A, Cárdenas-Tueme M. Prenatal Programming of Monocyte Chemotactic Protein-1 Signaling in Autism Susceptibility. Mol Neurobiol 2024; 61:6119-6134. [PMID: 38277116 DOI: 10.1007/s12035-024-03940-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder that involves functional and structural defects in selective central nervous system (CNS) regions, harming the individual capability to process and respond to external stimuli, including impaired verbal and non-verbal communications. Etiological causes of ASD have not been fully clarified; however, prenatal activation of the innate immune system by external stimuli might infiltrate peripheral immune cells into the fetal CNS and activate cytokine secretion by microglia and astrocytes. For instance, genomic and postmortem histological analysis has identified proinflammatory gene signatures, microglia-related expressed genes, and neuroinflammatory markers in the brain during ASD diagnosis. Active neuroinflammation might also occur during the developmental stage, promoting the establishment of a defective brain connectome and increasing susceptibility to ASD after birth. While still under investigation, we tested the hypothesis whether the monocyte chemoattractant protein-1 (MCP-1) signaling is prenatally programmed to favor peripheral immune cell infiltration and activate microglia into the fetal CNS, setting susceptibility to autism-like behavior. In this review, we will comprehensively provide the current understanding of the prenatal activation of MCP-1 signaling by external stimuli during the developmental stage as a new selective node to promote neuroinflammation, brain structural alterations, and behavioral defects associated to ASD diagnosis.
Collapse
Affiliation(s)
- Alberto Camacho-Morales
- College of Medicine, Department of Biochemistry, Universidad Autónoma de Nuevo Leon, Monterrey, NL, Mexico.
- Center for Research and Development in Health Sciences, Neurometabolism Unit, Universidad Autónoma de Nuevo Leon, San Nicolás de los Garza, Monterrey, NL, Mexico.
| | - Marcela Cárdenas-Tueme
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de La Salud and The Institute for Obesity Research, 64710, Monterrey, Mexico
- Nutrition Unit, Center for Research and Development in Health Sciences, Universidad Autonoma de Nuevo Leon, 64460, Monterrey, Mexico
| |
Collapse
|
10
|
Parsaei M, Hashemi SM, Moghaddam HS, Peterson BS. A systematic review of MRI studies on the effects of maternal obesity on offspring brain structure and function. J Neurosci Res 2024; 102:e25368. [PMID: 39007363 DOI: 10.1002/jnr.25368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 06/27/2024] [Accepted: 06/30/2024] [Indexed: 07/16/2024]
Abstract
Maternal obesity before or during pregnancy has been associated previously in offspring with a wide range of poor neurodevelopmental outcomes and mental health problems. The effects of maternal obesity on offspring brain structure and function that may be responsible for these poor outcomes are not well understood. We, therefore, undertook a systematic review of magnetic resonance imaging (MRI) studies that have assessed the associations of maternal obesity with brain measures in offspring. A systematic search was conducted in PubMed, Web of Science, Scopus, and PsycINFO on August 20, 2023. Of 15 eligible studies, seven employed functional MRI (fMRI), five diffusion tensor imaging (DTI), and four anatomical MRI (one used both DTI and anatomical MRI) in the offspring. The ages of offspring varied widely: one was a study of fetuses in utero, five of neonates, one of infants, five of school-aged children, two of both neonates and infants, and one of both children and adults. Collectively, 12 studies reported significant associations of maternal obesity with structural or functional alterations of the offspring's brain, most frequently in the prefrontal cortex and limbic system. In conclusion, maternal obesity appears to have a profound influence on offspring brain development, particularly within the prefrontal and limbic networks that regulate emotion and behavior. Further studies are needed to identify how changes in brain structure and function mediate the effects of maternal obesity on long-term emotional and behavioral outcomes, as well as the molecular pathways through which maternal obesity alters offspring brain development.
Collapse
Affiliation(s)
- Mohammadamin Parsaei
- Maternal, Fetal & Neonatal Research Center, Family Health Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Hossein Sanjari Moghaddam
- Psychiatry and Psychology Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Bradley S Peterson
- Institute for the Developing Mind, Children's Hospital, Los Angeles, California, USA
- Department of Psychiatry, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
11
|
Maitin-Shepard M, O'Tierney-Ginn P, Kraneveld AD, Lyall K, Fallin D, Arora M, Fasano A, Mueller NT, Wang X, Caulfield LE, Dickerson AS, Diaz Heijtz R, Tarui T, Blumberg JB, Holingue C, Schmidt RJ, Garssen J, Almendinger K, Lin PID, Mozaffarian D. Food, nutrition, and autism: from soil to fork. Am J Clin Nutr 2024; 120:240-256. [PMID: 38677518 DOI: 10.1016/j.ajcnut.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024] Open
Abstract
Food and nutrition-related factors have the potential to impact development of autism spectrum disorder (ASD) and quality of life for people with ASD, but gaps in evidence exist. On 10 November 2022, Tufts University's Friedman School of Nutrition Science and Policy and Food and Nutrition Innovation Institute hosted a 1-d meeting to explore the evidence and evidence gaps regarding the relationships of food and nutrition with ASD. This meeting report summarizes the presentations and deliberations from the meeting. Topics addressed included prenatal and child dietary intake, the microbiome, obesity, food-related environmental exposures, mechanisms and biological processes linking these factors and ASD, food-related social factors, and data sources for future research. Presentations highlighted evidence for protective associations with prenatal folic acid supplementation and ASD development, increases in risk of ASD with maternal gestational obesity, and the potential for exposure to environmental contaminants in foods and food packaging to influence ASD development. The importance of the maternal and child microbiome in ASD development or ASD-related behaviors in the child was reviewed, as was the role of discrimination in leading to disparities in environmental exposures and psychosocial factors that may influence ASD. The role of child diet and high prevalence of food selectivity in children with ASD and its association with adverse outcomes were also discussed. Priority evidence gaps identified by participants include further clarifying ASD development, including biomarkers and key mechanisms; interactions among psychosocial, social, and biological determinants; interventions addressing diet, supplementation, and the microbiome to prevent and improve quality of life for people with ASD; and mechanisms of action of diet-related factors associated with ASD. Participants developed research proposals to address the priority evidence gaps. The workshop findings serve as a foundation for future prioritization of scientific research to address evidence gaps related to food, nutrition, and ASD.
Collapse
Affiliation(s)
| | | | - Aletta D Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands; Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, the Netherlands
| | - Kristen Lyall
- AJ Drexel Autism Institute, Drexel University, Philadelphia, PA, United States
| | - Daniele Fallin
- Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Manish Arora
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Alessio Fasano
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Noel T Mueller
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Xiaobin Wang
- Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Laura E Caulfield
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Aisha S Dickerson
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | | | - Tomo Tarui
- Department of Pediatrics, Hasbro Children's Hospital, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Jeffrey B Blumberg
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, United States
| | - Calliope Holingue
- Center for Autism Services, Science and Innovation, Kennedy Krieger Institute and Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Rebecca J Schmidt
- Department of Public Health Sciences, the MIND Institute, University of California Davis, Davis, CA, United States
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Katherine Almendinger
- Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Pi-I Debby Lin
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, United States
| | - Dariush Mozaffarian
- Food is Medicine Institute, Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, United States.
| |
Collapse
|
12
|
Tamayo JM, Osman HC, Schwartzer JJ, Ashwood P. The influence of asthma on neuroinflammation and neurodevelopment: From epidemiology to basic models. Brain Behav Immun 2024; 116:218-228. [PMID: 38070621 DOI: 10.1016/j.bbi.2023.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/08/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023] Open
Abstract
Asthma is a highly heterogeneous inflammatory disease that can have a significant effect on both the respiratory system and central nervous system. Population based studies and animal models have found asthma to be comorbid with a number of neurological conditions, including depression, anxiety, and neurodevelopmental disorders. In addition, maternal asthma during pregnancy has been associated with neurodevelopmental disorders in the offspring, such as autism spectrum disorders and attention deficit hyperactivity disorder. In this article, we review the most current epidemiological studies of asthma that identify links to neurological conditions, both as it relates to individuals that suffer from asthma and the impacts asthma during pregnancy may have on offspring neurodevelopment. We also discuss the relevant animal models investigating these links, address the gaps in knowledge, and explore the potential future directions in this field.
Collapse
Affiliation(s)
- Juan M Tamayo
- Department of Medical Microbiology and Immunology, and the M.I.N.D. Institute, University of California at Davis, CA 95817, USA
| | - Hadley C Osman
- Department of Medical Microbiology and Immunology, and the M.I.N.D. Institute, University of California at Davis, CA 95817, USA
| | - Jared J Schwartzer
- Program in Neuroscience and Behavior, Department of Psychology and Education, Mount Holyoke College, 50 College Street, South Hadley, MA 01075, USA
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, and the M.I.N.D. Institute, University of California at Davis, CA 95817, USA.
| |
Collapse
|
13
|
Di Gesù CM, Buffington SA. The early life exposome and autism risk: a role for the maternal microbiome? Gut Microbes 2024; 16:2385117. [PMID: 39120056 PMCID: PMC11318715 DOI: 10.1080/19490976.2024.2385117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
Autism spectrum disorders (ASD) are highly heritable, heterogeneous neurodevelopmental disorders characterized by clinical presentation of atypical social, communicative, and repetitive behaviors. Over the past 25 years, hundreds of ASD risk genes have been identified. Many converge on key molecular pathways, from translational control to those regulating synaptic structure and function. Despite these advances, therapeutic approaches remain elusive. Emerging data unearthing the relationship between genetics, microbes, and immunity in ASD suggest an integrative physiology approach could be paramount to delivering therapeutic breakthroughs. Indeed, the advent of large-scale multi-OMIC data acquisition, analysis, and interpretation is yielding an increasingly mechanistic understanding of ASD and underlying risk factors, revealing how genetic susceptibility interacts with microbial genetics, metabolism, epigenetic (re)programming, and immunity to influence neurodevelopment and behavioral outcomes. It is now possible to foresee exciting advancements in the treatment of some forms of ASD that could markedly improve quality of life and productivity for autistic individuals. Here, we highlight recent work revealing how gene X maternal exposome interactions influence risk for ASD, with emphasis on the intrauterine environment and fetal neurodevelopment, host-microbe interactions, and the evolving therapeutic landscape for ASD.
Collapse
Affiliation(s)
- Claudia M. Di Gesù
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Shelly A. Buffington
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
14
|
Lee JY, Lee HJ, Jang YH, Kim H, Im K, Yang S, Hoh JK, Ahn JH. Maternal pre-pregnancy obesity affects the uncinate fasciculus white matter tract in preterm infants. Front Pediatr 2023; 11:1225960. [PMID: 38034827 PMCID: PMC10684693 DOI: 10.3389/fped.2023.1225960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023] Open
Abstract
Background A growing body of evidence suggests an association between a higher maternal pre-pregnancy body mass index (BMI) and adverse long-term neurodevelopmental outcomes for their offspring. Despite recent attention to the effects of maternal obesity on fetal and neonatal brain development, changes in the brain microstructure of preterm infants born to mothers with pre-pregnancy obesity are still not well understood. This study aimed to detect the changes in the brain microstructure of obese mothers in pre-pregnancy and their offspring born as preterm infants using diffusion tensor imaging (DTI). Methods A total of 32 preterm infants (born to 16 mothers with normal BMI and 16 mothers with a high BMI) at <32 weeks of gestation without brain injury underwent brain magnetic resonance imaging at term-equivalent age (TEA). The BMI of all pregnant women was measured within approximately 12 weeks before pregnancy or the first 2 weeks of gestation. We analyzed the brain volume using a morphologically adaptive neonatal tissue segmentation toolbox and calculated the major white matter (WM) tracts using probabilistic maps of the Johns Hopkins University neonatal atlas. We investigated the differences in brain volume and WM microstructure between preterm infants of mothers with normal and high BMI. The DTI parameters were compared among groups using analysis of covariance adjusted for postmenstrual age at scan and multiple comparisons. Results Preterm infants born to mothers with a high BMI showed significantly increased cortical gray matter volume (p = 0.001) and decreased WM volume (p = 0.003) after controlling for postmenstrual age and multiple comparisons. We found a significantly lower axial diffusivity in the uncinate fasciculus (UNC) in mothers with high BMI than that in mothers with normal BMI (1.690 ± 0.066 vs. 1.762 ± 0.101, respectively; p = 0.005). Conclusion Our study is the first to demonstrate that maternal obesity impacts perinatal brain development patterns in preterm infants at TEA, even in the absence of apparent brain injury. These findings provide evidence for the detrimental effects of maternal obesity on brain developmental trajectories in offspring and suggest potential neurodevelopmental outcomes based on an altered UNC WM microstructure, which is known to be critical for language and social-emotional functions.
Collapse
Affiliation(s)
- Joo Young Lee
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, Republic of Korea
| | - Hyun Ju Lee
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, Republic of Korea
- Division of Neonatology and Development Medicine, Hanyang University Hospital, Seoul, Republic of Korea
| | - Yong Hun Jang
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, Republic of Korea
| | - Hyuna Kim
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, Republic of Korea
| | - Kiho Im
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
- Division of Newborn Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Seung Yang
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, Republic of Korea
- Department of Pediatrics, Hanyang University Hospital, Seoul, Republic of Korea
| | - Jeong-Kyu Hoh
- Department of Obstetrics and Gynecology, Hanyang University College of Medicine, Seoul, Republic of Korea
- Department of Obstetrics and Gynecology, Hanyang University Hospital, Seoul, Republic of Korea
| | - Ja-Hye Ahn
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, Republic of Korea
- Division of Neonatology and Development Medicine, Hanyang University Hospital, Seoul, Republic of Korea
| |
Collapse
|
15
|
Journault M, Murthy P, Bansal N, Tang S, Al Awad E, Creighton D, Newman J, Lodha A. The association of maternal overweight on long-term neurodevelopmental outcomes in premature infants (< 29 weeks) at 18-24 months corrected age. J Perinatol 2023; 43:1413-1419. [PMID: 37479886 DOI: 10.1038/s41372-023-01733-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023]
Abstract
OBJECTIVE To determine the association of maternal pre-pregnancy body mass index (BMI) and neurodevelopmental impairment (NDI) at 18-24 months corrected age (CA) in infants born < 29 weeks gestation. STUDY DESIGN Infants born between 2005 and 2015 at < 29 weeks gestation were included. BMI was categorized into BMI1 [18.5-24.9 kg/m2], BMI2 [25-29.9 kg/m2], BMI3 [ ≥ 30 kg/m2]. Primary outcome was death or NDI (Bayley-III scores < 85, cerebral palsy, hearing or visual impairment). Univariate and multivariate analysis were used. RESULTS There were 315 infants in BMI1, 235 in BMI2, and 147 in BMI3 groups. Adjusted odds ratio (aOR) of death or NDI in BMI2 vs. BMI1 and BMI3 vs BMI1 groups were 1.33 (95% CI 0.86-2.06) and 0.76 (95% CI 0.47-1.22). Adjusted odds ratio of Bayley-III language composite < 85 was 2.06 (95% CI 1.28-3.32). CONCLUSION Pre-pregnancy BMI was not associated with death or NDI in extremely preterm infants. Infants born to overweight mothers had higher odds of low language scores.
Collapse
Affiliation(s)
- Marina Journault
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Health Services, Calgary, Alberta, Canada
| | - Prashanth Murthy
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Health Services, Calgary, Alberta, Canada
| | - Neha Bansal
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Health Services, Calgary, Alberta, Canada
| | - Selphee Tang
- Alberta Health Services, Calgary, Alberta, Canada
| | - Essa Al Awad
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Health Services, Calgary, Alberta, Canada
| | - Dianne Creighton
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jill Newman
- Alberta Health Services, Calgary, Alberta, Canada
| | - Abhay Lodha
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Alberta Health Services, Calgary, Alberta, Canada.
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
16
|
Ranieri A, Mennitti C, Falcone N, La Monica I, Di Iorio MR, Tripodi L, Gentile A, Vitale M, Pero R, Pastore L, D’Argenio V, Scudiero O, Lombardo B. Positive effects of physical activity in autism spectrum disorder: how influences behavior, metabolic disorder and gut microbiota. Front Psychiatry 2023; 14:1238797. [PMID: 38025444 PMCID: PMC10681626 DOI: 10.3389/fpsyt.2023.1238797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023] Open
Abstract
Autism spectrum disorder is a neurodevelopmental disorder characterized by social interactions and communication skills impairments that include intellectual disabilities, communication delays and self-injurious behaviors; often are present systemic comorbidities such as gastrointestinal disorders, obesity and cardiovascular disease. Moreover, in recent years has emerged a link between alterations in the intestinal microbiota and neurobehavioral symptoms in children with autism spectrum disorder. Recently, physical activity and exercise interventions are known to be beneficial for improving communication and social interaction and the composition of microbiota. In our review we intend to highlight how different types of sports can help to improve communication and social behaviors in children with autism and also show positive effects on gut microbiota composition.
Collapse
Affiliation(s)
| | - Cristina Mennitti
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy
| | - Noemi Falcone
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy
| | - Ilaria La Monica
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy
| | - Maria Rosaria Di Iorio
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy
| | - Lorella Tripodi
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy
| | - Alessandro Gentile
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy
| | - Maria Vitale
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Raffaella Pero
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Lucio Pastore
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy
| | - Valeria D’Argenio
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Open University, Rome, Italy
| | - Olga Scudiero
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Barbara Lombardo
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy
| |
Collapse
|
17
|
Gehring ND, Birken CS, Belanger S, Bridger T, Chanoine JP, Gibson WT, Hadjiyannakis S, Haines J, Hamilton J, Haqq AM, Henderson M, Ho J, Irvine B, Legault L, Luca P, Maguire J, McPherson AC, Morrison K, Wahi G, Weksberg R, Zwaigenbaum L, Ball GDC. Severe obesity and global developmental delay in preschool children: Findings from a Canadian Paediatric Surveillance Program study. Paediatr Child Health 2023; 28:107-112. [PMID: 37151929 PMCID: PMC10156927 DOI: 10.1093/pch/pxac109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/12/2022] [Indexed: 11/15/2022] Open
Abstract
Background The co-presentation of severe obesity (SO) and global developmental delay (GDD) in Canadian preschool children has not been examined. However, SO and GDD may require syndromic diagnoses and unique management considerations. Objectives To determine (1) minimum incidence; (2) age of onset and risk factors; and (3) health care utilization for co-presenting SO and GDD. Methods Through the Canadian Paediatric Surveillance Program (CPSP), a monthly form was distributed to participants from February 2018 to January 2020 asking for reports of new cases of SO and GDD among children ≤5 years of age. We performed descriptive statistics for quantitative questions and qualitative content analysis for open-ended questions. Results Forty-seven cases (64% male; 51% white; mean age: 3.5 ± 1.2 years) were included. Age of first weight concern was 2.5 ± 1.3 years and age of GDD diagnosis was 2.7 ± 1.4 years. Minimum incidence of SO and GDD was 3.3 cases per 100,000 for ≤5 years of age per year. Identified problems included school and/or behavioural problems (n = 17; 36%), snoring (n = 14; 30%), and asthma/recurrent wheeze (n = 10; 21%). Mothers of 32% of cases (n = 15) had obesity and 21% of cases (n = 10) received neonatal intensive care. Microarray was ordered for 57% (n = 27) of children. A variety of clinicians and services were accessed. As reported by CPSP participants, challenges faced by families and health service access were barriers to care. Conclusion Children with SO and GDD have multiple comorbidities, and require early identification and referral to appropriate services. These cases may also benefit from additional testing to rule out known genetic obesity syndromes.
Collapse
Affiliation(s)
- Nicole D Gehring
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada
| | - Catherine S Birken
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Stacey Belanger
- Department of Pediatrics, University of Montreal, Montreal, Québec, Canada
| | - Tracey Bridger
- Discipline of Pediatrics, Memorial University, St. John’s, Newfoundland and Labrador, Canada
| | - Jean-Pierre Chanoine
- Division of Endocrinology, University of British Columbia, Vancouver, British Columbia, Canada
| | - William T Gibson
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Jess Haines
- Department of Family Relations & Applied Nutrition, University of Guelph, Guelph, Ontario, Canada
| | - Jill Hamilton
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Andrea M Haqq
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Mélanie Henderson
- Department of Pediatrics, University of Montreal, Montreal, Québec, Canada
| | - Josephine Ho
- Department of Paediatrics, University of Calgary, Calgary, Alberta, Canada
| | | | - Laurent Legault
- Department of Pediatrics, McGill University, Montreal, Québec, Canada
| | - Paola Luca
- Department of Paediatrics, University of Calgary, Calgary, Alberta, Canada
| | - Jonathon Maguire
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Amy C McPherson
- Holland Bloorview Kids Rehabilitation Hospital, Bloorview Research Institute, Toronto, Ontario, Canada
- Dalla Lana School of Public Health and Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
| | - Katherine Morrison
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Gita Wahi
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Rosanna Weksberg
- Holland Bloorview Kids Rehabilitation Hospital, Bloorview Research Institute, Toronto, Ontario, Canada
| | - Lonnie Zwaigenbaum
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Geoff D C Ball
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
18
|
Wang YC, Chen CH, Yang CY, Ling P, Hsu KS. High-Fat Diet Exacerbates Autistic-Like Restricted Repetitive Behaviors and Social Abnormalities in CC2D1A Conditional Knockout Mice. Mol Neurobiol 2023; 60:1331-1352. [PMID: 36445635 DOI: 10.1007/s12035-022-03146-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/19/2022] [Indexed: 12/03/2022]
Abstract
Autism spectrum disorder (ASD) represents a heterogeneous group of neurodevelopmental disorders characterized by deficits in social communication, social interaction, and the presence of restricted repetitive behaviors. The cause of ASD involves complex interactions between genetic and environmental factors. Haploinsufficiency of the Coiled-coil and C2 domain containing 1A (Cc2d1a) gene is causally linked to ASD, and obesity has been associated with worse outcomes for ASD. High-fat diet (HFD) feeding leads to the development of obesity and metabolic dysfunction; however, the effect of HFD on pre-existing autistic-like phenotypes remains to be clarified. Here, we report that male Cc2d1a conditional knockout (cKO) mice fed with HFD, from weaning onwards and throughout the experimental period, show a marked aggravation in autistic-like phenotypes, manifested in increased restricted repetitive behaviors and impaired performance in the preference for social novelty, but not in sociability and cognitive impairments assessed using the object location memory, novel object recognition, and Morris water maze tests. HFD feeding also results in increased numbers of reactive microglia and astrocytes, and exacerbates reductions in dendritic complexity and spine density of hippocampal CA1 pyramidal neurons. Furthermore, we demonstrate that chronic treatment with minocycline, a semisynthetic tetracycline-derived antibiotic, rescues the observed behavioral and morphological deficits in Cc2d1a cKO mice fed with HFD. Collectively, these findings highlight an aggravating role of HFD in pre-existing autistic-like phenotypes and suggest that minocycline treatment can alleviate abnormal neuronal morphology and behavioral symptoms associated with ASD resulted from the interplay between genetic and environmental risk factors.
Collapse
Affiliation(s)
- Yu-Chiao Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, University Rd, No. 1, Tainan, 70101, Taiwan
| | - Chin-Hao Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Cheng-Yi Yang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, University Rd, No. 1, Tainan, 70101, Taiwan
| | - Pin Ling
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Kuei-Sen Hsu
- Department of Pharmacology, College of Medicine, National Cheng Kung University, University Rd, No. 1, Tainan, 70101, Taiwan. .,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
19
|
Lachman HM. Use of cerebral organoids to model environmental and gene x environment interactions in the developing fetus and neurodegenerative disorders. PHENOTYPING OF HUMAN IPSC-DERIVED NEURONS 2023:173-200. [DOI: 10.1016/b978-0-12-822277-5.00006-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
20
|
Muacevic A, Adler JR, Elzahrani MR, Alhamadh MS, Alqirnas MQ, Alkahtani R, Masuadi E. Do Parental Comorbidities Affect the Severity of Autism Spectrum Disorder? Cureus 2022; 14:e32702. [PMID: 36686145 PMCID: PMC9848690 DOI: 10.7759/cureus.32702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Background Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders characterized by defective social communication and interaction with a repetitive pattern of monotonous or stereotyped behavior. Although the exact etiology of ASD is unknown, many factors may be implicated in the development of ASD. We aimed to determine the correlation between specific parental factors and Autism Treatment Evaluation Checklist (ATEC) scores. Methods This cross-sectional study was conducted at the Prince Nasser Bin Abdulaziz Center for Autism, Autism Center for Excellence, and Academy of Special Education for Autism in Riyadh, Saudi Arabia. We enrolled children diagnosed with ASD and their parents from these centers. Data were collected through self-administered questionnaires to the patients' parents. Results All included children were <18 years old. In total, 71 (92.2%) children were male and six (7.8%) were female. Further, 77 (100%) patients were diagnosed with autistic disorder. Children of consanguineous parents, underweight mothers and obese fathers, mothers with a history of depression during pregnancy, and mothers aged ≥31 years during pregnancy tend to have a higher mean ATEC score. The health domain was the most significantly correlated with ATEC scores, with a Pearson correlation of 0.880. In linear regression analysis, only maternal depression during pregnancy was significantly correlated with ATEC scores. Conclusion Our patients had a mean ATEC score of 86.2. The health domain was the most significantly correlated with ATEC scores, with a Pearson correlation of 0.880. Linear regression analysis revealed that consanguinity, parental chronic disease, parental allergy, smoking, drug use during pregnancy, paternal and maternal body mass index (BMI), and sibling number were not significantly correlated with ATEC scores (P=0.701, 0.693, 0.133, 0.874, 0.982, 0.255, 0.778, and 0.502, respectively). However, maternal depression during pregnancy was significantly correlated with ATEC scores (P=0.055).
Collapse
|
21
|
Maternal Obesity and Gut Microbiota Are Associated with Fetal Brain Development. Nutrients 2022; 14:nu14214515. [PMID: 36364776 PMCID: PMC9654759 DOI: 10.3390/nu14214515] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/28/2022] Open
Abstract
Obesity in pregnancy induces metabolic syndrome, low-grade inflammation, altered endocrine factors, placental function, and the maternal gut microbiome. All these factors impact fetal growth and development, including brain development. The lipid metabolic transporters of the maternal-fetal-placental unit are dysregulated in obesity. Consequently, the transport of essential long-chain PUFAs for fetal brain development is disturbed. The mother’s gut microbiota is vital in maintaining postnatal energy homeostasis and maternal-fetal immune competence. Obesity during pregnancy changes the gut microbiota, affecting fetal brain development. Obesity in pregnancy can induce placental and intrauterine inflammation and thus influence the neurodevelopmental outcomes of the offspring. Several epidemiological studies observed an association between maternal obesity and adverse neurodevelopment. This review discusses the effects of maternal obesity and gut microbiota on fetal neurodevelopment outcomes. In addition, the possible mechanisms of the impacts of obesity and gut microbiota on fetal brain development are discussed.
Collapse
|
22
|
Robinson DT, Josefson J, Balmert LC, Van Horn L, Silton RL. Early Growth and Cognitive Development in Children Born Preterm: Relevance of Maternal Body Mass Index. Am J Perinatol 2022; 29:1555-1562. [PMID: 33592668 DOI: 10.1055/s-0041-1723828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Maternal prepregnancy body mass index (BMI) represents a surrogate marker of fetal exposures to the maternal metabolism during pregnancy. Yet, it remains poorly understood whether this marker indicates risk of altered trajectories in postnatal growth and development in children born preterm. This study aimed to determine whether maternal prepregnancy BMI is associated with altered growth and development in children born preterm. STUDY DESIGN A retrospective cohort study evaluated prepregnancy BMI as the exposure for childhood outcomes using linear regression and mixed effects models. The 38 children included in this follow-up evaluation originally participated in a prospective, observational cohort study to determine longitudinal levels of lipid species in preterm human milk expressed by women who delivered prior to 32 weeks. Childhood outcomes in this study were anthropometric measures during hospitalization (n = 38), after discharge through 36 months (n = 34) and Bayley-III developmental scores through 18 months corrected age (n = 26). RESULTS In 38 children born prior to 32 weeks, higher maternal prepregnancy BMI was independently associated with higher preterm infant growth velocity during hospitalization, but not associated with in-hospital change in length or head circumference and/or postdischarge growth. In univariate linear regression models, higher maternal BMI was associated with lower cognitive scores at 18 months corrected age. This significant association remained in an adjusted model accounting for relevant influences on early childhood development. CONCLUSION Increasing maternal prepregnancy BMI may reflect risk of altered growth and cognitive development in children born preterm. KEY POINTS · Maternal BMI was associated with early preterm infant weight gain.. · Maternal BMI was not associated with postdischarge growth.. · Increased maternal BMI may be associated with lower cognitive function scores in offspring..
Collapse
Affiliation(s)
- Daniel T Robinson
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Jami Josefson
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Lauren C Balmert
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Linda Van Horn
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Rebecca L Silton
- Department of Psychology, Loyola University Chicago, Chicago, Illinois
| |
Collapse
|
23
|
Urbonaite G, Knyzeliene A, Bunn FS, Smalskys A, Neniskyte U. The impact of maternal high-fat diet on offspring neurodevelopment. Front Neurosci 2022; 16:909762. [PMID: 35937892 PMCID: PMC9354026 DOI: 10.3389/fnins.2022.909762] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/27/2022] [Indexed: 12/11/2022] Open
Abstract
A maternal high-fat diet affects offspring neurodevelopment with long-term consequences on their brain health and behavior. During the past three decades, obesity has rapidly increased in the whole human population worldwide, including women of reproductive age. It is known that maternal obesity caused by a high-fat diet may lead to neurodevelopmental disorders in their offspring, such as autism spectrum disorder, attention deficit hyperactivity disorder, anxiety, depression, and schizophrenia. A maternal high-fat diet can affect offspring neurodevelopment due to inflammatory activation of the maternal gut, adipose tissue, and placenta, mirrored by increased levels of pro-inflammatory cytokines in both maternal and fetal circulation. Furthermore, a maternal high fat diet causes gut microbial dysbiosis further contributing to increased inflammatory milieu during pregnancy and lactation, thus disturbing both prenatal and postnatal neurodevelopment of the offspring. In addition, global molecular and cellular changes in the offspring's brain may occur due to epigenetic modifications including the downregulation of brain-derived neurotrophic factor (BDNF) expression and the activation of the endocannabinoid system. These neurodevelopmental aberrations are reflected in behavioral deficits observed in animals, corresponding to behavioral phenotypes of certain neurodevelopmental disorders in humans. Here we reviewed recent findings from rodent models and from human studies to reveal potential mechanisms by which a maternal high-fat diet interferes with the neurodevelopment of the offspring.
Collapse
Affiliation(s)
- Gintare Urbonaite
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Agne Knyzeliene
- Centre for Cardiovascular Science, The Queen’s Medical Research Centre, The University of Edinburgh, Edinburgh, United Kingdom
| | - Fanny Sophia Bunn
- Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands
| | - Adomas Smalskys
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Urte Neniskyte
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- VU LSC-EMBL Partnership for Genome Editing Technologies, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
24
|
Yao R, Yang P, Goetzinger KR, Atkins KL, Shen WB, Wang B, Yang P. Maternal obesity-associated disruption of polarized lactate transporter MCT4 expression in human placenta. Reprod Toxicol 2022; 112:1-6. [PMID: 35750090 DOI: 10.1016/j.reprotox.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/10/2022] [Accepted: 06/17/2022] [Indexed: 10/17/2022]
Abstract
Maternal obesity is associated with an increased risk of adverse pregnancy outcomes including stillbirth, and their etiology is thought to be related to placental and fetal hypoxia. In this study, we sought to investigate the levels of lactate in maternal and umbilical cord blood, a well characterized biomarker for hypoxia, and expression of plasma membrane lactate transporter MCT1 and MCT4 in the placental syncytiotrophoblast (STB), which are responsible for lactate uptake and extrusion, respectively, from pregnant women with a diagnosis of obesity following a Cesarean delivery at term. With use of approaches including immunofluorescence staining, Western blot, RT-qPCR and ELISA, our results revealed that in controls the expression of MCT1 was equally observed between basal (fetal-facing, BM) and microvillous (maternal-facing, MVM) membrane of the STB, whereas MCT4 was predominantly expressed in the MVM but barely detected in the BM. However, obese patients demonstrated significant decreased MCT4 abundance in the MVM coupled with concurrent elevated expression in the BM. We also found a linear trend toward decreasing MCT4 expression ratio of MVM to BM with increasing maternal pre-pregnancy BMI. Furthermore, our data showed that the lactate ratios of fetal cord arterial to maternal blood were remarkably reduced in obese samples compared to their normal counterparts. Collectively, these results suggest that the loss of polarization of lactate transporter MCT4 expression in placental STB leading to disruption of unidirectional lactate transport from the fetal to the maternal compartment may constitute part of mechanisms linking maternal obesity and pathogenesis of stillbirth.
Collapse
Affiliation(s)
- Ruofan Yao
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Penghua Yang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Katherine R Goetzinger
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kristin L Atkins
- Department of Obstetrics and Gynecology, Howard University School of Medicine, Washington, DC, USA
| | - Wei-Bin Shen
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bingbing Wang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Peixin Yang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
25
|
Mitchell AJ, Dunn GA, Sullivan EL. The Influence of Maternal Metabolic State and Nutrition on Offspring Neurobehavioral Development: A Focus on Preclinical Models. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:450-460. [PMID: 34915175 PMCID: PMC9086110 DOI: 10.1016/j.bpsc.2021.11.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/19/2021] [Accepted: 11/29/2021] [Indexed: 12/22/2022]
Abstract
The prevalence of both obesity and neurodevelopmental disorders has increased substantially over the last several decades. Early environmental factors, including maternal nutrition and metabolic state during gestation, influence offspring neurodevelopment. Both human and preclinical models demonstrate a link between poor maternal nutrition, altered metabolic state, and risk of behavioral abnormalities in offspring. This review aims to highlight evidence from the current literature connecting maternal nutrition and the associated metabolic changes with neural and behavioral outcomes in the offspring, as well as identify possible mechanisms underlying these neurodevelopmental outcomes. Owing to the highly correlated nature of poor nutrition and obesity in humans, preclinical animal models are important in distinguishing the unique effects of maternal nutrition and metabolic state on offspring brain development. We use a translational lens to highlight results from preclinical animal models of maternal obesogenic diet related to alterations in behavioral and neurodevelopmental outcomes in offspring. Specifically, we aim to highlight results that resemble behavioral phenotypes described in the diagnostic criteria of neurodevelopmental conditions in humans. Finally, we examine the proinflammatory nature of maternal obesity and consumption of a high-fat diet as a mechanism for neurodevelopmental alterations that may alter offspring behavior later in life. It is important that future studies examine potential therapeutic interventions and prevention strategies to interrupt the transgenerational transmission of the disease. Given the tremendous risk to the next generation, changes need to be made to ensure that all pregnant people have access to nutritious food and are informed about the optimal diet for their developing child.
Collapse
Affiliation(s)
- A J Mitchell
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon; Department of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon
| | - Geoffrey A Dunn
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Elinor L Sullivan
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon; Department of Psychiatry, Oregon Health & Science University, Portland, Oregon; Department of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon; Department of Human Physiology, University of Oregon, Eugene, Oregon.
| |
Collapse
|
26
|
Language function following preterm birth: prediction using machine learning. Pediatr Res 2022; 92:480-489. [PMID: 34635792 PMCID: PMC8503721 DOI: 10.1038/s41390-021-01779-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/04/2021] [Accepted: 09/12/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND Preterm birth can lead to impaired language development. This study aimed to predict language outcomes at 2 years corrected gestational age (CGA) for children born preterm. METHODS We analysed data from 89 preterm neonates (median GA 29 weeks) who underwent diffusion MRI (dMRI) at term-equivalent age and language assessment at 2 years CGA using the Bayley-III. Feature selection and a random forests classifier were used to differentiate typical versus delayed (Bayley-III language composite score <85) language development. RESULTS The model achieved balanced accuracy: 91%, sensitivity: 86%, and specificity: 96%. The probability of language delay at 2 years CGA is increased with: increasing values of peak width of skeletonized fractional anisotropy (PSFA), radial diffusivity (PSRD), and axial diffusivity (PSAD) derived from dMRI; among twins; and after an incomplete course of, or no exposure to, antenatal corticosteroids. Female sex and breastfeeding during the neonatal period reduced the risk of language delay. CONCLUSIONS The combination of perinatal clinical information and MRI features leads to accurate prediction of preterm infants who are likely to develop language deficits in early childhood. This model could potentially enable stratification of preterm children at risk of language dysfunction who may benefit from targeted early interventions. IMPACT A combination of clinical perinatal factors and neonatal DTI measures of white matter microstructure leads to accurate prediction of language outcome at 2 years corrected gestational age following preterm birth. A model that comprises clinical and MRI features that has potential to be scalable across centres. It offers a basis for enhancing the power and generalizability of diagnostic and prognostic studies of neurodevelopmental disorders associated with language impairment. Early identification of infants who are at risk of language delay, facilitating targeted early interventions and support services, which could improve the quality of life for children born preterm.
Collapse
|
27
|
Tarui T, Rasool A, O'Tierney-Ginn P. How the placenta-brain lipid axis impacts the nutritional origin of child neurodevelopmental disorders: Focus on attention deficit hyperactivity disorder and autism spectrum disorder. Exp Neurol 2021; 347:113910. [PMID: 34742689 DOI: 10.1016/j.expneurol.2021.113910] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/19/2021] [Accepted: 10/31/2021] [Indexed: 12/01/2022]
Abstract
Dietary fish is a rich source of omega-3 (n-3) fatty acids, and as such, is believed to have played an important role in the evolution of the human brain and its advanced cognitive function. The long chain polyunsaturated fatty acids, particularly the n-3 docosahexanoic acid (DHA), are critical for proper neurological development and function. Both low plasma DHA and obesity in pregnancy are associated with neurodevelopmental disorders such as attention deficit and hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) in childhood, and n-3 supplementation has been shown to improve symptoms, as reviewed herein. The mechanisms underlying the connection between maternal obesity, n-3 fatty acid levels and offspring's neurological outcomes are poorly understood, but we review the evidence for a mediating role of the placenta in this relationship. Despite promising data that n-3 fatty acid supplementation mitigates the effect of maternal obesity on placental lipid metabolism, few clinical trials or animal studies have considered the neurological outcomes of offspring of mothers with obesity supplemented with n-3 FA in pregnancy.
Collapse
Affiliation(s)
- Tomo Tarui
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA, United States of America
| | - Aisha Rasool
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA, United States of America
| | - Perrie O'Tierney-Ginn
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA, United States of America.
| |
Collapse
|
28
|
Daliry A, Pereira ENGDS. Role of Maternal Microbiota and Nutrition in Early-Life Neurodevelopmental Disorders. Nutrients 2021; 13:3533. [PMID: 34684534 PMCID: PMC8540774 DOI: 10.3390/nu13103533] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/14/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023] Open
Abstract
The rise in the prevalence of obesity and other related metabolic diseases has been paralleled by an increase in the frequency of neurodevelopmental problems, which has raised the likelihood of a link between these two phenomena. In this scenario, maternal microbiota is a possible linking mechanistic pathway. According to the "Developmental Origins of Health and Disease" paradigm, environmental exposures (in utero and early life) can permanently alter the body's structure, physiology, and metabolism, increasing illness risk and/or speeding up disease progression in offspring, adults, and even generations. Nutritional exposure during early developmental stages may induce susceptibility to the later development of human diseases via interactions in the microbiome, including alterations in brain function and behavior of offspring, as explained by the gut-brain axis theory. This review provides an overview of the implications of maternal nutrition on neurodevelopmental disorders and the establishment and maturation of gut microbiota in the offspring.
Collapse
Affiliation(s)
- Anissa Daliry
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil;
| | | |
Collapse
|
29
|
Na X, Phelan NE, Tadros MR, Wu Z, Andres A, Badger TM, Glasier CM, Ramakrishnaiah RR, Rowell AC, Wang L, Li G, Williams DK, Ou X. Maternal Obesity during Pregnancy is Associated with Lower Cortical Thickness in the Neonate Brain. AJNR Am J Neuroradiol 2021; 42:2238-2244. [PMID: 34620592 DOI: 10.3174/ajnr.a7316] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/09/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Recent studies have suggested that maternal obesity during pregnancy is associated with differences in neurodevelopmental outcomes in children. In this study, we aimed to investigate the relationships between maternal obesity during pregnancy and neonatal brain cortical development. MATERIALS AND METHODS Forty-four healthy women (28 normal-weight, 16 obese) were prospectively recruited at <10 weeks' gestation, and their healthy full-term neonates (23 boys, 21 girls) underwent brain MR imaging. All pregnant women had their body composition (fat mass percentage) measured at ∼12 weeks of pregnancy. All neonates were scanned at ∼2 weeks of age during natural sleep without sedation, and their 3D T1-weighted images were postprocessed by the new iBEAT2.0 software. Brain MR imaging segmentation and cortical surface reconstruction and parcellation were completed using age-appropriate templates. Mean cortical thickness for 34 regions in each brain hemisphere defined by the UNC Neonatal Cortical Surface Atlas was measured, compared between groups, and correlated with maternal body fat mass percentage, controlled for neonate sex and race, postmenstrual age at MR imaging, maternal age at pregnancy, and the maternal intelligence quotient and education. RESULTS Neonates born to obese mothers showed significantly lower (P ≤ .05, false discovery rate-corrected) cortical thickness in the left pars opercularis gyrus, left pars triangularis gyrus, and left rostral middle frontal gyrus. Mean cortical thickness in these frontal lobe regions negatively correlated (R = -0.34, P = .04; R = -0.50, P = .001; and R = -0.42, P = .01; respectively) with the maternal body fat mass percentage measured at early pregnancy. CONCLUSIONS Maternal obesity during pregnancy is associated with lower neonate brain cortical thickness in several frontal lobe regions important for language and executive functions.
Collapse
Affiliation(s)
- X Na
- From the Department of Radiology (X.N., C.M.G., R.R.R., A.C.R., X.O.).,Arkansas Children's Nutrition Center (X.N., A.A., T.M.B., X.O.), Little Rock, Arkansas.,Arkansas Children's Research Institute (X.N., A.A., T.M.B., X.O.), Little Rock, Arkansas
| | | | | | - Z Wu
- Department of Radiology (Z.W., L.W., G.L.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - A Andres
- Departments of Pediatrics (A.A., T.M.B., C.M.G., R.R.R., X.O.).,Arkansas Children's Nutrition Center (X.N., A.A., T.M.B., X.O.), Little Rock, Arkansas.,Arkansas Children's Research Institute (X.N., A.A., T.M.B., X.O.), Little Rock, Arkansas
| | - T M Badger
- Departments of Pediatrics (A.A., T.M.B., C.M.G., R.R.R., X.O.).,Arkansas Children's Nutrition Center (X.N., A.A., T.M.B., X.O.), Little Rock, Arkansas.,Arkansas Children's Research Institute (X.N., A.A., T.M.B., X.O.), Little Rock, Arkansas
| | - C M Glasier
- From the Department of Radiology (X.N., C.M.G., R.R.R., A.C.R., X.O.).,Departments of Pediatrics (A.A., T.M.B., C.M.G., R.R.R., X.O.)
| | - R R Ramakrishnaiah
- From the Department of Radiology (X.N., C.M.G., R.R.R., A.C.R., X.O.).,Departments of Pediatrics (A.A., T.M.B., C.M.G., R.R.R., X.O.)
| | - A C Rowell
- From the Department of Radiology (X.N., C.M.G., R.R.R., A.C.R., X.O.)
| | - L Wang
- Department of Radiology (Z.W., L.W., G.L.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - G Li
- Department of Radiology (Z.W., L.W., G.L.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - D K Williams
- Biostatistics (D.K.W.), University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - X Ou
- From the Department of Radiology (X.N., C.M.G., R.R.R., A.C.R., X.O.) .,Departments of Pediatrics (A.A., T.M.B., C.M.G., R.R.R., X.O.).,Arkansas Children's Nutrition Center (X.N., A.A., T.M.B., X.O.), Little Rock, Arkansas.,Arkansas Children's Research Institute (X.N., A.A., T.M.B., X.O.), Little Rock, Arkansas
| |
Collapse
|
30
|
Czarnecka K, Pilarz A, Rogut A, Maj P, Szymańska J, Olejnik Ł, Szymański P. Aspartame-True or False? Narrative Review of Safety Analysis of General Use in Products. Nutrients 2021; 13:1957. [PMID: 34200310 PMCID: PMC8227014 DOI: 10.3390/nu13061957] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/27/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022] Open
Abstract
Aspartame is a sweetener introduced to replace the commonly used sucrose. It was discovered by James M. Schlatter in 1965. Being 180-200 times sweeter than sucrose, its intake was expected to reduce obesity rates in developing countries and help those struggling with diabetes. It is mainly used as a sweetener for soft drinks, confectionery, and medicines. Despite its widespread use, its safety remains controversial. This narrative review investigates the existing literature on the use of aspartame and its possible effects on the human body to refine current knowledge. Taking to account that aspartame is a widely used artificial sweetener, it seems appropriate to continue research on safety. Studies mentioned in this article have produced very interesting results overall, the current review highlights the social problem of providing visible and detailed information about the presence of aspartame in products. The studies involving the impact of aspartame on obesity, diabetes mellitus, children and fetus, autism, neurodegeneration, phenylketonuria, allergies and skin problems, its cancer properties and its genotoxicity were analyzed. Further research should be conducted to ensure clear information about the impact of aspartame on health.
Collapse
Affiliation(s)
- Kamila Czarnecka
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland; (A.P.); (A.R.); (P.M.); (J.S.); (Ł.O.)
- Department of Radiobiology and Radiation Protection, Military Institute of Hygiene and Epidemiology, 4 Kozielska St., 01-163 Warsaw, Poland
| | - Aleksandra Pilarz
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland; (A.P.); (A.R.); (P.M.); (J.S.); (Ł.O.)
| | - Aleksandra Rogut
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland; (A.P.); (A.R.); (P.M.); (J.S.); (Ł.O.)
| | - Patryk Maj
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland; (A.P.); (A.R.); (P.M.); (J.S.); (Ł.O.)
| | - Joanna Szymańska
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland; (A.P.); (A.R.); (P.M.); (J.S.); (Ł.O.)
| | - Łukasz Olejnik
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland; (A.P.); (A.R.); (P.M.); (J.S.); (Ł.O.)
| | - Paweł Szymański
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland; (A.P.); (A.R.); (P.M.); (J.S.); (Ł.O.)
- Department of Radiobiology and Radiation Protection, Military Institute of Hygiene and Epidemiology, 4 Kozielska St., 01-163 Warsaw, Poland
| |
Collapse
|
31
|
Diet-induced dysbiosis of the maternal gut microbiome in early life programming of neurodevelopmental disorders. Neurosci Res 2021; 168:3-19. [PMID: 33992660 DOI: 10.1016/j.neures.2021.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022]
Abstract
The maternal gut microbiome plays a critical role in fetal and early postnatal development, shaping fundamental processes including immune maturation and brain development, among others. Consequently, it also contributes to fetal programming of health and disease. Over the last decade, epidemiological studies and work in preclinical animal models have begun to uncover a link between dysbiosis of the maternal gut microbiome and neurodevelopmental disorders in offspring. Neurodevelopmental disorders are caused by both genetic and environmental factors, and their interactions; however, clinical heterogeneity, phenotypic variability, and comorbidities make identification of underlying mechanisms difficult. Among environmental factors, exposure to maternal obesity in utero confers a significant increase in risk for neurodevelopmental disorders. Obesogenic diets in humans, non-human primates, and rodents induce functional modifications in maternal gut microbiome composition, which animal studies suggest are causally related to adverse mental health outcomes in offspring. Here, we review evidence linking maternal diet-induced gut dysbiosis to neurodevelopmental disorders and discuss how it could affect pre- and early postnatal brain development. We are hopeful that this burgeoning field of research will revolutionize antenatal care by leading to accessible prophylactic strategies, such as prenatal probiotics, to improve mental health outcomes in children affected by maternal diet-induced obesity.
Collapse
|
32
|
The impact of maternal obesity on childhood neurodevelopment. J Perinatol 2021; 41:928-939. [PMID: 33249428 DOI: 10.1038/s41372-020-00871-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 10/10/2020] [Accepted: 11/04/2020] [Indexed: 02/08/2023]
Abstract
There is growing clinical and experimental evidence to suggest that maternal obesity increases children's susceptibility to neurodevelopmental and neuropsychiatric disorders. Given the worldwide obesity epidemic, it is crucial that we acquire a thorough understanding of the available evidence, identify gaps in knowledge, and develop an agenda for intervention. This review synthesizes human and animal studies investigating the association between maternal obesity and offspring brain health. It also highlights key mechanisms underlying these effects, including maternal and fetal inflammation, alterations to the microbiome, epigenetic modifications of neurotrophic genes, and impaired dopaminergic and serotonergic signaling. Lastly, this review highlights several proposed interventions and priorities for future investigation.
Collapse
|
33
|
Cattane N, Räikkönen K, Anniverno R, Mencacci C, Riva MA, Pariante CM, Cattaneo A. Depression, obesity and their comorbidity during pregnancy: effects on the offspring's mental and physical health. Mol Psychiatry 2021; 26:462-481. [PMID: 32632208 PMCID: PMC7850968 DOI: 10.1038/s41380-020-0813-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/20/2020] [Accepted: 06/05/2020] [Indexed: 02/08/2023]
Abstract
Depression and obesity represent two of the most common complications during pregnancy and are associated with severe health risks for both the mother and the child. Although several studies have analysed the individual effects of depression or obesity on the mothers and their children, the effects associated with the co-occurrence of both disorders have so far been poorly investigated. The relationship between depression and obesity is very complex and it is still unclear whether maternal depression leads to obesity or vice versa. It is well known that the intrauterine environment plays an important role in mediating the effects of both depression and obesity in the mother on the fetal programming, increasing the child's risk to develop negative outcomes.
Collapse
Affiliation(s)
- Nadia Cattane
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Katri Räikkönen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Roberta Anniverno
- Department of Neuroscience, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Claudio Mencacci
- Department of Neuroscience, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Marco A Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Carmine M Pariante
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Annamaria Cattaneo
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| |
Collapse
|
34
|
Patti MA, Li N, Eliot M, Newschaffer C, Yolton K, Khoury J, Chen A, Lanphear BP, Lyall K, Hertz-Picciotto I, Fallin MD, Croen LA, Braun JM. Association between self-reported caffeine intake during pregnancy and social responsiveness scores in childhood: The EARLI and HOME studies. PLoS One 2021; 16:e0245079. [PMID: 33449933 PMCID: PMC7810310 DOI: 10.1371/journal.pone.0245079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 12/21/2020] [Indexed: 01/08/2023] Open
Abstract
Maternal nutrition during gestation has been investigated for its role in child neurodevelopment. However, little is known about the potential impact of gestational caffeine exposure on child autistic behaviors. Here, we assess the relation between maternal caffeine intake during pregnancy and children's behavioral traits related to Autism Spectrum Disorder (ASD). We harmonized data from two pregnancy cohorts, Early Autism Risk Longitudinal Investigation (EARLI) (n = 120), an enriched-risk cohort of mothers who previously had a child with ASD, from Pennsylvania, Maryland, and Northern California (2009-2012), and the Health Outcomes and Measures of the Environment (HOME) Study (n = 269), a general population cohort from Cincinnati, Ohio (2003-2006). Mothers self-reported caffeine intake twice during pregnancy. Caregivers reported child behavioral traits related to ASD using the Social Responsiveness Scale (SRS) when children were aged 3-8 years. Higher scores indicate more ASD-related behaviors. We estimated covariate-adjusted differences in continuous SRS T-scores per interquartile range increase in caffeine intake. Self-reported caffeine intake during pregnancy was positively associated with SRS T-scores among children in EARLI (β: 2.0; 95% CI -0.1, 4.0), but to a lesser extent in HOME (β: 0.6; 95% CI -0.5, 1.6). In HOME, pre-pregnancy body mass index (BMI) modified the association between caffeine intake and SRS T-scores, where more positive associations were observed among women with higher BMIs. Our findings suggest gestational caffeine intake may represent a marker of vulnerability to childhood ASD-related behaviors. Additional studies are warranted to extend these findings.
Collapse
Affiliation(s)
- Marisa A. Patti
- Department of Epidemiology, Brown University, Providence, Rhode Island, United States of America
| | - Nan Li
- Department of Epidemiology, Brown University, Providence, Rhode Island, United States of America
| | - Melissa Eliot
- Department of Epidemiology, Brown University, Providence, Rhode Island, United States of America
| | - Craig Newschaffer
- A.J. Drexel Autism Institute, Drexel University, Philadelphia, Pennsylvania, United States of America
- College of Health & Human Development, Pennsylvania State University, State College, Pennsylvania, United States of America
| | - Kimberly Yolton
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Jane Khoury
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Aimin Chen
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Bruce P. Lanphear
- Department of Health Sciences, Simon Fraser University, British Columbia, Vancouver, Canada
| | - Kristen Lyall
- A.J. Drexel Autism Institute, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, University of California, Davis, California, United States of America
| | - Margaret Daniele Fallin
- Department of Mental Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Lisa A. Croen
- Division of Research, Kaiser Permanente Northern California, Oakland, California, United States of America
| | - Joseph M. Braun
- Department of Epidemiology, Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
35
|
Brown CO, Uy J, Singh KK. A mini-review: Bridging the gap between autism spectrum disorder and pain comorbidities. CANADIAN JOURNAL OF PAIN-REVUE CANADIENNE DE LA DOULEUR 2020; 4:37-44. [PMID: 33987518 PMCID: PMC7942773 DOI: 10.1080/24740527.2020.1775486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Background Pain is a complex neurobiological response with a multitude of causes; however, patients with autism spectrum disorder (ASD) often report chronic pain with no known etiology. Recent research has been aimed toward identifying the causal mechanisms of pain in mouse and human models of ASD. In recent years, efforts have been made to better document and explore secondary phenotypes observed in ASD patients in the clinic. As new sequencing studies have become more powered with larger cohorts within ASD, specific genes and their variants are often left uncharacterized or validated. In this review we highlight ASD risk genes often presented with pain comorbidities. Aims This mini-review bridges the gap between two fields of literature, neurodevelopmental disorders and pain research. We discuss the importance of the genetic landscape of ASD and its links to pain phenotypes. Results Among the numerous genes implicated in ASD, few have been implicated with varying severities of pain comorbidity. Mutations in these genes, such as SCN9A, SHANK3, and CNTNAP2, lead to altered neuronal function that produce different responses to pain, shown in both mouse and human models. Conclusion There is a necessity to use new technologies to advance the current understanding of ASD risk genes and their contributions to pain. Secondly, there is a need to power future ASD risk genes associated with pain with their own cohort, because a better understanding is needed of this subpopulation.
Collapse
Affiliation(s)
- Chad O Brown
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.,Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario, Canada.,Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada
| | - Jarryll Uy
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.,Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Karun K Singh
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.,Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
36
|
Gawlińska K, Gawliński D, Korostyński M, Borczyk M, Frankowska M, Piechota M, Filip M, Przegaliński E. Maternal dietary patterns are associated with susceptibility to a depressive-like phenotype in rat offspring. Dev Cogn Neurosci 2020; 47:100879. [PMID: 33232913 PMCID: PMC7691544 DOI: 10.1016/j.dcn.2020.100879] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/21/2020] [Accepted: 11/06/2020] [Indexed: 01/03/2023] Open
Abstract
Modified maternal diet influences offspring behavior and the brain transcriptome. Maternal HFD provokes depressive-like behavior in male and female offspring. In utero exposure to HFD leads to transcriptomics alterations within the offspring’s frontal cortex. Maternal HFD changes expression of markers specific to excitatory and inhibitory cortical neurons.
Environmental factors such as maternal diet, determine the pathologies that appear early in life and can persist in adulthood. Maternally modified diets provided through pregnancy and lactation increase the predisposition of offspring to the development of many diseases, including obesity, diabetes, and neurodevelopmental and mental disorders such as depression. Fetal and early postnatal development are sensitive periods in the offspring’s life in which maternal nutrition influences epigenetic modifications, which results in changes in gene expression and affects molecular phenotype. This study aimed to evaluate the impact of maternal modified types of diet, including a high-fat diet (HFD), high-carbohydrate diet (HCD) and mixed diet (MD) during pregnancy and lactation on phenotypic changes in rat offspring with respect to anhedonia, depressive- and anxiety-like behavior, memory impairment, and gene expression profile in the frontal cortex. Behavioral results indicate that maternal HFD provokes depressive-like behavior and molecular findings showed that HFD leads to persistent transcriptomics alterations. Moreover, a HFD significantly influences the expression of neuronal markers specific to excitatory and inhibitory cortical neurons. Collectively, these experiments highlight the complexity of the impact of maternal modified diet during fetal programming. Undoubtedly, maternal HFD affects brain development and our findings suggest that nutrition exerts significant changes in brain function that may be associated with depression.
Collapse
Affiliation(s)
- Kinga Gawlińska
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, 31-343, Kraków, Smętna Street 12, Poland
| | - Dawid Gawliński
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, 31-343, Kraków, Smętna Street 12, Poland
| | - Michał Korostyński
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Molecular Neuropharmacology, 31-343, Kraków, Smętna Street 12, Poland
| | - Małgorzata Borczyk
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Molecular Neuropharmacology, 31-343, Kraków, Smętna Street 12, Poland
| | - Małgorzata Frankowska
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, 31-343, Kraków, Smętna Street 12, Poland
| | - Marcin Piechota
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Molecular Neuropharmacology, 31-343, Kraków, Smętna Street 12, Poland
| | - Małgorzata Filip
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, 31-343, Kraków, Smętna Street 12, Poland.
| | - Edmund Przegaliński
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, 31-343, Kraków, Smętna Street 12, Poland
| |
Collapse
|
37
|
Fitzgerald E, Hor K, Drake AJ. Maternal influences on fetal brain development: The role of nutrition, infection and stress, and the potential for intergenerational consequences. Early Hum Dev 2020; 150:105190. [PMID: 32948364 PMCID: PMC7481314 DOI: 10.1016/j.earlhumdev.2020.105190] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
An optimal early life environment is crucial for ensuring ideal neurodevelopmental outcomes. Brain development consists of a finely tuned series of spatially and temporally constrained events, which may be affected by exposure to a sub-optimal intra-uterine environment. Evidence suggests brain development may be particularly vulnerable to factors such as maternal nutrition, infection and stress during pregnancy. In this review, we discuss how maternal factors such as these can affect brain development and outcome in offspring, and we also identify evidence which suggests that the outcome can, in many cases, be stratified by socio-economic status (SES), with individuals in lower brackets typically having a worse outcome. We consider the relevant epidemiological evidence and draw parallels to mechanisms suggested by preclinical work where appropriate. We also discuss possible transgenerational effects of these maternal factors and the potential mechanisms involved. We conclude that modifiable factors such as maternal nutrition, infection and stress are important contributors to atypical brain development and that SES also likely has a key role.
Collapse
Affiliation(s)
- Eamon Fitzgerald
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Kahyee Hor
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Amanda J Drake
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| |
Collapse
|
38
|
Trujillo Villarreal LA, Cárdenas-Tueme M, Maldonado-Ruiz R, Reséndez-Pérez D, Camacho-Morales A. Potential role of primed microglia during obesity on the mesocorticolimbic circuit in autism spectrum disorder. J Neurochem 2020; 156:415-434. [PMID: 32902852 DOI: 10.1111/jnc.15141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/12/2020] [Accepted: 07/27/2020] [Indexed: 12/19/2022]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disease which involves functional and structural defects in selective central nervous system (CNS) regions that harm function and individual ability to process and respond to external stimuli. Individuals with ASD spend less time engaging in social interaction compared to non-affected subjects. Studies employing structural and functional magnetic resonance imaging reported morphological and functional abnormalities in the connectivity of the mesocorticolimbic reward pathway between the nucleus accumbens and the ventral tegmental area (VTA) in response to social stimuli, as well as diminished medial prefrontal cortex in response to visual cues, whereas stronger reward system responses for the non-social realm (e.g., video games) than social rewards (e.g., approval), associated with caudate nucleus responsiveness in ASD children. Defects in the mesocorticolimbic reward pathway have been modulated in transgenic murine models using D2 dopamine receptor heterozygous (D2+/-) or dopamine transporter knockout mice, which exhibit sociability deficits and repetitive behaviors observed in ASD phenotypes. Notably, the mesocorticolimbic reward pathway is modulated by systemic and central inflammation, such as primed microglia, which occurs during obesity or maternal overnutrition. Therefore, we propose that a positive energy balance during obesity/maternal overnutrition coordinates a systemic and central inflammatory crosstalk that modulates the dopaminergic neurotransmission in selective brain areas of the mesocorticolimbic reward pathway. Here, we will describe how obesity/maternal overnutrition may prime microglia, causing abnormalities in dopamine neurotransmission of the mesocorticolimbic reward pathway, postulating a possible immune role in the development of ASD.
Collapse
Affiliation(s)
- Luis A- Trujillo Villarreal
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Nuevo León, San Nicolas de los Garza, México.,Unidad de Neurometabolismo, Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autónoma de Nuevo León, San Nicolas de los Garza, México
| | - Marcela Cárdenas-Tueme
- Departamento de Biología Celular y Genética, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolas de los Garza, México
| | - Roger Maldonado-Ruiz
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Nuevo León, San Nicolas de los Garza, México.,Unidad de Neurometabolismo, Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autónoma de Nuevo León, San Nicolas de los Garza, México
| | - Diana Reséndez-Pérez
- Departamento de Biología Celular y Genética, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolas de los Garza, México
| | - Alberto Camacho-Morales
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Nuevo León, San Nicolas de los Garza, México.,Unidad de Neurometabolismo, Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autónoma de Nuevo León, San Nicolas de los Garza, México
| |
Collapse
|
39
|
Shook LL, Kislal S, Edlow AG. Fetal brain and placental programming in maternal obesity: A review of human and animal model studies. Prenat Diagn 2020; 40:1126-1137. [PMID: 32362000 DOI: 10.1002/pd.5724] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 03/26/2020] [Accepted: 04/21/2020] [Indexed: 12/13/2022]
Abstract
Both human epidemiologic and animal model studies demonstrate that prenatal and lactational exposure to maternal obesity and high-fat diet are associated with adverse neurodevelopmental outcomes in offspring. Neurodevelopmental outcomes described in offspring of obese women include cognitive impairment, autism spectrum disorder (ASD), attention deficit hyperactivity disorder, anxiety and depression, disordered eating, and propensity for reward-driven behavior, among others. This review synthesizes human and animal data linking maternal obesity and high-fat diet consumption to abnormal fetal brain development, and neurodevelopmental and psychiatric morbidity in offspring. It highlights key mechanisms by which maternal obesity and maternal diet impact fetal and offspring development, and sex differences in offspring programming. In addition, we review placental effects of maternal obesity, and the role the placenta might play as an indicator vs mediator of fetal programming.
Collapse
Affiliation(s)
- Lydia L Shook
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Sezen Kislal
- Massachusetts General Hospital Research Institute, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Andrea G Edlow
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Massachusetts General Hospital Research Institute, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
40
|
Khambadkone SG, Cordner ZA, Tamashiro KLK. Maternal stressors and the developmental origins of neuropsychiatric risk. Front Neuroendocrinol 2020; 57:100834. [PMID: 32084515 PMCID: PMC7243665 DOI: 10.1016/j.yfrne.2020.100834] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 01/23/2020] [Accepted: 02/12/2020] [Indexed: 12/14/2022]
Abstract
The maternal environment during pregnancy is critical for fetal development and perinatal perturbations can prime offspring disease risk. Here, we briefly review evidence linking two well-characterized maternal stressors - psychosocial stress and infection - to increased neuropsychiatric risk in offspring. In the current climate of increasing obesity and globalization of the Western-style diet, maternal overnutrition emerges as a pressing public health concern. We focus our attention on recent epidemiological and animal model evidence showing that, like psychosocial stress and infection, maternal overnutrition can also increase offspring neuropsychiatric risk. Using lessons learned from the psychosocial stress and infection literature, we discuss how altered maternal and placental physiology in the setting of overnutrition may contribute to abnormal fetal development and resulting neuropsychiatric outcomes. A better understanding of converging pathophysiological pathways shared between stressors may enable development of interventions against neuropsychiatric illnesses that may be beneficial across stressors.
Collapse
Affiliation(s)
- Seva G Khambadkone
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular & Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zachary A Cordner
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kellie L K Tamashiro
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular & Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
41
|
Abstract
AbstractIt is well established that high-dose alcohol consumption during pregnancy increases the risk for a plethora of adverse offspring outcomes. These include neurodevelopmental, cognitive and social deficits, as well as psychiatric illnesses, such as depression and anxiety. However, much less evidence is available on the effects of low- and early-dose alcohol exposure on mental health outcomes, regardless of the accumulating evidence that mental health outcomes should be considered in the context of the Developmental Origins of Health and Disease hypothesis. This review will discuss the evidence that indicates low-dose and early prenatal alcohol exposure can increase the risk of mental illness in offspring and discuss the mechanistic pathways that may be involved.
Collapse
|
42
|
Nichols AR, Rundle AG, Factor-Litvak P, Insel BJ, Hoepner L, Rauh V, Perera F, Widen EM. Prepregnancy obesity is associated with lower psychomotor development scores in boys at age 3 in a low-income, minority birth cohort. J Dev Orig Health Dis 2020; 11:49-57. [PMID: 31486358 PMCID: PMC6934918 DOI: 10.1017/s2040174419000412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Whether maternal obesity and gestational weight gain (GWG) are associated with early-childhood development in low-income, urban, minority populations, and whether effects differ by child sex remain unknown. This study examined the impact of prepregnancy BMI and GWG on early childhood neurodevelopment in the Columbia Center for Children's Environmental Health Mothers and Newborns study. Maternal prepregnancy weight was obtained by self-report, and GWG was assessed from participant medical charts. At child age 3 years, the Psychomotor Development Index (PDI) and Mental Development Index (MDI) of the Bayley Scales of Infant Intelligence were completed. Sex-stratified linear regression models assessed associations between prepregnancy BMI and pregnancy weight gain z-scores with child PDI and MDI scores, adjusting for covariates. Of 382 women, 48.2% were normal weight before pregnancy, 24.1% overweight, 23.0% obese, and 4.7% underweight. At 3 years, mean scores on the PDI and MDI were higher among girls compared to boys (PDI: 102.3 vs. 97.2, P = 0.0002; MDI: 92.8 vs. 88.3, P = 0.0001). In covariate-adjusted models, maternal obesity was markedly associated with lower PDI scores in boys [b = -7.81, 95% CI: (-13.08, -2.55), P = 0.004], but not girls. Maternal BMI was not associated with MDI in girls or boys, and GWG was not associated with PDI or MDI among either sex (all-P > 0.05). We found that prepregnancy obesity was associated with lower PDI scores at 3 years in boys, but not girls. The mechanisms underlying this sex-specific association remain unclear, but due to elevated obesity exposure in urban populations, further investigation is warranted.
Collapse
Affiliation(s)
- Amy R Nichols
- Department of Nutritional Sciences, University of Texas at Austin, Austin, TX, USA
| | - Andrew G Rundle
- Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, New York, NY, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Pam Factor-Litvak
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Beverly J Insel
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Lori Hoepner
- Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, New York, NY, USA
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
- Department of Environmental and Occupational Health Sciences, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Virginia Rauh
- Heilbrunn Department of Population and Family Health, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Frederica Perera
- Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, New York, NY, USA
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Elizabeth M Widen
- Department of Nutritional Sciences, University of Texas at Austin, Austin, TX, USA
- Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
43
|
Moreau M, Remy M, Nusinovici S, Rouger V, Molines L, Flamant C, Legendre G, Roze JC, Salle A, Van Bogaert P, Coutant R, Gascoin G. Neonatal and neurodevelopmental outcomes in preterm infants according to maternal body mass index: A prospective cohort study. PLoS One 2019; 14:e0225027. [PMID: 31805081 PMCID: PMC6894768 DOI: 10.1371/journal.pone.0225027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 10/28/2019] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Maternal obesity is associated with an increase in maternal, foetal and neonatal morbidity and mortality. The aim of our study was to evaluate the relationships between maternal pre-pregnancy body mass index and (1) neonatal outcome in preterm infants, and (2) neurodevelopmental outcome at 2 years of corrected age. METHOD We conducted a single-centre cohort study. Infants born between 24+0 and 33+6 weeks of gestation between January 2009 and December 2013, hospitalised in the neonatal intensive care unit of Angers University Hospital, and with available data regarding maternal pre-pregnancy body mass index were eligible. Three groups were defined according to maternal body mass index: normal (n = 418), overweight (n = 136) and obese (n = 89). The primary outcome was neurodevelopment at 2 years of corrected age. Children with a non-optimal neuromotor and/or psychomotor assessment and/or a sensory disability were regarded as having a "non-optimal neurodevelopmental outcome". Neuromotor function was regarded as non-optimal when cerebral palsy was present or when the clinical examination revealed neurological signs of abnormal muscular tone. Psychomotor assessment was regarded as non-optimal if the revised Brunet-Lézine test was < 85 or when the overall score in the parental Ages and Stages Questionnaire (ASQ) was < 185. Finally, sensory disabilities such as blindness and children who required a hearing aid were taken into account. The secondary outcome was the composite criteria of neonatal complications. Multivariable analysis included the following variables: mother's age, gestational age, smoking during pregnancy, magnesium sulphate and steroid treatment during pregnancy, twin status, gender, socioeconomic status and social security benefits for those with low incomes. RESULTS The study population was composed of 643 preterm infants. Among them, 520 were assessed at 2 years. There was no difference in the proportion of infants with non-optimal neurodevelopmental outcomes between the three groups (16.6% for obese, 13.5% for overweight, 16.9% for normal body mass index mothers; p = 0.73). According to multivariable analysis, being born from an overweight or obese mother was not associated with an increased risk of non-optimal neuro-development at 2 years (adjusted OR = 0.84 [0.40-1.76] for obese, adjusted OR = 0.83 [0.43-1.59] for overweight mothers). There was no difference in the proportion of preterm infants with a non-optimal composite criterion of neonatal complications between the three groups. In the multivariable analysis, being born from an overweight or obese mother was not associated with an increased risk of non-optimal neonatal outcomes (adjusted OR = 0.95 [0.49-1.83] for obese, adjusted OR = 1.18 [0.69-2.01] for overweight mothers). CONCLUSION In this large prospective cohort of preterm infants born before 34 weeks of gestation, we found no relationship between maternal body mass index and neurodevelopmental outcomes at 2 years of corrected age and no relationship between maternal body mass index and neonatal outcomes. Other prematurity-related factors may be more relevant for neurodevelopmental outcome than the mother's pre-pregnancy BMI.
Collapse
Affiliation(s)
- Marie Moreau
- Department of Neonatal Medicine, Angers University Hospital, Angers, France
| | - Mathilde Remy
- Department of Neonatal Medicine, Angers University Hospital, Angers, France
| | - Simon Nusinovici
- CIC 1413, Nantes University Hospital, Nantes, France
- Loire Infant Follow-Up Team (LIFT) Network, Pays de Loire, France
| | - Valérie Rouger
- Loire Infant Follow-Up Team (LIFT) Network, Pays de Loire, France
| | - Lisa Molines
- Department of Neonatal Medicine, Angers University Hospital, Angers, France
| | - Cyril Flamant
- Loire Infant Follow-Up Team (LIFT) Network, Pays de Loire, France
- Department of Neonatal Medicine, Nantes University Hospital, Nantes, France
| | - Guillaume Legendre
- Department of Obstetrics and Gynaecology, Angers University Hospital, Angers, France
| | - Jean-Christophe Roze
- Loire Infant Follow-Up Team (LIFT) Network, Pays de Loire, France
- Department of Neonatal Medicine, Nantes University Hospital, Nantes, France
| | - Agnès Salle
- Department of Endocrinology, Diabetology and Nutrition, Angers University Hospital, Angers, France
| | - Patrick Van Bogaert
- Loire Infant Follow-Up Team (LIFT) Network, Pays de Loire, France
- Department of Paediatric Neurology, Angers University Hospital, Angers, France
| | - Régis Coutant
- Department of Paediatric Endocrinology, Angers University Hospital, Angers, France
| | - Géraldine Gascoin
- Department of Neonatal Medicine, Angers University Hospital, Angers, France
- Loire Infant Follow-Up Team (LIFT) Network, Pays de Loire, France
| |
Collapse
|
44
|
Brodowski L, Büter W, Kohls F, Hillemanns P, von Kaisenberg C, Dammann O. Maternal Overweight, Inflammation and Neurological Consequences for the Preterm Child: Results of the ELGAN Study. Geburtshilfe Frauenheilkd 2019; 79:1176-1182. [PMID: 31736506 PMCID: PMC6846733 DOI: 10.1055/a-0960-0939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/25/2019] [Accepted: 06/21/2019] [Indexed: 12/16/2022] Open
Abstract
Maternal overweight and obesity are prenatal risk factors for obstetrical complications, preterm birth, neonatal morbidity as well as cognitive and behavioural developmental disorders in children. Paediatric morbidity and mortality as well as child development disorders are significantly associated with maternal obesity. Particularly in the neurodevelopmental and psychiatric area, it is becoming increasingly clear that, in children of mothers with an increased body mass index (BMI), there is a high correlation with childhood cognitive disabilities, attention disorders, and diseases on the autistic spectrum. The ELGAN (Extremely Low Gestational Age Newborn) study is a multicentre study which has been supported since 2000 by the National Institutes of Health (NIH) and whose objective is to research predictors for neonatal brain damage and neurological-cognitive sequelae in premature infants. The areas of focus are the connection between maternal overweight and obesity and pregnancy complications, APGAR scores and systemic inflammatory markers. In this overview, our aim is to summarise the work in this area and discuss it critically on the basis of current literature. We will examine the hypothesis whether maternal overweight and obesity in terms of a chronic inflammatory state is associated with neonatal inflammation which in turn is associated with an unfavourable development prognosis.
Collapse
Affiliation(s)
- Lars Brodowski
- Frauenklinik, Medizinische Hochschule Hannover, Hannover, Germany
| | - Wolfgang Büter
- Kinderklinik, Medizinische Hochschule Hannover, Hannover, Germany
| | - Fabian Kohls
- Frauenklinik, Medizinische Hochschule Hannover, Hannover, Germany
| | - Peter Hillemanns
- Frauenklinik, Medizinische Hochschule Hannover, Hannover, Germany
| | | | - Olaf Dammann
- Frauenklinik, Medizinische Hochschule Hannover, Hannover, Germany
- Public Health & Community Medicine, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
45
|
Risk Factors for Unhealthy Weight Gain and Obesity among Children with Autism Spectrum Disorder. Int J Mol Sci 2019; 20:ijms20133285. [PMID: 31277383 PMCID: PMC6650879 DOI: 10.3390/ijms20133285] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/01/2019] [Accepted: 07/03/2019] [Indexed: 02/06/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a developmental disorder characterized by social and communication deficits and repetitive behaviors. Children with ASD are also at a higher risk for developing overweight or obesity than children with typical development (TD). Childhood obesity has been associated with adverse health outcomes, including insulin resistance, diabetes, heart disease, and certain cancers. Importantly some key factors that play a mediating role in these higher rates of obesity include lifestyle factors and biological influences, as well as secondary comorbidities and medications. This review summarizes current knowledge about behavioral and lifestyle factors that could contribute to unhealthy weight gain in children with ASD, as well as the current state of knowledge of emerging risk factors such as the possible influence of sleep problems, the gut microbiome, endocrine influences and maternal metabolic disorders. We also discuss some of the clinical implications of these risk factors and areas for future research.
Collapse
|
46
|
Lei XY, Li YJ, Ou JJ, Li YM. Association between parental body mass index and autism spectrum disorder: a systematic review and meta-analysis. Eur Child Adolesc Psychiatry 2019; 28:933-947. [PMID: 30470952 DOI: 10.1007/s00787-018-1259-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 11/20/2018] [Indexed: 12/14/2022]
Abstract
Studies have examined the association between parental body mass index (BMI) and autism spectrum disorder (ASD) in offspring, with inconsistent results, especially regarding maternal obesity, overweight and underweight. Cochrane Library, EMBASE, PubMed and PsycINFO databases were searched up to March 2018 for relevant observational studies with no language restriction. Our literature search identified 13 eligible studies for meta-analysis (involving 943,293 children and 30,337 cases). For maternal BMI (13 studies), both maternal obesity [OR 1.41 (95% CI 1.19-1.67)] and maternal overweight [OR 1.16 (95% CI 1.05-1.27)] were significantly associated with ASD, while maternal underweight was not associated with ASD [OR 1.08 (95% CI 0.98-1.20)]. For paternal BMI (three studies), no association was found (paternal obesity: OR 1.28, 95% CI 0.94-1.74; overweight: OR 1.07, 95% CI 0.99-1.15; underweight: OR 1.12, 95% CI 0.87-1.44). Pooled estimates were robust in sensitivity analysis and subgroup analyses. Publication bias may exist for studies assessing maternal BMI and ASD risk, but the filled estimates were not altered. Relative to normal weight, maternal obesity and overweight were significantly associated with increased ASD risk, while maternal underweight was not associated with ASD. Although no association between paternal BMI and ASD was found, current evidence is limited (three studies). Future studies are warranted to address more confounding factors and to identify potential mediators of the association, but pre-pregnancy weight control is suggested.
Collapse
Affiliation(s)
- Xian-Yang Lei
- Office of the President, Central South University, Changsha, 410083, Hunan, China
| | - Yong-Jiang Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Jian-Jun Ou
- Mental Health Institute, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Ya-Min Li
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
47
|
Alhowikan AM, AL-Ayadhi LY, Halepoto DM. Impact of environmental pollution, dietary factors and diabetes mellitus on Autism Spectrum Disorder (ASD). Pak J Med Sci 2019; 35:1179-1184. [PMID: 31372164 PMCID: PMC6659068 DOI: 10.12669/pjms.35.4.269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/05/2019] [Accepted: 05/26/2019] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is complex neurodevelopmental condition described by impairments in three main behavioral areas: social deficits, impaired communication, and repetitive behaviors. Despite many years of vast study, the causes of ASD are still unknown. Various risk factors including genetic, infectious, metabolic and immunological have been investigated however, environmental, nutritional and diabetes related risk factors have not received sufficient attention. This study has provided an insight into the comprehensive interaction between environmental pollution, dietary factors and diabetes mellitus that could lead to the advancement of this debilitating neurodevelopment disorder. The literature search was done using PubMed and Google Scholar databases up to October 2018. Key words "Environmental Pollution", "Nutritional Factors", "Diabetes Mellitus", "Autism Spectrum Disorder" were selected.
Collapse
Affiliation(s)
- Abdulrahman Mohammed Alhowikan
- Abdulrahman Mohammed Alhowikan, PhD. Department of Physiology, Faculty of Medicine, King Saud University, P O Box 2925, Riyadh 11461 and Saudi Arabia
| | - Laila Yousef AL-Ayadhi
- Laila Yousef AL-Ayadhi, MBBS, PhD. Autism Research and Treatment Center, Department of physiology, Faculty of Medicine, King Saud University, P O Box 2925, Riyadh 11461 and Saudi Arabia
| | - Dost Muhammad Halepoto
- Dost Muhammad Halepoto, PhD. Autism Research and Treatment Center, Department of Physiology, Faculty of Medicine, King Saud University, P O Box 2925, Riyadh 11461 and Saudi Arabia
| |
Collapse
|
48
|
Maldonado-Ruiz R, Garza-Ocañas L, Camacho A. Inflammatory domains modulate autism spectrum disorder susceptibility during maternal nutritional programming. Neurochem Int 2019; 126:109-117. [PMID: 30880046 DOI: 10.1016/j.neuint.2019.03.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/30/2019] [Accepted: 03/11/2019] [Indexed: 12/21/2022]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disease which involves functional and structural defects in selective central nervous system (CNS) regions harming capability to process and respond to external stimuli. In addition to genetic background, etiological causes of ASD have not been fully clarified. Maternal immune activation (MIA) during pregnancy have been proposed as a potential etiological cause leading to aberrant synaptic pruning and microglia-mediated neurogenesis impairment. Several clinical studies suggest that pro-inflammatory profile during maternal obesity associates with a higher risk of having a child with autism. In this context, the effect of maternal programing by high fat diet overconsumption during pregnancy sets a pro-inflammatory profile partly dependent on an epigenetic program of immunity which promotes brain micro and macrostructural abnormalities in the offspring that might last through adulthood accompanied by phenotypic changes in ASD subjects. Of note, maternal programming of inflammation during development seems to integrate the CNS and peripheral immune system cross-talk which arrays central inflammatory domains coordinating ASD behavior. In this review, we discuss basic and clinical studies regarding the effects of obesity-induced MIA on peripheral immune cells and microglia priming and their relationship with brain structural alterations in ASD models. Also, we show supportive evidence stating the role of maternal programming on epigenetic gene activation in immune cells of ASD subjects. We suggest that maternal programming by hypercaloric diets during development sets a central and peripheral immune cross-talk which potentially might modulate brain macro and microstructural defects leading to autism susceptibility.
Collapse
Affiliation(s)
- Roger Maldonado-Ruiz
- Universidad Autónoma de Nuevo Leon, Facultad de Medicina, Biochemistry Department, Mexico; Universidad Autónoma de Nuevo Leon, Centro de Investigación y Desarrollo en Ciencias de la Salud, Neurometabolism Unit, Mexico
| | - Lourdes Garza-Ocañas
- Universidad Autonoma de Nuevo Leon, Facultad de Medicina, Department of Pharmacology, Mexico
| | - Alberto Camacho
- Universidad Autónoma de Nuevo Leon, Facultad de Medicina, Biochemistry Department, Mexico; Universidad Autónoma de Nuevo Leon, Centro de Investigación y Desarrollo en Ciencias de la Salud, Neurometabolism Unit, Mexico.
| |
Collapse
|
49
|
Mattson MP. An Evolutionary Perspective on Why Food Overconsumption Impairs Cognition. Trends Cogn Sci 2019; 23:200-212. [PMID: 30670325 DOI: 10.1016/j.tics.2019.01.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/02/2018] [Accepted: 01/07/2019] [Indexed: 01/01/2023]
Abstract
Brain structures and neuronal networks that mediate spatial navigation, decision-making, sociality, and creativity evolved, in part, to enable success in food acquisition. Here, I discuss evidence suggesting that the reason that overconsumption of energy-rich foods negatively impacts cognition is that signaling pathways that evolved to respond adaptively to food scarcity are relatively disengaged in the setting of continuous food availability. Obesity impairs cognition and increases the risk for some psychiatric disorders and dementias. Moreover, maternal and paternal obesity predispose offspring to poor cognitive outcomes by epigenetic molecular mechanisms. Neural signaling pathways that evolved to bolster cognition in settings of food insecurity can be stimulated by intermittent fasting and exercise to support the cognitive health of current and future generations.
Collapse
Affiliation(s)
- Mark P Mattson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA.
| |
Collapse
|
50
|
Maternal High Fat Diet-Induced Obesity Modifies Histone Binding and Expression of Oxtr in Offspring Hippocampus in a Sex-Specific Manner. Int J Mol Sci 2019; 20:ijms20020329. [PMID: 30650536 PMCID: PMC6359595 DOI: 10.3390/ijms20020329] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 01/05/2023] Open
Abstract
Maternal obesity during pregnancy increases risk for neurodevelopmental disorders in offspring, although the underlying mechanisms remain unclear. Epigenetic deregulation associates with many neurodevelopmental disorders, and recent evidence indicates that maternal nutritional status can alter chromatin marks in the offspring brain. Thus, maternal obesity may disrupt epigenetic regulation of gene expression during offspring neurodevelopment. Using a C57BL/6 mouse model, we investigated whether maternal high fat diet (mHFD)-induced obesity alters the expression of genes previously implicated in the etiology of neurodevelopmental disorders within the Gestational Day 17.5 (GD 17.5) offspring hippocampus. We found significant two-fold upregulation of oxytocin receptor (Oxtr) mRNA in the hippocampus of male, but not female, GD 17.5 offspring from mHFD-induced obese dams (p < 0.05). To determine whether altered histone binding at the Oxtr gene promoter may underpin these transcriptional changes, we then performed chromatin immunoprecipitation (ChIP). Consistent with the Oxtr transcriptional changes, we observed increased binding of active histone mark H3K9Ac at the Oxtr transcriptional start site (TSS) in the hippocampus of mHFD male (p < 0.05), but not female, offspring. Together, these data indicate an increased vulnerability of male offspring to maternal obesity-induced changes in chromatin remodeling processes that regulate gene expression in the developing hippocampus, and contributes to our understanding of how early life nutrition affects the offspring brain epigenome.
Collapse
|