1
|
Lu H. Inflammatory liver diseases and susceptibility to sepsis. Clin Sci (Lond) 2024; 138:435-487. [PMID: 38571396 DOI: 10.1042/cs20230522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/09/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024]
Abstract
Patients with inflammatory liver diseases, particularly alcohol-associated liver disease and metabolic dysfunction-associated fatty liver disease (MAFLD), have higher incidence of infections and mortality rate due to sepsis. The current focus in the development of drugs for MAFLD is the resolution of non-alcoholic steatohepatitis and prevention of progression to cirrhosis. In patients with cirrhosis or alcoholic hepatitis, sepsis is a major cause of death. As the metabolic center and a key immune tissue, liver is the guardian, modifier, and target of sepsis. Septic patients with liver dysfunction have the highest mortality rate compared with other organ dysfunctions. In addition to maintaining metabolic homeostasis, the liver produces and secretes hepatokines and acute phase proteins (APPs) essential in tissue protection, immunomodulation, and coagulation. Inflammatory liver diseases cause profound metabolic disorder and impairment of energy metabolism, liver regeneration, and production/secretion of APPs and hepatokines. Herein, the author reviews the roles of (1) disorders in the metabolism of glucose, fatty acids, ketone bodies, and amino acids as well as the clearance of ammonia and lactate in the pathogenesis of inflammatory liver diseases and sepsis; (2) cytokines/chemokines in inflammatory liver diseases and sepsis; (3) APPs and hepatokines in the protection against tissue injury and infections; and (4) major nuclear receptors/signaling pathways underlying the metabolic disorders and tissue injuries as well as the major drug targets for inflammatory liver diseases and sepsis. Approaches that focus on the liver dysfunction and regeneration will not only treat inflammatory liver diseases but also prevent the development of severe infections and sepsis.
Collapse
Affiliation(s)
- Hong Lu
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
| |
Collapse
|
2
|
Rodriguez-Ramiro I, Pastor-Fernández A, López-Aceituno JL, Garcia-Dominguez E, Sierra-Ramirez A, Valverde AM, Martinez-Pastor B, Efeyan A, Gomez-Cabrera MC, Viña J, Fernandez-Marcos PJ. Pharmacological and genetic increases in liver NADPH levels ameliorate NASH progression in female mice. Free Radic Biol Med 2024; 210:448-461. [PMID: 38036067 DOI: 10.1016/j.freeradbiomed.2023.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 11/05/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023]
Abstract
Non-alcoholic steatohepatitis (NASH) is one of the fastest growing liver diseases worldwide, and oxidative stress is one of NASH main key drivers. Nicotinamide adenine dinucleotide phosphate (NADPH) is the ultimate donor of reductive power to a number of antioxidant defences. Here, we explored the potential of increasing NADPH levels to prevent NASH progression. We used nicotinamide riboside (NR) supplementation or a G6PD-tg mouse line harbouring an additional copy of the human G6PD gene. In a NASH mouse model induced by feeding mice a methionine-choline deficient (MCD) diet for three weeks, both tools increased the hepatic levels of NADPH and ameliorated the NASH phenotype induced by the MCD intervention, but only in female mice. Boosting NADPH levels in females increased the liver expression of the antioxidant genes Gsta3, Sod1 and Txnrd1 in NR-treated mice, or of Gsr for G6PD-tg mice. Both strategies significantly reduced hepatic lipid peroxidation. NR-treated female mice showed a reduction of steatosis accompanied by a drop of the hepatic triglyceride levels, that was not observed in G6PD-tg mice. NR-treated mice tended to reduce their lobular inflammation, showed a reduction of the NK cell population and diminished transcription of the damage marker Lcn2. G6PD-tg female mice exhibited a reduction of their lobular inflammation and hepatocyte ballooning induced by the MCD diet, that was related to a reduction of the monocyte-derived macrophage population and the Tnfa, Ccl2 and Lcn2 gene expression. As conclusion, boosting hepatic NADPH levels attenuated the oxidative lipid damage and the exhausted antioxidant gene expression specifically in female mice in two different models of NASH, preventing the progression of the inflammatory process and hepatic injury.
Collapse
Affiliation(s)
- Ildefonso Rodriguez-Ramiro
- Metabolic Syndrome Group - BIOPROMET. Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, E28049, Madrid, Spain; Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain.
| | - Andrés Pastor-Fernández
- Metabolic Syndrome Group - BIOPROMET. Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, E28049, Madrid, Spain
| | - José Luis López-Aceituno
- Metabolic Syndrome Group - BIOPROMET. Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, E28049, Madrid, Spain
| | - Esther Garcia-Dominguez
- Freshage Research Group, Department of Physiology, Faculty of Medicine, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, University of Valencia, Valencia, Spain
| | - Aranzazu Sierra-Ramirez
- Metabolic Syndrome Group - BIOPROMET. Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, E28049, Madrid, Spain
| | - Angela M Valverde
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC/UAM), Madrid, E28029, Spain; Centro de Investigaciones Biomédicas en Red de Diabetes y Enfermedades Metabólicas Asociadas, ISCIII, Spain
| | - Bárbara Martinez-Pastor
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Alejo Efeyan
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Mari Carmen Gomez-Cabrera
- Freshage Research Group, Department of Physiology, Faculty of Medicine, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, University of Valencia, Valencia, Spain
| | - José Viña
- Freshage Research Group, Department of Physiology, Faculty of Medicine, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, University of Valencia, Valencia, Spain
| | - Pablo J Fernandez-Marcos
- Metabolic Syndrome Group - BIOPROMET. Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, E28049, Madrid, Spain.
| |
Collapse
|
3
|
Kang J, Postigo-Fernandez J, Kim K, Zhu C, Yu J, Meroni M, Mayfield B, Bartolomé A, Dapito DH, Ferrante AW, Dongiovanni P, Valenti L, Creusot RJ, Pajvani UB. Notch-mediated hepatocyte MCP-1 secretion causes liver fibrosis. JCI Insight 2023; 8:e165369. [PMID: 36752206 PMCID: PMC9977430 DOI: 10.1172/jci.insight.165369] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/29/2022] [Indexed: 02/09/2023] Open
Abstract
Patients with nonalcoholic steatohepatitis (NASH) have increased expression of liver monocyte chemoattractant protein-1 (MCP-1), but its cellular source and contribution to various aspects of NASH pathophysiology remain debated. We demonstrated increased liver CCL2 (which encodes MCP-1) expression in patients with NASH, and commensurately, a 100-fold increase in hepatocyte Ccl2 expression in a mouse model of NASH, accompanied by increased liver monocyte-derived macrophage (MoMF) infiltrate and liver fibrosis. To test repercussions of increased hepatocyte-derived MCP-1, we generated hepatocyte-specific Ccl2-knockout mice, which showed reduced liver MoMF infiltrate as well as decreased liver fibrosis. Forced hepatocyte MCP-1 expression provoked the opposite phenotype in chow-fed wild-type mice. Consistent with increased hepatocyte Notch signaling in NASH, we observed a close correlation between markers of Notch activation and CCL2 expression in patients with NASH. We found that an evolutionarily conserved Notch/recombination signal binding protein for immunoglobulin kappa J region binding site in the Ccl2 promoter mediated transactivation of the Ccl2 promoter in NASH diet-fed mice. Increased liver MoMF infiltrate and liver fibrosis seen in opposite gain-of-function mice was ameliorated with concomitant hepatocyte Ccl2 knockout or CCR2 inhibitor treatment. Hepatocyte Notch activation prompts MCP-1-dependent increase in liver MoMF infiltration and fibrosis.
Collapse
Affiliation(s)
- Jinku Kang
- Department of Medicine, Naomi Berrie Diabetes Center, and
| | - Jorge Postigo-Fernandez
- Department of Medicine, Naomi Berrie Diabetes Center, and
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, New York, USA
| | - KyeongJin Kim
- Department of Medicine, Naomi Berrie Diabetes Center, and
- Department of Biomedical Sciences, College of Medicine, Program in Biomedical Science & Engineering, and Research Center for Controlling Intercellular Communication (RCIC), Inha University, Incheon, South Korea
| | - Changyu Zhu
- Department of Medicine, Naomi Berrie Diabetes Center, and
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Junjie Yu
- Department of Medicine, Naomi Berrie Diabetes Center, and
| | - Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Brent Mayfield
- Department of Medicine, Naomi Berrie Diabetes Center, and
| | - Alberto Bartolomé
- Department of Medicine, Naomi Berrie Diabetes Center, and
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC/UAM), Madrid, Spain
| | | | | | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
- Precision Medicine Lab, Biological Resource Center, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico Milan, Milan, Italy
| | - Remi J. Creusot
- Department of Medicine, Naomi Berrie Diabetes Center, and
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, New York, USA
| | | |
Collapse
|
4
|
Lee E, Korf H, Vidal-Puig A. An adipocentric perspective on the development and progression of non-alcoholic fatty liver disease. J Hepatol 2023; 78:1048-1062. [PMID: 36740049 DOI: 10.1016/j.jhep.2023.01.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/20/2022] [Accepted: 01/19/2023] [Indexed: 02/07/2023]
Abstract
Alongside the liver, white adipose tissue (WAT) is critical in regulating systemic energy homeostasis. Although each organ has its specialised functions, they must work coordinately to regulate whole-body metabolism. Adipose tissues and the liver are relatively resilient and can adapt to an energy surplus by facilitating triglyceride (TG) storage up to a certain threshold level without significant metabolic disturbances. However, lipid storage in WAT beyond a "personalised" adiposity threshold becomes dysfunctional, leading to metabolic inflexibility, progressive inflammation, and aberrant adipokine secretion. Moreover, the failure of adipose tissue to store and mobilise lipids results in systemic knock-on lipid overload, particularly in the liver. Factors contributing to hepatic lipid overload include lipids released from WAT, dietary fat intake, and enhanced de novo lipogenesis. In contrast, extrahepatic mechanisms counteracting toxic hepatic lipid overload entail coordinated compensation through oxidation of surplus fatty acids in brown adipose tissue and storage of fatty acids as TGs in WAT. Failure of these integrated homeostatic mechanisms leads to quantitative increases and qualitative alterations to the lipidome of the liver. Initially, hepatocytes preferentially accumulate TG species leading to a relatively "benign" non-alcoholic fatty liver. However, with time, inflammatory responses ensue, progressing into more severe conditions such as non-alcoholic steatohepatitis, cirrhosis, and hepatocellular carcinoma, in some individuals (often without an early prognostic clue). Herein, we highlight the pathogenic importance of obesity-induced "adipose tissue failure", resulting in decreased adipose tissue functionality (i.e. fat storage capacity and metabolic flexibility), in the development and progression of NAFL/NASH.
Collapse
Affiliation(s)
- Eunyoung Lee
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK; Department of Medical Physiology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Hannelie Korf
- Laboratory of Hepatology, CHROMETA Department, KU Leuven, Leuven, Belgium.
| | - Antonio Vidal-Puig
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK; Centro de Innvestigacion Principe Felipe, Valencia, Spain; Cambridge University Nanjing Centre of Technology and Innovation, Nanjing, China.
| |
Collapse
|
5
|
Hu S, Yang M, Huang S, Zhong S, Zhang Q, Ding H, Xiong X, Hu Z, Yang Y. Different Roles of Resident and Non-resident Macrophages in Cardiac Fibrosis. Front Cardiovasc Med 2022; 9:818188. [PMID: 35330948 PMCID: PMC8940216 DOI: 10.3389/fcvm.2022.818188] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/17/2022] [Indexed: 12/21/2022] Open
Abstract
Cardiac fibrosis is a key pathological link of various cardiovascular diseases to heart failure. It is of great significance to deeply understand the development process of cardiac fibrosis and the cellular and molecular mechanisms involved. Macrophages play a special role in promoting heart development, maintaining myocardial cell homeostasis and heart function. They are involved in the whole process from inflammatory to cardiac fibrosis. This article summarizes the relationship between inflammation and fibrosis, discusses the bidirectional regulation of cardiac fibrosis by macrophages and analyses the functional heterogeneity of macrophages from different sources. It is believed that CCR2– cardiac resident macrophages can promote cardiac function, but the recruitment and infiltration of CCR2+ cardiac non-resident macrophages aggravate cardiac dysfunction and heart remodeling. After heart injury, damage associated molecular patterns (DAMPs) are released in large quantities, and the inflammatory signal mediated by macrophage chemoattractant protein-1 (MCP-1) promotes the infiltration of CCR2+ monocytes and transforms into macrophages in the heart. These CCR2+ non-resident macrophages not only replace part of the CCR2– resident macrophage subpopulation in the heart, but also cause cardiac homeostasis and hypofunction, and release a large number of mediators that promote fibroblast activation to cause cardiac fibrosis. This article reveals the cell biology mechanism of resident and non-resident macrophages in regulating cardiac fibrosis. It is believed that inhibiting the infiltration of cardiac non-resident macrophages and promoting the proliferation and activation of cardiac resident macrophages are the key to improving cardiac fibrosis and improving cardiac function.
Collapse
Affiliation(s)
- Siyuan Hu
- School of Sports Art, Hunan University of Chinese Medicine, Changsha, China.,College of Health Science, Wuhan Sports University, Wuhan, China
| | - Meng Yang
- Institute of Chinese Medicine Diagnosis, Hunan University of Chinese Medicine, Changsha, China.,Graduate School, Hunan University of Chinese Medicine, Changsha, China
| | - Shumin Huang
- Institute of Chinese Medicine Diagnosis, Hunan University of Chinese Medicine, Changsha, China.,Graduate School, Hunan University of Chinese Medicine, Changsha, China
| | - Senjie Zhong
- Institute of Chinese Medicine Diagnosis, Hunan University of Chinese Medicine, Changsha, China.,Graduate School, Hunan University of Chinese Medicine, Changsha, China
| | - Qian Zhang
- Institute of Chinese Medicine Diagnosis, Hunan University of Chinese Medicine, Changsha, China.,Graduate School, Hunan University of Chinese Medicine, Changsha, China
| | - Haichao Ding
- College of Health Science, Wuhan Sports University, Wuhan, China
| | - Xiajun Xiong
- Institute of Chinese Medicine Diagnosis, Hunan University of Chinese Medicine, Changsha, China.,Graduate School, Hunan University of Chinese Medicine, Changsha, China
| | - Zhixi Hu
- Institute of Chinese Medicine Diagnosis, Hunan University of Chinese Medicine, Changsha, China
| | - Yi Yang
- College of Health Science, Wuhan Sports University, Wuhan, China
| |
Collapse
|
6
|
Akbari R, Behdarvand T, Afarin R, Yaghooti H, Jalali MT, Mohammadtaghvaei N. Saroglitazar improved hepatic steatosis and fibrosis by modulating inflammatory cytokines and adiponectin in an animal model of non-alcoholic steatohepatitis. BMC Pharmacol Toxicol 2021; 22:53. [PMID: 34593018 PMCID: PMC8485507 DOI: 10.1186/s40360-021-00524-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/20/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) have become significant global health concerns. In the present study, we aimed to investigate the effects of saroglitazar, a dual PPARα/γ agonist, fenofibrate, a PPAR-α agonist, and pioglitazone, a PPAR-γ agonist on an animal model of NASH. METHODS Male Wistar rats were fed a high-fat (HF) emulsion via gavage for 7 weeks to induce NASH. The HF-treated rats were grouped into four groups to receive saroglitazar, pioglitazone, fenofibrate, or vehicle. We measured body and liver weight, liver enzymes, serum levels of adiponectin and leptin. We also performed histopathological examinations and gene expression analysis of interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF- α), transforming growth factor-beta (TGF-β), and monocyte chemoattractant protein 1 (MCP-1). RESULTS Body weight was markedly normalized by both saroglitazar and fenofibrate, while the liver index only decreased significantly with saroglitazar. Saroglitazar corrected ALT, AST, leptin, and adiponectin levels better than pioglitazone and fenofibrate. All PPAR agonists significantly attenuated the upregulation of the proinflammatory and TGF-β genes, which correlated with the improved steatosis, inflammation of liver tissue, and fibrotic lesions. CONCLUSIONS As documented by our results, the dual activation of PPARα/γ by saroglitazar could effectively improve steatosis, fibrosis, and aspects of necro-inflammation in the HF-induced NASH model more than fenofibrate and pioglitazone, and it can be more beneficial in the management of NASH.
Collapse
Affiliation(s)
- Rasoul Akbari
- Hyperlipidemia Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Laboratory Sciences, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Tahereh Behdarvand
- Hyperlipidemia Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Laboratory Sciences, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Afarin
- Hyperlipidemia Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Laboratory Sciences, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hamid Yaghooti
- Hyperlipidemia Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Taha Jalali
- Hyperlipidemia Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Laboratory Sciences, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Narges Mohammadtaghvaei
- Hyperlipidemia Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Laboratory Sciences, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
7
|
Ling B, Lee J, Maresca D, Lee-Gosselin A, Malounda D, Swift MB, Shapiro MG. Biomolecular Ultrasound Imaging of Phagolysosomal Function. ACS NANO 2020; 14:12210-12221. [PMID: 32902951 PMCID: PMC7685203 DOI: 10.1021/acsnano.0c05912] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Phagocytic clearance and lysosomal processing of pathogens and debris are essential functions of the innate immune system. However, the assessment of these functions in vivo is challenging because most nanoscale contrast agents compatible with noninvasive imaging techniques are made from nonbiodegradable synthetic materials that do not undergo regular lysosomal degradation. To overcome this challenge, we describe the use of an all-protein contrast agent to directly visualize and quantify phagocytic and lysosomal activities in vivo by ultrasound imaging. This contrast agent is based on gas vesicles (GVs), a class of air-filled protein nanostructures naturally expressed by buoyant microbes. Using a combination of ultrasound imaging, pharmacology, immunohistology, and live-cell optical microscopy, we show that after intravenous injection, GVs are cleared from circulation by liver-resident macrophages. Once internalized, the GVs undergo lysosomal degradation, resulting in the elimination of their ultrasound contrast. By noninvasively monitoring the temporal dynamics of GV-generated ultrasound signal in circulation and in the liver and fitting them with a pharmacokinetic model, we can quantify the rates of phagocytosis and lysosomal degradation in living animals. We demonstrate the utility of this method by showing how these rates are perturbed in two models of liver dysfunction: phagocyte deficiency and nonalcoholic fatty liver disease. The combination of proteolytically degradable nanoscale contrast agents and quantitative ultrasound imaging thus enables noninvasive functional imaging of cellular degradative processes.
Collapse
Affiliation(s)
- Bill Ling
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125, United States
| | - Justin Lee
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, California, 91125, United States
| | - David Maresca
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125, United States
| | - Audrey Lee-Gosselin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125, United States
| | - Dina Malounda
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125, United States
| | - Margaret B. Swift
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125, United States
| | - Mikhail G. Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125, United States
| |
Collapse
|
8
|
Glass O, Henao R, Patel K, Guy CD, Gruss HJ, Syn WK, Moylan CA, Streilein R, Hall R, Mae Diehl A, Abdelmalek MF. Serum Interleukin-8, Osteopontin, and Monocyte Chemoattractant Protein 1 Are Associated With Hepatic Fibrosis in Patients With Nonalcoholic Fatty Liver Disease. Hepatol Commun 2018; 2:1344-1355. [PMID: 30411081 PMCID: PMC6211321 DOI: 10.1002/hep4.1237] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/20/2018] [Indexed: 12/23/2022] Open
Abstract
The severity of hepatic fibrosis is the primary predictor of liver‐related morbidity and mortality in patients with nonalcoholic fatty liver disease (NAFLD). Unfortunately, noninvasive serum biomarkers for NAFLD‐associated fibrosis are limited. We analyzed baseline serum samples for 24 cytokines of 97 patients with biopsy‐proven NAFLD. These patients were prospectively enrolled in a clinical study (ClinicalTrials.gov NCT00794716) to identify cytokines associated with liver fibrosis in patients with nonalcoholic steatohepatitis. Patients were stratified according to severity of hepatic fibrosis (mild, stage 0‐1, n = 37; moderate, stage 2, n = 40; and advanced, stage 3‐4, n = 20) while controlling for age, race, sex, body mass index, and diabetes mellitus. Interleukin‐8 (IL‐8), osteopontin (OPN), and monocyte chemoattractant protein 1 (MCP1) were associated with liver fibrosis (P < 0.001, P = 0.005, P = 0.016, respectively). After controlling for steatosis, lobular inflammation, hepatocyte ballooning, age, sex, body mass index, diabetes mellitus, hypertension, and metabolic syndrome status, IL‐8 remained strongly associated with fibrosis (P = 0.001). Furthermore, IL‐8 was also a strong predictor of increased fibrotic liver injury compared to established markers of hepatic fibrosis. Hepatic gene expression from 72 patients with NAFLD (n = 40 mild fibrosis; n = 32 advanced fibrosis) from the Duke University Health System NAFLD Clinical Database and Biorepository revealed IL‐8, MCP1, and OPN gene expression to be increased and differentially expressed in patients with advanced hepatic fibrosis. Thus, serum IL‐8, MCP1, and OPN may reflect up‐regulated gene expression during liver fibrosis in NAFLD. Conclusion: Serum IL‐8, MCP1, and OPN may serve as a test for advanced hepatic fibrosis in NAFLD and thus reveal novel targets for antifibrotic therapies. The increased serum IL‐8, MCP1, and OPN that correspond with associated hepatic gene expression lend strength to such analytes as ideal surrogate serum biomarkers for severity of hepatic fibrosis.
Collapse
Affiliation(s)
- Oliver Glass
- Division of General Internal Medicine Duke University Durham NC
| | - Ricardo Henao
- Department of Biostatistics and Bioinformatics Duke University Durham NC.,Duke Clinical Research Institute Duke University Durham NC
| | - Keyur Patel
- University Health Network University of Toronto Toronto Canada
| | | | | | - Wing-Kin Syn
- Division of Gastroenterology and Hepatology Medical University of South Carolina Charleston SC.,Section of Gastroenterology Ralph H Johnson Veterans Affairs Medical Center Charleston SC
| | | | | | - Russell Hall
- Department of Dermatology Duke University Durham NC
| | | | | |
Collapse
|
9
|
Peiseler M, Kubes P. Macrophages play an essential role in trauma-induced sterile inflammation and tissue repair. Eur J Trauma Emerg Surg 2018; 44:335-349. [DOI: 10.1007/s00068-018-0956-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 04/12/2018] [Indexed: 12/20/2022]
|
10
|
Devisscher L, Scott CL, Lefere S, Raevens S, Bogaerts E, Paridaens A, Verhelst X, Geerts A, Guilliams M, Van Vlierberghe H. Non-alcoholic steatohepatitis induces transient changes within the liver macrophage pool. Cell Immunol 2017; 322:74-83. [PMID: 29111158 DOI: 10.1016/j.cellimm.2017.10.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/13/2017] [Accepted: 10/14/2017] [Indexed: 12/31/2022]
Abstract
Kupffer cells (KCs) and monocyte-derived macrophages are implicated in non-alcoholic steatohepatitis (NASH) pathogenesis but their functions remain unclear due to the lack of specific markers to distinguish between the different cell types. Additionally, it is unclear if multiple subsets of KCs are present during NASH. Here, we characterized the liver macrophage subsets during methionine/choline deficient (MCD) diet-induced NASH and recovery. We observed a significant reduced contribution of Ly6CloClec4F+Tim4+KCs to the hepatic macrophage pool in MCD fed mice, which normalized during recovery. Ly6CloClec4F-Tim4- monocyte-derived macrophages increased during MCD feeding and returned to baseline during recovery. Ly6CloClec4F+Tim4- monocyte-derived KCs developed during initial recovery but did not self-renew as their numbers were reduced after full recovery. Initial recovery from MCD diet feeding was further characterized by increased proportions of Ki-67+ proliferating KCs. In conclusion, the hepatic macrophage pool undergoes substantial albeit transient changes during NASH and recovery, with the KC pool being maintained by proliferation and differentiation of short-lived monocyte-derived KCs.
Collapse
Affiliation(s)
- Lindsey Devisscher
- Department of Gastroenterology and Hepatology, Ghent University, Belgium.
| | - Charlotte L Scott
- Laboratory of Myeloid Cell Ontogeny and Functional Specialization, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, UK.
| | - Sander Lefere
- Department of Gastroenterology and Hepatology, Ghent University, Belgium
| | - Sarah Raevens
- Department of Gastroenterology and Hepatology, Ghent University, Belgium
| | - Eliene Bogaerts
- Department of Gastroenterology and Hepatology, Ghent University, Belgium
| | - Annelies Paridaens
- Department of Gastroenterology and Hepatology, Ghent University, Belgium
| | - Xavier Verhelst
- Department of Gastroenterology and Hepatology, Ghent University, Belgium
| | - Anja Geerts
- Department of Gastroenterology and Hepatology, Ghent University, Belgium
| | - Martin Guilliams
- Laboratory of Myeloid Cell Ontogeny and Functional Specialization, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | | |
Collapse
|
11
|
Patouraux S, Rousseau D, Bonnafous S, Lebeaupin C, Luci C, Canivet CM, Schneck AS, Bertola A, Saint-Paul MC, Iannelli A, Gugenheim J, Anty R, Tran A, Bailly-Maitre B, Gual P. CD44 is a key player in non-alcoholic steatohepatitis. J Hepatol 2017; 67:328-338. [PMID: 28323124 DOI: 10.1016/j.jhep.2017.03.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 02/01/2017] [Accepted: 03/02/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Cluster of differentiation (CD)44 regulates adipose tissue inflammation in obesity and hepatic leukocyte recruitment in a lithogenic context. However, its role in hepatic inflammation in a mouse model of steatohepatitis and its relevance in humans have not yet been investigated. We aimed to evaluated the contribution of CD44 to non-alcoholic steatohepatitis (NASH) development and liver injury in mouse models and in patients at various stages of non-alcoholic fatty liver disease (NAFLD) progression. METHODS The role of CD44 was evaluated in CD44-/- mice and after injections of an αCD44 antibody in wild-type mice challenged with a methionine- and choline-deficient diet (MCDD). In obese patients, hepatic CD44 (n=30 and 5 NASH patients with a second liver biopsy after bariatric surgery) and serum sCD44 (n=64) were evaluated. RESULTS Liver inflammation (including inflammatory foci number, macrophage and neutrophil infiltration and CCL2/CCR2 levels), liver injury and fibrosis strongly decreased in CD44-/- mice compared to wild-type mice on MCDD. CD44 deficiency enhanced the M2 polarization and strongly decreased the activation of macrophages by lipopolysaccharide (LPS), hepatocyte damage-associated molecular patterns (DAMPs) and saturated fatty acids. Neutralization of CD44 in mice with steatohepatitis strongly decreased the macrophage infiltration and chemokine ligand (CCL)2 expression with a partial correction of liver inflammation and injury. In obese patients, hepatic CD44 was strongly upregulated in NASH patients (p=0.0008) and correlated with NAFLD activity score (NAS) (p=0.001), ballooning (p=0.003), alanine transaminase (p=0.005) and hepatic CCL2 (p<0.001) and macrophage marker CD68 (p<0.001) expression. Correction of NASH was associated with a strong decrease in liver CD44+ cells. Finally, the soluble form of CD44 increased with severe steatosis (p=0.0005) and NASH (p=0.007). CONCLUSION Human and experimental data suggest that CD44 is a marker and key player of hepatic inflammation and its targeting partially corrects NASH. LAY SUMMARY Human and experimental data suggest that CD44, a cellular protein mainly expressed in immune cells, is a marker and key player of non-alcoholic steatohepatitis (NASH). Indeed, CD44 enhances the non-alcoholic fatty liver (NAFL) (hepatic steatosis) to NASH progression by regulating hepatic macrophage polarization (pro-inflammatory phenotype) and infiltration (macrophage motility and the MCP1/CCL2/CCR2 system). Targeting CD44 partially corrects NASH, making it a potential therapeutic strategy.
Collapse
Affiliation(s)
- Stéphanie Patouraux
- INSERM, U1065, C3M, Team 8 "Hepatic Complications in Obesity", Nice, France; Université Côte d'Azur, Nice, France; CHU of Nice, Biological Center, Pasteur Hôpital, Nice, France
| | - Déborah Rousseau
- INSERM, U1065, C3M, Team 8 "Hepatic Complications in Obesity", Nice, France; Université Côte d'Azur, Nice, France
| | - Stéphanie Bonnafous
- INSERM, U1065, C3M, Team 8 "Hepatic Complications in Obesity", Nice, France; Université Côte d'Azur, Nice, France; CHU of Nice, Digestive Center, Nice, France
| | - Cynthia Lebeaupin
- INSERM, U1065, C3M, Team 8 "Hepatic Complications in Obesity", Nice, France; Université Côte d'Azur, Nice, France
| | - Carmelo Luci
- INSERM, U1065, C3M, Team 8 "Hepatic Complications in Obesity", Nice, France; Université Côte d'Azur, Nice, France
| | - Clémence M Canivet
- INSERM, U1065, C3M, Team 8 "Hepatic Complications in Obesity", Nice, France; Université Côte d'Azur, Nice, France; CHU of Nice, Digestive Center, Nice, France
| | - Anne-Sophie Schneck
- INSERM, U1065, C3M, Team 8 "Hepatic Complications in Obesity", Nice, France; Université Côte d'Azur, Nice, France; CHU of Nice, Digestive Center, Nice, France
| | - Adeline Bertola
- INSERM, U1065, C3M, Team 8 "Hepatic Complications in Obesity", Nice, France; Université Côte d'Azur, Nice, France
| | - Marie-Christine Saint-Paul
- INSERM, U1065, C3M, Team 8 "Hepatic Complications in Obesity", Nice, France; Université Côte d'Azur, Nice, France; CHU of Nice, Biological Center, Pasteur Hôpital, Nice, France
| | - Antonio Iannelli
- INSERM, U1065, C3M, Team 8 "Hepatic Complications in Obesity", Nice, France; Université Côte d'Azur, Nice, France; CHU of Nice, Digestive Center, Nice, France
| | - Jean Gugenheim
- INSERM, U1065, C3M, Team 8 "Hepatic Complications in Obesity", Nice, France; Université Côte d'Azur, Nice, France; CHU of Nice, Digestive Center, Nice, France
| | - Rodolphe Anty
- INSERM, U1065, C3M, Team 8 "Hepatic Complications in Obesity", Nice, France; Université Côte d'Azur, Nice, France; CHU of Nice, Digestive Center, Nice, France
| | - Albert Tran
- INSERM, U1065, C3M, Team 8 "Hepatic Complications in Obesity", Nice, France; Université Côte d'Azur, Nice, France; CHU of Nice, Digestive Center, Nice, France
| | - Béatrice Bailly-Maitre
- INSERM, U1065, C3M, Team 8 "Hepatic Complications in Obesity", Nice, France; Université Côte d'Azur, Nice, France
| | - Philippe Gual
- INSERM, U1065, C3M, Team 8 "Hepatic Complications in Obesity", Nice, France; Université Côte d'Azur, Nice, France.
| |
Collapse
|
12
|
Kozono M, Uto H, Ibusuki R, Arima S, Oda K, Taguchi H, Sasaki F, Nasu Y, Hashimoto S, Setoyama H, Kanmura S, Numata M, Tsubouchi H, Ido A. Antihypertensive therapy improves insulin resistance and serum levels of interleukin-6 and −10 in spontaneously hypertensive rats with steatohepatitis. Mol Med Rep 2016; 14:5385-5394. [DOI: 10.3892/mmr.2016.5875] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 09/01/2016] [Indexed: 11/06/2022] Open
|
13
|
C-X-C motif chemokine 10 in non-alcoholic steatohepatitis: role as a pro-inflammatory factor and clinical implication. Expert Rev Mol Med 2016; 18:e16. [PMID: 27669973 DOI: 10.1017/erm.2016.16] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease. Non-alcoholic steatohepatitis (NASH) is a more severe form of NAFLD and causes subsequent pathological changes including cirrhosis and hepatocellular carcinoma. Inflammation is the key pathological change in NASH and involves a series of cytokines and chemokines. The C-X-C motif chemokine 10 (CXCL10), which is known as a pro-inflammation chemokine, was recently proven to play a pivotal role in the pathogenesis of NASH. Hepatic CXCL10 is mainly secreted by hepatocytes and liver sinusoidal endothelium. By binding to its specific receptor CXCR3, CXCL10 recruits activated CXCR3+ T lymphocytes and macrophages to parenchyma and promotes inflammation, apoptosis and fibrosis. The circulating CXCL10 level correlates with the severity of lobular inflammation and is an independent risk factor for NASH patients. Thus, CXCL10 may be both a potential prognostic tool and a therapeutic target for the treatment of patients with NASH. The aim of this review is to highlight the growing advances in basic knowledge and clinical interest of CXCL10 in NASH to propagate new insights into novel pharmacotherapeutic avenues.
Collapse
|
14
|
Devisscher L, Verhelst X, Colle I, Van Vlierberghe H, Geerts A. The role of macrophages in obesity-driven chronic liver disease. J Leukoc Biol 2016; 99:693-8. [DOI: 10.1189/jlb.5ru0116-016r] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 02/12/2016] [Indexed: 12/21/2022] Open
|
15
|
Su X, Zhou G, Wang Y, Yang X, Li L, Yu R, Li D. The PPARβ/δ agonist GW501516 attenuates peritonitis in peritoneal fibrosis via inhibition of TAK1-NFκB pathway in rats. Inflammation 2015; 37:729-37. [PMID: 24337677 DOI: 10.1007/s10753-013-9791-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Peritoneal fibrosis is a common consequence of long-term peritoneal dialysis (PD), and peritonitis is a factor in its onset. Agonist-bound peroxisome proliferator-activated receptors (PPARs) function as key regulators of energy metabolism and inflammation. Here, we examined the effects of PPARβ/δ agonist GW501516 on peritonitis in a rat peritoneal fibrosis model. Peritoneal fibrosis secondary to inflammation was induced into uremic rats by daily injection of Dianeal 4.25% PD solutions along with six doses of lipopolysaccharide before commencement of GW501516 treatment. Normal non-uremic rats served as control, and all rats were fed with a control diet or a GW501516-containing diet. Compared to control group, exposure to PD fluids caused peritoneal fibrosis that was accompanied by increased mRNA levels of monocyte chemoattractant protein-1, tumor necrotic factor-α, and interleukin-6 in the uremic rats, and these effects were prevented by GW501516 treatment. Moreover, GW501516 was found to attenuate glucose-stimulated inflammation in cultured rat peritoneal mesothelial cells via inhibition of transforming growth factor-β-activated kinase 1 (TAK1), and nuclear factor kappa B (NFκB) signaling pathway (TAK1-NFκB pathway), a main inflammation regulatory pathway. In conclusion, inhibition of TAK1-NFκB pathway with GW501516 may represent a novel therapeutic approach to ameliorate peritonitis-induced peritoneal fibrosis for patients on PD.
Collapse
Affiliation(s)
- Xuesong Su
- Department of Nephrology, Shengjing Hospital, China Medical University, 36 Sanhao Street, Shenyang, 110004, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
16
|
Ning C, Liu L, Lv G, Yang Y, Zhang Y, Yu R, Wang Y, Zhu J. Lipid metabolism and inflammation modulated by Vitamin D in liver of diabetic rats. Lipids Health Dis 2015; 14:31. [PMID: 25899686 PMCID: PMC4406219 DOI: 10.1186/s12944-015-0030-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/01/2015] [Indexed: 02/06/2023] Open
Abstract
Background In recent years, much evidence suggested that vitamin D plays an important role in decreasing the risk of type 2 diabetes. The purpose of this study was to investigate whether 1, 25 (OH) 2D3 can modulate inflammation and lipid metabolism in type 2 diabetic rat liver. Methods Type 2 diabetes was induced in SD rat with high-fat and high-sugar diets and multiple low-dose streptozotocin. The levels of serum calcium, phosphorus, glucose, TC, TG, AST, ALT and hepatic TG were determined. H & E staining were performed to assess the effects of vitamin D treatment on pathological changes in the liver tissues. Immunohistology, real-time PCR and Western blot were used to evaluate the expressions of NF-κ B, MCP-1, ICAM-1, TGF-β1, PPAR-α and CPT-1. Results The administration of 1, 25 (OH) 2D3 reduced liver weight. Compared to DM rats, 1, 25 (OH) 2D3-treated DM rats had lower liver weight. Moreover, compared to healthy or 1, 25 (OH) 2D3-treated DM rats, DM rats had increased hepatic transcription factors (NF-κ B), monocyte chemoattractant protein −1 (MCP-1), intercellular adhesion molecule −1 (ICAM-1), transforming growth factor-β1 (TGF-β1) expressions, but had fewer hepatic PPAR- α and CPT-1 expressions. Conclusions 1, 25 (OH) 2D3 significantly modulated the liver inflammation and lipid metabolism in diabetic rat models, which may be caused by its regulations on hepatic signaling NF-κ B pathway and PPAR- α.
Collapse
Affiliation(s)
- Conghua Ning
- Department of Endocrinolog, First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushannan Road, Urumqi, 830054, Xinjiang, China.
| | - Lina Liu
- Department of Endocrinolog, First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushannan Road, Urumqi, 830054, Xinjiang, China.
| | - Guodong Lv
- Institute of Research, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China.
| | - Ye Yang
- Department of Endocrinolog, First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushannan Road, Urumqi, 830054, Xinjiang, China.
| | - Yuanyuan Zhang
- Department of Endocrinolog, First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushannan Road, Urumqi, 830054, Xinjiang, China.
| | - Rui Yu
- Department of Endocrinolog, First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushannan Road, Urumqi, 830054, Xinjiang, China.
| | - Yongtao Wang
- Department of Endocrinolog, First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushannan Road, Urumqi, 830054, Xinjiang, China.
| | - Jun Zhu
- Department of Endocrinolog, First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushannan Road, Urumqi, 830054, Xinjiang, China.
| |
Collapse
|
17
|
Marra F, Tacke F. Roles for chemokines in liver disease. Gastroenterology 2014; 147:577-594.e1. [PMID: 25066692 DOI: 10.1053/j.gastro.2014.06.043] [Citation(s) in RCA: 581] [Impact Index Per Article: 58.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 06/05/2014] [Accepted: 06/26/2014] [Indexed: 02/08/2023]
Abstract
Sustained hepatic inflammation is an important factor in progression of chronic liver diseases, including hepatitis C or non-alcoholic steatohepatitis. Liver inflammation is regulated by chemokines, which regulate the migration and activities of hepatocytes, Kupffer cells, hepatic stellate cells, endothelial cells, and circulating immune cells. However, the effects of the different chemokines and their receptors vary during pathogenesis of different liver diseases. During development of chronic viral hepatitis, CCL5 and CXCL10 regulate the cytopathic versus antiviral immune responses of T cells and natural killer cells. During development of nonalcoholic steatohepatitis, CCL2 and its receptor are up-regulated in the liver, where they promote macrophage accumulation, inflammation, fibrosis, and steatosis, as well as in adipose tissue. CCL2 signaling thereby links hepatic and systemic inflammation related to metabolic disorders and insulin resistance. Several chemokine signaling pathways also promote hepatic fibrosis. Recent studies have shown that other chemokines and immune cells have anti-inflammatory and antifibrotic activities. Chemokines and their receptors can also contribute to the pathogenesis of hepatocellular carcinoma, promoting proliferation of cancer cells, the inflammatory microenvironment of the tumor, evasion of the immune response, and angiogenesis. We review the roles of different chemokines in the pathogenesis of liver diseases and their potential use as biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Fabio Marra
- Dipartimento di Medicina Sperimentale e Clinica, University of Florence, Florence, Italy.
| | - Frank Tacke
- Department of Medicine III, RWTH University Hospital Aachen, Aachen, Germany.
| |
Collapse
|
18
|
Kopec AK, Joshi N, Towery KL, Kassel KM, Sullivan BP, Flick MJ, Luyendyk JP. Thrombin inhibition with dabigatran protects against high-fat diet-induced fatty liver disease in mice. J Pharmacol Exp Ther 2014; 351:288-97. [PMID: 25138021 DOI: 10.1124/jpet.114.218545] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the hepatic manifestation of obesity and metabolic syndrome. Robust coagulation cascade activation is common in obese patients with NAFLD. We identified a critical temporal relationship between thrombin generation and the manifestation of hepatic steatosis, inflammation, and injury in C57BL/6J mice fed a high-fat diet (HFD) for 1, 2, and 3 months. Mice fed a HFD exhibited dramatic increases in hepatocellular injury and inflammation over time. Hepatic fibrin deposition preceded an increase in serum alanine aminotransferase, and the most dramatic changes in liver histopathology occurred in conjunction with a detectable increase in plasma thrombin-antithrombin levels at 3 months. To directly determine whether thrombin activity promotes NAFLD pathogenesis, mice were fed a HFD and simultaneously treated with the direct thrombin inhibitor dabigatran etexilate for 3 months. Notably, dabigatran treatment significantly reduced hepatic fibrin deposition, hepatic inflammation, hepatocellular injury, and steatosis in mice fed a HFD. Of interest, dabigatran treatment also significantly attenuated HFD-induced body weight gain. Gene expression analysis suggested that thrombin potentially drives NAFLD pathogenesis by altering the expression of genes associated with lipid metabolism and bile acid synthesis. Collectively, the results suggest that thrombin activity is central to HFD-induced body weight gain, liver injury, and inflammation and provide the proof-of-principle evidence that pharmacological thrombin inhibition could be effective in limiting NAFLD and associated pathologies.
Collapse
Affiliation(s)
- Anna K Kopec
- Department of Pathobiology & Diagnostic Investigation (A.K.K., K.L.T., J.P.L.), Department of Pharmacology & Toxicology (N.J.), Michigan State University, East Lansing, Michigan; Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (K.M.K., B.P.S.); and Cancer and Blood Diseases Institute, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, Ohio (M.J.F.)
| | - Nikita Joshi
- Department of Pathobiology & Diagnostic Investigation (A.K.K., K.L.T., J.P.L.), Department of Pharmacology & Toxicology (N.J.), Michigan State University, East Lansing, Michigan; Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (K.M.K., B.P.S.); and Cancer and Blood Diseases Institute, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, Ohio (M.J.F.)
| | - Keara L Towery
- Department of Pathobiology & Diagnostic Investigation (A.K.K., K.L.T., J.P.L.), Department of Pharmacology & Toxicology (N.J.), Michigan State University, East Lansing, Michigan; Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (K.M.K., B.P.S.); and Cancer and Blood Diseases Institute, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, Ohio (M.J.F.)
| | - Karen M Kassel
- Department of Pathobiology & Diagnostic Investigation (A.K.K., K.L.T., J.P.L.), Department of Pharmacology & Toxicology (N.J.), Michigan State University, East Lansing, Michigan; Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (K.M.K., B.P.S.); and Cancer and Blood Diseases Institute, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, Ohio (M.J.F.)
| | - Bradley P Sullivan
- Department of Pathobiology & Diagnostic Investigation (A.K.K., K.L.T., J.P.L.), Department of Pharmacology & Toxicology (N.J.), Michigan State University, East Lansing, Michigan; Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (K.M.K., B.P.S.); and Cancer and Blood Diseases Institute, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, Ohio (M.J.F.)
| | - Matthew J Flick
- Department of Pathobiology & Diagnostic Investigation (A.K.K., K.L.T., J.P.L.), Department of Pharmacology & Toxicology (N.J.), Michigan State University, East Lansing, Michigan; Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (K.M.K., B.P.S.); and Cancer and Blood Diseases Institute, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, Ohio (M.J.F.)
| | - James P Luyendyk
- Department of Pathobiology & Diagnostic Investigation (A.K.K., K.L.T., J.P.L.), Department of Pharmacology & Toxicology (N.J.), Michigan State University, East Lansing, Michigan; Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (K.M.K., B.P.S.); and Cancer and Blood Diseases Institute, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, Ohio (M.J.F.)
| |
Collapse
|
19
|
Epelman S, Lavine KJ, Randolph GJ. Origin and functions of tissue macrophages. Immunity 2014; 41:21-35. [PMID: 25035951 PMCID: PMC4470379 DOI: 10.1016/j.immuni.2014.06.013] [Citation(s) in RCA: 1076] [Impact Index Per Article: 107.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 06/27/2014] [Indexed: 12/13/2022]
Abstract
Macrophages are distributed in tissues throughout the body and contribute to both homeostasis and disease. Recently, it has become evident that most adult tissue macrophages originate during embryonic development and not from circulating monocytes. Each tissue has its own composition of embryonically derived and adult-derived macrophages, but it is unclear whether macrophages of distinct origins are functionally interchangeable or have unique roles at steady state. This new understanding also prompts reconsideration of the function of circulating monocytes. Classical Ly6c(hi) monocytes patrol the extravascular space in resting organs, and Ly6c(lo) nonclassical monocytes patrol the vasculature. Inflammation triggers monocytes to differentiate into macrophages, but whether resident and newly recruited macrophages possess similar functions during inflammation is unclear. Here, we define the tools used for identifying the complex origin of tissue macrophages and discuss the relative contributions of tissue niche versus ontological origin to the regulation of macrophage functions during steady state and inflammation.
Collapse
Affiliation(s)
- Slava Epelman
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Kory J Lavine
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gwendalyn J Randolph
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
20
|
Gadd VL, Skoien R, Powell EE, Fagan KJ, Winterford C, Horsfall L, Irvine K, Clouston AD. The portal inflammatory infiltrate and ductular reaction in human nonalcoholic fatty liver disease. Hepatology 2014; 59:1393-405. [PMID: 24254368 DOI: 10.1002/hep.26937] [Citation(s) in RCA: 311] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 11/15/2013] [Indexed: 12/11/2022]
Abstract
UNLABELLED Although nonalcoholic fatty liver disease (NAFLD) is conventionally assessed histologically for lobular features of inflammation, development of portal fibrosis appears to be associated with disease progression. We investigated the composition of the portal inflammatory infiltrate and its relationship to the ductular reaction (DR), a second portal phenomenon implicated in fibrogenesis. The portal inflammatory infiltrate may contribute directly to fibrogenesis as well as influence the fate of the DR hepatic progenitor cells (HPCs), regulating the balance between liver repair and fibrosis. The presence of portal inflammation in NAFLD was strongly correlated with disease severity (fibrosis stage) and the DR. The portal infiltrate was characterized by immunostaining NAFLD liver biopsy sections (n = 33) for broad leukocyte subset markers (CD68, CD3, CD8, CD4, CD20, and neutrophil elastase) and selected inflammatory markers (matrix metalloproteinase 9 and interleukin [IL]-17). Cells expressing all markers examined were identified throughout the liver lobules and in portal tracts, although portal tracts were more densely populated (P < 0.01), and dominated by CD68(+) macrophages and CD8(+) lymphocytes, at all stages of disease. An increase in portal macrophages in NAFLD patients with steatosis alone (P < 0.01) was the earliest change detected, even before elevated expression of the proinflammatory cytokines, IL1B and TNF, in patients with early NASH (P < 0.05). Portal and periductal accumulation of all other cell types examined occurred in progressed NASH (all P < 0.05). CONCLUSION Knowledge of the complex cellular composition of the portal inflammatory infiltrate and HPC/DR niche in NAFLD will shape future functional studies to elucidate the contribution of portal inflammation to HPC differentiation and NAFLD pathogenesis.
Collapse
Affiliation(s)
- Victoria L Gadd
- Center for Liver Disease Research, School of Medicine, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Greene MW, Burrington CM, Lynch DT, Davenport SK, Johnson AK, Horsman MJ, Chowdhry S, Zhang J, Sparks JD, Tirrell PC. Lipid metabolism, oxidative stress and cell death are regulated by PKC delta in a dietary model of nonalcoholic steatohepatitis. PLoS One 2014; 9:e85848. [PMID: 24454937 PMCID: PMC3893275 DOI: 10.1371/journal.pone.0085848] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 12/03/2013] [Indexed: 12/31/2022] Open
Abstract
Steatosis, oxidative stress, and apoptosis underlie the development of nonalcoholic steatohepatitis (NASH). Protein kinase C delta (PKCδ) has been implicated in fatty liver disease and is activated in the methionine and choline-deficient (MCD) diet model of NASH, yet its pathophysiological importance towards steatohepatitis progression is uncertain. We therefore addressed the role of PKCδ in the development of steatosis, inflammation, oxidative stress, apoptosis, and fibrosis in an animal model of NASH. We fed PKCδ−/− mice and wildtype littermates a control or MCD diet. PKCδ−/− primary hepatocytes were used to evaluate the direct effects of fatty acids on hepatocyte lipid metabolism gene expression. A reduction in hepatic steatosis and triglyceride levels were observed between wildtype and PKCδ−/− mice fed the MCD diet. The hepatic expression of key regulators of β-oxidation and plasma triglyceride metabolism was significantly reduced in PKCδ−/− mice and changes in serum triglyceride were blocked in PKCδ−/− mice. MCD diet-induced hepatic oxidative stress and hepatocyte apoptosis were reduced in PKCδ−/− mice. MCD diet-induced NADPH oxidase activity and p47phox membrane translocation were blunted and blocked, respectively, in PKCδ−/− mice. Expression of pro-apoptotic genes and caspase 3 and 9 cleavage in the liver of MCD diet fed PKCδ−/− mice were blunted and blocked, respectively. Surprisingly, no differences in MCD diet-induced fibrosis or pro-fibrotic gene expression were observed in 8 week MCD diet fed PKCδ−/− mice. Our results suggest that PKCδ plays a role in key pathological features of fatty liver disease but not ultimately in fibrosis in the MCD diet model of NASH.
Collapse
Affiliation(s)
- Michael W. Greene
- Boshell Diabetes and Metabolic Disease Research Program, Auburn University, Auburn, Alabama, United States of America
- College of Human Sciences, Auburn University, Auburn, Alabama, United States of America
- Bassett Research Institute, Bassett Medical Center, Bassett Healthcare Network, Cooperstown, New York, United States of America
- * E-mail:
| | - Christine M. Burrington
- Bassett Research Institute, Bassett Medical Center, Bassett Healthcare Network, Cooperstown, New York, United States of America
| | - Darin T. Lynch
- Bassett Research Institute, Bassett Medical Center, Bassett Healthcare Network, Cooperstown, New York, United States of America
| | - Samantha K. Davenport
- Department of Pathology, Bassett Medical Center, Bassett Healthcare Network, Cooperstown, New York, United States of America
| | - Andrew K. Johnson
- Bassett Research Institute, Bassett Medical Center, Bassett Healthcare Network, Cooperstown, New York, United States of America
| | - Melissa J. Horsman
- Bassett Research Institute, Bassett Medical Center, Bassett Healthcare Network, Cooperstown, New York, United States of America
| | - Saleem Chowdhry
- Department of Internal Medicine, Bassett Medical Center, Bassett Healthcare Network, Cooperstown, New York, United States of America
| | - Jian Zhang
- College of Human Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Janet D. Sparks
- University of Rochester Medical Center, School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Paul C. Tirrell
- Department of Internal Medicine, Bassett Medical Center, Bassett Healthcare Network, Cooperstown, New York, United States of America
| |
Collapse
|
22
|
Hepatocellular proliferation correlates with inflammatory cell and cytokine changes in a murine model of nonalchoholic fatty liver disease. PLoS One 2013; 8:e73054. [PMID: 24039859 PMCID: PMC3767686 DOI: 10.1371/journal.pone.0073054] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/17/2013] [Indexed: 12/11/2022] Open
Abstract
Nonalchoholic fatty liver disease (NAFLD) is a problem of increasing prevalence and clinical significance worldwide and is associated with increased risk of development of end stage liver disease and cirrhosis, and can be complicated by hepatocellular carcinoma (HCC). NAFLD is characterized by physical and molecular changes in the liver microenvironment which include an influx of inflammatory cell populations, fibrosis, changes in gene expression, and cytokine production. To better understand changes to the liver in the setting of steatosis, we used a murine model of diet induced hepatic steatosis and corroborated our results with human patient samples of NAFLD. Among the cellular changes, we identified a significant increase in hepatocellular proliferation in the setting of steatosis as compared to controls. Analysis of inflammatory cell populations revealed increased infiltration of CD11b positive myeloid and CD3 positive lymphocytic cell populations in steatotic livers compared to normal livers. Resident Kupffer cells of the liver comprise the largest percentage of these myeloid cells and appear to be responsible for important cytokine alterations impacting proliferation of cells in the liver microenvironment. Significant alterations in cytokine profiles in the plasma and liver tissue lysates from normal and steatotic mice were detected including leptin, CXCL1, CXCL2, and CXCL16 that were further shown to directly increase hepatocyte proliferation in vitro. This increased hepatocellular proliferation and turnover in the setting of steatosis may play important roles in the progression and complications of NAFLD.
Collapse
|
23
|
Kim YJ, Choi MS, Park YB, Kim SR, Lee MK, Jung UJ. Garcinia Cambogia attenuates diet-induced adiposity but exacerbates hepatic collagen accumulation and inflammation. World J Gastroenterol 2013; 19:4689-4701. [PMID: 23922466 PMCID: PMC3732841 DOI: 10.3748/wjg.v19.i29.4689] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 05/15/2013] [Accepted: 06/04/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate long-term effects of Garcinia Cambogia (GC), weight-loss supplement, on adiposity and non-alcoholic fatty liver disease in obese mice.
METHODS: Obesity-prone C57BL/6J mice were fed a high-fat diet (HFD, 45 kcal% fat) with or without GC (1%, w/w) for 16 wk. The HFD contained 45 kcal% fat, 20 kcal% protein and 35 kcal% carbohydrate. They were given free access to food and distilled water, and food consumption and body weight were measured daily and weekly, respectively. Data were expressed as the mean ± SE. Statistical analyses were performed using the statistical package for the social science software program. Student’s t test was used to assess the differences between the groups. Statistical significance was considered at P < 0.05.
RESULTS: There were no significant changes in body weight and food intake between the groups. However, the supplementation of GC significantly lowered visceral fat accumulation and adipocyte size via inhibition of fatty acid synthase activity and its mRNA expression in visceral adipose tissue, along with enhanced enzymatic activity and gene expression involved in adipose fatty acid β-oxidation. Moreover, GC supplementation resulted in significant reductions in glucose intolerance and the plasma resistin level in the HFD-fed mice. However, we first demonstrated that it increased hepatic collagen accumulation, lipid peroxidation and mRNA levels of genes related to oxidative stress (superoxide dismutase and glutathione peroxidase) and inflammatory responses (tumor necrosis factor-α and monocyte chemoattractant protein-1) as well as plasma alanine transaminase and aspartate transaminase levels, although HFD-induced hepatic steatosis was not altered.
CONCLUSION: GC protects against HFD-induced obesity by modulating adipose fatty acid synthesis and β-oxidation but induces hepatic fibrosis, inflammation and oxidative stress.
Collapse
MESH Headings
- Adiposity/drug effects
- Animals
- Anti-Obesity Agents/toxicity
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Chemical and Drug Induced Liver Injury/blood
- Chemical and Drug Induced Liver Injury/etiology
- Chemical and Drug Induced Liver Injury/genetics
- Chemical and Drug Induced Liver Injury/immunology
- Chemical and Drug Induced Liver Injury/pathology
- Collagen/metabolism
- Cytokines/blood
- Diet, High-Fat
- Disease Models, Animal
- Fatty Acid Synthase, Type I/antagonists & inhibitors
- Fatty Acid Synthase, Type I/genetics
- Fatty Acid Synthase, Type I/metabolism
- Fatty Liver/blood
- Fatty Liver/chemically induced
- Fatty Liver/genetics
- Fatty Liver/immunology
- Fatty Liver/pathology
- Garcinia cambogia
- Gene Expression Regulation
- Glucose Intolerance/blood
- Glucose Intolerance/drug therapy
- Glucose Intolerance/etiology
- Inflammation Mediators/blood
- Insulin/blood
- Intra-Abdominal Fat/drug effects
- Intra-Abdominal Fat/metabolism
- Intra-Abdominal Fat/pathology
- Lipid Peroxidation/drug effects
- Liver/drug effects
- Liver/metabolism
- Liver/pathology
- Liver Cirrhosis, Experimental/blood
- Liver Cirrhosis, Experimental/chemically induced
- Liver Cirrhosis, Experimental/genetics
- Liver Cirrhosis, Experimental/immunology
- Liver Cirrhosis, Experimental/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Obese
- Non-alcoholic Fatty Liver Disease
- Obesity/blood
- Obesity/drug therapy
- Obesity/etiology
- Obesity/genetics
- Obesity/immunology
- Obesity/pathology
- Oxidative Stress/drug effects
- Phytotherapy
- Plant Extracts/toxicity
- Plants, Medicinal
- RNA, Messenger/metabolism
- Resistin/blood
- Time Factors
Collapse
|
24
|
Egan CE, Daugherity EK, Rogers AB, Abi Abdallah DS, Denkers EY, Maurer KJ. CCR2 and CD44 promote inflammatory cell recruitment during fatty liver formation in a lithogenic diet fed mouse model. PLoS One 2013; 8:e65247. [PMID: 23762326 PMCID: PMC3676479 DOI: 10.1371/journal.pone.0065247] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 04/25/2013] [Indexed: 12/31/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common disease with a spectrum of presentations. The current study utilized a lithogenic diet model of NAFLD. The diet was fed to mice that are either resistant (AKR) or susceptible (BALB/c and C57BL/6) to hepatitis followed by molecular and flow cytometric analysis. Following this, a similar approach was taken in congenic mice with specific mutations in immunological genes. The initial study identified a significant and profound increase in multiple ligands for the chemokine receptor CCR2 and an increase in CD44 expression in susceptible C57BL/6 (B6) but not resistant AKR mice. Ccr2−/− mice were completely protected from hepatitis and Cd44−/− mice were partially protected. Despite protection from inflammation, both strains displayed similar histological steatosis scores and significant increases in serum liver enzymes. CD45+CD44+ cells bound to hyaluronic acid (HA) in diet fed B6 mice but not Cd44−/− or Ccr2−/− mice. Ccr2−/− mice displayed a diminished HA binding phenotype most notably in monocytes, and CD8+ T-cells. In conclusion, this study demonstrates that absence of CCR2 completely and CD44 partially reduces hepatic leukocyte recruitment. These data also provide evidence that there are multiple redundant CCR2 ligands produced during hepatic lipid accumulation and describes the induction of a strong HA binding phenotype in response to LD feeding in some subsets of leukocytes from susceptible strains.
Collapse
Affiliation(s)
- Charlotte E. Egan
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Erin K. Daugherity
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- Center for Animal Resources and Education, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Arlin B. Rogers
- Department of Pathology and Laboratory Medicine; University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Delbert S. Abi Abdallah
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Eric Y. Denkers
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Kirk J. Maurer
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- Center for Animal Resources and Education, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
25
|
Ding Z, Zhuo L. Attenuation of hepatic fibrosis by an imidazolium salt in thioacetamide-induced mouse model. J Gastroenterol Hepatol 2013; 28:188-201. [PMID: 22989190 DOI: 10.1111/j.1440-1746.2012.07265.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/19/2012] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM Hepatic fibrosis is a worldwide healthy burden associated with significant morbidity and mortality. It is caused by a variety of chronic liver injuries. There is currently no effective treatment for liver fibrosis. In this report, we tested an imidazolium salt, 1,3-diisopropylimidazolium tetrafluoroborate (DPIM), for its anti-fibrotic properties in the thioacetamide-induced mouse model. METHODS DPIM was orally delivered to the thioacetamide-treated mice via drinking water for 12 weeks at the onset of thioacetamide treatment at a concentration of 0.1% (prevention group), and for 4 weeks starting at the 8(th) week at a concentration of 0.1% or 0.2% (attenuation group), respectively. Messenger RNA and protein were determined by real-time polymerase chain reaction and Western blotting, matrix metalloproteinase (MMP) activities were measured by fluorogenic peptide substrate and zymography. Mitogen-activated protein kinase (MAPK) and PI3K inhibitors were applied in HSC-T6 cells in combination of DPIM to probe possible signal pathways underlying the compound's action. RESULTS We observed a significant reduction in collagen deposition in both prevention and attenuation groups. The α-smooth muscle actin (SMA) and transforming growth factor (TGF)-β gene expressions were also reduced in both groups. The reduction of collagen deposition could be in part attributed to the suppression of CCR-2 expression and the enhanced matrix protein remodeling by metalloproteinases, especially MMP-3. MAPK and PI3K signaling pathways may be partially participated in DPIM's molecular action. CONCLUSION DPIM reduced fibrosis in the thioacetamide-induced mouse liver fibrosis model, and warranted further studies for possible clinical application in the future.
Collapse
Affiliation(s)
- Zhaobing Ding
- Institute of Bioengineering and Nanotechnology, Singapore
| | | |
Collapse
|
26
|
Stimulation of fat accumulation in hepatocytes by PGE₂-dependent repression of hepatic lipolysis, β-oxidation and VLDL-synthesis. J Transl Med 2012; 92:1597-606. [PMID: 22964849 DOI: 10.1038/labinvest.2012.128] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hepatic steatosis is recognized as hepatic presentation of the metabolic syndrome. Hyperinsulinaemia, which shifts fatty acid oxidation to de novo lipogenesis and lipid storage in the liver, appears to be a principal elicitor particularly in the early stages of disease development. The impact of PGE₂, which has previously been shown to attenuate insulin signaling and hence might reduce insulin-dependent lipid accumulation, on insulin-induced steatosis of hepatocytes was studied. The PGE₂-generating capacity was enhanced in various obese mouse models by the induction of cyclooxygenase 2 and microsomal prostaglandin E-synthases (mPGES1, mPGES2). PGE₂ attenuated the insulin-dependent induction of SREBP-1c and its target genes glucokinase and fatty acid synthase. Nevertheless, PGE₂ enhanced incorporation of glucose into hepatic triglycerides synergistically with insulin. This was most likely due to a combination of a PGE₂-dependent repression of (1) the key lipolytic enzyme adipose triglyceride lipase, (2) carnitine-palmitoyltransferase 1, a key regulator of mitochondrial β-oxidation, and (3) microsomal transfer protein, as well as (4) apolipoprotein B, key components of the VLDL synthesis. Repression of PGC1α, a common upstream regulator of these genes, was identified as a possible cause. In support of this hypothesis, overexpression of PGC1α completely blunted the PGE₂-dependent fat accumulation. PGE₂ enhanced lipid accumulation synergistically with insulin, despite attenuating insulin signaling and might thus contribute to the development of hepatic steatosis. Induction of enzymes involved in PGE₂ synthesis in in vivo models of obesity imply a potential role of prostanoids in the development of NAFLD and NASH.
Collapse
|
27
|
Nakatsu Y, Otani Y, Sakoda H, Zhang J, Guo Y, Okubo H, Kushiyama A, Fujishiro M, Kikuch T, Fukushima T, Ohno H, Tsuchiya Y, Kamata H, Nagamachi A, Inaba T, Nishimura F, Katagiri H, Takahashi SI, Kurihara H, Uchida T, Asano T. Role of Pin1 protein in the pathogenesis of nonalcoholic steatohepatitis in a rodent model. J Biol Chem 2012; 287:44526-35. [PMID: 23112047 DOI: 10.1074/jbc.m112.397133] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a disorder characterized by simultaneous fat accumulation and chronic inflammation in the liver. In this study, Pin1 expression was revealed to be markedly increased in the livers of mice with methionine choline-deficient (MCD) diet-induced NASH, a rodent model of NASH. In addition, Pin1 KO mice were highly resistant to MCD-induced NASH, based on a series of data showing simultaneous fat accumulation, chronic inflammation, and fibrosis in the liver. In terms of Pin1-induced fat accumulation, it was revealed that the expression levels of peroxisome proliferator-activated receptor α and its target genes were higher in the livers of Pin1 KO mice than in controls. Thus, resistance of Pin1 KO mice to hepatic steatosis is partially attributable to the lack of Pin1-induced down-regulation of peroxisome proliferator-activated receptor α, although multiple other mechanisms are apparently involved. Another mechanism involves the enhancing effect of hematopoietic Pin1 on the expressions of inflammatory cytokines such as tumor necrosis factor and monocyte chemoattractant protein 1 through NF-κB activation, eventually leading to hepatic fibrosis. Finally, to distinguish the roles of hematopoietic or nonhematopoietic Pin1 in NASH development, mice lacking Pin1 in either nonhematopoietic or hematopoietic cells were produced by bone marrow transplantation between wild-type and Pin1 KO mice. The mice having nonhematopoietic Pin1 exhibited fat accumulation without liver fibrosis on the MCD diet. Thus, hepatic Pin1 appears to be directly involved in the fat accumulation in hepatocytes, whereas Pin1 in hematopoietic cells contributes to inflammation and fibrosis. In summary, this is the first study to demonstrate that Pin1 plays critical roles in NASH development. This report also raises the possibility that hepatic Pin1 inhibition to the appropriate level might provide a novel therapeutic strategy for NASH.
Collapse
Affiliation(s)
- Yusuke Nakatsu
- Department of Medical Science, Graduate School of Medicine, University of Hiroshima, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Tosello-Trampont AC, Landes SG, Nguyen V, Novobrantseva TI, Hahn YS. Kuppfer cells trigger nonalcoholic steatohepatitis development in diet-induced mouse model through tumor necrosis factor-α production. J Biol Chem 2012; 287:40161-72. [PMID: 23066023 DOI: 10.1074/jbc.m112.417014] [Citation(s) in RCA: 330] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The mechanisms triggering nonalcoholic steatohepatitis (NASH) remain poorly defined. RESULTS Kupffer cells are the first responding cells to hepatocyte injuries, leading to TNFα production, chemokine induction, and monocyte recruitment. The silencing of TNFα in myeloid cells reduces NASH progression. CONCLUSION Increase of TNFα-producing Kupffer cells is crucial for triggering NASH via monocyte recruitment. SIGNIFICANCE Myeloid cells-targeted silencing of TNFα might be a tenable therapeutic approach. Nonalcoholic steatohepatitis (NASH), characterized by lipid deposits within hepatocytes (steatosis), is associated with hepatic injury and inflammation and leads to the development of fibrosis, cirrhosis, and hepatocarcinoma. However, the pathogenic mechanism of NASH is not well understood. To determine the role of distinct innate myeloid subsets in the development of NASH, we examined the contribution of liver resident macrophages (i.e. Kupffer cells) and blood-derived monocytes in triggering liver inflammation and hepatic damage. Employing a murine model of NASH, we discovered a previously unappreciated role for TNFα and Kupffer cells in the initiation and progression of NASH. Sequential depletion of Kupffer cells reduced the incidence of liver injury, steatosis, and proinflammatory monocyte infiltration. Furthermore, our data show a differential contribution of Kupffer cells and blood monocytes during the development of NASH; Kupffer cells increased their production of TNFα, followed by infiltration of CD11b(int)Ly6C(hi) monocytes, 2 and 10 days, respectively, after starting the methionine/choline-deficient (MCD) diet. Importantly, targeted knockdown of TNFα expression in myeloid cells decreased the incidence of NASH development by decreasing steatosis, liver damage, monocyte infiltration, and the production of inflammatory chemokines. Our findings suggest that the increase of TNFα-producing Kupffer cells in the liver is crucial for the early phase of NASH development by promoting blood monocyte infiltration through the production of IP-10 and MCP-1.
Collapse
|
29
|
Tosello-Trampont AC, Landes SG, Nguyen V, Novobrantseva TI, Hahn YS. Kuppfer cells trigger nonalcoholic steatohepatitis development in diet-induced mouse model through tumor necrosis factor-α production. J Biol Chem 2012. [PMID: 23066023 DOI: 10.10747/jbc.m112.417014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The mechanisms triggering nonalcoholic steatohepatitis (NASH) remain poorly defined. RESULTS Kupffer cells are the first responding cells to hepatocyte injuries, leading to TNFα production, chemokine induction, and monocyte recruitment. The silencing of TNFα in myeloid cells reduces NASH progression. CONCLUSION Increase of TNFα-producing Kupffer cells is crucial for triggering NASH via monocyte recruitment. SIGNIFICANCE Myeloid cells-targeted silencing of TNFα might be a tenable therapeutic approach. Nonalcoholic steatohepatitis (NASH), characterized by lipid deposits within hepatocytes (steatosis), is associated with hepatic injury and inflammation and leads to the development of fibrosis, cirrhosis, and hepatocarcinoma. However, the pathogenic mechanism of NASH is not well understood. To determine the role of distinct innate myeloid subsets in the development of NASH, we examined the contribution of liver resident macrophages (i.e. Kupffer cells) and blood-derived monocytes in triggering liver inflammation and hepatic damage. Employing a murine model of NASH, we discovered a previously unappreciated role for TNFα and Kupffer cells in the initiation and progression of NASH. Sequential depletion of Kupffer cells reduced the incidence of liver injury, steatosis, and proinflammatory monocyte infiltration. Furthermore, our data show a differential contribution of Kupffer cells and blood monocytes during the development of NASH; Kupffer cells increased their production of TNFα, followed by infiltration of CD11b(int)Ly6C(hi) monocytes, 2 and 10 days, respectively, after starting the methionine/choline-deficient (MCD) diet. Importantly, targeted knockdown of TNFα expression in myeloid cells decreased the incidence of NASH development by decreasing steatosis, liver damage, monocyte infiltration, and the production of inflammatory chemokines. Our findings suggest that the increase of TNFα-producing Kupffer cells in the liver is crucial for the early phase of NASH development by promoting blood monocyte infiltration through the production of IP-10 and MCP-1.
Collapse
|
30
|
Abdelmegeed MA, Banerjee A, Yoo SH, Jang S, Gonzalez FJ, Song BJ. Critical role of cytochrome P450 2E1 (CYP2E1) in the development of high fat-induced non-alcoholic steatohepatitis. J Hepatol 2012; 57:860-6. [PMID: 22668639 PMCID: PMC3445664 DOI: 10.1016/j.jhep.2012.05.019] [Citation(s) in RCA: 191] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 05/22/2012] [Accepted: 05/25/2012] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Ethanol-inducible cytochrome P450 2E1 (CYP2E1) activity contributes to oxidative stress. However, CYP2E1 may have an important role in the pathogenesis of high-fat mediated non-alcoholic steatohepatitis (NASH). Thus, the role of CYP2E1 in high-fat mediated NASH development was evaluated. METHODS Male wild type (WT) and Cyp2e1-null mice were fed a low-fat diet (LFD, 10% energy-derived) or a high-fat diet (HFD, 60% energy-derived) for 10 weeks. Liver histology and tissue homogenates were examined for various parameters of oxidative stress and inflammation. RESULTS Liver histology showed that only WT mice fed a HFD developed NASH despite the presence of increased steatosis in both WT and Cyp2e1-null mice fed HFD. Markers of oxidative stress such as elevated CYP2E1 activity and protein amounts, lipid peroxidation, protein carbonylation, nitration, and glycation with increased phospho-JNK were all markedly elevated only in the livers of HFD-fed WT mice. Furthermore, while the levels of inflammation markers osteopontin and F4/80 were higher in HFD-fed WT mice, TNFα and MCP-1 levels were lower compared to the corresponding LFD-fed WT. Finally, only HFD-fed WT mice exhibited increased insulin resistance and impaired glucose tolerance. CONCLUSIONS These data suggest that CYP2E1 is critically important in NASH development by promoting oxidative/nitrosative stress, protein modifications, inflammation, and insulin resistance.
Collapse
Affiliation(s)
- Mohamed A. Abdelmegeed
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Atrayee Banerjee
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Seong-Ho Yoo
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA,Department of Forensic Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Sehwan Jang
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Byoung-Joon Song
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| |
Collapse
|
31
|
Lack of CC chemokine ligand 2 differentially affects inflammation and fibrosis according to the genetic background in a murine model of steatohepatitis. Clin Sci (Lond) 2012; 123:459-71. [PMID: 22545719 PMCID: PMC3369401 DOI: 10.1042/cs20110515] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Expression of CCL2 (CC chemokine ligand 2) (or monocyte chemoattractant protein-1) regulates inflammatory cell infiltration in the liver and adipose tissue, favouring steatosis. However, its role in the pathogenesis of steatohepatitis is still uncertain. In the present study, we investigated the development of non-alcoholic steatohepatitis induced by an MCD diet (methionine/choline-deficient diet) in mice lacking the CCL2 gene on two different genetic backgrounds, namely Balb/C and C57/Bl6J. WT (wild-type) and CCL2-KO (knockout) mice were fed on a lipid-enriched MCD diet or a control diet for 8 weeks. In Balb/C mice fed on the MCD diet, a lack of CCL2 was associated with lower ALT (alanine transaminase) levels and reduced infiltration of inflammatory cells, together with a lower generation of oxidative-stress-related products. Sirius Red staining demonstrated pericellular fibrosis in zone 3, and image analysis showed a significantly lower matrix accumulation in CCL2-KO mice. This was associated with reduced hepatic expression of TGF-β (transforming growth factor-β), type I procollagen, TIMP-1 (tissue inhibitor of metalloproteinases-1) and α-smooth muscle actin. In contrast, in mice on a C57Bl/6 background, neither ALT levels nor inflammation or fibrosis were significantly different comparing WT and CCL2-KO animals fed on an MCD diet. In agreement, genes related to fibrogenesis were expressed to comparable levels in the two groups of animals. Comparison of the expression of several genes involved in inflammation and repair demonstrated that IL (interleukin)-4 and the M2 marker MGL-1 (macrophage galactose-type C-type lectin 1) were differentially expressed in Balb/C and C57Bl/6 mice. No significant differences in the degree of steatosis were observed in all groups of mice fed on the MCD diet. We conclude that, in experimental murine steatohepatitis, the effects of CCL2 deficiency are markedly dependent on the genetic background.
Collapse
|
32
|
Ishihara K, Miyazaki A, Nabe T, Fushimi H, Iriyama N, Kanai S, Sato T, Uozumi N, Shimizu T, Akiba S. Group IVA phospholipase A
2
participates in the progression of hepatic fibrosis. FASEB J 2012; 26:4111-21. [DOI: 10.1096/fj.12-205625] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Keiichi Ishihara
- Department of Pathological BiochemistryKyoto Pharmaceutical UniversityKyotoJapan
| | - Akira Miyazaki
- Department of Pathological BiochemistryKyoto Pharmaceutical UniversityKyotoJapan
| | - Takeshi Nabe
- Department of PharmacologyKyoto Pharmaceutical UniversityKyotoJapan
| | - Hideaki Fushimi
- Department of Pathological BiochemistryKyoto Pharmaceutical UniversityKyotoJapan
| | - Nao Iriyama
- Department of Pathological BiochemistryKyoto Pharmaceutical UniversityKyotoJapan
| | - Shiho Kanai
- Department of Pathological BiochemistryKyoto Pharmaceutical UniversityKyotoJapan
| | - Takashi Sato
- Department of Pathological BiochemistryKyoto Pharmaceutical UniversityKyotoJapan
| | - Naonori Uozumi
- Department of Biochemistry and Molecular Biology, Faculty of MedicineThe University of TokyoTokyoJapan
| | - Takao Shimizu
- Department of Biochemistry and Molecular Biology, Faculty of MedicineThe University of TokyoTokyoJapan
| | - Satoshi Akiba
- Department of Pathological BiochemistryKyoto Pharmaceutical UniversityKyotoJapan
| |
Collapse
|
33
|
Salamone F, Galvano F, Marino Gammazza A, Paternostro C, Tibullo D, Bucchieri F, Mangiameli A, Parola M, Bugianesi E, Li Volti G, Li Volti G. Silibinin improves hepatic and myocardial injury in mice with nonalcoholic steatohepatitis. Dig Liver Dis 2012; 44:334-42. [PMID: 22197629 DOI: 10.1016/j.dld.2011.11.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 11/03/2011] [Accepted: 11/17/2011] [Indexed: 12/11/2022]
Abstract
BACKGROUND Nonalcoholic fatty liver disease is a chronic metabolic disorder with significant impact on cardiovascular and liver mortality. AIMS In this study, we examined the effects of silibinin on liver and myocardium injury in an experimental model of nonalcoholic fatty liver disease. METHODS A four-week daily dose of silibinin (20 mg/kg i.p.) was administrated to db/db mice fed a methionine-choline deficient diet. Hepatic and myocardial histology, oxidative stress and inflammatory cytokines were evaluated. RESULTS Silibinin administration decreased HOMA-IR, serum ALT and markedly improved hepatic and myocardial damage. Silibinin reduced isoprostanes, 8-deoxyguanosine and nitrites/nitrates in the liver and in the heart of db/db fed the methionine-choline deficient diet, whereas glutathione levels were restored to lean mice levels in both tissues. Consistently, liver mitochondrial respiratory chain activity was significantly impaired in untreated mice and was completely restored in silibinin-treated animals. TNF-α was increased whereas IL-6 was decreased both in the liver and heart of db/db fed methionine-choline deficient diet. Silibinin reversed heart TNF-α and IL-6 expression to control mice levels. Indeed, liver JNK phosphorylation was reduced to control levels in treated animals. CONCLUSIONS This study demonstrates a combined effectiveness of silibinin on improving liver and myocardial injury in experimental nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Federico Salamone
- Department of Internal Medicine, University of Catania, Catania, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Boesch-Saadatmandi C, Wagner AE, Wolffram S, Rimbach G. Effect of quercetin on inflammatory gene expression in mice liver in vivo - role of redox factor 1, miRNA-122 and miRNA-125b. Pharmacol Res 2012; 65:523-30. [PMID: 22402395 DOI: 10.1016/j.phrs.2012.02.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 02/09/2012] [Accepted: 02/21/2012] [Indexed: 12/13/2022]
Abstract
The anti-inflammatory properties of the flavonol quercetin have been intensively investigated using in vitro cell systems and are to a great extent reflected by changes in the expression of inflammatory markers. However, information relating to the degree at which quercetin affects inflammatory gene expression in vivo is limited. Recently, micro RNAs (miRNAs) have been identified as powerful post-transcriptional gene regulators. The effect of quercetin on miRNA regulation in vivo is largely unknown. Laboratory mice were fed for six weeks with control or quercetin enriched high fat diets and biomarkers of inflammation as well as hepatic levels of miRNAs previously involved in inflammation (miR-125b) and lipid metabolism (miR-122) were determined. We found lower mRNA steady state levels of the inflammatory genes interleukin 6, C-reactive protein, monocyte chemoattractant protein 1, and acyloxyacyl hydrolase in quercetin fed mice. In addition we found evidence for an involvement of redox factor 1, a modulator of nuclear factor κB signalling, on the attenuation of inflammatory gene expression mediated by dietary quercetin. Furthermore, the results demonstrate that hepatic miR-122 and miR-125b concentrations were increased by dietary quercetin supplementation and may therefore contribute to the gene-regulatory activity of quercetin in vivo.
Collapse
Affiliation(s)
- Christine Boesch-Saadatmandi
- Institute of Human Nutrition and Food Science, Christian-Albrechts-University Kiel, Hermann-Rodewald-Strasse 6, 24118 Kiel, Germany
| | | | | | | |
Collapse
|
35
|
Braunersreuther V, Viviani GL, Mach F, Montecucco F. Role of cytokines and chemokines in non-alcoholic fatty liver disease. World J Gastroenterol 2012; 18:727-35. [PMID: 22371632 PMCID: PMC3286135 DOI: 10.3748/wjg.v18.i8.727] [Citation(s) in RCA: 260] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 07/27/2011] [Accepted: 08/04/2011] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) includes a variety of histological conditions (ranging from liver steatosis and steatohepatitis, to fibrosis and hepatocarcinoma) that are characterized by an increased fat content within the liver. The accumulation/deposition of fat within the liver is essential for diagnosis of NAFLD and might be associated with alterations in the hepatic and systemic inflammatory state. Although it is still unclear if each histological entity represents a different disease or rather steps of the same disease, inflammatory processes in NAFLD might influence its pathophysiology and prognosis. In particular, non-alcoholic steatohepatitis (the most inflamed condition in NAFLDs, which more frequently evolves towards chronic and serious liver diseases) is characterized by a marked activation of inflammatory cells and the upregulation of several soluble inflammatory mediators. Among several mediators, cytokines and chemokines might play a pivotal active role in NAFLD and are considered as potential therapeutic targets. In this review, we will update evidence from both basic research and clinical studies on the potential role of cytokines and chemokines in the pathophysiology of NAFLD.
Collapse
|
36
|
Kassel KM, Owens AP, Rockwell CE, Sullivan BP, Wang R, Tawfik O, Li G, Guo GL, Mackman N, Luyendyk JP. Protease-activated receptor 1 and hematopoietic cell tissue factor are required for hepatic steatosis in mice fed a Western diet. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2278-89. [PMID: 21907177 DOI: 10.1016/j.ajpath.2011.07.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 06/15/2011] [Accepted: 07/07/2011] [Indexed: 12/14/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the hepatic manifestation of obesity and metabolic syndrome and contributes to increased risk of cardiovascular disease and liver-related morbidity and mortality. Indeed, obese patients with metabolic syndrome generate greater amounts of thrombin, an indication of coagulation cascade activation. However, the role of the coagulation cascade in Western diet-induced NAFLD has not been investigated. Using an established mouse model of Western diet-induced NAFLD, we tested whether the thrombin receptor protease-activated receptor 1 (PAR-1) and hematopoietic cell-derived tissue factor (TF) contribute to hepatic steatosis. In association with hepatic steatosis, plasma thrombin-antithrombin levels and hepatic fibrin deposition increased significantly in C57Bl/6J mice fed a Western diet for 3 months. PAR-1 deficiency reduced hepatic inflammation, particularly monocyte chemoattractant protein-1 expression and macrophage accumulation. In addition, PAR-1 deficiency was associated with reduced steatosis in mice fed a Western diet, including reduced liver triglyceride accumulation and CD36 expression. Similar to PAR-1 deficiency, hematopoietic cell TF deficiency was associated with reduced inflammation and reduced steatosis in livers of low-density lipoprotein receptor-deficient mice fed a Western diet. Moreover, hematopoietic cell TF deficiency reduced hepatic fibrin deposition. These studies indicate that PAR-1 and hematopoietic cell TF are required for liver inflammation and steatosis in mice fed a Western diet.
Collapse
Affiliation(s)
- Karen M Kassel
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Subramanian S, Goodspeed L, Wang S, Kim J, Zeng L, Ioannou GN, Haigh WG, Yeh MM, Kowdley KV, O'Brien KD, Pennathur S, Chait A. Dietary cholesterol exacerbates hepatic steatosis and inflammation in obese LDL receptor-deficient mice. J Lipid Res 2011; 52:1626-35. [PMID: 21690266 PMCID: PMC3151683 DOI: 10.1194/jlr.m016246] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), the hepatic manifestation of the metabolic syndrome, can progress to steatohepatitis (NASH) and advanced liver disease. Mechanisms that underlie this progression remain poorly understood, partly due to lack of good animal models that resemble human NASH. We previously showed that several metabolic syndrome features that develop in LDL receptor-deficient (LDLR-/-) mice fed a diabetogenic diet are worsened by dietary cholesterol. To test whether dietary cholesterol can alter the hepatic phenotype in the metabolic syndrome, we fed LDLR-/- mice a high-fat, high-carbohydrate diabetogenic diet (DD) without or with added cholesterol (DDC). Both groups of mice developed obesity and insulin resistance. Hyperinsulinemia, dyslipidemia, hepatic triglyceride, and alanine aminotransferase (ALT) elevations were greater with DDC. Livers of DD-fed mice showed histological changes resembling NAFLD, including steatosis and modest fibrotic changes; however, DDC-fed animals developed micro- and macrovesicular steatosis, inflammatory cell foci, and fibrosis resembling human NASH. Dietary cholesterol also exacerbated hepatic macrophage infiltration, apoptosis, and oxidative stress. Thus, LDLR-/- mice fed diabetogenic diets may be useful models for studying human NASH. Dietary cholesterol appears to confer a second "hit" that results in a distinct hepatic phenotype characterized by increased inflammation and oxidative stress.
Collapse
Affiliation(s)
- Savitha Subramanian
- Diabetes and Obesity Center of Excellence, University of Washington, Seattle, WA
- Divisions of Metabolism, Endocrinology & Nutrition, University of Washington, Seattle, WA
- To whom correspondence should be addressed. e-mail:
| | - Leela Goodspeed
- Diabetes and Obesity Center of Excellence, University of Washington, Seattle, WA
- Divisions of Metabolism, Endocrinology & Nutrition, University of Washington, Seattle, WA
| | - Shari Wang
- Diabetes and Obesity Center of Excellence, University of Washington, Seattle, WA
- Divisions of Metabolism, Endocrinology & Nutrition, University of Washington, Seattle, WA
| | - Jinkyu Kim
- Divisions of Cardiology, University of Washington, Seattle, WA
| | - Lixia Zeng
- Division of Nephrology Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - George N. Ioannou
- Divisions of Gastroenterology, University of Washington, Seattle, WA
| | - W. Geoffrey Haigh
- Divisions of Gastroenterology, University of Washington, Seattle, WA
| | - Matthew M. Yeh
- Department of Medicine, and Department of Pathology, University of Washington, Seattle, WA
| | - Kris V. Kowdley
- Divisions of Gastroenterology, University of Washington, Seattle, WA
| | | | - Subramaniam Pennathur
- Division of Nephrology Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - Alan Chait
- Diabetes and Obesity Center of Excellence, University of Washington, Seattle, WA
- Divisions of Metabolism, Endocrinology & Nutrition, University of Washington, Seattle, WA
| |
Collapse
|