1
|
Sadien ID, Adler S, Mehmed S, Bailey S, Sawle A, Couturier DL, Eldridge M, Adams DJ, Kemp R, Lourenço FC, Winton DJ. Polyclonality overcomes fitness barriers in Apc-driven tumorigenesis. Nature 2024; 634:1196-1203. [PMID: 39478206 PMCID: PMC11525183 DOI: 10.1038/s41586-024-08053-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 09/16/2024] [Indexed: 11/02/2024]
Abstract
Loss-of-function mutations in the tumour suppressor APC are an initial step in intestinal tumorigenesis1,2. APC-mutant intestinal stem cells outcompete their wild-type neighbours through the secretion of Wnt antagonists, which accelerates the fixation and subsequent rapid clonal expansion of mutants3-5. Reports of polyclonal intestinal tumours in human patients and mouse models appear at odds with this process6,7. Here we combine multicolour lineage tracing with chemical mutagenesis in mice to show that a large proportion of intestinal tumours have a multiancestral origin. Polyclonal tumours retain a structure comprising subclones with distinct Apc mutations and transcriptional states, driven predominantly by differences in KRAS and MYC signalling. These pathway-level changes are accompanied by profound differences in cancer stem cell phenotypes. Of note, these findings are confirmed by introducing an oncogenic Kras mutation that results in predominantly monoclonal tumour formation. Further, polyclonal tumours have accelerated growth dynamics, suggesting a link between polyclonality and tumour progression. Together, these findings demonstrate the role of interclonal interactions in promoting tumorigenesis through non-cell autonomous pathways that are dependent on the differential activation of oncogenic pathways between clones.
Collapse
Affiliation(s)
- Iannish D Sadien
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK
| | - Sam Adler
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK
| | - Shenay Mehmed
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK
| | - Sasha Bailey
- Tumour Cell Biology Laboratory, The Francis Crick Institute, London, UK
| | - Ashley Sawle
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK
| | | | - Matthew Eldridge
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK
| | - David J Adams
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Richard Kemp
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK
| | - Filipe C Lourenço
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK
| | - Douglas J Winton
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK.
| |
Collapse
|
2
|
Imada S, Khawaled S, Shin H, Meckelmann SW, Whittaker CA, Corrêa RO, Alquati C, Lu Y, Tie G, Pradhan D, Calibasi-Kocal G, Nascentes Melo LM, Allies G, Rösler J, Wittenhofer P, Krystkiewicz J, Schmitz OJ, Roper J, Vinolo MAR, Ricciardiello L, Lien EC, Vander Heiden MG, Shivdasani RA, Cheng CW, Tasdogan A, Yilmaz ÖH. Short-term post-fast refeeding enhances intestinal stemness via polyamines. Nature 2024; 633:895-904. [PMID: 39169180 DOI: 10.1038/s41586-024-07840-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/17/2024] [Indexed: 08/23/2024]
Abstract
For over a century, fasting regimens have improved health, lifespan and tissue regeneration in diverse organisms, including humans1-6. However, how fasting and post-fast refeeding affect adult stem cells and tumour formation has yet to be explored in depth. Here we demonstrate that post-fast refeeding increases intestinal stem cell (ISC) proliferation and tumour formation; post-fast refeeding augments the regenerative capacity of Lgr5+ ISCs, and loss of the tumour suppressor gene Apc in post-fast-refed ISCs leads to a higher tumour incidence in the small intestine and colon than in the fasted or ad libitum-fed states, demonstrating that post-fast refeeding is a distinct state. Mechanistically, we discovered that robust mTORC1 induction in post-fast-refed ISCs increases protein synthesis via polyamine metabolism to drive these changes, as inhibition of mTORC1, polyamine metabolite production or protein synthesis abrogates the regenerative or tumorigenic effects of post-fast refeeding. Given our findings, fast-refeeding cycles must be carefully considered and tested when planning diet-based strategies for regeneration without increasing cancer risk, as post-fast refeeding leads to a burst in stem-cell-driven regeneration and tumorigenicity.
Collapse
Affiliation(s)
- Shinya Imada
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA
| | - Saleh Khawaled
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA
| | - Heaji Shin
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA
| | - Sven W Meckelmann
- Applied Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Charles A Whittaker
- Barbara K. Ostrom (1978) Bioinformatics and Computing Core Facility, Swanson Biotechnology Center, Koch Institute at the MIT, Cambridge, MA, USA
| | - Renan Oliveira Corrêa
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, São Paulo, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas, São Paulo, Brazil
| | - Chiara Alquati
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Yixin Lu
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA
| | - Guodong Tie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Dikshant Pradhan
- Barbara K. Ostrom (1978) Bioinformatics and Computing Core Facility, Swanson Biotechnology Center, Koch Institute at the MIT, Cambridge, MA, USA
| | - Gizem Calibasi-Kocal
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA
- Department of Translational Oncology, Institute of Oncology, Dokuz Eylul University, Izmir-Turkey, Turkey
| | | | - Gabriele Allies
- Department of Dermatology, University Hospital Essen and German Cancer Consortium, Essen, Germany
| | - Jonas Rösler
- Department of Dermatology, University Hospital Essen and German Cancer Consortium, Essen, Germany
| | - Pia Wittenhofer
- Applied Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Jonathan Krystkiewicz
- Department of Dermatology, University Hospital Essen and German Cancer Consortium, Essen, Germany
| | - Oliver J Schmitz
- Applied Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Jatin Roper
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC, USA
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Marco Aurelio Ramirez Vinolo
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, São Paulo, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas, São Paulo, Brazil
| | - Luigi Ricciardiello
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Department of Gastroenterology, Hepatology and Nutrition, MD Anderson Cancer Center, Houston, TX, USA
| | - Evan C Lien
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Matthew G Vander Heiden
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA
| | - Ramesh A Shivdasani
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Chia-Wei Cheng
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Alpaslan Tasdogan
- Department of Dermatology, University Hospital Essen and German Cancer Consortium, Essen, Germany.
| | - Ömer H Yilmaz
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Pathology, Beth Israel Deaconess Medical Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Wu SHS, Kim S, Lee H, Lee JH, Park SY, Bakonyi R, Teriyapirom I, Hallay N, Pilat-Carotta S, Theussl HC, Kim J, Lee JH, Simons BD, Kim JK, Colozza G, Koo BK. Red2Flpe-SCON: a versatile, multicolor strategy for generating mosaic conditional knockout mice. Nat Commun 2024; 15:4963. [PMID: 38862535 PMCID: PMC11166929 DOI: 10.1038/s41467-024-49382-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/04/2024] [Indexed: 06/13/2024] Open
Abstract
Image-based lineage tracing enables tissue turnover kinetics and lineage potentials of different adult cell populations to be investigated. Previously, we reported a genetic mouse model system, Red2Onco, which ectopically expressed mutated oncogenes together with red fluorescent proteins (RFP). This system enabled the expansion kinetics and neighboring effects of oncogenic clones to be dissected. We now report Red2Flpe-SCON: a mosaic knockout system that uses multicolor reporters to label both mutant and wild-type cells. We develop the Red2Flpe mouse line for red clone-specific Flpe expression, as well as the FRT-based SCON (Short Conditional IntrON) method to facilitate tunable conditional mosaic knockouts in mice. We use the Red2Flpe-SCON method to study Sox2 mutant clonal analysis in the esophageal epithelium of adult mice which reveal that the stem cell gene, Sox2, is less essential for adult stem cell maintenance itself, but rather for stem cell proliferation and differentiation.
Collapse
Affiliation(s)
- Szu-Hsien Sam Wu
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Somi Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Heetak Lee
- Center for Genome Engineering, Institute for Basic Science, Expo-ro 55, Yuseong-gu, Daejeon, 34126, Republic of Korea
| | - Ji-Hyun Lee
- Center for Genome Engineering, Institute for Basic Science, Expo-ro 55, Yuseong-gu, Daejeon, 34126, Republic of Korea
| | - So-Yeon Park
- Center for Genome Engineering, Institute for Basic Science, Expo-ro 55, Yuseong-gu, Daejeon, 34126, Republic of Korea
| | - Réka Bakonyi
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Isaree Teriyapirom
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Natalia Hallay
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Sandra Pilat-Carotta
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | | | - Jihoon Kim
- Center for Genome Engineering, Institute for Basic Science, Expo-ro 55, Yuseong-gu, Daejeon, 34126, Republic of Korea
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, 14662, South Korea
| | - Joo-Hyeon Lee
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Benjamin D Simons
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, Wilberforce Road, Cambridge, CB3 0WA, UK
| | - Jong Kyoung Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Gabriele Colozza
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria.
| | - Bon-Kyoung Koo
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
- Center for Genome Engineering, Institute for Basic Science, Expo-ro 55, Yuseong-gu, Daejeon, 34126, Republic of Korea.
| |
Collapse
|
4
|
Tucker SA, Hu SH, Vyas S, Park A, Joshi S, Inal A, Lam T, Tan E, Haigis KM, Haigis MC. SIRT4 loss reprograms intestinal nucleotide metabolism to support proliferation following perturbation of homeostasis. Cell Rep 2024; 43:113975. [PMID: 38507411 DOI: 10.1016/j.celrep.2024.113975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 11/03/2023] [Accepted: 03/04/2024] [Indexed: 03/22/2024] Open
Abstract
The intestine is a highly metabolic tissue, but the metabolic programs that influence intestinal crypt proliferation, differentiation, and regeneration are still emerging. Here, we investigate how mitochondrial sirtuin 4 (SIRT4) affects intestinal homeostasis. Intestinal SIRT4 loss promotes cell proliferation in the intestine following ionizing radiation (IR). SIRT4 functions as a tumor suppressor in a mouse model of intestinal cancer, and SIRT4 loss drives dysregulated glutamine and nucleotide metabolism in intestinal adenomas. Intestinal organoids lacking SIRT4 display increased proliferation after IR stress, along with increased glutamine uptake and a shift toward de novo nucleotide biosynthesis over salvage pathways. Inhibition of de novo nucleotide biosynthesis diminishes the growth advantage of SIRT4-deficient organoids after IR stress. This work establishes SIRT4 as a modulator of intestinal metabolism and homeostasis in the setting of DNA-damaging stress.
Collapse
Affiliation(s)
- Sarah A Tucker
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Song-Hua Hu
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Sejal Vyas
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Albert Park
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Shakchhi Joshi
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Aslihan Inal
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Tiffany Lam
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Emily Tan
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Kevin M Haigis
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Marcia C Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
5
|
Mouillet-Richard S, Gougelet A, Passet B, Brochard C, Le Corre D, Pitasi CL, Joubel C, Sroussi M, Gallois C, Lavergne J, Castille J, Vilotte M, Daniel-Carlier N, Pilati C, de Reyniès A, Djouadi F, Colnot S, André T, Taieb J, Vilotte JL, Romagnolo B, Laurent-Puig P. Wnt, glucocorticoid and cellular prion protein cooperate to drive a mesenchymal phenotype with poor prognosis in colon cancer. J Transl Med 2024; 22:337. [PMID: 38589873 PMCID: PMC11003154 DOI: 10.1186/s12967-024-05164-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/04/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND The mesenchymal subtype of colorectal cancer (CRC), associated with poor prognosis, is characterized by abundant expression of the cellular prion protein PrPC, which represents a candidate therapeutic target. How PrPC is induced in CRC remains elusive. This study aims to elucidate the signaling pathways governing PrPC expression and to shed light on the gene regulatory networks linked to PrPC. METHODS We performed in silico analyses on diverse datasets of in vitro, ex vivo and in vivo models of mouse CRC and patient cohorts. We mined ChIPseq studies and performed promoter analysis. CRC cell lines were manipulated through genetic and pharmacological approaches. We created mice combining conditional inactivation of Apc in intestinal epithelial cells and overexpression of the human prion protein gene PRNP. Bio-informatic analyses were carried out in two randomized control trials totalizing over 3000 CRC patients. RESULTS In silico analyses combined with cell-based assays identified the Wnt-β-catenin and glucocorticoid pathways as upstream regulators of PRNP expression, with subtle differences between mouse and human. We uncover multiple feedback loops between PrPC and these two pathways, which translate into an aggravation of CRC pathogenesis in mouse. In stage III CRC patients, the signature defined by PRNP-CTNNB1-NR3C1, encoding PrPC, β-catenin and the glucocorticoid receptor respectively, is overrepresented in the poor-prognosis, mesenchymal subtype and associates with reduced time to recurrence. CONCLUSIONS An unleashed PrPC-dependent vicious circle is pathognomonic of poor prognosis, mesenchymal CRC. Patients from this aggressive subtype of CRC may benefit from therapies targeting the PRNP-CTNNB1-NR3C1 axis.
Collapse
Affiliation(s)
- Sophie Mouillet-Richard
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, 75006, Paris, France.
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France.
| | - Angélique Gougelet
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, 75006, Paris, France
| | - Bruno Passet
- University of Paris-Saclay, INRAE, AgroParisTech, UMR1313 GABI, 78350, Jouy-en-Josas, France
| | - Camille Brochard
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, 75006, Paris, France
- Institut du Cancer Paris CARPEM, APHP, Department of Pathology, APHP.Centre-Université Paris Cité, Hôpital Européen G. Pompidou, Paris, France
| | - Delphine Le Corre
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, 75006, Paris, France
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
| | - Caterina Luana Pitasi
- Université Paris Cité, Institut Cochin, Inserm, CNRS, F-75014, Paris, France
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
| | - Camille Joubel
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, 75006, Paris, France
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
| | - Marine Sroussi
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, 75006, Paris, France
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
| | - Claire Gallois
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, 75006, Paris, France
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
- Institut du Cancer Paris CARPEM, APHP, Hepatogastroenterology and GI Oncology Department, APHP.Centre-Université Paris Cité, Hôpital Européen G. Pompidou, Paris, France
| | - Julien Lavergne
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, 75006, Paris, France
- Histology, Imaging and Cytometry Center (CHIC), Paris, France
| | - Johan Castille
- University of Paris-Saclay, INRAE, AgroParisTech, UMR1313 GABI, 78350, Jouy-en-Josas, France
| | - Marthe Vilotte
- University of Paris-Saclay, INRAE, AgroParisTech, UMR1313 GABI, 78350, Jouy-en-Josas, France
| | - Nathalie Daniel-Carlier
- University of Paris-Saclay, INRAE, AgroParisTech, UMR1313 GABI, 78350, Jouy-en-Josas, France
| | - Camilla Pilati
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, 75006, Paris, France
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
| | - Aurélien de Reyniès
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, 75006, Paris, France
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
| | - Fatima Djouadi
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, 75006, Paris, France
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
| | - Sabine Colnot
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, 75006, Paris, France
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
| | - Thierry André
- Saint-Antoine Hospital, INSERM, Unité Mixte de Recherche Scientifique 938, Sorbonne Université, Paris, France
| | - Julien Taieb
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, 75006, Paris, France
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
- Institut du Cancer Paris CARPEM, APHP, Hepatogastroenterology and GI Oncology Department, APHP.Centre-Université Paris Cité, Hôpital Européen G. Pompidou, Paris, France
| | - Jean-Luc Vilotte
- University of Paris-Saclay, INRAE, AgroParisTech, UMR1313 GABI, 78350, Jouy-en-Josas, France
| | - Béatrice Romagnolo
- Université Paris Cité, Institut Cochin, Inserm, CNRS, F-75014, Paris, France
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France
| | - Pierre Laurent-Puig
- Centre de Recherche Des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, 75006, Paris, France.
- Equipe Labellisée Ligue Nationale Contre Le Cancer, Paris, France.
- Institut du Cancer Paris CARPEM, APHP, Department of Biology, APHP.Centre-Université Paris Cité, Hôpital Européen G. Pompidou, Paris, France.
| |
Collapse
|
6
|
Spaan CN, de Boer RJ, Smit WL, van der Meer JH, van Roest M, Vermeulen JL, Koelink PJ, Becker MA, Go S, Silva J, Faller WJ, van den Brink GR, Muncan V, Heijmans J. Grp78 is required for intestinal Kras-dependent glycolysis proliferation and adenomagenesis. Life Sci Alliance 2023; 6:e202301912. [PMID: 37643866 PMCID: PMC10465924 DOI: 10.26508/lsa.202301912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/31/2023] Open
Abstract
In development of colorectal cancer, mutations in APC are often followed by mutations in oncogene KRAS The latter changes cellular metabolism and is associated with the Warburg phenomenon. Glucose-regulated protein 78 (Grp78) is an important regulator of the protein-folding machinery, involved in processing and localization of transmembrane proteins. We hypothesize that targeting Grp78 in Apc and Kras (AK)-mutant intestines interferes with the metabolic phenotype imposed by Kras mutations. In mice with intestinal epithelial mutations in Apc, Kras G12D and heterozygosity for Grp78 (AK-Grp78 HET ) adenoma number and size is decreased compared with AK-Grp78 WT mice. Organoids from AK-Grp78 WT mice exhibited a glycolysis metabolism which was completely rescued by Grp78 heterozygosity. Expression and correct localization of glucose transporter GLUT1 was diminished in AK-Grp78 HET cells. GLUT1 inhibition restrained the increased growth observed in AK-mutant organoids, whereas AK-Grp78 HET organoids were unaffected. We identify Grp78 as a critical factor in Kras-mutated adenomagenesis. This can be attributed to a critical role for Grp78 in GLUT1 expression and localization, targeting glycolysis and the Warburg effect.
Collapse
Affiliation(s)
- Claudia N Spaan
- https://ror.org/05grdyy37 Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Ruben J de Boer
- https://ror.org/05grdyy37 Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Wouter L Smit
- https://ror.org/05grdyy37 Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Jonathan Hm van der Meer
- https://ror.org/05grdyy37 Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Manon van Roest
- https://ror.org/05grdyy37 Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Jacqueline Lm Vermeulen
- https://ror.org/05grdyy37 Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Pim J Koelink
- https://ror.org/05grdyy37 Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Marte Aj Becker
- https://ror.org/05grdyy37 Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Simei Go
- https://ror.org/05grdyy37 Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Joana Silva
- Department of Oncogenomics, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - William J Faller
- Department of Oncogenomics, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Gijs R van den Brink
- https://ror.org/05grdyy37 Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Vanesa Muncan
- https://ror.org/05grdyy37 Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Jarom Heijmans
- https://ror.org/05grdyy37 Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands
- https://ror.org/05grdyy37 Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, Amsterdam, Netherlands
| |
Collapse
|
7
|
Abstract
Mouse models of colorectal cancer (CRC) have been crucial in the identification of the role of genes responsible for the full range of pathology of the human disease and have proved to be dependable for testing anti-cancer drugs. Recent research points toward the relevance of tumor, angiogenic, and immune microenvironments in CRC progression to late-stage disease, as well as the treatment of it. This study examines important mouse models in CRC, discussing inherent strengths and weaknesses disclosed during their construction. It endeavors to provide both a synopsis of previous work covering how investigators have defined various models and to evaluate critically how researchers are most likely to use them in the future. Accumulated evidence regarding the metastatic process and the hope of using checkpoint inhibitors and immunological inhibitor therapies points to the need for a genetically engineered mouse model that is both immunocompetent and autochthonous.
Collapse
Affiliation(s)
- Melanie Haas Kucherlapati
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Division of Genetics, Brigham and Women’s Hospital, Boston, MA, USA
| |
Collapse
|
8
|
Säisä-Borreill S, Davidson G, Kleiber T, Thevenot A, Martin E, Mondot S, Blottière H, Helleux A, Mengus G, Plateroti M, Duluc I, Davidson I, Freund JN. General transcription factor TAF4 antagonizes epigenetic silencing by Polycomb to maintain intestine stem cell functions. Cell Death Differ 2023; 30:839-853. [PMID: 36639541 PMCID: PMC9984434 DOI: 10.1038/s41418-022-01109-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023] Open
Abstract
Taf4 (TATA-box binding protein-associated factor 4) is a subunit of the general transcription factor TFIID, a component of the RNA polymerase II pre-initiation complex that interacts with tissue-specific transcription factors to regulate gene expression. Properly regulated gene expression is particularly important in the intestinal epithelium that is constantly renewed from stem cells. Tissue-specific inactivation of Taf4 in murine intestinal epithelium during embryogenesis compromised gut morphogenesis and the emergence of adult-type stem cells. In adults, Taf4 loss impacted the stem cell compartment and associated Paneth cells in the stem cell niche, epithelial turnover and differentiation of mature cells, thus exacerbating the response to inflammatory challenge. Taf4 inactivation ex vivo in enteroids prevented budding formation and maintenance and caused broad chromatin remodeling and a strong reduction in the numbers of stem and progenitor cells with a concomitant increase in an undifferentiated cell population that displayed high activity of the Ezh2 and Suz12 components of Polycomb Repressive Complex 2 (PRC2). Treatment of Taf4-mutant enteroids with a specific Ezh2 inhibitor restored buddings, cell proliferation and the stem/progenitor compartment. Taf4 loss also led to increased PRC2 activity in cells of adult crypts associated with modification of the immune/inflammatory microenvironment that potentiated Apc-driven tumorigenesis. Our results reveal a novel function of Taf4 in antagonizing PRC2-mediated repression of the stem cell gene expression program to assure normal development, homeostasis, and immune-microenvironment of the intestinal epithelium.
Collapse
Affiliation(s)
- Susanna Säisä-Borreill
- University of Strasbourg, Inserm, UMR-S1113/IRFAC, FHU ARRIMAGE, FMTS, 67200, Strasbourg, France
| | - Guillaume Davidson
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Functional Genomics and Cancer, CNRS/Inserm/University of Strasbourg, 1 Rue Laurent Fries, 67404, Illkirch Cédex, France
| | - Thomas Kleiber
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Functional Genomics and Cancer, CNRS/Inserm/University of Strasbourg, 1 Rue Laurent Fries, 67404, Illkirch Cédex, France
- Orphazyme, Ole Maaloes 3, 2200, Copenhagen, Denmark
| | - Andréa Thevenot
- University of Strasbourg, Inserm, UMR-S1113/IRFAC, FHU ARRIMAGE, FMTS, 67200, Strasbourg, France
| | - Elisabeth Martin
- University of Strasbourg, Inserm, UMR-S1113/IRFAC, FHU ARRIMAGE, FMTS, 67200, Strasbourg, France
| | - Stanislas Mondot
- University Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Hervé Blottière
- University Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Alexandra Helleux
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Functional Genomics and Cancer, CNRS/Inserm/University of Strasbourg, 1 Rue Laurent Fries, 67404, Illkirch Cédex, France
| | - Gabrielle Mengus
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Functional Genomics and Cancer, CNRS/Inserm/University of Strasbourg, 1 Rue Laurent Fries, 67404, Illkirch Cédex, France
| | - Michelina Plateroti
- University of Strasbourg, Inserm, UMR-S1113/IRFAC, FHU ARRIMAGE, FMTS, 67200, Strasbourg, France
| | - Isabelle Duluc
- University of Strasbourg, Inserm, UMR-S1113/IRFAC, FHU ARRIMAGE, FMTS, 67200, Strasbourg, France
| | - Irwin Davidson
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Functional Genomics and Cancer, CNRS/Inserm/University of Strasbourg, 1 Rue Laurent Fries, 67404, Illkirch Cédex, France
| | - Jean-Noel Freund
- University of Strasbourg, Inserm, UMR-S1113/IRFAC, FHU ARRIMAGE, FMTS, 67200, Strasbourg, France.
| |
Collapse
|
9
|
Prieto S, Dubra G, Camasses A, Aznar AB, Begon‐Pescia C, Simboeck E, Pirot N, Gerbe F, Angevin L, Jay P, Krasinska L, Fisher D. CDK8 and CDK19 act redundantly to control the CFTR pathway in the intestinal epithelium. EMBO Rep 2023; 24:e54261. [PMID: 36545778 PMCID: PMC10549226 DOI: 10.15252/embr.202154261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
CDK8 and CDK19 form a conserved cyclin-dependent kinase subfamily that interacts with the essential transcription complex, Mediator, and also phosphorylates the C-terminal domain of RNA polymerase II. Cells lacking either CDK8 or CDK19 are viable and have limited transcriptional alterations, but whether the two kinases redundantly control cell proliferation and differentiation is unknown. Here, we find in mice that CDK8 is dispensable for regulation of gene expression, normal intestinal homeostasis, and efficient tumourigenesis, and is largely redundant with CDK19 in the control of gene expression. Their combined deletion in intestinal organoids reduces long-term proliferative capacity but is not lethal and allows differentiation. However, double-mutant organoids show mucus accumulation and increased secretion by goblet cells, as well as downregulation of expression of the cystic fibrosis transmembrane conductance regulator (CFTR) and functionality of the CFTR pathway. Pharmacological inhibition of CDK8/19 kinase activity in organoids and in mice recapitulates several of these phenotypes. Thus, the Mediator kinases are not essential for cell proliferation and differentiation in an adult tissue, but they cooperate to regulate specific transcriptional programmes.
Collapse
Affiliation(s)
- Susana Prieto
- IGMMUniversity of Montpellier, CNRS, InsermMontpellierFrance
- Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le CancerParisFrance
| | - Geronimo Dubra
- IGMMUniversity of Montpellier, CNRS, InsermMontpellierFrance
- Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le CancerParisFrance
| | - Alain Camasses
- IGMMUniversity of Montpellier, CNRS, InsermMontpellierFrance
- Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le CancerParisFrance
| | - Ana Bella Aznar
- IGMMUniversity of Montpellier, CNRS, InsermMontpellierFrance
- Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le CancerParisFrance
| | - Christina Begon‐Pescia
- IGMMUniversity of Montpellier, CNRS, InsermMontpellierFrance
- Present address:
LPHIUniversity of MontpellierMontpellierFrance
| | - Elisabeth Simboeck
- IGMMUniversity of Montpellier, CNRS, InsermMontpellierFrance
- Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le CancerParisFrance
- Present address:
UAS Technikum WienViennaAustria
| | - Nelly Pirot
- IRCM, University of Montpellier, ICM, INSERMMontpellierFrance
- BioCampus, RHEMUniversity of Montpellier, CNRS, INSERMMontpellierFrance
| | - François Gerbe
- Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le CancerParisFrance
- IGFUniversity of Montpellier, CNRS, InsermMontpellierFrance
| | - Lucie Angevin
- IGMMUniversity of Montpellier, CNRS, InsermMontpellierFrance
- Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le CancerParisFrance
| | - Philippe Jay
- Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le CancerParisFrance
- IGFUniversity of Montpellier, CNRS, InsermMontpellierFrance
| | - Liliana Krasinska
- IGMMUniversity of Montpellier, CNRS, InsermMontpellierFrance
- Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le CancerParisFrance
| | - Daniel Fisher
- IGMMUniversity of Montpellier, CNRS, InsermMontpellierFrance
- Equipe Labellisée LIGUE 2018, Ligue Nationale Contre le CancerParisFrance
| |
Collapse
|
10
|
Glasson Y, Chépeaux LA, Dumé AS, Jay P, Pirot N, Bonnefoy N, Michaud HA. A 31-plex panel for high-dimensional single-cell analysis of murine preclinical models of solid tumors by imaging mass cytometry. Front Immunol 2023; 13:1011617. [PMID: 36741363 PMCID: PMC9893499 DOI: 10.3389/fimmu.2022.1011617] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023] Open
Abstract
Currently, the study of resistance mechanisms and disease progression in cancer relies on the capacity to analyze tumors as a complex ecosystem of healthy and malignant cells. Therefore, one of the current challenges is to decipher the intra-tumor heterogeneity and especially the spatial distribution and interactions of the different cellular actors within the tumor. Preclinical mouse models are widely used to extend our understanding of the tumor microenvironment (TME). Such models are becoming more sophisticated and allow investigating questions that cannot be addressed in clinical studies. Indeed, besides studying the tumor cell interactions within their environment, mouse models allow evaluating the efficacy of new drugs and delivery approaches, treatment posology, and toxicity. Spatially resolved analyses of the intra-tumor heterogeneity require global approaches to identify and localize a large number of different cell types. For this purpose, imaging mass cytometry (IMC) is a major asset in the field of human immuno-oncology. However, the paucity of validated IMC panels to study TME in pre-clinical mouse models remains a critical obstacle to translational or basic research in oncology. Here, we validated a panel of 31 markers for studying at the single-cell level the TME and the immune landscape for discovering/characterizing cells with complex phenotypes and the interactions shaping the tumor ecosystem in mouse models.
Collapse
Affiliation(s)
- Yaël Glasson
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Univ Montpellier, Inserm, Institut régional du Cancer de Montpellier (ICM), Plateforme de Cytométrie et d’Imagerie de Masse, Montpellier, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Univ Montpellier, Inserm, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Laure-Agnès Chépeaux
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Univ Montpellier, Inserm, Institut régional du Cancer de Montpellier (ICM), Plateforme de Cytométrie et d’Imagerie de Masse, Montpellier, France
| | - Anne-Sophie Dumé
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Univ Montpellier, Inserm, Institut régional du Cancer de Montpellier (ICM), Plateforme de Cytométrie et d’Imagerie de Masse, Montpellier, France
| | - Philippe Jay
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, Centre national de la recherche scientifique (CNRS), Inserm, Montpellier, France
| | - Nelly Pirot
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Univ Montpellier, Inserm, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
- BioCampus Montpellier, Univ Montpellier, Centre national de la recherche scientifique (CNRS), Inserm, Réseau d’Histologie Expérimentale de Montpellier, Montpellier, France
| | - Nathalie Bonnefoy
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Univ Montpellier, Inserm, Institut régional du Cancer de Montpellier (ICM), Plateforme de Cytométrie et d’Imagerie de Masse, Montpellier, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Univ Montpellier, Inserm, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Henri-Alexandre Michaud
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Univ Montpellier, Inserm, Institut régional du Cancer de Montpellier (ICM), Plateforme de Cytométrie et d’Imagerie de Masse, Montpellier, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Univ Montpellier, Inserm, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| |
Collapse
|
11
|
M1 macrophage-derived exosomes and their key molecule lncRNA HOTTIP suppress head and neck squamous cell carcinoma progression by upregulating the TLR5/NF-κB pathway. Cell Death Dis 2022; 13:183. [PMID: 35210436 PMCID: PMC8873565 DOI: 10.1038/s41419-022-04640-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 01/28/2022] [Accepted: 02/09/2022] [Indexed: 12/29/2022]
Abstract
Exosomes serve as a crucial mode of communication between tumor-associated macrophages (TAMs) and cancer cells. This study attempted to explore the function of M1-derived exosomes and clarify their specific mechanism in head and neck squamous cell carcinoma (HNSCC). Moreover, the functional roles of M1-derived exosomes and their key molecule long noncoding RNA (lncRNA) HOXA transcript at the distal tip (HOTTIP) in HNSCC were investigated by conducting a series of in vitro and in vivo experiments. The dual-luciferase test was utilized to clarify the binding capacities between HOTTIP/mRNA and miRNAs. Accordingly, HOTTIP was found to be upregulated in M1-derived exosomes. Meanwhile, the in vitro experiments indicated that M1 exosomes suppressed proliferation, migration and invasion but induced apoptosis of cancer cells. This function was noted to be enhanced by HOTTIP-overexpressed M1 exosomes but was weakened by HOTTIP-knockdown ones, indicating that HOTTIP serves as a key molecule in M1 exosomes. Therefore, the function of HOTTIP in cancer cells was explored, for which overexpression of HOTTIP was found to inhibit proliferation, migration and invasion but induced apoptosis of cancer cells in vitro. A mechanism study further showed that M1 exosomes and HOTTIP activated the TLR5/NF-κB signaling pathway by competitively sponging miR-19a-3p and miR-19b-3p. Furthermore, cancer cells expressing HOTTIP were noted to induce the polarization of both local M1 and M2 macrophages; however, M1 exosomes were observed to reprogram local TAMs into M1 macrophages. More importantly, both cancer cells expressing HOTTIP and M1 exosomes reeducated circulating monocytes to express the M1 phenotype. The corresponding data demonstrated that the M1 exosomal lncRNA HOTTIP suppresses HNSCC progression by upregulating the TLR5/NF-κB signaling pathway through competitively sponging miR-19a-3p and miR-19b-3p. In particular, M1 exosomes and HOTTIP induce the polarization of M1 in circulating monocytes, thus providing novel insight into HNSCC immunotherapy.
Collapse
|
12
|
Liang X, Duronio GN, Yang Y, Bala P, Hebbar P, Spisak S, Sahgal P, Singh H, Zhang Y, Xie Y, Cejas P, Long HW, Bass AJ, Sethi NS. An Enhancer-Driven Stem Cell-Like Program Mediated by SOX9 Blocks Intestinal Differentiation in Colorectal Cancer. Gastroenterology 2022; 162:209-222. [PMID: 34571027 PMCID: PMC10035046 DOI: 10.1053/j.gastro.2021.09.044] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/01/2021] [Accepted: 09/17/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIMS Genomic alterations that encourage stem cell activity and hinder proper maturation are central to the development of colorectal cancer (CRC). Key molecular mediators that promote these malignant properties require further elucidation to galvanize translational advances. We therefore aimed to characterize a key factor that blocks intestinal differentiation, define its transcriptional and epigenetic program, and provide preclinical evidence for therapeutic targeting in CRC. METHODS Intestinal tissue from transgenic mice and patients were analyzed by means of histopathology and immunostaining. Human CRC cells and neoplastic murine organoids were genetically manipulated for functional studies. Gene expression profiling was obtained through RNA sequencing. Histone modifications and transcription factor binding were determined with the use of chromatin immunoprecipitation sequencing. RESULTS We demonstrate that SRY-box transcription factor 9 (SOX9) promotes CRC by activating a stem cell-like program that hinders intestinal differentiation. Intestinal adenomas and colorectal adenocarcinomas from mouse models and patients demonstrate ectopic and elevated expression of SOX9. Functional experiments indicate a requirement for SOX9 in human CRC cell lines and engineered neoplastic organoids. Disrupting SOX9 activity impairs primary CRC tumor growth by inducing intestinal differentiation. By binding to genome wide enhancers, SOX9 directly activates genes associated with Paneth and stem cell activity, including prominin 1 (PROM1). SOX9 up-regulates PROM1 via a Wnt-responsive intronic enhancer. A pentaspan transmembrane protein, PROM1 uses its first intracellular domain to support stem cell signaling, at least in part through SOX9, reinforcing a PROM1-SOX9 positive feedback loop. CONCLUSIONS These studies establish SOX9 as a central regulator of an enhancer-driven stem cell-like program and carry important implications for developing therapeutics directed at overcoming differentiation defects in CRC.
Collapse
Affiliation(s)
- Xiaoyan Liang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Gina N Duronio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Yaying Yang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Pratyusha Bala
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Prajna Hebbar
- Department of Information Technology, National Institute of Technology Karnataka, Surathkal, India
| | - Sandor Spisak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Pranshu Sahgal
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Harshabad Singh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; Gastrointestinal Cancer Center, Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Yanxi Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Yingtian Xie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Paloma Cejas
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Henry W Long
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Adam J Bass
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts; Gastrointestinal Cancer Center, Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Nilay S Sethi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts; Gastrointestinal Cancer Center, Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
13
|
Beyaz S, Chung C, Mou H, Bauer-Rowe KE, Xifaras ME, Ergin I, Dohnalova L, Biton M, Shekhar K, Eskiocak O, Papciak K, Ozler K, Almeqdadi M, Yueh B, Fein M, Annamalai D, Valle-Encinas E, Erdemir A, Dogum K, Shah V, Alici-Garipcan A, Meyer HV, Özata DM, Elinav E, Kucukural A, Kumar P, McAleer JP, Fox JG, Thaiss CA, Regev A, Roper J, Orkin SH, Yilmaz ÖH. Dietary suppression of MHC class II expression in intestinal epithelial cells enhances intestinal tumorigenesis. Cell Stem Cell 2021; 28:1922-1935.e5. [PMID: 34529935 DOI: 10.1016/j.stem.2021.08.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 05/25/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022]
Abstract
Little is known about how interactions of diet, intestinal stem cells (ISCs), and immune cells affect early-stage intestinal tumorigenesis. We show that a high-fat diet (HFD) reduces the expression of the major histocompatibility complex class II (MHC class II) genes in intestinal epithelial cells, including ISCs. This decline in epithelial MHC class II expression in a HFD correlates with reduced intestinal microbiome diversity. Microbial community transfer experiments suggest that epithelial MHC class II expression is regulated by intestinal flora. Mechanistically, pattern recognition receptor (PRR) and interferon-gamma (IFNγ) signaling regulates epithelial MHC class II expression. MHC class II-negative (MHC-II-) ISCs exhibit greater tumor-initiating capacity than their MHC class II-positive (MHC-II+) counterparts upon loss of the tumor suppressor Apc coupled with a HFD, suggesting a role for epithelial MHC class II-mediated immune surveillance in suppressing tumorigenesis. ISC-specific genetic ablation of MHC class II increases tumor burden cell autonomously. Thus, HFD perturbs a microbiome-stem cell-immune cell interaction that contributes to tumor initiation in the intestine.
Collapse
Affiliation(s)
- Semir Beyaz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA; The David H. Koch Institute for Integrative Cancer Research at MIT, Department of Biology, MIT, Cambridge, MA 02139, USA.
| | - Charlie Chung
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Haiwei Mou
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Khristian E Bauer-Rowe
- The David H. Koch Institute for Integrative Cancer Research at MIT, Department of Biology, MIT, Cambridge, MA 02139, USA
| | - Michael E Xifaras
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; The David H. Koch Institute for Integrative Cancer Research at MIT, Department of Biology, MIT, Cambridge, MA 02139, USA
| | - Ilgin Ergin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Lenka Dohnalova
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Moshe Biton
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; The Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Karthik Shekhar
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Chemical and Biomolecular Engineering, Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | - Onur Eskiocak
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Kadir Ozler
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Mohammad Almeqdadi
- The David H. Koch Institute for Integrative Cancer Research at MIT, Department of Biology, MIT, Cambridge, MA 02139, USA
| | - Brian Yueh
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Miriam Fein
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Damodaran Annamalai
- Division of Comparative Medicine, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eider Valle-Encinas
- The David H. Koch Institute for Integrative Cancer Research at MIT, Department of Biology, MIT, Cambridge, MA 02139, USA
| | - Aysegul Erdemir
- The David H. Koch Institute for Integrative Cancer Research at MIT, Department of Biology, MIT, Cambridge, MA 02139, USA
| | - Karoline Dogum
- The David H. Koch Institute for Integrative Cancer Research at MIT, Department of Biology, MIT, Cambridge, MA 02139, USA
| | - Vyom Shah
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Hannah V Meyer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Deniz M Özata
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Eran Elinav
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Alper Kucukural
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Pawan Kumar
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jeremy P McAleer
- Department of Pharmaceutical Science and Research, Marshall University School of Pharmacy, Huntington, WV 25701, USA
| | - James G Fox
- Division of Comparative Medicine, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Christoph A Thaiss
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aviv Regev
- The David H. Koch Institute for Integrative Cancer Research at MIT, Department of Biology, MIT, Cambridge, MA 02139, USA; Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02140, USA
| | - Jatin Roper
- Department of Medicine, Division of Gastroenterology, Duke University, Durham, NC 27710, USA
| | - Stuart H Orkin
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA.
| | - Ömer H Yilmaz
- The David H. Koch Institute for Integrative Cancer Research at MIT, Department of Biology, MIT, Cambridge, MA 02139, USA; Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
14
|
Okumura S, Konishi Y, Narukawa M, Sugiura Y, Yoshimoto S, Arai Y, Sato S, Yoshida Y, Tsuji S, Uemura K, Wakita M, Matsudaira T, Matsumoto T, Kawamoto S, Takahashi A, Itatani Y, Miki H, Takamatsu M, Obama K, Takeuchi K, Suematsu M, Ohtani N, Fukunaga Y, Ueno M, Sakai Y, Nagayama S, Hara E. Gut bacteria identified in colorectal cancer patients promote tumourigenesis via butyrate secretion. Nat Commun 2021; 12:5674. [PMID: 34584098 PMCID: PMC8479117 DOI: 10.1038/s41467-021-25965-x] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 09/06/2021] [Indexed: 12/11/2022] Open
Abstract
Emerging evidence is revealing that alterations in gut microbiota are associated with colorectal cancer (CRC). However, very little is currently known about whether and how gut microbiota alterations are causally associated with CRC development. Here we show that 12 faecal bacterial taxa are enriched in CRC patients in two independent cohort studies. Among them, 2 Porphyromonas species are capable of inducing cellular senescence, an oncogenic stress response, through the secretion of the bacterial metabolite, butyrate. Notably, the invasion of these bacteria is observed in the CRC tissues, coinciding with the elevation of butyrate levels and signs of senescence-associated inflammatory phenotypes. Moreover, although the administration of these bacteria into ApcΔ14/+ mice accelerate the onset of colorectal tumours, this is not the case when bacterial butyrate-synthesis genes are disrupted. These results suggest a causal relationship between Porphyromonas species overgrowth and colorectal tumourigenesis which may be due to butyrate-induced senescence. Several bacteria in the gut microbiota have been associated with colorectal cancer (CRC) but it is not completely clear whether they have a role in tumourigenesis. Here, the authors show enrichment of 12 bacterial taxa in two cohorts of CRC patients and that two Porphyromonas species accelerate CRC onset through butyrate secretion.
Collapse
Affiliation(s)
- Shintaro Okumura
- Research Institute for Microbial Diseases (RIMD), Osaka University, Suita, Japan.,The Cancer Institute, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan.,Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yusuke Konishi
- Research Institute for Microbial Diseases (RIMD), Osaka University, Suita, Japan
| | - Megumi Narukawa
- Research Institute for Microbial Diseases (RIMD), Osaka University, Suita, Japan
| | - Yuki Sugiura
- Keio University School of Medicine, Tokyo, Japan
| | - Shin Yoshimoto
- The Cancer Institute, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan.,LSI Medience Corporation, Tokyo, Japan
| | - Yuriko Arai
- The Cancer Institute, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
| | - Shintaro Sato
- Research Institute for Microbial Diseases (RIMD), Osaka University, Suita, Japan
| | - Yasuo Yoshida
- School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Shunya Tsuji
- Research Institute for Microbial Diseases (RIMD), Osaka University, Suita, Japan
| | - Ken Uemura
- Research Institute for Microbial Diseases (RIMD), Osaka University, Suita, Japan
| | - Masahiro Wakita
- Immunology Frontier Research Centre (IFReC), Osaka University, Suita, Japan
| | - Tatsuyuki Matsudaira
- Research Institute for Microbial Diseases (RIMD), Osaka University, Suita, Japan
| | - Tomonori Matsumoto
- Research Institute for Microbial Diseases (RIMD), Osaka University, Suita, Japan
| | - Shimpei Kawamoto
- Research Institute for Microbial Diseases (RIMD), Osaka University, Suita, Japan
| | - Akiko Takahashi
- The Cancer Institute, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
| | | | - Hiroaki Miki
- Research Institute for Microbial Diseases (RIMD), Osaka University, Suita, Japan
| | | | - Kazutaka Obama
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kengo Takeuchi
- The Cancer Institute, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan.,The Cancer Institute Hospital, JFCR, Tokyo, Japan
| | | | - Naoko Ohtani
- Osaka City University Graduate School of Medicine, Osaka, Japan
| | | | - Masashi Ueno
- The Cancer Institute Hospital, JFCR, Tokyo, Japan
| | | | | | - Eiji Hara
- Research Institute for Microbial Diseases (RIMD), Osaka University, Suita, Japan. .,The Cancer Institute, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan. .,Immunology Frontier Research Centre (IFReC), Osaka University, Suita, Japan.
| |
Collapse
|
15
|
Ki-67 regulates global gene expression and promotes sequential stages of carcinogenesis. Proc Natl Acad Sci U S A 2021; 118:2026507118. [PMID: 33658388 DOI: 10.1073/pnas.2026507118] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Ki-67 is a nuclear protein that is expressed in all proliferating vertebrate cells. Here, we demonstrate that, although Ki-67 is not required for cell proliferation, its genetic ablation inhibits each step of tumor initiation, growth, and metastasis. Mice lacking Ki-67 are resistant to chemical or genetic induction of intestinal tumorigenesis. In established cancer cells, Ki-67 knockout causes global transcriptome remodeling that alters the epithelial-mesenchymal balance and suppresses stem cell characteristics. When grafted into mice, tumor growth is slowed, and metastasis is abrogated, despite normal cell proliferation rates. Yet, Ki-67 loss also down-regulates major histocompatibility complex class I antigen presentation and, in the 4T1 syngeneic model of mammary carcinoma, leads to an immune-suppressive environment that prevents the early phase of tumor regression. Finally, genes involved in xenobiotic metabolism are down-regulated, and cells are sensitized to various drug classes. Our results suggest that Ki-67 enables transcriptional programs required for cellular adaptation to the environment. This facilitates multiple steps of carcinogenesis and drug resistance, yet may render cancer cells more susceptible to antitumor immune responses.
Collapse
|
16
|
Takeda H. A Platform for Validating Colorectal Cancer Driver Genes Using Mouse Organoids. Front Genet 2021; 12:698771. [PMID: 34262603 PMCID: PMC8273277 DOI: 10.3389/fgene.2021.698771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022] Open
Abstract
Systematic approaches for functionally validating cancer genes are needed since numerous genes mutated in cancer tissues have been identified from cancer genome sequencing. The mouse organoid culture system has been extensively used in the field of cancer research since mouse organoids can faithfully recapitulate the physiological behavior of the cells. Taking advantage of this, we recently described a platform for functionally validating colorectal cancer (CRC) driver genes that utilized CRISPR-Cas9 in mouse intestinal tumor organoids. In this review, we will describe how mouse organoids have been applied to CRC research and focus on how CRC genes can be validated using mouse organoids.
Collapse
Affiliation(s)
- Haruna Takeda
- Laboratory of Molecular Genetics, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
17
|
Kohzaki M, Ootsuyama A, Umata T, Okazaki R. Comparison of the fertility of tumor suppressor gene-deficient C57BL/6 mouse strains reveals stable reproductive aging and novel pleiotropic gene. Sci Rep 2021; 11:12357. [PMID: 34117297 PMCID: PMC8195996 DOI: 10.1038/s41598-021-91342-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/26/2021] [Indexed: 11/09/2022] Open
Abstract
Tumor suppressor genes are involved in maintaining genome integrity during reproduction (e.g., meiosis). Thus, deleterious alleles in tumor suppressor-deficient mice would exhibit higher mortality during the perinatal period. A recent aging model proposes that perinatal mortality and age-related deleterious changes might define lifespan. This study aimed to quantitatively understand the relationship between reproduction and lifespan using three established tumor suppressor gene (p53, APC, and RECQL4)-deficient mouse strains with the same C57BL/6 background. Transgenic mice delivered slightly reduced numbers of 1st pups than wild-type mice [ratio: 0.81–0.93 (p = 0.1–0.61)] during a similar delivery period, which suggest that the tumor suppressor gene-deficient mice undergo relatively stable reproduction. However, the transgenic 1st pups died within a few days after birth, resulting in a further reduction in litter size at 3 weeks after delivery compared with that of wild-type mice [ratio: 0.35–0.68 (p = 0.034–0.24)] without sex differences, although the lifespan was variable. Unexpectedly, the significance of reproductive reduction in transgenic mice was decreased at the 2nd or later delivery. Because mice are easily affected by environmental factors, our data underscore the importance of defining reproductive ability through experiments on aging-related reproduction that can reveal a trade-off between fecundity and aging and identify RECQL4 as a novel pleiotropic gene.
Collapse
Affiliation(s)
- Masaoki Kohzaki
- Department of Radiobiology and Hygiene Management, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka Yahatanishi-ku, Kitakyushu, 807-8555, Japan.
| | - Akira Ootsuyama
- Department of Radiation Biology and Health, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Toshiyuki Umata
- Radioisotope Research Center, Facility for Education and Research Support, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Ryuji Okazaki
- Department of Radiobiology and Hygiene Management, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| |
Collapse
|
18
|
Mana MD, Hussey AM, Tzouanas CN, Imada S, Barrera Millan Y, Bahceci D, Saiz DR, Webb AT, Lewis CA, Carmeliet P, Mihaylova MM, Shalek AK, Yilmaz ÖH. High-fat diet-activated fatty acid oxidation mediates intestinal stemness and tumorigenicity. Cell Rep 2021; 35:109212. [PMID: 34107251 PMCID: PMC8258630 DOI: 10.1016/j.celrep.2021.109212] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 03/01/2021] [Accepted: 05/12/2021] [Indexed: 12/19/2022] Open
Abstract
Obesity is an established risk factor for cancer in many tissues. In the mammalian intestine, a pro-obesity high-fat diet (HFD) promotes regeneration and tumorigenesis by enhancing intestinal stem cell (ISC) numbers, proliferation, and function. Although PPAR (peroxisome proliferator-activated receptor) nuclear receptor activity has been proposed to facilitate these effects, their exact role is unclear. Here we find that, in loss-of-function in vivo models, PPARα and PPARδ contribute to the HFD response in ISCs. Mechanistically, both PPARs do so by robustly inducing a downstream fatty acid oxidation (FAO) metabolic program. Pharmacologic and genetic disruption of CPT1A (the rate-controlling enzyme of mitochondrial FAO) blunts the HFD phenotype in ISCs. Furthermore, inhibition of CPT1A dampens the pro-tumorigenic consequences of a HFD on early tumor incidence and progression. These findings demonstrate that inhibition of a HFD-activated FAO program creates a therapeutic opportunity to counter the effects of a HFD on ISCs and intestinal tumorigenesis.
Collapse
Affiliation(s)
- Miyeko D Mana
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.
| | - Amanda M Hussey
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Constantine N Tzouanas
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge MA 02139, USA; Program in Health Sciences & Technology, Harvard Medical School, Boston, MA 02115, USA
| | - Shinya Imada
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Dorukhan Bahceci
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dominic R Saiz
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Anna T Webb
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Caroline A Lewis
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, and Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven 3000, Belgium; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, Guangdong, P.R. China; Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark
| | - Maria M Mihaylova
- Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Alex K Shalek
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge MA 02139, USA; Program in Health Sciences & Technology, Harvard Medical School, Boston, MA 02115, USA
| | - Ömer H Yilmaz
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
19
|
Role of adenomatous polyposis coli in proliferation and differentiation of colon epithelial cells in organoid culture. Sci Rep 2021; 11:3980. [PMID: 33597597 PMCID: PMC7889860 DOI: 10.1038/s41598-021-83590-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 02/05/2021] [Indexed: 12/24/2022] Open
Abstract
Adenomatous polyposis coli (APC) is a tumor-suppressing protein whose inactivation triggers the formation of colorectal polyps. Numerous studies using cell lines or genetically engineered mice have revealed its role in suppressing Wnt/β-catenin signaling pathway and regulating cell proliferation and differentiation. Here, we performed genetic analyses of APC using a three-dimensional organoid culture of mouse colon epithelia, which enables the detailed examination of epithelial properties. Analyses of Apc-knockout colon organoids not only confirmed the importance of APC in suppressing Wnt/β-catenin signaling and regulating cell differentiation, but also revealed several novel features: a significant decrease in proliferating speed and an increase in cross-sectional area of cells. Moreover, we found a significant number of lysozyme-positive Paneth-like cells, which were never observed in wild-type colon tissues or organoids, but have been reported to emerge in colon cancers. Therefore, APC autonomously suppresses ectopic differentiation into lysozyme-positive cells, specifically in the colon epithelia. Colon organoids would be an ideal material to investigate the molecular mechanism and biological importance of the ectopic differentiation associated with cancer development.
Collapse
|
20
|
Zhou Z, Ge S, Li Y, Ma W, Liu Y, Hu S, Zhang R, Ma Y, Du K, Syed A, Chen P. Human Gut Microbiome-Based Knowledgebase as a Biomarker Screening Tool to Improve the Predicted Probability for Colorectal Cancer. Front Microbiol 2020; 11:596027. [PMID: 33329482 PMCID: PMC7717945 DOI: 10.3389/fmicb.2020.596027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/29/2020] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer (CRC) is a common clinical malignancy globally ranked as the fourth leading cause of cancer mortality. Some microbes are known to contribute to adenoma-carcinoma transition and possess diagnostic potential. Advances in high-throughput sequencing technology and functional studies have provided significant insights into the landscape of the gut microbiome and the fundamental roles of its components in carcinogenesis. Integration of scattered knowledge is highly beneficial for future progress. In this study, literature review and information extraction were performed, with the aim of integrating the available data resources and facilitating comparative research. A knowledgebase of the human CRC microbiome was compiled to facilitate understanding of diagnosis, and the global signatures of CRC microbes, sample types, algorithms, differential microorganisms and various panels of markers plus their diagnostic performance were evaluated based on statistical and phylogenetic analyses. Additionally, prospects about current changelings and solution strategies were outlined for identifying future research directions. This type of data integration strategy presents an effective platform for inquiry and comparison of relevant information, providing a tool for further study about CRC-related microbes and exploration of factors promoting clinical transformation (available at: http://gsbios.com/index/experimental/dts_ mben?id=1).
Collapse
Affiliation(s)
- Zhongkun Zhou
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Shiqiang Ge
- Department of Electronic Information Engineering, Lanzhou Vocational Technical College, Lanzhou, China
| | - Yang Li
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Wantong Ma
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yuheng Liu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Shujian Hu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Rentao Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yunhao Ma
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Kangjia Du
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | | | - Peng Chen
- School of Pharmacy, Lanzhou University, Lanzhou, China
| |
Collapse
|
21
|
Beck M, Baranger M, Moufok-Sadoun A, Bersuder E, Hinkel I, Mellitzer G, Martin E, Marisa L, Duluc I, de Reynies A, Gaiddon C, Freund JN, Gross I. The atypical cadherin MUCDHL antagonizes colon cancer formation and inhibits oncogenic signaling through multiple mechanisms. Oncogene 2020; 40:522-535. [PMID: 33188295 DOI: 10.1038/s41388-020-01546-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/12/2020] [Accepted: 10/28/2020] [Indexed: 01/24/2023]
Abstract
Cadherins form a large and pleiotropic superfamily of membranous proteins sharing Ca2+-binding repeats. While the importance of classic cadherins such as E- or N-cadherin for tumorigenesis is acknowledged, there is much less information about other cadherins that are merely considered as tissue-specific adhesion molecules. Here, we focused on the atypical cadherin MUCDHL that stood out for its unusual features and unique function in the gut. Analyses of transcriptomic data sets (n > 250) established that MUCDHL mRNA levels are down-regulated in colorectal tumors. Importantly, the decrease of MUCDHL expression is more pronounced in the worst-prognosis subset of tumors and is associated with decreased survival. Molecular characterization of the tumors indicated a negative correlation with proliferation-related processes (e.g., nucleic acid metabolism, DNA replication). Functional genomic studies showed that the loss of MUCDHL enhanced tumor incidence and burden in intestinal tumor-prone mice. Extensive structure/function analyses revealed that the mode of action of MUCDHL goes beyond membrane sequestration of ß-catenin and targets through its extracellular domain key oncogenic signaling pathways (e.g., EGFR, AKT). Beyond MUCDHL, this study illustrates how the loss of a gene critical for the morphological and functional features of mature cells contributes to tumorigenesis by dysregulating oncogenic pathways.
Collapse
Affiliation(s)
- Marine Beck
- Université de Strasbourg, Inserm, IRFAC UMR-S1113, 67200, Strasbourg, France
| | - Mathilde Baranger
- Université de Strasbourg, Inserm, IRFAC UMR-S1113, 67200, Strasbourg, France
| | - Ahlam Moufok-Sadoun
- Université de Strasbourg, Inserm, IRFAC UMR-S1113, 67200, Strasbourg, France
| | - Emilie Bersuder
- Université de Strasbourg, Inserm, IRFAC UMR-S1113, 67200, Strasbourg, France
| | - Isabelle Hinkel
- Université de Strasbourg, Inserm, IRFAC UMR-S1113, 67200, Strasbourg, France
| | - Georg Mellitzer
- Université de Strasbourg, Inserm, IRFAC UMR-S1113, 67200, Strasbourg, France
| | - Elisabeth Martin
- Université de Strasbourg, Inserm, IRFAC UMR-S1113, 67200, Strasbourg, France
| | | | - Isabelle Duluc
- Université de Strasbourg, Inserm, IRFAC UMR-S1113, 67200, Strasbourg, France
| | | | - Christian Gaiddon
- Université de Strasbourg, Inserm, IRFAC UMR-S1113, 67200, Strasbourg, France
| | - Jean-Noel Freund
- Université de Strasbourg, Inserm, IRFAC UMR-S1113, 67200, Strasbourg, France
| | - Isabelle Gross
- Université de Strasbourg, Inserm, IRFAC UMR-S1113, 67200, Strasbourg, France.
| |
Collapse
|
22
|
Bisso A, Filipuzzi M, Gamarra Figueroa GP, Brumana G, Biagioni F, Doni M, Ceccotti G, Tanaskovic N, Morelli MJ, Pendino V, Chiacchiera F, Pasini D, Olivero D, Campaner S, Sabò A, Amati B. Cooperation Between MYC and β-Catenin in Liver Tumorigenesis Requires Yap/Taz. Hepatology 2020; 72:1430-1443. [PMID: 31965581 DOI: 10.1002/hep.31120] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/20/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS Activation of MYC and catenin beta-1 (CTNNB1, encoding β-catenin) can co-occur in liver cancer, but how these oncogenes cooperate in tumorigenesis remains unclear. APPROACH AND RESULTS We generated a mouse model allowing conditional activation of MYC and WNT/β-catenin signaling (through either β-catenin activation or loss of APC - adenomatous polyposis coli) upon expression of CRE recombinase in the liver and monitored their effects on hepatocyte proliferation, apoptosis, gene expression profiles, and tumorigenesis. Activation of WNT/β-catenin signaling strongly accelerated MYC-driven carcinogenesis in the liver. Both pathways also cooperated in promoting cellular transformation in vitro, demonstrating their cell-autonomous action. Short-term induction of MYC and β-catenin in hepatocytes, followed by RNA-sequencing profiling, allowed the identification of a "Myc/β-catenin signature," composed of a discrete set of Myc-activated genes whose expression increased in the presence of active β-catenin. Notably, this signature enriched for targets of Yes-associated protein (Yap) and transcriptional coactivator with PDZ-binding motif (Taz), two transcriptional coactivators known to be activated by WNT/β-catenin signaling and to cooperate with MYC in mitogenic activation and liver transformation. Consistent with these regulatory connections, Yap/Taz accumulated upon Myc/β-catenin activation and were required not only for the ensuing proliferative response, but also for tumor cell growth and survival. Finally, the Myc/β-catenin signature was enriched in a subset of human hepatocellular carcinomas characterized by comparatively poor prognosis. CONCLUSIONS Myc and β-catenin show a strong cooperative action in liver carcinogenesis, with Yap and Taz serving as mediators of this effect. These findings warrant efforts toward therapeutic targeting of Yap/Taz in aggressive liver tumors marked by elevated Myc/β-catenin activity.
Collapse
Affiliation(s)
- Andrea Bisso
- European Institute of Oncology (IEO)-IRCCS, Milan, Italy
| | | | | | - Giulia Brumana
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Francesca Biagioni
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Mirko Doni
- European Institute of Oncology (IEO)-IRCCS, Milan, Italy
| | | | | | - Marco Jacopo Morelli
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Vera Pendino
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Fulvio Chiacchiera
- European Institute of Oncology (IEO)-IRCCS, Milan, Italy.,Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Diego Pasini
- European Institute of Oncology (IEO)-IRCCS, Milan, Italy.,Department of Health Sciences, University of Milan, Milan, Italy
| | | | - Stefano Campaner
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Arianna Sabò
- European Institute of Oncology (IEO)-IRCCS, Milan, Italy
| | - Bruno Amati
- European Institute of Oncology (IEO)-IRCCS, Milan, Italy
| |
Collapse
|
23
|
Cheung P, Xiol J, Dill MT, Yuan WC, Panero R, Roper J, Osorio FG, Maglic D, Li Q, Gurung B, Calogero RA, Yilmaz ÖH, Mao J, Camargo FD. Regenerative Reprogramming of the Intestinal Stem Cell State via Hippo Signaling Suppresses Metastatic Colorectal Cancer. Cell Stem Cell 2020; 27:590-604.e9. [PMID: 32730753 PMCID: PMC10114498 DOI: 10.1016/j.stem.2020.07.003] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 04/01/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022]
Abstract
Although the Hippo transcriptional coactivator YAP is considered oncogenic in many tissues, its roles in intestinal homeostasis and colorectal cancer (CRC) remain controversial. Here, we demonstrate that the Hippo kinases LATS1/2 and MST1/2, which inhibit YAP activity, are required for maintaining Wnt signaling and canonical stem cell function. Hippo inhibition induces a distinct epithelial cell state marked by low Wnt signaling, a wound-healing response, and transcription factor Klf6 expression. Notably, loss of LATS1/2 or overexpression of YAP is sufficient to reprogram Lgr5+ cancer stem cells to this state and thereby suppress tumor growth in organoids, patient-derived xenografts, and mouse models of primary and metastatic CRC. Finally, we demonstrate that genetic deletion of YAP and its paralog TAZ promotes the growth of these tumors. Collectively, our results establish the role of YAP as a tumor suppressor in the adult colon and implicate Hippo kinases as therapeutic vulnerabilities in colorectal malignancies.
Collapse
Affiliation(s)
- Priscilla Cheung
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Jordi Xiol
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Michael T Dill
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Wei-Chien Yuan
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Riccardo Panero
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy
| | - Jatin Roper
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC 27710, USA; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Fernando G Osorio
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Dejan Maglic
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Qi Li
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Basanta Gurung
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Raffaele A Calogero
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy
| | - Ömer H Yilmaz
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139, USA; Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Junhao Mao
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Fernando D Camargo
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
24
|
Bürtin F, Mullins CS, Linnebacher M. Mouse models of colorectal cancer: Past, present and future perspectives. World J Gastroenterol 2020; 26:1394-1426. [PMID: 32308343 PMCID: PMC7152519 DOI: 10.3748/wjg.v26.i13.1394] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common diagnosed malignancy among both sexes in the United States as well as in the European Union. While the incidence and mortality rates in western, high developed countries are declining, reflecting the success of screening programs and improved treatment regimen, a rise of the overall global CRC burden can be observed due to lifestyle changes paralleling an increasing human development index. Despite a growing insight into the biology of CRC and many therapeutic improvements in the recent decades, preclinical in vivo models are still indispensable for the development of new treatment approaches. Since the development of carcinogen-induced rodent models for CRC more than 80 years ago, a plethora of animal models has been established to study colon cancer biology. Despite tenuous invasiveness and metastatic behavior, these models are useful for chemoprevention studies and to evaluate colitis-related carcinogenesis. Genetically engineered mouse models (GEMM) mirror the pathogenesis of sporadic as well as inherited CRC depending on the specific molecular pathways activated or inhibited. Although the vast majority of CRC GEMM lack invasiveness, metastasis and tumor heterogeneity, they still have proven useful for examination of the tumor microenvironment as well as systemic immune responses; thus, supporting development of new therapeutic avenues. Induction of metastatic disease by orthotopic injection of CRC cell lines is possible, but the so generated models lack genetic diversity and the number of suited cell lines is very limited. Patient-derived xenografts, in contrast, maintain the pathological and molecular characteristics of the individual patient’s CRC after subcutaneous implantation into immunodeficient mice and are therefore most reliable for preclinical drug development – even in comparison to GEMM or cell line-based analyses. However, subcutaneous patient-derived xenograft models are less suitable for studying most aspects of the tumor microenvironment and anti-tumoral immune responses. The authors review the distinct mouse models of CRC with an emphasis on their clinical relevance and shed light on the latest developments in the field of preclinical CRC models.
Collapse
Affiliation(s)
- Florian Bürtin
- Department of General, Visceral, Vascular and Transplantation Surgery, University Medical Center Rostock, University of Rostock, Rostock 18057, Germany
| | - Christina S Mullins
- Department of Thoracic Surgery, University Medical Center Rostock, University of Rostock, Rostock 18057, Germany
| | - Michael Linnebacher
- Molecular Oncology and Immunotherapy, Department of General, Visceral, Vascular and Transplantation Surgery, University Medical Center Rostock, Rostock 18057, Germany
| |
Collapse
|
25
|
Bruschi M, Garnier L, Cleroux E, Giordano A, Dumas M, Bardet AF, Kergrohen T, Quesada S, Cesses P, Weber M, Gerbe F, Jay P. Loss of Apc Rapidly Impairs DNA Methylation Programs and Cell Fate Decisions in Lgr5 + Intestinal Stem Cells. Cancer Res 2020; 80:2101-2113. [PMID: 32213541 DOI: 10.1158/0008-5472.can-19-2104] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 01/13/2020] [Accepted: 03/19/2020] [Indexed: 12/24/2022]
Abstract
Colorectal cancer initiation and progression result from the accumulation of genetic and epigenetic alterations. Although aberrant gene expression and DNA methylation profiles are considered hallmarks of colorectal cancer development, the precise timing at which these are produced during tumor establishment remains elusive. Here we investigated the early transcriptional and epigenetic changes induced by adenomatous polyposis coli (Apc) inactivation in intestinal crypts. Hyperactivation of the Wnt pathway via Apc inactivation in crypt base columnar intestinal stem cells (ISC) led to their rapid accumulation driven by an impaired molecular commitment to differentiation, which was associated with discrete alterations in DNA methylation. Importantly, inhibiting the enzymes responsible for de novo DNA methylation restored the responsiveness of Apc-deficient intestinal organoids to stimuli regulating the proliferation-to-differentiation transition in ISC. This work reveals that early DNA methylation changes play critical roles in the establishment of the impaired fate decision program consecutive to Apc loss of function. SIGNIFICANCE: This study demonstrates the functional impact of changes in DNA methylation to determine the colorectal cancer cell phenotype following loss of Apc function.
Collapse
Affiliation(s)
- Marco Bruschi
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Equipe Labellisée Ligue Contre le Cancer, Montpellier, France
| | - Laure Garnier
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Equipe Labellisée Ligue Contre le Cancer, Montpellier, France
| | - Elouan Cleroux
- UMR 7242 Biotechnology and Cell Signaling, CNRS, University of Strasbourg, Illkirch, France
| | - Alicia Giordano
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Equipe Labellisée Ligue Contre le Cancer, Montpellier, France
| | - Michael Dumas
- UMR 7242 Biotechnology and Cell Signaling, CNRS, University of Strasbourg, Illkirch, France
| | - Anaïs F Bardet
- UMR 7242 Biotechnology and Cell Signaling, CNRS, University of Strasbourg, Illkirch, France
| | - Thomas Kergrohen
- Département de Cancérologie de l'Enfant et de l'Adolescent, Institut de Cancérologie Gustave Roussy, Université Paris-Sud, Université Paris-Saclay, Villejuif Cedex, France
| | - Stanislas Quesada
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Equipe Labellisée Ligue Contre le Cancer, Montpellier, France
| | - Pierre Cesses
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Equipe Labellisée Ligue Contre le Cancer, Montpellier, France
| | - Michael Weber
- UMR 7242 Biotechnology and Cell Signaling, CNRS, University of Strasbourg, Illkirch, France
| | - François Gerbe
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Equipe Labellisée Ligue Contre le Cancer, Montpellier, France.
| | - Philippe Jay
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Equipe Labellisée Ligue Contre le Cancer, Montpellier, France.
| |
Collapse
|
26
|
Richards S, Walker J, Nakanishi M, Belghasem M, Lyle C, Arinze N, Napoleon MA, Ravid JD, Crossland N, Zhao Q, Rosenberg D, Rahimi N, Chitalia VC. Haploinsufficiency of Casitas B-Lineage Lymphoma Augments the Progression of Colon Cancer in the Background of Adenomatous Polyposis Coli Inactivation. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:602-613. [PMID: 32113662 DOI: 10.1016/j.ajpath.2019.10.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 10/16/2019] [Accepted: 10/23/2019] [Indexed: 12/20/2022]
Abstract
Casitas B-lineage lymphoma (c-Cbl) is a recently identified ubiquitin ligase of nuclear β-catenin and a suppressor of colorectal cancer (CRC) growth in cell culture and mouse tumor xenografts. We hypothesized that reduction in c-Cbl in colonic epithelium is likely to increase the levels of nuclear β-catenin in the intestinal crypt, augmenting CRC tumorigenesis in an adenomatous polyposis coli (APCΔ14/+) mouse model. Haploinsufficient c-Cbl mice (APCΔ14/+ c-Cbl+/-) displayed a significant (threefold) increase in atypical hyperplasia and adenocarcinomas in the small and large intestines; however, no differences were noted in the adenoma frequency. In contrast to the APCΔ14/+ c-Cbl+/+ mice, APCΔ14/+ c-Cbl+/- crypts showed nuclear β-catenin throughout the length of the crypts and up-regulation of Axin2, a canonical Wnt target gene, and SRY-box transcription factor 9, a marker of intestinal stem cells. In contrast, haploinsufficiency of c-Cbl+/- alone was insufficient to induce tumorigenesis regardless of an increase in the number of intestinal epithelial cells with nuclear β-catenin and SRY-box transcription factor 9 in APC+/+ c-Cbl+/- mice. This study demonstrates that haploinsufficiency of c-Cbl results in Wnt hyperactivation in intestinal crypts and accelerates CRC progression to adenocarcinoma in the milieu of APCΔ14/+, a phenomenon not found with wild-type APC. While emphasizing the role of APC as a gatekeeper in CRC, this study also demonstrates that combined partial loss of c-Cbl and inactivation of APC significantly contribute to CRC tumorigenesis.
Collapse
Affiliation(s)
- Sean Richards
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Joshua Walker
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Masako Nakanishi
- Center for Molecular Oncology, University of Connecticut Health Center, Farmington, Connecticut
| | - Mostafa Belghasem
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Chimera Lyle
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Nkiruka Arinze
- Department of Surgery, Boston University School of Medicine, Boston, Massachusetts
| | - Marc A Napoleon
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | | | - Nicholas Crossland
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Qing Zhao
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Daniel Rosenberg
- Center for Molecular Oncology, University of Connecticut Health Center, Farmington, Connecticut
| | - Nader Rahimi
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Vipul C Chitalia
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts; Veterans Affairs Boston Healthcare System, Boston, Massachusetts; Global Co-Creation Labs, Institute of Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
27
|
Regulation of Tumor Initiation by the Mitochondrial Pyruvate Carrier. Cell Metab 2020; 31:284-300.e7. [PMID: 31813825 PMCID: PMC7004878 DOI: 10.1016/j.cmet.2019.11.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 09/03/2019] [Accepted: 11/05/2019] [Indexed: 01/11/2023]
Abstract
Although metabolic adaptations have been demonstrated to be essential for tumor cell proliferation, the metabolic underpinnings of tumor initiation are poorly understood. We found that the earliest stages of colorectal cancer (CRC) initiation are marked by a glycolytic metabolic signature, including downregulation of the mitochondrial pyruvate carrier (MPC), which couples glycolysis and glucose oxidation through mitochondrial pyruvate import. Genetic studies in Drosophila suggest that this downregulation is required because hyperplasia caused by loss of the Apc or Notch tumor suppressors in intestinal stem cells can be completely blocked by MPC overexpression. Moreover, in two distinct CRC mouse models, loss of Mpc1 prior to a tumorigenic stimulus doubled the frequency of adenoma formation and produced higher grade tumors. MPC loss was associated with a glycolytic metabolic phenotype and increased expression of stem cell markers. These data suggest that changes in cellular pyruvate metabolism are necessary and sufficient to promote cancer initiation.
Collapse
|
28
|
Human Colorectal Cancer from the Perspective of Mouse Models. Genes (Basel) 2019; 10:genes10100788. [PMID: 31614493 PMCID: PMC6826908 DOI: 10.3390/genes10100788] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/25/2019] [Accepted: 10/08/2019] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is a heterogeneous disease that includes both hereditary and sporadic types of tumors. Tumor initiation and growth is driven by mutational or epigenetic changes that alter the function or expression of multiple genes. The genes predominantly encode components of various intracellular signaling cascades. In this review, we present mouse intestinal cancer models that include alterations in the Wnt, Hippo, p53, epidermal growth factor (EGF), and transforming growth factor β (TGFβ) pathways; models of impaired DNA mismatch repair and chemically induced tumorigenesis are included. Based on their molecular biology characteristics and mutational and epigenetic status, human colorectal carcinomas were divided into four so-called consensus molecular subtype (CMS) groups. It was shown subsequently that the CMS classification system could be applied to various cell lines derived from intestinal tumors and tumor-derived organoids. Although the CMS system facilitates characterization of human CRC, individual mouse models were not assigned to some of the CMS groups. Thus, we also indicate the possible assignment of described animal models to the CMS group. This might be helpful for selection of a suitable mouse strain to study a particular type of CRC.
Collapse
|
29
|
Ceballos MP, Rigalli JP, Ceré LI, Semeniuk M, Catania VA, Ruiz ML. ABC Transporters: Regulation and Association with Multidrug Resistance in Hepatocellular Carcinoma and Colorectal Carcinoma. Curr Med Chem 2019; 26:1224-1250. [PMID: 29303075 DOI: 10.2174/0929867325666180105103637] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/19/2017] [Accepted: 11/21/2017] [Indexed: 02/07/2023]
Abstract
For most cancers, the treatment of choice is still chemotherapy despite its severe adverse effects, systemic toxicity and limited efficacy due to the development of multidrug resistance (MDR). MDR leads to chemotherapy failure generally associated with a decrease in drug concentration inside cancer cells, frequently due to the overexpression of ABC transporters such as P-glycoprotein (P-gp/MDR1/ABCB1), multidrug resistance-associated proteins (MRPs/ABCCs), and breast cancer resistance protein (BCRP/ABCG2), which limits the efficacy of chemotherapeutic drugs. The aim of this review is to compile information about transcriptional and post-transcriptional regulation of ABC transporters and discuss their role in mediating MDR in cancer cells. This review also focuses on drug resistance by ABC efflux transporters in cancer cells, particularly hepatocellular carcinoma (HCC) and colorectal carcinoma (CRC) cells. Some aspects of the chemotherapy failure and future directions to overcome this problem are also discussed.
Collapse
Affiliation(s)
- María Paula Ceballos
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Rosario, Argentina
| | - Juan Pablo Rigalli
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Rosario, Argentina.,Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Lucila Inés Ceré
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Rosario, Argentina
| | - Mariana Semeniuk
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Rosario, Argentina
| | - Viviana Alicia Catania
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Rosario, Argentina
| | - María Laura Ruiz
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Rosario, Argentina
| |
Collapse
|
30
|
Vázquez-Arreguín K, Bensard C, Schell JC, Swanson E, Chen X, Rutter J, Tantin D. Oct1/Pou2f1 is selectively required for colon regeneration and regulates colon malignancy. PLoS Genet 2019; 15:e1007687. [PMID: 31059499 PMCID: PMC6522070 DOI: 10.1371/journal.pgen.1007687] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 05/16/2019] [Accepted: 04/16/2019] [Indexed: 12/22/2022] Open
Abstract
The transcription factor Oct1/Pou2f1 promotes poised gene expression states, mitotic stability, glycolytic metabolism and other characteristics of stem cell potency. To determine the effect of Oct1 loss on stem cell maintenance and malignancy, we deleted Oct1 in two different mouse gut stem cell compartments. Oct1 deletion preserved homeostasis in vivo and the ability to establish organoids in vitro, but blocked the ability to recover from treatment with dextran sodium sulfate, and the ability to maintain organoids after passage. In a chemical model of colon cancer, loss of Oct1 in the colon severely restricted tumorigenicity. In contrast, loss of one or both Oct1 alleles progressively increased tumor burden in a colon cancer model driven by loss-of-heterozygosity of the tumor suppressor gene Apc. The different outcomes are consistent with prior findings that Oct1 promotes mitotic stability, and consistent with differentially expressed genes between the two models. Oct1 ChIPseq using HCT116 colon carcinoma cells identifies target genes associated with mitotic stability, metabolism, stress response and malignancy. This set of gene targets overlaps significantly with genes differentially expressed in the two tumor models. These results reveal that Oct1 is selectively required for recovery after colon damage, and that Oct1 has potent effects in colon malignancy, with outcome (pro-oncogenic or tumor suppressive) dictated by tumor etiology.
Collapse
Affiliation(s)
- Karina Vázquez-Arreguín
- Department of Pathology and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, United States of America
| | - Claire Bensard
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, United States of America
| | - John C. Schell
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, United States of America
| | - Eric Swanson
- Department of Pathology and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, United States of America
| | - Xinjian Chen
- Department of Pathology and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, United States of America
| | - Jared Rutter
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, United States of America
- Howard Hughes Medical Institute, Salt Lake City, Utah, United States of America
| | - Dean Tantin
- Department of Pathology and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, United States of America
| |
Collapse
|
31
|
Washington K, Zemper AED. Apc-related models of intestinal neoplasia: a brief review for pathologists. SURGICAL AND EXPERIMENTAL PATHOLOGY 2019. [DOI: 10.1186/s42047-019-0036-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
32
|
Jia J, Zhang X, Zhan D, Li J, Li Z, Li H, Qian J. LncRNA H19 interacted with miR-130a-3p and miR-17-5p to modify radio-resistance and chemo-sensitivity of cardiac carcinoma cells. Cancer Med 2019; 8:1604-1618. [PMID: 30843379 PMCID: PMC6488143 DOI: 10.1002/cam4.1860] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/27/2018] [Accepted: 10/15/2018] [Indexed: 12/19/2022] Open
Abstract
The current investigation explored the synthetic contribution of lncRNA H19, miR-130a-3p, and miR-17-5p to radio-resistance and chemo-sensitivity of cardiac cancer cells. Totally 284 human cardiac cancer tissues were gathered, and they have been pathologically diagnosed. The cardiac cancer cells were isolated with utilization of the mechanic method. Moreover, cisplatin, adriamycin, mitomycin, and 5-fluorouracil were designated as the chemotherapies, and single-dose X-rays were managed as the radiotherapy for cardiac cancer cells. We also performed luciferase reporter gene assay to verify the targeted relationship between H19 and miR-130a-3p, as well as between H19 and miR-17-5p. Finally, mice models were established to examine the functions of H19, miR-130a-3p, and miR-17-5p on the development of cardiac cancer. The study results indicated that H19, miR-130a-3p, and miR-17-5p expressions within cardiac cancer tissues were significantly beyond those within adjacent nontumor tissues (P < 0.05), and H19 expression was positively correlated with both miR-130a-3p (rs = 0.43) and miR-17-5p (rs = 0.49) expressions. The half maximal inhibitory concentrations (IC50) of cisplatin, adriamycin, mitomycin, and 5-fluorouracil for cardiac cancer cells were, respectively, determined as 2.01 μg/mL, 8.35 μg/mL, 24.44 μg/mL, and 166.42 μg/mL. The overexpressed H19, miR-130a-3p, and miR-17-5p appeared to improve the survival rate and viability of cardiac cancer cells that were exposed to chemotherapies and X-rays (all P < 0.05). It was also drawn from luciferase reporter gene assay that H19 could directly target miR-130a-3p and miR-17-5p, thereby modifying the sensitivity of cardiac cancer cells to drugs and X-rays (P < 0.05). Finally, the mice models also produced larger tumor size and higher tumor weight, when H19, miR-130a-3p, or miR-17-5p expressions were up-regulated within them (P < 0.05). In conclusion, H19 could act on miR-130a-3p or miR-17-5p to alter the radio- and chemo-sensitivities of cardiac cancer cells, helping to improve the radio-/chemotherapies for cardiac cancer.
Collapse
Affiliation(s)
- Jianguang Jia
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | | | - Dankai Zhan
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Jing Li
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zhixiang Li
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Hongbo Li
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Jun Qian
- Department of Surgical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
33
|
Shah A, Melhuish TA, Fox TE, Frierson HF, Wotton D. TGIF transcription factors repress acetyl CoA metabolic gene expression and promote intestinal tumor growth. Genes Dev 2019; 33:388-402. [PMID: 30808659 PMCID: PMC6446543 DOI: 10.1101/gad.320127.118] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 01/24/2019] [Indexed: 02/06/2023]
Abstract
In this study, Shah et al. show that Tgifs, which repress gene expression by binding directly to DNA or interacting with transforming growth factor β (TGFβ)-responsive SMADs, promote adenoma growth in the context of mutant Apc (adenomatous polyposis coli). Their findings suggest that Tgifs play an important role in regulating basic energy metabolism in normal cells and that this function of Tgifs is amplified in some cancers. Tgif1 (thymine–guanine-interacting factor 1) and Tgif2 repress gene expression by binding directly to DNA or interacting with transforming growth factor (TGF) β-responsive SMADs. Tgifs are essential for embryogenesis and may function in tumor progression. By analyzing both gain and loss of Tgif function in a well-established mouse model of intestinal cancer, we show that Tgifs promote adenoma growth in the context of mutant Apc (adenomatous polyposis coli). Despite the tumor-suppressive role of TGFβ signaling, transcriptome profiling of colon tumors suggests minimal effect of Tgifs on the TGFβ pathway. Instead, it appears that Tgifs, which are up-regulated in Apc mutant colon tumors, contribute to reprogramming metabolic gene expression. Integrating gene expression data from colon tumors with other gene expression and chromatin-binding data identifies a set of direct Tgif target genes encoding proteins involved in acetyl CoA and pyruvate metabolism. Analysis of both tumor and nontumor tissues indicates that these genes are targets of Tgif repression in multiple settings, suggesting that this is a core Tgif function. We propose that Tgifs play an important role in regulating basic energy metabolism in normal cells, and that this function of Tgifs is amplified in some cancers.
Collapse
Affiliation(s)
- Anant Shah
- Department of Biochemistry and Molecular Genetics, Center for Cell Signaling, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Tiffany A Melhuish
- Department of Biochemistry and Molecular Genetics, Center for Cell Signaling, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Todd E Fox
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Henry F Frierson
- Department of Pathology, University of Virginia, Charlottesville, Virginia 22908, USA
| | - David Wotton
- Department of Biochemistry and Molecular Genetics, Center for Cell Signaling, University of Virginia, Charlottesville, Virginia 22908, USA
| |
Collapse
|
34
|
Yamaga Y, Fukuda A, Nakanishi Y, Goto N, Matsumoto Y, Yoshioka T, Maruno T, Chiba T, Seno H. Gene expression profile of Dclk1 + cells in intestinal tumors. Dig Liver Dis 2018; 50:1353-1361. [PMID: 30001952 DOI: 10.1016/j.dld.2018.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Accumulating evidence has shown the existence of tumor stem cells with therapeutic potential. Previously, we reported that doublecortin like kinase 1 (Dclk1) marks tumor stem cells but not normal stem cells in the intestine of ApcMin/+ mice, and that Dclk1- and Lgr5-double positive tumor cells are the tumor stem cells of intestinal tumors. AIM To investigate molecules highly expressed in the Dclk1+ normal intestinal and Dclk1+ tumor cells in ApcMin/+ mice. METHODS We used microarray analyses to examine the gene expression profile of Dclk1+ cells in both mouse normal intestinal epithelium and ApcMin/+ mouse intestinal tumors. We also performed immunofluorescence analyses. RESULTS Genes related to microtubules and the actin cytoskeleton (e.g., Rac2), and members of the Src family kinases (i.e., Hck, Lyn, Csk, and Ptpn6) were highly expressed in both Dclk1+ normal intestinal and Dclk1+ tumor cells. Phosphorylated Hck and phosphorylated Lyn were expressed in Lgr5+ cells in the intestinal tumors of Lgr5EGFP-IRES-CreERT2/+; ApcMin/+ mice. CONCLUSION We revealed factors that are highly expressed in Dclk1+ intestinal tumor cells, which may help to develop cancer stem cell-targeted therapy in future.
Collapse
Affiliation(s)
- Yuichi Yamaga
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akihisa Fukuda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuki Nakanishi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Norihiro Goto
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshihide Matsumoto
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takuto Yoshioka
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takahisa Maruno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tsutomu Chiba
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| |
Collapse
|
35
|
Nakanishi M, Hanley MP, Zha R, Igarashi Y, Hull MA, Mathias G, Sciavolino F, Grady JJ, Rosenberg DW. A novel bioactive derivative of eicosapentaenoic acid (EPA) suppresses intestinal tumor development in ApcΔ14/+ mice. Carcinogenesis 2018; 39:429-438. [PMID: 29206907 DOI: 10.1093/carcin/bgx136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 11/27/2017] [Indexed: 12/28/2022] Open
Abstract
Familial adenomatous polyposis (FAP) is a genetic disorder characterized by the development of hundreds of polyps throughout the colon. Without prophylactic colectomy, most individuals with FAP develop colorectal cancer at an early age. Treatment with EPA in the free fatty acid form (EPA-FFA) has been shown to reduce polyp burden in FAP patients. Since high-purity EPA-FFA is subject to rapid oxidation, a stable form of EPA compound has been developed in the form of magnesium l-lysinate bis-eicosapentaenoate (TP-252). We assessed the chemopreventive efficacy of TP-252 on intestinal tumor formation using ApcΔ14/+ mice and compared it with EPA-FFA. TP-252 was supplemented in a modified AIN-93G diet at 1, 2 or 4% and EPA-FFA at 2.5% by weight and administered to mice for 11 weeks. We found that administration of TP-252 significantly reduced tumor number and size in the small intestine and colon in a dose-related manner and as effectively as EPA-FFA. To gain further insight into the cancer protection afforded to the colon, we performed a comprehensive lipidomic analysis of total fatty acid composition and eicosanoid metabolites. Treatment with TP-252 significantly decreased the levels of arachidonic acid (AA) and increased EPA concentrations within the colonic mucosa. Furthermore, a classification and regression tree (CART) analysis revealed that a subset of fatty acids, including EPA and docosahexaenoic acid (DHA), and their downstream metabolites, including PGE3 and 14-hydroxy-docosahexaenoic acid (HDoHE), were strongly associated with antineoplastic activity. These results indicate that TP-252 warrants further clinical development as a potential strategy for delaying colectomy in adolescent FAP patients.
Collapse
Affiliation(s)
- Masako Nakanishi
- Center for Molecular Oncology, University of Connecticut Health, Farmington, CT, USA
| | - Matthew P Hanley
- Center for Molecular Oncology, University of Connecticut Health, Farmington, CT, USA.,Thetis Pharmaceuticals, Branford, CT, USA
| | - Ruochen Zha
- Center for Molecular Oncology, University of Connecticut Health, Farmington, CT, USA.,Connecticut Institute for Clinical and Translational Science, University of Connecticut, Farmington, CT, USA
| | - Yuichi Igarashi
- Center for Molecular Oncology, University of Connecticut Health, Farmington, CT, USA
| | - Mark A Hull
- Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, Leeds, UK
| | | | | | - James J Grady
- Center for Molecular Oncology, University of Connecticut Health, Farmington, CT, USA.,Connecticut Institute for Clinical and Translational Science, University of Connecticut, Farmington, CT, USA
| | - Daniel W Rosenberg
- Center for Molecular Oncology, University of Connecticut Health, Farmington, CT, USA
| |
Collapse
|
36
|
Microtubule plus-end tracking Adenopolyposis Coli negatively regulates proplatelet formation. Sci Rep 2018; 8:15808. [PMID: 30361531 PMCID: PMC6202313 DOI: 10.1038/s41598-018-34118-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 10/03/2018] [Indexed: 12/17/2022] Open
Abstract
Platelets are produced upon profound reorganization of mature megakaryocytes (MK) leading to proplatelet elongation and release into the blood stream, a process termed thrombopoiesis. This highly dynamic process requires microtubules (MT) reorganization by mechanisms that are still incompletely understood. Adenomatous polyposis coli (APC) is a microtubule plus-end tracking protein involved in the regulation of MT in a number of cell systems and its inactivation has been reported to alter hematopoiesis. The aim of our study was to investigate the role of APC in megakaryopoiesis and the final steps of platelet formation. Down-regulation of APC in cultured human MK by RNA interference increased endomitosis and the proportion of cells able to extend proplatelets (68.8% (shAPC1) and 52.5% (shAPC2) vs 28.1% in the control). Similarly an increased ploidy and amplification of the proplatelet network were observed in MK differentiated from Lin- cells of mice with APC-deficiency in the MK lineage. In accordance, these mice exhibited increased platelet counts when compared to wild type mice (1,323 ± 111 vs 919 ± 52 platelets/µL; n = 12 p 0.0033**). Their platelets had a normal size, ultrastructure and number of microtubules coils and their main functions were also preserved. Loss of APC resulted in lower levels of acetylated tubulin and decreased activation of the Wnt signaling pathway. Thus, APC appears as an important regulator of proplatelet formation and overall thrombopoiesis.
Collapse
|
37
|
Bond MJ, Bleiler M, Harrison LE, Scocchera EW, Nakanishi M, G-Dayanan N, Keshipeddy S, Rosenberg DW, Wright DL, Giardina C. Spindle Assembly Disruption and Cancer Cell Apoptosis with a CLTC-Binding Compound. Mol Cancer Res 2018; 16:1361-1372. [PMID: 29769406 DOI: 10.1158/1541-7786.mcr-18-0178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/05/2018] [Accepted: 04/25/2018] [Indexed: 11/16/2022]
Abstract
AK3 compounds are mitotic arrest agents that induce high levels of γH2AX during mitosis and apoptosis following release from arrest. We synthesized a potent AK3 derivative, AK306, that induced arrest and apoptosis of the HCT116 colon cancer cell line with an EC50 of approximately 50 nmol/L. AK306 was active on a broad spectrum of cancer cell lines with total growth inhibition values ranging from approximately 25 nmol/L to 25 μmol/L. Using biotin and BODIPY-linked derivatives of AK306, binding to clathrin heavy chain (CLTC/CHC) was observed, a protein with roles in endocytosis and mitosis. AK306 inhibited mitosis and endocytosis, while disrupting CHC cellular localization. Cells arrested in mitosis by AK306 showed the formation of multiple microtubule-organizing centers consisting of pericentrin, γ-tubulin, and Aurora A foci, without apparent centrosome amplification. Cells released from AK306 arrest were unable to form bipolar spindles, unlike nocodazole-released cells that reformed spindles and completed division. Like AK306, CHC siRNA knockdown disrupted spindle formation and activated p53. A short-term (3-day) treatment of tumor-bearing APC-mutant mice with AK306 increased apoptosis in tumors, but not normal mucosa. These findings indicate that targeting the mitotic CHC complex can selectively induce apoptosis and may have therapeutic value.Implication: Disruption of clathrin with a small-molecule inhibitor, AK306, selectively induces apoptosis in cancer cells by disrupting bipolar spindle formation. Mol Cancer Res; 16(9); 1361-72. ©2018 AACR.
Collapse
Affiliation(s)
- Michael J Bond
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut.,Department of Pharmacology, Yale University, New Haven, Connecticut
| | - Marina Bleiler
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut
| | - Lauren E Harrison
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut
| | - Eric W Scocchera
- Department of Medicinal Chemistry, University of Connecticut, Storrs, Connecticut
| | - Masako Nakanishi
- Center for Molecular Oncology, UConn Health, Farmington, Connecticut
| | - Narendran G-Dayanan
- Department of Medicinal Chemistry, University of Connecticut, Storrs, Connecticut
| | - Santosh Keshipeddy
- Department of Medicinal Chemistry, University of Connecticut, Storrs, Connecticut
| | | | - Dennis L Wright
- Department of Medicinal Chemistry, University of Connecticut, Storrs, Connecticut
| | - Charles Giardina
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut.
| |
Collapse
|
38
|
Romain B, Benbrika-Nehmar R, Marisa L, Legrain M, Lobstein V, Oravecz A, Poidevin L, Bour C, Freund JN, Duluc I, Guenot D, Pencreach E. Histone hypoacetylation contributes to CXCL12 downregulation in colon cancer: impact on tumor growth and cell migration. Oncotarget 2018; 8:38351-38366. [PMID: 28418886 PMCID: PMC5503537 DOI: 10.18632/oncotarget.16323] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 02/27/2017] [Indexed: 12/11/2022] Open
Abstract
CXCL12 has been shown to be involved in colon cancer metastasis, but its expression level and molecular mechanisms regulating its expression remain controversial. We thus evaluated CXCL12 expression in a large cohort of colon adenomas and carcinomas, investigated for an epigenetic mechanism controlling its expression and evaluated the impact of CXCL12 levels on cell migration and tumor growth. CXCL12 expression was measured in human colon adenomas and carcinomas with transcriptome array and RT-qPCR. The promoter methylation was analyzed with whole-genome DNA methylation chips and protein expression by immunohistochemistry. We confirm a reduced expression of CXCL12 in 75% of MSS carcinomas and show that the decrease is an early event as already present in adenomas. The methylome analysis shows that the CXCL12 promoter is methylated in only 30% of microsatellite-stable tumors. In vitro, treatments with HDAC inhibitors, butyrate and valproate restored CXCL12 expression in three colon cell lines, increased acetylation of histone H3 within the CXCL12 promoter and inhibited cell migration. In vivo, valproate diminished (65%) the number of intestinal tumors in APC mutant mice, slowed down xenograft tumor growth concomitant to restored CXCL12 expression. Finally we identified loss of PCAF expression in tumor samples and showed that forced expression of PCAF in colon cancer cell lines restored CXCL12 expression. Thus, reduced PCAF expression may participate to CXCL12 promoter hypoacetylation and its subsequent loss of expression. Our study is of potential clinical interest because agents that promote or maintain histone acetylation through HDAC inhibition and/or HAT stimulation, may help to lower colon adenoma/carcinoma incidence, especially in high-risk families, or could be included in therapeutic protocols to treat advanced colon cancer.
Collapse
Affiliation(s)
- Benoît Romain
- Université de Strasbourg, Progression Tumorale et Microenvironnement, Approches Translationnelles et Epidémiologie, Strasbourg, France.,Hôpitaux Universitaires de Strasbourg, Service de Chirurgie Générale et Digestive, Strasbourg, France
| | - Radhia Benbrika-Nehmar
- Université de Strasbourg, Progression Tumorale et Microenvironnement, Approches Translationnelles et Epidémiologie, Strasbourg, France
| | - Laetitia Marisa
- Cartes d'Identité des Tumeurs Program, Ligue Nationale Contre le Cancer, Paris, France
| | - Michèle Legrain
- Hôpitaux Universitaires de Strasbourg, Laboratoire de Biochimie et Biologie Moléculaire, Strasbourg, France
| | - Viviane Lobstein
- Université de Strasbourg, Progression Tumorale et Microenvironnement, Approches Translationnelles et Epidémiologie, Strasbourg, France
| | - Attila Oravecz
- Université de Strasbourg, CNRS, Department of Computer Science, ICube, Strasbourg, France
| | - Laetitia Poidevin
- Université de Strasbourg, CNRS, Department of Computer Science, ICube, Strasbourg, France
| | - Cyril Bour
- Université de Strasbourg, Progression Tumorale et Microenvironnement, Approches Translationnelles et Epidémiologie, Strasbourg, France
| | | | - Isabelle Duluc
- Université de Strasbourg, INSERM Unit 1113, Strasbourg, France
| | - Dominique Guenot
- Université de Strasbourg, Progression Tumorale et Microenvironnement, Approches Translationnelles et Epidémiologie, Strasbourg, France
| | - Erwan Pencreach
- Université de Strasbourg, Progression Tumorale et Microenvironnement, Approches Translationnelles et Epidémiologie, Strasbourg, France.,Hôpitaux Universitaires de Strasbourg, Laboratoire de Biochimie et Biologie Moléculaire, Strasbourg, France.,Hôpitaux Universitaires de Strasbourg, Centre de Ressources Biologiques, Département de Pathologie, Strasbourg, France
| |
Collapse
|
39
|
Burhannudin, Mahmudah N, Widyarini S, Purnomosari D. Chemopreventive Effects of Edible Canna (Canna edulis Kerr.) Against Colorectal Carcinogenesis: Effects on Expression of Adenomatous Polyposis Coli and Inducible Nitric Oxide Synthase in Rat Inflammatory Model. Asian Pac J Cancer Prev 2018; 19:839-844. [PMID: 29582643 PMCID: PMC5980864 DOI: 10.22034/apjcp.2018.19.3.839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Objective: Dietary high fibre and calcium intake has been suggested to reduce colorectal cancer risk. However, there is limited information available regarding the potential of edible canna (Ganyong), with high dietary fibre and calcium content, to act as a preventive agent for colorectal cancer. This experimental study was conducted to investigate the preventive effect of Ganyong in reducing colorectal carcinogenesis with attention to effects on adenomatous polyposis coli (APC) and inducible nitric oxide synthase (iNOS) expression. Methods: Thirty male Wistar rats were divided into 5 equal groups; a normal control group without azoxymethane/dextran sodium sulphate (AOM/DSS) induction and Ganyong, a ‘cancer’ control group with AOM/DSS induction only, and three treatment groups with AOM/DSS induction and different percentages (5%, 10% and 20%) of Ganyong. Paraffin-embedded sections of rat colon tissue were analysed by haematoxylin-eosin and immunohistochemical staining against antibodies against APC and iNOS. Variation in rates of APC and iNOS expression were analyzed using the Kruskal-Wallis test followed by the Dunn’s test (SPSS statistic version 24). P<0.05 was considered statistically significant. Results: AOM/DSS induction increased the expression of APC (p=0.013) and iNOS (p=0.013) compared to the normal control group. APC expression in the treated groups was lower than in the ‘cancer’ control group (p=0.049), especially in the 10% Ganyong group (p=0.02). In contrast, there was no significant variation among the treated groups regarding iNOS expression. Histopathological features of the colon supported the data for APC and iNOS expression. Conclusion: This study indicated potential chemopreventive effects of Ganyong reducing expression of factors contributing to colorectal carcinogenesis.
Collapse
Affiliation(s)
- Burhannudin
- Department of Histology and Cell Biology, Faculty of Medicine, University Gadjah Mada, Yogyakarta, Indonesia.
| | | | | | | |
Collapse
|
40
|
Ou-Yang GQ, Pan GD, Wu YR, Xu HL. Orthotopic mouse models of colorectal cancer liver metastases. Shijie Huaren Xiaohua Zazhi 2018; 26:512-517. [DOI: 10.11569/wcjd.v26.i8.512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a malignancy with high incidence and mortality, and its high mortality rate is mainly attributed to metastases, with liver metastasis being the main cause of death. Appropriate animal models can provide a basis for studying the metastatic mechanism of colorectal cancer and assessing pre-clinical therapeutic effects. Orthotopic transplantation models that simulate colorectal cancer with liver metastases can better reflect the characteristic of liver metastasis in colorectal cancer. In this article, we review orthotopic transplantation models of liver metastases of colorectal cancer.
Collapse
|
41
|
Balbinot C, Armant O, Elarouci N, Marisa L, Martin E, De Clara E, Onea A, Deschamps J, Beck F, Freund JN, Duluc I. The Cdx2 homeobox gene suppresses intestinal tumorigenesis through non-cell-autonomous mechanisms. J Exp Med 2018; 215:911-926. [PMID: 29439001 PMCID: PMC5839756 DOI: 10.1084/jem.20170934] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 11/13/2017] [Accepted: 01/18/2018] [Indexed: 12/16/2022] Open
Abstract
Balbinot et al. show that intestinal epithelial cells depleted in the homeobox gene Cdx2 acquire an imperfect gastric-type metaplastic phenotype that, through changes in the microenvironment, induces the tumorigenic evolution of adjacent Cdx2-intact cells without themselves becoming cancerous. Developmental genes contribute to cancer, as reported for the homeobox gene Cdx2 playing a tumor suppressor role in the gut. In this study, we show that human colon cancers exhibiting the highest reduction in CDX2 expression belong to the serrated subtype with the worst evolution. In mice, mosaic knockout of Cdx2 in the adult intestinal epithelium induces the formation of imperfect gastric-type metaplastic lesions. The metaplastic knockout cells do not spontaneously become tumorigenic. However, they induce profound modifications of the microenvironment that facilitate the tumorigenic evolution of adjacent Cdx2-intact tumor-prone cells at the surface of the lesions through NF-κB activation, induction of inducible nitric oxide synthase, and stochastic loss of function of Apc. This study presents a novel paradigm in that metaplastic cells, generally considered as precancerous, can induce tumorigenesis from neighboring nonmetaplastic cells without themselves becoming cancerous. It unveils the novel property of non–cell-autonomous tumor suppressor gene for the Cdx2 gene in the gut.
Collapse
Affiliation(s)
- Camille Balbinot
- Université de Strasbourg, Institut National de la Santé et de la Recherche Médicale, IRFAC UMR-S1113, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Olivier Armant
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Karlsruhe, Germany
| | - Nabila Elarouci
- Cartes d'Identité des Tumeurs Program, Ligue Nationale Contre le Cancer, Paris, France
| | - Laetitia Marisa
- Cartes d'Identité des Tumeurs Program, Ligue Nationale Contre le Cancer, Paris, France
| | - Elisabeth Martin
- Université de Strasbourg, Institut National de la Santé et de la Recherche Médicale, IRFAC UMR-S1113, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Etienne De Clara
- Université de Strasbourg, Institut National de la Santé et de la Recherche Médicale, IRFAC UMR-S1113, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Alina Onea
- Département de Pathologie, Centre Hospitalier Universitaire de Strasbourg, Strasbourg, France
| | - Jacqueline Deschamps
- Developmental Biology and Stem Cell Research, Hubrecht Institute, Utrecht, Netherlands
| | - Felix Beck
- Barts and The London School of Medicine and Dentistry, London, England, UK
| | - Jean-Noël Freund
- Université de Strasbourg, Institut National de la Santé et de la Recherche Médicale, IRFAC UMR-S1113, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Isabelle Duluc
- Université de Strasbourg, Institut National de la Santé et de la Recherche Médicale, IRFAC UMR-S1113, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| |
Collapse
|
42
|
Laval M, Dumesny C, Eutick M, Baldwin GS, Marshall KM. Oral trivalent bismuth ions decrease, and trivalent indium or ruthenium ions increase, intestinal tumor burden in Apc Δ14/+ mice. Metallomics 2018; 10:194-200. [PMID: 29296993 DOI: 10.1039/c7mt00272f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Immature forms of the peptide hormone gastrin have been implicated in the development of colorectal cancer (CRC). The biological activity of glycine-extended gastrin (Ggly) is dependent on the binding of Fe3+ ions in vitro and in vivo. The aim of the present study was to determine the effect of blocking Fe3+ ion binding to Ggly, using Bi3+, In3+ or Ru3+ ions, on the development of intestinal tumors in APCΔ14/+ mice. APCΔ14/+ mice were treated orally with Bi3+, In3+ or Ru3+ ions for up to 60 days, serum trace metals were analyzed by inductively coupled plasma mass spectrometry, and the incidence and size of intestinal tumors were assessed. Bi3+ treatment significantly decreased the number of tumors larger than 3 mm in male mice. In3+ or Ru3+ treatment significantly increased the tumor burden in all animals and In3+ increased the number of tumors larger than 3 mm or 5 mm in male mice alone. The fact that binding of In3+ or Ru3+ ions to Ggly was orders of magnitude stronger than the binding of Bi3+ ions implies that the inhibitory effect of Bi3+ ions is not a consequence of a reduction in Ggly activity. However, further testing of higher doses of Bi3+ ions for longer periods as an oral treatment for intestinal tumors is warranted.
Collapse
Affiliation(s)
- Marie Laval
- University of Melbourne Department of Surgery, Austin Health, Heidelberg, Victoria, Australia.
| | | | | | | | | |
Collapse
|
43
|
Ishibashi F, Shimizu H, Nakata T, Fujii S, Suzuki K, Kawamoto A, Anzai S, Kuno R, Nagata S, Ito G, Murano T, Mizutani T, Oshima S, Tsuchiya K, Nakamura T, Watanabe M, Okamoto R. Contribution of ATOH1 + Cells to the Homeostasis, Repair, and Tumorigenesis of the Colonic Epithelium. Stem Cell Reports 2017; 10:27-42. [PMID: 29233556 PMCID: PMC5768891 DOI: 10.1016/j.stemcr.2017.11.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 11/04/2017] [Accepted: 11/05/2017] [Indexed: 12/12/2022] Open
Abstract
ATOH1 is a master transcription factor for the secretory lineage differentiation of intestinal epithelial cells (IECs). However, the comprehensive contribution of ATOH1+ secretory lineage IECs to the homeostasis, repair, and tumorigenesis of the intestinal epithelium remains uncertain. Through our ATOH1+ cell-lineage tracing, we show here that a definite number of ATOH1+ IECs retain stem cell properties and can form ATOH1+IEC-derived clonal ribbons (ATOH1+ICRs) under completely homeostatic conditions. Interestingly, colonic ATOH1+ IECs appeared to exhibit their stem cell function more frequently compared with those of the small intestine. Consistently, the formation of ATOH1+ICRs was significantly enhanced upon dextran sodium sulfate colitis-induced mucosal damage. In addition, colonic ATOH1+ IECs acquired tumor stem cell-like properties in the azoxymethane-DSS tumor model. Our results reveal an unexpected contribution of colonic ATOH1+ IECs to maintaining the stem cell population under both homeostatic and pathologic conditions and further illustrate the high plasticity of the crypt-intrinsic stem cell hierarchy. Intestinal ATOH1+ cells can exhibit stem cell properties under homeostatic conditions Recruitment of ATOH1+ cell-derived stem cells is enhanced by inflammation Cell-intrinsic NF-kB signaling promotes generation of ATOH1+ cell-derived stem cells ATOH1+ tumor stem cells contribute to the development of colitis-associated tumors
Collapse
Affiliation(s)
- Fumiaki Ishibashi
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Hiromichi Shimizu
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo 113-8519, Japan; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Toru Nakata
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Satoru Fujii
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Kohei Suzuki
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Ami Kawamoto
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Sho Anzai
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Reiko Kuno
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Sayaka Nagata
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Go Ito
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo 113-8519, Japan; Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, 24118 Kiel, Germany
| | - Tatsuro Murano
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Tomohiro Mizutani
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Shigeru Oshima
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Kiichiro Tsuchiya
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Tetsuya Nakamura
- Department of Advanced Therapeutics in GI Diseases, Graduate School, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Mamoru Watanabe
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Ryuichi Okamoto
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo 113-8519, Japan; Center for Stem Cell and Regenerative Medicine, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.
| |
Collapse
|
44
|
Balbinot C, Vanier M, Armant O, Nair A, Penichon J, Soret C, Martin E, Saandi T, Reimund JM, Deschamps J, Beck F, Domon-Dell C, Gross I, Duluc I, Freund JN. Fine-tuning and autoregulation of the intestinal determinant and tumor suppressor homeobox gene CDX2 by alternative splicing. Cell Death Differ 2017; 24:2173-2186. [PMID: 28862703 DOI: 10.1038/cdd.2017.140] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/23/2017] [Accepted: 07/25/2017] [Indexed: 12/20/2022] Open
Abstract
On the basis of phylogenetic analyses, we uncovered a variant of the CDX2 homeobox gene, a major regulator of the development and homeostasis of the gut epithelium, also involved in cancer. This variant, miniCDX2, is generated by alternative splicing coupled to alternative translation initiation, and contains the DNA-binding homeodomain but is devoid of transactivation domain. It is predominantly expressed in crypt cells, whereas the CDX2 protein is present in crypt cells but also in differentiated villous cells. Functional studies revealed a dominant-negative effect exerted by miniCDX2 on the transcriptional activity of CDX2, and conversely similar effects regarding several transcription-independent functions of CDX2. In addition, a regulatory role played by the CDX2 and miniCDX2 homeoproteins on their pre-mRNA splicing is displayed, through interactions with splicing factors. Overexpression of miniCDX2 in the duodenal Brunner glands leads to the expansion of the territory of these glands and ultimately to brunneroma. As a whole, this study characterized a new and original variant of the CDX2 homeobox gene. The production of this variant represents not only a novel level of regulation of this gene, but also a novel way to fine-tune its biological activity through the versatile functions exerted by the truncated variant compared to the full-length homeoprotein. This study highlights the relevance of generating protein diversity through alternative splicing in the gut and its diseases.
Collapse
Affiliation(s)
- Camille Balbinot
- Université de Strasbourg, Inserm, UMR_S1113, FMTS, Strasbourg 67000, France
| | - Marie Vanier
- Université de Strasbourg, Inserm, UMR_S1113, FMTS, Strasbourg 67000, France
| | - Olivier Armant
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Postfach 3640, Karlsruhe 76021, Germany
| | - Asmaa Nair
- Université de Strasbourg, Inserm, UMR_S1113, FMTS, Strasbourg 67000, France
| | - Julien Penichon
- Université de Strasbourg, Inserm, UMR_S1113, FMTS, Strasbourg 67000, France
| | - Christine Soret
- Université de Strasbourg, Inserm, UMR_S1113, FMTS, Strasbourg 67000, France
| | - Elisabeth Martin
- Université de Strasbourg, Inserm, UMR_S1113, FMTS, Strasbourg 67000, France
| | - Thoueiba Saandi
- Université de Strasbourg, Inserm, UMR_S1113, FMTS, Strasbourg 67000, France
| | - Jean-Marie Reimund
- Université de Strasbourg, Inserm, UMR_S1113, FMTS, Strasbourg 67000, France
| | - Jacqueline Deschamps
- Hubrecht Institute, Developmental Biology and Stem Cell Research, Uppsalalaan 8, Utrecht 3584 CT, The Netherlands
| | - Felix Beck
- Barts and The London School of Medicine and Dentistry, London E1 2ES, UK
| | - Claire Domon-Dell
- Université de Strasbourg, Inserm, UMR_S1113, FMTS, Strasbourg 67000, France
| | - Isabelle Gross
- Université de Strasbourg, Inserm, UMR_S1113, FMTS, Strasbourg 67000, France
| | - Isabelle Duluc
- Université de Strasbourg, Inserm, UMR_S1113, FMTS, Strasbourg 67000, France
| | - Jean-Noël Freund
- Université de Strasbourg, Inserm, UMR_S1113, FMTS, Strasbourg 67000, France
| |
Collapse
|
45
|
Huynh N, Wang K, Yim M, Dumesny CJ, Sandrin MS, Baldwin GS, Nikfarjam M, He H. Depletion of p21-activated kinase 1 up-regulates the immune system of APC ∆14/+ mice and inhibits intestinal tumorigenesis. BMC Cancer 2017. [PMID: 28629331 PMCID: PMC5477105 DOI: 10.1186/s12885-017-3432-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND P21-activated kinase 1 (PAK1) stimulates growth and metastasis of colorectal cancer (CRC) through activation of multiple signalling pathways. Up-regulation of CRC stem cell markers by PAK1 also contributes to the resistance of CRC to 5-fluorouracil. The aim of this study was to investigate the effect of PAK1 depletion and inhibition on the immune system and on intestinal tumour formation in APC∆14/+ mice. METHODS The PAK1 KO APC∆14/+ mice were generated by cross-breeding of PAK1 KO mice with APC∆14/+ mice. Splenic lymphocytes were analysed by flow cytometry, and immunohistochemical staining. The numbers of intestinal tumours were counted. Blood cells were also counted. RESULTS Compared to APC+/+ mice, the numbers of both T- and B- lymphocytes were reduced in the spleen of APC∆14/+ mice. Depletion of PAK1 in APC∆14/+ mice increased the numbers of splenic T- and B- lymphocytes and decreased the numbers of intestinal tumours. Treatment of APC∆14/+ mice with PF-3758309, a PAK inhibitor reduced the numbers of intestinal tumours and increased the numbers of blood lymphocytes. CONCLUSION Depletion of active PAK1 up-regulates the immune system of APC∆14/+ mice and suppresses intestinal tumour development. These observations suggest an important role for PAK1 in the immune response to tumours.
Collapse
Affiliation(s)
- Nhi Huynh
- Department of Surgery, University of Melbourne, Austin Health, Studley Rd, Heidelberg, VIC, 3084, Australia
| | - Kai Wang
- Department of Surgery, University of Melbourne, Austin Health, Studley Rd, Heidelberg, VIC, 3084, Australia
| | - Mildred Yim
- Department of Surgery, University of Melbourne, Austin Health, Studley Rd, Heidelberg, VIC, 3084, Australia
| | - Chelsea J Dumesny
- Department of Surgery, University of Melbourne, Austin Health, Studley Rd, Heidelberg, VIC, 3084, Australia
| | - Mauro S Sandrin
- Department of Surgery, University of Melbourne, Austin Health, Studley Rd, Heidelberg, VIC, 3084, Australia
| | - Graham S Baldwin
- Department of Surgery, University of Melbourne, Austin Health, Studley Rd, Heidelberg, VIC, 3084, Australia
| | - Mehrdad Nikfarjam
- Department of Surgery, University of Melbourne, Austin Health, Studley Rd, Heidelberg, VIC, 3084, Australia
| | - Hong He
- Department of Surgery, University of Melbourne, Austin Health, Studley Rd, Heidelberg, VIC, 3084, Australia.
| |
Collapse
|
46
|
Prieur A, Cappellini M, Habif G, Lefranc MP, Mazard T, Morency E, Pascussi JM, Flacelière M, Cahuzac N, Vire B, Dubuc B, Durochat A, Liaud P, Ollier J, Pfeiffer C, Poupeau S, Saywell V, Planque C, Assenat E, Bibeau F, Bourgaux JF, Pujol P, Sézeur A, Ychou M, Joubert D. Targeting the Wnt Pathway and Cancer Stem Cells with Anti-progastrin Humanized Antibodies as a Potential Treatment for K-RAS-Mutated Colorectal Cancer. Clin Cancer Res 2017; 23:5267-5280. [PMID: 28600477 DOI: 10.1158/1078-0432.ccr-17-0533] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/27/2017] [Accepted: 06/05/2017] [Indexed: 12/11/2022]
Abstract
Purpose: Patients with metastatic colorectal cancer suffer from disease relapse mainly due to cancer stem cells (CSC). Interestingly, they have an increased level of blood progastrin, a tumor-promoting peptide essential for the self-renewal of colon CSCs, which is also a direct β-catenin/TCF4 target gene. In this study, we aimed to develop a novel targeted therapy to neutralize secreted progastrin to inhibit Wnt signaling, CSCs, and reduce relapses.Experimental Design: Antibodies (monoclonal and humanized) directed against progastrin were produced and selected for target specificity and affinity. After validation of their effectiveness on survival of colorectal cancer cell lines harboring B-RAF or K-RAS mutations, their efficacy was assessed in vitro and in vivo, alone or concomitantly with chemotherapy, on CSC self-renewal capacity, tumor recurrence, and Wnt signaling.Results: We show that anti-progastrin antibodies decrease self-renewal of CSCs both in vitro and in vivo, either alone or in combination with chemotherapy. Furthermore, migration and invasion of colorectal cancer cells are diminished; chemosensitivity is prolonged in SW620 and HT29 cells and posttreatment relapse is significantly delayed in T84 cells, xenografted nude mice. Finally, we show that the Wnt signaling activity in vitro is decreased, and, in transgenic mice developing Wnt-driven intestinal neoplasia, the tumor burden is alleviated, with an amplification of cell differentiation in the remaining tumors.Conclusions: Altogether, these data show that humanized anti-progastrin antibodies might represent a potential new treatment for K-RAS-mutated colorectal patients, for which there is a crucial unmet medical need. Clin Cancer Res; 23(17); 5267-80. ©2017 AACR.
Collapse
Affiliation(s)
| | | | | | | | - Thibault Mazard
- Institut Régional du Cancer de Montpellier, Montpellier, France
| | | | | | | | | | | | | | | | | | | | | | | | | | - Chris Planque
- Institut de Génomique Fonctionnelle, Montpellier, France
| | - Eric Assenat
- Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Frédéric Bibeau
- Institut Régional du Cancer de Montpellier, Montpellier, France
| | | | - Pascal Pujol
- Departement d'oncogénétique clinique, CHRU Montpellier, Montpellier, France
| | - Alain Sézeur
- Groupe Hospitalier Diaconesses Croix St Simon Chirurgie Digestive, Paris, France
| | - Marc Ychou
- Institut Régional du Cancer de Montpellier, Montpellier, France
| | | |
Collapse
|
47
|
Sobecki M, Mrouj K, Colinge J, Gerbe F, Jay P, Krasinska L, Dulic V, Fisher D. Cell-Cycle Regulation Accounts for Variability in Ki-67 Expression Levels. Cancer Res 2017; 77:2722-2734. [PMID: 28283655 DOI: 10.1158/0008-5472.can-16-0707] [Citation(s) in RCA: 229] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/08/2016] [Accepted: 03/02/2017] [Indexed: 11/16/2022]
Abstract
The cell proliferation antigen Ki-67 is widely used in cancer histopathology, but estimations of Ki-67 expression levels are inconsistent and understanding of its regulation is limited. Here we show that cell-cycle regulation underlies variable Ki-67 expression in all situations analyzed, including nontransformed human cells, normal mouse intestinal epithelia and adenomas, human cancer cell lines with or without drug treatments, and human breast and colon cancers. In normal cells, Ki-67 was a late marker of cell-cycle entry; Ki-67 mRNA oscillated with highest levels in G2 while protein levels increased throughout the cell cycle, peaking in mitosis. Inhibition of CDK4/CDK6 revealed proteasome-mediated Ki-67 degradation in G1 After cell-cycle exit, low-level Ki-67 expression persisted but was undetectable in fully quiescent differentiated cells or senescent cells. CDK4/CDK6 inhibition in vitro and in tumors in mice caused G1 cell-cycle arrest and eliminated Ki-67 mRNA in RB1-positive cells but had no effect in RB1-negative cells, which continued to proliferate and express Ki-67. Thus, Ki-67 expression varies due to cell-cycle regulation, but it remains a reliable readout for effects of CDK4/CDK6 inhibitors on cell proliferation. Cancer Res; 77(10); 2722-34. ©2017 AACR.
Collapse
Affiliation(s)
| | - Karim Mrouj
- IGMM, CNRS Univ. Montpellier, Montpellier, France
| | | | - François Gerbe
- IGF, CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - Philippe Jay
- IGF, CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | | | | | | |
Collapse
|
48
|
Yoshikawa T, Wu J, Otsuka M, Kishikawa T, Suzuki N, Takata A, Ohno M, Ishibashi R, Yamagami M, Nakagawa R, Kato N, Miyazawa M, Han J, Koike K. Repression of MicroRNA Function Mediates Inflammation-associated Colon Tumorigenesis. Gastroenterology 2017; 152:631-643. [PMID: 27825961 DOI: 10.1053/j.gastro.2016.10.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 10/16/2016] [Accepted: 10/31/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Little is known about the mechanisms by which chronic inflammation contributes to carcinogenesis, such as the development of colon tumors in patients with inflammatory bowel diseases. Specific microRNA (miRNAs) can function as suppressors or oncogenes, and widespread alterations in miRNA expression have been associated with tumorigenesis. We studied whether alterations in miRNA function contribute to inflammation-associated colon carcinogenesis. METHODS We studied the effects of inflammatory cytokines, such as tumor necrosis factor, interleukin-1α (IL1A), and IL1β (IL1B), on miRNA function, measured by activity of reporter constructs containing miRNA-binding sites in their 3' untranslated regions, in human 293T embryonic kidney, Caco-2, HT29, and HCT116 colon carcinoma cells, as well as dicer+/+ and dicer-/-, and Apobec3+/+ and Apobec3-/- mouse embryonic fibroblasts. Cells were analyzed by immunoblots, immunohistochemistry, and flow cytometry. We generated transgenic mice expressing reporter constructs regulated by LET7B, MIR122, and MIR29b response elements; some mice were given injections of miRNA inhibitors (anti-MIR122 or anti-LET7B), a negative control, or tumor necrosis factor. Liver tissues were collected and analyzed by immunoblotting. Reporter mice were given azoxymethane followed by dextran sulfate sodium to induce colitis and colon tumors; some mice were given the ROCK inhibitor fasudil along with these agents (ROCK inhibitors increase miRNA function). Colon tissues were collected and analyzed by immunohistochemistry, immunoblots, and fluorescence microscopy. RESULTS Incubation of cell lines with inflammatory cytokines reduced the ability of miRNAs to down-regulate expression from reporter constructs; dicer was required for this effect, so these cytokines relieve miRNA-dependent reductions in expression. The cytokines promoted degradation of APOBEC3G, which normally promotes miRNA loading into argonaute 2-related complexes. Mice with colitis had reduced miRNA function, based on increased expression of reporter genes. Administration of fasudil to mice did not reduce the severity of colitis that developed but greatly reduced the numbers of colon tumors formed (mean 2 tumors/colon in mice given fasudil vs 9 tumors/colon in mice given control agent). We made similar observations in IL10-deficient mice. CONCLUSIONS We found inflammatory cytokines to reduce the activities of miRNAs. In mice with colitis, activities of miRNAs are reduced; administration of an agent that increases miRNA function prevents colon tumor formation in these mice. This pathway might be targeted to prevent colon carcinogenesis in patients with inflammatory bowel diseases.
Collapse
Affiliation(s)
- Takeshi Yoshikawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jianfeng Wu
- State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University, Xiamen, China
| | - Motoyuki Otsuka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Japan Science and Technology Agency, PRESTO, Kawaguchi, Saitama, Japan.
| | - Takahiro Kishikawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nobumi Suzuki
- Division of Gastroenterology, The Institute for Adult Diseases, Asahi Life Foundation, Tokyo, Japan
| | - Akemi Takata
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Motoko Ohno
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Rei Ishibashi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mari Yamagami
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryo Nakagawa
- Division of Advanced Genome Medicine, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Naoya Kato
- Division of Advanced Genome Medicine, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masaaki Miyazawa
- Department of Immunology, Faculty of Medicine, Kindai University, Osaka-Sayama, Osaka, Japan
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University, Xiamen, China.
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
49
|
Platet N, Hinkel I, Richert L, Murdamoothoo D, Moufok-Sadoun A, Vanier M, Lavalle P, Gaiddon C, Vautier D, Freund JN, Gross I. The tumor suppressor CDX2 opposes pro-metastatic biomechanical modifications of colon cancer cells through organization of the actin cytoskeleton. Cancer Lett 2017; 386:57-64. [DOI: 10.1016/j.canlet.2016.10.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 10/20/2016] [Accepted: 10/25/2016] [Indexed: 02/07/2023]
|
50
|
Indispensable role of Notch ligand-dependent signaling in the proliferation and stem cell niche maintenance of APC-deficient intestinal tumors. Biochem Biophys Res Commun 2016; 482:1296-1303. [PMID: 27939883 DOI: 10.1016/j.bbrc.2016.12.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 12/05/2016] [Indexed: 12/12/2022]
Abstract
Ligand-dependent activation of Notch signaling is required to maintain the stem-cell niche of normal intestinal epithelium. However, the precise role of Notch signaling in the maintenance of the intestinal tumor stem cell niche and the importance of the RBPJ-independent non-canonical pathway in intestinal tumors remains unknown. Here we show that Notch signaling was activated in LGR5+ve cells of APC-deficient mice intestinal tumors. Accordingly, Notch ligands, including Jag1, Dll1, and Dll4, were expressed in these tumors. In vitro studies using tumor-derived organoids confirmed the intrinsic Notch activity-dependent growth of tumor cells. Surprisingly, the targeted deletion of Jag1 but not RBPJ in LGR5+ve tumor-initiating cells resulted in the silencing of Hes1 expression, disruption of the tumor stem cell niche, and dramatic reduction in the proliferation activity of APC-deficient intestinal tumors in vivo. Thus, our results highlight the importance of ligand-dependent non-canonical Notch signaling in the proliferation and maintenance of the tumor stem cell niche in APC-deficient intestinal adenomas.
Collapse
|