1
|
Pastorczak A, Urbanska Z, Styka B, Miarka-Walczyk K, Sedek L, Wypyszczak K, Wakulinska A, Nowicka Z, Szczepański T, Stańczak M, Fendler W, Kowalczyk J, Młynarski W, Lejman M. Genetic hallmarks and clinical implications of chromothripsis in childhood T-cell acute lymphoblastic leukemia. Leukemia 2024; 38:2344-2354. [PMID: 39192035 PMCID: PMC11518979 DOI: 10.1038/s41375-024-02370-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/11/2024] [Accepted: 07/31/2024] [Indexed: 08/29/2024]
Abstract
Chromothripsis (cth) is a form of genomic instability leading to massive de novo structural chromosome rearrangements in a one-time catastrophic event. It can cause cancer-promoting alterations, such as loss of sequences for tumor-suppressor genes, formation of oncogenic fusions, and oncogene amplifications. We investigated the genetic background and clinical significance of cth in childhood T-cell acute lymphoblastic leukemia (T-ALL) patients. For this purpose, whole-genome copy number alterations were analyzed in 173 children with newly diagnosed T-ALL using high-density microarrays. Cth was identified in 10 T-ALL samples (5.78%). In six of them, cth occurred in a constitutional background of Nijmegen breakage syndrome (n = 5) or Li-Fraumeni syndrome (n = 1). Cth generated alterations, including deletions of CDKN2A/B (n = 4) and EZH2 (n = 4), amplifications of CDK6 (n = 2), and NUP214::ABL1 and TFG::GPR128 fusions. Cth-positive leukemias exhibited deletions involving the tumor-suppressor genes RB1 (n = 3), TP53 (n = 1) and MED12 (n = 2). Cth-positive T-ALL patients had a lower probability of 5-year overall survival (OS) [0.56 vs. 0.81; hazard ratio (HR) = 4.14 (1.42-12.02) p = 0.017] as did 5-year event-free survival [0.45 vs. 0.74; HR = 3.91 (1.52-10.08); p = 0.012]. Chromothripsis is an infrequent genomic phenomenon in pediatric T-ALL but is significantly associated with cancer-predisposing syndromes and may associate with inferior prognosis.
Collapse
Affiliation(s)
- Agata Pastorczak
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland.
- Department of Genetic Predisposition to Cancer, Medical University of Lodz, Lodz, Poland.
| | - Zuzanna Urbanska
- Department of Genetic Predisposition to Cancer, Medical University of Lodz, Lodz, Poland
| | - Borys Styka
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, Lublin, Poland
| | | | - Lukasz Sedek
- Department of Pediatric Hematology and Oncology, Medical University of Silesia, Zabrze, Poland
| | - Kamila Wypyszczak
- Department of Genetic Predisposition to Cancer, Medical University of Lodz, Lodz, Poland
| | - Anna Wakulinska
- Department of Oncology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Zuzanna Nowicka
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Tomasz Szczepański
- Department of Pediatric Hematology and Oncology, Medical University of Silesia, Zabrze, Poland
| | - Marcin Stańczak
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, USA
| | - Jerzy Kowalczyk
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, Lublin, Poland
| | - Wojciech Młynarski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
- Institute of Medical Expertises, Lodz, Poland
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
2
|
Rivas‐Delgado A, López C, Clot G, Nadeu F, Grau M, Frigola G, Bosch‐Schips J, Radke J, Ishaque N, Alcoceba M, Tapia G, Luizaga L, Barcena C, Kelleher N, Villamor N, Baumann T, Muntañola A, Sancho‐Cia JM, García‐Sancho AM, Gonzalez‐Barca E, Matutes E, Brito JA, Karube K, Salaverria I, Enjuanes A, Wiemann S, Heppner FL, Siebert R, Climent F, Campo E, Giné E, López‐Guillermo A, Beà S. Testicular large B-cell lymphoma is genetically similar to PCNSL and distinct from nodal DLBCL. Hemasphere 2024; 8:e70024. [PMID: 39380845 PMCID: PMC11456803 DOI: 10.1002/hem3.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/15/2024] [Accepted: 08/13/2024] [Indexed: 10/10/2024] Open
Abstract
Testicular large B-cell lymphoma (TLBCL) is an infrequent and aggressive lymphoma arising in an immune-privileged site and has recently been recognized as a distinct entity from diffuse large B-cell lymphoma (DLBCL). We describe the genetic features of TLBCL and compare them with published series of nodal DLBCL and primary large B-cell lymphomas of the CNS (PCNSL). We collected 61 patients with TLBCL. We performed targeted next-generation sequencing, copy number arrays, and fluorescent in situ hybridization to assess chromosomal rearrangements in 40 cases with available material. Seventy percent of the cases showed localized stages. BCL6 rearrangements were detected in 36% of cases, and no concomitant BCL2 and MYC rearrangements were found. TLBCL had fewer copy number alterations (p < 0.04) but more somatic variants (p < 0.02) than nodal DLBCL and had more frequent 18q21.32-q23 (BCL2) gains and 6q and 9p21.3 (CDKN2A/B) deletions. PIM1, MYD88 L265P , CD79B, TBL1XR1, MEF2B, CIITA, EP300, and ETV6 mutations were more frequent in TLBCL, and BCL10 mutations in nodal DLBCL. There were no major genetic differences between TLBCL and PCNSL. Localized or disseminated TLBCL displayed similar genomic profiles. Using LymphGen, the majority of cases were classified as MCD. However, we observed a subgroup of patients classified as BN2, both in localized and disseminated TLBCL, suggesting a degree of genetic heterogeneity in the TLBCL genetic profile. TLBCL has a distinctive genetic profile similar to PCNSL, supporting its recognition as a separate entity from DLBCL and might provide information to devise targeted therapeutic approaches.
Collapse
Affiliation(s)
- Alfredo Rivas‐Delgado
- Department of HematologyHospital ClínicBarcelonaSpain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Grupo Español de Linfomas y Trasplante de Médula Ósea (GELTAMO)MadridSpain
| | - Cristina López
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
- Departament de Fonaments ClínicsUniversitat de BarcelonaBarcelonaSpain
| | - Guillem Clot
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
| | - Ferran Nadeu
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
| | - Marta Grau
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
| | - Gerard Frigola
- Department of Pathology, Hospital ClínicHematopathology SectionBarcelonaSpain
| | - Jan Bosch‐Schips
- Department of PathologyHospital Universitari de Bellvitge, IDIBELLHospitalet de LlobregatSpain
| | - Josefine Radke
- Department of NeuropathologyCharité‐Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, Berlin Institute of HealthBerlinGermany
- Institute of Pathology, Universitätsmedizin GreifswaldGreifswaldGermany
| | - Naveed Ishaque
- Berlin Institute of Health (BIH) at CharitéUniversitätsmedizin Berlin, Center for Digital HealthBerlinGermany
| | - Miguel Alcoceba
- Grupo Español de Linfomas y Trasplante de Médula Ósea (GELTAMO)MadridSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
- Department of HematologyHospital Universitario de Salamanca, IBSALSalamancaSpain
- Department of HematologyCentro de Investigación del Cáncer‐IBMCC (USAL‐CSIC)SalamancaSpain
| | - Gustavo Tapia
- Departments of Hematology and Pathology, Institut Català d'OncologiaHospital Universitari Germans Trias i PujolBadalonaSpain
- Departament de Ciències MorfològiquesUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Luis Luizaga
- Departments of Hematology and PathologyHospital Universitari Mutua de TerrassaTerrassaSpain
| | - Carmen Barcena
- Departments of Hematology and PathologyHospital Universitario 12 de OctubreMadridSpain
| | - Nicholas Kelleher
- Grupo Español de Linfomas y Trasplante de Médula Ósea (GELTAMO)MadridSpain
- Department of HematologyInstitut Català d'Oncologia‐Hospital Universitari de Girona Doctor Josep TruetaGironaSpain
| | - Neus Villamor
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
- Department of Pathology, Hospital ClínicHematopathology SectionBarcelonaSpain
| | - Tycho Baumann
- Grupo Español de Linfomas y Trasplante de Médula Ósea (GELTAMO)MadridSpain
- Departments of Hematology and PathologyHospital Universitario 12 de OctubreMadridSpain
| | - Ana Muntañola
- Grupo Español de Linfomas y Trasplante de Médula Ósea (GELTAMO)MadridSpain
- Departments of Hematology and PathologyHospital Universitari Mutua de TerrassaTerrassaSpain
| | - Juan M. Sancho‐Cia
- Grupo Español de Linfomas y Trasplante de Médula Ósea (GELTAMO)MadridSpain
- Departments of Hematology and Pathology, Institut Català d'OncologiaHospital Universitari Germans Trias i PujolBadalonaSpain
| | - Alejandro M. García‐Sancho
- Grupo Español de Linfomas y Trasplante de Médula Ósea (GELTAMO)MadridSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
- Department of HematologyHospital Universitario de Salamanca, IBSALSalamancaSpain
- Department of HematologyCentro de Investigación del Cáncer‐IBMCC (USAL‐CSIC)SalamancaSpain
| | - Eva Gonzalez‐Barca
- Grupo Español de Linfomas y Trasplante de Médula Ósea (GELTAMO)MadridSpain
- Departament de Fonaments ClínicsUniversitat de BarcelonaBarcelonaSpain
- Department of HematologyInstitut Català d'Oncologia‐Hospital Duran i Reynals, Hospitalet de Lobregat, IDIBELLSpain
| | - Estella Matutes
- Department of Pathology, Hospital ClínicHematopathology SectionBarcelonaSpain
| | | | - Kennosuke Karube
- Department of Pathology and Laboratory MedicineNagoya University HospitalNagoyaJapan
| | - Itziar Salaverria
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
| | - Anna Enjuanes
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
| | - Stefan Wiemann
- Division of Molecular Genome AnalysisGerman Cancer Research Center (DKFZ)HeidelbergGermany
- German Cancer Consortium (DKTK)Partner Site Charité BerlinBerlinGermany
| | - Frank L. Heppner
- Department of NeuropathologyCharité‐Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, Berlin Institute of HealthBerlinGermany
- German Cancer Consortium (DKTK)Partner Site Charité BerlinBerlinGermany
| | - Reiner Siebert
- Institute of Human GeneticsUlm University & Ulm University Medical CenterUlmGermany
| | - Fina Climent
- Grupo Español de Linfomas y Trasplante de Médula Ósea (GELTAMO)MadridSpain
- Department of PathologyHospital Universitari de Bellvitge, IDIBELLHospitalet de LlobregatSpain
| | - Elías Campo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
- Departament de Fonaments ClínicsUniversitat de BarcelonaBarcelonaSpain
- Department of Pathology, Hospital ClínicHematopathology SectionBarcelonaSpain
| | - Eva Giné
- Department of HematologyHospital ClínicBarcelonaSpain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Grupo Español de Linfomas y Trasplante de Médula Ósea (GELTAMO)MadridSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
| | - Armando López‐Guillermo
- Department of HematologyHospital ClínicBarcelonaSpain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Grupo Español de Linfomas y Trasplante de Médula Ósea (GELTAMO)MadridSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
- Departament de MedicinaUniversitat de BarcelonaBarcelonaSpain
| | - Silvia Beà
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Grupo Español de Linfomas y Trasplante de Médula Ósea (GELTAMO)MadridSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
- Departament de Fonaments ClínicsUniversitat de BarcelonaBarcelonaSpain
- Department of Pathology, Hospital ClínicHematopathology SectionBarcelonaSpain
| |
Collapse
|
3
|
Cirillo E, Tarallo A, Toriello E, Carissimo A, Giardino G, De Rosa A, Damiano C, Soresina A, Badolato R, Dellepiane RM, Baselli LA, Carrabba M, Fabio G, Bertolini P, Montin D, Conti F, Romano R, Pozzi E, Ferrero G, Roncarati R, Ferracin M, Brusco A, Parenti G, Pignata C. MicroRNA dysregulation in ataxia telangiectasia. Front Immunol 2024; 15:1444130. [PMID: 39224604 PMCID: PMC11366618 DOI: 10.3389/fimmu.2024.1444130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Ataxia telangiectasia (AT) is a rare disorder characterized by neurodegeneration, combined immunodeficiency, a predisposition to malignancies, and high clinical variability. Profiling of microRNAs (miRNAs) may offer insights into the underlying mechanisms of complex rare human diseases, as miRNAs play a role in various biological functions including proliferation, differentiation, and DNA repair. In this study, we investigate the differential expression of miRNAs in samples from AT patients to identify miRNA patterns and analyze how these patterns are related to the disease. Methods We enrolled 20 AT patients (mean age 17.7 ± 9.6 years old) and collected clinical and genetic data. We performed short non-coding RNA-seq analysis on peripheral blood mononuclear cells (PBMCs) and fibroblasts to compare the miRNA expression profile between AT patients and controls. Results We observed 42 differentially expressed (DE)-miRNAs in blood samples and 26 in fibroblast samples. Among these, three DE-miRNAs, miR-342-3p, miR-30a-5p, and miR-195-5p, were further validated in additional AT samples, confirming their dysregulation. Discussion We identified an AT-related miRNA signature in blood cells and fibroblast samples collected from a group of AT patients. We also predicted several dysregulated pathways, primarily related to cancer, immune system control, or inflammatory processes. The findings suggest that miRNAs may provide insights into the pathophysiology and tumorigenesis of AT and have the potential to serve as useful biomarkers in cancer research.
Collapse
Affiliation(s)
- Emilia Cirillo
- Department of Translational Medical Sciences, Pediatric Section, Federico II University of Naples, Naples, Italy
| | - Antonietta Tarallo
- Department of Translational Medical Sciences, Pediatric Section, Federico II University of Naples, Naples, Italy
| | - Elisabetta Toriello
- Department of Translational Medical Sciences, Pediatric Section, Federico II University of Naples, Naples, Italy
| | | | - Giuliana Giardino
- Department of Translational Medical Sciences, Pediatric Section, Federico II University of Naples, Naples, Italy
| | - Antonio De Rosa
- Department of Translational Medical Sciences, Pediatric Section, Federico II University of Naples, Naples, Italy
| | - Carla Damiano
- Department of Translational Medical Sciences, Pediatric Section, Federico II University of Naples, Naples, Italy
| | - Annarosa Soresina
- Department of Clinical and Experimental Sciences, University of Brescia and Department of Pediatrics, ASST-Spedali Civili, Brescia, Italy
| | - Raffaele Badolato
- Department of Clinical and Experimental Sciences, University of Brescia and Department of Pediatrics, ASST-Spedali Civili, Brescia, Italy
| | - Rosa Maria Dellepiane
- Pediatric Area, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Lucia A. Baselli
- Pediatric Area, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maria Carrabba
- Department of Internal Medicine, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giovanna Fabio
- Department of Internal Medicine, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Patrizia Bertolini
- Unità Operativa Complessa (U.O.C) di Pediatria e Oncoematologia, Azienda Ospedaliero Universitaria Parma, Parma, Italy
| | - Davide Montin
- Department of Pediatric and Public Health Sciences, University of Torino, Torino, Italy
| | - Francesca Conti
- Pediatric Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Roberta Romano
- Department of Translational Medical Sciences, Pediatric Section, Federico II University of Naples, Naples, Italy
| | - Elisa Pozzi
- Centro Regionale di Biologia Molecolare – Arpa Piemonte, Torino, Italy
| | - Giulio Ferrero
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Roberta Roncarati
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (CNR), Bologna, Italy
| | - Manuela Ferracin
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Alfredo Brusco
- Department of Neurosciences Rita Levi Montalcini, University of Torino, Torino, Italy
- Unit of Medical Genetics, Città della Salute e della Scienza University Hospital, Torino, Italy
| | - Giancarlo Parenti
- Department of Translational Medical Sciences, Pediatric Section, Federico II University of Naples, Naples, Italy
| | - Claudio Pignata
- Department of Translational Medical Sciences, Pediatric Section, Federico II University of Naples, Naples, Italy
| |
Collapse
|
4
|
Zhang M, He D, Zhang Y, Cheng K, Li H, Zhou Y, Long Q, Liu R, Liu J. Chromothripsis is a novel biomarker for prognosis and differentiation diagnosis of pancreatic neuroendocrine neoplasms. MedComm (Beijing) 2024; 5:e623. [PMID: 38988495 PMCID: PMC11234462 DOI: 10.1002/mco2.623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/22/2024] [Accepted: 05/20/2024] [Indexed: 07/12/2024] Open
Abstract
This study aimed to identify the role of chromothripsis as a novel biomarker in the prognosis and differentiation diagnosis of pancreatic neuroendocrine neoplasms (pNENs). We conducted next-generation gene sequencing in a cohort of 30 patients with high-grade (G3) pNENs. As a reference, a similar analysis was also performed on 25 patients with low-grade (G1/G2) pancreatic neuroendocrine tumors (pNETs). Chromothripsis and its relationship with clinicopathological features and prognosis were investigated. The results showed that DNA damage response and repair gene alteration and TP53 mutation were found in 29 and 11 patients, respectively. A total of 14 out of 55 patients had chromothripsis involving different chromosomes. Chromothripsis had a close relationship with TP53 alteration and higher grade. In the entire cohort, chromothripsis was associated with a higher risk of distant metastasis; both chromothripsis and metastasis (ENETS Stage IV) suggested a significantly shorter overall survival (OS). Importantly, in the high-grade pNENs group, chromothripsis was the only independent prognostic indicator significantly associated with a shorter OS, other than TP53 alteration or pathological pancreatic neuroendocrine carcinomas (pNECs) diagnosis. Chromothripsis can guide worse prognosis in pNENs, and help differentiate pNECs from high-grade (G3) pNETs.
Collapse
Affiliation(s)
- Ming‐Yi Zhang
- Department of Biotherapy, West China HospitalSichuan UniversityChengduSichuanChina
| | - Du He
- Department of Pathology, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yi Zhang
- Center of Life SciencesPeking UniversityBeijingChina
| | - Ke Cheng
- Department of Biotherapy, West China HospitalSichuan UniversityChengduSichuanChina
| | - Hong‐Shuai Li
- Department of Biotherapy, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yu‐Wen Zhou
- Department of Biotherapy, West China HospitalSichuan UniversityChengduSichuanChina
| | - Qiong‐Xian Long
- Department of Pathology, Nan Chong Central Hospitalthe Second Affiliated Hospital of North Sichuan Medical CollegeNanchongSichuanChina
| | - Rui‐Zhi Liu
- School of Medical and Life SciencesChengdu University of Traditional Chinese MedicineChengduSichuanChina
| | - Ji‐Yan Liu
- Department of Biotherapy, West China HospitalSichuan UniversityChengduSichuanChina
- Sichuan Clinical Research Center of BiotherapyChengduSichuanChina
- Department of OncologyThe First People's Hospital of ZiyangZiyangSichuanChina
| |
Collapse
|
5
|
Lagunas-Rangel FA. Chromothripsis in hematologic malignancies. Exp Hematol 2024; 132:104172. [PMID: 38309572 DOI: 10.1016/j.exphem.2024.104172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/05/2024]
Abstract
Chromotrypsis, a phenomenon resulting from catastrophic mitotic errors and genomic instability, is defined by the occurrence of multiple DNA double-strand breaks in one or more chromosomes, subsequently subject to error-prone repair mechanisms. This unique process results in extensive rearrangements in the affected chromosomes, leading to loss of tumor suppressor function, the creation of fusion genes, and/or activation of oncogenes. The importance of chromothripsis in cancer, especially in the field of hematologic disorders, underscores the intricate interplay between genomic instability and the genesis of alterations that contribute to cancer. This accentuates the critical need to unravel these complex processes for the targeted development of specific therapeutic interventions. This review delves into the analysis of chromothripsis cases in various hematologic diseases, such as leukemia, lymphoma, and myeloma, with the aim of unveiling its profound impact on patient prognosis. Furthermore, the study explores the intricate molecular mechanisms underlying chromothripsis and investigates its consequences.
Collapse
Affiliation(s)
- Francisco Alejandro Lagunas-Rangel
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico.
| |
Collapse
|
6
|
Strullu M, Cousin E, de Montgolfier S, Fenwarth L, Gachard N, Arnoux I, Duployez N, Girard S, Guilmatre A, Lafage M, Loosveld M, Petit A, Perrin L, Vial Y, Saultier P. [Suspicion of constitutional abnormality at diagnosis of childhood leukemia: Update of the leukemia committee of the French Society of Childhood Cancers]. Bull Cancer 2024; 111:291-309. [PMID: 38267311 DOI: 10.1016/j.bulcan.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/06/2023] [Accepted: 11/17/2023] [Indexed: 01/26/2024]
Abstract
The spectrum of childhood leukemia predisposition syndromes has grown significantly over last decades. These predisposition syndromes mainly involve CEBPA, ETV6, GATA2, IKZF1, PAX5, RUNX1, SAMD9/SAMD9L, TP53, RAS-MAPK pathway, DNA mismatch repair system genes, genes associated with Fanconi anemia, and trisomy 21. The clinico-biological features leading to the suspicion of a leukemia predisposition are highly heterogeneous and require varied exploration strategies. The study of the initial characteristics of childhood leukemias includes high-throughput sequencing techniques, which have increased the frequency of situations where a leukemia predisposing syndrome is suspected. Identification of a leukemia predisposition syndrome can have a major impact on the choice of chemotherapy, the indication for hematopoietic stem cell transplantation, and screening for associated malformations and pathologies. The diagnosis of a predisposition syndrome can also lead to the exploration of family members and genetic counseling. Diagnosis and management should be based on dedicated and multidisciplinary care networks.
Collapse
Affiliation(s)
- Marion Strullu
- Hématologie et immunologie pédiatrique, hôpital Robert-Debré, GHU AP-HP Nord-Université Paris Cité, Paris, France; Inserm UMR_S1131, Institut universitaire d'hématologie, université Paris Cité, Paris cité, Paris, France.
| | - Elie Cousin
- Service d'onco-hématologie pédiatrique, CHU de Rennes, Rennes, France
| | - Sandrine de Montgolfier
- Aix Marseille université, Inserm, IRD, SESSTIM, sciences économiques & sociales de la santé & traitement de l'information médicale, ISSPAM, Marseille, France
| | - Laurene Fenwarth
- Département de génétique clinique, laboratoire d'hématologie, unité de génétique moléculaire des hémopathies malignes, CHU de Lille, université de Lille, Lille, France
| | | | | | - Nicolas Duployez
- Laboratoire d'hématologie, unité de génétique moléculaire des hémopathies malignes, CHU de Lille, université de Lille, Lille, France
| | - Sandrine Girard
- Service d'hématologie biologique, centre de biologie et pathologie Est, LBMMS, hospices civils de Lyon, Lyon, France
| | - Audrey Guilmatre
- Service d'hématologie et oncologie pédiatrique, hôpital Armand-Trousseau, AP-HP.Sorbonne Université, Paris, France
| | - Marina Lafage
- CRCM, Inserm UMR1068, CNRS UMR7258, Aix Marseille université U105, laboratoire d'hématologie, CHU Timone, Marseille, France
| | - Marie Loosveld
- CRCM, Inserm UMR1068, CNRS UMR7258, Aix Marseille université U105, laboratoire d'hématologie, CHU Timone, Marseille, France
| | - Arnaud Petit
- Service d'hématologie et oncologie pédiatrique, hôpital Armand-Trousseau, AP-HP.Sorbonne Université, Paris, France
| | - Laurence Perrin
- Génétique clinique, hôpital Robert-Debré, GHU AP-HP Nord-Université Paris cité, Paris, France
| | - Yoan Vial
- Inserm UMR_S1131, Institut universitaire d'hématologie, université Paris Cité, Paris cité, Paris, France; Laboratoire de génétique moléculaire, hôpital Robert-Debré, GHU AP-HP Nord-Université Paris cité, Paris, France
| | - Paul Saultier
- Service d'hématologie immunologie oncologie pédiatrique, Inserm, INRAe, C2VN, hôpital d'Enfants de la Timone, Aix Marseille université, AP-HM, Marseille, France
| |
Collapse
|
7
|
Gachard N, Lafage-Pochitaloff M, Quessada J, Auger N, Collonge-Rame MA. Cytogenetics in the management of hematologic neoplasms with germline predisposition: guidelines from the Groupe Francophone de Cytogénétique Hématologique (GFCH). Curr Res Transl Med 2023; 71:103416. [PMID: 37865978 DOI: 10.1016/j.retram.2023.103416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/21/2023] [Accepted: 09/29/2023] [Indexed: 10/24/2023]
Abstract
The number of predisposing genes is continuously growing with the widespread availability of DNA sequencing, increasing the prevalence of hematologic malignancies with germline predisposition. Cytogenetic analyses provide an effective approach for the recognition of these malignancies with germline predisposition, which is critical for proper diagnosis, optimal treatment and genetic counseling. Based on the World Health Organization and the international consensus classifications as well as the European LeukemiaNet recommendations, this review first presents an advanced classification of neoplasms with germline predisposition focused on the acquired cytogenetic alterations during leukemogenesis. The various genetic rescue mechanisms and the progression to transformation are then explained. The review also outlines the specific constitutional and somatic cytogenetic aberrations indicative of germline predisposition disorders in B-acute lymphoblastic leukemia (ALL), T-ALL, bone marrow failure syndrome and myeloid neoplasms. An emphasis is made on monosomy 7 in the predisposition field, its frequency and diagnosis impact as well as its various circumstances of occurrence. Lastly, we propose cytogenetic technical recommendations and guidelines for clinical reporting of these specific aberrations.
Collapse
Affiliation(s)
- Nathalie Gachard
- Laboratoire d'hématologie, Centre de Biologie et de Recherche en Santé, CHU de Limoges, Limoges 87042, France; UMR CNRS 7276, INSERM U1262 Université de Limoges, Limoges 87025, France.
| | - Marina Lafage-Pochitaloff
- Laboratoire de Cytogénétique Hématologique, Département d'Hématologie, CHU Timone, APHM, Aix Marseille Université, Marseille 13005, France
| | - Julie Quessada
- Laboratoire de Cytogénétique Hématologique, Département d'Hématologie, CHU Timone, APHM, Aix Marseille Université, Marseille 13005, France
| | - Nathalie Auger
- Laboratoire de Cytogénétique -Génétique des Tumeurs - Gustave Roussy - 144 rue Edouard Vaillant, Villejuif 94805, France
| | - Marie-Agnès Collonge-Rame
- Oncobiologie Génétique Bioinformatique, UF Cytogénétique et Génétique Moléculaire, CHU de Besançon, Besançon 25030, France
| |
Collapse
|
8
|
Förster A, Davenport C, Duployez N, Erlacher M, Ferster A, Fitzgibbon J, Göhring G, Hasle H, Jongmans MC, Kolenova A, Kronnie G, Lammens T, Mecucci C, Mlynarski W, Niemeyer CM, Sole F, Szczepanski T, Waanders E, Biondi A, Wlodarski M, Schlegelberger B, Ripperger T. European standard clinical practice - Key issues for the medical care of individuals with familial leukemia. Eur J Med Genet 2023; 66:104727. [PMID: 36775010 DOI: 10.1016/j.ejmg.2023.104727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 02/02/2023] [Accepted: 02/10/2023] [Indexed: 02/12/2023]
Abstract
Although hematologic malignancies (HM) are no longer considered exclusively sporadic, additional awareness of familial cases has yet to be created. Individuals carrying a (likely) pathogenic germline variant (e.g., in ETV6, GATA2, SAMD9, SAMD9L, or RUNX1) are at an increased risk for developing HM. Given the clinical and psychological impact associated with the diagnosis of a genetic predisposition to HM, it is of utmost importance to provide high-quality, standardized patient care. To address these issues and harmonize care across Europe, the Familial Leukemia Subnetwork within the ERN PaedCan has been assigned to draft an European Standard Clinical Practice (ESCP) document reflecting current best practices for pediatric patients and (healthy) relatives with (suspected) familial leukemia. The group was supported by members of the German network for rare diseases MyPred, of the Host Genome Working Group of SIOPE, and of the COST action LEGEND. The ESCP on familial leukemia is proposed by an interdisciplinary team of experts including hematologists, oncologists, and human geneticists. It is intended to provide general recommendations in areas where disease-specific recommendations do not yet exist. Here, we describe key issues for the medical care of familial leukemia that shall pave the way for a future consensus guideline: (i) identification of individuals with or suggestive of familial leukemia, (ii) genetic analysis and variant interpretation, (iii) genetic counseling and patient education, and (iv) surveillance and (psychological) support. To address the question on how to proceed with individuals suggestive of or at risk of familial leukemia, we developed an algorithm covering four different, partially linked clinical scenarios, and additionally a decision tree to guide clinicians in their considerations regarding familial leukemia in minors with HM. Our recommendations cover, not only patients but also relatives that both should have access to adequate medical care. We illustrate the importance of natural history studies and the need for respective registries for future evidence-based recommendations that shall be updated as new evidence-based standards are established.
Collapse
Affiliation(s)
- Alisa Förster
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Claudia Davenport
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Nicolas Duployez
- Department of Hematology, CHU Lille, INSERM, University Lille, Lille, France
| | - Miriam Erlacher
- Division of Pediatric Hematology-Oncology, Department of Pediatric and Adolescent Medicine, University of Freiburg, Freiburg, Germany
| | - Alina Ferster
- Department of Pediatric Rheumatology, Hôpital Universitaire des Enfants Reine Fabiola, Brussels, Belgium
| | - Jude Fitzgibbon
- Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Gudrun Göhring
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Henrik Hasle
- Department of Paediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Marjolijn C Jongmans
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Alexandra Kolenova
- Department of Pediatric Hematology and Oncology, Comenius University Medical School and University Children's Hospital, Bratislava, Slovakia
| | | | - Tim Lammens
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Cristina Mecucci
- Institute of Hematology and Center for Hemato-Oncology Research, University and Hospital of Perugia, Perugia, Italy
| | - Wojciech Mlynarski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Charlotte M Niemeyer
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Francesc Sole
- Josep Carreras Leukemia Research Institute (IJC), Campus ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Tomasz Szczepanski
- Polish Pediatric Leukemia/Lymphoma Study Group, Zabrze, Poland; Medical University of Silesia, Katowice, Poland
| | - Esmé Waanders
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands; Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Andrea Biondi
- Clinica Pediatrica and Centro Ricerca Tettamanti, Università di Milano-Bicocca, Monza, Italy
| | - Marcin Wlodarski
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Tim Ripperger
- Department of Human Genetics, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
9
|
Bosch JVDWT, Hlaváčková E, Derpoorter C, Fischer U, Saettini F, Ghosh S, Farah R, Bogaert D, Wagener R, Loeffen J, Bacon CM, Bomken S. How to recognize inborn errors of immunity in a child presenting with a malignancy: guidelines for the pediatric hemato-oncologist. Pediatr Hematol Oncol 2023; 40:131-146. [PMID: 35913104 DOI: 10.1080/08880018.2022.2085830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/16/2022] [Accepted: 05/27/2022] [Indexed: 02/07/2023]
Abstract
Inborn errors of immunity (IEI) are a group of disorders caused by genetically determined defects in the immune system, leading to infections, autoimmunity, autoinflammation and an increased risk of malignancy. In some cases, a malignancy might be the first sign of an underlying IEI. As therapeutic strategies might be different in these patients, recognition of the underlying IEI by the pediatric hemato-oncologist is important. This article, written by a group of experts in pediatric immunology, hemato-oncology, pathology and genetics, aims to provide guidelines for pediatric hemato-oncologists on how to recognize a possible underlying IEI and what diagnostic tests can be performed, and gives some consideration to treatment possibilities.
Collapse
Affiliation(s)
| | - Eva Hlaváčková
- Department of Clinical Immunology and Allergology, St. Anne s University Hospital in Brno, Brno, Czech Republic
- Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Pediatric Oncology, Brno University Hospital, Brno, Czech Republic
| | - Charlotte Derpoorter
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Ute Fischer
- Department for Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Francesco Saettini
- Department of Pediatric Hematology, Fondazione MBBM, University of Milano-Bicocca, Monza, Italy
| | - Sujal Ghosh
- Department for Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Roula Farah
- Department of pediatrics, University-Medical-Center-Rizk-Hospital, Beirut, Lebanon
| | - Delfien Bogaert
- Department of Pediatrics, Division of Pediatric Hemato-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
- Primary Immunodeficiency Research Lab, Center for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, Ghent, Belgium
| | - Rabea Wagener
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Jan Loeffen
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Chris M Bacon
- Translational & Clinical Research Institute, Wolfson Childhood Cancer Research Centre, Newcastle University, Newcastle upon Tyne, UK
- Department of Cellular Pathology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Simon Bomken
- Translational & Clinical Research Institute, Wolfson Childhood Cancer Research Centre, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
10
|
Urbańska Z, Lejman M, Taha J, Madzio J, Ostrowska K, Miarka-Walczyk K, Wypyszczak K, Styka B, Jakubowska J, Sędek Ł, Szczepański T, Stańczak M, Fendler W, Młynarski W, Pastorczak A. The kinetics of blast clearance are associated with copy number alterations in childhood B-cell acute lymphoblastic leukemia. Neoplasia 2022; 35:100840. [PMID: 36288679 PMCID: PMC9593738 DOI: 10.1016/j.neo.2022.100840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/04/2022] [Indexed: 11/29/2022] Open
Abstract
We analyzed the pattern of whole-genome copy number alterations (CNAs) and their association with the kinetics of blast clearance during the induction treatment among 195 pediatric patients with B-cell precursor acute lymphoblastic leukemia (BCP-ALL) who displayed intermediate or high levels of minimal residual disease (MRD). Using unsupervised hierarchical clustering of CNAs > 5 Mbp, we dissected three clusters of leukemic samples with distinct kinetics of blast clearance [A - early slow responders (n=105), B - patients with persistent leukemia (n=24), C - fast responders with the low but detectable disease at the end of induction (n=66)] that corresponded with the patients' clinical features, the microdeletion profile,the presence of gene fusions and patients survival. Low incidence of large CNAs and chromosomal numerical aberrations occurred in cluster A which included ALL samples showing recurrent microdeletions within the genes encoding transcription factors (i.e., IKZF1, PAX5, ETV6, and ERG), DNA repair genes (XRCC3 and TOX), or harboring chromothriptic pattern of CNAs. Low hyperdiploid karyotype with trisomy 8 or hypodiploidy was predominantly observed in cluster B. Whereas cluster C included almost exclusively high-hyperdiploid ALL samples with concomitant mutations in RAS pathway genes. The pattern of CNAs influences the kinetics of leukemic cell clearance and selected aberrations affecting DNA repair genes may contribute to BCP-ALL chemoresistance.
Collapse
Affiliation(s)
- Zuzanna Urbańska
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Monika Lejman
- Laboratory of Genetic Diagnostics, Medical University of Lublin, Lublin, Poland
| | - Joanna Taha
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Joanna Madzio
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Kinga Ostrowska
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | | | - Kamila Wypyszczak
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Borys Styka
- Laboratory of Genetic Diagnostics, Medical University of Lublin, Lublin, Poland
| | - Justyna Jakubowska
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Łukasz Sędek
- Department of Pediatric Hematology and Oncology, Medical University of Silesia, Zabrze, Poland
| | - Tomasz Szczepański
- Department of Pediatric Hematology and Oncology, Medical University of Silesia, Zabrze, Poland
| | - Marcin Stańczak
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland; Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Wojciech Młynarski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Agata Pastorczak
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
11
|
Kim J, Huang AY, Johnson SL, Lai J, Isacco L, Jeffries AM, Miller MB, Lodato MA, Walsh CA, Lee EA. Prevalence and mechanisms of somatic deletions in single human neurons during normal aging and in DNA repair disorders. Nat Commun 2022; 13:5918. [PMID: 36207339 PMCID: PMC9546902 DOI: 10.1038/s41467-022-33642-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 09/26/2022] [Indexed: 01/21/2023] Open
Abstract
Replication errors and various genotoxins cause DNA double-strand breaks (DSBs) where error-prone repair creates genomic mutations, most frequently focal deletions, and defective repair may lead to neurodegeneration. Despite its pathophysiological importance, the extent to which faulty DSB repair alters the genome, and the mechanisms by which mutations arise, have not been systematically examined reflecting ineffective methods. Here, we develop PhaseDel, a computational method to detect focal deletions and characterize underlying mechanisms in single-cell whole genome sequences (scWGS). We analyzed high-coverage scWGS of 107 single neurons from 18 neurotypical individuals of various ages, and found that somatic deletions increased with age and in highly expressed genes in human brain. Our analysis of 50 single neurons from DNA repair-deficient diseases with progressive neurodegeneration (Cockayne syndrome, Xeroderma pigmentosum, and Ataxia telangiectasia) reveals elevated somatic deletions compared to age-matched controls. Distinctive mechanistic signatures and transcriptional associations suggest roles for somatic deletions in neurodegeneration.
Collapse
Affiliation(s)
- Junho Kim
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Manton Center for Orphan Disease, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - August Yue Huang
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Manton Center for Orphan Disease, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Shelby L Johnson
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jenny Lai
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Manton Center for Orphan Disease, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Laura Isacco
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Manton Center for Orphan Disease, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Ailsa M Jeffries
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Michael B Miller
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Manton Center for Orphan Disease, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael A Lodato
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Manton Center for Orphan Disease, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA.
- Manton Center for Orphan Disease, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.
- Department of Neurology, Harvard Medical School, Boston, MA, USA.
| | - Eunjung Alice Lee
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA.
- Manton Center for Orphan Disease, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
12
|
van der Wiel AMA, Schuitmaker L, Cong Y, Theys J, Van Hoeck A, Vens C, Lambin P, Yaromina A, Dubois LJ. Homologous Recombination Deficiency Scar: Mutations and Beyond-Implications for Precision Oncology. Cancers (Basel) 2022; 14:cancers14174157. [PMID: 36077694 PMCID: PMC9454578 DOI: 10.3390/cancers14174157] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 02/05/2023] Open
Abstract
Homologous recombination deficiency (HRD) is a prevalent in approximately 17% of tumors and is associated with enhanced sensitivity to anticancer therapies inducing double-strand DNA breaks. Accurate detection of HRD would therefore allow improved patient selection and outcome of conventional and targeted anticancer therapies. However, current clinical assessment of HRD mainly relies on determining germline BRCA1/2 mutational status and is insufficient for adequate patient stratification as mechanisms of HRD occurrence extend beyond functional BRCA1/2 loss. HRD, regardless of BRCA1/2 status, is associated with specific forms of genomic and mutational signatures termed HRD scar. Detection of this HRD scar might therefore be a more reliable biomarker for HRD. This review discusses and compares different methods of assessing HRD and HRD scar, their advances into the clinic, and their potential implications for precision oncology.
Collapse
Affiliation(s)
- Alexander M. A. van der Wiel
- The M-Lab, Department of Precision Medicine, GROW—School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Lesley Schuitmaker
- The M-Lab, Department of Precision Medicine, GROW—School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Ying Cong
- The M-Lab, Department of Precision Medicine, GROW—School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Jan Theys
- The M-Lab, Department of Precision Medicine, GROW—School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Arne Van Hoeck
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Conchita Vens
- Institute of Cancer Science, University of Glasgow, Glasgow G61 1BD, Scotland, UK
- Department of Radiation Oncology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Philippe Lambin
- The M-Lab, Department of Precision Medicine, GROW—School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Ala Yaromina
- The M-Lab, Department of Precision Medicine, GROW—School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Ludwig J. Dubois
- The M-Lab, Department of Precision Medicine, GROW—School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
- Correspondence:
| |
Collapse
|
13
|
Fournier B, Mahlaoui N, Moshous D, de Villartay JP. Inborn errors of immunity caused by defects in the DNA damage response pathways: Importance of minimizing treatment-related genotoxicity. Pediatr Allergy Immunol 2022; 33:e13820. [PMID: 35754136 PMCID: PMC9327728 DOI: 10.1111/pai.13820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 12/11/2022]
Abstract
Several primary immunodeficiencies are caused by defects in the general DNA repair machinery as exemplified by the T-B- radiosensitive SCID condition owing to impaired resolution of programmed DNA double-strand breaks introduced by RAG1/2 during V(D)J recombination. The genome instability generally associated with these conditions results in an increased propensity to develop malignancies requiring genotoxic-based anti-cancer treatments. Moreover, the extent of immune deficiency often calls for hematopoietic stem cell transplantation as a definitive treatment, also requiring genotoxic-based conditioning regimen prior to transplantation. In both cases, the underlying general DNA repair defect may result in catastrophic iatrogenic consequences. It is, therefore, of paramount importance to assess the functionality of the DNA repair apparatus prior to any genotoxic treatment when the exact molecular cause of the disease is unknown. For this purpose, two simple assays can be used on patients derived peripheral blood lymphocytes: (1) the PROMIDISα biomarker, based on the next-generation sequencing analysis of the TCRα repertoire, will highlight specific signatures of DNA repair deficiencies; (2) direct analysis of the sensitivity of peripheral lymphocytes to ionizing radiation will formally identify patients at risk to develop toxicity toward genotoxic-based treatments.
Collapse
Affiliation(s)
- Benjamin Fournier
- Pediatric Hematology-Immunology and Rheumatology Department, APHP-Centre Université de Paris (CUP), Necker Hospital, Paris, France
| | - Nizar Mahlaoui
- Pediatric Hematology-Immunology and Rheumatology Department, APHP-Centre Université de Paris (CUP), Necker Hospital, Paris, France.,French National Reference Center for Primary Immune Deficiencies (CEREDIH), Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Despina Moshous
- Pediatric Hematology-Immunology and Rheumatology Department, APHP-Centre Université de Paris (CUP), Necker Hospital, Paris, France.,Laboratory "Genome Dynamics in the Immune System" INSERM UMR 1163, Imagine Institute, Université de Paris Cité, Paris, France
| | - Jean-Pierre de Villartay
- Laboratory "Genome Dynamics in the Immune System" INSERM UMR 1163, Imagine Institute, Université de Paris Cité, Paris, France.,Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| |
Collapse
|
14
|
Pastorczak A, Attarbaschi A, Bomken S, Borkhardt A, van der Werff ten Bosch J, Elitzur S, Gennery AR, Hlavackova E, Kerekes A, Křenová Z, Mlynarski W, Szczepanski T, Wassenberg T, Loeffen J. Consensus Recommendations for the Clinical Management of Hematological Malignancies in Patients with DNA Double Stranded Break Disorders. Cancers (Basel) 2022; 14:2000. [PMID: 35454905 PMCID: PMC9029535 DOI: 10.3390/cancers14082000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/03/2022] Open
Abstract
Patients with double stranded DNA repair disorders (DNARDs) (Ataxia Telangiectasia (AT) and Nijmegen Breakage syndrome (NBS)) are at a very high risk for developing hematological malignancies in the first two decades of life. The most common neoplasms are T-cell lymphoblastic malignancies (T-cell ALL and T-cell LBL) and diffuse large B cell lymphoma (DLBCL). Treatment of these patients is challenging due to severe complications of the repair disorder itself (e.g., congenital defects, progressive movement disorders, immunological disturbances and progressive lung disease) and excessive toxicity resulting from chemotherapeutic treatment. Frequent complications during treatment for malignancies are deterioration of pre-existing lung disease, neurological complications, severe mucositis, life threating infections and feeding difficulties leading to significant malnutrition. These complications make modifications to commonly used treatment protocols necessary in almost all patients. Considering the rarity of DNARDs it is difficult for individual physicians to obtain sufficient experience in treating these vulnerable patients. Therefore, a team of experts assembled all available knowledge and translated this information into best available evidence-based treatment recommendations.
Collapse
Affiliation(s)
- Agata Pastorczak
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, 91-738 Lodz, Poland;
| | - Andishe Attarbaschi
- Department of Pediatrics, Pediatric Hematology and Oncology, St. Anna Children’s Hospital, Medical University of Vienna, 1090 Vienna, Austria;
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Simon Bomken
- Great North Children’s Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK; (S.B.); (A.R.G.)
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children’s Hospital, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany;
| | - Jutte van der Werff ten Bosch
- Department of Pediatric Hematology, Oncology and Immunology, University Hospital Brussels, 1090 Jette Brussels, Belgium;
| | - Sarah Elitzur
- Pediatric Hematology-Oncology, Schneider Children’s Medical Center, Petach Tikvah 4920235, Israel;
| | - Andrew R. Gennery
- Great North Children’s Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK; (S.B.); (A.R.G.)
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Eva Hlavackova
- Department of Pediatric Oncology, University Hospital and Faculty of Medicine, Masaryk University, 662 63 Brno, Czech Republic; (E.H.); (Z.K.)
- Department of Clinical Immunology and Allergology, St. Anne’s University Hospital in Brno, Faculty of Medicine, Masaryk University, 662 63 Brno, Czech Republic;
| | - Arpád Kerekes
- Department of Clinical Immunology and Allergology, St. Anne’s University Hospital in Brno, Faculty of Medicine, Masaryk University, 662 63 Brno, Czech Republic;
| | - Zdenka Křenová
- Department of Pediatric Oncology, University Hospital and Faculty of Medicine, Masaryk University, 662 63 Brno, Czech Republic; (E.H.); (Z.K.)
| | - Wojciech Mlynarski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, 91-738 Lodz, Poland;
| | - Tomasz Szczepanski
- Department of Pediatric Hematology and Oncology, Medical University of Silesia (SUM), 41-800 Zabrze, Poland;
| | - Tessa Wassenberg
- Department of Neurology and Child Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
| | - Jan Loeffen
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands;
| |
Collapse
|
15
|
Insight into the Molecular Basis Underlying Chromothripsis. Int J Mol Sci 2022; 23:ijms23063318. [PMID: 35328739 PMCID: PMC8948871 DOI: 10.3390/ijms23063318] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 11/24/2022] Open
Abstract
Chromoanagenesis constitutes a group of events that arise from single cellular events during early development. This particular class of complex rearrangements is a newfound occurrence that may lead to chaotic and complex genomic realignments. By that, chromoanagenesis is thought to be a crucial factor regarding macroevolution of the genome, and consequently is affecting the karyotype revolution together with genomic plasticity. One of chromoanagenesis-type of events is chromothripsis. It is characterised by the breakage of the chromosomal structure and its reassembling in random order and orientation which results in the establishment of derivative forms of chromosomes. Molecular mechanisms that underlie this phenomenon are mostly related to chromosomal sequestration throughout the micronuclei formation process. Chromothripsis is linked both to congenital and cancer diseases, moreover, it might be detected in subjects characterised by a normal phenotype. Chromothripsis, as well as the other chromoanagenetic variations, may be confined to one or more chromosomes, which makes up a non-uniform variety of karyotypes among chromothriptic patients. The detection of chromothripsis is enabled via tools like microarray-based comparative genomic hybridisation, next generation sequencing or authorial protocols aimed for the recognition of structural variations.
Collapse
|
16
|
Roloff GW, Drazer MW, Godley LA. Inherited Susceptibility to Hematopoietic Malignancies in the Era of Precision Oncology. JCO Precis Oncol 2022; 5:107-122. [PMID: 34994594 DOI: 10.1200/po.20.00387] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
As germline predisposition to hematopoietic malignancies has gained increased recognition and attention in the field of oncology, it is important for clinicians to use a systematic framework for the identification, management, and surveillance of patients with hereditary hematopoietic malignancies (HHMs). In this article, we discuss strategies for identifying individuals who warrant diagnostic evaluation and describe considerations pertaining to molecular testing. Although a paucity of prospective data is available to guide clinical monitoring of individuals harboring pathogenic variants, we provide recommendations for clinical surveillance based on consensus opinion and highlight current advances regarding the risk of progression to overt malignancy in HHM variant carriers. We also discuss the prognosis of HHMs and considerations surrounding the utility of allogeneic stem-cell transplantation in these individuals. We close with an overview of contemporary issues at the intersection of HHMs and precision oncology.
Collapse
Affiliation(s)
- Gregory W Roloff
- Department of Medicine, Loyola University Medical Center, Maywood, IL
| | - Michael W Drazer
- Section of Hematology/Oncology, Department of Medicine and the Department of Human Genetics, the University of Chicago, Chicago, IL
| | - Lucy A Godley
- Section of Hematology/Oncology, Department of Medicine and the Department of Human Genetics, the University of Chicago, Chicago, IL
| |
Collapse
|
17
|
Chromothripsis is a frequent event and underlies typical genetic changes in early T-cell precursor lymphoblastic leukemia in adults. Leukemia 2022; 36:2577-2585. [PMID: 35974102 PMCID: PMC9613476 DOI: 10.1038/s41375-022-01671-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 11/08/2022]
Abstract
Chromothripsis is a mitotic catastrophe that arises from multiple double strand breaks and incorrect re-joining of one or a few chromosomes. We report on incidence, distribution, and features of chromothriptic events in T-cell acute lymphoblastic leukemias (T-ALL). SNP array was performed in 103 T-ALL (39 ETP/near ETP, 59 non-ETP, and 5 with unknown stage of differentiation), including 38 children and 65 adults. Chromothripsis was detected in 11.6% of all T-ALL and occurred only in adult cases with an immature phenotype (12/39 cases; 30%). It affected 1 to 4 chromosomes, and recurrently involved chromosomes 1, 6, 7, and 17. Abnormalities of genes typically associated with T-ALL were found at breakpoints of chromothripsis. In addition, it gave rise to new/rare alterations, such as, the SFPQ::ZFP36L2 fusion, reported in pediatric T-ALL, deletions of putative suppressors, such as IKZF2 and CSMD1, and amplification of the BCL2 gene. Compared to negative cases, chromothripsis positive T-ALL had a significantly higher level of MYCN expression, and a significant downregulation of RGCC, which is typically induced by TP53 in response to DNA damage. Furthermore we identified mutations and/or deletions of DNA repair/genome stability genes in all cases, and an association with NUP214 rearrangements in 33% of cases.
Collapse
|
18
|
Zavacka K, Plevova K. Chromothripsis in Chronic Lymphocytic Leukemia: A Driving Force of Genome Instability. Front Oncol 2021; 11:771664. [PMID: 34900721 PMCID: PMC8661134 DOI: 10.3389/fonc.2021.771664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/01/2021] [Indexed: 11/22/2022] Open
Abstract
Chromothripsis represents a mechanism of massive chromosome shattering and reassembly leading to the formation of derivative chromosomes with abnormal functions and expression. It has been observed in many cancer types, importantly, including chronic lymphocytic leukemia (CLL). Due to the associated chromosomal rearrangements, it has a significant impact on the pathophysiology of the disease. Recent studies have suggested that chromothripsis may be more common than initially inferred, especially in CLL cases with adverse clinical outcome. Here, we review the main features of chromothripsis, the challenges of its assessment, and the potential benefit of its detection. We summarize recent findings of chromothripsis occurrence across hematological malignancies and address its causes and consequences in the context of CLL clinical features, as well as chromothripsis-related molecular abnormalities described in published CLL studies. Furthermore, we discuss the use of the current knowledge about genome functions associated with chromothripsis in the optimization of treatment strategies in CLL.
Collapse
Affiliation(s)
- Kristyna Zavacka
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno & Faculty of Medicine, Masaryk University, Brno, Czechia.,Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Karla Plevova
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno & Faculty of Medicine, Masaryk University, Brno, Czechia.,Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czechia.,Institute of Medical Genetics and Genomics, University Hospital Brno & Masaryk University, Brno, Czechia
| |
Collapse
|
19
|
Valikhani M, Rahimian E, Ahmadi SE, Chegeni R, Safa M. Involvement of classic and alternative non-homologous end joining pathways in hematologic malignancies: targeting strategies for treatment. Exp Hematol Oncol 2021; 10:51. [PMID: 34732266 PMCID: PMC8564991 DOI: 10.1186/s40164-021-00242-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/13/2021] [Indexed: 12/31/2022] Open
Abstract
Chromosomal translocations are the main etiological factor of hematologic malignancies. These translocations are generally the consequence of aberrant DNA double-strand break (DSB) repair. DSBs arise either exogenously or endogenously in cells and are repaired by major pathways, including non-homologous end-joining (NHEJ), homologous recombination (HR), and other minor pathways such as alternative end-joining (A-EJ). Therefore, defective NHEJ, HR, or A-EJ pathways force hematopoietic cells toward tumorigenesis. As some components of these repair pathways are overactivated in various tumor entities, targeting these pathways in cancer cells can sensitize them, especially resistant clones, to radiation or chemotherapy agents. However, targeted therapy-based studies are currently underway in this area, and furtherly there are some biological pitfalls, clinical issues, and limitations related to these targeted therapies, which need to be considered. This review aimed to investigate the alteration of DNA repair elements of C-NHEJ and A-EJ in hematologic malignancies and evaluate the potential targeted therapies against these pathways.
Collapse
Affiliation(s)
- Mohsen Valikhani
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Elahe Rahimian
- Department of Medical Translational Oncology, National Center for Tumor Diseases (NCT) Dresden, Dresden, Germany
| | - Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Rouzbeh Chegeni
- Medical Laboratory Sciences, Program, College of Health and Human Sciences, Northern Illinois University, DeKalb, IL, USA
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Zivarpour P, Hallajzadeh J, Asemi Z, Sadoughi F, Sharifi M. Chitosan as possible inhibitory agents and delivery systems in leukemia. Cancer Cell Int 2021; 21:544. [PMID: 34663339 PMCID: PMC8524827 DOI: 10.1186/s12935-021-02243-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 10/03/2021] [Indexed: 12/29/2022] Open
Abstract
Leukemia is a lethal cancer in which white blood cells undergo proliferation and immature white blood cells are seen in the bloodstream. Without diagnosis and management in early stages, this type of cancer can be fatal. Changes in protooncogenic genes and microRNA genes are the most important factors involved in development of leukemia. At present, leukemia risk factors are not accurately identified, but some studies have pointed out factors that predispose to leukemia. Studies show that in the absence of genetic risk factors, leukemia can be prevented by reducing the exposure to risk factors of leukemia, including smoking, exposure to benzene compounds and high-dose radioactive or ionizing radiation. One of the most important treatments for leukemia is chemotherapy which has devastating side effects. Chemotherapy and medications used during treatment do not have a specific effect and destroy healthy cells besides leukemia cells. Despite the suppressing effect of chemotherapy against leukemia, patients undergoing chemotherapy have poor quality of life. So today, researchers are focusing on finding more safe and effective natural compounds and treatments for cancer, especially leukemia. Chitosan is a valuable natural compound that is biocompatible and non-toxic to healthy cells. Anticancer, antibacterial, antifungal and antioxidant effects are examples of chitosan biopolymer properties. The US Food and Drug Administration has approved the use of this compound in medical treatments and the pharmaceutical industry. In this article, we take a look at the latest advances in the use of chitosan in the treatment and improvement of leukemia.
Collapse
Affiliation(s)
- Parinaz Zivarpour
- Department of Biological Sciences, Faculty of Basic Sciences, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Jamal Hallajzadeh
- Department of Biochemistry and Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Sadoughi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mehran Sharifi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
21
|
Mechanisms Underlying the Suppression of Chromosome Rearrangements by Ataxia-Telangiectasia Mutated. Genes (Basel) 2021; 12:genes12081232. [PMID: 34440406 PMCID: PMC8392746 DOI: 10.3390/genes12081232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 02/07/2023] Open
Abstract
Chromosome rearrangements are structural variations in chromosomes, such as inversions and translocations. Chromosome rearrangements have been implicated in a variety of human diseases. Ataxia-telangiectasia (A-T) is an autosomal recessive disorder characterized by a broad range of clinical and cellular phenotypes. At the cellular level, one of the most prominent features of A-T cells is chromosome rearrangement, especially that in T lymphocytes. The gene that is defective in A-T is ataxia-telangiectasia mutated (ATM). The ATM protein is a serine/threonine kinase and plays a central role in the cellular response to DNA damage, particularly DNA double-strand breaks. In this review, the mechanisms by which ATM suppresses chromosome rearrangements are discussed.
Collapse
|
22
|
Bakhtiar S, Salzmann-Manrique E, Donath H, Woelke S, Duecker RP, Fritzemeyer S, Schubert R, Huenecke S, Kieslich M, Klingebiel T, Bader P, Zielen S. The incidence and type of cancer in patients with ataxia-telangiectasia via a retrospective single-centre study. Br J Haematol 2021; 194:879-887. [PMID: 34337741 DOI: 10.1111/bjh.17736] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/14/2021] [Indexed: 12/28/2022]
Abstract
Ataxia-telangiectasia (A-T) is a hereditary immune system disorder with neurodegeneration. Its first neurologic symptoms include ataxic gait in early childhood, with slowly progressive cerebellar ataxia, oculomotor apraxia, oculocutaneous telangiectasia, and progressive muscle weakness. Neonatal screening for severe T-cell deficiency was recently found to diagnose A-T patients with a significantly reduced naïve T-cell pool. Our study includes 69 A-T patients between 8 January 2002 and 1 December 2019. Nineteen cases of cancer were diagnosed in 17 patients (25%), with a median overall survival [OS; 95% cumulative indcidence (CI)] of 26·9 years for the entire cohort. The 15-year OS of 82·5% (72-95%) was significantly decreased among A-T patients with malignancies, who had a median OS of 2·11 years, with a two-year-estimated OS of 50·7% (31-82%). Haematological malignancies were the major causes of death within the initial years of life with a 15 times increased risk for death [HR (95% CI): 6·9 (3·1-15.2), P < 0·001] upon malignancy diagnosis. Male patients with A-T are at a higher cancer risk than their female counterparts. This manuscript highlights the need for cancer surveillance and prevention, as well as optimal treatment in this cohort.
Collapse
Affiliation(s)
- Shahrzad Bakhtiar
- Department for Children and Adolescents, University Hospital, Goethe University, Frankfurt/Main, Germany
| | - Emilia Salzmann-Manrique
- Department for Children and Adolescents, University Hospital, Goethe University, Frankfurt/Main, Germany
| | - Helena Donath
- Department for Children and Adolescents, University Hospital, Goethe University, Frankfurt/Main, Germany
| | - Sandra Woelke
- Department for Children and Adolescents, University Hospital, Goethe University, Frankfurt/Main, Germany
| | - Ruth P Duecker
- Department for Children and Adolescents, University Hospital, Goethe University, Frankfurt/Main, Germany
| | - Stefanie Fritzemeyer
- Department for Children and Adolescents, University Hospital, Goethe University, Frankfurt/Main, Germany
| | - Ralf Schubert
- Department for Children and Adolescents, University Hospital, Goethe University, Frankfurt/Main, Germany
| | - Sabine Huenecke
- Department for Children and Adolescents, University Hospital, Goethe University, Frankfurt/Main, Germany
| | - Matthias Kieslich
- Department for Children and Adolescents, University Hospital, Goethe University, Frankfurt/Main, Germany
| | - Thomas Klingebiel
- Department for Children and Adolescents, University Hospital, Goethe University, Frankfurt/Main, Germany
| | - Peter Bader
- Department for Children and Adolescents, University Hospital, Goethe University, Frankfurt/Main, Germany
| | - Stefan Zielen
- Department for Children and Adolescents, University Hospital, Goethe University, Frankfurt/Main, Germany
| |
Collapse
|
23
|
Chromothripsis-Explosion in Genetic Science. Cells 2021; 10:cells10051102. [PMID: 34064429 PMCID: PMC8147837 DOI: 10.3390/cells10051102] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/27/2021] [Accepted: 05/01/2021] [Indexed: 12/13/2022] Open
Abstract
Chromothripsis has been defined as complex patterns of alternating genes copy number changes (normal, gain or loss) along the length of a chromosome or chromosome segment (International System for Human Cytogenomic Nomenclature 2020). The phenomenon of chromothripsis was discovered in 2011 and changed the concept of genome variability, mechanisms of oncogenic transformation, and hereditary diseases. This review describes the phenomenon of chromothripsis, its prevalence in genomes, the mechanisms underlying this phenomenon, and methods of its detection. Due to the fact that most often the phenomenon of chromothripsis occurs in cancer cells, in this review, we will separately discuss the issue of the contribution of chromothripsis to the process of oncogenesis.
Collapse
|
24
|
Simovic M, Ernst A. Chromothripsis, DNA repair and checkpoints defects. Semin Cell Dev Biol 2021; 123:110-114. [PMID: 33589336 DOI: 10.1016/j.semcdb.2021.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/05/2021] [Indexed: 11/28/2022]
Abstract
Chromothripsis is a unique form of genome instability characterized by tens to hundreds of DNA double-strand breaks on one or very few chromosomes, followed by error-prone repair. The derivative chromosome(s) display massive rearrangements, which lead to the loss of tumor suppressor function and to the activation of oncogenes. Chromothripsis plays a major role in cancer as well as in other conditions, such as congenital diseases. In this review, we discuss the repair processes involved in the rejoining of the chromosome fragments, the role of DNA repair and checkpoint defects as a cause for chromothripsis as well as DNA repair defects resulting from chromothripsis. Finally, we consider clinical implications and potential therapeutic vulnerabilities that could be utilized to eliminate tumor cells with chromothripsis.
Collapse
Affiliation(s)
- Milena Simovic
- Group Genome Instability in Tumors, German Cancer Research Centre (DKFZ), Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Germany
| | - Aurélie Ernst
- Group Genome Instability in Tumors, German Cancer Research Centre (DKFZ), Heidelberg, Germany.
| |
Collapse
|
25
|
Mroczek A, Zawitkowska J, Kowalczyk J, Lejman M. Comprehensive Overview of Gene Rearrangements in Childhood T-Cell Acute Lymphoblastic Leukaemia. Int J Mol Sci 2021; 22:E808. [PMID: 33467425 PMCID: PMC7829804 DOI: 10.3390/ijms22020808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
Acute lymphoblastic leukaemia (ALL) is a relevant form of childhood neoplasm, as it accounts for over 80% of all leukaemia cases. T-cell ALL constitutes a genetically heterogeneous cancer derived from T-lymphoid progenitors. The diagnosis of T-ALL is based on morphologic, immunophenotypic, cytogenetic, and molecular features, thus the results are used for patient stratification. Due to the expression of surface and intracellular antigens, several subtypes of T-ALL can be distinguished. Although the aetiology of T-ALL remains unclear, a wide spectrum of rearrangements and mutations affecting crucial signalling pathways has been described so far. Due to intensive chemotherapy regimens and supportive care, overall cure rates of more than 80% in paediatric T-ALL patients have been accomplished. However, improved knowledge of the mechanisms of relapse, drug resistance, and determination of risk factors are crucial for patients in the high-risk group. Even though some residual disease studies have allowed the optimization of therapy, the identification of novel diagnostic and prognostic markers is required to individualize therapy. The following review summarizes our current knowledge about genetic abnormalities in paediatric patients with T-ALL. As molecular biology techniques provide insights into the biology of cancer, our study focuses on new potential therapeutic targets and predictive factors which may improve the outcome of young patients with T-ALL.
Collapse
Affiliation(s)
- Anna Mroczek
- Department of Paediatric Haematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (A.M.); (J.Z.); (J.K.)
| | - Joanna Zawitkowska
- Department of Paediatric Haematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (A.M.); (J.Z.); (J.K.)
| | - Jerzy Kowalczyk
- Department of Paediatric Haematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (A.M.); (J.Z.); (J.K.)
| | - Monika Lejman
- Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
26
|
Wolska-Kusnierz B, Pastorczak A, Fendler W, Wakulinska A, Dembowska-Baginska B, Heropolitanska-Pliszka E, Piątosa B, Pietrucha B, Kałwak K, Ussowicz M, Pieczonka A, Drabko K, Lejman M, Koltan S, Gozdzik J, Styczynski J, Fedorova A, Miakova N, Deripapa E, Kostyuchenko L, Krenova Z, Hlavackova E, Gennery AR, Sykora KW, Ghosh S, Albert MH, Balashov D, Eapen M, Svec P, Seidel MG, Kilic SS, Tomaszewska A, Wiesik-Szewczyk E, Kreins A, Greil J, Buechner J, Lund B, Gregorek H, Chrzanowska K, Mlynarski W. Hematopoietic Stem Cell Transplantation Positively Affects the Natural History of Cancer in Nijmegen Breakage Syndrome. Clin Cancer Res 2021; 27:575-584. [PMID: 33082212 DOI: 10.1158/1078-0432.ccr-20-2574] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/26/2020] [Accepted: 10/16/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Nijmegen breakage syndrome (NBS) is a DNA repair disorder with a high predisposition to hematologic malignancies. EXPERIMENTAL DESIGN We describe the natural history of NBS, including cancer incidence, risk of death, and the potential effectiveness of hematopoietic stem cell transplantation (HSCT) in preventing both pathologies: malignancy and immunodeficiency. RESULTS Among 241 patients with NBS enrolled in the study from 11 countries, 151 (63.0%) patients were diagnosed with cancer. Incidence rates for primary and secondary cancer, tumor characteristics, and risk factors affecting overall survival (OS) were estimated. The cumulative cancer incidence was 40.21% ± 3.5% and 77.78% ± 3.4% at 10 years and 20 years of follow-up, respectively. Most of the tumors n = 95 (62.9%) were non-Hodgkin lymphomas. Overall, 20 (13.2%) secondary malignancies occurred at a median age of 18 (interquartile range, 13.7-21.5) years. The probability of 20-year overall survival (OS) for the whole cohort was 44.6% ± 4.5%. Patients who developed cancer had a shorter 20-year OS than those without malignancy (29.6% vs. 86.2%; P < 10-5). A total of 49 patients with NBS underwent HSCT, including 14 patients transplanted before malignancy. Patients with NBS with diagnosed cancer who received HSCT had higher 20-year OS than those who did not (42.7% vs. 30.3%; P = 0.038, respectively). In the group of patients who underwent preemptive transplantation, only 1 patient developed cancer, which is 6.7 times lower as compared with nontransplanted patients [incidence rate ratio 0.149 (95% confidence interval, 0.138-0.162); P < 0.0001]. CONCLUSIONS There is a beneficial effect of HSCT on the long-term survival of patients with NBS transplanted in their first complete remission of cancer.
Collapse
Affiliation(s)
| | - Agata Pastorczak
- Department Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland.,Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Anna Wakulinska
- Department of Oncology, Children's Memorial Health Institute, Warsaw, Poland
| | | | | | - Barbara Piątosa
- Histocompatibility Laboratory, Children's Memorial Health Institute, Warsaw, Poland
| | - Barbara Pietrucha
- Department of Immunology, Children's Memorial Health Institute, Warsaw, Poland
| | - Krzysztof Kałwak
- Department of Pediatric Hematology, Oncology and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Marek Ussowicz
- Department of Pediatric Hematology, Oncology and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Anna Pieczonka
- Department of Pediatric Oncology, Poznan University of Medical Sciences, Poznan, Poland
| | - Katarzyna Drabko
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, Poland
| | - Monika Lejman
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, Poland
| | - Sylwia Koltan
- Department of Pediatric Hematology and Oncology, Collegium Medicum, Nicolaus Copernicus University Torun, Bydgoszcz, Poland
| | - Jolanta Gozdzik
- Department of Transplantation, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Jan Styczynski
- Department of Pediatric Hematology and Oncology, Collegium Medicum, Nicolaus Copernicus University Torun, Bydgoszcz, Poland
| | - Alina Fedorova
- Belarusian Research Center for Pediatric Oncology and Hematology, Minsk, Belarus
| | - Natalia Miakova
- Department of Pediatric Oncology and Hematology, Federal Research Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Elena Deripapa
- Department of Immunology and Hematopoietic Stem Cell Transplantation, Federal Research Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Larysa Kostyuchenko
- Department of Pediatric Immunology, Western Ukrainian Specialized Children's Medical Centre, Lviv, Ukraine
| | - Zdenka Krenova
- Department of Pediatric Oncology, University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Eva Hlavackova
- Department of Pediatric Oncology, University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Department of Clinical Immunology and Allergology, St. Anne's University Hospital in Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Andrew R Gennery
- Translational and Clinical Research Institute, Newcastle University and Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| | - Karl-Walter Sykora
- Department of Pediatrics, Hannover Medical School (MHH), Hannover, Germany
| | - Sujal Ghosh
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-University, Düsseldorf, Germany
| | - Michael H Albert
- Dr. von Hauner University Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Dmitry Balashov
- Department of Hematopoietic Stem Cell Transplantation, Dmitriy Rogachev National Center for Pediatric Hematology, Oncology, and Immunology, Moscow, Russia
| | - Mary Eapen
- Center for International Blood and Marrow Transplant, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Peter Svec
- Department of Pediatric Hematology and Oncology, Comenius University and National Institute of Children's Diseases, Bratislava, Slovakia
| | - Markus G Seidel
- Research Unit Pediatric Hematology and Immunology, Division of Pediatric Hematology-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria
| | - Sara S Kilic
- Pediatric Immunology Division, Department of Pediatrics, Uludag University Medical Faculty, Bursa, Turkey
| | - Agnieszka Tomaszewska
- Department of Hematology, Oncology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Ewa Wiesik-Szewczyk
- Department of Internal Medicine, Pneumonology, Allergology and Clinical Immunology, Central Clinical Hospital of the Ministry of National Defense, Military Institute of Medicine, Warsaw, Poland
| | - Alexandra Kreins
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Johann Greil
- Department of Pediatric Hematology and Oncology, University Hospital, Heidelberg, Germany
| | - Jochen Buechner
- Department of Pediatric Hematology and Oncology, Oslo University Hospital, Oslo, Norway
| | - Bendik Lund
- Pediatric Department, St Olav University Hospital, Trondheim, Norway
| | - Hanna Gregorek
- Department of Microbiology and Clinical Immunology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Krystyna Chrzanowska
- Department of Medical Genetics, The Children's Memorial Health Institute, Warsaw, Poland
| | - Wojciech Mlynarski
- Department Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
27
|
Bolkestein M, Wong JKL, Thewes V, Körber V, Hlevnjak M, Elgaafary S, Schulze M, Kommoss FKF, Sinn HP, Anzeneder T, Hirsch S, Devens F, Schröter P, Höfer T, Schneeweiss A, Lichter P, Zapatka M, Ernst A. Chromothripsis in Human Breast Cancer. Cancer Res 2020; 80:4918-4931. [PMID: 32973084 DOI: 10.1158/0008-5472.can-20-1920] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/04/2020] [Accepted: 09/21/2020] [Indexed: 11/16/2022]
Abstract
Chromothripsis is a form of genome instability by which a presumably single catastrophic event generates extensive genomic rearrangements of one or a few chromosomes. Widely assumed to be an early event in tumor development, this phenomenon plays a prominent role in tumor onset. In this study, an analysis of chromothripsis in 252 human breast cancers from two patient cohorts (149 metastatic breast cancers, 63 untreated primary tumors, 29 local relapses, and 11 longitudinal pairs) using whole-genome and whole-exome sequencing reveals that chromothripsis affects a substantial proportion of human breast cancers, with a prevalence over 60% in a cohort of metastatic cases and 25% in a cohort comprising predominantly luminal breast cancers. In the vast majority of cases, multiple chromosomes per tumor were affected, with most chromothriptic events on chromosomes 11 and 17 including, among other significantly altered drivers, CCND1, ERBB2, CDK12, and BRCA1. Importantly, chromothripsis generated recurrent fusions that drove tumor development. Chromothripsis-related rearrangements were linked with univocal mutational signatures, with clusters of point mutations due to kataegis in close proximity to the genomic breakpoints and with the activation of specific signaling pathways. Analyzing the temporal order of events in tumors with and without chromothripsis as well as longitudinal analysis of chromothriptic patterns in tumor pairs offered important insights into the role of chromothriptic chromosomes in tumor evolution. SIGNIFICANCE: These findings identify chromothripsis as a major driving event in human breast cancer.
Collapse
Affiliation(s)
| | - John K L Wong
- Division of Molecular Genetics, DKFZ; DKFZ-Heidelberg Center for Personalized Oncology (HIPO) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Verena Thewes
- Division of Molecular Genetics, DKFZ; DKFZ-Heidelberg Center for Personalized Oncology (HIPO) and German Cancer Consortium (DKTK), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), University Hospital and DKFZ, Heidelberg, Germany
| | - Verena Körber
- Division of Theoretical Systems Biology, DKFZ, Heidelberg, Germany
| | - Mario Hlevnjak
- Division of Molecular Genetics, DKFZ; DKFZ-Heidelberg Center for Personalized Oncology (HIPO) and German Cancer Consortium (DKTK), Heidelberg, Germany.,Computational Oncology Group, Molecular Diagnostics Program at the National Center for Tumor Diseases (NCT) and DKFZ, Heidelberg, Germany
| | - Shaymaa Elgaafary
- National Center for Tumor Diseases (NCT), University Hospital and DKFZ, Heidelberg, Germany.,Molecular Diagnostics Program at the National Center for Tumor Diseases (NCT) and DKFZ, Heidelberg, Germany
| | - Markus Schulze
- Division of Molecular Genetics, DKFZ; DKFZ-Heidelberg Center for Personalized Oncology (HIPO) and German Cancer Consortium (DKTK), Heidelberg, Germany.,Computational Oncology Group, Molecular Diagnostics Program at the National Center for Tumor Diseases (NCT) and DKFZ, Heidelberg, Germany
| | - Felix K F Kommoss
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Hans-Peter Sinn
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Steffen Hirsch
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Frauke Devens
- Group Genome Instability in Tumors, DKFZ, Heidelberg, Germany
| | - Petra Schröter
- Division of Molecular Genetics, DKFZ; DKFZ-Heidelberg Center for Personalized Oncology (HIPO) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Thomas Höfer
- Division of Theoretical Systems Biology, DKFZ, Heidelberg, Germany
| | - Andreas Schneeweiss
- National Center for Tumor Diseases (NCT), University Hospital and DKFZ, Heidelberg, Germany
| | - Peter Lichter
- Division of Molecular Genetics, DKFZ; DKFZ-Heidelberg Center for Personalized Oncology (HIPO) and German Cancer Consortium (DKTK), Heidelberg, Germany.,Molecular Diagnostics Program at the National Center for Tumor Diseases (NCT) and DKFZ, Heidelberg, Germany
| | - Marc Zapatka
- Division of Molecular Genetics, DKFZ; DKFZ-Heidelberg Center for Personalized Oncology (HIPO) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Aurélie Ernst
- Group Genome Instability in Tumors, DKFZ, Heidelberg, Germany.
| |
Collapse
|
28
|
Lejman M, Włodarczyk M, Styka B, Pastorczak A, Zawitkowska J, Taha J, Sędek Ł, Skonieczka K, Braun M, Haus O, Szczepański T, Młynarski W, Kowalczyk JR. Advantages and Limitations of SNP Array in the Molecular Characterization of Pediatric T-Cell Acute Lymphoblastic Leukemia. Front Oncol 2020; 10:1184. [PMID: 32766158 PMCID: PMC7379740 DOI: 10.3389/fonc.2020.01184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/11/2020] [Indexed: 01/03/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a highly heterogeneous disease, and numerous genetic aberrations in the leukemic genome are responsible for the biological and clinical differences among particular ALL subtypes. However, there is limited knowledge regarding the association of whole-genome copy number abnormalities (CNAs) in childhood T-ALL with the course of leukemia and its outcome. The aim of this study was to identify the pattern of whole-genome CNAs in 86 newly diagnosed childhood T-ALL cases using a high-density single-nucleotide polymorphism array. We analyzed the presence of whole-genome CNAs with respect to immunophenotype, clinical features, and treatment outcomes. A total of 769 CNAs, including trisomies, duplications, deletions, and segmental loss of heterozygosity, were detected in 86 analyzed samples. Gain or loss of chromosomal regions exceeding 10 Mb occurred in 46 cases (53%), including six cases (7%) with complex chromosomal alterations. We observed that microdeletions in selected genes (e.g., FIP1L1 and PDGFRB) were related to the clinical features. Interestingly, 13% of samples have a duplication of the two loci (MYB and AIH1—6q23.3), which never occurred alone. Single-nucleotide polymorphism array significantly improved the molecular characterization of pediatric T-ALL. Further studies with larger cohorts of patients may contribute to the selection of prognostic CNAs in this group of patients.
Collapse
Affiliation(s)
- Monika Lejman
- Laboratory of Genetic Diagnostics, Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, Lublin, Poland
| | - Monika Włodarczyk
- Laboratory of Genetic Diagnostics, University Children's Hospital, Lublin, Poland
| | - Borys Styka
- Laboratory of Genetic Diagnostics, University Children's Hospital, Lublin, Poland
| | - Agata Pastorczak
- Department of Pediatric, Oncology, Hematology and Diabetology, Medical University of Łódz, Łódź, Poland
| | - Joanna Zawitkowska
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, Lublin, Poland
| | - Joanna Taha
- Department of Pediatric, Oncology, Hematology and Diabetology, Medical University of Łódz, Łódź, Poland
| | - Łukasz Sędek
- Department of Microbiology and Oncology, Medical University of Silesia in Katowice, Katowice, Poland
| | - Katarzyna Skonieczka
- Department of Clinical Genetics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Marcin Braun
- Department of Pathology, Chair of Oncology, Medical University of Łódz, Łódź, Poland
| | - Olga Haus
- Department of Clinical Genetics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Tomasz Szczepański
- Department of Microbiology and Oncology, Medical University of Silesia in Katowice, Katowice, Poland
| | - Wojciech Młynarski
- Department of Pediatric, Oncology, Hematology and Diabetology, Medical University of Łódz, Łódź, Poland
| | - Jerzy R Kowalczyk
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
29
|
Lin CL, Tan X, Chen M, Kusi M, Hung CN, Chou CW, Hsu YT, Wang CM, Kirma N, Chen CL, Lin CH, Lathrop KI, Elledge R, Kaklamani VG, Mitsuya K, Huang THM. ERα-related chromothripsis enhances concordant gene transcription on chromosome 17q11.1-q24.1 in luminal breast cancer. BMC Med Genomics 2020; 13:69. [PMID: 32408897 PMCID: PMC7222439 DOI: 10.1186/s12920-020-0729-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 04/30/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Chromothripsis is an event of genomic instability leading to complex chromosomal alterations in cancer. Frequent long-range chromatin interactions between transcription factors (TFs) and targets may promote extensive translocations and copy-number alterations in proximal contact regions through inappropriate DNA stitching. Although studies have proposed models to explain the initiation of chromothripsis, few discussed how TFs influence this process for tumor progression. METHODS This study focused on genomic alterations in amplification associated regions within chromosome 17. Inter-/intra-chromosomal rearrangements were analyzed using whole genome sequencing data of breast tumors in the Cancer Genome Atlas (TCGA) cohort. Common ERα binding sites were defined based on MCF-7, T47D, and MDA-MB-134 breast cancer cell lines using univariate K-means clustering methods. Nanopore sequencing technology was applied to validate frequent rearrangements detected between ATC loci on 17q23 and an ERα hub on 20q13. The efficacy of pharmacological inhibition of a potentially druggable target gene on 17q23 was evaluated using breast cancer cell lines and patient-derived circulating breast tumor cells. RESULTS There are five adjoining regions from 17q11.1 to 17q24.1 being hotspots of chromothripsis. Inter-/intra-chromosomal rearrangements of these regions occurred more frequently in ERα-positive tumors than in ERα-negative tumors. In addition, the locations of the rearrangements were often mapped within or close to dense ERα binding sites localized on these five 17q regions or other chromosomes. This chromothriptic event was linked to concordant upregulation of 96 loci that predominantly regulate cell-cycle machineries in advanced luminal tumors. Genome-editing analysis confirmed that an ERα hub localized on 20q13 coordinately regulates a subset of these loci localized on 17q23 through long-range chromosome interactions. One of these loci, Tousled Like Kinase 2 (TLK2) known to participate in DNA damage checkpoint control, is an actionable target using phenothiazine antipsychotics (PTZs). The antiproliferative effect of PTZs was prominent in high TLK2-expressing cells, compared to low expressing cells. CONCLUSION This study demonstrates a new approach for identifying tumorigenic drivers from genomic regions highly susceptible to ERα-related chromothripsis. We found a group of luminal breast tumors displaying 17q-related chromothripsis for which antipsychotics can be repurposed as treatment adjuncts.
Collapse
Affiliation(s)
- Chun-Lin Lin
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Xi Tan
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Meizhen Chen
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Meena Kusi
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Chia-Nung Hung
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Chih-Wei Chou
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Ya-Ting Hsu
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Chiou-Miin Wang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Nameer Kirma
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Chun-Liang Chen
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Ching-Hung Lin
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Kate I Lathrop
- Department of Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Richard Elledge
- Department of Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Virginia G Kaklamani
- Department of Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Kohzoh Mitsuya
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA.
| | - Tim H-M Huang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA.
| |
Collapse
|
30
|
Voronina N, Wong JKL, Hübschmann D, Hlevnjak M, Uhrig S, Heilig CE, Horak P, Kreutzfeldt S, Mock A, Stenzinger A, Hutter B, Fröhlich M, Brors B, Jahn A, Klink B, Gieldon L, Sieverling L, Feuerbach L, Chudasama P, Beck K, Kroiss M, Heining C, Möhrmann L, Fischer A, Schröck E, Glimm H, Zapatka M, Lichter P, Fröhling S, Ernst A. The landscape of chromothripsis across adult cancer types. Nat Commun 2020; 11:2320. [PMID: 32385320 PMCID: PMC7210959 DOI: 10.1038/s41467-020-16134-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 03/17/2020] [Indexed: 02/07/2023] Open
Abstract
Chromothripsis is a recently identified mutational phenomenon, by which a presumably single catastrophic event generates extensive genomic rearrangements of one or a few chromosome(s). Considered as an early event in tumour development, this form of genome instability plays a prominent role in tumour onset. Chromothripsis prevalence might have been underestimated when using low-resolution methods, and pan-cancer studies based on sequencing are rare. Here we analyse chromothripsis in 28 tumour types covering all major adult cancers (634 tumours, 316 whole-genome and 318 whole-exome sequences). We show that chromothripsis affects a substantial proportion of human cancers, with a prevalence of 49% across all cases. Chromothripsis generates entity-specific genomic alterations driving tumour development, including clinically relevant druggable fusions. Chromothripsis is linked with specific telomere patterns and univocal mutational signatures in distinct tumour entities. Longitudinal analysis of chromothriptic patterns in 24 matched tumour pairs reveals insights in the clonal evolution of tumours with chromothripsis. The shattering of chromosomes is a dramatic early event in tumourigenesis and is termed chromothripsis. Here, the authors examine chromothripsis across 28 tumour types and show that 49% of cancers exhibit features of chromothripsis.
Collapse
Affiliation(s)
- Natalia Voronina
- Group Genome Instability in Tumors, DKFZ, Heidelberg, Germany.,Division of Molecular Genetics, DKFZ, Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - John K L Wong
- Division of Molecular Genetics, DKFZ, Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Daniel Hübschmann
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Computational Oncology, Molecular Diagnostics Program, National Center for Tumor Diseases, DKFZ, Heidelberg, Germany.,Heidelberg Institute for Stem cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany.,Department of Pediatric Immunology, Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Mario Hlevnjak
- Division of Molecular Genetics, DKFZ, Heidelberg, Germany.,Computational Oncology, Molecular Diagnostics Program, National Center for Tumor Diseases, DKFZ, Heidelberg, Germany
| | - Sebastian Uhrig
- Computational Oncology, Molecular Diagnostics Program, National Center for Tumor Diseases, DKFZ, Heidelberg, Germany.,Division of Applied Bioinformatics, DKFZ and NCT Heidelberg, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Christoph E Heilig
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Division of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and DKFZ, Heidelberg, Germany.,DKFZ-Heidelberg Center for Personalized Oncology (HIPO), Heidelberg, Germany
| | - Peter Horak
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Division of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and DKFZ, Heidelberg, Germany.,DKFZ-Heidelberg Center for Personalized Oncology (HIPO), Heidelberg, Germany
| | - Simon Kreutzfeldt
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Division of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and DKFZ, Heidelberg, Germany.,DKFZ-Heidelberg Center for Personalized Oncology (HIPO), Heidelberg, Germany
| | - Andreas Mock
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Division of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and DKFZ, Heidelberg, Germany.,DKFZ-Heidelberg Center for Personalized Oncology (HIPO), Heidelberg, Germany
| | | | - Barbara Hutter
- Computational Oncology, Molecular Diagnostics Program, National Center for Tumor Diseases, DKFZ, Heidelberg, Germany.,Division of Applied Bioinformatics, DKFZ and NCT Heidelberg, Heidelberg, Germany
| | - Martina Fröhlich
- Computational Oncology, Molecular Diagnostics Program, National Center for Tumor Diseases, DKFZ, Heidelberg, Germany.,Division of Applied Bioinformatics, DKFZ and NCT Heidelberg, Heidelberg, Germany
| | - Benedikt Brors
- Division of Applied Bioinformatics, DKFZ and NCT Heidelberg, Heidelberg, Germany
| | - Arne Jahn
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, TU Dresden, ERN-GENTURIS, Hereditary Cancer Syndrome Center Dresden, German Cancer Consortium (DKTK), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany.,Department of Translational Medical Oncology, NCT Dresden, Dresden, and DKFZ, Dresden, Germany.,Center for Personalized Oncology, University Hospital Carl Gustav Carus Dresden, Technical University of Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Dresden, Germany
| | - Barbara Klink
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, TU Dresden, ERN-GENTURIS, Hereditary Cancer Syndrome Center Dresden, German Cancer Consortium (DKTK), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany.,National Center of Genetics (NCG), Laboratoire national de santé (LNS), Dudelange, Luxembourg
| | - Laura Gieldon
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Division of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and DKFZ, Heidelberg, Germany.,DKFZ-Heidelberg Center for Personalized Oncology (HIPO), Heidelberg, Germany
| | - Lina Sieverling
- Division of Applied Bioinformatics, DKFZ and NCT Heidelberg, Heidelberg, Germany
| | - Lars Feuerbach
- Division of Applied Bioinformatics, DKFZ and NCT Heidelberg, Heidelberg, Germany
| | - Priya Chudasama
- Precision Sarcoma Research Group, DKFZ, National Center for Tumor (NCT) Diseases, Heidelberg, Germany
| | - Katja Beck
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Division of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and DKFZ, Heidelberg, Germany.,DKFZ-Heidelberg Center for Personalized Oncology (HIPO), Heidelberg, Germany
| | - Matthias Kroiss
- Department of Internal Medicine I, Division of Endocrinology and Diabetology, University Hospital Würzburg, Würzburg, Germany
| | - Christoph Heining
- Department of Translational Medical Oncology, NCT Dresden, Dresden, and DKFZ, Dresden, Germany.,Center for Personalized Oncology, University Hospital Carl Gustav Carus Dresden, Technical University of Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Dresden, Germany
| | - Lino Möhrmann
- Department of Translational Medical Oncology, NCT Dresden, Dresden, and DKFZ, Dresden, Germany.,Center for Personalized Oncology, University Hospital Carl Gustav Carus Dresden, Technical University of Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Dresden, Germany
| | - Andrea Fischer
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, TU Dresden, ERN-GENTURIS, Hereditary Cancer Syndrome Center Dresden, German Cancer Consortium (DKTK), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Evelin Schröck
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, TU Dresden, ERN-GENTURIS, Hereditary Cancer Syndrome Center Dresden, German Cancer Consortium (DKTK), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Hanno Glimm
- Department of Translational Medical Oncology, NCT Dresden, Dresden, and DKFZ, Dresden, Germany.,Center for Personalized Oncology, University Hospital Carl Gustav Carus Dresden, Technical University of Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Dresden, Germany
| | - Marc Zapatka
- Division of Molecular Genetics, DKFZ, Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Peter Lichter
- Division of Molecular Genetics, DKFZ, Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Stefan Fröhling
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Division of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and DKFZ, Heidelberg, Germany.,DKFZ-Heidelberg Center for Personalized Oncology (HIPO), Heidelberg, Germany
| | - Aurélie Ernst
- Group Genome Instability in Tumors, DKFZ, Heidelberg, Germany. .,Division of Molecular Genetics, DKFZ, Heidelberg, Germany. .,German Cancer Consortium (DKTK), Heidelberg, Germany.
| |
Collapse
|
31
|
Nazaryan-Petersen L, Bjerregaard VA, Nielsen FC, Tommerup N, Tümer Z. Chromothripsis and DNA Repair Disorders. J Clin Med 2020; 9:jcm9030613. [PMID: 32106411 PMCID: PMC7141117 DOI: 10.3390/jcm9030613] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/15/2020] [Accepted: 02/19/2020] [Indexed: 12/18/2022] Open
Abstract
Chromothripsis is a mutational mechanism leading to complex and relatively clustered chromosomal rearrangements, resulting in diverse phenotypic outcomes depending on the involved genomic landscapes. It may occur both in the germ and the somatic cells, resulting in congenital and developmental disorders and cancer, respectively. Asymptomatic individuals may be carriers of chromotriptic rearrangements and experience recurrent reproductive failures when two or more chromosomes are involved. Several mechanisms are postulated to underlie chromothripsis. The most attractive hypothesis involves chromosome pulverization in micronuclei, followed by the incorrect reassembly of fragments through DNA repair to explain the clustered nature of the observed complex rearrangements. Moreover, exogenous or endogenous DNA damage induction and dicentric bridge formation may be involved. Chromosome instability is commonly observed in the cells of patients with DNA repair disorders, such as ataxia telangiectasia, Nijmegen breakage syndrome, and Bloom syndrome. In addition, germline variations of TP53 have been associated with chromothripsis in sonic hedgehog medulloblastoma and acute myeloid leukemia. In the present review, we focus on the underlying mechanisms of chromothripsis and the involvement of defective DNA repair genes, resulting in chromosome instability and chromothripsis-like rearrangements.
Collapse
Affiliation(s)
- Lusine Nazaryan-Petersen
- Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark; (L.N.-P.); (N.T.)
- Center for Genomic Medicine, Rigshospitalet, 2100 Copenhagen, Denmark;
| | - Victoria Alexandra Bjerregaard
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark;
| | | | - Niels Tommerup
- Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark; (L.N.-P.); (N.T.)
| | - Zeynep Tümer
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark;
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
- Correspondence: ; Tel.: +45-292-048-55
| |
Collapse
|
32
|
Gao J, Chen YH, Mina A, Altman JK, Kim KY, Zhang Y, Lu X, Jennings L, Sukhanova M. Unique morphologic and genetic characteristics of acute myeloid leukemia with chromothripsis: a clinicopathologic study from a single institution. Hum Pathol 2020; 98:22-31. [PMID: 32088209 DOI: 10.1016/j.humpath.2020.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 02/02/2020] [Accepted: 02/16/2020] [Indexed: 10/25/2022]
Abstract
Chromothripsis is a unique type of genomic instability and is recognized in various cancers. In myeloid neoplasms (MNs), chromothripsis was linked to poor prognosis and specific genetic alterations (complex karyotype, 5q deletions, and loss of TP53). However, the clinicopathologic features of MNs with chromothripsis have not been thoroughly characterized. We identified chromothripsis in 11 cases of MNs (9 acute myeloid leukemia [AML] and 2 myelodysplastic syndrome [MDS] cases) and noted that all chromothripsis-positive AML cases were AML with myelodysplasia-related changes (AML-MRC). We performed a comparative clinicopathologic and genetic characterization of AML-MRC cases with and without chromothripsis. AML-MRC with chromothripsis is associated with lower white blood cell and platelet counts and higher degree of karyotypic complexity. Chromothripsis in AML-MRC most frequently involves chromosomes 8 and 11 with consequent amplification of either MYC or KMT2A. Comparative morphologic assessment of blast morphology revealed unique features characteristic of AML-MRC with chromothripsis: a variable degree of cytoplasmic vacuolization, granulation, and blebbing. These morphologic markers in the context of AML-MRC may prompt additional studies to identify cases with chromothripsis.
Collapse
Affiliation(s)
- Juehua Gao
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Yi-Hua Chen
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Alain Mina
- Department of Medicine, Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, 60611, USA
| | - Jessica K Altman
- Department of Medicine, Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, 60611, USA
| | - Kwang-Youn Kim
- Department of Preventive Medicine - Biostatistics, Northwestern University Feinberg School of Medicine, 60611, USA
| | - Yanming Zhang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Xinyan Lu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Lawrence Jennings
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Madina Sukhanova
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
33
|
Rose Li Y, Halliwill KD, Adams CJ, Iyer V, Riva L, Mamunur R, Jen KY, Del Rosario R, Fredlund E, Hirst G, Alexandrov LB, Adams D, Balmain A. Mutational signatures in tumours induced by high and low energy radiation in Trp53 deficient mice. Nat Commun 2020; 11:394. [PMID: 31959748 PMCID: PMC6971050 DOI: 10.1038/s41467-019-14261-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023] Open
Abstract
Ionising radiation (IR) is a recognised carcinogen responsible for cancer development in patients previously treated using radiotherapy, and in individuals exposed as a result of accidents at nuclear energy plants. However, the mutational signatures induced by distinct types and doses of radiation are unknown. Here, we analyse the genetic architecture of mammary tumours, lymphomas and sarcomas induced by high (56Fe-ions) or low (gamma) energy radiation in mice carrying Trp53 loss of function alleles. In mammary tumours, high-energy radiation is associated with induction of focal structural variants, leading to genomic instability and Met amplification. Gamma-radiation is linked to large-scale structural variants and a point mutation signature associated with oxidative stress. The genomic architecture of carcinomas, sarcomas and lymphomas arising in the same animals are significantly different. Our study illustrates the complex interactions between radiation quality, germline Trp53 deficiency and tissue/cell of origin in shaping the genomic landscape of IR-induced tumours.
Collapse
Affiliation(s)
- Yun Rose Li
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94158, USA
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Kyle D Halliwill
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94158, USA
- Abbvie, Redwood City, CA, 94063, USA
| | - Cassandra J Adams
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94158, USA
- Nuffield Department of Medicine, University of Oxford, Oxford OX7DQ, UK
| | - Vivek Iyer
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1HH, UK
| | - Laura Riva
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1HH, UK
| | - Rashid Mamunur
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1HH, UK
| | - Kuang-Yu Jen
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94158, USA
- Department of Pathology, University of California Davis Medical Center, Sacramento, CA, USA
| | - Reyno Del Rosario
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Erik Fredlund
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94158, USA
- Doublestrand Bioinformatics, 11331, Stockholm, Sweden
| | - Gillian Hirst
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine and Department of Bioengineering, Moores Cancer Center, University of California, San Diego, La Jolla, CA, 92093, USA
| | - David Adams
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1HH, UK.
| | - Allan Balmain
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94158, USA.
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
34
|
Ghelli Luserna di Rorà A, Martinelli G, Simonetti G. The balance between mitotic death and mitotic slippage in acute leukemia: a new therapeutic window? J Hematol Oncol 2019; 12:123. [PMID: 31771633 PMCID: PMC6880427 DOI: 10.1186/s13045-019-0808-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/17/2019] [Indexed: 12/11/2022] Open
Abstract
Mitosis is the process whereby an eukaryotic cell divides into two identical copies. Different multiprotein complexes are involved in the fine regulation of cell division, including the mitotic promoting factor and the anaphase promoting complex. Prolonged mitosis can result in cellular division, cell death, or mitotic slippage, the latter leading to a new interphase without cellular division. Mitotic slippage is one of the causes of genomic instability and has an important therapeutic and clinical impact. It has been widely studied in solid tumors but not in hematological malignancies, in particular, in acute leukemia. We review the literature data available on mitotic regulation, alterations in mitotic proteins occurring in acute leukemia, induction of prolonged mitosis and its consequences, focusing in particular on the balance between cell death and mitotic slippage and on its therapeutic potentials. We also present the most recent preclinical and clinical data on the efficacy of second-generation mitotic drugs (CDK1-Cyclin B1, APC/CCDC20, PLK, Aurora kinase inhibitors). Despite the poor clinical activity showed by these drugs as single agents, they offer a potential therapeutic window for synthetic lethal combinations aimed to selectively target leukemic cells at the right time, thus decreasing the risk of mitotic slippage events.
Collapse
Affiliation(s)
- Andrea Ghelli Luserna di Rorà
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, FC, Italy.
| | - Giovanni Martinelli
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, FC, Italy
| | - Giorgia Simonetti
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, FC, Italy
| |
Collapse
|
35
|
Nones K, Johnson J, Newell F, Patch AM, Thorne H, Kazakoff SH, de Luca XM, Parsons MT, Ferguson K, Reid LE, McCart Reed AE, Srihari S, Lakis V, Davidson AL, Mukhopadhyay P, Holmes O, Xu Q, Wood S, Leonard C, Beesley J, Harris JM, Barnes D, Degasperi A, Ragan MA, Spurdle AB, Khanna KK, Lakhani SR, Pearson JV, Nik-Zainal S, Chenevix-Trench G, Waddell N, Simpson PT. Whole-genome sequencing reveals clinically relevant insights into the aetiology of familial breast cancers. Ann Oncol 2019; 30:1071-1079. [PMID: 31090900 PMCID: PMC6637375 DOI: 10.1093/annonc/mdz132] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Whole-genome sequencing (WGS) is a powerful method for revealing the diversity and complexity of the somatic mutation burden of tumours. Here, we investigated the utility of tumour and matched germline WGS for understanding aetiology and treatment opportunities for high-risk individuals with familial breast cancer. PATIENTS AND METHODS We carried out WGS on 78 paired germline and tumour DNA samples from individuals carrying pathogenic variants in BRCA1 (n = 26) or BRCA2 (n = 22) or from non-carriers (non-BRCA1/2; n = 30). RESULTS Matched germline/tumour WGS and somatic mutational signature analysis revealed patients with unreported, dual pathogenic germline variants in cancer risk genes (BRCA1/BRCA2; BRCA1/MUTYH). The strategy identified that 100% of tumours from BRCA1 carriers and 91% of tumours from BRCA2 carriers exhibited biallelic inactivation of the respective gene, together with somatic mutational signatures suggestive of a functional deficiency in homologous recombination. A set of non-BRCA1/2 tumours also had somatic signatures indicative of BRCA-deficiency, including tumours with BRCA1 promoter methylation, and tumours from carriers of a PALB2 pathogenic germline variant and a BRCA2 variant of uncertain significance. A subset of 13 non-BRCA1/2 tumours from early onset cases were BRCA-proficient, yet displayed complex clustered structural rearrangements associated with the amplification of oncogenes and pathogenic germline variants in TP53, ATM and CHEK2. CONCLUSIONS Our study highlights the role that WGS of matched germline/tumour DNA and the somatic mutational signatures can play in the discovery of pathogenic germline variants and for providing supporting evidence for variant pathogenicity. WGS-derived signatures were more robust than germline status and other genomic predictors of homologous recombination deficiency, thus impacting the selection of platinum-based or PARP inhibitor therapy. In this first examination of non-BRCA1/2 tumours by WGS, we illustrate the considerable heterogeneity of these tumour genomes and highlight that complex genomic rearrangements may drive tumourigenesis in a subset of cases.
Collapse
Affiliation(s)
- K Nones
- Medical Genomics Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD
| | - J Johnson
- Faculty of Medicine, Centre for Clinical Research, The University of Queensland, Brisbane, QLD
| | - F Newell
- Medical Genomics Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD
| | - A M Patch
- Medical Genomics Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD
| | - H Thorne
- kConFab Investigators, The Peter MacCallum Cancer Centre, Melbourne, VIC; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC
| | - S H Kazakoff
- Medical Genomics Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD
| | - X M de Luca
- Faculty of Medicine, Centre for Clinical Research, The University of Queensland, Brisbane, QLD
| | - M T Parsons
- Molecular Cancer Epidemiology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD
| | - K Ferguson
- Faculty of Medicine, Centre for Clinical Research, The University of Queensland, Brisbane, QLD
| | - L E Reid
- Faculty of Medicine, Centre for Clinical Research, The University of Queensland, Brisbane, QLD
| | - A E McCart Reed
- Faculty of Medicine, Centre for Clinical Research, The University of Queensland, Brisbane, QLD
| | - S Srihari
- Faculty of Medicine, Centre for Clinical Research, The University of Queensland, Brisbane, QLD; Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD
| | - V Lakis
- Medical Genomics Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD
| | - A L Davidson
- Medical Genomics Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD; Faculty of Medicine, The University of Queensland, Brisbane, QLD
| | - P Mukhopadhyay
- Medical Genomics Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD
| | - O Holmes
- Genome Informatics Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD
| | - Q Xu
- Genome Informatics Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD
| | - S Wood
- Genome Informatics Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD
| | - C Leonard
- Genome Informatics Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD
| | - J Beesley
- Cancer Genetics Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD
| | - J M Harris
- Faculty of Health, School Biomedical Science - Queensland University of Technology, Brisbane, QLD, Australia
| | - D Barnes
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge
| | - A Degasperi
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge; Department of Medical Genetics, The Clinical School, University of Cambridge, Cambridge, UK
| | - M A Ragan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD
| | - A B Spurdle
- Molecular Cancer Epidemiology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD
| | - K K Khanna
- Signal Transduction Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD
| | - S R Lakhani
- Faculty of Medicine, Centre for Clinical Research, The University of Queensland, Brisbane, QLD; Royal Brisbane & Women's Hospital, Pathology Queensland, Brisbane, QLD, Australia
| | - J V Pearson
- Genome Informatics Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD
| | - S Nik-Zainal
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge; Department of Medical Genetics, The Clinical School, University of Cambridge, Cambridge, UK
| | - G Chenevix-Trench
- Cancer Genetics Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD
| | - N Waddell
- Medical Genomics Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD.
| | - P T Simpson
- Faculty of Medicine, Centre for Clinical Research, The University of Queensland, Brisbane, QLD.
| |
Collapse
|
36
|
Koltsova AS, Pendina AA, Efimova OA, Chiryaeva OG, Kuznetzova TV, Baranov VS. On the Complexity of Mechanisms and Consequences of Chromothripsis: An Update. Front Genet 2019; 10:393. [PMID: 31114609 PMCID: PMC6503150 DOI: 10.3389/fgene.2019.00393] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 04/11/2019] [Indexed: 12/28/2022] Open
Abstract
In the present review, we focus on the phenomenon of chromothripsis, a new type of complex chromosomal rearrangements. We discuss the challenges of chromothripsis detection and its distinction from other chromoanagenesis events. Along with already known causes and mechanisms, we introduce aberrant epigenetic regulation as a possible pathway to chromothripsis. We address the issue of chromothripsis characteristics in cancers and benign tumours, as well as chromothripsis inheritance in cases of its occurrence in germ cells, zygotes and early embryos. Summarising the presented data on different phenotypic effect of chromothripsis, we assume that its consequences are most likely determined not by the chromosome shattering and reassembly themselves, but by the genome regions involved in the rearrangement.
Collapse
Affiliation(s)
- Alla S Koltsova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Saint Petersburg, Russia.,Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Anna A Pendina
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Saint Petersburg, Russia
| | - Olga A Efimova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Saint Petersburg, Russia
| | - Olga G Chiryaeva
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Saint Petersburg, Russia
| | - Tatyana V Kuznetzova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Saint Petersburg, Russia
| | - Vladislav S Baranov
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Saint Petersburg, Russia.,Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, Russia
| |
Collapse
|
37
|
Pellestor F. Chromoanagenesis: cataclysms behind complex chromosomal rearrangements. Mol Cytogenet 2019; 12:6. [PMID: 30805029 PMCID: PMC6371609 DOI: 10.1186/s13039-019-0415-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 01/17/2019] [Indexed: 12/21/2022] Open
Abstract
Background During the last decade, genome sequencing projects in cancer genomes as well as in patients with congenital diseases and healthy individuals have led to the identification of new types of massive chromosomal rearrangements arising during single chaotic cellular events. These unanticipated catastrophic phenomenon are termed chromothripsis, chromoanasynthesis and chromoplexis., and are grouped under the name of “chromoanagenesis”. Results For each process, several specific features have been described, allowing each phenomenon to be distinguished from each other and to understand its mechanism of formation and to better understand its aetiology. Thus, chromothripsis derives from chromosome shattering followed by the random restitching of chromosomal fragments with low copy-number change whereas chromoanasynthesis results from erroneous DNA replication of a chromosome through serial fork stalling and template switching with variable copy-number gains, and chromoplexy refers to the occurrence of multiple inter-and intra-chromosomal translocations and deletions with little or no copy-number alterations in prostate cancer. Cumulating data and experimental models have shown that chromothripsis and chromoanasynthesis may essentially result from lagging chromosome encapsulated in micronuclei or telomere attrition and end-to-end telomere fusion. Conclusion The concept of chromanagenesis has provided new insight into the aetiology of complex structural rearrangements, the connection between defective cell cycle progression and genomic instability, and the complexity of cancer evolution. Increasing reported chromoanagenesis events suggest that these chaotic mechanisms are probably much more frequent than anticipated.
Collapse
Affiliation(s)
- Franck Pellestor
- Unit of Chromosomal Genetics, Department of Medical Genetics, Arnaud de Villeneuve Hospital, Montpellier CHRU, 371, avenue du Doyen Gaston Giraud, 34295 Montpellier cedex 5, France.,INSERM 1183 Unit «Genome and Stem Cell Plasticity in Development and Aging », Institute of Regenerative Medicine and Biotherapies, St Eloi Hospital, Montpellier, France
| |
Collapse
|
38
|
Bomken S, van der Werff Ten Bosch J, Attarbaschi A, Bacon CM, Borkhardt A, Boztug K, Fischer U, Hauck F, Kuiper RP, Lammens T, Loeffen J, Neven B, Pan-Hammarström Q, Quinti I, Seidel MG, Warnatz K, Wehr C, Lankester AC, Gennery AR. Current Understanding and Future Research Priorities in Malignancy Associated With Inborn Errors of Immunity and DNA Repair Disorders: The Perspective of an Interdisciplinary Working Group. Front Immunol 2018; 9:2912. [PMID: 30619276 PMCID: PMC6299915 DOI: 10.3389/fimmu.2018.02912] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/27/2018] [Indexed: 12/31/2022] Open
Abstract
Patients with inborn errors of immunity or DNA repair defects are at significant risk of developing malignancy and this complication of their underlying condition represents a substantial cause of morbidity and mortality. Whilst this risk is increasingly well-recognized, our understanding of the causative mechanisms remains incomplete. Diagnosing cancer is challenging in the presence of underlying co-morbidities and frequently other inflammatory and lymphoproliferative processes. We lack a structured approach to management despite recognizing the competing challenges of poor response to therapy and increased risk of toxicity. Finally, clinicians need guidance on how to screen for malignancy in many of these predisposing immunodeficiencies. In order to begin to address these challenges, we brought together representatives of European Immunology and Pediatric Haemato-Oncology to define the current state of our knowledge and identify priorities for clinical and research development. We propose key developmental priorities which our two communities will need to work together to address, collaborating with colleagues around the world.
Collapse
Affiliation(s)
- Simon Bomken
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom.,The Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | | | - Andishe Attarbaschi
- Department of Pediatric Hematology and Oncology, St. Anna Children's Hospital, Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Chris M Bacon
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom.,Department of Cellular Pathology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, University Children's Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Kaan Boztug
- Department of Pediatric Hematology and Oncology, St. Anna Children's Hospital, Department of Pediatrics, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Ute Fischer
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, University Children's Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Fabian Hauck
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Roland P Kuiper
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Tim Lammens
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Jan Loeffen
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Bénédicte Neven
- Department of Pediatric Hematology-Immunology, Hospital Necker-Enfants Malades, Assistance Publique-Hôspitaux de Paris, INSERM, Paris, France
| | | | - Isabella Quinti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Markus G Seidel
- Division of Pediatric Hematology-Oncology, Research Unit Pediatric Hematology and Immunology, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria
| | - Klaus Warnatz
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Claudia Wehr
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Arjan C Lankester
- Section Immunology, Department of Pediatrics, Hematology and Stem Cell Transplantation, Leiden University Medical Center, Leiden, Netherlands
| | - Andrew R Gennery
- The Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom.,Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
39
|
Ratnaparkhe M, Wong JKL, Wei PC, Hlevnjak M, Kolb T, Simovic M, Haag D, Paul Y, Devens F, Northcott P, Jones DTW, Kool M, Jauch A, Pastorczak A, Mlynarski W, Korshunov A, Kumar R, Downing SM, Pfister SM, Zapatka M, McKinnon PJ, Alt FW, Lichter P, Ernst A. Defective DNA damage repair leads to frequent catastrophic genomic events in murine and human tumors. Nat Commun 2018; 9:4760. [PMID: 30420702 PMCID: PMC6232171 DOI: 10.1038/s41467-018-06925-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 10/08/2018] [Indexed: 12/22/2022] Open
Abstract
Chromothripsis and chromoanasynthesis are catastrophic events leading to clustered genomic rearrangements. Whole-genome sequencing revealed frequent complex genomic rearrangements (n = 16/26) in brain tumors developing in mice deficient for factors involved in homologous-recombination-repair or non-homologous-end-joining. Catastrophic events were tightly linked to Myc/Mycn amplification, with increased DNA damage and inefficient apoptotic response already observable at early postnatal stages. Inhibition of repair processes and comparison of the mouse tumors with human medulloblastomas (n = 68) and glioblastomas (n = 32) identified chromothripsis as associated with MYC/MYCN gains and with DNA repair deficiencies, pointing towards therapeutic opportunities to target DNA repair defects in tumors with complex genomic rearrangements. Chromothripsis and chromoanasynthesis lead to locally clustered rearrangements affecting one or a few chromosomes, but their impact on cancer development and progression is unclear. Here the authors analyse the role of DNA repair factors in brain tumors by whole-genome sequencing of tumors from mouse models of medulloblastoma or high grade gliomas.
Collapse
Affiliation(s)
- Manasi Ratnaparkhe
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ); Faculty of Biosciences, Heidelberg University Germany, Heidelberg, 69120, Germany
| | - John K L Wong
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Pei-Chi Wei
- Boston Children's Hospital, Howard Hughes Medical Institute and Department of Genetics, Harvard Medical School, Boston, 02115, MA, USA
| | - Mario Hlevnjak
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Thorsten Kolb
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Milena Simovic
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ); Faculty of Biosciences, Heidelberg University Germany, Heidelberg, 69120, Germany
| | - Daniel Haag
- Hopp Children's Cancer Center at the NCT Heidelberg (KiTZ), Heidelberg, 69120, Germany
| | - Yashna Paul
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Frauke Devens
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Paul Northcott
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany.,Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105-3678, United States
| | - David T W Jones
- Hopp Children's Cancer Center at the NCT Heidelberg (KiTZ), Heidelberg, 69120, Germany
| | - Marcel Kool
- Hopp Children's Cancer Center at the NCT Heidelberg (KiTZ), Heidelberg, 69120, Germany
| | - Anna Jauch
- Institute of Human Genetics, University of Heidelberg, Heidelberg, 69120, Germany
| | - Agata Pastorczak
- Department of Pediatrics, Oncology, Hematology and Diabetology, Medical University of Lodz, Lodz, 91-738, Poland
| | - Wojciech Mlynarski
- Department of Pediatrics, Oncology, Hematology and Diabetology, Medical University of Lodz, Lodz, 91-738, Poland
| | - Andrey Korshunov
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Department of Neuropathology, Heidelberg University Hospital and German Cancer Consortium (DKTK), Heidelberg, 69120, Germany
| | - Rajiv Kumar
- Division of Molecular Genetic Epidemiology; German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center, Heidelberg, 69120, Germany
| | - Susanna M Downing
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, 38105-3678, TN, USA
| | - Stefan M Pfister
- Hopp Children's Cancer Center at the NCT Heidelberg (KiTZ), Heidelberg, 69120, Germany
| | - Marc Zapatka
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Peter J McKinnon
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, 38105-3678, TN, USA
| | - Frederick W Alt
- Boston Children's Hospital, Howard Hughes Medical Institute and Department of Genetics, Harvard Medical School, Boston, 02115, MA, USA
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Aurélie Ernst
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany.
| |
Collapse
|
40
|
Maass KK, Rosing F, Ronchi P, Willmund KV, Devens F, Hergt M, Herrmann H, Lichter P, Ernst A. Altered nuclear envelope structure and proteasome function of micronuclei. Exp Cell Res 2018; 371:353-363. [PMID: 30149001 DOI: 10.1016/j.yexcr.2018.08.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/15/2018] [Accepted: 08/23/2018] [Indexed: 11/18/2022]
Abstract
Micronuclei are extra-nuclear bodies containing whole chromosomes that were not incorporated into the nucleus after cell division or damaged chromosome fragments. Even though the link between micronuclei and DNA damage is described for a long time, little is known about the functional organization of micronuclei and their contribution to tumorigenesis. We showed fusions between micronuclear membranes and lysosomes by electron microscopy and linked lysosome function to DNA damage levels in micronuclei. In addition, micronuclei drastically differ from primary nuclei in nuclear envelope composition, with a significant increase in the relative amount of nuclear envelope proteins LBR and emerin and a decrease in nuclear pore proteins. Strikingly, micronuclei lack active proteasomes, as the processing subunits and other factors of the ubiquitin proteasome system. Moreover, micronuclear chromatin shows a higher degree of compaction as compared to primary nuclei. The specific aberrations identified in micronuclei and the potential functional consequences of these defects may contribute to the role of micronuclei in catastrophic genomic rearrangements.
Collapse
Affiliation(s)
- Kendra K Maass
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Germany
| | - Fabian Rosing
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Paolo Ronchi
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Karolin V Willmund
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frauke Devens
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michaela Hergt
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Harald Herrmann
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Aurélie Ernst
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
41
|
Luijten MNH, Lee JXT, Crasta KC. Mutational game changer: Chromothripsis and its emerging relevance to cancer. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 777:29-51. [PMID: 30115429 DOI: 10.1016/j.mrrev.2018.06.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/22/2018] [Accepted: 06/28/2018] [Indexed: 12/14/2022]
Abstract
In recent years, the paradigm that genomic abnormalities in cancer cells arise through progressive accumulation of mutational events has been challenged by the discovery of single catastrophic events. One such phenomenon termed chromothripsis, involving massive chromosomal rearrangements arising all at once, has emerged as a major mutational game changer. The strong interest in this process stems from its widespread association with a range of cancer types and its potential as a mutational driver. In this review, we first describe chromothripsis detection and incidence in cancers. We then explore recently proposed underlying mechanistic origins, which explain the curious observations of the highly localised nature of the rearrangements on chromothriptic chromosomes. Detection of chromothriptic patterns following incorporation of single chromosomes into micronuclei or following telomere attrition have greatly contributed to our understanding of the reasons behind this chromosomal restriction. These underlying cellular events have been found to be participants in the tumourigenic process, strongly suggesting a potential role for chromothripsis in cancer development. Thus, we discuss potential implications of chromothripsis for cancer progression and therapy.
Collapse
Affiliation(s)
| | - Jeannie Xue Ting Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore.
| | - Karen Carmelina Crasta
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore; School of Biological Sciences, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, 61 Biopolis Drive, 138673, Singapore; Department of Medicine, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| |
Collapse
|
42
|
Chromothripsis in acute myeloid leukemia: biological features and impact on survival. Leukemia 2018; 32:1609-1620. [PMID: 29472722 PMCID: PMC6035145 DOI: 10.1038/s41375-018-0035-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/31/2017] [Accepted: 11/21/2017] [Indexed: 12/12/2022]
Abstract
Chromothripsis is a one-step genome-shattering catastrophe resulting from disruption of one or few chromosomes in multiple fragments and consequent random rejoining and repair. This study defines incidence of chromothripsis in 395 newly diagnosed adult acute myeloid leukemia (AML) patients from three institutions, its impact on survival and its genomic background. SNP 6.0 or CytoscanHD Array (Affymetrix®) were performed on all samples. We detected chromothripsis with a custom algorithm in 26/395 patients. Patients harboring chromothripsis had higher age (p = 0.002), ELN high risk (HR) (p < 0.001), lower white blood cell (WBC) count (p = 0.040), TP53 loss, and/or mutations (p < 0.001) while FLT3 (p = 0.025), and NPM1 (p = 0.032) mutations were mutually exclusive with chromothripsis. Chromothripsis-positive patients showed a worse overall survival (OS) (p < 0.001) compared with HR patients (p = 0.011) and a poor prognosis in a COX-HR optimal regression model. Chromothripsis presented the hallmarks of chromosome instability [i.e., TP53 alteration, 5q deletion, higher mean of copy number alteration (CNA), complex karyotype, alterations in DNA repair, and cell cycle] and focal deletions on chromosomes 4, 7, 12, 16, and 17. CBA. FISH showed that chromothripsis is associated with marker, derivative, and ring chromosomes. In conclusion, chromothripsis frequently occurs in AML (6.6%) and influences patient prognosis and disease biology.
Collapse
|
43
|
Abstract
The highly complex structural genome variations chromothripsis, chromoanasynthesis, and chromoplexy are subsumed under the term chromoanagenesis, which means chromosome rebirth. Precipitated by numerous DNA double-strand breaks, they differ in number of and distances between breakpoints, associated copy number variations, order and orientation of segments, and flanking sequences at joining points. Results from patients with the autosomal dominant cancer susceptibility disorder Li-Fraumeni syndrome implicated somatic TP53 mutations in chromothripsis. TP53 participates in the G2/M phase checkpoint, halting cell cycling after premature chromosome compaction during the second half of the S phase, thus preventing chromosome shattering. By experimental TP53 ablation and micronucleus induction, one or a few isolated chromosomes underwent desynchronized replication and chromothripsis. Secondly, chromothripsis occurred after experimental induction of telomere crisis after which dicentric chromosomes sustained TREX1-mediated resolution of chromosome bridges and kataegis. Third, DNA polymerase Polθ-dependent chromothripsis has been documented. Finally, a family with chromothripsis after L1 element-dependent retrotransposition and Alu/Alu homologous recombination has been reported. Human chromosomal instability syndromes share defects in responses to DNA double-strand breaks, characteristic cell cycle perturbations, elevated rates of micronucleus formation, premature chromosome compaction, and apoptosis. They are also associated with elevated susceptibility to malignant disease, such as medulloblastomas and gliomas in ataxia-telangiectasia, leukemia and lymphoma in Bloom syndrome, and osteosarcoma and soft tissue sarcoma in Werner syndrome. The latter syndrome is characterized by a premature aging-like progressive decline of mesenchymal tissues. In all thus far studied cases, constitutional chromothripsis occurred in the male germline and male patients with defects in the double-strand break response genes ATM, MRE11, BLM, LIG4, WRN, and Ku70 show impaired fertility. Conceivably, chromothripsis may, in a stochastic rather than deterministic way, be implicated in germline structural variation, malignant disease, premature aging, genome mosaicism in somatic tissues, and male infertility.
Collapse
Affiliation(s)
- Martin Poot
- Department of Human Genetics, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
44
|
Marcozzi A, Pellestor F, Kloosterman WP. The Genomic Characteristics and Origin of Chromothripsis. Methods Mol Biol 2018; 1769:3-19. [PMID: 29564814 DOI: 10.1007/978-1-4939-7780-2_1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In 2011 a phenomenon involving complex chromosomal rearrangements was discovered in cancer genomes. This phenomenon has been termed chromothripsis, on the basis of its chromosomal hallmarks, which point to an underlying process involving chromosome (chromo) shattering (thripsis). The prevailing hypothesis of cancer genome evolution as a gradual process of mutation and selection was challenged by the discovery of chromothripsis, because its patterns of chromosome rearrangement rather indicated an one-off catastrophic burst of genome rearrangement. The initial discovery of chromothripsis has led to many more examples of chromothripsis both in cancer genomes as well as in patients with congenital diseases and in the genomes of healthy individuals. Since then, a burning topic has been the study of the molecular mechanism that leads to chromothripsis. Cumulating evidence has shown that chromothripsis may result from lagging chromosomes encapsulated in micronuclei, as well as from telomere fusions followed by chromosome bridge formation. In this chapter, we will outline the genomic characteristics of chromothripsis, and we present genomic methodologies that enable the detection of chromothripsis. Furthermore, we will give an overview of recent insights into the mechanisms underlying chromothripsis.
Collapse
Affiliation(s)
- Alessio Marcozzi
- Division of Biomedical Genetics, Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Franck Pellestor
- Laboratory of Chromosomal Genetics, Department of Medical Genetics, Arnaud de Villeneuve Hospital, Montpellier CHRU, Montpellier, France.,INSERM Unit Plasticity of the Genome and Aging, Institute of Functional Genomics, Montpellier, France
| | - Wigard P Kloosterman
- Division of Biomedical Genetics, Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
45
|
Fontana MC, Marconi G, Milosevic Feenstra JD, Fonzi E, Papayannidis C, Ghelli Luserna di Rorá A, Padella A, Solli V, Franchini E, Ottaviani E, Ferrari A, Baldazzi C, Testoni N, Iacobucci I, Soverini S, Haferlach T, Guadagnuolo V, Semerad L, Doubek M, Steurer M, Racil Z, Paolini S, Manfrini M, Cavo M, Simonetti G, Kralovics R, Martinelli G. Chromothripsis in Acute Myeloid Leukemia: biological features and
impact on survival. Leukemia 2017:10.1038/leu.2017.351. [PMCID: PMC5892717 DOI: 10.1038/leu.2017.351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
Chromothripsis is a one-step genome-shattering catastrophe resulting from
disruption of one or few chromosomes in multiple fragments and consequent random
rejoining and repair. This study define incidence of chromothripsis in 395
newly-diagnosed adult acute myeloid leukemia (AML) patients from three
institutions, its impact on survival and its genomic background. SNP 6.0 or
CytoscanHD Array (Affymetrix®) were performed on all samples. We detected
chromothripsis with a custom algorithm in 26/395 patients. Patients harboring
chromothripsis had higher age (p=.002), ELN high risk (HR) (p<.001),
lower white blood cell (WBC) count (p=.040), TP53 loss and/or
mutations (p<.001) while FLT3 (p=.025) and
NPM1 (p=.032) mutations were mutually exclusive with
chromothripsis. Chromothripsis-positive patients showed a worse overall survival
(OS) (p<.001) compared with HR patients (p=.011) and a poor prognosis in
a COX-HR optimal regression model. Chromothripsis presented the hallmarks of
chromosome instability [i.e. TP53 alteration, 5q deletion,
higher mean of copy number alteration (CNA), complex karyotype, alterations in
DNA repair and cell cycle] and focal deletions on chromosomes 4, 7, 12, 16, 17.
CBA. FISH showed that chromothripsis is associated with marker, derivative and
ring chromosomes. In conclusion, chromothripsis frequently occurs in AML (6.6%)
and influences patient prognosis and disease biology.
Collapse
Affiliation(s)
| | - Giovanni Marconi
- Institute of Hematology “L. and A. Seràgnoli”,
University of Bologna, Italy
| | | | - Eugenio Fonzi
- Institute of Hematology “L. and A. Seràgnoli”,
University of Bologna, Italy
| | | | | | - Antonella Padella
- Institute of Hematology “L. and A. Seràgnoli”,
University of Bologna, Italy
| | - Vincenza Solli
- Institute of Hematology “L. and A. Seràgnoli”,
University of Bologna, Italy
| | - Eugenia Franchini
- Institute of Hematology “L. and A. Seràgnoli”,
University of Bologna, Italy
| | - Emanuela Ottaviani
- Institute of Hematology “L. and A. Seràgnoli”,
University of Bologna, Italy
| | - Anna Ferrari
- Institute of Hematology “L. and A. Seràgnoli”,
University of Bologna, Italy
| | - Carmen Baldazzi
- Institute of Hematology “L. and A. Seràgnoli”,
University of Bologna, Italy
| | - Nicoletta Testoni
- Institute of Hematology “L. and A. Seràgnoli”,
University of Bologna, Italy
| | - Ilaria Iacobucci
- Institute of Hematology “L. and A. Seràgnoli”,
University of Bologna, Italy
| | - Simona Soverini
- Institute of Hematology “L. and A. Seràgnoli”,
University of Bologna, Italy
| | | | | | - Lukas Semerad
- Department of Internal Medicine - Hematology and Oncology, Masaryk
University and Hospital, Brno, CR
| | - Michael Doubek
- Department of Internal Medicine - Hematology and Oncology, Masaryk
University and Hospital, Brno, CR
| | - Michael Steurer
- Division of Hematology and Oncology, Medical University of
Innsbruck, Innsbruck, Austria
| | - Zdenek Racil
- Department of Internal Medicine - Hematology and Oncology, Masaryk
University and Hospital, Brno, CR
| | - Stefania Paolini
- Institute of Hematology “L. and A. Seràgnoli”,
University of Bologna, Italy
| | - Marco Manfrini
- Institute of Hematology “L. and A. Seràgnoli”,
University of Bologna, Italy
| | - Michele Cavo
- Institute of Hematology “L. and A. Seràgnoli”,
University of Bologna, Italy
| | - Giorgia Simonetti
- Institute of Hematology “L. and A. Seràgnoli”,
University of Bologna, Italy
| | - Robert Kralovics
- CeMM Research Center for Molecular Medicine of the Austrian Academy
of Sciences, Wien, Austria
| | | |
Collapse
|