1
|
Pybus HJ, Dangarh P, Ng MYM, Lloyd CM, Saglani S, Tanaka RJ. Mechanistic modelling of allergen-induced airways disease in early life. Sci Rep 2025; 15:368. [PMID: 39747954 PMCID: PMC11696187 DOI: 10.1038/s41598-024-83204-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/12/2024] [Indexed: 01/04/2025] Open
Abstract
Asthma affects approximately 300 million individuals worldwide and the onset predominantly arises in childhood. Children are exposed to multiple environmental irritants, such as viruses and allergens, that are common triggers for asthma onset, whilst their immune systems are developing in early life. Understanding the impact of allergen exposures on the developing immune system and resulting alterations in lung function in early life will help prevent the onset and progression of allergic asthma in children. In this study, we developed an in silico model describing the pulmonary immune response to a common allergen, house dust mite, to investigate its downstream impact on the pathophysiology of asthma, including airway eosinophilic inflammation, remodelling, and lung function. We hypothesised that altered epithelial function following allergen exposure determines the onset of airway remodelling and abnormal lung function, which are irreversible with current asthma therapies. We calibrated the in silico model using age appropriate in vivo data from neonatal and adult mice. We validated the in silico model using in vivo data from mice on the effects of current treatment strategies. The in silico model recapitulates experimental observations and provides an interpretable in silico tool to assess airway pathology and the underlying immune responses upon allergen exposure. The in silico model simulations predict the extent of bronchial epithelial barrier damage observed when allergen sensitisation occurs and demonstrate that epithelial barrier damage and impaired immune maturation are critical determinants of reduced lung function and asthma development. The in silico model demonstrates that both epithelial barrier repair and immune maturation are potential targets for therapeutic intervention to achieve successful asthma prevention.
Collapse
Affiliation(s)
- Hannah J Pybus
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Prakrati Dangarh
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Man Yin Melanie Ng
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Clare M Lloyd
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
| | - Sejal Saglani
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK.
- Department of Respiratory Paediatrics, Royal Brompton Hospital, London, SW3 6NP, UK.
| | - Reiko J Tanaka
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
2
|
Rezapour M, Walker SJ, Ornelles DA, Niazi MKK, McNutt PM, Atala A, Gurcan MN. Exploring the host response in infected lung organoids using NanoString technology: A statistical analysis of gene expression data. PLoS One 2024; 19:e0308849. [PMID: 39591472 PMCID: PMC11594423 DOI: 10.1371/journal.pone.0308849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 07/31/2024] [Indexed: 11/28/2024] Open
Abstract
In this study, we used a three-dimensional airway "organ tissue equivalent" (OTE) model at an air-liquid interface (ALI) to mimic human airways. We investigated the effects of three viruses (Influenza A virus (IAV), Human metapneumovirus (MPV), and Parainfluenza virus type 3 (PIV3) on this model, incorporating various control conditions for data integrity. Our primary objective was to assess gene expression using the NanoString platform in OTE models infected with these viruses at 24- and 72-hour intervals, focusing on 773 specific genes. To enhance the comprehensiveness of our analysis, we introduced a novel algorithm, namely MAS (Magnitude-Altitude Score). This innovative approach uniquely combines biological significance, as indicated by fold changes in gene expression, with statistical rigor, as represented by adjusted p-values. By incorporating both dimensions, MAS ensures that the genes identified as differentially expressed are not mere statistical artifacts but hold genuine biological relevance, providing a more holistic understanding of the airway tissue response to viral infections. Our results unveiled distinct patterns of gene expression in response to viral infections. At 24 hours post-IAV infection, a robust interferon-stimulated gene (ISG) response was evident, marked by the upregulation of key genes including IFIT2, RSAD2, IFIT3, IFNL1, IFIT1, IFNB1, ISG15, OAS2, OASL, and MX1, collectively highlighting a formidable antiviral defense. MPV infection at the same time point displayed a dual innate and adaptive immune response, with highly expressed ISGs, immune cell recruitment signaled by CXCL10, and early adaptive immune engagement indicated by TXK and CD79A. In contrast, PIV3 infection at 24 hours triggered a transcriptional response dominated by ISGs, active immune cell recruitment through CXCL10, and inflammation modulation through OSM. The picture evolved at 72 hours post-infection. For IAV, ISGs and immune responses persisted, suggesting a sustained impact. MPV infection at this time point showed a shift towards IL17A and genes related to cellular signaling and immune responses, indicating adaptation to the viral challenge over time. In the case of PIV3, the transcriptional response remained interferon-centric, indicating a mature antiviral state. Our analysis underscored the pivotal role of ISGs across all infections and time points, emphasizing their universal significance in antiviral defense. Temporal shifts in gene expression indicative of adaptation and fine-tuning of the immune response. Additionally, the identification of shared and unique genes unveiled host-specific responses to specific pathogens. IAV exerted a sustained impact on genes from the initial 24 hours, while PIV3 displayed a delayed yet substantial genomic response, suggestive of a gradual and nuanced strategy.
Collapse
Affiliation(s)
- Mostafa Rezapour
- Center for Artificial Intelligence Research, Wake Forest University School of Medicine, Winston-Salem, NC, United States of America
| | - Stephen J. Walker
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States of America
| | - David A. Ornelles
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC, United States of America
| | - Muhammad Khalid Khan Niazi
- Center for Artificial Intelligence Research, Wake Forest University School of Medicine, Winston-Salem, NC, United States of America
| | - Patrick M. McNutt
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States of America
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States of America
| | - Metin Nafi Gurcan
- Center for Artificial Intelligence Research, Wake Forest University School of Medicine, Winston-Salem, NC, United States of America
| |
Collapse
|
3
|
Melgaard ME, Jensen SK, Eliasen A, Pedersen CET, Thorsen J, Mikkelsen M, Vahman N, Schoos AMM, Gern J, Brix S, Stokholm J, Chawes BL, Bønnelykke K. Asthma development is associated with low mucosal IL-10 during viral infections in early life. Allergy 2024; 79:2981-2992. [PMID: 39221476 DOI: 10.1111/all.16276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/21/2024] [Accepted: 07/03/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Viral infection is a common trigger of severe respiratory illnesses in early life and a risk factor for later asthma development. The mechanism leading to asthma could involve an aberrant airway immune response to viral infections, but this has rarely been studied in a human setting. OBJECTIVES To investigate in situ virus-specific differences in upper airway immune mediator levels during viral episodes of respiratory illnesses and the association with later asthma. METHODS We included 493 episodes of acute respiratory illnesses in 277 children aged 0-3 years from the COPSAC2010 mother-child cohort. Levels of 18 different immune mediators were assessed in nasal epithelial lining fluid using high-sensitivity MesoScale Discovery kits and compared between children with and without viral PCR-identification in nasopharyngeal samples. Finally, we investigated whether the virus-specific immune response was associated with asthma by age 6 years. RESULTS Viral detection were associated with upregulation of several Type 1 and regulatory immune mediators, including IFN-ɣ, TNF-α, CCL4, CXCL10 and IL-10 and downregulation of Type 2 and Type 17 immune mediators, including CCL13, and CXCL8 (FDR <0.05). Children developing asthma had decreased levels of IL-10 (FDR <0.05) during viral episodes compared to children not developing asthma. CONCLUSION We described the airway immune mediator profile during viral respiratory illnesses in early life and showed that children developing asthma by age 6 years have a reduced regulatory (IL-10) immune mediator level. This provides insight into the interplay between early-life viral infections, airway immunity and asthma development.
Collapse
Affiliation(s)
- Mathias Elsner Melgaard
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Signe Kjeldgaard Jensen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Anders Eliasen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Health Technology, Section for Bioinformatics, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Casper-Emil Tingskov Pedersen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jonathan Thorsen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Marianne Mikkelsen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Nilofar Vahman
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Ann-Marie Malby Schoos
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Pediatrics, Slagelse Sygehus, Slagelse, Denmark
| | - James Gern
- Department of Pediatrics and Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Susanne Brix
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Jakob Stokholm
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Pediatrics, Slagelse Sygehus, Slagelse, Denmark
- Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Bo Lund Chawes
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Klaus Bønnelykke
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
An Q, Gu X, Jiang Y. The Role of Interleukin-24 and Downstream Pathways in Inflammatory and Autoimmune Diseases. Cell Biochem Biophys 2024:10.1007/s12013-024-01576-3. [PMID: 39373906 DOI: 10.1007/s12013-024-01576-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2024] [Indexed: 10/08/2024]
Abstract
Inflammatory and autoimmune diseases are pathological immune disorders and pose significant public health challenges due to their impact on individuals and society. Cytokine dysregulation plays a critical role in the development of these disorders. Interleukin (IL)-24, a member of the IL-10 cytokine family, can be secreted by various cell types, including immune and non-immune cells. The downstream effects of IL-24 upon binding to its receptors can occur in dependence on, or independently of, the Janus kinase (JAK)/signal transducer and the activator of transcription (STAT) signaling pathway. IL-24 and its downstream pathways influence crucial processes such as cell differentiation, proliferation, apoptosis, and inflammation, with its role varying across different diseases. On the one hand, IL-24 can inhibit the activation of pathogenic cells and autoimmune responses in autoimmune ocular diseases; on the other hand, IL-24 has been also implicated in promoting tissue damage by fostering immune cell activation and infiltration in psoriasis and allergic diseases. It suggests that IL-24, as a multifunctional cytokine, has complex regulatory functions in immune cells and related diseases. In this paper, we summarize the current knowledge on IL-24's immunomodulatory actions and its involvement in inflammatory and autoimmune disorders. Such insights may pave the way for novel therapeutic strategies for these diseases.
Collapse
Affiliation(s)
- Qiyun An
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- Department of Ophthalmology, Changchun Children's Hospital, Changchun, Jilin, China
| | - Xiaoyu Gu
- Department of Ophthalmology, Changchun Children's Hospital, Changchun, Jilin, China
| | - Yuying Jiang
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
5
|
Park JY, Lee JW, Oh ES, Song YN, Kang MJ, Ryu HW, Kim DY, Oh SR, Lee J, Choi J, Kim N, Kim MO, Hong ST, Lee SU. Daphnetin alleviates allergic airway inflammation by inhibiting T-cell activation and subsequent JAK/STAT6 signaling. Eur J Pharmacol 2024; 979:176826. [PMID: 39033840 DOI: 10.1016/j.ejphar.2024.176826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/21/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
Allergic asthma is a major health burden on society as a chronic respiratory disease characterized by inflammation and muscle tightening around the airways in response to inhaled allergens. Daphne kiusiana Miquel is a medicinal plant that can suppress allergic airway inflammation; however, its specific molecular mechanisms of action are unclear. In this study, we aimed to elucidate the mechanisms by which D. kiusiana inhibits allergic airway inflammation. We evaluated the anti-inflammatory effects of the ethyl acetate (EA) fraction of D. kiusiana and its major compound, daphnetin, on murine T lymphocyte EL4 cells stimulated with phorbol 12-myristate 13-acetate and ionomycin in vitro and on asthmatic mice stimulated with ovalbumin in vivo. The EA fraction and daphnetin inhibited T-helper type 2 (Th2) cytokine secretion, serum immunoglobulin E production, mucus secretion, and inflammatory cell recruitment in vivo. In vitro, daphnetin suppressed intracellular Ca2+ mobilization (a critical regulator of nuclear factor of activated T cells) and functions of the activator protein 1 transcription factor to reduce interleukin (IL)-4 and IL-13 expression. Daphnetin effectively suppressed the IL-4/-13-induced activation of Janus kinase (JAK)/signal transducer and activator of transcription 6 (STAT6) signaling in vitro and in vivo, thereby inhibiting the expression of GATA3 and PDEF, two STAT6-target genes responsible for producing Th2 cytokines and mucins. These findings indicate that daphnetin suppresses allergic airway inflammation by stabilizing intracellular Ca2+ levels and subsequently inactivating the JAK/STAT6/GATA3/PDEF pathway, suggesting that daphnetin is a promising alternative to existing asthma treatments.
Collapse
Affiliation(s)
- Ji-Yoon Park
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea; Department of Anatomy & Cell Biology, Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea.
| | - Jae-Won Lee
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea.
| | - Eun Sol Oh
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea; College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | - Yu Na Song
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea; College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | - Myung-Ji Kang
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea.
| | - Hyung Won Ryu
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea.
| | - Doo-Young Kim
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea.
| | - Sei-Ryang Oh
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea.
| | - Juhyun Lee
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea.
| | - Jinseon Choi
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea.
| | - Namho Kim
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea; Department of Anatomy & Cell Biology, Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea.
| | - Mun-Ock Kim
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea.
| | - Sung-Tae Hong
- Department of Anatomy & Cell Biology, Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea.
| | - Su Ui Lee
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea.
| |
Collapse
|
6
|
Ma R, Wang A, Yang M, Huang Z, Liu G, Wei Q, Lu Y, Wei H, Wang J, Tang Q, Pu J. Hsa_circ_0000092 up-regulates IL24 by SMC1A to induce macrophages M2 polarization. Heliyon 2024; 10:e36517. [PMID: 39296099 PMCID: PMC11408814 DOI: 10.1016/j.heliyon.2024.e36517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 09/21/2024] Open
Abstract
Introduction Hepatocellular carcinoma (HCC) as the malignant cancers with high morbidity. The EMT of HCC has closely linked to the metastasis and recurrence. Moreover, tumor-associated macrophages (TAMs) can interact with HCC cells in the immune microenvironment; the M2 polarization of TAMs enhance the HCC cells EMT. The mechanism between HCC cells and TAMs is still unclear and our study was aimed to uncover it. Methods We performed RT-qPCR and western to detach the RNA and protein expression. The relationship among has_circ_0000092, U2AF2, SMC1A and IL24 were revealed through mechanism experiments. Rescue assays were implemented to determine how circ_0000092 modulates M2 polarization of TAMs. Results As detected by RT-qPCR, has_circ_0000092 was with high expression in HCC cells and could recruit U2AF2 to promote transcription of SMC1A. Moreover, circ_0000092 could control macrophage M2 polarization via promoting IL24 expression in HCC cells. Conclusion To conclude, hsa_circ_0000092 can up-regulates IL24 by SMC1A to induce macrophages M2 polarization.
Collapse
Affiliation(s)
- Rihai Ma
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Zhuang Autonomous Region, 533000, China
| | - Anmin Wang
- Graduate College of Youjiang Medical University for Nationalities, Guangxi Zhuang Autonomous Region, 533000, China
| | - Meng Yang
- Graduate College of Youjiang Medical University for Nationalities, Guangxi Zhuang Autonomous Region, 533000, China
| | - Zihua Huang
- Graduate College of Youjiang Medical University for Nationalities, Guangxi Zhuang Autonomous Region, 533000, China
| | - Guoman Liu
- Graduate College of Youjiang Medical University for Nationalities, Guangxi Zhuang Autonomous Region, 533000, China
| | - Qing Wei
- Graduate College of Youjiang Medical University for Nationalities, Guangxi Zhuang Autonomous Region, 533000, China
| | - Yuan Lu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Zhuang Autonomous Region, 533000, China
| | - Huamei Wei
- Department of Pathology, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Zhuang Autonomous Region, 533000, China
| | - Jianchu Wang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Zhuang Autonomous Region, 533000, China
| | - Qianli Tang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Zhuang Autonomous Region, 533000, China
| | - Jian Pu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Zhuang Autonomous Region, 533000, China
| |
Collapse
|
7
|
Achten R, van Luijk C, Thijs J, Drylewicz J, Delemarre E, Nierkens S, Bakker D, van Wijk F, de Graaf M, de Bruin-Weller M, de Boer J, Kuiper J. Non-Infectious Uveitis Secondary to Dupilumab Treatment in Atopic Dermatitis Patients Shows a Pro-Inflammatory Molecular Profile. Ocul Immunol Inflamm 2024; 32:1150-1154. [PMID: 36854134 DOI: 10.1080/09273948.2023.2182325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 03/02/2023]
Abstract
Severe uveitis is a rare complication of interleukin-4 receptor alpha blocking by dupilumab in topic dermatitis (AD) patients. The aim of this study was to describe five moderate-to-severe AD patients who developed uveitis during dupilumab treatment and to compare the proteomic profile of aqueous humor (AqH) of dupilumab-associated uveitis (n=3/5 available samples) with non-infectious uveitis (n=27) and cataract controls (n=11). Included patients were treated at the University Medical Center Utrecht (the Netherlands). Active dupilumab-associated uveitis complicated by serous detachment, cystoid macular edema, or secondary glaucoma developed within a median of 6.0 months (interquartile range 2.3-16.5 months) after starting dupilumab. Uveitis resolved after discontinuation of dupilumab and/or treatment with local or systemic corticosteroids. Proteomic profiling of AqH revealed that the molecular profile of dupilumab-associated uveitis resembled that of non-infectious uveitis. In conclusion, dupilumab-associated uveitis is a severe adverse event of dupilumab therapy, requiring urgent referral to an ophthalmologist.
Collapse
Affiliation(s)
- Roselie Achten
- Department of Dermatology and Allergology, National Expertise Center for Atopic Dermatitis, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Chantal van Luijk
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Judith Thijs
- Department of Dermatology and Allergology, National Expertise Center for Atopic Dermatitis, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Julia Drylewicz
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Eveline Delemarre
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Stefan Nierkens
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Daphne Bakker
- Department of Dermatology and Allergology, National Expertise Center for Atopic Dermatitis, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Femke van Wijk
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Marlies de Graaf
- Department of Dermatology and Allergology, National Expertise Center for Atopic Dermatitis, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Marjolein de Bruin-Weller
- Department of Dermatology and Allergology, National Expertise Center for Atopic Dermatitis, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Joke de Boer
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Jonas Kuiper
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
8
|
Feng K, Cen J, Zou X, Zhang T. Novel insight into MDA-7/IL-24: A potent therapeutic target for autoimmune and inflammatory diseases. Clin Immunol 2024; 266:110322. [PMID: 39033900 DOI: 10.1016/j.clim.2024.110322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/02/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Melanoma differentiation-associated gene-7 (MDA-7)/interleukin-24 (IL-24) is a pleiotropic member of the IL-10 family of cytokines, and is involved in multiple biological processes, including cell proliferation, cell differentiation, tissue fibrosis, the inflammatory response, and antitumor activity. MDA-7/IL-24 can regulate epithelial integrity, homeostasis, mucosal immunity and host resistance to various pathogens by enhancing immune and inflammatory responses. Our recent study revealed the mechanism of MDA-7/IL-24 in promoting airway inflammation and airway remodeling through activating the JAK/STAT3 and ERK signaling pathways in bronchial epithelial cells. Herein, we summarize the cellular sources, inducers, target cells, signaling pathways, and biological effects of MDA-7/IL-24 in several allergic and autoimmune diseases. This review also synopsizes recent advances in clinical research targeting MDA-7/IL-24 or its receptors. Based on these advancements, we emphasize its potential as a target for immunotherapy and discuss the challenges of developing immunotherapeutic drugs targeting MDA-7/IL-24 or its receptors in autoimmune and inflammatory disorders.
Collapse
Affiliation(s)
- Kangni Feng
- Department of Pulmonary and Critical Care Medicine, the Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Disease of Sun Yat-sen University, Guangzhou, Guangdong Province 510630, China
| | - Jiemei Cen
- Department of Pulmonary and Critical Care Medicine, the Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Disease of Sun Yat-sen University, Guangzhou, Guangdong Province 510630, China
| | - Xiaoling Zou
- Department of Pulmonary and Critical Care Medicine, the Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Disease of Sun Yat-sen University, Guangzhou, Guangdong Province 510630, China
| | - Tiantuo Zhang
- Department of Pulmonary and Critical Care Medicine, the Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Disease of Sun Yat-sen University, Guangzhou, Guangdong Province 510630, China.
| |
Collapse
|
9
|
Xu YD, Cheng M, Mao JX, Zhang X, Shang PP, Long J, Chen YJ, Wang Y, Yin LM, Yang YQ. Clara cell 10 (CC10) protein attenuates allergic airway inflammation by modulating lung dendritic cell functions. Cell Mol Life Sci 2024; 81:321. [PMID: 39078462 PMCID: PMC11335244 DOI: 10.1007/s00018-024-05368-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/26/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024]
Abstract
Allergic asthma is a complex inflammatory disorder predominantly orchestrated by T helper 2 (Th2) lymphocytes. The anti-inflammatory protein Clara Cell 10-kDa (CC10), also known as secretoglobin family 1A member 1 (SCGB1A1), shows promise in modulating respiratory diseases. However, its precise role in asthma remains unclear. This study examines the potential of CC10 to suppress allergic asthma inflammation, specifically assessing its regulatory effects on Th2 cell responses and dendritic cells (DCs). Lower CC10 levels in asthma were observed and correlated with increased IgE and lymphocytes. Cc10-/- mice exhibited exacerbated allergic airway inflammation marked by increased inflammatory cell infiltration, Th2 cytokines, serum antigen-specific IgE levels, and airway hyperresponsiveness (AHR) in house dust mite (HDM)-induced models. Conversely, recombinant CC10 significantly attenuated these inflammatory responses. Intriguingly, CC10 did not directly inhibit Th cell activation but significantly downregulated the population of CD11b+CD103- DCs subsets in lungs of asthmatic mice and modulated the immune activation functions of DCs through NF-κB signaling pathway. The mixed lymphocyte response assay revealed that DCs mediated the suppressive effect of CC10 on Th2 cell responses. Collectively, CC10 profoundly mitigates Th2-type allergic inflammation in asthma by modulating lung DC phenotype and functions, highlighting its therapeutic potential for inflammatory airway conditions and other related immunological disorders.
Collapse
Affiliation(s)
- Yu-Dong Xu
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Mi Cheng
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Jun-Xia Mao
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Xue Zhang
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Pan-Pan Shang
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Jie Long
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Yan-Jiao Chen
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Yu Wang
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Lei-Miao Yin
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Yong-Qing Yang
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China.
| |
Collapse
|
10
|
Jiang L, Tang H, Lin T, Jiang Y, Li Y, Gao W, Deng J, Huang Z, Chen C, Shi J, Zhou T, Lai Y. Epithelium-derived kallistatin promotes CD4 + T-cell chemotaxis to T H2-type inflammation in chronic rhinosinusitis. J Allergy Clin Immunol 2024; 154:120-130. [PMID: 38403085 DOI: 10.1016/j.jaci.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 12/23/2023] [Accepted: 02/06/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND The function of kallistatin in airway inflammation, particularly chronic rhinosinusitis with nasal polyps (CRSwNP), has not been elucidated. OBJECTIVE We sought to investigate the role of kallistatin in airway inflammation. METHODS Kallistatin and proinflammatory cytokine expression levels were detected in nasal polyps. For the in vivo studies, we constructed the kallistatin-overexpressing transgenic mice to elucidate the role of kallistatin in airway inflammation. Furthermore, the levels of plasma IgE and proinflammatory cytokines in the airways were evaluated in the kallistatin-/- rat in vivo model under a type 2 inflammatory background. Finally, the Notch signaling pathway was explored to understand the role of kallistatin in CRSwNP. RESULTS We showed that the expression of kallistatin was significantly higher in nasal polyps than in the normal nasal mucosa and correlated with IL-4 expression. We also discovered that the nasal mucosa of kallistatin-overexpressing transgenic mice expressed higher levels of IL-4 expression, associating to TH2-type inflammation. Interestingly, we observed lower IL-4 levels in the nasal mucosa and lower total plasma IgE of the kallistatin-/- group treated with house dust mite allergen compared with the wild-type house dust mite group. Finally, we observed a significant increase in the expression of Jagged2 in the nasal epithelium cells transduced with adenovirus-kallistatin. This heightened expression correlated with increased secretion of IL-4, attributed to the augmented population of CD4+CD45+Notch1+ T cells. These findings collectively may contribute to the induction of TH2-type inflammation. CONCLUSIONS Kallistatin was demonstrated to be involved in the CRSwNP pathogenesis by enhancing the TH2 inflammation, which was found to be associated with more expression of IL-4, potentially facilitated through Jagged2-Notch1 signaling in CD4+ T cells.
Collapse
Affiliation(s)
- Lijie Jiang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Otorhinolaryngology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haocheng Tang
- Department of Otorhinolaryngology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tengjiao Lin
- Department of Radiation Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yifeng Jiang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanmei Li
- Basic and Clinical Medicine Teaching Laboratory, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Wenxiang Gao
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jie Deng
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhaoqi Huang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chuxin Chen
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianbo Shi
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Ti Zhou
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; China Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China.
| | - Yinyan Lai
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
11
|
Turner MC, Radzikowska U, Ferastraoaru DE, Pascal M, Wesseling P, McCraw A, Backes C, Bax HJ, Bergmann C, Bianchini R, Cari L, de Las Vecillas L, Izquierdo E, Lind-Holm Mogensen F, Michelucci A, Nazarov PV, Niclou SP, Nocentini G, Ollert M, Preusser M, Rohr-Udilova N, Scafidi A, Toth R, Van Hemelrijck M, Weller M, Jappe U, Escribese MM, Jensen-Jarolim E, Karagiannis SN, Poli A. AllergoOncology: Biomarkers and refined classification for research in the allergy and glioma nexus-A joint EAACI-EANO position paper. Allergy 2024; 79:1419-1439. [PMID: 38263898 DOI: 10.1111/all.15994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/06/2023] [Accepted: 12/14/2023] [Indexed: 01/25/2024]
Abstract
Epidemiological studies have explored the relationship between allergic diseases and cancer risk or prognosis in AllergoOncology. Some studies suggest an inverse association, but uncertainties remain, including in IgE-mediated diseases and glioma. Allergic disease stems from a Th2-biased immune response to allergens in predisposed atopic individuals. Allergic disorders vary in phenotype, genotype and endotype, affecting their pathophysiology. Beyond clinical manifestation and commonly used clinical markers, there is ongoing research to identify novel biomarkers for allergy diagnosis, monitoring, severity assessment and treatment. Gliomas, the most common and diverse brain tumours, have in parallel undergone changes in classification over time, with specific molecular biomarkers defining glioma subtypes. Gliomas exhibit a complex tumour-immune interphase and distinct immune microenvironment features. Immunotherapy and targeted therapy hold promise for primary brain tumour treatment, but require more specific and effective approaches. Animal studies indicate allergic airway inflammation may delay glioma progression. This collaborative European Academy of Allergy and Clinical Immunology (EAACI) and European Association of Neuro-Oncology (EANO) Position Paper summarizes recent advances and emerging biomarkers for refined allergy and adult-type diffuse glioma classification to inform future epidemiological and clinical studies. Future research is needed to enhance our understanding of immune-glioma interactions to ultimately improve patient prognosis and survival.
Collapse
Affiliation(s)
- Michelle C Turner
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Urszula Radzikowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Christine Kühne - Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Denisa E Ferastraoaru
- Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Mariona Pascal
- Immunology Department, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
- Department of Medicine, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Pieter Wesseling
- Department of Pathology, Amsterdam University Medical Centers/VUmc, Amsterdam, The Netherlands
- Laboratory for Childhood Cancer Pathology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Alexandra McCraw
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Claudine Backes
- National Cancer Registry (Registre National du Cancer (RNC)), Luxembourg Institute of Health (LIH), Strassen, Luxembourg
- Public Health Expertise Unit, Department of Precision Health, Cancer Epidemiology and Prevention (EPI CAN), Luxembourg Institute of Health, Strassen, Luxembourg
| | - Heather J Bax
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Christoph Bergmann
- Department of Otorhinolaryngology, RKM740 Interdisciplinary Clinics, Düsseldorf, Germany
| | - Rodolfo Bianchini
- Center of Pathophysiology, Infectiology and Immunology, Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
- The Interuniversity Messerli Research Institute Vienna, University of Veterinary Medecine Vienna, Medical University Vienna, University Vienna, Vienna, Austria
| | - Luigi Cari
- Section of Pharmacology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Elena Izquierdo
- Institute of Applied Molecular Medicine Instituto de Medicina Molecular Aplicada Nemesio Díez (IMMA), Department of Basic Medical Sciences, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Frida Lind-Holm Mogensen
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Faculty of Sciences, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Alessandro Michelucci
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Petr V Nazarov
- Multiomics Data Science, Department of Cancer Research, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Simone P Niclou
- Faculty of Sciences, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- NORLUX Neuro-Oncology laboratory, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Giuseppe Nocentini
- Section of Pharmacology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-Sur-Alzette, Luxembourg
- Department of Dermatology and Allergy Centre, Odense University Hospital, Odense, Denmark
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Nataliya Rohr-Udilova
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
- Liver Cancer (HCC) Study Group Vienna, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Andrea Scafidi
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Faculty of Sciences, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Reka Toth
- Multiomics Data Science, Department of Cancer Research, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Mieke Van Hemelrijck
- Translational Oncology and Urology Research (TOUR), School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Uta Jappe
- Division of Clinical and Molecular Allergology, Priority Research Area Chronic Lung Diseases, Research Center Borstel, Leibniz Lung Center, German Center for Lung Research (DZL), Airway Research Center North (ARCN), Borstel, Germany
- Department of Pneumology, Interdisciplinary Allergy Outpatient Clinic, University of Luebeck, Luebeck, Germany
| | - Maria M Escribese
- Institute of Applied Molecular Medicine Instituto de Medicina Molecular Aplicada Nemesio Díez (IMMA), Department of Basic Medical Sciences, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Erika Jensen-Jarolim
- Center of Pathophysiology, Infectiology and Immunology, Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
- The Interuniversity Messerli Research Institute Vienna, University of Veterinary Medecine Vienna, Medical University Vienna, University Vienna, Vienna, Austria
| | - Sophia N Karagiannis
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Innovation Hub, Guy's Cancer Centre, London, UK
| | - Aurélie Poli
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| |
Collapse
|
12
|
Vyavahare S, Ahluwalia P, Gupta SK, Kolhe R, Hill WD, Hamrick M, Isales CM, Fulzele S. The Role of Aryl Hydrocarbon Receptor in Bone Biology. Int J Tryptophan Res 2024; 17:11786469241246674. [PMID: 38757095 PMCID: PMC11097734 DOI: 10.1177/11786469241246674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 03/25/2024] [Indexed: 05/18/2024] Open
Abstract
Aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, is crucial in maintaining the skeletal system. Our study focuses on encapsulating the role of AhR in bone biology and identifying novel signaling pathways in musculoskeletal pathologies using the GEO dataset. The GEO2R analysis identified 8 genes (CYP1C1, SULT6B1, CYB5A, EDN1, CXCR4B, CTGFA, TIPARP, and CXXC5A) involved in the AhR pathway, which play a pivotal role in bone remodeling. The AhR knockout in hematopoietic stem cells showed alteration in several novel bone-related transcriptomes (eg, Defb14, ZNF 51, and Chrm5). Gene Ontology Enrichment Analysis demonstrated 54 different biological processes associated with bone homeostasis. Mainly, these processes include bone morphogenesis, bone development, bone trabeculae formation, bone resorption, bone maturation, bone mineralization, and bone marrow development. Employing Functional Annotation and Clustering through DAVID, we further uncovered the involvement of the xenobiotic metabolic process, p450 pathway, oxidation-reduction, and nitric oxide biosynthesis process in the AhR signaling pathway. The conflicting evidence of current research of AhR signaling on bone (positive and negative effects) homeostasis may be due to variations in ligand binding affinity, binding sites, half-life, chemical structure, and other unknown factors. In summary, our study provides a comprehensive understanding of the underlying mechanisms of the AhR pathway in bone biology.
Collapse
Affiliation(s)
- Sagar Vyavahare
- Department of Medicine, Augusta University, Augusta, GA, USA
| | | | | | - Ravindra Kolhe
- Department of Pathology, Augusta University, Augusta, GA, USA
| | - William D Hill
- Department of Pathology, Medical University of South Carolina, Charleston, SC, USA
| | - Mark Hamrick
- Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, USA
- Center for Healthy Aging, Augusta University, Augusta, GA, USA
| | - Carlos M Isales
- Department of Medicine, Augusta University, Augusta, GA, USA
- Center for Healthy Aging, Augusta University, Augusta, GA, USA
| | - Sadanand Fulzele
- Department of Medicine, Augusta University, Augusta, GA, USA
- Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, USA
- Center for Healthy Aging, Augusta University, Augusta, GA, USA
| |
Collapse
|
13
|
Ni H, Lin Q, Zhong J, Gan S, Cheng H, Huang Y, Ding X, Yu H, Xu Y, Nie H. Role of sulfatide-reactive vNKT cells in promoting lung Treg cells via dendritic cell modulation in asthma models. Eur J Pharmacol 2024; 970:176461. [PMID: 38460658 DOI: 10.1016/j.ejphar.2024.176461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/11/2024]
Abstract
Our previous studies have showed that sulfatide-reactive type II NKT (i.e. variant NKT, vNKT) cells inhibit the immunogenic maturation during the development of mature lung dendritic cells (LDCs), leading todeclined allergic airway inflammation in asthma. Nonetheless, the specific immunoregulatory roles of vNKT cells in LDC-mediated Th2 cell responses remain incompletely understood. Herein, we found that administration of sulfatide facilitated the generation of CD4+FoxP3+ regulatory T (Treg) cells in the lungs of wild-type mice, but not in CD1d-/- and Jα18-/- mice, after ovalbumin or house dust mite exposure. This finding implies that the enhancement of lung Treg cells by sulfatide requires vNKT cells, which dependent on invariant NKT (iNKT) cells. Furthermore, the CD4+FoxP3+ Treg cells induced by sulfatide-reactive vNKT cells were found to be associated with PD-L1 molecules expressed on LDCs, and this association was dependent on iNKT cells. Collectively, our findings suggest that in asthma-mimicking murine models, sulfatide-reactive vNKT cells facilitate the generation of lung Treg cells through inducing tolerogenic properties in LDCs, and this process is dependent on the presence of lung iNKT cells. These results may provide a potential therapeutic approach to treat allergic asthma.
Collapse
Affiliation(s)
- Haiyang Ni
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Qibin Lin
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Jieying Zhong
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Shaoding Gan
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Hong Cheng
- Department of Parmacy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Yi Huang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Xuhong Ding
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Hongying Yu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Yaqing Xu
- Department of Geriatric Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| | - Hanxiang Nie
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| |
Collapse
|
14
|
Ahn YM, Jung J, Lee SM. Integrated Omics Analysis Uncovers the Culprit behind Exacerbated Atopic Dermatitis in a Diet-Induced Obesity Model. Int J Mol Sci 2024; 25:4143. [PMID: 38673730 PMCID: PMC11050523 DOI: 10.3390/ijms25084143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Atopic dermatitis (AD), a chronic inflammatory skin disease, is exacerbated by obesity, yet the precise linking mechanism remains elusive. This study aimed to elucidate how obesity amplifies AD symptoms. We studied skin samples from three mouse groups: sham control, AD, and high-fat (HF) + AD. The HF + AD mice exhibited more severe AD symptoms than the AD or sham control mice. Skin lipidome analysis revealed noteworthy changes in arachidonic acid (AA) metabolism, including increased expression of pla2g4, a key enzyme in AA generation. Genes for phospholipid transport (Scarb1) and acyltransferase utilizing AA as the acyl donor (Agpat3) were upregulated in HF + AD skin. Associations were observed between AA-containing phospholipids and skin lipids containing AA and its metabolites. Furthermore, imbalanced phospholipid metabolism was identified in the HF + AD mice, marked by excessive activation of the AA and phosphatidic acid (PA)-mediated pathway. This imbalance featured increased expression of Plcb1, Plcg1, and Dgk involved in PA generation, along with a decrease in genes converting PA into diglycerol (DG) and CDP-DG (Lpin1 and cds1). This investigation revealed imbalanced phospholipid metabolism in the skin of HF + AD mice, contributing to the heightened inflammatory response observed in HF + AD, shedding light on potential mechanisms linking obesity to the exacerbation of AD symptoms.
Collapse
|
15
|
Listyoko AS, Okazaki R, Harada T, Inui G, Yamasaki A. Impact of obesity on airway remodeling in asthma: pathophysiological insights and clinical implications. FRONTIERS IN ALLERGY 2024; 5:1365801. [PMID: 38562155 PMCID: PMC10982419 DOI: 10.3389/falgy.2024.1365801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
The prevalence of obesity among asthma patients has surged in recent years, posing a significant risk factor for uncontrolled asthma. Beyond its impact on asthma severity and patients' quality of life, obesity is associated with reduced lung function, increased asthma exacerbations, hospitalizations, heightened airway hyperresponsiveness, and elevated asthma-related mortality. Obesity may lead to metabolic dysfunction and immune dysregulation, fostering chronic inflammation characterized by increased pro-inflammatory mediators and adipocytokines, elevated reactive oxygen species, and reduced antioxidant activity. This chronic inflammation holds the potential to induce airway remodeling in individuals with asthma and obesity. Airway remodeling encompasses structural and pathological changes, involving alterations in the airway's epithelial and subepithelial layers, hyperplasia and hypertrophy of airway smooth muscle, and changes in airway vascularity. In individuals with asthma and obesity, airway remodeling may underlie heightened airway hyperresponsiveness and increased asthma severity, ultimately contributing to the development of persistent airflow limitation, declining lung function, and a potential increase in asthma-related mortality. Despite efforts to address the impact of obesity on asthma outcomes, the intricate mechanisms linking obesity to asthma pathophysiology, particularly concerning airway remodeling, remain incompletely understood. This comprehensive review discusses current research investigating the influence of obesity on airway remodeling, to enhance our understanding of obesity's role in the context of asthma airway remodeling.
Collapse
Affiliation(s)
- Aditya Sri Listyoko
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
- Pulmonology and Respiratory Medicine Department, Faculty of Medicine, Brawijaya University-Dr. Saiful Anwar General Hospital, Malang, Indonesia
| | - Ryota Okazaki
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Tomoya Harada
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Genki Inui
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Akira Yamasaki
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
| |
Collapse
|
16
|
Daniels P, Cassoday S, Gupta K, Giurini E, Leifheit ME, Zloza A, Marzo AL. Intratumoral Influenza Vaccine Administration Attenuates Breast Cancer Growth and Restructures the Tumor Microenvironment through Sialic Acid Binding of Vaccine Hemagglutinin. Int J Mol Sci 2023; 25:225. [PMID: 38203396 PMCID: PMC10779129 DOI: 10.3390/ijms25010225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Breast cancer continues to have a high disease burden worldwide and presents an urgent need for novel therapeutic strategies to improve outcomes. The influenza vaccine offers a unique approach to enhance the anti-tumor immune response in patients with breast cancer. Our study explores the intratumoral use of the influenza vaccine in a triple-negative 4T1 mouse model of breast cancer. We show that the influenza vaccine attenuated tumor growth using a three-dose intratumoral regimen. More importantly, prior vaccination did not alter this improved anti-tumor response. Furthermore, we characterized the effect that the influenza vaccine has on the tumor microenvironment and the underlying mechanisms of action. We established that the vaccine facilitated favorable shifts in restructuring the tumor microenvironment. Additionally, we show that the vaccine's ability to bind sialic acid residues, which have been implicated in having oncogenic functions, emerged as a key mechanism of action. Influenza hemagglutinin demonstrated binding ability to breast cancer cells through sialic acid expression. When administered intratumorally, the influenza vaccine offers a promising therapeutic strategy for breast cancer patients by reshaping the tumor microenvironment and modestly suppressing tumor growth. Its interaction with sialic acids has implications for effective therapeutic application and future research.
Collapse
Affiliation(s)
- Preston Daniels
- Department of Internal Medicine, Division of Hematology and Oncology, Rush University Medical Center, Chicago, IL 60612, USA; (P.D.); (M.E.L.); (A.Z.)
| | - Stefanie Cassoday
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA;
| | - Kajal Gupta
- Department of Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.G.); (E.G.)
| | - Eileena Giurini
- Department of Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.G.); (E.G.)
| | - Malia E. Leifheit
- Department of Internal Medicine, Division of Hematology and Oncology, Rush University Medical Center, Chicago, IL 60612, USA; (P.D.); (M.E.L.); (A.Z.)
| | - Andrew Zloza
- Department of Internal Medicine, Division of Hematology and Oncology, Rush University Medical Center, Chicago, IL 60612, USA; (P.D.); (M.E.L.); (A.Z.)
| | - Amanda L. Marzo
- Department of Internal Medicine, Division of Hematology and Oncology, Rush University Medical Center, Chicago, IL 60612, USA; (P.D.); (M.E.L.); (A.Z.)
| |
Collapse
|
17
|
Bostancieri N, Bakir K, Kul S, Eralp A, Kayalar O, Konyalilar N, Rajabi H, Yuncu M, Yildirim AÖ, Bayram H. The effect of multiple outgrowths from bronchial tissue explants on progenitor/stem cell number in primary bronchial epithelial cell cultures from smokers and patients with COPD. Front Med (Lausanne) 2023; 10:1118715. [PMID: 37908857 PMCID: PMC10614425 DOI: 10.3389/fmed.2023.1118715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 09/25/2023] [Indexed: 11/02/2023] Open
Abstract
Background Although studies suggest a deficiency in stem cell numbers in chronic airway diseases such as chronic obstructive pulmonary disease (COPD), the role of bronchial epithelial progenitor/stem (P/S) cells is not clear. The objectives of this study were to investigate expression of progenitor/stem (P/S) cell markers, cytokeratin (CK) 5, CK14 and p63 in bronchial epithelial explants and cell cultures obtained from smokers with and without COPD following multiple outgrowths, and to study this effect on bronchial epithelial cell (BEC) proliferation. Methods Bronchial epithelial explants were dissected from lung explants and cultured on coverslips. Confluent cultures were obtained after 3-4 weeks' (transfer, Tr1), explants were then transferred and cultured for a second (Tr2) and third (Tr3) time, respectively. At each stage, expression of CK5, CK14 and p63 in explants and BEC were determined by immunostaining. In parallel experiments, outgrowing cells from explants were counted after 4wks, and explants subsequently transferred to obtain new cultures for a further 3 times. Results As the transfer number advanced, CK5, CK14 and p63 expression was decreased in both explants and BEC from both smokers without COPD and patients with COPD, with a more pronounced decrease in BEC numbers in the COPD group. Total cell numbers cultured from explants were decreased with advancing outgrowth number in both groups. Smoking status and lung function parameters were correlated with reduced P/S marker expression and cell numbers. Conclusion Our findings suggest that the number of P/S cells in airway epithelium may play a role in the pathogenesis of COPD, as well as a role in the proliferation of airway epithelial cells, in vitro.
Collapse
Affiliation(s)
- Nuray Bostancieri
- Department of Histology and Embryology, School of Medicine, University of Gaziantep, Gaziantep, Türkiye
- Cell Culture Laboratory, Department of Chest Diseases, School of Medicine, University of Gaziantep, Gaziantep, Türkiye
| | - Kemal Bakir
- Department of Pathology, School of Medicine, University of Gaziantep, Gaziantep, Türkiye
| | - Seval Kul
- Department of Biostatistics, School of Medicine, University of Gaziantep, Gaziantep, Türkiye
| | - Ayhan Eralp
- Department of Histology and Embryology, School of Medicine, University of Gaziantep, Gaziantep, Türkiye
| | - Ozgecan Kayalar
- Koc University Research Center for Translational Medicine, Koc University, Istanbul, Türkiye
| | - Nur Konyalilar
- Koc University Research Center for Translational Medicine, Koc University, Istanbul, Türkiye
| | - Hadi Rajabi
- Koc University Research Center for Translational Medicine, Koc University, Istanbul, Türkiye
| | - Mehmet Yuncu
- Department of Histology and Embryology, School of Medicine, University of Gaziantep, Gaziantep, Türkiye
| | - Ali Önder Yildirim
- Koc University Research Center for Translational Medicine, Koc University, Istanbul, Türkiye
- Comprehensive Pneumology Center (CPC), Institute of Lung Health and Immunity (LHI), Member of the German Center for Lung Research (DZL), Helmholtz Munich, Munich, Germany
| | - Hasan Bayram
- Cell Culture Laboratory, Department of Chest Diseases, School of Medicine, University of Gaziantep, Gaziantep, Türkiye
- Koc University Research Center for Translational Medicine, Koc University, Istanbul, Türkiye
| |
Collapse
|
18
|
Frey A, Lunding LP, Wegmann M. The Dual Role of the Airway Epithelium in Asthma: Active Barrier and Regulator of Inflammation. Cells 2023; 12:2208. [PMID: 37759430 PMCID: PMC10526792 DOI: 10.3390/cells12182208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Chronic airway inflammation is the cornerstone on which bronchial asthma arises, and in turn, chronic inflammation arises from a complex interplay between environmental factors such as allergens and pathogens and immune cells as well as structural cells constituting the airway mucosa. Airway epithelial cells (AECs) are at the center of these processes. On the one hand, they represent the borderline separating the body from its environment in order to keep inner homeostasis. The airway epithelium forms a multi-tiered, self-cleaning barrier that involves an unstirred, discontinuous mucous layer, the dense and rigid mesh of the glycocalyx, and the cellular layer itself, consisting of multiple, densely interconnected cell types. On the other hand, the airway epithelium represents an immunologically highly active tissue once its barrier has been penetrated: AECs play a pivotal role in releasing protective immunoglobulin A. They express a broad spectrum of pattern recognition receptors, enabling them to react to environmental stressors that overcome the mucosal barrier. By releasing alarmins-proinflammatory and regulatory cytokines-AECs play an active role in the formation, strategic orientation, and control of the subsequent defense reaction. Consequently, the airway epithelium is of vital importance to chronic inflammatory diseases, such as asthma.
Collapse
Affiliation(s)
- Andreas Frey
- Division of Mucosal Immunology and Diagnostics, Research Center Borstel, 23845 Borstel, Germany;
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), 22927 Großhansdorf, Germany;
| | - Lars P. Lunding
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), 22927 Großhansdorf, Germany;
- Division of Lung Immunology, Research Center Borstel, 23845 Borstel, Germany
| | - Michael Wegmann
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), 22927 Großhansdorf, Germany;
- Division of Lung Immunology, Research Center Borstel, 23845 Borstel, Germany
| |
Collapse
|
19
|
Wang C, Du Z, Li R, Luo Y, Zhu C, Ding N, Lei A. Interferons as negative regulators of ILC2s in allergic lung inflammation and respiratory viral infections. J Mol Med (Berl) 2023; 101:947-959. [PMID: 37414870 DOI: 10.1007/s00109-023-02345-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023]
Abstract
Group 2 innate lymphoid cells (ILC2s), characterized by a lack of antigen receptors, have been regarded as an important component of type 2 pulmonary immunity. Analogous to Th2 cells, ILC2s are capable of releasing type 2 cytokines and amphiregulin, thus playing an essential role in a variety of diseases, such as allergic diseases and virus-induced respiratory diseases. Interferons (IFNs), an important family of cytokines with potent antiviral effects, can be triggered by microbial products, microbial exposure, and pathogen infections. Interestingly, the past few years have witnessed encouraging progress in revealing the important role of IFNs and IFN-producing cells in modulating ILC2 responses in allergic lung inflammation and respiratory viral infections. This review underscores recent progress in understanding the role of IFNs and IFN-producing cells in shaping ILC2 responses and discusses disease phenotypes, mechanisms, and therapeutic targets in the context of allergic lung inflammation and infections with viruses, including influenza virus, rhinovirus (RV), respiratory syncytial virus (RSV), and severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2).
Collapse
Affiliation(s)
- Cui Wang
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Zhaoxiang Du
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Ranhui Li
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Ying Luo
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Cuiming Zhu
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Nan Ding
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Aihua Lei
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China.
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China.
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China.
| |
Collapse
|
20
|
Ji T, Li H. T-helper cells and their cytokines in pathogenesis and treatment of asthma. Front Immunol 2023; 14:1149203. [PMID: 37377958 PMCID: PMC10291091 DOI: 10.3389/fimmu.2023.1149203] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Prosperous advances in understanding the cellular and molecular mechanisms of chronic inflammation and airway remodeling in asthma have been made over the past several decades. Asthma is a chronic inflammatory disease of the airways characterized by reversible airway obstruction that is self-resolving or remits with treatment. Around half of asthma patients are "Type-2-high" asthma with overexpression of type 2 inflammatory pathways and elevated type 2 cytokines. When stimulated by allergens, airway epithelial cells secrete IL-25, IL-33, and TSLP to derive a Th2 immune response. First ILC2 followed by Th2 cells produces a series of cytokines such as IL-4, IL-5, and IL-13. TFH cells control IgE synthesis by secreting IL-4 to allergen-specific B cells. IL-5 promotes eosinophil inflammation, while IL-13 and IL-4 are involved in goblet cell metaplasia and bronchial hyperresponsiveness. Currently, "Type-2 low" asthma is defined as asthma with low levels of T2 biomarkers due to the lack of reliable biomarkers, which is associated with other Th cells. Th1 and Th17 are capable of producing cytokines that recruit neutrophils, such as IFN-γ and IL-17, to participate in the development of "Type-2-low" asthma. Precision medicine targeting Th cells and related cytokines is essential in the management of asthma aiming at the more appropriate patient selection and better treatment response. In this review, we sort out the pathogenesis of Th cells in asthma and summarize the therapeutic approaches involved as well as potential research directions.
Collapse
Affiliation(s)
| | - Hequan Li
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
21
|
Wang L, Liu X. Long noncoding RNA antisense noncoding RNA in the INK4 locus inhibition alleviates airway remodeling in asthma through the regulation of the microRNA-7-5p/early growth response factor 3 axis. Immun Inflamm Dis 2023; 11:e823. [PMID: 37102654 PMCID: PMC10091379 DOI: 10.1002/iid3.823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/07/2023] [Accepted: 03/10/2023] [Indexed: 04/28/2023] Open
Abstract
Asthma, a chronic inflammatory disease of the airways, clinically manifests as airway remodeling. The purpose of this study was to probe the potential role of long noncoding RNA (lncRNA) antisense noncoding RNA in the INK4 locus (lncRNA ANRIL) in the proliferation and migration of airway smooth muscle cell (ASMC) and to explore its potential mechanisms in asthma. Serum samples were obtained from 30 healthy volunteers and 30 patients with asthma. Additionally, platelet-derived growth factor-BB (PDGF-BB) was used to induce airway remodeling in ASMCs. The level of lncRNA ANRIL and microRNA (miR)-7-5p in serum samples were measured by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). TargetScan predicted the binding site of miR-7-5p to early growth response factor 3 (EGR3) and validated the results using a dual-luciferase reporter assay. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) and Transwell assays were used to detect cellular proliferation and migration, respectively. Subsequently, changes in proliferation- and migration-related genes were verified using western blot analysis and qRT-PCR. These results indicate that lncRNA ANRIL was upregulated in the serum and PDGF-BB-induced ASMCs of patients with asthma, whereas miR-7-5p expression was reduced. EGR3 was a direct target of miR-7-5p. LncRNA ANRIL silencing inhibited the proliferation or migration of ASMCs induced by PDGF-BB through miR-7-5p upregulation. Mechanistic studies indicated that miR-7-5p inhibits the proliferation or migration of PDGF-BB-induced ASMCs by decreasing EGR3 expression. EGR3 upregulation reverses the role of miR-7-5p in airway remodeling. Thus, downregulation of lncRNA ANRIL inhibits airway remodeling through inhibiting the proliferation and migration of PDGF-BB-induced ASMCs by regulating miR-7-5p/EGR3 signaling.
Collapse
Affiliation(s)
- Liyan Wang
- Department of PediatricsWuhan Third HospitalWuhanChina
| | - Xueru Liu
- Department of Respiratory Medicine, Wuhan Children's Hospital, Tongji Medical CollegeHuazhong University of Science & TechnologyWuhanChina
| |
Collapse
|
22
|
Herrock O, Deer E, LaMarca B. Setting a stage: Inflammation during preeclampsia and postpartum. Front Physiol 2023; 14:1130116. [PMID: 36909242 PMCID: PMC9995795 DOI: 10.3389/fphys.2023.1130116] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
Preeclampsia (PE) is a leading cause of maternal and fetal mortality worldwide. The immune system plays a critical role in normal pregnancy progression; however, inappropriate inflammatory responses have been consistently linked with PE pathophysiology. This inflammatory phenotype consists of activation of the innate immune system, adaptive immune system, and increased inflammatory mediators in circulation. Moreover, recent studies have shown that the inflammatory profile seen in PE persists into the postpartum period. This manuscript aims to highlight recent advances in research relating to inflammation in PE as well as the inflammation that persists postpartum in women after a PE pregnancy. With the advent of the COVID-19 pandemic, there has been an increase in obstetric disorders associated with COVID-19 infection during pregnancy. This manuscript also aims to shed light on the relationship between COVID-19 infection during pregnancy and the increased incidence of PE in these women.
Collapse
Affiliation(s)
- Owen Herrock
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Evangeline Deer
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Babbette LaMarca
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
- Department of Obstetrics and Gynecology, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
23
|
Islam MM, Islam S, Ahmed R, Majumder M, Sarkar B, Himu MER, Kawser M, Hossain A, Mia MJ, Parag RR, Bulbul MRH, Ahmed S, Sattar MA, Biswas R, Das M, Rahman MM, Shil RK, Parial R, Chowdhury S, Das M, Noman ASM, Hossain MM. Reduced IFN-γ levels along with changes in hematologic and immunologic parameters are key to COVID-19 severity in Bangladeshi patients. Exp Hematol 2023; 118:53-64.e1. [PMID: 36574579 PMCID: PMC9701580 DOI: 10.1016/j.exphem.2022.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/08/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
The manifestation of coronavirus disease 2019 (COVID-19) severity and mortality has been associated with dysregulation of the immune response, often influenced by racial disparities and conferred by changes in hematologic and immunologic parameters. These biological and hematologic parameters as well as cytokine profiles were investigated in a cohort of 61 COVID-19-positive patients (categorized into mild, moderate, and severe groups) from Bangladesh using standard analytical methods. The data reported that the interleukin (IL)-4 and IL-6 levels were significantly increased, whereas the levels of interferon (IFN)-γ were significantly reduced in patients with severe COVID-19 (p < 0.05) compared with those in patients with mild and/or moderate COVID-19. The extent of erythrocyte sedimentation rate (ESR); neutrophil count; and levels of ferritin, C-reactive protein (CRP), and D-dimer (p < 0.05) were found to be significantly increased, whereas the white blood cell (WBC), lymphocyte, eosinophil, and platelet counts (p < 0.05) were observed to be significantly reduced in patients with severe COVID-19 compared with those in the patients in other 2 groups. Our study exhibited a significantly higher IL-6-to-lymphocyte ratio in patients with severe COVID-19 than in those with mild and moderate COVID-19. The calculated neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), lymphocyte-to-monocyte ratio (LMR), and ferritin-to-ESR ratio were significantly increased in patients with severe COVID-19. The increase in the IL-4 and IL-6 levels along with CRP and D-dimer levels may envisage a hyperinflammatory environment and immune dysregulation, which contribute to prolonged viral persistence, leading to severe disease. However, the reduced level of IFN-γ can be attributed to a less fatality toll in Bangladesh compared with that in the rest of the world.
Collapse
Affiliation(s)
- Mohammed Moinul Islam
- Department of Biochemistry & Molecular Biology, University of Chittagong, Chattogram, Bangladesh; EuGEF Research Foundation, Chattogram, Bangladesh
| | - Shafiqul Islam
- Department of Biochemistry & Molecular Biology, University of Chittagong, Chattogram, Bangladesh; EuGEF Research Foundation, Chattogram, Bangladesh; Stem Cell Genetics, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Ridwan Ahmed
- Department of Biochemistry & Molecular Biology, University of Chittagong, Chattogram, Bangladesh; EuGEF Research Foundation, Chattogram, Bangladesh
| | - Mohit Majumder
- Department of Biochemistry & Molecular Biology, University of Chittagong, Chattogram, Bangladesh; EuGEF Research Foundation, Chattogram, Bangladesh
| | - Bishu Sarkar
- Department of Biochemistry & Molecular Biology, University of Chittagong, Chattogram, Bangladesh; EuGEF Research Foundation, Chattogram, Bangladesh
| | - Md Ejajur Rahman Himu
- Department of Biochemistry & Molecular Biology, University of Chittagong, Chattogram, Bangladesh; EuGEF Research Foundation, Chattogram, Bangladesh
| | - Md Kawser
- Department of Biochemistry & Molecular Biology, University of Chittagong, Chattogram, Bangladesh; EuGEF Research Foundation, Chattogram, Bangladesh
| | - Alamgir Hossain
- Department of Biochemistry & Molecular Biology, University of Chittagong, Chattogram, Bangladesh; EuGEF Research Foundation, Chattogram, Bangladesh
| | - Mohammad Jewel Mia
- Department of Biochemistry & Molecular Biology, University of Chittagong, Chattogram, Bangladesh; EuGEF Research Foundation, Chattogram, Bangladesh
| | - Rashed Rezwan Parag
- Department of Biochemistry & Molecular Biology, University of Chittagong, Chattogram, Bangladesh; EuGEF Research Foundation, Chattogram, Bangladesh
| | | | - Shakeel Ahmed
- Bangladesh Institute of Tropical and Infectious Diseases, Chattogram, Bangladesh
| | - M A Sattar
- Department of Medicine, Chittagong Medical College and Hospital, Chattogram, Bangladesh
| | - Rajdeep Biswas
- Anaesthesia & ICU department, General Hospital, Chattogram, Bangladesh
| | - Moumita Das
- Anaesthesia & ICU department, General Hospital, Chattogram, Bangladesh
| | - Md Mizanur Rahman
- EuGEF Research Foundation, Chattogram, Bangladesh; Department of Biochemistry, Rangamati Medical College, Rangamati, Bangladesh
| | - Rajib Kumar Shil
- Department of Biochemistry & Molecular Biology, University of Chittagong, Chattogram, Bangladesh; EuGEF Research Foundation, Chattogram, Bangladesh
| | - Ramendu Parial
- Department of Biochemistry & Molecular Biology, University of Chittagong, Chattogram, Bangladesh; EuGEF Research Foundation, Chattogram, Bangladesh
| | - Srikanta Chowdhury
- Department of Biochemistry & Molecular Biology, University of Chittagong, Chattogram, Bangladesh; EuGEF Research Foundation, Chattogram, Bangladesh
| | - Manisha Das
- EuGEF Research Foundation, Chattogram, Bangladesh
| | - Abu Shadat Mohammod Noman
- Department of Biochemistry & Molecular Biology, University of Chittagong, Chattogram, Bangladesh; EuGEF Research Foundation, Chattogram, Bangladesh
| | - Muhammad Mosaraf Hossain
- Department of Biochemistry & Molecular Biology, University of Chittagong, Chattogram, Bangladesh; EuGEF Research Foundation, Chattogram, Bangladesh.
| |
Collapse
|
24
|
Kanannejad Z, Soleimanian S, Ghahramani Z, Sepahi N, Mohkam M, Alyasin S, Kheshtchin N. Immune checkpoint molecules in prevention and development of asthma. Front Immunol 2023; 14:1070779. [PMID: 36865540 PMCID: PMC9972681 DOI: 10.3389/fimmu.2023.1070779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
Allergic asthma is a respiratory disease initiated by type-2 immune responses characterized by secretion of alarmins, interleukin-4 (IL-4), IL-5, and IL-13, eosinophilic inflammation, and airway hyperresponsiveness (AHR). Immune checkpoints (ICPs) are inhibitory or stimulatory molecules expressed on different immune cells, tumor cells, or other cell types that regulate immune system activation and maintain immune homeostasis. Compelling evidence indicates a key role for ICPs in both the progression and prevention of asthma. There is also evidence of asthma development or exacerbation in some cancer patients receiving ICP therapy. The aim of this review is to provide an updated overview of ICPs and their roles in asthma pathogenesis, and to assess their implications as therapeutic targets in asthma.
Collapse
Affiliation(s)
- Zahra Kanannejad
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeede Soleimanian
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Ghahramani
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Najmeh Sepahi
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Mohkam
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soheila Alyasin
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasim Kheshtchin
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
25
|
Klochkova A, Fuller AD, Miller R, Karami AL, Panchani SR, Natarajan S, Mu A, Jackson JL, Klein-Szanto AJ, Muir AB, Whelan KA. A role for age-associated alterations in esophageal epithelium in eosinophilic esophagitis-associated fibrosis. FRONTIERS IN ALLERGY 2022; 3:983412. [PMID: 36591561 PMCID: PMC9798296 DOI: 10.3389/falgy.2022.983412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/11/2022] [Indexed: 12/23/2022] Open
Abstract
Subepithelial fibrosis occurs in a subset of eosinophilic esophagitis (EoE) patients and is associated with esophageal stricture. While mechanisms driving EoE fibrosis remain incompletely understood, findings from experimental systems support roles for epithelial-fibroblast crosstalk in this type of tissue remodeling. The current paradigm presents EoE as a progressive fibrostenotic disease in which aged patients develop fibrosis as a function of disease chronicity. In the current study we provide evidence that altered epithelial biology in the aging esophagus may also contribute to EoE-associated fibrosis. We find that induction of EoE inflammation in young and aged mice using the MC903/Ovalbumin protocol for the same time period results in increased lamina propria thickness uniquely in aged animals. Additionally, epithelial cells from aged mice less efficiently limit fibroblast contractility in collagen plug contraction assays compared to those from their young counterparts. Finally, to identify potential mechanisms through which aged esophageal epithelial cells may stimulate fibrotic remodeling, we perform cytokine array experiments in young and aged mice. These studies are significant as identification of age-associated factors that contribute to fibrotic remodeling may aid in the design of strategies toward early detection, prevention, and therapy of fibrostenotic EoE.
Collapse
Affiliation(s)
- Alena Klochkova
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Annie D. Fuller
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Riley Miller
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Adam L. Karami
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Surali R. Panchani
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Shruthi Natarajan
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Anbin Mu
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Jazmyne L. Jackson
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | | | - Amanda B. Muir
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Kelly A. Whelan
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
- Department of Cancer and Cellular Biology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
26
|
Qiu S, Luo X, Mo L, Zhang S, Liao Y, Guan L, Yang L, Huang Q, Liu D, Yang P. TAFA4-IL-10 axis potentiate immunotherapy for airway allergy by induction of specific regulatory T cells. NPJ Vaccines 2022; 7:133. [PMID: 36316414 PMCID: PMC9622679 DOI: 10.1038/s41541-022-00559-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2022] Open
Abstract
Allergen-specific immunotherapy (AIT) is the main treatment for allergic diseases. The therapeutic efficacy of AIT has to be improved. Neuropeptides, such as TAFA4, have immune-regulating features. The objective of this study is to promote the efficacy of AIT in experimental allergic rhinitis (AR) by the concurrent use of TAFA chemokine as a family member 4 (TAFA4). In this study, an AR mouse model was developed using ovalbumin (OVA) as the specific antigen. The AR response was assessed in mice after treatment with AIT or/and TAFA4. We found that exposure to TAFA4 activated dendritic cells (DCs) in the airway tissues. Activation of DC by TAFA4 resulted in the expression of IL-10. TAFA4 also promoted the activities of c-Maf inducing protein. The FPR1-MyD88-AKT signal pathway was associated with the TAFA4-induced Il10 expression in the DCs. Co-administration of AIT/TAFA4 attenuated the AR response in mice by inducing antigen-specific Tr1 cells. In conclusion, TAFA4 induces the expression of IL-10 in DCs. Acting as an adjuvant, TAFA4 significantly improves AIT’s therapeutic efficacy against AR by inducing antigen-specific Tr1 cells.
Collapse
Affiliation(s)
- Shuyao Qiu
- grid.284723.80000 0000 8877 7471Department of Pediatric Otolaryngology, Shenzhen Hospital, Southern Medical University, Shenzhen, China ,grid.284723.80000 0000 8877 7471The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiangqian Luo
- grid.284723.80000 0000 8877 7471Department of Pediatric Otolaryngology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Lihua Mo
- grid.284723.80000 0000 8877 7471Department of Pediatric Otolaryngology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Shuang Zhang
- Guangdong Provincial Regional Disease Key Laboratory, Shenzhen, China ,grid.263488.30000 0001 0472 9649Institute of Allergy & Immunology of Shenzhen University, State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen, China
| | - Yun Liao
- Guangdong Provincial Regional Disease Key Laboratory, Shenzhen, China ,grid.263488.30000 0001 0472 9649Institute of Allergy & Immunology of Shenzhen University, State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen, China
| | - Li Guan
- grid.263488.30000 0001 0472 9649Department of Allergy & Respirology, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Liteng Yang
- grid.263488.30000 0001 0472 9649Department of Allergy & Respirology, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Qinmiao Huang
- grid.263488.30000 0001 0472 9649Department of Allergy & Respirology, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Dabo Liu
- grid.284723.80000 0000 8877 7471Department of Pediatric Otolaryngology, Shenzhen Hospital, Southern Medical University, Shenzhen, China ,grid.284723.80000 0000 8877 7471The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Pingchang Yang
- Guangdong Provincial Regional Disease Key Laboratory, Shenzhen, China ,grid.263488.30000 0001 0472 9649Institute of Allergy & Immunology of Shenzhen University, State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University, Shenzhen, China
| |
Collapse
|
27
|
Erb A, Zissler UM, Oelsner M, Chaker AM, Schmidt-Weber CB, Jakwerth CA. Genome-Wide Gene Expression Analysis Reveals Unique Genes Signatures of Epithelial Reorganization in Primary Airway Epithelium Induced by Type-I, -II and -III Interferons. BIOSENSORS 2022; 12:929. [PMID: 36354438 PMCID: PMC9688329 DOI: 10.3390/bios12110929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Biosensors such as toll-like receptors (TLR) induce the expression of interferons (IFNs) after viral infection that are critical to the first step in cell-intrinsic host defense mechanisms. Their differential influence on epithelial integrity genes, however, remains elusive. A genome-wide gene expression biosensor chip for gene expression sensing was used to examine the effects of type-I, -II, and -III IFN stimulation on the epithelial expression profiles of primary organotypic 3D air-liquid interface airway cultures. All types of IFNs induced similar interferon-stimulated genes (ISGs): OAS1, OAS2, and IFIT2. However, they differentially induced transcription factors, epithelial modulators, and pro-inflammatory genes. Type-I IFN-induced genes were associated with cell-cell adhesion and tight junctions, while type-III IFNs promoted genes important for transepithelial transport. In contrast, type-II IFN stimulated proliferation-triggering genes associated and enhanced pro-inflammatory mediator secretion. In conclusion, with our microarray system, we provide evidence that the three IFN types exceed their antiviral ISG-response by inducing distinct remodeling processes, thereby likely strengthening the epithelial airway barrier by enhancing cross-cell-integrity (I), transepithelial transport (III) and finally reconstruction through proliferation (II).
Collapse
Affiliation(s)
- Anna Erb
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Member of the Helmholtz I&I Initiative, 85746 Munich, Germany
| | - Ulrich M. Zissler
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Member of the Helmholtz I&I Initiative, 85746 Munich, Germany
| | - Madlen Oelsner
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Member of the Helmholtz I&I Initiative, 85746 Munich, Germany
| | - Adam M. Chaker
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Member of the Helmholtz I&I Initiative, 85746 Munich, Germany
- Department of Otorhinolaryngology and Head and Neck Surgery, Medical School, Technical University of Munich, 81675 Munich, Germany
| | - Carsten B. Schmidt-Weber
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Member of the Helmholtz I&I Initiative, 85746 Munich, Germany
| | - Constanze A. Jakwerth
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Member of the Helmholtz I&I Initiative, 85746 Munich, Germany
| |
Collapse
|
28
|
Identification of miRNA-mRNA-TFs regulatory network and crucial pathways involved in asthma through advanced systems biology approaches. PLoS One 2022; 17:e0271262. [PMID: 36264868 PMCID: PMC9584516 DOI: 10.1371/journal.pone.0271262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/28/2022] [Indexed: 12/07/2022] Open
Abstract
Asthma is a life-threatening and chronic inflammatory lung disease that is posing a true global health challenge. The genetic basis of the disease is fairly well examined. However, the molecular crosstalk between microRNAs (miRNAs), target genes, and transcription factors (TFs) networks and their contribution to disease pathogenesis and progression is not well explored. Therefore, this study was aimed at dissecting the molecular network between mRNAs, miRNAs, and TFs using robust computational biology approaches. The transcriptomic data of bronchial epithelial cells of severe asthma patients and healthy controls was studied by different systems biology approaches like differentially expressed gene detection, functional enrichment, miRNA-target gene pairing, and mRNA-miRNA-TF molecular networking. We detected the differential expression of 1703 (673 up-and 1030 down-regulated) genes and 71 (41 up-and 30 down-regulated) miRNAs in the bronchial epithelial cells of asthma patients. The DEGs were found to be enriched in key pathways like IL-17 signaling (KEGG: 04657), Th1 and Th2 cell differentiation (KEGG: 04658), and the Th17 cell differentiation (KEGG: 04659) (p-values = 0.001). The results from miRNAs-target gene pairs-transcription factors (TFs) have detected the key roles of 3 miRs (miR-181a-2-3p; miR-203a-3p; miR-335-5p), 6 TFs (TFAM, FOXO1, GFI1, IRF2, SOX9, and HLF) and 32 miRNA target genes in eliciting autoimmune reactions in bronchial epithelial cells of the respiratory tract. Through systemic implementation of comprehensive system biology tools, this study has identified key miRNAs, TFs, and miRNA target gene pairs as potential tissue-based asthma biomarkers.
Collapse
|
29
|
Jakwerth CA, Kitzberger H, Pogorelov D, Müller A, Blank S, Schmidt-Weber CB, Zissler UM. Role of microRNAs in type 2 diseases and allergen-specific immunotherapy. FRONTIERS IN ALLERGY 2022; 3:993937. [PMID: 36172292 PMCID: PMC9512106 DOI: 10.3389/falgy.2022.993937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/11/2022] [Indexed: 12/07/2022] Open
Abstract
MicroRNAs (miRs) have gained scientific attention due to their importance in the pathophysiology of allergic diseases as well as their potential as biomarkers in allergen-specific treatment options. Their function as post-transcriptional regulators, controlling various cellular processes, is of high importance since any single miR can target multiple mRNAs, often within the same signalling pathway. MiRs can alter dysregulated expression of certain cellular responses and contribute to or cause, but in some cases prevent or repress, the development of various diseases. In this review article, we describe current research on the role of specific miRs in regulating immune responses in epithelial cells and specialized immune cells in response to various stimuli, in allergic diseases, and regulation in the therapeutic approach of allergen-specific immunotherapy (AIT). Despite the fact that AIT has been used successfully as a causative treatment option since more than a century, very little is known about the mechanisms of regulation and its connections with microRNAs. In order to fill this gap, this review aims to provide an overview of the current knowledge.
Collapse
|
30
|
Bergmann C, Poli A, Agache I, Bianchini R, Bax HJ, Castells M, Crescioli S, Dombrowicz D, Ferastraoaru D, Fiebiger E, Gould HJ, Hartmann K, Izquierdo E, Jordakieva G, Josephs DH, Jutel M, Levi‐Schaffer F, de las Vecillas L, Lotze MT, Osborn G, Pascal M, Redegeld F, Rosenstreich D, Roth‐Walter F, Schmidt‐Weber C, Shamji M, Steveling EH, Turner MC, Untersmayr E, Jensen‐Jarolim E, Karagiannis SN. AllergoOncology: Danger signals in allergology and oncology: A European Academy of Allergy and Clinical Immunology (EAACI) Position Paper. Allergy 2022; 77:2594-2617. [PMID: 35152450 PMCID: PMC9545837 DOI: 10.1111/all.15255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 01/27/2023]
Abstract
The immune system interacts with many nominal 'danger' signals, endogenous danger-associated (DAMP), exogenous pathogen (PAMP) and allergen (AAMP)-associated molecular patterns. The immune context under which these are received can promote or prevent immune activating or inflammatory mechanisms and may orchestrate diverse immune responses in allergy and cancer. Each can act either by favouring a respective pathology or by supporting the immune response to confer protective effects, depending on acuity or chronicity. In this Position Paper under the collective term danger signals or DAMPs, PAMPs and AAMPs, we consider their diverse roles in allergy and cancer and the connection between these in AllergoOncology. We focus on their interactions with different immune cells of the innate and adaptive immune system and how these promote immune responses with juxtaposing clinical outcomes in allergy and cancer. While danger signals present potential targets to overcome inflammatory responses in allergy, these may be reconsidered in relation to a history of allergy, chronic inflammation and autoimmunity linked to the risk of developing cancer, and with regard to clinical responses to anti-cancer immune and targeted therapies. Cross-disciplinary insights in AllergoOncology derived from dissecting clinical phenotypes of common danger signal pathways may improve allergy and cancer clinical outcomes.
Collapse
Affiliation(s)
- Christoph Bergmann
- Department of OtorhinolaryngologyRKM740 Interdisciplinary ClinicsDüsseldorfGermany
| | - Aurélie Poli
- Neuro‐Immunology GroupDepartment of OncologyLuxembourg Institute of HealthLuxembourgLuxembourg
| | - Ioana Agache
- Faculty of MedicineTransylania University BrasovBrasovRomania
| | - Rodolfo Bianchini
- Comparative MedicineThe Interuniversity Messerli Research InstituteUniversity of Veterinary Medicine ViennaMedical University of ViennaUniversity of ViennaViennaAustria
| | - Heather J. Bax
- St. John's Institute of DermatologySchool of Basic & Medical BiosciencesGuy's Hospital, King's College LondonLondonUnited Kindgom,School of Cancer and Pharmaceutical SciencesGuy's Hospital, King's College LondonLondonUnited Kingdom
| | - Mariana Castells
- Division of Allergy and Clinical Immunology, Department of MedicineBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Silvia Crescioli
- St. John's Institute of DermatologySchool of Basic & Medical BiosciencesGuy's Hospital, King's College LondonLondonUnited Kindgom
| | - David Dombrowicz
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille U1011‐EGIDLilleFrance
| | - Denisa Ferastraoaru
- Department of Internal Medicine/Allergy and Immunology, Montefiore Medical CenterAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Edda Fiebiger
- Division of Gastroenterology, Hepatology and Nutrition Research, Department of Medicine ResearchChildren's University Hospital BostonBostonMassachusettsUSA
| | - Hannah J. Gould
- Randall Centre for Cell and Molecular Biophysics, School of Basic & Medical BiosciencesKing's College London, New Hunt's HouseLondonUnited Kingdom,Medical Research Council & Asthma UK Centre in Allergic Mechanisms of AsthmaLondonUnited Kingdom
| | - Karin Hartmann
- Department of DermatologyUniversity of BaselBaselSwitzerland
| | - Elena Izquierdo
- IMMA, School of Medicine, Institute of Applied Molecular MedicineCEU San Pablo UniversityMadridSpain
| | - Galateja Jordakieva
- Department of Physical Medicine, Rehabilitation and Occupational MedicineMedical University of ViennaViennaAustria
| | - Debra H. Josephs
- St. John's Institute of DermatologySchool of Basic & Medical BiosciencesGuy's Hospital, King's College LondonLondonUnited Kindgom,School of Cancer and Pharmaceutical SciencesGuy's Hospital, King's College LondonLondonUnited Kingdom
| | - Marek Jutel
- Department of Clinical ImmunologyWroclaw Medical UniversityWroclawPoland,ALL‐MED Medical Research InstituteWroclawPoland
| | - Francesca Levi‐Schaffer
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Faculty of MedicineThe Institute for Drug Research, The Hebrew University of JerusalemJerusalemIsrael
| | | | - Michael T. Lotze
- G.27A Hillman Cancer CenterUniversity of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
| | - Gabriel Osborn
- St. John's Institute of DermatologySchool of Basic & Medical BiosciencesGuy's Hospital, King's College LondonLondonUnited Kindgom
| | - Mariona Pascal
- Department of Immunology, CDB, Hospital Clinic de BarcelonaInstitut d'Investigacions Biomèdiques August Pi i Sunyer, Universitat de BarcelonaBarcelonaSpain
| | - Frank Redegeld
- Division of Pharmacology, Faculty of ScienceUtrecht Institute for Pharmaceutical Sciences, Utrecht UniversityUtrechtThe Netherlands
| | - David Rosenstreich
- Department of Internal Medicine/Allergy and Immunology, Montefiore Medical CenterAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Franziska Roth‐Walter
- Comparative MedicineThe Interuniversity Messerli Research InstituteUniversity of Veterinary Medicine ViennaMedical University of ViennaUniversity of ViennaViennaAustria,Center of Pathophysiology, Infectiology and ImmunologyInstitute of Pathophysiology and Allergy Research, Medical University ViennaViennaAustria
| | - Carsten Schmidt‐Weber
- Center of Allergy & Environment (ZAUM)Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental HealthMunichGermany,German Center for Lung Research (DZL)MunichGermany
| | - Mohamed Shamji
- Immunomodulation and Tolerance Group, Imperial College London, and Allergy and Clinical ImmunologyImperial College LondonLondonUnited Kingdom
| | | | | | - Eva Untersmayr
- Center of Pathophysiology, Infectiology and ImmunologyInstitute of Pathophysiology and Allergy Research, Medical University ViennaViennaAustria
| | - Erika Jensen‐Jarolim
- Comparative MedicineThe Interuniversity Messerli Research InstituteUniversity of Veterinary Medicine ViennaMedical University of ViennaUniversity of ViennaViennaAustria,Center of Pathophysiology, Infectiology and ImmunologyInstitute of Pathophysiology and Allergy Research, Medical University ViennaViennaAustria
| | - Sophia N. Karagiannis
- St. John's Institute of DermatologySchool of Basic & Medical BiosciencesGuy's Hospital, King's College LondonLondonUnited Kindgom,Breast Cancer Now Research UnitSchool of Cancer and Pharmaceutical Sciences, King's College London, Guy's Hospital,LondonSE1 9RTUnited Kindgom
| |
Collapse
|
31
|
Barta I, Paska C, Antus B. Sputum Cytokine Profiling in COPD: Comparison Between Stable Disease and Exacerbation. Int J Chron Obstruct Pulmon Dis 2022; 17:1897-1908. [PMID: 36017119 PMCID: PMC9397440 DOI: 10.2147/copd.s364982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/21/2022] [Indexed: 12/03/2022] Open
Abstract
Purpose Cytokines are extracellular signaling proteins that have been widely implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD). Here, we investigated cytokine expression both at the mRNA and protein level in the sputum of healthy individuals, stable COPD patients, and those experiencing a severe acute exacerbation (AECOPD) requiring hospitalization. Patients and Methods Sputum was collected in 19 healthy controls, 25 clinically stable COPD patients, and 31 patients with AECOPD. In AECOPD patients sample collection was performed both at the time of hospital admission and at discharge following treatment. Sputum supernatant was analyzed by an antibody microarray detecting 120 cytokines simultaneously, while the mRNA expression of 14 selected cytokines in sputum cells was investigated by real-time PCR (qPCR). Results Proteomic analysis identified interleukin (IL)-6 and growth-regulated oncogene (GRO)α as the only sputum cytokines that were differentially expressed between stable COPD patients and healthy controls. At the onset of AECOPD, several cytokines exhibited altered sputum expression compared to stable COPD. Recovery from AECOPD induced significant changes in the sputum cytokine protein profile; however, the length of hospitalization was insufficient for most cytokines to return to stable levels. With regard to gene expression analysis by qPCR, we found that bone morphogenetic protein (BMP)-4 was up-regulated, while IL-1α, monokine-induced by interferon-γ (MIG), and BMP-6 were down-regulated at the mRNA level in patients with AECOPD compared to stable disease. Conclusion The sputum cytokine signature of AECOPD differs from that of stable COPD. Protein level changes are asynchronous with changes in gene expression at the mRNA level in AECOPD. The observation that the levels of most cytokines do not stabilize with acute treatment of AECOPD suggests a prolonged effect of exacerbation on the status of COPD patients.
Collapse
Affiliation(s)
- Imre Barta
- Department of Pathophysiology, National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Csilla Paska
- Department of Pathophysiology, National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Balazs Antus
- Department of Pathophysiology, National Koranyi Institute of Pulmonology, Budapest, Hungary.,Department of Pulmonology, National Koranyi Institute of Pulmonology, Budapest, Hungary
| |
Collapse
|
32
|
Luo W, Hu J, Xu W, Dong J. Distinct spatial and temporal roles for Th1, Th2, and Th17 cells in asthma. Front Immunol 2022; 13:974066. [PMID: 36032162 PMCID: PMC9411752 DOI: 10.3389/fimmu.2022.974066] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/28/2022] [Indexed: 12/24/2022] Open
Abstract
Immune response in the asthmatic respiratory tract is mainly driven by CD4+ T helper (Th) cells, represented by Th1, Th2, and Th17 cells, especially Th2 cells. Asthma is a heterogeneous and progressive disease, reflected by distinct phenotypes orchestrated by τh2 or non-Th2 (Th1 and Th17) immune responses at different stages of the disease course. Heterogeneous cytokine expression within the same Th effector state in response to changing conditions in vivo and interlineage relationship among CD4+ T cells shape the complex immune networks of the inflammatory airway, making it difficult to find one panacea for all asthmatics. Here, we review the role of three T helper subsets in the pathogenesis of asthma from different stages, highlighting timing is everything in the immune system. We also discuss the dynamic topography of Th subsets and pathogenetic memory Th cells in asthma.
Collapse
Affiliation(s)
- Weihang Luo
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jindong Hu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Weifang Xu
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, China
- *Correspondence: Jingcheng Dong, ; Weifang Xu,
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
- *Correspondence: Jingcheng Dong, ; Weifang Xu,
| |
Collapse
|
33
|
Matsuda M, Terada T, Kitatani K, Kawata R, Nabe T. Roles of type 1 regulatory T (Tr1) cells in allergen-specific immunotherapy. FRONTIERS IN ALLERGY 2022; 3:981126. [PMID: 35991310 PMCID: PMC9381954 DOI: 10.3389/falgy.2022.981126] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/20/2022] [Indexed: 12/03/2022] Open
Abstract
Allergen-specific immunotherapy (AIT) is the only causative treatment for allergic diseases by modification of the immune response to allergens. A key feature of AIT is to induce immunotolerance to allergens by generating antigen-specific regulatory T (Treg) cells in allergic patients. Type 1 regulatory T (Tr1) cells and forkhead box protein 3 (Foxp3)-expressing Treg cells are well known among Treg cell subsets. Foxp3 was identified as a master transcription factor of Treg cells, and its expression is necessary for their suppressive activity. In contrast to Foxp3+ Treg cells, the master transcription factor of Tr1 cells has not been elucidated. Nevertheless, Tr1 cells are generally considered as a distinct subset of Treg cells induced in the periphery during antigen exposure in tolerogenic conditions and can produce large amounts of anti-inflammatory cytokines such as interleukin-10 and transforming growth factor-β, followed by down-regulation of the function of effector immune cells independently of Foxp3 expression. Since the discovery of Tr1 cells more than 20 years ago, research on Tr1 cells has expanded our understanding of the mechanism of AIT. Although the direct precursors and true identity of these cells continues to be disputed, we and others have demonstrated that Tr1 cells are induced in the periphery by AIT, and the induced cells are re-activated by antigens, followed by suppression of allergic symptoms. In this review, we discuss the immune mechanisms for the induction of Tr1 cells by AIT and the immune-suppressive roles of Tr1 cells in AIT.
Collapse
Affiliation(s)
- Masaya Matsuda
- Laboratory of Immunopharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Japan
| | - Tetsuya Terada
- Department of Otolaryngology, Head & Neck Surgery, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Kazuyuki Kitatani
- Laboratory of Immunopharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Japan
| | - Ryo Kawata
- Department of Otolaryngology, Head & Neck Surgery, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Takeshi Nabe
- Laboratory of Immunopharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Japan
- Correspondence: Takeshi Nabe
| |
Collapse
|
34
|
Bergant V, Yamada S, Grass V, Tsukamoto Y, Lavacca T, Krey K, Mühlhofer MT, Wittmann S, Ensser A, Herrmann A, Vom Hemdt A, Tomita Y, Matsuyama S, Hirokawa T, Huang Y, Piras A, Jakwerth CA, Oelsner M, Thieme S, Graf A, Krebs S, Blum H, Kümmerer BM, Stukalov A, Schmidt-Weber CB, Igarashi M, Gramberg T, Pichlmair A, Kato H. Attenuation of SARS-CoV-2 replication and associated inflammation by concomitant targeting of viral and host cap 2'-O-ribose methyltransferases. EMBO J 2022; 41:e111608. [PMID: 35833542 PMCID: PMC9350232 DOI: 10.15252/embj.2022111608] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 12/12/2022] Open
Abstract
The SARS‐CoV‐2 infection cycle is a multistage process that relies on functional interactions between the host and the pathogen. Here, we repurposed antiviral drugs against both viral and host enzymes to pharmaceutically block methylation of the viral RNA 2'‐O‐ribose cap needed for viral immune escape. We find that the host cap 2'‐O‐ribose methyltransferase MTr1 can compensate for loss of viral NSP16 methyltransferase in facilitating virus replication. Concomitant inhibition of MTr1 and NSP16 efficiently suppresses SARS‐CoV‐2 replication. Using in silico target‐based drug screening, we identify a bispecific MTr1/NSP16 inhibitor with anti‐SARS‐CoV‐2 activity in vitro and in vivo but with unfavorable side effects. We further show antiviral activity of inhibitors that target independent stages of the host SAM cycle providing the methyltransferase co‐substrate. In particular, the adenosylhomocysteinase (AHCY) inhibitor DZNep is antiviral in in vitro, in ex vivo, and in a mouse infection model and synergizes with existing COVID‐19 treatments. Moreover, DZNep exhibits a strong immunomodulatory effect curbing infection‐induced hyperinflammation and reduces lung fibrosis markers ex vivo. Thus, multispecific and metabolic MTase inhibitors constitute yet unexplored treatment options against COVID‐19.
Collapse
Affiliation(s)
- Valter Bergant
- Institute of Virology, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Shintaro Yamada
- Institute of Cardiovascular Immunology, University Hospital Bonn (UKB), Bonn, Germany
| | - Vincent Grass
- Institute of Virology, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Yuta Tsukamoto
- Institute of Cardiovascular Immunology, University Hospital Bonn (UKB), Bonn, Germany
| | - Teresa Lavacca
- Institute of Virology, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Karsten Krey
- Institute of Virology, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Maria-Teresa Mühlhofer
- Institute of Virology, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Sabine Wittmann
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Armin Ensser
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Alexandra Herrmann
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Anja Vom Hemdt
- Institute of Virology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Yuriko Tomita
- Department of Virology III, National Institute of Infectious Diseases (NIID), Tokyo, Japan
| | - Shutoku Matsuyama
- Department of Virology III, National Institute of Infectious Diseases (NIID), Tokyo, Japan
| | - Takatsugu Hirokawa
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Japan.,Division of Biomedical Science, University of Tsukuba, Tsukuba, Japan.,Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Yiqi Huang
- Institute of Virology, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Antonio Piras
- Institute of Virology, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Constanze A Jakwerth
- Center for Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany
| | - Madlen Oelsner
- Center for Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany
| | - Susanne Thieme
- Laboratory for functional genome analysis (LAFUGA), Gene Centre, Ludwig Maximilian University of Munich (LMU), Munich, Germany
| | - Alexander Graf
- Laboratory for functional genome analysis (LAFUGA), Gene Centre, Ludwig Maximilian University of Munich (LMU), Munich, Germany
| | - Stefan Krebs
- Laboratory for functional genome analysis (LAFUGA), Gene Centre, Ludwig Maximilian University of Munich (LMU), Munich, Germany
| | - Helmut Blum
- Laboratory for functional genome analysis (LAFUGA), Gene Centre, Ludwig Maximilian University of Munich (LMU), Munich, Germany
| | - Beate M Kümmerer
- Institute of Virology, Medical Faculty, University of Bonn, Bonn, Germany.,German Centre for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Alexey Stukalov
- Institute of Virology, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Carsten B Schmidt-Weber
- Center for Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany
| | - Manabu Igarashi
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan.,Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Thomas Gramberg
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas Pichlmair
- Institute of Virology, School of Medicine, Technical University of Munich (TUM), Munich, Germany.,German Center for Infection Research (DZIF), Munich partner site, Germany
| | - Hiroki Kato
- Institute of Cardiovascular Immunology, University Hospital Bonn (UKB), Bonn, Germany
| |
Collapse
|
35
|
Jocher G, Grass V, Tschirner SK, Riepler L, Breimann S, Kaya T, Oelsner M, Hamad MS, Hofmann LI, Blobel CP, Schmidt-Weber CB, Gokce O, Jakwerth CA, Trimpert J, Kimpel J, Pichlmair A, Lichtenthaler SF. ADAM10 and ADAM17 promote SARS-CoV-2 cell entry and spike protein-mediated lung cell fusion. EMBO Rep 2022; 23:e54305. [PMID: 35527514 PMCID: PMC9171409 DOI: 10.15252/embr.202154305] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 12/17/2022] Open
Abstract
The severe‐acute‐respiratory‐syndrome‐coronavirus‐2 (SARS‐CoV‐2) is the causative agent of COVID‐19, but host cell factors contributing to COVID‐19 pathogenesis remain only partly understood. We identify the host metalloprotease ADAM17 as a facilitator of SARS‐CoV‐2 cell entry and the metalloprotease ADAM10 as a host factor required for lung cell syncytia formation, a hallmark of COVID‐19 pathology. ADAM10 and ADAM17, which are broadly expressed in the human lung, cleave the SARS‐CoV‐2 spike protein (S) in vitro, indicating that ADAM10 and ADAM17 contribute to the priming of S, an essential step for viral entry and cell fusion. ADAM protease‐targeted inhibitors severely impair lung cell infection by the SARS‐CoV‐2 variants of concern alpha, beta, delta, and omicron and also reduce SARS‐CoV‐2 infection of primary human lung cells in a TMPRSS2 protease‐independent manner. Our study establishes ADAM10 and ADAM17 as host cell factors for viral entry and syncytia formation and defines both proteases as potential targets for antiviral drug development.
Collapse
Affiliation(s)
- Georg Jocher
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Vincent Grass
- School of Medicine, Institute of Virology, Technical University of Munich, Munich, Germany
| | - Sarah K Tschirner
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Lydia Riepler
- Department of Hygiene, Microbiology and Public Health, Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Stephan Breimann
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technical University of Munich, Freising, Germany
| | - Tuğberk Kaya
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany.,Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Madlen Oelsner
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, German Center for Lung Research (DZL), Munich, Germany
| | - M Sabri Hamad
- School of Medicine, Institute of Virology, Technical University of Munich, Munich, Germany
| | - Laura I Hofmann
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Carl P Blobel
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, NY, USA.,Departments of Medicine and of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Carsten B Schmidt-Weber
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, German Center for Lung Research (DZL), Munich, Germany
| | - Ozgun Gokce
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Constanze A Jakwerth
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, German Center for Lung Research (DZL), Munich, Germany
| | - Jakob Trimpert
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Janine Kimpel
- Department of Hygiene, Microbiology and Public Health, Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas Pichlmair
- School of Medicine, Institute of Virology, Technical University of Munich, Munich, Germany.,German Center for Infection Research (DZIF), Munich partner site, Munich, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
36
|
Alessandrini F, de Jong R, Wimmer M, Maier AM, Fernandez I, Hils M, Buters JT, Biedermann T, Zissler UM, Hoffmann C, Esser-von-Bieren J, Schmidt-Weber CB, Ohnmacht C. Lung Epithelial CYP1 Activity Regulates Aryl Hydrocarbon Receptor Dependent Allergic Airway Inflammation. Front Immunol 2022; 13:901194. [PMID: 35734174 PMCID: PMC9207268 DOI: 10.3389/fimmu.2022.901194] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/04/2022] [Indexed: 11/23/2022] Open
Abstract
The lung epithelial barrier serves as a guardian towards environmental insults and responds to allergen encounter with a cascade of immune reactions that can possibly lead to inflammation. Whether the environmental sensor aryl hydrocarbon receptor (AhR) together with its downstream targets cytochrome P450 (CYP1) family members contribute to the regulation of allergic airway inflammation remains unexplored. By employing knockout mice for AhR and for single CYP1 family members, we found that AhR-/- and CYP1B1-/- but not CYP1A1-/- or CYP1A2-/- animals display enhanced allergic airway inflammation compared to WT. Expression analysis, immunofluorescence staining of murine and human lung sections and bone marrow chimeras suggest an important role of CYP1B1 in non-hematopoietic lung epithelial cells to prevent exacerbation of allergic airway inflammation. Transcriptional analysis of murine and human lung epithelial cells indicates a functional link of AhR to barrier protection/inflammatory mediator signaling upon allergen challenge. In contrast, CYP1B1 deficiency leads to enhanced expression and activity of CYP1A1 in lung epithelial cells and to an increased availability of the AhR ligand kynurenic acid following allergen challenge. Thus, differential CYP1 family member expression and signaling via the AhR in epithelial cells represents an immunoregulatory layer protecting the lung from exacerbation of allergic airway inflammation.
Collapse
Affiliation(s)
- Francesca Alessandrini
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
| | - Renske de Jong
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
| | - Maria Wimmer
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
| | - Ann-Marie Maier
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
| | - Isis Fernandez
- Member of the German Center of Lung Research (DZL), Partner Site, Munich, Germany
- Department of Internal Medicine V, Ludwig-Maximilians-University of Munich (LMU), Munich, Germany
- Comprehensive Pneumology Centre, Helmholtz Center Munich, Munich, Germany
| | - Miriam Hils
- Department of Dermatology and Allergology Biederstein, School of Medicine, Technical University of Munich, Munich, Germany
| | - Jeroen T. Buters
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergology Biederstein, School of Medicine, Technical University of Munich, Munich, Germany
- Clinical Unit Allergology, Helmholtz Center Munich, Munich, Germany
| | - Ulrich M. Zissler
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
- Member of the German Center of Lung Research (DZL), Partner Site, Munich, Germany
| | - Christian Hoffmann
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
- Food Research Center (FoRC), Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Julia Esser-von-Bieren
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
| | - Carsten B. Schmidt-Weber
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
- Member of the German Center of Lung Research (DZL), Partner Site, Munich, Germany
| | - Caspar Ohnmacht
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
- *Correspondence: Caspar Ohnmacht,
| |
Collapse
|
37
|
Zissler UM, Thron A, Eckrich J, Bakhtiar S, Schubert R, Zielen S. Bronchial inflammation biomarker patterns link humoral immunodeficiency with bronchiectasis-related small airway dysfunction. Clin Exp Allergy 2022; 52:760-773. [PMID: 35353925 DOI: 10.1111/cea.14140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/09/2022] [Accepted: 03/27/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND The progression of chronic destructive lung disease in patients with humoral immunodeficiency (ID) and concomitant development of bronchiectasis is difficult to prevent. Lung function tests in these patients typically show bronchial obstruction of the small airways in combination with increased air trapping in the distal airways, which is consistent with small airway dysfunction. OBJECTIVE The objective was to assess the grade of chronic lower airway inflammation and small airway dysfunction from induced sputum and the corresponding local pro-inflammatory mediator pattern to discriminate patients affected by bronchiectasis-related Small Airway Dysfunction (SAD). METHODS In a prospective design, 22 patients with ID (14 CVID, 3 XLA, 3 hyper-IgM syndrome, 1 hyper-IgE syndrome and low IgG levels due to treatment with rituximab and 1 SCID after BMT and persistent humoral defect) and 21 healthy controls were examined. Lung function, Fraction Expiratory Nitric Oxide (FeNO) and pro-inflammatory cytokine levels were compared in subsets of patients with (ID + BE) and without bronchiectasis (ID) pre-stratified using high-resolution computed tomography (HRCT) scans and control subjects. RESULTS Analysis of induced sputum showed significantly increased total cell counts and severe neutrophilic inflammation in ID. The concomitant SAD revealed higher total cell numbers compared to ID. Bronchial inflammation in ID is clearly mirrored by pro-inflammatory mediators IL-1β, IL-6 and CXCL-8, whilst TNF-α revealed a correlation with lung function parameters altered in the context of bronchiectasis-related Small Airway Dysfunction. CONCLUSIONS In spite of immunoglobulin substitution, bronchial inflammation was dominated by neutrophils and was highly increased in patients with ID + BE. Notably, the pro-inflammatory cytokines in patients with ID were significantly increased in induced sputum. The context-dependent cytokine pattern in relation to the presence of concomitant bronchiectasis associated with SAD in ID patients could be helpful in delimiting ID patient subgroups and individualizing therapeutic approaches.
Collapse
Affiliation(s)
- Ulrich M Zissler
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Germany, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Aljoscha Thron
- Division of Allergology, Pulmonology and Cystic Fibrosis, Department for Children and Adolescents, Goethe University, Frankfurt, Germany
| | - Jonas Eckrich
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Bonn, Germany
| | - Shahrzad Bakhtiar
- Division for Stem Cell Transplantation, Immunology and Intensive Care Unit, Department for Children and Adolescents, Goethe University, Frankfurt, Germany
| | - Ralf Schubert
- Division of Allergology, Pulmonology and Cystic Fibrosis, Department for Children and Adolescents, Goethe University, Frankfurt, Germany
| | - Stefan Zielen
- Division of Allergology, Pulmonology and Cystic Fibrosis, Department for Children and Adolescents, Goethe University, Frankfurt, Germany
| |
Collapse
|
38
|
Jakwerth CA, Ordovas-Montanes J, Blank S, Schmidt-Weber CB, Zissler UM. Role of Respiratory Epithelial Cells in Allergic Diseases. Cells 2022; 11:1387. [PMID: 35563693 PMCID: PMC9105716 DOI: 10.3390/cells11091387] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 02/07/2023] Open
Abstract
The airway epithelium provides the first line of defense to the surrounding environment. However, dysfunctions of this physical barrier are frequently observed in allergic diseases, which are tightly connected with pro- or anti-inflammatory processes. When the epithelial cells are confronted with allergens or pathogens, specific response mechanisms are set in motion, which in homeostasis, lead to the elimination of the invaders and leave permanent traces on the respiratory epithelium. However, allergens can also cause damage in the sensitized organism, which can be ascribed to the excessive immune reactions. The tight interaction of epithelial cells of the upper and lower airways with local and systemic immune cells can leave an imprint that may mirror the pathophysiology. The interaction with effector T cells, along with the macrophages, play an important role in this response, as reflected in the gene expression profiles (transcriptomes) of the epithelial cells, as well as in the secretory pattern (secretomes). Further, the storage of information from past exposures as memories within discrete cell types may allow a tissue to inform and fundamentally alter its future responses. Recently, several lines of evidence have highlighted the contributions from myeloid cells, lymphoid cells, stromal cells, mast cells, and epithelial cells to the emerging concepts of inflammatory memory and trained immunity.
Collapse
Affiliation(s)
- Constanze A. Jakwerth
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Germany, Member of the German Center for Lung Research (DZL), Member of the Immunology and Inflammation Initiative of the Helmholtz Association, 80802 Munich, Germany; (C.A.J.); (S.B.); (C.B.S.-W.)
| | - Jose Ordovas-Montanes
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, MA 02115, USA;
- Program in Immunology, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Simon Blank
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Germany, Member of the German Center for Lung Research (DZL), Member of the Immunology and Inflammation Initiative of the Helmholtz Association, 80802 Munich, Germany; (C.A.J.); (S.B.); (C.B.S.-W.)
| | - Carsten B. Schmidt-Weber
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Germany, Member of the German Center for Lung Research (DZL), Member of the Immunology and Inflammation Initiative of the Helmholtz Association, 80802 Munich, Germany; (C.A.J.); (S.B.); (C.B.S.-W.)
| | - Ulrich M. Zissler
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Germany, Member of the German Center for Lung Research (DZL), Member of the Immunology and Inflammation Initiative of the Helmholtz Association, 80802 Munich, Germany; (C.A.J.); (S.B.); (C.B.S.-W.)
| |
Collapse
|
39
|
Lewis BW, Ford ML, Khan AQ, Walum J, Britt RD. Chronic Allergen Challenge Induces Corticosteroid Insensitivity With Persistent Airway Remodeling and Type 2 Inflammation. Front Pharmacol 2022; 13:855247. [PMID: 35479312 PMCID: PMC9035517 DOI: 10.3389/fphar.2022.855247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Type 2-high severe asthma is described as a distinct endotype with Th2 inflammation, high eosinophil lung infiltration, impaired lung function, and reduced corticosteroid sensitivity. While the inflammatory milieu is similar to mild asthma, patients with type 2-high severe asthma likely have underlying mechanisms that sustain asthma pathophysiology despite corticosteroid treatments. Acute and chronic allergen models induce robust type 2 inflammatory responses, however differences in corticosteroid sensitivity remains poorly understood. In the present study, we sensitized and challenged mice with ovalbumin (OVA; acute model) or mixed allergens (MA; chronic model). Corticosteroid sensitivity was assessed by administering vehicle, 1, or 3 mg/kg fluticasone propionate (FP) and examining key asthmatic features such as airway inflammation, remodeling, hyperresponsiveness, and antioxidant capacity. Both acute and chronic allergen exposure exhibited enhanced AHR, immune cell infiltration, airway inflammation, and remodeling, but corticosteroids were unable to fully alleviate inflammation, AHR, and airway smooth muscle mass in MA-challenged mice. While there were no differences in antioxidant capacity, persistent IL-4+ Th2 cell population suggests the MA model induces type 2 inflammation that is insensitive to corticosteroids. Our data indicate that chronic allergen exposure is associated with more persistent type 2 immune responses and corticosteroid insensitivity. Understanding differences between acute and chronic allergen models could unlock underlying mechanisms related to type 2-high severe asthma.
Collapse
Affiliation(s)
- Brandon W. Lewis
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Maria L. Ford
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Aiman Q. Khan
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Joshua Walum
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Rodney D. Britt
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
- *Correspondence: Rodney D. Britt Jr,
| |
Collapse
|
40
|
Liu C, Song Y, Wu T, Shiung K, Chen I, Chang T, Liang S, Yen H. Targeting glycolysis in Th2 cells by pterostilbene attenuates clinical severities in an asthmatic mouse model and IL‐4 production in peripheral blood from asthmatic patients. Immunology 2022; 166:222-237. [DOI: 10.1111/imm.13469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/05/2022] [Accepted: 02/28/2022] [Indexed: 11/27/2022] Open
Affiliation(s)
- Chuan‐Teng Liu
- Research Center for Traditional Chinese Medicine Department of Medical Research China Medical University Taichung Taiwan
- Chinese Medicine Research Center China Medical University Taichung Taiwan
| | - Ying‐Chyi Song
- Research Center for Traditional Chinese Medicine Department of Medical Research China Medical University Taichung Taiwan
- Graduate Institute of Integrated Medicine College of Chinese Medicine China Medical University Taichung Taiwan
| | - Tsai‐Chen Wu
- Research Center for Traditional Chinese Medicine Department of Medical Research China Medical University Taichung Taiwan
- School of Chinese Medicine College of Chinese Medicine China Medical University Taichung Taiwan
| | - Ko‐Chieh Shiung
- Department of Microbiology and Immunology The University of Melbourne at the Peter Doherty Institute for Infection and Immunity Melbourne Victoria Australia
| | - I‐Hsuan Chen
- Department of Humanities Brandeis University School of Arts & Sciences Waltham MA USA
| | - Tung‐Ti Chang
- School of Post‐Baccalaureate Chinese Medicine College of Chinese Medicine China Medical University Taichung Taiwan
| | - Shinn‐Jye Liang
- Division of Pulmonary and Critical Care Department of Internal Medicine China Medical University Hospital Taichung Taiwan
| | - Hung‐Rong Yen
- Research Center for Traditional Chinese Medicine Department of Medical Research China Medical University Taichung Taiwan
- Chinese Medicine Research Center China Medical University Taichung Taiwan
- School of Chinese Medicine College of Chinese Medicine China Medical University Taichung Taiwan
- Department of Chinese Medicine China Medical University Hospital Taichung Taiwan
- Department of Medical Laboratory Science and Biotechnology Asia University Taichung Taiwan
| |
Collapse
|
41
|
Schröder A, Lunding LP, Zissler UM, Vock C, Webering S, Ehlers JC, Orinska Z, Chaker A, Schmidt‐Weber CB, Lang NJ, Schiller HB, Mall MA, Fehrenbach H, Dinarello CA, Wegmann M. IL-37 regulates allergic inflammation by counterbalancing pro-inflammatory IL-1 and IL-33. Allergy 2022; 77:856-869. [PMID: 34460953 DOI: 10.1111/all.15072] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/08/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND Children with asthma have impaired production of interleukin (IL) 37; in mice, IL-37 reduces hallmarks of experimental allergic asthma (EAA). However, it remains unclear how IL-37 exerts its inhibitory properties in asthma. This study aimed to identify the mechanism(s) by which IL-37 controls allergic inflammation. METHODS IL-37 target cells were identified by single-cell RNA-seq of IL-1R5 and IL-1R8. Airway tissues were isolated by laser-capture microdissection and examined by microarray-based gene expression analysis. Mononuclear cells (MNC) and airway epithelial cells (AECs) were isolated and stimulated with allergen, IL-1β, or IL-33 together with recombinant human (rh) IL-37. Wild-type, IL-1R1- and IL-33-deficient mice with EAA were treated with rhIL-37. IL-1β, IL-33, and IL-37 levels were determined in sputum and nasal secretions from adult asthma patients without glucocorticoid therapy. RESULTS IL-37 target cells included AECs, T cells, and dendritic cells. In mice with EAA, rhIL-37 led to differential expression of >90 genes induced by IL-1β and IL-33. rhIL-37 reduced production of Th2 cytokines in allergen-activated MNCs from wild-type but not from IL-1R1-deficient mice and inhibited IL-33-induced Th2 cytokine release. Furthermore, rhIL-37 attenuated IL-1β- and IL-33-induced pro-inflammatory mediator expression in murine AEC cultures. In contrast to wild-type mice, hIL-37 had no effect on EAA in IL-1R1- or IL-33-deficient mice. We also observed that expression/production ratios of both IL-1β and IL-33 to IL-37 were dramatically increased in asthma patients compared to healthy controls. CONCLUSION IL-37 downregulates allergic airway inflammation by counterbalancing the disease-amplifying effects of IL-1β and IL-33.
Collapse
Affiliation(s)
- Alexandra Schröder
- Division of Asthma Exacerbation &‐Regulation, Priority Area Asthma & Allergy Research Center Borstel‐Leibniz Lung Center Borstel Germany
- Airway Research Center North Member of the German Center for Lung Research (DZL) Munich Germany
| | - Lars P. Lunding
- Division of Asthma Exacerbation &‐Regulation, Priority Area Asthma & Allergy Research Center Borstel‐Leibniz Lung Center Borstel Germany
- Airway Research Center North Member of the German Center for Lung Research (DZL) Munich Germany
| | - Ulrich M. Zissler
- Center of Allergy and Environment (ZAUM) Technische Universität and Helmholtz Center Munich Member of the German Center for Lung Research (DZL) Munich Germany
- Comprehensive Pneumology Center Munich (CPC‐M) Member of the German Center for Lung Research (DZL) Munich Germany
| | - Christina Vock
- Airway Research Center North Member of the German Center for Lung Research (DZL) Munich Germany
- Division of Experimental Pneumology Priority Area Asthma & Allergy Research Center Borstel‐ Leibniz Lung Center Borstel Germany
| | - Sina Webering
- Division of Asthma Exacerbation &‐Regulation, Priority Area Asthma & Allergy Research Center Borstel‐Leibniz Lung Center Borstel Germany
- Airway Research Center North Member of the German Center for Lung Research (DZL) Munich Germany
| | - Johanna C. Ehlers
- Airway Research Center North Member of the German Center for Lung Research (DZL) Munich Germany
- Division of Experimental Pneumology Priority Area Asthma & Allergy Research Center Borstel‐ Leibniz Lung Center Borstel Germany
| | - Zane Orinska
- Airway Research Center North Member of the German Center for Lung Research (DZL) Munich Germany
- Division of Experimental Pneumology Priority Area Asthma & Allergy Research Center Borstel‐ Leibniz Lung Center Borstel Germany
| | - Adam Chaker
- Center of Allergy and Environment (ZAUM) Technische Universität and Helmholtz Center Munich Member of the German Center for Lung Research (DZL) Munich Germany
- Department of Otorhinolaryngology and Head and Neck Surgery Medical School Technical, University of Munich Munich Germany
| | - Carsten B. Schmidt‐Weber
- Center of Allergy and Environment (ZAUM) Technische Universität and Helmholtz Center Munich Member of the German Center for Lung Research (DZL) Munich Germany
- Comprehensive Pneumology Center Munich (CPC‐M) Member of the German Center for Lung Research (DZL) Munich Germany
| | - Niklas J. Lang
- Comprehensive Pneumology Center Munich (CPC‐M) Member of the German Center for Lung Research (DZL) Munich Germany
- Institute of Lung Biology and Disease Helmholtz Zentrum München Munich Germany
| | - Herbert B. Schiller
- Comprehensive Pneumology Center Munich (CPC‐M) Member of the German Center for Lung Research (DZL) Munich Germany
- Institute of Lung Biology and Disease Helmholtz Zentrum München Munich Germany
| | - Marcus A. Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine Charité ‐ Universitätsmedizin Berlin Berlin Germany
- Berlin Institute of Health (BIH) Berlin Germany
- German Center for Lung Research (DZL), associated partner site Berlin Germany
| | - Heinz Fehrenbach
- Airway Research Center North Member of the German Center for Lung Research (DZL) Munich Germany
- Division of Experimental Pneumology Priority Area Asthma & Allergy Research Center Borstel‐ Leibniz Lung Center Borstel Germany
| | - Charles A. Dinarello
- Department of Medicine University of Colorado Denver Denver CO USA
- Department of Medicine Radboud University Medical Center Nijmegen The Netherlands
| | - Michael Wegmann
- Division of Asthma Exacerbation &‐Regulation, Priority Area Asthma & Allergy Research Center Borstel‐Leibniz Lung Center Borstel Germany
- Airway Research Center North Member of the German Center for Lung Research (DZL) Munich Germany
| |
Collapse
|
42
|
Margelidon-Cozzolino V, Tsicopoulos A, Chenivesse C, de Nadai P. Role of Th17 Cytokines in Airway Remodeling in Asthma and Therapy Perspectives. FRONTIERS IN ALLERGY 2022; 3:806391. [PMID: 35386663 PMCID: PMC8974749 DOI: 10.3389/falgy.2022.806391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/10/2022] [Indexed: 12/07/2022] Open
Abstract
Airway remodeling is a frequent pathological feature of severe asthma leading to permanent airway obstruction in up to 50% of cases and to respiratory disability. Although structural changes related to airway remodeling are well-characterized, immunological processes triggering and maintaining this phenomenon are still poorly understood. As a consequence, no biotherapy targeting cytokines are currently efficient to treat airway remodeling and only bronchial thermoplasty may have an effect on bronchial nerves and smooth muscles with uncertain clinical relevance. Th17 cytokines, including interleukin (IL)-17 and IL-22, play a role in neutrophilic inflammation in severe asthma and may be involved in airway remodeling. Indeed, IL-17 is increased in sputum from severe asthmatic patients, induces the expression of "profibrotic" cytokines by epithelial, endothelial cells and fibroblasts, and provokes human airway smooth muscle cell migration in in vitro studies. IL-22 is also increased in asthmatic samples, promotes myofibroblast differentiation, epithelial-mesenchymal transition and proliferation and migration of smooth muscle cells in vitro. Accordingly, we also found high levels of IL-17 and IL-22 in a mouse model of dog-allergen induced asthma characterized by a strong airway remodeling. Clinical trials found no effect of therapy targeting IL-17 in an unselected population of asthmatic patients but showed a potential benefit in a sub-population of patients exhibiting a high level of airway reversibility, suggesting a potential role on airway remodeling. Anti-IL-22 therapies have not been evaluated in asthma yet but were demonstrated efficient in severe atopic dermatitis including an effect on skin remodeling. In this review, we will address the role of Th17 cytokines in airway remodeling through data from in vitro, in vivo and translational studies, and examine the potential place of Th17-targeting therapies in the treatment of asthma with airway remodeling.
Collapse
Affiliation(s)
- Victor Margelidon-Cozzolino
- Univ. Lille, CNRS, INSERM, CHU de Lille, Institut Pasteur de Lille, Unité INSERM U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Anne Tsicopoulos
- Univ. Lille, CNRS, INSERM, CHU de Lille, Institut Pasteur de Lille, Unité INSERM U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Cécile Chenivesse
- Univ. Lille, CNRS, INSERM, CHU de Lille, Institut Pasteur de Lille, Unité INSERM U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France
- CRISALIS (Clinical Research Initiative in Severe Asthma: a Lever for Innovation & Science), F-CRIN Network, INSERM US015, Toulouse, France
| | - Patricia de Nadai
- Univ. Lille, CNRS, INSERM, CHU de Lille, Institut Pasteur de Lille, Unité INSERM U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France
| |
Collapse
|
43
|
Musiol S, Alessandrini F, Jakwerth CA, Chaker AM, Schneider E, Guerth F, Schnautz B, Grosch J, Ghiordanescu I, Ullmann JT, Kau J, Plaschke M, Haak S, Buch T, Schmidt-Weber CB, Zissler UM. TGF-β1 Drives Inflammatory Th Cell But Not Treg Cell Compartment Upon Allergen Exposure. Front Immunol 2022; 12:763243. [PMID: 35069535 PMCID: PMC8777012 DOI: 10.3389/fimmu.2021.763243] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/29/2021] [Indexed: 12/22/2022] Open
Abstract
TGF-β1 is known to have a pro-inflammatory impact by inducing Th9 and Th17 cells, while it also induces anti-inflammatory Treg cells (Tregs). In the context of allergic airway inflammation (AAI) its dual role can be of critical importance in influencing the outcome of the disease. Here we demonstrate that TGF-β is a major player in AAI by driving effector T cells, while Tregs differentiate independently. Induction of experimental AAI and airway hyperreactivity in a mouse model with inducible genetic ablation of the gene encoding for TGFβ-receptor 2 (Tgfbr2) on CD4+T cells significantly reduced the disease phenotype. Further, it blocked the induction of pro-inflammatory T cell frequencies (Th2, Th9, Th17), but increased Treg cells. To translate these findings into a human clinically relevant context, Th2, Th9 and Treg cells were quantified both locally in induced sputum and systemically in blood of allergic rhinitis and asthma patients with or without allergen-specific immunotherapy (AIT). Natural allergen exposure induced local and systemic Th2, Th9, and reduced Tregs cells, while therapeutic allergen exposure by AIT suppressed Th2 and Th9 cell frequencies along with TGF-β and IL-9 secretion. Altogether, these findings support that neutralization of TGF-β represents a viable therapeutic option in allergy and asthma, not posing the risk of immune dysregulation by impacting Tregs cells.
Collapse
Affiliation(s)
- Stephanie Musiol
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Francesca Alessandrini
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Constanze A Jakwerth
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Adam M Chaker
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany.,Department of Otorhinolaryngology, Klinikum rechts der Isar, TUM School of Medicine, Technical University Munich, Munich, Germany
| | - Evelyn Schneider
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Ferdinand Guerth
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Benjamin Schnautz
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Johanna Grosch
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Ileana Ghiordanescu
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Julia T Ullmann
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Josephine Kau
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Mirjam Plaschke
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Stefan Haak
- Institute of Laboratory Animal Science, University of Zurich, Zurich, Switzerland
| | - Thorsten Buch
- Institute of Laboratory Animal Science, University of Zurich, Zurich, Switzerland
| | - Carsten B Schmidt-Weber
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Ulrich M Zissler
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| |
Collapse
|
44
|
Zhong Y, Zhang X, Chong W. Interleukin-24 Immunobiology and Its Roles in Inflammatory Diseases. Int J Mol Sci 2022; 23:ijms23020627. [PMID: 35054813 PMCID: PMC8776082 DOI: 10.3390/ijms23020627] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 12/25/2022] Open
Abstract
Interleukin (IL)-24 belongs to the IL-10 family and signals through two receptor complexes, i.e., IL-20RA/IL-20RB and IL-20RB/IL22RA1. It is a multifunctional cytokine that can regulate immune response, tissue homeostasis, host defense, and oncogenesis. Elevation of IL-24 is associated with chronic inflammation and autoimmune diseases, such as psoriasis, rheumatoid arthritis (RA), and inflammatory bowel disease (IBD). Its pathogenicity has been confirmed by inducing inflammation and immune cell infiltration for tissue damage. However, recent studies also revealed their suppressive functions in regulating immune cells, including T cells, B cells, natural killer (NK) cells, and macrophages. The tolerogenic properties of IL-24 were reported in various animal models of autoimmune diseases, suggesting the complex functions of IL-24 in regulating autoimmunity. In this review, we discuss the immunoregulatory functions of IL-24 and its roles in autoimmune diseases.
Collapse
|
45
|
Ruysseveldt E, Martens K, Steelant B. Airway Basal Cells, Protectors of Epithelial Walls in Health and Respiratory Diseases. FRONTIERS IN ALLERGY 2021; 2:787128. [PMID: 35387001 PMCID: PMC8974818 DOI: 10.3389/falgy.2021.787128] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/25/2021] [Indexed: 01/02/2023] Open
Abstract
The airway epithelium provides a critical barrier to the outside environment. When its integrity is impaired, epithelial cells and residing immune cells collaborate to exclude pathogens and to heal tissue damage. Healing is achieved through tissue-specific stem cells: the airway basal cells. Positioned near the basal membrane, airway basal cells sense and respond to changes in tissue health by initiating a pro-inflammatory response and tissue repair via complex crosstalks with nearby fibroblasts and specialized immune cells. In addition, basal cells have the capacity to learn from previous encounters with the environment. Inflammation can indeed imprint a certain memory on basal cells by epigenetic changes so that sensitized tissues may respond differently to future assaults and the epithelium becomes better equipped to respond faster and more robustly to barrier defects. This memory can, however, be lost in diseased states. In this review, we discuss airway basal cells in respiratory diseases, the communication network between airway basal cells and tissue-resident and/or recruited immune cells, and how basal cell adaptation to environmental triggers occurs.
Collapse
Affiliation(s)
- Emma Ruysseveldt
- Allergy and Clinical Immunology Research Unit, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Katleen Martens
- Allergy and Clinical Immunology Research Unit, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Brecht Steelant
- Allergy and Clinical Immunology Research Unit, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Head and Neck Surgery, Department of Otorhinolaryngology, University of Crete School of Medicine, Heraklion, Greece
| |
Collapse
|
46
|
Candeias J, Schmidt-Weber CB, Buters J. Dosing intact birch pollen grains at the air-liquid interface (ALI) to the immortalized human bronchial epithelial cell line BEAS-2B. PLoS One 2021; 16:e0259914. [PMID: 34784380 PMCID: PMC8594808 DOI: 10.1371/journal.pone.0259914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/28/2021] [Indexed: 12/04/2022] Open
Abstract
In real life, humans are exposed to whole pollen grains at the air epithelial barrier. We developed a system for in vitro dosing of whole pollen grains at the Air-Liquid Interface (ALI) and studied their effect on the immortalized human bronchial epithelial cell line BEAS-2B. Pollen are sticky and large particles. Dosing pollen needs resuspension of single particles rather than clusters, and subsequent transportation to the cells with little loss to the walls of the instrumentation i.e. in a straight line. To avoid high speed impacting insults to cells we chose sedimentation by gravity as a delivery step. Pollen was resuspended into single particles by pressured air. A pollen dispersion unit including PTFE coating of the walls and reduced air pressure limited impaction loss to the walls. The loss of pollen to the system was still about 40%. A linear dose effect curve resulted in 327-2834 pollen/cm2 (± 6.1%), the latter concentration being calculated as the amount deposited on epithelial cells on high pollen days. After whole pollen exposure, the largest differential gene expression at the transcriptomic level was late, about 7 hours after exposure. Inflammatory and response to stimulus related genes were up-regulated. We developed a whole pollen exposure air-liquid interface system (Pollen-ALI), in which cells can be gently and reliably dosed.
Collapse
Affiliation(s)
- Joana Candeias
- Center Allergy & Environment (ZAUM), Member of the German Center for Lung Research (DZL), Technical University Munich, Helmholtz Center Munich, Munich, Germany
| | - Carsten B. Schmidt-Weber
- Center Allergy & Environment (ZAUM), Member of the German Center for Lung Research (DZL), Technical University Munich, Helmholtz Center Munich, Munich, Germany
| | - Jeroen Buters
- Center Allergy & Environment (ZAUM), Member of the German Center for Lung Research (DZL), Technical University Munich, Helmholtz Center Munich, Munich, Germany
| |
Collapse
|
47
|
Jakwerth CA, Chaker AM, Guerth F, Oelsner M, Pechtold L, Zur Bonsen LS, Ullmann JT, Krauss-Etschmann S, Erb A, Kau J, Plaschke M, Winkler M, Kurz A, Kloss A, Esser-von Bieren J, Schmidt-Weber CB, Zissler UM. Sputum microRNA-screening reveals Prostaglandin EP3 receptor as selective target in allergen-specific immunotherapy. Clin Exp Allergy 2021; 51:1577-1591. [PMID: 34514658 DOI: 10.1111/cea.14013] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/08/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Several microRNAs (miRs) have been described as potential biomarkers in liquid biopsies and in the context of allergic asthma, while therapeutic effects on the airway expression of miRs remain elusive. In this study, we investigated epigenetic miR-associated mechanisms in the sputum of grass pollen-allergic patients with and without allergen-specific immunotherapy (AIT). METHODS Induced sputum samples of healthy controls (HC), AIT-treated and -untreated grass pollen-allergic rhinitis patients with (AA) and without asthma (AR) were profiled using miR microarray and whole-transcriptome microarray analysis of the same samples. miR targets were predicted in silico and used to identify inverse regulation. Local PGE2 levels were measured using ELISA. RESULTS Two hundred and fifty nine miRs were upregulated in the sputum of AA patients compared with HC, while only one was downregulated. The inverse picture was observed in induced sputum of AIT-treated patients: while 21 miRs were downregulated, only 4 miRs were upregulated in asthmatics upon AIT. Of these 4 miRs, miR-3935 stood out, as its predicted target PTGER3, the prostaglandin EP3 receptor, was downregulated in treated AA patients compared with untreated. The levels of its ligand PGE2 in the sputum supernatants of these samples were increased in allergic patients, especially asthmatics, and downregulated after AIT. Finally, local PGE2 levels correlated with ILC2 frequencies, secreted sputum IL-13 levels, inflammatory cell load, sputum eosinophils and symptom burden. CONCLUSIONS While profiling the sputum of allergic patients for novel miR expression patterns, we uncovered an association between miR-3935 and its predicted target gene, the prostaglandin E3 receptor, which might mediate AIT effects through suppression of the PGE2 -PTGER3 axis.
Collapse
Affiliation(s)
- Constanze A Jakwerth
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM), Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany
| | - Adam M Chaker
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM), Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany.,Department of Otorhinolaryngology, TUM School of Medicine, Technical University Munich, Klinikum rechts der Isar, Munich, Germany
| | - Ferdinand Guerth
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM), Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany
| | - Madlen Oelsner
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM), Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany
| | - Lisa Pechtold
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM), Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany.,Department of Otorhinolaryngology, TUM School of Medicine, Technical University Munich, Klinikum rechts der Isar, Munich, Germany
| | - Lynn S Zur Bonsen
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM), Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany.,Department of Otorhinolaryngology, TUM School of Medicine, Technical University Munich, Klinikum rechts der Isar, Munich, Germany
| | - Julia T Ullmann
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM), Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany
| | - Susanne Krauss-Etschmann
- Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany.,Institute of Experimental Medicine, Christian-Albrechts University Kiel, Kiel, Germany
| | - Anna Erb
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM), Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany
| | - Josephine Kau
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM), Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany.,Department of Otorhinolaryngology, TUM School of Medicine, Technical University Munich, Klinikum rechts der Isar, Munich, Germany
| | - Mirjam Plaschke
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM), Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany.,Department of Otorhinolaryngology, TUM School of Medicine, Technical University Munich, Klinikum rechts der Isar, Munich, Germany
| | - Marlene Winkler
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM), Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany.,Department of Otorhinolaryngology, TUM School of Medicine, Technical University Munich, Klinikum rechts der Isar, Munich, Germany
| | - Alexandra Kurz
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM), Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany.,Department of Otorhinolaryngology, TUM School of Medicine, Technical University Munich, Klinikum rechts der Isar, Munich, Germany
| | - Antonia Kloss
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM), Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany.,Department of Otorhinolaryngology, TUM School of Medicine, Technical University Munich, Klinikum rechts der Isar, Munich, Germany
| | - Julia Esser-von Bieren
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM), Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany
| | - Carsten B Schmidt-Weber
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM), Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany
| | - Ulrich M Zissler
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM), Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany
| |
Collapse
|
48
|
Zissler UM, Jakwerth CA, Guerth F, Lewitan L, Rothkirch S, Davidovic M, Ulrich M, Oelsner M, Garn H, Schmidt‐Weber CB, Chaker AM. Allergen-specific immunotherapy induces the suppressive secretoglobin 1A1 in cells of the lower airways. Allergy 2021; 76:2461-2474. [PMID: 33528894 DOI: 10.1111/all.14756] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/29/2020] [Accepted: 01/03/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND While several systemic immunomodulatory effects of allergen-specific immunotherapy (AIT) have been discovered, local anti-inflammatory mechanisms in the respiratory tract are largely unknown. We sought to elucidate local and epithelial mechanisms underlying allergen-specific immunotherapy in a genome-wide approach. METHODS We induced sputum in hay fever patients and healthy controls during the pollen peak season and stratified patients by effective allergen immunotherapy or as untreated. Sputum was directly processed after induction and subjected to whole transcriptome RNA microarray analysis. Nasal secretions were analyzed for Secretoglobin1A1 (SCGB1A1) and IL-24 protein levels in an additional validation cohort at three defined time points during the 3-year course of AIT. Subsequently, RNA was extracted and subjected to an array-based whole transcriptome analysis. RESULTS Allergen-specific immunotherapy inhibited pro-inflammatory CXCL8, IL24, and CCL26mRNA expression, while SCGB1A1, IL7, CCL5, CCL23, and WNT5BmRNAs were induced independently of the asthma status and allergen season. In our validation cohort, local increase of SCGB1A1 occurred concomitantly with the reduction of local IL-24 in upper airways during the course of AIT. Additionally, SCGB1A1 was identified as a suppressor of epithelial gene expression. CONCLUSIONS Allergen-specific immunotherapy induces a yet unknown local gene expression footprint in the lower airways that on one hand appears to be a result of multiple regulatory pathways and on the other hand reveals SCGB1A1 as novel anti-inflammatory mediator of long-term allergen-specific therapeutic intervention in the local environment.
Collapse
Affiliation(s)
- Ulrich M. Zissler
- Center of Allergy & Environment (ZAUM) Technical University of Munich and Helmholtz Center MunichGerman Research Center for Environmental Health Munich Germany
- Member of the German Center for Lung Research (DZL) Munich Germany
- Member of the Helmholtz I&I Initiative Munich Germany
| | - Constanze A. Jakwerth
- Center of Allergy & Environment (ZAUM) Technical University of Munich and Helmholtz Center MunichGerman Research Center for Environmental Health Munich Germany
- Member of the German Center for Lung Research (DZL) Munich Germany
| | - Ferdinand Guerth
- Center of Allergy & Environment (ZAUM) Technical University of Munich and Helmholtz Center MunichGerman Research Center for Environmental Health Munich Germany
- Member of the German Center for Lung Research (DZL) Munich Germany
| | - Larissa Lewitan
- Center of Allergy & Environment (ZAUM) Technical University of Munich and Helmholtz Center MunichGerman Research Center for Environmental Health Munich Germany
- Member of the German Center for Lung Research (DZL) Munich Germany
- Department of Otorhinolaryngology and Head and Neck Surgery Medical School Technical University of Munich Munich Germany
| | - Sandra Rothkirch
- Center of Allergy & Environment (ZAUM) Technical University of Munich and Helmholtz Center MunichGerman Research Center for Environmental Health Munich Germany
- Member of the German Center for Lung Research (DZL) Munich Germany
- Department of Otorhinolaryngology and Head and Neck Surgery Medical School Technical University of Munich Munich Germany
| | - Miodrag Davidovic
- Center of Allergy & Environment (ZAUM) Technical University of Munich and Helmholtz Center MunichGerman Research Center for Environmental Health Munich Germany
- Member of the German Center for Lung Research (DZL) Munich Germany
- Department of Otorhinolaryngology and Head and Neck Surgery Medical School Technical University of Munich Munich Germany
| | - Moritz Ulrich
- Center of Allergy & Environment (ZAUM) Technical University of Munich and Helmholtz Center MunichGerman Research Center for Environmental Health Munich Germany
- Member of the German Center for Lung Research (DZL) Munich Germany
- Department of Otorhinolaryngology and Head and Neck Surgery Medical School Technical University of Munich Munich Germany
| | - Madlen Oelsner
- Center of Allergy & Environment (ZAUM) Technical University of Munich and Helmholtz Center MunichGerman Research Center for Environmental Health Munich Germany
- Member of the German Center for Lung Research (DZL) Munich Germany
| | - Holger Garn
- Institute of Laboratory Medicine and Pathobiochemistry Philipps University MarburgMedical FacultyMember of the German Center of Lung Research Marburg Germany
| | - Carsten B. Schmidt‐Weber
- Center of Allergy & Environment (ZAUM) Technical University of Munich and Helmholtz Center MunichGerman Research Center for Environmental Health Munich Germany
- Member of the German Center for Lung Research (DZL) Munich Germany
- Member of the Helmholtz I&I Initiative Munich Germany
| | - Adam M. Chaker
- Center of Allergy & Environment (ZAUM) Technical University of Munich and Helmholtz Center MunichGerman Research Center for Environmental Health Munich Germany
- Member of the German Center for Lung Research (DZL) Munich Germany
- Department of Otorhinolaryngology and Head and Neck Surgery Medical School Technical University of Munich Munich Germany
| |
Collapse
|
49
|
Diversity of T Helper and Regulatory T Cells and Their Contribution to the Pathogenesis of Allergic Diseases. Handb Exp Pharmacol 2021; 268:265-296. [PMID: 34247282 DOI: 10.1007/164_2021_486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
T helper (Th) and regulatory T (Treg) cells represent important effectors of adaptive immunity. They mediate communication between the immune system and tissue sites and thereby coordinate effective defense against environmental threats or maintain tolerance, respectively. Since the discovery of two prototypic T helper cells, Th1 and Th2, additional phenotypic and functional distinct subsets have been described ranging from Th17, Th22, Th9, and T follicular helper cells. The same holds true for regulatory T cells that represent a family with functionally distinct subsets characterized by co-expression of the transcription factors T-bet, Gata3, or RORγt. Here, we summarize the current knowledge on differentiation and function of T helper and regulatory T cell subsets and discuss their lineage stability versus plasticity towards other subsets. In addition, we highlight the direct and indirect contribution of each subset to the pathology of allergies and indicate novel therapies for specific targeting the effector functions of T helper and regulatory T cells.
Collapse
|
50
|
Xu-Chen X, Weinstock J, Rastogi D, Koumbourlis A, Nino G. The airway epithelium during infancy and childhood: A complex multicellular immune barrier. Basic review for clinicians. Paediatr Respir Rev 2021; 38:9-15. [PMID: 34030977 PMCID: PMC8859843 DOI: 10.1016/j.prrv.2021.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/13/2021] [Indexed: 12/13/2022]
Abstract
The airway epithelium is a complex multicellular layer that extends from the nasopharynx to the small airways. It functions as an immune respiratory barrier during early life that develops, matures, and regenerates to adapt to the changes in the environment. While airway epithelial abnormalities have been identified in several clinical disorders, there is increasing interest in understanding its basic regulation and structure in humans. Indeed, recent advances in technology (e.g. single-cell analysis and new human airway epithelial cell models) have allowed us to identify additional cellular subtypes and functions that overall have greatly improved our understanding of the airway epithelium during health and disease. In this review we summarize key features of the airway epithelium including: 1) multilayer structure and cell heterogeneity; 2) adaptability to different environmental and developmental stimuli; 3) innate recognition; and 4) orchestration of immune responses. We discuss these features with a translational and clinical prospective focusing on the development of human respiratory immunity, particularly during early life.
Collapse
Affiliation(s)
| | | | | | | | - Gustavo Nino
- Division of Pediatric Pulmonary and Sleep Medicine, Children's National Hospital, George Washington University, Washington, D.C, USA.
| |
Collapse
|