1
|
Thorndal C, Kragsnaes MS, Nilsson AC, Holm DK, dePont Christensen R, Ellingsen T, Kjeldsen J, Bjørsum-Meyer T. Safety and efficacy of faecal microbiota transplantation in patients with acute uncomplicated diverticulitis: study protocol for a randomised placebo-controlled trial. Therap Adv Gastroenterol 2025; 18:17562848241309868. [PMID: 39758967 PMCID: PMC11694295 DOI: 10.1177/17562848241309868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/10/2024] [Indexed: 01/07/2025] Open
Abstract
Background Little is known about the involvement of gut microbiota in the disease course of diverticulitis and the potential benefits of manipulating the gut milieu. We propose to conduct a randomised placebo-controlled feasibility trial of faecal microbiota transplantation (FMT) given as capsules to patients with acute uncomplicated diverticulitis. Objectives The objective is primarily to investigate the feasibility of clinical safety, explore efficacy associated with FMT in this patient population, and examine changes in patient-reported quality of life and the composition and function of the gut microbiota. Design Study protocol for a randomised placebo-controlled trial. Methods and analysis Participants with acute, uncomplicated diverticulitis, as confirmed by computed tomography (CT) scan, will be recruited from Odense University Hospital (Denmark) and randomly assigned to either the intervention group or the control group. The intervention group will consist of 20 patients who receive encapsulated FMT. The control group will also consist of 20 patients, receiving placebo capsules. Primary safety endpoint: Patient safety is monitored by (a) the number of re-admissions and (b) the number of adverse events within 3 months of FMT/placebo; Primary efficacy endpoint: Reduction in the proportion of patients treated with antibiotics within 3 months following FMT/placebo; Secondary outcome: Change from baseline to 3 months in the GI-QLI questionnaire. Results will be analysed using an intention-to-treat approach. Adverse events or unintended consequences will be reported. Ethics and discussion This is the first study to investigate the safety and efficacy of FMT in patients with acute uncomplicated diverticulitis. The project has the potential to broaden the knowledge and literature on the role of the intestinal microbiota in diverticulitis, and we believe it will elevate our understanding of cause and effect. Trial registration Informed consent is obtained from all participants. The study is approved by the regional ethics committee (ref. S-20230023) and the Danish Data Protection Agency (ref. 24/2435). The trial was registered on clinicaltrials.gov (NCT06254625) on 10th February 2024.
Collapse
Affiliation(s)
- Camilla Thorndal
- Department of Surgery, Odense University Hospital, Baagøes Alle 15, Odense 5000, Denmark
| | - Maja Skov Kragsnaes
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Rheumatology, Odense University Hospital, Odense, Denmark
| | | | | | - Rene dePont Christensen
- Research Unit of General Practice, Institute of Public Health, University of Southern Denmark, Copenhagen, Denmark
| | - Torkell Ellingsen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Rheumatology, Odense University Hospital, Odense, Denmark
| | - Jens Kjeldsen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Medical Gastrointestinal Diseases, Odense University Hospital, Odense, Denmark
| | - Thomas Bjørsum-Meyer
- Department of Surgery, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
2
|
Marín-Sánchez N, Paredes R, Borgognone A. Exploring potential associations between the human microbiota and reservoir of latent HIV. Retrovirology 2024; 21:21. [PMID: 39614246 PMCID: PMC11605983 DOI: 10.1186/s12977-024-00655-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/20/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND The rapid establishment and persistence of latent HIV-1 reservoirs is one of the main obstacles towards an HIV cure. While antiretroviral therapy supresses viral replication, it does not eradicate the latent reservoir of HIV-1-infected cells. Recent evidence suggests that the human microbiome, particularly the gut microbiome, may have the potential to modulate the HIV-1 reservoir. However, literature is limited and the exact mechanisms underlying the role of the microbiome in HIV immunity and potential regulation of the viral reservoir remain poorly understood. RESULTS Here, we review updated knowledge on the associations between the human microbiome and HIV reservoir across different anatomical sites, including the gut, the lungs and blood. We provide an overview of the predominant taxa associated with prominent microbiome changes in the context of HIV infection. Based on the current evidence, we summarize the main study findings, with specific focus on consistent bacterial and related byproduct associations. Specifically, we address the contribution of immune activation and inflammatory signatures on HIV-1 persistence. Furthermore, we discuss possible scenarios by which bacterial-associated inflammatory mediators, related metabolites and host immune signatures may modulate the HIV reservoir size. Finally, we speculate on potential implications of microbiome-based therapeutics for future HIV-1 cure strategies, highlighting challenges and limitations inherent in this research field. CONCLUSIONS Despite recent advances, this review underscores the need for further research to deepen the understanding of the complex interplay between the human microbiome and HIV reservoir. Further integrative multi-omics assessments and functional studies are crucial to test the outlined hypothesis and to identify potential therapeutic targets ultimately able to achieve an effective cure for HIV.
Collapse
Affiliation(s)
- Nel Marín-Sánchez
- IrsiCaixa, Badalona, Catalonia, Spain
- Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Roger Paredes
- IrsiCaixa, Badalona, Catalonia, Spain.
- Department of Infectious Diseases, Hospital Germans Trias i Pujol, Badalona, Catalonia, Spain.
- Department of Pathology, Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| | | |
Collapse
|
3
|
Ahmed HS. The Impact of Prevotella on Neurobiology in Aging: Deciphering Dendritic Cell Activity and Inflammatory Dynamics. Mol Neurobiol 2024; 61:9240-9251. [PMID: 38613648 DOI: 10.1007/s12035-024-04156-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/29/2024] [Indexed: 04/15/2024]
Abstract
Prevotella species, notably Prevotella copri, significantly populate the human gut. In particular, P. copri is prevalent among non-Western populations with diets high in fiber. These species show complex relationships with diverse health aspects, associating with beneficial outcomes, including reduced visceral fat and improved glucose tolerance. Studies implicate various Prevotella species in specific diseases. Prevotella nigrescens and Porphyromonas gingivalis were linked to periodontal disease, promoting immune responses and influencing T helper type 17 (Th17) cells. Prevotella bivia was associated with bacterial vaginosis and a specific increase in activated cells in the vaginal mucosa. In contrast, they have shown substantial potential for inducing connective tissue degradation and alveolar bone resorption. Prevotella's role in neuroinflammatory disorders and autoinflammatory conditions such as Alzheimer's disease and Parkinson's disease has also been noted. The complex relationship between Prevotella and age-related conditions further extends to neurobiological changes in aging, with varying associations with Alzheimer's, Parkinson's, and other inflammatory conditions. Studies have also identified Prevotella to be implicated in cognitive decline in middle aged and the elderly. Future directions in this research area are anticipated to explore Prevotella-associated inflammatory mechanisms and therapeutic interventions. Investigating specific drug targets and immunomodulatory measures could lead to novel therapeutic strategies. Understanding how Prevotella-induced inflammation interacts with aging diseases would offer promising insights for treatments and interventions. This review urges ongoing research to discover therapeutic targets and mechanisms for moderating Prevotella-associated inflammation to further enhance our understanding and improve health outcomes.
Collapse
Affiliation(s)
- H Shafeeq Ahmed
- Bangalore Medical College and Research Institute, K.R Road, Bangalore, 560002, Karnataka, India.
| |
Collapse
|
4
|
Wang D, Zhu L, Liu H, Feng X, Zhang C, Liu B, Li T, Liu L, Chang H, Sun J, Yang L, Yang W. Altered gut metabolites and metabolic reprogramming involved in the pathogenesis of colitis-associated colorectal cancer and the transition of colon "inflammation to cancer". J Pharm Biomed Anal 2024; 253:116553. [PMID: 39486392 DOI: 10.1016/j.jpba.2024.116553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/27/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
Colitis-associated colorectal cancer (CAC) is fatal and can develop spontaneously or as a complication of inflammatory bowel diseases. Although co-administration of azoxymethane/dextran sulfate sodium (AOM/DSS) is a classic method for CAC modeling, its limitations need to be addressed. Accordingly, we aimed to optimize the AOM/DSS model to study CAC extensively and further investigate its pathogenic mechanisms relative to microbiota and metabolism. We optimized the CAC model via a single or enhanced injection of AOM combined with different administration modes and varying DSS concentrations. Subsequently, the fecal-microbiota composition was examined using 16S RNA sequencing, and fecal-colon-metabolome profiles were evaluated via ultra-high performance liquid chromatography-mass spectrometry. Two interval injections of AOM combined with 1.5 % DSS-free drinking resulted in a high tumor formation rate, uniform tumor formation, and low mortality. Based on this model, we innovatively divided the pathogenesis of CAC into three stages, namely inflammation induction, proliferation initiation, and tumorigenesis, and examined the pathological characteristics in each stage. Gut microbial dysbiosis and metabolic alteration drove colorectal tumorigenesis by aggravating inflammation while promoting cell proliferation and carcinogenesis in mice. For the first time, we dynamically demonstrated the process of colon "inflammation to cancer" transformation and provided novel insights to clarify the role of amino acid metabolism in the formation of CAC.
Collapse
Affiliation(s)
- Dunfang Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lin Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Haifan Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xue Feng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Caijuan Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Bin Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Tao Li
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Li Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hao Chang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jingwei Sun
- Beijing University of Chinese Medicine, Beijing 100700, China
| | - Lei Yang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Weipeng Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
5
|
Xiao X, Singh A, Giometto A, Brito IL. Segatella clades adopt distinct roles within a single individual's gut. NPJ Biofilms Microbiomes 2024; 10:114. [PMID: 39465298 PMCID: PMC11514259 DOI: 10.1038/s41522-024-00590-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024] Open
Abstract
Segatella is a prevalent genus within individuals' gut microbiomes worldwide, especially in non-Western populations. Although metagenomic assembly and genome isolation have shed light on its genetic diversity, the lack of available isolates from this genus has resulted in a limited understanding of how members' genetic diversity translates into phenotypic diversity. Within the confines of a single gut microbiome, we have isolated 63 strains from diverse lineages of Segatella. We performed comparative analyses that exposed differences in cellular morphologies, preferences in polysaccharide utilization, yield of short-chain fatty acids, and antibiotic resistance across isolates. We further show that exposure to Segatella isolates either evokes strong or muted transcriptional responses in human intestinal epithelial cells. Our study exposes large phenotypic differences within related Segatella isolates, extending this to host-microbe interactions.
Collapse
Affiliation(s)
- Xieyue Xiao
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Adarsh Singh
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Andrea Giometto
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Ilana L Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
6
|
Díaz-García C, Moreno E, Talavera-Rodríguez A, Martín-Fernández L, González-Bodí S, Martín-Pedraza L, Pérez-Molina JA, Dronda F, Gosalbes MJ, Luna L, Vivancos MJ, Huerta-Cepas J, Moreno S, Serrano-Villar S. Fecal microbiota transplantation alters the proteomic landscape of inflammation in HIV: identifying bacterial drivers. MICROBIOME 2024; 12:214. [PMID: 39438902 PMCID: PMC11494993 DOI: 10.1186/s40168-024-01919-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/26/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Despite effective antiretroviral therapy, people with HIV (PWH) experience persistent systemic inflammation and increased morbidity and mortality. Modulating the gut microbiome through fecal microbiota transplantation (FMT) represents a novel therapeutic strategy. We aimed to evaluate proteomic changes in inflammatory pathways following repeated, low-dose FMT versus placebo. METHODS This double-masked, placebo-controlled pilot study assessed the proteomic impacts of weekly FMT versus placebo treatment over 8 weeks on systemic inflammation in 29 PWH receiving stable antiretroviral therapy (ART). Three stool donors with high Faecalibacterium and butyrate profiles were selected, and their individual stools were used for FMT capsule preparation. Proteomic changes in 345 inflammatory proteins in plasma were quantified using the proximity extension assay, with samples collected at baseline and at weeks 1, 8, and 24. Concurrently, we characterized shifts in the gut microbiota composition and annotated functions through shotgun metagenomics. We fitted generalized additive models to evaluate the dynamics of protein expression. We selected the most relevant proteins to explore their correlations with microbiome composition and functionality over time using linear mixed models. RESULTS FMT significantly reduced the plasma levels of 45 inflammatory proteins, including established mortality predictors such as IL6 and TNF-α. We found notable reductions persisting up to 16 weeks after the final FMT procedure, including in the expression of proteins such as CCL20 and CD22. We identified changes in 46 proteins, including decreases in FT3LG, IL6, IL10RB, IL12B, and IL17A, which correlated with multiple bacterial species. We found that specific bacterial species within the Ruminococcaceae, Succinivibrionaceae, Prevotellaceae families, and the Clostridium genus, in addition to their associated genes and functions, were significantly correlated with changes in inflammatory markers. CONCLUSIONS Targeting the gut microbiome through FMT effectively decreased inflammatory proteins in PWH, with sustained effects. These findings suggest the potential of the microbiome as a therapeutic target to mitigate inflammation-related complications in this population, encouraging further research and development of microbiome-based interventions. Video Abstract.
Collapse
Affiliation(s)
- Claudio Díaz-García
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, IRYCIS and Universidad de Alcalá, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Elena Moreno
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, IRYCIS and Universidad de Alcalá, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain.
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Alba Talavera-Rodríguez
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, IRYCIS and Universidad de Alcalá, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Lucía Martín-Fernández
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Sara González-Bodí
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Laura Martín-Pedraza
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, IRYCIS and Universidad de Alcalá, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - José A Pérez-Molina
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, IRYCIS and Universidad de Alcalá, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Fernando Dronda
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, IRYCIS and Universidad de Alcalá, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - María José Gosalbes
- Área de Genómica y Salud, Fundación Para El Fomento de La Investigación Sanitaria y Biomédica de La Comunidad Valenciana-Salud Pública, Valencia, Spain
- CIBERESP, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Laura Luna
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, IRYCIS and Universidad de Alcalá, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - María Jesús Vivancos
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, IRYCIS and Universidad de Alcalá, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Jaime Huerta-Cepas
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28223, Madrid, Spain
| | - Santiago Moreno
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, IRYCIS and Universidad de Alcalá, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Sergio Serrano-Villar
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, IRYCIS and Universidad de Alcalá, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain.
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
7
|
Sun R, Yu P, Guo L, Huang Y, Nie Y, Yang Y. Improving the growth and intestinal colonization of Escherichia coli Nissle 1917 by strengthening its oligopeptides importation ability. Metab Eng 2024; 86:157-171. [PMID: 39389255 DOI: 10.1016/j.ymben.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/01/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024]
Abstract
Escherichia coli Nissle 1917 (EcN), the probiotic featured with well-established safety in different host, is emerging as a favored chassis for the construction of engineered probiotics for disease treatment. However, limited by the low intestinal colonization ability of EcN, repeated administration is required to maximize the health benefits of the EcN-derived engineered probiotics. Here, using fecal metabolites as "metabolites pool", we developed a metabolomic strategy to characterize the comprehensive metabolic profile of EcN. Compared with Prevotella copri DSM 18205 (P. copri), one of the dominant microbes in gut flora, EcN exhibited minor growth advantage under the fecal metabolites-containing condition for its lower metabolic capability towards fecal metabolites. Further study indicated that EcN lacked the ability to import the oligopeptides containing more than two amino acids. The shortage of oligopeptides-derived amino acids might limit the growth of EcN by restricting its purine metabolism. Assisted with the bioinformatic and qRT-PCR analyses, we identified a tripeptides-specific importer Pc-OPT in P. copri, which was mainly distributed in genera Prevotella and Bacteroides. Overexpression of Pc-OPT improved the tripeptides importation of EcN and promoted its growth and intestinal colonization. Notably, 16S rRNA gene amplicon sequencing results indicated that strengthening the oligopeptides importation ability of EcN might promote its intestinal colonization by adjusting the gut microbial composition. Our study reveals that the growth and intestinal colonization of EcN is limited by its insufficient oligopeptides importation and paves road for promoting the efficacy of the EcN-derived synthetic probiotics by improving their intestinal colonization ability.
Collapse
Affiliation(s)
- Ruxue Sun
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Peijun Yu
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liying Guo
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Yufei Huang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Yanhong Nie
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, 201602, China; Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yunpeng Yang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, 225009, China; Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, 201602, China; Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
8
|
Novielli P, Romano D, Magarelli M, Diacono D, Monaco A, Amoroso N, Vacca M, De Angelis M, Bellotti R, Tangaro S. Personalized identification of autism-related bacteria in the gut microbiome using explainable artificial intelligence. iScience 2024; 27:110709. [PMID: 39286497 PMCID: PMC11402656 DOI: 10.1016/j.isci.2024.110709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/05/2024] [Accepted: 08/07/2024] [Indexed: 09/19/2024] Open
Abstract
Autism spectrum disorder (ASD) affects social interaction and communication. Emerging evidence links ASD to gut microbiome alterations, suggesting that microbial composition may play a role in the disorder. This study employs explainable artificial intelligence (XAI) to examine the contributions of individual microbial species to ASD. By using local explanation embeddings and unsupervised clustering, the research identifies distinct ASD subgroups, underscoring the disorder's heterogeneity. Specific microbial biomarkers associated with ASD are revealed, and the best classifiers achieved an AU-ROC of 0.965 ± 0.005 and an AU-PRC of 0.967 ± 0.008. The findings support the notion that gut microbiome composition varies significantly among individuals with ASD. This work's broader significance lies in its potential to inform personalized interventions, enhancing precision in ASD management and classification. These insights highlight the importance of individualized microbiome profiles for developing tailored therapeutic strategies for ASD.
Collapse
Affiliation(s)
- Pierfrancesco Novielli
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70125 Bari, Italy
| | - Donato Romano
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70125 Bari, Italy
| | - Michele Magarelli
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
| | - Domenico Diacono
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70125 Bari, Italy
| | - Alfonso Monaco
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70125 Bari, Italy
- Dipartimento Interateneo di Fisica "M. Merlin", Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy
| | - Nicola Amoroso
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70125 Bari, Italy
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy
| | - Mirco Vacca
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
| | - Maria De Angelis
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
| | - Roberto Bellotti
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70125 Bari, Italy
- Dipartimento Interateneo di Fisica "M. Merlin", Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy
| | - Sabina Tangaro
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70125 Bari, Italy
| |
Collapse
|
9
|
Lu X, Gong G, Zhang Q, Yang S, Wu H, Zhao M, Wang X, Shen Q, Ji L, Liu Y, Wang Y, Liu J, Suolang S, Ma X, Shan T, Zhang W. Metagenomic analysis reveals high diversity of gut viromes in yaks (Bos grunniens) from the Qinghai-Tibet Plateau. Commun Biol 2024; 7:1097. [PMID: 39242698 PMCID: PMC11379701 DOI: 10.1038/s42003-024-06798-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024] Open
Abstract
The Qinghai-Tibet Plateau (QTP), renowned for its exceptional biological diversity, is home to numerous endemic species. However, research on the virology of vulnerable vertebrates like yaks remains limited. In this study, our objective was to use metagenomics to provide a comprehensive understanding of the diversity and evolution of the gut virome in yak populations across different regions of the QTP. Our findings revealed a remarkably diverse array of viruses in the gut of yaks, including those associated with vertebrates and bacteriophages. Notably, some vertebrate-associated viruses, such as astrovirus and picornavirus, showed significant sequence identity across diverse yak populations. Additionally, we observed differences in the functional profiles of genes carried by the yak gut virome across different regions. Moreover, the virus-bacterium symbiotic network that we discovered holds potential significance in maintaining the health of yaks. Overall, this research expands our understanding of the viral communities in the gut of yaks and highlights the importance of further investigating the interactions between viruses and their hosts. These data will be beneficial for revealing the crucial role that viruses play in the yak gut ecology in future studies.
Collapse
Affiliation(s)
- Xiang Lu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ga Gong
- Animal Science College, Tibet Agriculture and Animal Husbandry University, Nyingchi, Tibet, China
| | - Qing Zhang
- Qinghai Institute of Endemic Disease Prevention and Control, Xining, China
| | - Shixing Yang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Haisheng Wu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
- Qinghai Institute of Endemic Disease Prevention and Control, Xining, China
| | - Min Zhao
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiaochun Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Quan Shen
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Likai Ji
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yuwei Liu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yongshun Wang
- Qinghai Institute of Endemic Disease Prevention and Control, Xining, China
| | - Jia Liu
- Qinghai Institute of Endemic Disease Prevention and Control, Xining, China
| | - Sizhu Suolang
- Animal Science College, Tibet Agriculture and Animal Husbandry University, Nyingchi, Tibet, China.
| | - Xiao Ma
- Qinghai Institute of Endemic Disease Prevention and Control, Xining, China.
| | - Tongling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Wen Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
10
|
Mai X, Yang S, Chen Q, Chen K. Gut microbial composition is altered in sarcopenia: A systematic review and meta-analysis of clinical studies. PLoS One 2024; 19:e0308360. [PMID: 39106230 DOI: 10.1371/journal.pone.0308360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/23/2024] [Indexed: 08/09/2024] Open
Abstract
Increasing evidence has shown that gut microbiota (GM) was involved in the pathophysiology of musculoskeletal disorders through multiple pathways such as protein anabolism, chronic inflammation and immunity, and imbalanced metabolism. We performed a systematic review and meta-analysis of human studies to evaluate GM diversity differences between individuals with and without sarcopenia, and explore bacteria with potential to become biomarkers. PubMed, Embase and Cochrane library were systematically searched from inception to February 16, 2024. Studies were included if they (1) sampled adults with sarcopenia, and (2) performed GM analysis and reported α-diversity, β-diversity or relative abundance. The methodological quality of included studies and the certainty of evidence were assessed through the Joanna Briggs Institute critical appraisal checklist for analytical cross-sectional studies and the Grades of Recommendation, Assessment, Development and Evaluation (GRADE) Working Group system, respectively. Weighted standardized mean differences (SMDs) and corresponding 95% confidence intervals (CIs) were estimated for α-diversity indices using a fixed-effects and a random-effects model. Beta diversity and the relative abundance of GM were summarized qualitatively. A total of 19 studies involving 6,565 participants were included in this study. Compared with controls, significantly moderate decrease in microbial richness in participants with sarcopenia were found (Chao1: SMD = -0.44; 95%CI, -0.64 to -0.23, I2 = 57.23%, 13 studies; observed species: SMD = -0.68; 95%CI, -1.00 to -0.37, I2 = 66.07%, 5 studies; ACE index: SMD = -0.30; 95%CI, -0.56 to -0.04, I2 = 8.12%, 4 studies), with very low certainty of evidence. Differences in β-diversity were consistently observed in 84.6% of studies and 97.3% of participants. The detailed analysis of the gut microbial differential abundance identified a loss of Prevotellaceae, Prevotella, and Megamonas in sarcopenia compared with non-sarcopenia. In conclusion, sarcopenia was found to be associated with reduced richness of GM, and supplementing intestinal bacteria described above may contribute to preventing and treating this muscle disease. The research protocol was registered and approved in PROSPERO (CRD42023412849).
Collapse
Affiliation(s)
- Xiaohong Mai
- Department of Geriatric Psychiatry, Shaoxing Seventh People's Hospital, Shaoxing, China
| | - Shuyi Yang
- Department of Microbial Detection, Shaoxing Center for Disease Control and Prevention, Shaoxing, China
| | - Qifeng Chen
- Department of Non-Communicable Diseases Control and Prevention, Shaoxing Center for Disease Control and Prevention, Shaoxing, China
| | - Kangkang Chen
- Department of Non-Communicable Diseases Control and Prevention, Shaoxing Center for Disease Control and Prevention, Shaoxing, China
| |
Collapse
|
11
|
Hein DM, Coughlin LA, Poulides N, Koh AY, Sanford NN. Assessment of Distinct Gut Microbiome Signatures in a Diverse Cohort of Patients Undergoing Definitive Treatment for Rectal Cancer. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2024; 7:150-158. [PMID: 39219996 PMCID: PMC11361339 DOI: 10.36401/jipo-23-30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/29/2023] [Accepted: 12/03/2023] [Indexed: 09/04/2024]
Abstract
Introduction Disparities in incidence and outcome of rectal cancer are multifactorial in etiology but may be due, in part, to differences in gut microbiome composition. We used serial robust statistical approaches to assess baseline gut microbiome composition in a diverse cohort of patients with rectal cancer receiving definitive treatment. Methods Microbiome composition was compared by age at diagnosis (< 50 vs ≥ 50 years), race and ethnicity (White Hispanic vs non-Hispanic), and response to therapy. Alpha diversity was assessed using the Shannon, Chao1, and Simpson diversity measures. Beta diversity was explored using both Bray-Curtis dissimilarity and Aitchison distance with principal coordinate analysis. To minimize false-positive findings, we used two distinct methods for differential abundance testing: LinDA and MaAsLin2 (all statistics two-sided, Benjamini-Hochberg corrected false discovery rate < 0.05). Results Among 64 patients (47% White Hispanic) with median age 51 years, beta diversity metrics showed significant clustering by race and ethnicity (p < 0.001 by both metrics) and by onset (Aitchison p = 0.022, Bray-Curtis p = 0.035). White Hispanic patients had enrichment of bacterial family Prevotellaceae (LinDA fold change 5.32, MaAsLin2 fold change 5.11, combined adjusted p = 0.0007). No significant differences in microbiome composition were associated with neoadjuvant therapy response. Conclusion We identified distinct gut microbiome signatures associated with race and ethnicity and age of onset in a diverse cohort of patients undergoing definitive treatment for rectal cancer.
Collapse
Affiliation(s)
- David M. Hein
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Laura A. Coughlin
- Department of Pediatrics, Division of Hematology/Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nicole Poulides
- Department of Pediatrics, Division of Hematology/Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andrew Y. Koh
- Department of Pediatrics, Division of Hematology/Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nina N. Sanford
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
12
|
Roesmann F, Sertznig H, Klaassen K, Wilhelm A, Heininger D, Heß S, Elsner C, Marschalek R, Santiago ML, Esser S, Sutter K, Dittmer U, Widera M. The interferon-regulated host factor hnRNPA0 modulates HIV-1 production by interference with LTR activity, mRNA trafficking, and programmed ribosomal frameshifting. J Virol 2024; 98:e0053424. [PMID: 38899932 PMCID: PMC11265465 DOI: 10.1128/jvi.00534-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
The interplay between host factors and viral components impacts viral replication efficiency profoundly. Members of the cellular heterogeneous nuclear ribonucleoprotein family (hnRNPs) have been extensively studied as HIV-1 host dependency factors, but whether they play a role in innate immunity is currently unknown. This study aimed to identify hnRNPA0 as a type I interferon (IFN)-repressed host factor in HIV-1-infected cells. Knockdown of hnRNPA0, a situation that mirrors conditions under IFN stimulation, increased LTR activity, export of unspliced HIV-1 mRNA, viral particle production, and thus, increased infectivity. Conversely, hnRNPA0 overexpression primarily reduced plasmid-driven and integrated HIV-1 long terminal repeat (LTR) activity, significantly decreasing total viral mRNA and protein levels. In addition, high levels of hnRNPA0 significantly reduced the HIV-1 programmed ribosomal frameshifting efficiency, resulting in a shift in the HIV-1 p55/p15 ratio. The HIV-1 alternative splice site usage remained largely unaffected by altered hnRNPA0 levels suggesting that the synergistic inhibition of the LTR activity and viral mRNA transcription, as well as impaired ribosomal frameshifting efficiency, are critical factors for efficient HIV-1 replication regulated by hnRNPA0. The pleiotropic dose-dependent effects under high or low hnRNPA0 levels were further confirmed in HIV-1-infected Jurkat cells. Finally, our study revealed that hnRNPA0 levels in PBMCs were lower in therapy-naive HIV-1-infected individuals compared to healthy controls. Our findings highlight a significant role for hnRNPA0 in HIV-1 replication and suggest that its IFN-I-regulated expression levels are critical for viral fitness allowing replication in an antiviral environment.IMPORTANCERNA-binding proteins, in particular, heterogeneous nuclear ribonucleoproteins (hnRNPs), have been extensively studied. Some act as host dependency factors for HIV-1 since they are involved in multiple cellular gene expression processes. Our study revealed hnRNPA0 as an IFN-regulated host factor, that is differently expressed after IFN-I treatment in HIV-1 target cells and lower expressed in therapy-naïve HIV-1-infected individuals. Our findings demonstrate the significant pleiotropic role of hnRNPA0 in viral replication: In high concentrations, hnRNPA0 limits viral replication by negatively regulating Tat-LTR transcription, retaining unspliced mRNA in the nucleus, and significantly impairing programmed ribosomal frameshifting. Low hnRNPA0 levels as observed in IFN-treated THP-1 cells, particularly facilitate HIV LTR activity and unspliced mRNA export, suggesting a role in innate immunity in favor of HIV replication. Understanding the mode of action between hnRNPA0 and HIV-1 gene expression might help to identify novel therapeutically strategies against HIV-1 and other viruses.
Collapse
Affiliation(s)
- Fabian Roesmann
- Goethe University Frankfurt, University Hospital, Institute for Medical Virology, Frankfurt, Germany
| | - Helene Sertznig
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Katleen Klaassen
- Goethe University Frankfurt, University Hospital, Institute for Medical Virology, Frankfurt, Germany
| | - Alexander Wilhelm
- Goethe University Frankfurt, University Hospital, Institute for Medical Virology, Frankfurt, Germany
| | - Delia Heininger
- Goethe University Frankfurt, University Hospital, Institute for Medical Virology, Frankfurt, Germany
| | - Stefanie Heß
- Goethe University Frankfurt, University Hospital, Institute for Medical Virology, Frankfurt, Germany
| | - Carina Elsner
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Rolf Marschalek
- Institute of Pharmaceutical Biology, Goethe-University, Frankfurt am Main, Hessen, Germany
| | - Mario L. Santiago
- Department of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Stefan Esser
- Institute for the Research on HIV and AIDS-associated Diseases University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Department of Dermatology, HPSTD Outpatient Clinic, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Kathrin Sutter
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Institute for the Research on HIV and AIDS-associated Diseases University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Institute for the Research on HIV and AIDS-associated Diseases University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Marek Widera
- Goethe University Frankfurt, University Hospital, Institute for Medical Virology, Frankfurt, Germany
| |
Collapse
|
13
|
Olivier C, Luies L. Metabolic insights into HIV/TB co-infection: an untargeted urinary metabolomics approach. Metabolomics 2024; 20:78. [PMID: 39014031 PMCID: PMC11252185 DOI: 10.1007/s11306-024-02148-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/24/2024] [Indexed: 07/18/2024]
Abstract
INTRODUCTION Amid the global health crisis, HIV/TB co-infection presents significant challenges, amplifying the burden on patients and healthcare systems alike. Metabolomics offers an innovative window into the metabolic disruptions caused by co-infection, potentially improving diagnosis and treatment monitoring. AIM This study uses untargeted metabolomics to investigate the urinary metabolic signature of HIV/TB co-infection, enhancing understanding of the metabolic interplay between these infections. METHODS Urine samples from South African adults, categorised into four groups - healthy controls, TB-positive, HIV-positive, and HIV/TB co-infected - were analysed using GCxGC-TOFMS. Metabolites showing significant differences among groups were identified through Kruskal-Wallis and Wilcoxon rank sum tests. RESULTS Various metabolites (n = 23) were modulated across the spectrum of health and disease states represented in the cohorts. The metabolomic profiles reflect a pronounced disruption in biochemical pathways involved in energy production, amino acid metabolism, gut microbiome, and the immune response, suggesting a bidirectional exacerbation between HIV and TB. While both diseases independently perturb the host's metabolism, their co-infection leads to a unique metabolic phenotype, indicative of an intricate interplay rather than a simple additive effect. CONCLUSION Metabolic profiling revealed a unique metabolic landscape shaped by HIV/TB co-infection. The findings highlight the potential of urinary differential metabolites for co-infection, offering a non-invasive tool for enhancing diagnostic precision and tailoring therapeutic interventions. Future research should focus on expanding sample sizes and integrating longitudinal analyses to build upon these foundational insights, paving the way for metabolomic applications in combating these concurrent pandemics.
Collapse
Affiliation(s)
- Cara Olivier
- Focus Area Human Metabolomics, North-West University, Potchefstroom Campus, Private Bag X6001, Box 269, Potchefstroom, North West, 2520, South Africa
| | - Laneke Luies
- Focus Area Human Metabolomics, North-West University, Potchefstroom Campus, Private Bag X6001, Box 269, Potchefstroom, North West, 2520, South Africa.
| |
Collapse
|
14
|
Beurel E, Nemeroff CB. Early Life Adversity, Microbiome, and Inflammatory Responses. Biomolecules 2024; 14:802. [PMID: 39062516 PMCID: PMC11275239 DOI: 10.3390/biom14070802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Early life adversity has a profound impact on physical and mental health. Because the central nervous and immune systems are not fully mature at birth and continue to mature during the postnatal period, a bidirectional interaction between the central nervous system and the immune system has been hypothesized, with traumatic stressors during childhood being pivotal in priming individuals for later adult psychopathology. Similarly, the microbiome, which regulates both neurodevelopment and immune function, also matures during childhood, rendering this interaction between the brain and the immune system even more complex. In this review, we provide evidence for the role of the immune response and the microbiome in the deleterious effects of early life adversity, both in humans and rodent models.
Collapse
Affiliation(s)
- Eléonore Beurel
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Charles B. Nemeroff
- Department of Psychiatry and Behavioral Sciences, Mulva Clinic for Neurosciences, University of Texas (UT) Dell Medical School, Austin, TX 78712, USA
- Mulva Clinic for Neurosciences, UT Austin Dell Medical School, Austin, TX 78712, USA
| |
Collapse
|
15
|
Hmiel L, Zhang S, Obare LM, Santana MADO, Wanjalla CN, Titanji BK, Hileman CO, Bagchi S. Inflammatory and Immune Mechanisms for Atherosclerotic Cardiovascular Disease in HIV. Int J Mol Sci 2024; 25:7266. [PMID: 39000373 PMCID: PMC11242562 DOI: 10.3390/ijms25137266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Atherosclerotic vascular disease disproportionately affects persons living with HIV (PLWH) compared to those without. The reasons for the excess risk include dysregulated immune response and inflammation related to HIV infection itself, comorbid conditions, and co-infections. Here, we review an updated understanding of immune and inflammatory pathways underlying atherosclerosis in PLWH, including effects of viral products, soluble mediators and chemokines, innate and adaptive immune cells, and important co-infections. We also present potential therapeutic targets which may reduce cardiovascular risk in PLWH.
Collapse
Affiliation(s)
- Laura Hmiel
- Department of Medicine, Division of Infectious Disease, MetroHealth Medical Center and Case Western Reserve University, Cleveland, OH 44109, USA
| | - Suyu Zhang
- Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Laventa M. Obare
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Celestine N. Wanjalla
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Boghuma K. Titanji
- Division of Infectious Diseases, Emory University, Atlanta, GA 30322, USA
| | - Corrilynn O. Hileman
- Department of Medicine, Division of Infectious Disease, MetroHealth Medical Center and Case Western Reserve University, Cleveland, OH 44109, USA
| | - Shashwatee Bagchi
- Division of Infectious Diseases, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
16
|
Kopera K, Gromowski T, Wydmański W, Skonieczna-Żydecka K, Muszyńska A, Zielińska K, Wierzbicka-Woś A, Kaczmarczyk M, Kadaj-Lipka R, Cembrowska-Lech D, Januszkiewicz K, Kotfis K, Witkiewicz W, Nalewajska M, Feret W, Marlicz W, Łoniewski I, Łabaj PP, Rydzewska G, Kosciolek T. Gut microbiome dynamics and predictive value in hospitalized COVID-19 patients: a comparative analysis of shallow and deep shotgun sequencing. Front Microbiol 2024; 15:1342749. [PMID: 38962119 PMCID: PMC11219902 DOI: 10.3389/fmicb.2024.1342749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/20/2024] [Indexed: 07/05/2024] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 has led to a wide range of clinical presentations, with respiratory symptoms being common. However, emerging evidence suggests that the gastrointestinal (GI) tract is also affected, with angiotensin-converting enzyme 2, a key receptor for SARS-CoV-2, abundantly expressed in the ileum and colon. The virus has been detected in GI tissues and fecal samples, even in cases with negative results of the reverse transcription polymerase chain reaction in the respiratory tract. GI symptoms have been associated with an increased risk of ICU admission and mortality. The gut microbiome, a complex ecosystem of around 40 trillion bacteria, plays a crucial role in immunological and metabolic pathways. Dysbiosis of the gut microbiota, characterized by a loss of beneficial microbes and decreased microbial diversity, has been observed in COVID-19 patients, potentially contributing to disease severity. We conducted a comprehensive gut microbiome study in 204 hospitalized COVID-19 patients using both shallow and deep shotgun sequencing methods. We aimed to track microbiota composition changes induced by hospitalization, link these alterations to clinical procedures (antibiotics administration) and outcomes (ICU referral, survival), and assess the predictive potential of the gut microbiome for COVID-19 prognosis. Shallow shotgun sequencing was evaluated as a cost-effective diagnostic alternative for clinical settings. Our study demonstrated the diverse effects of various combinations of clinical parameters, microbiome profiles, and patient metadata on the precision of outcome prognostication in patients. It indicates that microbiological data possesses greater reliability in forecasting patient outcomes when contrasted with clinical data or metadata. Furthermore, we established that shallow shotgun sequencing presents a viable and cost-effective diagnostic alternative to deep sequencing within clinical environments.
Collapse
Affiliation(s)
- Katarzyna Kopera
- Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Tomasz Gromowski
- Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Witold Wydmański
- Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
- Faculty of Mathematics and Computer Science, Jagiellonian University, Kraków, Poland
| | | | - Agata Muszyńska
- Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Kinga Zielińska
- Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | | | - Mariusz Kaczmarczyk
- Sanprobi Sp. z o.o. Sp. k., Szczecin, Poland
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University, Szczecin, Poland
| | - Roland Kadaj-Lipka
- Department of Internal Medicine and Gastroenterology, Central Clinical Hospital of the Ministry of Interior and Administration, Warsaw, Poland
| | - Danuta Cembrowska-Lech
- Department of Biochemical Science, Pomeranian Medical University, Szczecin, Poland
- Sanprobi Sp. z o.o. Sp. k., Szczecin, Poland
| | | | - Katarzyna Kotfis
- Department of Anesthesiology, Intensive Care and Pain Management, Pomeranian Medical University, Szczecin, Poland
| | | | | | - Wiktoria Feret
- Clinical Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University, Szczecin, Poland
| | - Wojciech Marlicz
- Sanprobi Sp. z o.o. Sp. k., Szczecin, Poland
- Department of Gastroenterology, Pomeranian Medical University, Szczecin, Poland
| | - Igor Łoniewski
- Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
- Department of Biochemical Science, Pomeranian Medical University, Szczecin, Poland
- Sanprobi Sp. z o.o. Sp. k., Szczecin, Poland
| | - Paweł P. Łabaj
- Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Grażyna Rydzewska
- Department of Internal Medicine and Gastroenterology, Central Clinical Hospital of the Ministry of Interior and Administration, Warsaw, Poland
| | - Tomasz Kosciolek
- Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
- Department of Data Science and Engineering, Silesian University of Technology, Gliwice, Poland
| |
Collapse
|
17
|
Wu SI, Lee MC, Chen WL, Huang CC. Lacticaseibacillus paracasei PS23 increases ghrelin levels and modulates microbiota composition: a post-hoc analysis of a randomized controlled study. Food Funct 2024; 15:6523-6535. [PMID: 38805370 DOI: 10.1039/d4fo01328j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Muscle damage can occur due to excessive, high-intensity, or inappropriate exercise. It is crucial for athletes and sports enthusiasts to have access to ways that expedite their recovery and alleviate discomfort. Our previous clinical trial demonstrated the anti-inflammatory and muscle damage-ameliorating properties of Lacticaseibacillus paracasei PS23 (PS23), prompting us to further explore the role of this probiotic in muscle damage recovery. This post-hoc analysis of a randomized controlled study investigated potential mediators between the intake of PS23 and the prevention of strength loss after muscle damage. We recruited 105 students from a sports university who had participated in the previously published clinical trial. These participants were randomly allocated to three groups, receiving capsuled live PS23 (L-PS23), heat-treated PS23 (HT-PS23), or a placebo over a period of six weeks. Baseline and endpoint measurements were taken for the levels of circulating ghrelin and other blood markers, stress, mood, quality of life, and the fecal microbiota. A significant increase in ghrelin levels was recorded in the L-PS23 group compared to the other groups. Additionally, both L-PS23 and HT-PS23 interventions led to positive shifts in the gut microbiota composition, particularly in elevated Lacticaseibacillus, Blautia, and Lactobacillus populations. The abundance of these bacteria was positively correlated with exercise performance and inversely correlated with inflammatory markers. In conclusion, dietary supplementation with PS23 may enhance exercise performance and influence muscle damage by increasing ghrelin levels and modulating the gut microbiota composition. Further clarification of the possible mechanisms and clinical implications is required.
Collapse
Affiliation(s)
- Shu-I Wu
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan.
- Section of Psychiatry and Suicide Prevention Center, MacKay Memorial Hospital, Taipei, Taiwan
| | - Mon-Chien Lee
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City, Taiwan
- Center for General Education, Taipei Medical University, Taipei, Taiwan
| | - Wan-Lin Chen
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
| | - Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City, Taiwan
| |
Collapse
|
18
|
Ishaq HM, Yasin R, Mohammad IS, Fan Y, Li H, Shahzad M, Xu J. The gut-brain-axis: A positive relationship between gut microbial dysbiosis and glioblastoma brain tumour. Heliyon 2024; 10:e30494. [PMID: 38756585 PMCID: PMC11096965 DOI: 10.1016/j.heliyon.2024.e30494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/28/2024] [Accepted: 04/28/2024] [Indexed: 05/18/2024] Open
Abstract
The glioblastoma brain tumour (GBM) stands out as the most aggressive and resistant-to-treatment malignancy. Nevertheless, the gut-brain connection plays a pivotal role in influencing the growth and activation of the central nervous system. In this particular investigation, we aimed to assess and characterize the gut microbial ecosystem in GBM patients, both quantitatively and qualitatively. We collected faecal samples from 15 healthy volunteers and 25 GBM patients. To delve into the microbial content, we employed PCR-DGGE, targeting the V3 region of the 16S rRNA gene, and conducted qPCR to measure the levels of crucial intestinal bacteria. For a more in-depth analysis, high-throughput sequencing was performed on a selection of 20 random faecal samples (10 from healthy individuals and 10 from GBM patients), targeting the V3+V4 region of the 16S rRNA gene. Our findings from examining the richness and diversity of the gut microbiota unveiled that GBM patients exhibited significantly higher microbial diversity compared to healthy individuals. At the phylum level, Proteobacteria saw a significant increase, while Firmicutes experienced a noteworthy decrease in the GBM group. Moving down to the family level, we observed significantly elevated levels of Enterobacteriaceae, Bacteroidaceae, and Lachnospiraceae in GBM patients, while levels of Veillonellaceae, Rikenellaceae, and Prevotellaceae were notably lower. Delving into genera statistics, we noted a substantial increase in the abundance of Parasutterella, Escherichia-Shigella, and Bacteroides, alongside significantly lower levels of Ruminococcus 2, Faecalibacterium, and Prevotella_9 in the GBM group compared to the control group. Furthermore, when examining specific species, we found a significant increase in Bacteroides vulgatus and Escherichia coli in the GBM group. These observations collectively indicate a marked dysbiosis in the gut microbial composition of GBM patients. Additionally, the GBM group exhibited notably higher levels of alpha diversity when compared to the control group. This increase in diversity suggests a significant bacterial overgrowth in the gut of GBM patients in contrast to the controls. As a result, this research opens up potential avenues to gain a better understanding of the underlying mechanisms, pathways, and potential treatments for GBM, stemming from the significant implications of gut microbial dysbiosis in these patients.
Collapse
Affiliation(s)
- Hafiz Muhammad Ishaq
- Department of Microbiology and Immunology, Key Laboratory of Environment and Genes Related to Diseases of Chinese Ministry of Education, School of Medicine, Xi'an Jiaotong University, Xi'an, China
- Department of Pathobiology and Biomedical Sciences, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture Multan, Pakistan
| | - Riffat Yasin
- Department of Zoology University of Education Lahore, D.G. Khan Campus, Pakistan
| | - Imran Shair Mohammad
- Department of Radiology, City of Hope National Medical Center, 1500 East Duarte Rd., Duarte, CA, 91010, USA
| | - Yang Fan
- Department of Microbiology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Huan Li
- Xi'an Mental Health Centre, Xi'an, China
| | - Muhammad Shahzad
- Department of Pharmacology, University of Health Sciences, Khyaban-e-Jamia Punjab, Lahore, Pakistan
| | - Jiru Xu
- Department of Microbiology and Immunology, Key Laboratory of Environment and Genes Related to Diseases of Chinese Ministry of Education, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
19
|
Dopkins N, Fei T, Michael S, Liotta N, Guo K, Mickens KL, Barrett BS, Bendall ML, Dillon SM, Wilson CC, Santiago ML, Nixon DF. Endogenous retroelement expression in the gut microenvironment of people living with HIV-1. EBioMedicine 2024; 103:105133. [PMID: 38677181 PMCID: PMC11061259 DOI: 10.1016/j.ebiom.2024.105133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/07/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Endogenous retroelements (EREs), including human endogenous retroviruses (HERVs) and long interspersed nuclear elements (LINEs), comprise almost half of the human genome. Our previous studies of the interferome in the gut suggest potential mechanisms regarding how IFNb may drive HIV-1 gut pathogenesis. As ERE activity is suggested to partake in type 1 immune responses and is incredibly sensitive to viral infections, we sought to elucidate underlying interactions between ERE expression and gut dynamics in people living with HIV-1 (PLWH). METHODS ERE expression profiles from bulk RNA sequencing of colon biopsies and PBMC were compared between a cohort of PLWH not on antiretroviral therapy (ART) and uninfected controls. FINDINGS 59 EREs were differentially expressed in the colon of PLWH when compared to uninfected controls (padj <0.05 and FC ≤ -1 or ≥ 1) [Wald's Test]. Of these 59, 12 EREs were downregulated in PLWH and 47 were upregulated. Colon expression of the ERE loci LTR19_12p13.31 and L1FLnI_1q23.1s showed significant correlations with certain gut immune cell subset frequencies in the colon. Furthermore L1FLnI_1q23.1s showed a significant upregulation in peripheral blood mononuclear cells (PBMCs) of PLWH when compared to uninfected controls suggesting a common mechanism of differential ERE expression in the colon and PBMC. INTERPRETATION ERE activity has been largely understudied in genomic characterizations of human pathologies. We show that the activity of certain EREs in the colon of PLWH is deregulated, supporting our hypotheses that their underlying activity could function as (bio)markers and potential mediators of pathogenesis in HIV-1 reservoirs. FUNDING US NIH grants NCI CA260691 (DFN) and NIAID UM1AI164559 (DFN).
Collapse
Affiliation(s)
- Nicholas Dopkins
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| | - Tongyi Fei
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Stephanie Michael
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Nicholas Liotta
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Kejun Guo
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA; RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, USA; Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kaylee L Mickens
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA; RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, USA; Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Brad S Barrett
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA; RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, USA; Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Matthew L Bendall
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Stephanie M Dillon
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Cara C Wilson
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA; RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, USA; Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Mario L Santiago
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA; RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, USA; Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Douglas F Nixon
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
20
|
Chang B, Zhang W, Wang Y, Zhang Y, Zhong S, Gao P, Wang L, Zhao Z. Uncovering the complexity of childhood undernutrition through strain-level analysis of the gut microbiome. BMC Microbiol 2024; 24:73. [PMID: 38443783 PMCID: PMC10916198 DOI: 10.1186/s12866-024-03211-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 01/31/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Undernutrition (UN) is a critical public health issue that threatens the lives of children under five in developing countries. While evidence indicates the crucial role of the gut microbiome (GM) in UN pathogenesis, the strain-level inspection and bacterial co-occurrence network investigation in the GM of UN children are lacking. RESULTS This study examines the strain compositions of the GM in 61 undernutrition patients (UN group) and 36 healthy children (HC group) and explores the topological features of GM co-occurrence networks using a complex network strategy. The strain-level annotation reveals that the differentially enriched species between the UN and HC groups are due to discriminated strain compositions. For example, Prevotella copri is mainly composed of P. copri ASM1680343v1 and P. copri ASM345920v1 in the HC group, but it is composed of P. copri ASM346549v1 and P. copri ASM347465v1 in the UN group. In addition, the UN-risk model constructed at the strain level demonstrates higher accuracy (AUC = 0.810) than that at the species level (AUC = 0.743). With complex network analysis, we further discovered that the UN group had a more complex GM co-occurrence network, with more hub bacteria and a higher clustering coefficient but lower information transfer efficiencies. Moreover, the results at the strain level suggested the inaccurate and even false conclusions obtained from species level analysis. CONCLUSIONS Overall, this study highlights the importance of examining the GM at the strain level and investigating bacterial co-occurrence networks to advance our knowledge of UN pathogenesis.
Collapse
Affiliation(s)
- Bingmei Chang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Wenjie Zhang
- Department of Anesthesiology, First Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Yinan Wang
- Peking University Shenzhen Hospital, Shenzhen, People's Republic of China
| | - Yuanzheng Zhang
- Shenzhen Byoryn Technology Co., Ltd, Shenzhen, People's Republic of China
| | - Shilin Zhong
- Peking University Shenzhen Hospital, Shenzhen, People's Republic of China
| | - Peng Gao
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, People's Republic of China.
| | - Lili Wang
- Department of Anesthesiology, First Hospital of Shanxi Medical University, Taiyuan, People's Republic of China.
| | - Zicheng Zhao
- Shenzhen Byoryn Technology Co., Ltd, Shenzhen, People's Republic of China.
| |
Collapse
|
21
|
Kawashima S, Kinose D, Arima H, Kondo K, Yamazaki A, Uchida Y, Nakagawa H, Yamaguchi M, Segawa H, Torii S, Okami Y, Kadota A, Yano Y, Andoh A, Miura K, Nakano Y, Ueshima H. Association of gut microbiome with COPD in Japanese male residents: the SESSA study. ERJ Open Res 2024; 10:00788-2023. [PMID: 38410710 PMCID: PMC10895427 DOI: 10.1183/23120541.00788-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/02/2024] [Indexed: 02/28/2024] Open
Abstract
Background Altered gut microbiota may contribute to COPD development or progression. Herein, we investigated the association of gut microorganisms with COPD, taking into account the impact of smoking status. Methods This cross-sectional observational study was a part of the Shiga Epidemiological Study of Subclinical Atherosclerosis, a population-based cohort study of Japanese men aged 46-76 years, conducted from 2010 to 2016. The gut microbiome, determined using 16S rRNA gene sequencing, was compared among 99 never-smokers, 306 non-COPD ever-smokers and 76 patients with COPD while adjusting for age, body mass index, ethanol consumption and treatment for type 2 diabetes mellitus. Results The abundance of phylum Firmicutes was comparable between patients with COPD and non-COPD ever-smokers but tended to be higher in never-smokers. Similarly, the α- and β-diversity analysis showed similarity between patients with COPD and non-COPD ever-smokers, which tended to differ from never-smokers. Discriminant analysis identified the genus [Prevotella] to be more prevalent in patients with COPD than in never-smokers or non-COPD ever-smokers. Post hoc analysis confirmed similarity of gut microbiome between COPD Global Initiative for Chronic Obstructive Lung Disease (GOLD) I and non-COPD ever-smokers, which was different from GOLD II. Conclusion Smoking may alter the overall gut microbial composition, but gut microbial composition itself may not play a role in the development of COPD. Rather, specific gut bacteria, such as [Prevotella], could be a risk factor for the development of COPD; this may be a potential therapeutic target.
Collapse
Affiliation(s)
- Satoru Kawashima
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Daisuke Kinose
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Hisatomi Arima
- Department of Preventive Medicine and Public Health, Fukuoka University, Fukuoka, Japan
| | - Keiko Kondo
- NCD Epidemiology Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Akio Yamazaki
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Yasuki Uchida
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Hiroaki Nakagawa
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Masafumi Yamaguchi
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Hiroyoshi Segawa
- NCD Epidemiology Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Sayuki Torii
- NCD Epidemiology Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Yukiko Okami
- NCD Epidemiology Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Aya Kadota
- NCD Epidemiology Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Yuichiro Yano
- NCD Epidemiology Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Akira Andoh
- Division of Gastroenterology and Hematology, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Katsuyuki Miura
- NCD Epidemiology Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Yasutaka Nakano
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Hirotsugu Ueshima
- NCD Epidemiology Research Center, Shiga University of Medical Science, Otsu, Japan
| |
Collapse
|
22
|
Bonmatí-Carrión MÁ, Rol MA. Melatonin as a Mediator of the Gut Microbiota-Host Interaction: Implications for Health and Disease. Antioxidants (Basel) 2023; 13:34. [PMID: 38247459 PMCID: PMC10812647 DOI: 10.3390/antiox13010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
In recent years, the role played by melatonin on the gut microbiota has gained increasingly greater attention. Additionally, the gut microbiota has been proposed as an alternative source of melatonin, suggesting that this antioxidant indoleamine could act as a sort of messenger between the gut microbiota and the host. This review analyses the available scientific literature about possible mechanisms involved in this mediating role, highlighting its antioxidant effects and influence on this interaction. In addition, we also review the available knowledge on the effects of melatonin on gut microbiota composition, as well as its ability to alleviate dysbiosis related to sleep deprivation or chronodisruptive conditions. The melatonin-gut microbiota relationship has also been discussed in terms of its role in the development of different disorders, from inflammatory or metabolic disorders to psychiatric and neurological conditions, also considering oxidative stress and the reactive oxygen species-scavenging properties of melatonin as the main factors mediating this relationship.
Collapse
Affiliation(s)
- María-Ángeles Bonmatí-Carrión
- Chronobiology Laboratory, Department of Physiology, College of Biology, Mare Nostrum Campus, University of Murcia, Instituto Universitario de Investigación en Envejecimiento, Instituto Murciano de Investigación Biosanitaria-Arrixaca, 30100 Murcia, Spain;
- Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Maria-Angeles Rol
- Chronobiology Laboratory, Department of Physiology, College of Biology, Mare Nostrum Campus, University of Murcia, Instituto Universitario de Investigación en Envejecimiento, Instituto Murciano de Investigación Biosanitaria-Arrixaca, 30100 Murcia, Spain;
- Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
23
|
Abdelsalam NA, Hegazy SM, Aziz RK. The curious case of Prevotella copri. Gut Microbes 2023; 15:2249152. [PMID: 37655441 PMCID: PMC10478744 DOI: 10.1080/19490976.2023.2249152] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/25/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023] Open
Abstract
Prevotella copri is an abundant member of the human gastrointestinal microbiome, whose relative abundance has curiously been associated with positive and negative impacts on diseases, such as Parkinson's disease and rheumatoid arthritis. Yet, the verdict is still out on the definitive role of P. copri in human health, and on the effect of different diets on its relative abundance in the gut microbiome. The puzzling discrepancies among P. copri studies have only recently been attributed to the diversity of its strains, which substantially differ in their encoded metabolic patterns from the commonly used reference strain. However, such strain differences cannot be resolved by common 16S rRNA amplicon profiling methods. Here, we scrutinize P. copri, its versatile metabolic potential, and the hypotheses behind the conflicting observations on its association with diet and human health. We also provide suggestions for designing studies and bioinformatics pipelines to better research P. copri.
Collapse
Affiliation(s)
| | - Shaimaa M. Hegazy
- Microbiology and Immunology Research Program, Children’s Cancer Hospital Egypt 57357, Cairo, Egypt
| | - Ramy K. Aziz
- Microbiology and Immunology Research Program, Children’s Cancer Hospital Egypt 57357, Cairo, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Center for Genome and Microbiome Research, Cairo University, Cairo, Egypt
| |
Collapse
|
24
|
Pan Z, Wu N, Jin C. Intestinal Microbiota Dysbiosis Promotes Mucosal Barrier Damage and Immune Injury in HIV-Infected Patients. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2023; 2023:3080969. [PMID: 37927531 PMCID: PMC10625490 DOI: 10.1155/2023/3080969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/08/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023]
Abstract
The intestinal microbiota is an "invisible organ" in the human body, with diverse components and complex interactions. Homeostasis of the intestinal microbiota plays a pivotal role in maintaining the normal physiological process and regulating immune homeostasis. By reviewing more than one hundred related studies concerning HIV infection and intestinal microbiota from 2011 to 2023, we found that human immunodeficiency virus (HIV) infection can induce intestinal microbiota dysbiosis, which not only worsens clinical symptoms but also promotes the occurrence of post-sequelae symptoms and comorbidities. In the early stage of HIV infection, the intestinal mucosal barrier is damaged and a persistent inflammatory response is induced. Mucosal barrier damage and immune injury play a pivotal role in promoting the post-sequelae symptoms caused by HIV infection. This review summarizes the relationship between dysbiosis of the intestinal microbiota and mucosal barrier damage during HIV infection and discusses the potential mechanisms of intestinal barrier damage induced by intestinal microbiota dysbiosis and inflammation. Exploring these molecular mechanisms might provide new ideas to improve the efficacy of HIV treatment and reduce the incidence of post-sequelae symptoms.
Collapse
Affiliation(s)
- Zhaoyi Pan
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Nanping Wu
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Changzhong Jin
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
25
|
Moretti S, Schietroma I, Sberna G, Maggiorella MT, Sernicola L, Farcomeni S, Giovanetti M, Ciccozzi M, Borsetti A. HIV-1-Host Interaction in Gut-Associated Lymphoid Tissue (GALT): Effects on Local Environment and Comorbidities. Int J Mol Sci 2023; 24:12193. [PMID: 37569570 PMCID: PMC10418605 DOI: 10.3390/ijms241512193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/20/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
HIV-1 replication in the gastrointestinal (GI) tract causes severe CD4+ T-cell depletion and disruption of the protective epithelial barrier in the intestinal mucosa, causing microbial translocation, the main driver of inflammation and immune activation, even in people living with HIV (PLWH) taking antiretroviral drug therapy. The higher levels of HIV DNA in the gut compared to the blood highlight the importance of the gut as a viral reservoir. CD4+ T-cell subsets in the gut differ in phenotypic characteristics and differentiation status from the ones in other tissues or in peripheral blood, and little is still known about the mechanisms by which the persistence of HIV is maintained at this anatomical site. This review aims to describe the interaction with key subsets of CD4+ T cells in the intestinal mucosa targeted by HIV-1 and the role of gut microbiome and its metabolites in HIV-associated systemic inflammation and immune activation that are crucial in the pathogenesis of HIV infection and related comorbidities.
Collapse
Affiliation(s)
- Sonia Moretti
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, 00162 Rome, Italy; (S.M.); (I.S.); (G.S.); (M.T.M.); (L.S.); (S.F.)
| | - Ivan Schietroma
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, 00162 Rome, Italy; (S.M.); (I.S.); (G.S.); (M.T.M.); (L.S.); (S.F.)
| | - Giuseppe Sberna
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, 00162 Rome, Italy; (S.M.); (I.S.); (G.S.); (M.T.M.); (L.S.); (S.F.)
| | - Maria Teresa Maggiorella
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, 00162 Rome, Italy; (S.M.); (I.S.); (G.S.); (M.T.M.); (L.S.); (S.F.)
| | - Leonardo Sernicola
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, 00162 Rome, Italy; (S.M.); (I.S.); (G.S.); (M.T.M.); (L.S.); (S.F.)
| | - Stefania Farcomeni
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, 00162 Rome, Italy; (S.M.); (I.S.); (G.S.); (M.T.M.); (L.S.); (S.F.)
| | - Marta Giovanetti
- Instituto Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-009, Minas Gerais, Brazil;
- Sciences and Technologies for Sustainable Development and One Health, University Campus Bio-Medico of Rome, 00128 Rome, Italy
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, 00128 Rome, Italy;
| | - Alessandra Borsetti
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, 00162 Rome, Italy; (S.M.); (I.S.); (G.S.); (M.T.M.); (L.S.); (S.F.)
| |
Collapse
|
26
|
Wan D, Liang X, Yang L, He D, Du Q, Zhang W, Huang J, Xu L, Cai P, Huang J, Xiong Y, Zhou R, Peng Y, Zhang S. Integration of gut microbiota and metabolomics for the hematopoiesis of Siwu paste on anemia rats. Heliyon 2023; 9:e18024. [PMID: 37449126 PMCID: PMC10336798 DOI: 10.1016/j.heliyon.2023.e18024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 07/02/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023] Open
Abstract
Background To investigate the regulation mechanism of hematopoiesis of Siwu paste (SWP) in anemia rats, which is a classic Chinese prescription used for nourishing blood or blood deficiency over 1000 years. Methods Blood cell and biochemical analysis were used to evaluate the hematopoietic function of SWP in anemia rats. The intestinal microbial composition was analyzed with 16S rRNA gene sequencing, and the metabolites were profiled using UPLC-TripleTOF system nontargeting metabolomics. Results SWP can improve the levels of red blood cells, hemoglobin, platelet, hematocrit value, white blood cells, lymphocyte, EPO, TPO, and GM-CSF in anemia rats, and significantly change the microbial community and its metabolites. The correlation analysis of intestinal microbiota-hematopoietic efficacy shows that 13 kinds of different intestinal flora were related to hematopoietic efficacy, in which Prevotella_1, Prevotella_9, Lactobacillus, and norank_f__Muribaculaceae were significantly positively correlated with hematopoiesis, nine kinds of intestinal flora are negatively correlated with hematopoietic effect. Compared with anemia rats, 218 potential metabolic biomarkers and 36 metabolites with significant differences were identified in the SWP treatment group, and the key metabolites were mainly amino acids and lipids. An in-depth analysis of metabolic pathways showed that SWP mainly affected 7 metabolic pathways, including aminobenzoic acid degradation and tryptophan metabolism. Conclusion The study provides novel insights into the regulation of hematopoiesis of SWP in anemia rats that were correlated with gut microbiota and the metabolites, which through the restoration of the firmicutes/bacteroidetes ratio.
Collapse
Affiliation(s)
- Dan Wan
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410013, Hunan, PR China
- Innovative Medicine Institute of Traditional Chinese Medicine, Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, 410013, Hunan, PR China
| | - Xuejuan Liang
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410013, Hunan, PR China
- Innovative Medicine Institute of Traditional Chinese Medicine, Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, 410013, Hunan, PR China
| | - Limei Yang
- Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, International Medical College, The First Affiliated Hospital, Chongqing Medical University, Yuzhong District, 400016, Chongqing, PR China
| | - Dan He
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410013, Hunan, PR China
- Innovative Medicine Institute of Traditional Chinese Medicine, Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, 410013, Hunan, PR China
| | - Qing Du
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410013, Hunan, PR China
- Innovative Medicine Institute of Traditional Chinese Medicine, Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, 410013, Hunan, PR China
| | - Wanping Zhang
- Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, International Medical College, The First Affiliated Hospital, Chongqing Medical University, Yuzhong District, 400016, Chongqing, PR China
| | - Jianji Huang
- Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, International Medical College, The First Affiliated Hospital, Chongqing Medical University, Yuzhong District, 400016, Chongqing, PR China
| | - Linben Xu
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410013, Hunan, PR China
- Innovative Medicine Institute of Traditional Chinese Medicine, Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, 410013, Hunan, PR China
| | - Ping Cai
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410013, Hunan, PR China
- Innovative Medicine Institute of Traditional Chinese Medicine, Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, 410013, Hunan, PR China
| | - Jianhua Huang
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410013, Hunan, PR China
- Innovative Medicine Institute of Traditional Chinese Medicine, Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, 410013, Hunan, PR China
| | - Yiying Xiong
- Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, International Medical College, The First Affiliated Hospital, Chongqing Medical University, Yuzhong District, 400016, Chongqing, PR China
| | - Rongrong Zhou
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410013, Hunan, PR China
- The Affiliated Hospital, Hunan Academy of Chinese Medicine, Changsha, 410013, Hunan, PR China
| | - Yongbo Peng
- Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, International Medical College, The First Affiliated Hospital, Chongqing Medical University, Yuzhong District, 400016, Chongqing, PR China
| | - Shuihan Zhang
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410013, Hunan, PR China
- Innovative Medicine Institute of Traditional Chinese Medicine, Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, 410013, Hunan, PR China
| |
Collapse
|
27
|
Mora-Flores LP, Moreno-Terrazas Casildo R, Fuentes-Cabrera J, Pérez-Vicente HA, de Anda-Jáuregui G, Neri-Torres EE. The Role of Carbohydrate Intake on the Gut Microbiome: A Weight of Evidence Systematic Review. Microorganisms 2023; 11:1728. [PMID: 37512899 PMCID: PMC10385781 DOI: 10.3390/microorganisms11071728] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/12/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
(1) Background: Carbohydrates are the most important source of nutritional energy for the human body. Carbohydrate digestion, metabolism, and their role in the gut microbiota modulation are the focus of multiple studies. The objective of this weight of evidence systematic review is to investigate the potential relationship between ingested carbohydrates and the gut microbiota composition at different taxonomic levels. (2) Methods: Weight of evidence and information value techniques were used to evaluate the relationship between dietary carbohydrates and the relative abundance of different bacterial taxa in the gut microbiota. (3) Results: The obtained results show that the types of carbohydrates that have a high information value are: soluble fiber with Bacteroides increase, insoluble fiber with Bacteroides and Actinobacteria increase, and Firmicutes decrease. Oligosaccharides with Lactobacillus increase and Enterococcus decrease. Gelatinized starches with Prevotella increase. Starches and resistant starches with Blautia decrease and Firmicutes increase. (4) Conclusions: This work provides, for the first time, an integrative review of the subject by using statistical techniques that have not been previously employed in microbiota reviews.
Collapse
Affiliation(s)
- Lorena P Mora-Flores
- Laboratorio de Biopolímeros, Departamento de Ingeniería Química, Industrial y de Alimentos-Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico
| | - Rubén Moreno-Terrazas Casildo
- Laboratorio de Microbiología, Departamento de Ingeniería Química, Industrial y de Alimentos-Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico
| | - José Fuentes-Cabrera
- Departamento de Ingeniería Química, Industrial y de Alimentos-Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico
| | - Hugo Alexer Pérez-Vicente
- Departamento de Ingeniería Química, Industrial y de Alimentos-Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico
| | - Guillermo de Anda-Jáuregui
- Computational Genomics Division, National Institute of Genomic Medicine, Ciudad de México 14610, Mexico
- Center for Complexity Sciences, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
- Programa de Cátedras CONACYT, Consejo Nacional de Ciencia y Tecnología, Ciudad de México 03940, Mexico
| | - Elier Ekberg Neri-Torres
- Laboratorio de Biopolímeros, Departamento de Ingeniería Química, Industrial y de Alimentos-Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico
- Laboratorio de Microbiología, Departamento de Ingeniería Química, Industrial y de Alimentos-Universidad Iberoamericana Ciudad de México, Ciudad de México 01219, Mexico
| |
Collapse
|
28
|
Shen Y, Dong Y, Jiao J, Wang P, Chen M, Li J. BBIBP-CorV Vaccination against the SARS-CoV-2 Virus Affects the Gut Microbiome. Vaccines (Basel) 2023; 11:942. [PMID: 37243047 PMCID: PMC10223200 DOI: 10.3390/vaccines11050942] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
Several observational studies have confirmed that the severe acute respiratory syndrome coronavirus2 (SARS-CoV-2) might substantially affect the gastrointestinal (GI) system by replicating in human small intestine enterocytes. Yet, so far, no study has reported the effects of inactivated SARS-CoV-2 virus vaccines on gut microbiota alterations. In this study, we examined the effects of the BBIBP-CorV vaccine (ChiCTR2000032459, sponsored by the Beijing Institute of Biological Products/Sinopharm), on gut microbiota. Fecal samples were collected from individuals whoreceived two doses of intramuscular injection of BBIBP-CorV and matched unvaccinated controls. DNA extracted from fecal samples was subjected to 16S ribosomal RNA sequencing analysis. The composition and biological functions of the microbiota between vaccinated and unvaccinated individuals were compared. Compared with unvaccinated controls, vaccinated subjects exhibited significantly reduced bacterial diversity, elevated firmicutes/bacteroidetes (F/B) ratios, a tendency towards Faecalibacterium-predominant enterotypes, and altered gut microbial compositions and functional potentials. Specifically, the intestinal microbiota in vaccine recipients was enriched with Faecalibacterium and Mollicutes and with a lower abundance of Prevotella, Enterococcus, Leuconostocaceae, and Weissella. Microbial function prediction by phylogenetic investigation of communities using reconstruction of unobserved states (PICRUSt) analysis further indicated that Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways involved in carbohydrate metabolism and transcription were positively associated with vaccine inoculation, whereas capacities in neurodegenerative diseases, cardiovascular diseases, and cancers were negatively affected by vaccines. Vaccine inoculation was particularly associated with gut microbiota alterations, as was demonstrated by the improved composition and functional capacities of gut microbiota.
Collapse
Affiliation(s)
- Yang Shen
- Department of Nephrology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Ying Dong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Jie Jiao
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Pan Wang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Mulei Chen
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Jing Li
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| |
Collapse
|
29
|
Sawaswong V, Chanchaem P, Kemthong T, Warit S, Chaiprasert A, Malaivijitnond S, Payungporn S. Alteration of gut microbiota in wild-borne long-tailed macaques after 1-year being housed in hygienic captivity. Sci Rep 2023; 13:5842. [PMID: 37037869 PMCID: PMC10085984 DOI: 10.1038/s41598-023-33163-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/07/2023] [Indexed: 04/12/2023] Open
Abstract
The wild-born long-tailed macaques (Macaca fascicularis) were recently recruited and used as breeders for the National Primate Research Center of Thailand, Chulalongkorn University (NPRCT-CU), and changes in their in-depth gut microbiota profiles were investigated. The Oxford Nanopore Technology (ONT) was used to explore full-length 16S rDNA sequences of gut microbiota in animals once captured in their natural habitat and 1-year following translocation and housing in a hygienic environment at NPRCT-CU. Our findings show that the gut microbiota of macaques after 1 year of hygienic housing and programmed diets feeding was altered and reshaped. The prevalent gut bacteria such as Prevotella copri and Faecalibacterium prausnitzii were enriched after translocation, causing the lower alpha diversity. The correlation analysis revealed that Prevotella copri, Phascolarctobacterium succinatutens, and Prevotella stercorea, showed a positive correlation with each other. Significantly enriched pathways in the macaques after translocation included biosynthesis of essential amino acids, fatty acids, polyamine and butanoate. The effects of microbiota change could help macaques to harvest the energy from programmed diets and adapt their gut metabolism. The novel probiotics and microbiota engineering approach could be further developed based on the current findings and should be helpful for captive animal health care management.
Collapse
Affiliation(s)
- Vorthon Sawaswong
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Patumwan, Bangkok, 10330, Thailand
- Nucleic Acid Section, Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Prangwalai Chanchaem
- Center of Excellence in Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Patumwan, Bangkok, 10330, Thailand
| | - Taratorn Kemthong
- National Primate Research Center of Thailand, Chulalongkorn University, Saraburi, 18110, Thailand
| | - Saradee Warit
- Industrial Tuberculosis Team, Industrial Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Angkana Chaiprasert
- Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Suchinda Malaivijitnond
- National Primate Research Center of Thailand, Chulalongkorn University, Saraburi, 18110, Thailand
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sunchai Payungporn
- Center of Excellence in Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Patumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
30
|
Baltazar-Díaz TA, Amador-Lara F, Andrade-Villanueva JF, González-Hernández LA, Cabrera-Silva RI, Sánchez-Reyes K, Álvarez-Zavala M, Valenzuela-Ramírez A, Del Toro-Arreola S, Bueno-Topete MR. Gut Bacterial Communities in HIV-Infected Individuals with Metabolic Syndrome: Effects of the Therapy with Integrase Strand Transfer Inhibitor-Based and Protease Inhibitor-Based Regimens. Microorganisms 2023; 11:microorganisms11040951. [PMID: 37110374 PMCID: PMC10146710 DOI: 10.3390/microorganisms11040951] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Antiretroviral therapies (ART) are strongly associated with weight gain and metabolic syndrome (MetS) development in HIV-infected patients. Few studies have evaluated the association between gut microbiota and integrase strand transfer inhibitor (INSTI)-based and protease inhibitor (PI)-based regimens in HIV-infected patients with MetS. To assess this, fecal samples were obtained from HIV-infected patients treated with different regimens (16 PI + MetS or 30 INSTI + MetS) and 18 healthy controls (HCs). The microbial composition was characterized using 16S rRNA amplicon sequencing. The INSTI-based and PI-based regimens were associated with a significant decrease in α-diversity compared to HCs. The INSTI + MetS group showed the lowest α-diversity between both regimens. A significant increase in the abundance of short-chain fatty acid (SCFA)-producing genera (Roseburia, Dorea, Ruminococcus torques, and Coprococcus) was observed in the PI + MetS group, while Prevotella, Fusobacterium, and Succinivibrio were significantly increased in the INSTI + MetS group. Moreover, the Proteobacteria/Firmicutes ratio was overrepresented, and functional pathways related to the biosynthesis of LPS components were increased in the INSTI + MetS group. The gut microbiota of patients receiving INSTIs showed a more pronounced dysbiosis orchestrated by decreased bacterial richness and diversity, with an almost complete absence of SCFA-producing bacteria and alterations in gut microbiota functional pathways. These findings have not been previously observed.
Collapse
Affiliation(s)
- Tonatiuh Abimael Baltazar-Díaz
- Departamento de Biología Molecular y Genómica, Instituto de Investigación en Enfermedades Crónico-Degenerativas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44350, Mexico
| | - Fernando Amador-Lara
- Unidad de VIH, Hospital Civil de Guadalajara "Fray Antonio Alcalde", Guadalajara 44350, Mexico
- Departamento de Clínicas Médicas, Instituto de Investigación en Inmunodeficiencias y VIH, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44350, Mexico
| | - Jaime F Andrade-Villanueva
- Unidad de VIH, Hospital Civil de Guadalajara "Fray Antonio Alcalde", Guadalajara 44350, Mexico
- Departamento de Clínicas Médicas, Instituto de Investigación en Inmunodeficiencias y VIH, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44350, Mexico
| | - Luz Alicia González-Hernández
- Unidad de VIH, Hospital Civil de Guadalajara "Fray Antonio Alcalde", Guadalajara 44350, Mexico
- Departamento de Clínicas Médicas, Instituto de Investigación en Inmunodeficiencias y VIH, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44350, Mexico
| | - Rodolfo Ismael Cabrera-Silva
- Departamento de Clínicas Médicas, Instituto de Investigación en Inmunodeficiencias y VIH, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44350, Mexico
| | - Karina Sánchez-Reyes
- Departamento de Clínicas Médicas, Instituto de Investigación en Inmunodeficiencias y VIH, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44350, Mexico
| | - Monserrat Álvarez-Zavala
- Departamento de Clínicas Médicas, Instituto de Investigación en Inmunodeficiencias y VIH, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44350, Mexico
| | - Aldo Valenzuela-Ramírez
- Unidad de VIH, Hospital Civil de Guadalajara "Fray Antonio Alcalde", Guadalajara 44350, Mexico
| | - Susana Del Toro-Arreola
- Departamento de Biología Molecular y Genómica, Instituto de Investigación en Enfermedades Crónico-Degenerativas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44350, Mexico
| | - Miriam Ruth Bueno-Topete
- Departamento de Biología Molecular y Genómica, Instituto de Investigación en Enfermedades Crónico-Degenerativas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44350, Mexico
| |
Collapse
|
31
|
Wang X, Lin S, Wang L, Cao Z, Zhang M, Zhang Y, Liu R, Liu J. Versatility of bacterial outer membrane vesicles in regulating intestinal homeostasis. SCIENCE ADVANCES 2023; 9:eade5079. [PMID: 36921043 PMCID: PMC10017049 DOI: 10.1126/sciadv.ade5079] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 02/14/2023] [Indexed: 06/09/2023]
Abstract
Outer membrane vesicles (OMVs) play vital roles in bacterial communication both intraspecifically and interspecifically. However, extracellular mechanisms of gut microbiota-derived OMVs in the intestine remain poorly understood. Here, we report that OMVs released from Akkermansia muciniphila are able to (i) restore disturbed balance of the gut microbiota by selectively promoting the proliferation of beneficial bacteria through membrane fusion, (ii) elicit mucosal immunoglobulin A response by translocating into Peyer's patches and subsequently activating B cells and dendritic cells, and (iii) maintain the integrity of the intestinal barrier by entering intestinal epithelial cells to stimulate the expressions of tight junctions and mucus. We demonstrate that transplantation of gut microbiota-associated OMVs to the intestine can alleviate colitis and enhance anti-programmed cell death protein 1 therapy against colorectal cancer by regulating intestinal homeostasis. This work discloses the importance of gut microbiota-derived OMVs in intestinal ecology, providing an alternative target for disease intervention and treatment.
Collapse
Affiliation(s)
- Xinyue Wang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Sisi Lin
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lu Wang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zhenping Cao
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Mengmeng Zhang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yifan Zhang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Rui Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
32
|
Shon WJ, Jung MH, Kim Y, Kang GH, Choi EY, Shin DM. Sugar-sweetened beverages exacerbate high-fat diet-induced inflammatory bowel disease by altering the gut microbiome. J Nutr Biochem 2023; 113:109254. [PMID: 36572070 DOI: 10.1016/j.jnutbio.2022.109254] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/10/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022]
Abstract
High-fat diets (HFDs) and frequent consumption of sugar-sweetened beverages (SSBs) are potential contributors to increasing inflammatory bowel disease (IBD) incidences. While HFDs have been implicated in mild intestinal inflammation, the role of sucrose in SSBs remains unclear. Therefore, we studied the role of SSBs in IBD pathogenesis in a mouse model and humans. C57BL6/J mice were given ad libitum access to a sucrose solution or plain water for 10 weeks, with or without an HFD. Interestingly, sucrose solution consumption alone did not induce gut inflammation in mice; however, when combined with an HFD, it dramatically increased the inflammation score, submucosal edema, and CD45+ cell infiltration. 16S ribosomal RNA gene-sequencing revealed that sucrose solution and HFD co-consumption significantly increased the relative abundance of IBD-related pathogenic bacteria when compared with HFD consumption. RNA sequencing and flow cytometry showed that co-consumption promoted pro-inflammatory cytokine and chemokine synthesis, dendritic-cell expansion, and IFN-γ+TNF-α+CD4+ and CD8+ T-cell activation. Fecal microbiota transplantation from HFD- and sucrose water-fed mice into gut-sterilized mice increased the susceptibility to dextran sulfate sodium-induced colitis in the recipient mice. Consistent herewith, high consumption of SSBs and animal fat-rich diets markedly increased systemic inflammation-associated IBD marker expression in humans. In conclusion, SSBs exacerbate HFD-induced colitis by triggering a shift of the gut microbiome into a pathobiome. Our findings provide new insights for the development of strategies aimed at preventing IBD.
Collapse
Affiliation(s)
- Woo-Jeong Shon
- Department of Food and Nutrition, Seoul National University College of Human Ecology, Seoul, Republic of Korea; Research Institute of Human Ecology, Seoul National University, Seoul, Republic of Korea
| | - Min Ho Jung
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Younghoon Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Gyeong Hoon Kang
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eun Young Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Environment and Human Interface, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Dong-Mi Shin
- Department of Food and Nutrition, Seoul National University College of Human Ecology, Seoul, Republic of Korea; Research Institute of Human Ecology, Seoul National University, Seoul, Republic of Korea; Institute on Aging, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
33
|
Yang Y, Yu P, Lu Y, Gao C, Sun Q. Disturbed rhythmicity of intestinal hydrogen peroxide alters gut microbial oscillations in BMAL1-deficient monkeys. Cell Rep 2023; 42:112183. [PMID: 36857177 DOI: 10.1016/j.celrep.2023.112183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/04/2023] [Accepted: 02/14/2023] [Indexed: 03/02/2023] Open
Abstract
Circadian oscillation of gut microbiota exerts significant influence on host physiology, but the host factors that sustain microbial oscillations are rarely reported. We compared the gut microbiome and metabolome of wild-type and BMAL1-deficient cynomolgus monkeys during a diurnal cycle by performing 16S rRNA sequencing and untargeted fecal metabolomics and uncovered the influence of intestinal H2O2 on microbial compositions. Ablation of BMAL1 induced expansion of Bacteroidota at midnight and altered microbial oscillations. Some important fecal metabolites changed significantly, and we investigated their correlations with microbes. Further analyses revealed that disturbed rhythmicity of NOX1-derived intestinal H2O2 was responsible for the altered microbial oscillations in BMAL1-deficient monkeys. Mechanistic studies showed that BMAL1 transactivated NOX1 via binding to the E1-E2 site in its promoter. Notably, BMAL1-dependent activation of NOX1 was conserved in cynomolgus monkeys and humans. Our study demonstrates the importance of intestine clock-controlled H2O2 rhythmicity on the rhythmic oscillation of gut microbiota.
Collapse
Affiliation(s)
- Yunpeng Yang
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, P.R. China; Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, P.R. China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, P.R. China.
| | - Peijun Yu
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Yong Lu
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Changshan Gao
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Qiang Sun
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, P.R. China.
| |
Collapse
|
34
|
du Toit LDV, Prinsloo A, Steel HC, Feucht U, Louw R, Rossouw TM. Immune and Metabolic Alterations in Children with Perinatal HIV Exposure. Viruses 2023; 15:v15020279. [PMID: 36851493 PMCID: PMC9966389 DOI: 10.3390/v15020279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
With the global rollout of mother-to-child prevention programs for women living with HIV, vertical transmission has been all but eliminated in many countries. However, the number of children who are exposed in utero to HIV and antiretroviral therapy (ART) is ever-increasing. These children who are HIV-exposed-but-uninfected (CHEU) are now well recognized as having persistent health disparities compared to children who are HIV-unexposed-and-uninfected (CHUU). Differences reported between these two groups include immune dysfunction and higher levels of inflammation, cognitive and metabolic abnormalities, as well as increased morbidity and mortality in CHEU. The reasons for these disparities remain largely unknown. The present review focuses on a proposed link between immunometabolic aberrations and clinical pathologies observed in the rapidly expanding CHEU population. By drawing attention, firstly, to the significance of the immune and metabolic alterations observed in these children, and secondly, the impact of their healthcare requirements, particularly in low- and middle-income countries, this review aims to sensitize healthcare workers and policymakers about the long-term risks of in utero exposure to HIV and ART.
Collapse
Affiliation(s)
- Louise D V du Toit
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
- UP Research Centre for Maternal, Fetal, Newborn and Child Health Care Strategies, University of Pretoria, Pretoria 0001, South Africa
- Maternal and Infant Health Care Strategies Research Unit, South African Medical Research Council, Pretoria 0001, South Africa
| | - Andrea Prinsloo
- UP Research Centre for Maternal, Fetal, Newborn and Child Health Care Strategies, University of Pretoria, Pretoria 0001, South Africa
- Maternal and Infant Health Care Strategies Research Unit, South African Medical Research Council, Pretoria 0001, South Africa
- Department of Hematology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Helen C Steel
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Ute Feucht
- UP Research Centre for Maternal, Fetal, Newborn and Child Health Care Strategies, University of Pretoria, Pretoria 0001, South Africa
- Maternal and Infant Health Care Strategies Research Unit, South African Medical Research Council, Pretoria 0001, South Africa
- Department of Pediatrics, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Roan Louw
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Theresa M Rossouw
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
- UP Research Centre for Maternal, Fetal, Newborn and Child Health Care Strategies, University of Pretoria, Pretoria 0001, South Africa
- Maternal and Infant Health Care Strategies Research Unit, South African Medical Research Council, Pretoria 0001, South Africa
| |
Collapse
|
35
|
Lo Presti A, Del Chierico F, Altomare A, Zorzi F, Monteleone G, Putignani L, Angeletti S, Cicala M, Guarino MPL, Ciccozzi M. Phylogenetic analysis of Prevotella copri from fecal and mucosal microbiota of IBS and IBD patients. Therap Adv Gastroenterol 2023; 16:17562848221136328. [PMID: 36644130 PMCID: PMC9837282 DOI: 10.1177/17562848221136328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 10/13/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Prevotella copri is the most abundant member of the genus Prevotella that inhabits the human large intestines. Evidences correlated the increase in Prevotella abundance to inflammatory disorders, suggesting a pathobiont role. OBJECTIVES The aim of this study was to investigate the phylogenetic dynamics of P. copri in patients with irritable bowel syndrome (IBS), inflammatory bowel diseases (IBDs) and in healthy volunteers (CTRL). DESIGN A phylogenetic approach was used to characterize 64 P. copri 16S rRNA sequences, selected from a metagenomic database of fecal and mucosal samples from 52 patients affected by IBD, 44 by IBS and 59 healthy. METHODS Phylogenetic reconstructions were carried out using the maximum likelihood (ML) and Bayesian methods. RESULTS Maximum likelihood phylogenetic tree applied onto reference and data sets, assigned all the reads to P. copri clade, in agreement with the taxonomic classification previously obtained. The longer mean genetic distances were observed for both the couples IBD and CTRL and IBD and IBS, respect to the distance between IBS and CTRL, for fecal samples. The intra-group mean genetic distance increased going from IBS to CTRLs to IBD, indicating elevated genetic variability within IBD of P. copri sequences. None clustering based on the tissue inflammation or on the disease status was evidenced, leading to infer that the variability seemed to not be influenced by concomitant diseases, disease phenotypes or tissue inflammation. Moreover, patients with IBS appeared colonized by different strains of P. copri. In IBS, a correlation between isolates and disease grading was observed. CONCLUSION The characterization of P. copri phylogeny is relevant to better understand the interactions between microbiota and pathophysiology of IBD and IBS, especially for future development of therapies based on microbes (e.g. probiotics and synbiotics), to restore the microbiota in these bowel diseases.
Collapse
Affiliation(s)
| | | | - Annamaria Altomare
- Research Unit of Gastroenterology, Department of Science and Technology for Humans and the Environment, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, Roma, Italy
| | - Francesca Zorzi
- Gastrointestinal Unit, Department of Systems Medicine, University Tor Vergata, Rome, Italy
| | - Giovanni Monteleone
- Gastrointestinal Unit, Department of Systems Medicine, University Tor Vergata, Rome, Italy
| | - Lorenza Putignani
- Department of Diagnostic and Laboratory Medicine, Unit of microbiology and diagnostic immunology, Unit of microbiomics and Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Silvia Angeletti
- Unit of Clinical Laboratory Science, University Campus Bio-Medico, Rome, Italy,Unit of Clinical Laboratory Fondazione Policlinico Universitario Campus Bio Medico, Rome, Italy
| | - Michele Cicala
- Research Unit of Gastroenterology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, Roma, Italy,Operative Research Unit of Gastroenterology, Fondazione Policlinico Universitario Campus Bio-Medico of Rome, Via Alvaro del Portillo, Roma, Italy
| | | | | |
Collapse
|
36
|
Lin R, Zhi C, Su Y, Chen J, Gao D, Li S, Shi D. Effect of Echinacea on gut microbiota of immunosuppressed ducks. Front Microbiol 2023; 13:1091116. [PMID: 36687592 PMCID: PMC9849568 DOI: 10.3389/fmicb.2022.1091116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction Immunosuppression puts animals in a susceptible state and disrupts the balance of intestinal flora, which can increase the risk of disease and cause serious harm to the farm. Echinacea can exert its immunomodulatory effect in various ways, but its influence on intestinal flora is unclear. Methods Therefore, we investigated the effect of Echinacea extract (EE) on gut microbiota in immunosuppressed ducks by 16s-RNA sequencing in this experiment. Results The results showed that EE significantly improved the weight gain of immunosuppressed ducks (p<0.001). It also increased the immune organ index (p<0.01) and upregulated the levels of TNF-α and IFN-γ (p<0.05) as well as IL-2 in the serum. The lesions of the bursa were evident compared to the spleen and thymus. After treatment in the EE group, the lymphocyte count of the bursa returned to healthy levels and the lesions were significantly improved. The diversity analysis showed that neither of the alpha-diversity indices showed a significant difference (p>0.05). However, the EE group had a trend closer to the healthy group compared to the M group. β-diversity analysis revealed a high degree of sample separation between the healthy and immunosuppressed groups. The sequencing result showed a significantly higher relative abundance of Prevotella and Prevotella_UCG_001 in the dexamethasone-treated group, which could be potential biomarkers of dexamethasone-induced immunosuppression. EE increased the relative abundance of Akkermansia, Bacteroides, and Alistipes and significantly decreased the relative abundance of Megamonas, Streptococcus, and Enterococcus (p<0.05). Conclusion The results showed that Echinacea extract improves the development of immunosuppressed ducks and modulates intestinal immune function by increasing the abundance of beneficial bacterial genera in the intestine.
Collapse
Affiliation(s)
- Renzhao Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Chanping Zhi
- Guangdong Maoming Agriculture and Forestry Technical College, Maoming, China
| | - Yalin Su
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jiaxin Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Debao Gao
- Guangzhou Technician College, Guangzhou, China
| | - Sihan Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Dayou Shi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China,*Correspondence: Dayou Shi, ✉
| |
Collapse
|
37
|
Xiao L, Hu L, Chu H, Chen L, Yan J, Wang W, Yang X, Zhu Q, Du F, Song Y, Chen P, Hou X, Yang L. Retrorsine Cooperates with Gut Microbiota to Promote Hepatic Sinusoidal Obstruction Syndrome by Disrupting the Gut Barrier. J Clin Transl Hepatol 2022; 10:1086-1098. [PMID: 36381109 PMCID: PMC9634772 DOI: 10.14218/jcth.2021.00398] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/20/2021] [Accepted: 01/18/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND AIMS Hepatic sinusoidal obstruction syndrome (HSOS) is a life-threatening syndrome, and a cause is exposure to pyrrolizidine alkaloid (PA)-containing products. It is well-established that retrorsine (RTS), a representative Pas, insults hepatic sinusoidal endothelial cells and ensues congestion of hepatic sinusoids. However, little known about the impact of Pas on gut microbiota and intestinal barrier and inflammation in HSOS. METHODS Mice were gavaged with or without nonabsorbable antibiotics (ABX), followed by a single dose of RTS. The gut microbiota was examined by 16S rDNA sequencing. RESULTS ABX pretreatment significantly reversed RTS-induced liver damage. RTS altered gut microbiota composition, increasing Gram-negative bacteria and resulting in a sharp elevation of circulating lipopolysaccharides (LPS) in HSOS mice. Gut decontamination with ABX alleviated RTS-induced intestine inflammation, protected against disruption of the intestinal epithelial barrier and gut vascular barrier (GVB), and suppressed hepatic LPS-NF-κB pathway activation in RTS-induced HSOS. Importantly, the LPS level was positively correlated with MELD score in patients with HSOS. Elevated LPS in patients with HSOS confirmed that Gram-negative bacteria were involved in the pathogenesis of HSOS. CONCLUSIONS RTS, a PA, cooperated with gut dysbiosis to cause intestinal inflammation and gut barrier compromise that increased transport of gut-derived LPS into the liver through the portal vein, which contributed to the pathology of HSOS. Modulating the gut microbiota, protecting the intestinal barrier, and suppressing intestinal inflammation with prebiotics or antibiotics might be a useful pharmacologic intervention in HSOS.
Collapse
Affiliation(s)
- Li Xiao
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Gastroenterology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Lilin Hu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huikuan Chu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liuying Chen
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jingjing Yan
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weijun Wang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoqian Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | | | - Fan Du
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuhu Song
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Peng Chen
- Department of Pathophysiology, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, China
| | | | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Correspondence to: Ling Yang, Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China. ORCID: https://orcid.org/0000-0002-0751-5600. Tel: +86-27-85726678, +86-13971178791, Fax: +86-27-85726678, E-mail: , mailto:
| |
Collapse
|
38
|
Mj O, Turner GA, A S, Frizelle FA, R P. Distinct changes in the colonic microbiome associated with acute diverticulitis. Colorectal Dis 2022; 24:1591-1601. [PMID: 35950499 PMCID: PMC10087140 DOI: 10.1111/codi.16271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 01/07/2023]
Abstract
AIM The pathogenesis of acute diverticulitis (AD) remains incompletely understood, despite it being one of the most common gastrointestinal conditions worldwide. The aim of this study was to investigate the role of the colonic microbiome in the pathogenesis of AD. METHOD A prospective case-control study was performed, comparing the microbiome of AD patients with that of controls, using 16S rRNA sequencing of rectal swab samples. RESULTS The microbiome of individuals with AD showed lower diversity than that of controls. There were significant compositional differences observed, with a lower abundance of commensal bacterial families and genera such as Lachnospiraceae, Ruminococcus and Faecalibacterium in AD patients compared with controls, and there was an increase in several genera with known pathogenic roles including Fusobacteria, Prevotella and Paraprevotella. CONCLUSION This is the largest study to date to examine the microbiota of AD patients, and adds evidence to the proposed hypothesis that alterations in the colonic microbiome play a role in the pathogenesis of AD.
Collapse
Affiliation(s)
- O'Grady Mj
- Whanganui Hospital, Wanganui, New Zealand
| | - Greg A Turner
- Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Sulit A
- University of Otago, Christchurch, New Zealand
| | - Frank A Frizelle
- University of Otago, Christchurch, New Zealand.,Christchurch Hospital, Christchurch, New Zealand
| | - Purcell R
- University of Otago, Christchurch, New Zealand
| |
Collapse
|
39
|
A Clinical Outcome of the Anti-PD-1 Therapy of Melanoma in Polish Patients Is Mediated by Population-Specific Gut Microbiome Composition. Cancers (Basel) 2022; 14:cancers14215369. [PMID: 36358789 PMCID: PMC9653730 DOI: 10.3390/cancers14215369] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
The gut microbiota is considered a key player modulating the efficacy of immune checkpoint inhibitor therapy. The study investigated the association between the response to anti-PD-1 therapy and the baseline gut microbiome in a Polish cohort of melanoma patients, alongside selected agents modifying the microbiome. Sixty-four melanoma patients enrolled for the anti-PD-1 therapy, and ten healthy subjects were recruited. The response to the treatment was assessed according to the response evaluation criteria in solid tumors, and patients were classified as responders or non-responders. The association between selected extrinsic factors and response was investigated using questionnaire-based analysis and the metataxonomics of the microbiota. In the responders, the Bacteroidota to Firmicutes ratio was higher, and the richness was decreased. The abundance of Prevotella copri and Bacteroides uniformis was related to the response, whereas the non-responders’ gut microbiota was enriched with Faecalibacterium prausnitzii and Desulfovibrio intestinalis and some unclassified Firmicutes. Dietary patterns, including plant, dairy, and fat consumption as well as gastrointestinal tract functioning were significantly associated with the therapeutic effects of the therapy. The specific gut microbiota along with diet were found to be associated with the response to the therapy in the population of melanoma patients.
Collapse
|
40
|
Guzzetta KE, Cryan JF, O’Leary OF. Microbiota-Gut-Brain Axis Regulation of Adult Hippocampal Neurogenesis. Brain Plast 2022; 8:97-119. [PMID: 36448039 PMCID: PMC9661352 DOI: 10.3233/bpl-220141] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2022] [Indexed: 11/15/2022] Open
Abstract
The birth, maturation, and integration of new neurons in the adult hippocampus regulates specific learning and memory processes, responses to stress, and antidepressant treatment efficacy. This process of adult hippocampal neurogenesis is sensitive to environmental stimuli, including peripheral signals from certain cytokines, hormones, and metabolites, which can promote or hinder the production and survival of new hippocampal neurons. The trillions of microorganisms resident to the gastrointestinal tract, collectively known as the gut microbiota, also demonstrate the ability to modulate adult hippocampal neurogenesis. In doing so, the microbiota-gut-brain axis can influence brain functions regulated by adult hippocampal neurogenesis. Unlike the hippocampus, the gut microbiota is highly accessible to direct interventions, such as prebiotics, probiotics, and antibiotics, and can be manipulated by lifestyle choices including diet. Therefore, understanding the pathways by which the gut microbiota shapes hippocampal neurogenesis may reveal novel targets for non-invasive therapeutics to treat disorders in which alterations in hippocampal neurogenesis have been implicated. This review first outlines the factors which influence both the gut microbiome and adult hippocampal neurogenesis, with cognizance that these effects might happen either independently or due to microbiota-driven mechanisms. We then highlight approaches for investigating the regulation of adult hippocampal neurogenesis by the microbiota-gut-brain axis. Finally, we summarize the current evidence demonstrating the gut microbiota's ability to influence adult hippocampal neurogenesis, including mechanisms driven through immune pathways, microbial metabolites, endocrine signalling, and the nervous system, and postulate implications for these effects in disease onset and treatment.
Collapse
Affiliation(s)
- Katherine E. Guzzetta
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - John F. Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Olivia F. O’Leary
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
41
|
Fulcher JA, Li F, Tobin NH, Zabih S, Elliott J, Clark JL, D'Aquila R, Mustanski B, Kipke MD, Shoptaw S, Gorbach PM, Aldrovandi GM. Gut dysbiosis and inflammatory blood markers precede HIV with limited changes after early seroconversion. EBioMedicine 2022; 84:104286. [PMID: 36179550 PMCID: PMC9520213 DOI: 10.1016/j.ebiom.2022.104286] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Alterations in the gut microbiome have been associated with HIV infection, but the relative impact of HIV versus other factors on the gut microbiome has been difficult to determine in cross-sectional studies. METHODS To address this, we examined the gut microbiome, serum metabolome, and cytokines longitudinally within 27 individuals before and during acute HIV using samples collected from several ongoing cohort studies. Matched control participants (n=28) from the same cohort studies without HIV but at similar behavioral risk were used for comparison. FINDINGS We identified few changes in the microbiome during acute HIV infection, but did find alterations in serum metabolites involving secondary bile acid (lithocholate sulfate, glycocholenate sulfate) and amino acid metabolism (3-methyl-2-oxovalerate, serine, cysteine, N-acetylputrescine). Greater microbiome differences, including decreased Bacteroides spp and increased Megasphaera elsdenii, were seen when comparing pre-HIV infection visits to matched at-risk controls. Those who acquired HIV also had elevated inflammatory cytokines (TNF-α, B cell activating factor, IL-8) and bioactive lipids (palmitoyl-sphingosine-phosphoethanolamide and glycerophosphoinositol) prior to HIV acquisition compared to matched controls. INTERPRETATION Longitudinal sampling identified pre-existing microbiome differences in participants with acute HIV compared to matched control participants observed over the same period. These data highlight the importance of increasing understanding of the role of the microbiome in HIV susceptibility. FUNDING This work was supported by NIH/NIAID (K08AI124979; P30AI117943), NIH/NIDA (U01DA036267; U01DA036939; U01DA036926; U24DA044554), and NIH/NIMH (P30MH058107; R34MH105272).
Collapse
Affiliation(s)
- Jennifer A Fulcher
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA.
| | - Fan Li
- Division of Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Nicole H Tobin
- Division of Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Sara Zabih
- Division of Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Julie Elliott
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Jesse L Clark
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Richard D'Aquila
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Brian Mustanski
- Department of Medical Social Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Institute for Sexual and Gender Minority Health and Wellbeing, Northwestern University, Chicago, IL 60611, USA
| | - Michele D Kipke
- Children's Hospital Los Angeles, Los Angeles, CA 90027, USA; Department of Pediatrics, Keck School of Medicine at the University of Southern California, Los Angeles, CA 90027, USA
| | - Steven Shoptaw
- Department of Family Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Pamina M Gorbach
- Department of Epidemiology, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Grace M Aldrovandi
- Division of Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
42
|
Jones ST, Guo K, Cooper EH, Dillon SM, Wood C, Nguyen DH, Shen G, Barrett BS, Frank DN, Kroehl M, Janoff EN, Kechris K, Wilson CC, Santiago ML. Altered Immunoglobulin Repertoire and Decreased IgA Somatic Hypermutation in the Gut during Chronic HIV-1 Infection. J Virol 2022; 96:e0097622. [PMID: 35938870 PMCID: PMC9472609 DOI: 10.1128/jvi.00976-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/21/2022] [Indexed: 11/27/2022] Open
Abstract
Humoral immune perturbations contribute to pathogenic outcomes in persons with HIV-1 infection (PWH). Gut barrier dysfunction in PWH is associated with microbial translocation and alterations in microbial communities (dysbiosis), and IgA, the most abundant immunoglobulin (Ig) isotype in the gut, is involved in gut homeostasis by interacting with the microbiome. We determined the impact of HIV-1 infection on the antibody repertoire in the gastrointestinal tract by comparing Ig gene utilization and somatic hypermutation (SHM) in colon biopsies from PWH (n = 19) versus age and sex-matched controls (n = 13). We correlated these Ig parameters with clinical, immunological, microbiome and virological data. Gene signatures of enhanced B cell activation were accompanied by skewed frequencies of multiple Ig Variable genes in PWH. PWH showed decreased frequencies of SHM in IgA and possibly IgG, with a substantial loss of highly mutated IgA sequences. The decline in IgA SHM in PWH correlated with gut CD4+ T cell loss and inversely correlated with mucosal inflammation and microbial translocation. Diminished gut IgA SHM in PWH was driven by transversion mutations at A or T deoxynucleotides, suggesting a defect not at the AID/APOBEC3 deamination step but at later stages of IgA SHM. These results expand our understanding of humoral immune perturbations in PWH that could have important implications in understanding mucosal immune defects in individuals with chronic HIV-1 infection. IMPORTANCE The gut is a major site of early HIV-1 replication and pathogenesis. Extensive CD4+ T cell depletion in this compartment results in a compromised epithelial barrier that facilitates the translocation of microbes into the underlying lamina propria and systemic circulation, resulting in chronic immune activation. To date, the consequences of microbial translocation on the mucosal humoral immune response (or vice versa) remains poorly integrated into the panoply of mucosal immune defects in PWH. We utilized next-generation sequencing approaches to profile the Ab repertoire and ascertain frequencies of somatic hypermutation in colon biopsies from antiretroviral therapy-naive PWH versus controls. Our findings identify perturbations in the Ab repertoire of PWH that could contribute to development or maintenance of dysbiosis. Moreover, IgA mutations significantly decreased in PWH and this was associated with adverse clinical outcomes. These data may provide insight into the mechanisms underlying impaired Ab-dependent gut homeostasis during chronic HIV-1 infection.
Collapse
Affiliation(s)
- Sean T. Jones
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kejun Guo
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Emily H. Cooper
- Center for Innovative Design and Analysis, Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Stephanie M. Dillon
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Cheyret Wood
- Center for Innovative Design and Analysis, Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - David H. Nguyen
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Guannan Shen
- Center for Innovative Design and Analysis, Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Bradley S. Barrett
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Daniel N. Frank
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Miranda Kroehl
- Center for Innovative Design and Analysis, Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Edward N. Janoff
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado, USA
| | - Katerina Kechris
- Center for Innovative Design and Analysis, Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Cara C. Wilson
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Mario L. Santiago
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
43
|
Yao X, Zuo N, Guan W, Fu L, Jiang S, Jiao J, Wang X. Association of Gut Microbiota Enterotypes with Blood Trace Elements in Women with Infertility. Nutrients 2022; 14:3195. [PMID: 35956371 PMCID: PMC9370633 DOI: 10.3390/nu14153195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 02/04/2023] Open
Abstract
Infertility is defined as failure to achieve pregnancy within 12 months of unprotected intercourse in women. Trace elements, a kind of micronutrient that is very important to female reproductive function, are affected by intestinal absorption, which is regulated by gut microbiota. Enterotype is the classification of an intestinal microbiome based on its characteristics. Whether or not Prevotella-enterotype and Bacteroides-enterotype are associated with blood trace elements among infertile women remains unclear. The study aimed to explore the relationship between five main whole blood trace elements and these two enterotypes in women with infertility. This retrospective cross-sectional study recruited 651 Chinese women. Whole blood copper, zinc, calcium, magnesium, and iron levels were measured. Quantitative real-time PCR was performed on all fecal samples. Patients were categorized according to whole blood trace elements (low levels group, <5th percentile; normal levels group, 5th‒95th percentile; high levels group, >95th percentile). There were no significant differences in trace elements between the two enterotypes within the control population, while in infertile participants, copper (P = 0.033), zinc (P < 0.001), magnesium (P < 0.001), and iron (P < 0.001) in Prevotella-enterotype was significantly lower than in Bacteroides-enterotype. The Chi-square test showed that only the iron group had a significant difference in the two enterotypes (P = 0.001). Among infertile patients, Prevotella-enterotype (Log(P/B) > −0.27) predicted the low levels of whole blood iron in the obesity population (AUC = 0.894; P = 0.042). For the high levels of iron, Bacteroides-enterotype (Log(P/B) <−2.76) had a predictive power in the lean/normal group (AUC = 0.648; P = 0.041) and Log(P/B) <−3.99 in the overweight group (AUC = 0.863; P = 0.013). We can infer that these two enterotypes may have an effect on the iron metabolism in patients with infertility, highlighting the importance of further research into the interaction between enterotypes and trace elements in reproductive function.
Collapse
Affiliation(s)
- Xinrui Yao
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang 110004, China
- Shenyang Reproductive Health Clinical Medicine Research Center, Shenyang 110004, China
| | - Na Zuo
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang 110004, China
- Shenyang Reproductive Health Clinical Medicine Research Center, Shenyang 110004, China
| | - Wenzheng Guan
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang 110004, China
- Shenyang Reproductive Health Clinical Medicine Research Center, Shenyang 110004, China
| | - Lingjie Fu
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang 110004, China
- Shenyang Reproductive Health Clinical Medicine Research Center, Shenyang 110004, China
| | - Shuyi Jiang
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang 110004, China
- Shenyang Reproductive Health Clinical Medicine Research Center, Shenyang 110004, China
| | - Jiao Jiao
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang 110004, China
- Shenyang Reproductive Health Clinical Medicine Research Center, Shenyang 110004, China
| | - Xiuxia Wang
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang 110004, China
- Shenyang Reproductive Health Clinical Medicine Research Center, Shenyang 110004, China
| |
Collapse
|
44
|
Fert A, Raymond Marchand L, Wiche Salinas TR, Ancuta P. Targeting Th17 cells in HIV-1 remission/cure interventions. Trends Immunol 2022; 43:580-594. [PMID: 35659433 DOI: 10.1016/j.it.2022.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 12/14/2022]
Abstract
Since the discovery of HIV-1, progress has been made in deciphering the viral replication cycle and mechanisms of host-pathogen interactions that has facilitated the implementation of effective antiretroviral therapies (ARTs). Major barriers to HIV-1 remission/cure include the persistence of viral reservoirs (VRs) in long-lived CD4+ T cells, residual viral transcription, and lack of mucosal immunity restoration during ART, which together fuel systemic inflammation. Recently, T helper (Th)17-polarized cells were identified as major contributors to the pool of transcriptionally/translationally competent VRs. In this review, we discuss the functional features of Th17 cells that were elucidated by fundamental immunology studies in the context of autoimmunity. We also highlight recent discoveries supporting the possibility of extrapolating this knowledge toward the identification of new putative Th17-targeted HIV-1 remission/cure strategies.
Collapse
Affiliation(s)
- Augustine Fert
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada; Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Laurence Raymond Marchand
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Tomas Raul Wiche Salinas
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada; Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Petronela Ancuta
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada; Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada; Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania; The Research Institute of the University of Bucharest, Bucharest, Romania.
| |
Collapse
|
45
|
Prevotella species in the human gut is primarily comprised of Prevotella copri, Prevotella stercorea and related lineages. Sci Rep 2022; 12:9055. [PMID: 35641510 PMCID: PMC9156738 DOI: 10.1038/s41598-022-12721-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/15/2022] [Indexed: 11/25/2022] Open
Abstract
Prevotella species in the human gut microbiome are primarily comprised of Prevotella copri, and its diversity and function were recently investigated in detail. Much less is known about other Prevotella species in the human gut. Here, we examined the composition of Prevotella species in human guts by mapping publicly available gut metagenomes to a dereplicated set of metagenome-assembled genomes (MAGs) representing Prevotella lineages found in human guts. In most human cohorts, P. copri is the most relatively abundant species (e.g. up to 14.3% relative abundance in Tangshan, China). However, more than half of the metagenome reads in several cohorts mapped to Prevotella MAGs representing P. stercorea and several other species sister to P. stercorea and P. copri. Analyses of genes encoded in these genomes indicated that P. stercorea and related lineages lacked many hemicellulose degrading enzymes and were thus less likely to metabolise hemicelluloses compared with P. copri and copri-related lineages. Instead, P. stercorea genomes possess several carbohydrate esterases that may be involved in releasing ester modifications from carbohydrates to facilitate their degradation. These findings reveal unexplored Prevotella diversity in the human gut and indicate possible niche partitions among these related species.
Collapse
|
46
|
Huang Y, Li D, Cai W, Zhu H, Shane MI, Liao C, Pan S. Distribution of Vaginal and Gut Microbiome in Advanced Maternal Age. Front Cell Infect Microbiol 2022; 12:819802. [PMID: 35694547 PMCID: PMC9186158 DOI: 10.3389/fcimb.2022.819802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
The distribution of the microbiome in women with advanced maternal age (AMA) is poorly understood. To gain insight into this, the vaginal and gut microbiota of 62 women were sampled and sequenced using the 16S rRNA technique. These women were divided into three groups, namely, the AMA (age ≥ 35 years, n = 13) group, the non-advanced maternal age (NMA) (age < 35 years, n = 38) group, and the control group (non-pregnant healthy women, age >35 years, n = 11). We found that the alpha diversity of vaginal microbiota in the AMA group significantly increased. However, the beta diversity significantly decreased in the AMA group compared with the control group. There was no significant difference in the diversity of gut microbiota among the three groups. The distributions of microbiota were significantly different among AMA, NMA, and control groups. In vaginal microbiota, the abundance of Lactobacillus was higher in the pregnant groups. Bifidobacterium was significantly enriched in the AMA group. In gut microbiota, Prevotella bivia was significantly enriched in the AMA group. Vaginal and gut microbiota in women with AMA were noticeably different from the NMA and non-pregnant women, and this phenomenon is probably related to the increased risk of complications in women with AMA.
Collapse
Affiliation(s)
- Yuxin Huang
- Department of Gynaecology and Obstetrics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Dianjie Li
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Wei Cai
- Department of Gynaecology and Obstetrics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Honglei Zhu
- Department of Gynaecology and Obstetrics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Mc Intyre Shane
- Department of Gynaecology and Obstetrics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Can Liao
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Prenatal Diagnostic Center, Guangzhou Women and Children’s Medical Center, Guangzhou, China
- *Correspondence: Can Liao, ; Shilei Pan,
| | - Shilei Pan
- Department of Gynaecology and Obstetrics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Can Liao, ; Shilei Pan,
| |
Collapse
|
47
|
Dillon SM, Mickens KL, Thompson TA, Cooper EH, Nesladek S, Christians AJ, Castleman M, Guo K, Wood C, Frank DN, Kechris K, Santiago ML, Wilson CC. Granzyme B + CD4 T cells accumulate in the colon during chronic HIV-1 infection. Gut Microbes 2022; 14:2045852. [PMID: 35258402 PMCID: PMC8920224 DOI: 10.1080/19490976.2022.2045852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Chronic HIV-1 infection results in the sustained disruption of gut homeostasis culminating in alterations in microbial communities (dysbiosis) and increased microbial translocation. Major questions remain on how interactions between translocating microbes and gut immune cells impact HIV-1-associated gut pathogenesis. We previously reported that in vitro exposure of human gut cells to enteric commensal bacteria upregulated the serine protease and cytotoxic marker Granzyme B (GZB) in CD4 T cells, and GZB expression was further increased in HIV-1-infected CD4 T cells. To determine if these in vitro findings extend in vivo, we evaluated the frequencies of GZB+ CD4 T cells in colon biopsies and peripheral blood of untreated, chronically infected people with HIV-1 (PWH). Colon and blood GZB+ CD4 T cells were found at significantly higher frequencies in PWH. Colon, but not blood, GZB+ CD4 T cell frequencies were associated with gut and systemic T cell activation and Prevotella species abundance. In vitro, commensal bacteria upregulated GZB more readily in gut versus blood or tonsil-derived CD4 T cells, particularly in inflammatory T helper 17 cells. Bacteria-induced GZB expression in gut CD4 T cells required the presence of accessory cells, the IL-2 pathway and in part, MHC Class II. Overall, we demonstrate that GZB+ CD4 T cells are prevalent in the colon during chronic HIV-1 infection and may emerge following interactions with translocated bacteria in an IL-2 and MHC Class II-dependent manner. Associations between GZB+ CD4 T cells, dysbiosis and T cell activation suggest that GZB+ CD4 T cells may contribute to gut HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Stephanie M. Dillon
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kaylee L. Mickens
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Tezha A. Thompson
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Emily H. Cooper
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, USA
| | - Sabrina Nesladek
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Moriah Castleman
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kejun Guo
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Cheyret Wood
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, USA
| | - Daniel N. Frank
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Katerina Kechris
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, USA
| | - Mario L. Santiago
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Cara C. Wilson
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA,contact Cara C. Wilson Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
48
|
Gut Microbiome and Plasma Metabolomic Analysis in Patients with Myelodysplastic Syndrome. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1482811. [PMID: 35585879 PMCID: PMC9110251 DOI: 10.1155/2022/1482811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 11/17/2022]
Abstract
Myelodysplastic syndrome (MDS) is a heterogeneous group of clonal hematopoietic stem cell disorders. Studies have shown the involvement of an abnormal immune system in MDS pathogenesis. The gut microbiota are known to influence host immunity and metabolism, thereby contributing to the development of hematopoietic diseases. In this study, we performed gut microbiome and plasma metabolomic analyses in patients with MDS and healthy controls. We found that patients with MDS had a different gut microbial composition compared to controls. The gut microbiota in MDS patients showed a continuous evolutionary relationship from the phylum to the species level. At the species level, the abundance of Haemophilus parainfluenzae, Streptococcus luteciae, Clostridium citroniae, and Gemmiger formicilis increased, while that of Prevotella copri decreased in MDS patients compared to controls. Moreover, abundance of bacterial genera correlated with the percentage of lymphocyte subsets in patients with MDS. Metabolomic analysis showed that the concentrations of hypoxanthine and pyroglutamic acid were increased, while that of 3a,7a-dihydroxy-5b-cholestan was decreased in MDS patients compared to controls. In conclusion, gut microbiome and plasma metabolomics are altered in patients with MDS, which may be involved in the immunopathogenesis of the disease.
Collapse
|
49
|
Prenatal Isoflurane Exposure Induces Developmental Neurotoxicity in Rats: the Role of Gut Microbiota. Neurotox Res 2022; 40:485-497. [PMID: 35294710 DOI: 10.1007/s12640-022-00487-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/21/2022] [Accepted: 03/07/2022] [Indexed: 10/18/2022]
Abstract
Fetal exposure to inhaled anesthetics, such as isoflurane, may lead to neurodevelopmental impairment in offspring. Yet, the mechanisms of prenatal isoflurane-induced developmental neurotoxicity have not been fully elucidated. Gut microbiota is a pivotal modulator of brain development and functions. While the antibiotic effect of isoflurane has been previously investigated, the relationship between prenatal isoflurane exposure and postnatal gut microbiota, brain biology, and behavior remains unknown. In the present study, we treated pregnant rats with 2% isoflurane for 4 h on gestational day 14. Their offspring were tested with novel object recognition task on postnatal day 28 (P28) to assess cognition. Fecal microbiome was assessed using 16S RNA sequencing. We also analyzed hippocampal expression of brain-derived neurotrophic factor (BDNF) in P28 rat brains. To further explore the role of gut microbiota on prenatal isoflurane-induced developmental neurotoxicity, we treated rats with mixed probiotics on P14 for 14 days and evaluated novel object recognition and hippocampal expression of BDNF on P28. Results indicate that prenatal exposure to isoflurane significantly decreased novel object recognition (novel object preference ratio: mean difference (MD) - 0.157; 95% confidence interval (CI) - 0.234 to - 0.080, P < 0.001) paralleled by diminished expression of hippocampal BDNF in juvenile rats. Prenatal exposure to isoflurane also significantly altered the diversity and composition of gut microbiota. Treatment with probiotics mitigated these changes in cognition (novel object preference ratio: isoflurane group vs. control group: MD - 0.177; 95% CI - 0.307 to - 0.047, P = 0.006; probiotic group vs. isoflurane group: MD 0.140; 95% CI 0.004 to 0.275, P = 0.042) and BDNF expression. Taken together, our findings suggest that gut dysbiosis may be involved in the pathogenesis of maternal isoflurane exposure-induced postnatal cognitive impairment. To determine the causal relationship between gut microbiota and cognition in prenatal anesthetic-induced developmental neurotoxicity, further studies are needed.
Collapse
|
50
|
Sherrill-Mix S, Yang M, Aldrovandi GM, Brenchley JM, Bushman FD, Collman RG, Dandekar S, Klatt NR, Lagenaur LA, Landay AL, Paredes R, Tachedjian G, Turpin JA, Serrano-Villar S, Lozupone CA, Ghosh M. A Summary of the Sixth International Workshop on Microbiome in HIV Pathogenesis, Prevention, and Treatment. AIDS Res Hum Retroviruses 2022; 38:173-180. [PMID: 34969255 PMCID: PMC9009592 DOI: 10.1089/aid.2021.0173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In October of 2020, researchers from around the world met online for the sixth annual International Workshop on Microbiome in HIV Pathogenesis, Prevention, and Treatment. New research was presented on the roles of the microbiome on immune response and HIV transmission and pathogenesis and the potential for alterations in the microbiome to decrease transmission and affect comorbidities. This article presents a summary of the findings reported.
Collapse
Affiliation(s)
- Scott Sherrill-Mix
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Address correspondence to: Scott Sherrill-Mix, Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, 424 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Michelle Yang
- Department of Epidemiology, The George Washington University, Washington, District of Columbia, USA
| | - Grace M. Aldrovandi
- Department of Pediatrics, University of California, Los Angeles, California, USA
| | | | - Frederic D. Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ronald G. Collman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Satya Dandekar
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, California, USA
| | - Nichole R. Klatt
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Alan L. Landay
- Division of Gerontology, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Roger Paredes
- Institut de Recerca de la SIDA IrsiCaixa i Unitat VIH, Universitat Autònoma de Barcelona, Universitat de Vic, Catalonia, Spain
| | | | - Jim A. Turpin
- Divison of AIDS, NIAID, NIH, Bethesda, Maryland, USA
| | - Sergio Serrano-Villar
- Department of Infectious Diseases, Hospital Universitario Ramon y Cajal, Madrid, Spain
| | | | - Mimi Ghosh
- Department of Epidemiology, The George Washington University, Washington, District of Columbia, USA
| |
Collapse
|