1
|
Möhrle D, Murari K, Rho JM, Cheng N. Vocal communication in asocial BTBR mice is more malleable by a ketogenic diet in juveniles than adults. Neuroscience 2024; 561:43-64. [PMID: 39413868 DOI: 10.1016/j.neuroscience.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/28/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024]
Abstract
Deficits in social communication and language development are a hallmark of autism spectrum disorder currently with no effective approaches to reduce the negative impact. Interventional studies using animal models have been very limited in demonstrating improved vocal communication. Autism has been proposed to involve metabolic dysregulation. Ketogenic diet (KD) is a metabolism-based therapy for medically intractable epilepsy, and its applications in other neurological conditions have been increasingly tested. However, how KD would affect vocal communication has not been explored. The BTBR mouse strain is widely used to model asocial phenotypes. They display robust and pronounced deficits in vocalization during social interaction, and have metabolic changes implicated in autism. We investigated the effects of KD on ultrasonic vocalizations (USVs) in juvenile and adult BTBR mice during male-female social encounters. After a brief treatment with KD, the number, spectral bandwidth, and much of the temporal structure of USVs were robustly closer to control levels in both juvenile and adult BTBR mice. Composition of call categories and transitioning between individual call subtypes were more effectively altered to more closely align with the control group in juvenile BTBR mice. Together, our data provide further support to the hypothesis that metabolism-based dietary intervention could modify disease expression, including core symptoms, in autism. Future studies should tease apart the molecular mechanisms of KD's effects on vocalization.
Collapse
Affiliation(s)
- Dorit Möhrle
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.
| | - Kartikeya Murari
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada; Department of Electrical and Software Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada.
| | - Jong M Rho
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Ning Cheng
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
2
|
Moisoi N. Mitochondrial proteases modulate mitochondrial stress signalling and cellular homeostasis in health and disease. Biochimie 2024; 226:165-179. [PMID: 38906365 DOI: 10.1016/j.biochi.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/16/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Maintenance of mitochondrial homeostasis requires a plethora of coordinated quality control and adaptations' mechanisms in which mitochondrial proteases play a key role. Their activation or loss of function reverberate beyond local mitochondrial biochemical and metabolic remodelling into coordinated cellular pathways and stress responses that feedback onto the mitochondrial functionality and adaptability. Mitochondrial proteolysis modulates molecular and organellar quality control, metabolic adaptations, lipid homeostasis and regulates transcriptional stress responses. Defective mitochondrial proteolysis results in disease conditions most notably, mitochondrial diseases, neurodegeneration and cancer. Here, it will be discussed how mitochondrial proteases and mitochondria stress signalling impact cellular homeostasis and determine the cellular decision to survive or die, how these processes may impact disease etiopathology, and how modulation of proteolysis may offer novel therapeutic strategies.
Collapse
Affiliation(s)
- Nicoleta Moisoi
- Leicester School of Pharmacy, Leicester Institute for Pharmaceutical Health and Social Care Innovations, Faculty of Health and Life Sciences, De Montfort University, The Gateway, Hawthorn Building 1.03, LE1 9BH, Leicester, UK.
| |
Collapse
|
3
|
Lawther AJ, Zieba J, Fang Z, Furlong TM, Conn I, Govindaraju H, Choong LLY, Turner N, Siddiqui KS, Bridge W, Merlin S, Hyams TC, Killingsworth M, Eapen V, Clarke RA, Walker AK. Antioxidant Behavioural Phenotype in the Immp2l Gene Knock-Out Mouse. Genes (Basel) 2023; 14:1717. [PMID: 37761857 PMCID: PMC10531238 DOI: 10.3390/genes14091717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Mitochondrial dysfunction is strongly associated with autism spectrum disorder (ASD) and the Inner mitochondrial membrane protein 2-like (IMMP2L) gene is linked to autism inheritance. However, the biological basis of this linkage is unknown notwithstanding independent reports of oxidative stress in association with both IMMP2L and ASD. To better understand IMMP2L's association with behaviour, we developed the Immp2lKD knockout (KO) mouse model which is devoid of Immp2l peptidase activity. Immp2lKD -/- KO mice do not display any of the core behavioural symptoms of ASD, albeit homozygous Immp2lKD -/- KO mice do display increased auditory stimulus-driven instrumental behaviour and increased amphetamine-induced locomotion. Due to reports of increased ROS and oxidative stress phenotypes in an earlier truncated Immp2l mouse model resulting from an intragenic deletion within Immp2l, we tested whether high doses of the synthetic mitochondrial targeted antioxidant (MitoQ) could reverse or moderate the behavioural changes in Immp2lKD -/- KO mice. To our surprise, we observed that ROS levels were not increased but significantly lowered in our new Immp2lKD -/- KO mice and that these mice had no oxidative stress-associated phenotypes and were fully fertile with no age-related ataxia or neurodegeneration as ascertained using electron microscopy. Furthermore, the antioxidant MitoQ had no effect on the increased amphetamine-induced locomotion of these mice. Together, these findings indicate that the behavioural changes in Immp2lKD -/- KO mice are associated with an antioxidant-like phenotype with lowered and not increased levels of ROS and no oxidative stress-related phenotypes. This suggested that treatments with antioxidants are unlikely to be effective in treating behaviours directly resulting from the loss of Immp2l/IMMP2L activity, while any behavioural deficits that maybe associated with IMMP2L intragenic deletion-associated truncations have yet to be determined.
Collapse
Affiliation(s)
- Adam J. Lawther
- Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, NSW 2031, Australia
| | - Jerzy Zieba
- Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, NSW 2031, Australia
- Department of Psychology, University of Rzeszow, 35-310 Rzeszow, Poland
| | - Zhiming Fang
- Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW 2052, Australia
- Ingham Institute for Applied Medical Research, Sydney, NSW 2170, Australia; (T.C.H.)
| | - Teri M. Furlong
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Illya Conn
- Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, NSW 2031, Australia
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW 2031, Australia
| | - Hemna Govindaraju
- Department of Pharmacology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Laura L. Y. Choong
- Department of Pharmacology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Nigel Turner
- Department of Pharmacology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Khawar Sohail Siddiqui
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Wallace Bridge
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Sam Merlin
- Medical Science, School of Science, Western Sydney University, Campbelltown, Sydney, NSW 2751, Australia
| | - Tzipi Cohen Hyams
- Ingham Institute for Applied Medical Research, Sydney, NSW 2170, Australia; (T.C.H.)
| | - Murray Killingsworth
- Ingham Institute for Applied Medical Research, Sydney, NSW 2170, Australia; (T.C.H.)
- NSW Health Pathology, Liverpool Hospital Campus, 1 Campbell Street, Liverpool, NSW 2107, Australia
| | - Valsamma Eapen
- Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW 2052, Australia
- Ingham Institute for Applied Medical Research, Sydney, NSW 2170, Australia; (T.C.H.)
- Academic Unit of Infant Child and Adolescent Services (AUCS), South Western Sydney Local Health District, Liverpool, NSW 2170, Australia
| | - Raymond A. Clarke
- Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW 2052, Australia
- Ingham Institute for Applied Medical Research, Sydney, NSW 2170, Australia; (T.C.H.)
- Academic Unit of Infant Child and Adolescent Services (AUCS), South Western Sydney Local Health District, Liverpool, NSW 2170, Australia
| | - Adam K. Walker
- Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, NSW 2031, Australia
- Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW 2052, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| |
Collapse
|
4
|
Leung BK, Merlin S, Walker AK, Lawther AJ, Paxinos G, Eapen V, Clarke R, Balleine BW, Furlong TM. Immp2l knockdown in male mice increases stimulus-driven instrumental behaviour but does not alter goal-directed learning or neuron density in cortico-striatal circuits in a model of Tourette syndrome and autism spectrum disorder. Behav Brain Res 2023; 452:114610. [PMID: 37541448 DOI: 10.1016/j.bbr.2023.114610] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/22/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Cortico-striatal neurocircuits mediate goal-directed and habitual actions which are necessary for adaptive behaviour. It has recently been proposed that some of the core symptoms of autism spectrum disorder (ASD) and Gilles de la Tourette syndrome (GTS), such as tics and other repetitive behaviours, may emerge because of imbalances in these neurocircuits. We have recently developed a model of ASD and GTS by knocking down Immp2l, a mitochondrial gene frequently associated with these disorders. The current study sought to determine whether Immp2l knockdown (KD) in male mice alters flexible, goal- or cue- driven behaviour using procedures specifically designed to examine response-outcome and stimulus-response associations, which underlie goal-directed and habitual behaviour, respectively. Whether Immp2l KD alters neuron density in cortico-striatal neurocircuits known to regulate these behaviours was also examined. Immp2l KD mice and wild type-like mice (WT) were trained on Pavlovian and instrumental learning procedures where auditory cues predicted food delivery and lever-press responses earned a food outcome. It was demonstrated that goal-directed learning was not changed for Immp2l KD mice compared to WT mice, as lever-press responses were sensitive to changes in the value of the food outcome, and to contingency reversal and degradation. There was also no difference in the capacity of KD mice to form habitual behaviours compared to WT mice following extending training of the instrumental action. However, Immp2l KD mice were more responsive to auditory stimuli paired with food as indicated by a non-specific increase in lever response rates during Pavlovian-to-instrumental transfer. Finally, there were no alterations to neuron density in striatum or any prefrontal cortex or limbic brain structures examined. Thus, the current study suggests that Immp2l is not necessary for learned maladaptive goal or stimulus driven behaviours in ASD or GTS, but that it may contribute to increased capacity for external stimuli to drive behaviour. Alterations to stimulus-driven behaviour could potentially influence the expression of tics and repetitive behaviours, suggesting that genetic alterations to Immp2l may contribute to these core symptoms in ASD and GTS. Given that this is the first application of this battery of instrumental learning procedures to a mouse model of ASD or GTS, it is an important initial step in determining the contribution of known risk-genes to goal-directed versus habitual behaviours, which should be more broadly applied to other rodent models of ASD and GTS in the future.
Collapse
Affiliation(s)
- Beatrice K Leung
- Decision Neuroscience Laboratory, School of Psychology, University of New South Wales, Sydney, NSW, Australia
| | - Sam Merlin
- School of Science, Western Sydney University, Campbelltown, Sydney, NSW, Australia
| | - Adam K Walker
- Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, NSW, Australia; Discipline of Psychiatry and Mental Health, University of New South Wales, NSW, Australia
| | - Adam J Lawther
- Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, NSW, Australia
| | - George Paxinos
- Neuroscience Research Australia, Randwick, NSW, Australia; School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Valsamma Eapen
- Discipline of Psychiatry and Mental Health, University of New South Wales, NSW, Australia; Mental Health Research Unit, South Western Sydney Local Health District, Liverpool, Australia
| | - Raymond Clarke
- Ingham Institute, Discipline of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Bernard W Balleine
- Decision Neuroscience Laboratory, School of Psychology, University of New South Wales, Sydney, NSW, Australia
| | - Teri M Furlong
- Neuroscience Research Australia, Randwick, NSW, Australia; School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
5
|
Cucinotta F, Lintas C, Tomaiuolo P, Baccarin M, Picinelli C, Castronovo P, Sacco R, Piras IS, Turriziani L, Ricciardello A, Scattoni ML, Persico AM. Diagnostic yield and clinical impact of chromosomal microarray analysis in autism spectrum disorder. Mol Genet Genomic Med 2023; 11:e2182. [PMID: 37186221 PMCID: PMC10422062 DOI: 10.1002/mgg3.2182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is characterized by high heritability estimates and recurrence rates; its genetic underpinnings are very heterogeneous and include variable combinations of common and rare variants. Array-comparative genomic hybridization (aCGH) offers significant sensitivity for the identification of copy number variants (CNVs), which can act as susceptibility or causal factors for ASD. METHODS The aim of this study was to evaluate both diagnostic yield and clinical impact of aCGH in 329 ASD patients of Italian descent. RESULTS Pathogenic/likely pathogenic CNVs were identified in 50/329 (15.2%) patients, whereas 89/329 (27.1%) carry variants of uncertain significance. The 10 most enriched gene sets identified by Gene Ontology Enrichment Analysis are primarily involved in neuronal function and synaptic connectivity. In 13/50 (26.0%) patients with pathogenic/likely pathogenic CNVs, the outcome of array-CGH led to the request of 25 additional medical exams which would not have otherwise been prescribed, mainly including brain MRI, EEG, EKG, and/or cardiac ultrasound. A positive outcome was obtained in 12/25 (48.0%) of these additional tests. CONCLUSIONS This study confirms the satisfactory diagnostic yield of aCGH, underscoring its potential for better, more in-depth care of children with autism when genetic results are analyzed also with a focus on patient management.
Collapse
Affiliation(s)
- Francesca Cucinotta
- Interdepartmental Program "Autism 0‐90", "G. Martino" University Hospital of MessinaMessinaItaly
- IRCCS Centro Neurolesi “Bonino Pulejo”MessinaItaly
| | - Carla Lintas
- Service for Neurodevelopmental Disorders & Laboratory of Molecular Psychiatry and NeurogeneticsUniversity “Campus Bio‐Medico”RomeItaly
| | - Pasquale Tomaiuolo
- Interdepartmental Program "Autism 0‐90", "G. Martino" University Hospital of MessinaMessinaItaly
| | - Marco Baccarin
- Mafalda Luce Center for Pervasive Developmental DisordersMilanItaly
- Synlab GeneticsBioggioSwitzerland
| | - Chiara Picinelli
- Mafalda Luce Center for Pervasive Developmental DisordersMilanItaly
| | - Paola Castronovo
- Mafalda Luce Center for Pervasive Developmental DisordersMilanItaly
| | - Roberto Sacco
- Service for Neurodevelopmental Disorders & Laboratory of Molecular Psychiatry and NeurogeneticsUniversity “Campus Bio‐Medico”RomeItaly
| | - Ignazio Stefano Piras
- Service for Neurodevelopmental Disorders & Laboratory of Molecular Psychiatry and NeurogeneticsUniversity “Campus Bio‐Medico”RomeItaly
- Neurogenomics DivisionThe Translational Genomics Research InstitutePhoenixArizonaUSA
| | - Laura Turriziani
- Interdepartmental Program "Autism 0‐90", "G. Martino" University Hospital of MessinaMessinaItaly
| | - Arianna Ricciardello
- Interdepartmental Program "Autism 0‐90", "G. Martino" University Hospital of MessinaMessinaItaly
| | | | - Antonio M. Persico
- Child and Adolescent Neuropsychiatry Program, Modena University Hospital & Department of Biomedical, Metabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| |
Collapse
|
6
|
Wang W, Wang Z, Cao J, Dong Y, Chen Y. Roles of Rac1-Dependent Intrinsic Forgetting in Memory-Related Brain Disorders: Demon or Angel. Int J Mol Sci 2023; 24:10736. [PMID: 37445914 DOI: 10.3390/ijms241310736] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Animals are required to handle daily massive amounts of information in an ever-changing environment, and the resulting memories and experiences determine their survival and development, which is critical for adaptive evolution. However, intrinsic forgetting, which actively deletes irrelevant information, is equally important for memory acquisition and consolidation. Recently, it has been shown that Rac1 activity plays a key role in intrinsic forgetting, maintaining the balance of the brain's memory management system in a controlled manner. In addition, dysfunctions of Rac1-dependent intrinsic forgetting may contribute to memory deficits in neurological and neurodegenerative diseases. Here, these new findings will provide insights into the neurobiology of memory and forgetting, pathological mechanisms and potential therapies for brain disorders that alter intrinsic forgetting mechanisms.
Collapse
Affiliation(s)
- Wei Wang
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zixu Wang
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jing Cao
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yulan Dong
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yaoxing Chen
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| |
Collapse
|
7
|
Ma Y, Liang RM, Ma N, Mi XJ, Cheng ZY, Zhang ZJ, Lu BS, Li PA. Immp2l Mutation Induces Mitochondrial Membrane Depolarization and Complex III Activity Suppression after Middle Cerebral Artery Occlusion in Mice. Curr Med Sci 2023:10.1007/s11596-023-2726-5. [PMID: 37243806 DOI: 10.1007/s11596-023-2726-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/23/2022] [Indexed: 05/29/2023]
Abstract
OBJECTIVE We previously reported that mutations in inner mitochondrial membrane peptidase 2-like (Immp2l) increase infarct volume, enhance superoxide production, and suppress mitochondrial respiration after transient cerebral focal ischemia and reperfusion injury. The present study investigated the impact of heterozygous Immp2l mutation on mitochondria function after ischemia and reperfusion injury in mice. METHODS Mice were subjected to middle cerebral artery occlusion for 1 h followed by 0, 1, 5, and 24 h of reperfusion. The effects of Immp2l+/- on mitochondrial membrane potential, mitochondrial respiratory complex III activity, caspase-3, and apoptosis-inducing factor (AIF) translocation were examined. RESULTS Immp2l+/- increased ischemic brain damage and the number of TUNEL-positive cells compared with wild-type mice. Immp2l+/- led to mitochondrial damage, mitochondrial membrane potential depolarization, mitochondrial respiratory complex III activity suppression, caspase-3 activation, and AIF nuclear translocation. CONCLUSION The adverse impact of Immp2l+/- on the brain after ischemia and reperfusion might be related to mitochondrial damage that involves depolarization of the mitochondrial membrane potential, inhibition of the mitochondrial respiratory complex III, and activation of mitochondria-mediated cell death pathways. These results suggest that patients with stroke carrying Immp2l+/- might have worse and more severe infarcts, followed by a worse prognosis than those without Immp2l mutations.
Collapse
Affiliation(s)
- Yi Ma
- Department of Pathology, School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, China.
- Department of Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, 750004, China.
| | - Rui-Min Liang
- Department of Pathology, School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Ning Ma
- Department of Pathology, School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Xiao-Juan Mi
- Department of Pathology, School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Zheng-Yi Cheng
- Department of Pathology, Xi'an No. 3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, 710018, China
| | - Zi-Jing Zhang
- Department of Anesthesiology, Ningxia Chinese Medicine Research Center, Yinchuan, 750004, China
| | - Bai-Song Lu
- Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, 27110, USA
| | - P Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technological Enterprise (BRITE), North Carolina Central University, Durham, 27707, USA.
| |
Collapse
|
8
|
Xu X, He B, Zeng J, Yin J, Wang X, Luo X, Liang C, Luo S, Yan H, Xiong S, Tan Z, Lv D, Dai Z, Lin Z, Lin J, Ye X, Chen R, Li Y, Wang Y, Chen W, Luo Z, Li K, Ma G. Genetic variations in DOCK4 contribute to schizophrenia susceptibility in a Chinese cohort: A genetic neuroimaging study. Behav Brain Res 2023; 443:114353. [PMID: 36822513 DOI: 10.1016/j.bbr.2023.114353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/23/2023]
Abstract
BACKGROUND Emerging evidence suggests that the DOCK4 gene increases susceptibility to schizophrenia. However, no study has hitherto repeated this association in Chinese, and further investigated the relationship between DOCK4 and clinical symptoms in schizophrenic patients using clinical scales and functional magnetic resonance imaging (fMRI). METHODS In this study, we genotyped three single nucleotide polymorphisms (SNPs) (rs2074127, rs2217262, and rs2074130) within the DOCK4 gene using a case-control design (including 1289 healthy controls and 1351 patients with schizophrenia). 55 first-episode schizophrenia (FES) patients and 59 healthy participants were divided by the genotypes of rs2074130 into CC and CT+TT groups. We further investigated the association with clinical symptoms and neural characteristics (brain activation/connectivity and nodal network metrics). RESULTS Our results showed significant associations between all selected SNPs and schizophrenia (all P < 0.05). In patients, letter fluency and motor speed scores of T allele carriers were significantly higher than the CC group (all P < 0.05). Interestingly, greater brain activity, functional connectivity, and betweenness centrality (BC) in language processing and motor coordination were also observed in the corresponding brain zones in patients with the T allele based on a two-way ANCOVA model. Moreover, a potential positive correlation was found between brain activity/connectivity of these brain regions and verbal fluency and motor speed. CONCLUSION Our findings suggest that the DOCK4 gene may contribute to the onset of schizophrenia and lead to language processing and motor coordination dysfunction in this patient population from China.
Collapse
Affiliation(s)
- Xusan Xu
- Institute of Neurology, Guangdong Medical University, Zhanjiang 524001, China; Maternal and Children's Health Research Institute, Shunde Maternal and Children's Hospital, Guangdong Medical University, Shunde 528300, China
| | - Bin He
- Department of Radiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Jieqing Zeng
- Institute of Neurology, Guangdong Medical University, Zhanjiang 524001, China; Maternal and Children's Health Research Institute, Shunde Maternal and Children's Hospital, Guangdong Medical University, Shunde 528300, China
| | - Jingwen Yin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Xiaoxia Wang
- Institute of Neurology, Guangdong Medical University, Zhanjiang 524001, China; Institute of Neurology, Longjiang Hospital, the Third Affiliated Hospital of Guangdong Medical University, Shunde 528300, China
| | - Xudong Luo
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Chunmei Liang
- Institute of Neurology, Guangdong Medical University, Zhanjiang 524001, China
| | - Shucun Luo
- Department of Radiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Haifeng Yan
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Susu Xiong
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Zhi Tan
- Department of Radiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Dong Lv
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Zhun Dai
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Zhixiong Lin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Juda Lin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Xiaoqing Ye
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Riling Chen
- Maternal and Children's Health Research Institute, Shunde Maternal and Children's Hospital, Guangdong Medical University, Shunde 528300, China
| | - You Li
- Institute of Neurology, Guangdong Medical University, Zhanjiang 524001, China
| | - Yajun Wang
- Maternal and Children's Health Research Institute, Shunde Maternal and Children's Hospital, Guangdong Medical University, Shunde 528300, China
| | - Wubiao Chen
- Department of Radiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Zebin Luo
- Department of Radiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China.
| | - Keshen Li
- Clinical Neuroscience Institute, The First Affiliated Hospital, Jinan University, Guangzhou 510623, China.
| | - Guoda Ma
- Institute of Neurology, Guangdong Medical University, Zhanjiang 524001, China; Maternal and Children's Health Research Institute, Shunde Maternal and Children's Hospital, Guangdong Medical University, Shunde 528300, China.
| |
Collapse
|
9
|
Direct targeting of DOCK4 by miRNA-181d in oxygen-glucose deprivation/reoxygenation-mediated neuronal injury. Lipids Health Dis 2023; 22:34. [PMID: 36882763 PMCID: PMC9990210 DOI: 10.1186/s12944-023-01794-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/22/2023] [Indexed: 03/09/2023] Open
Abstract
The miRNA-181 (miR-181) family regulates neuronal persistence during cerebral ischemia/reperfusion injury (CI/RI). Since the effect of miR-181d on CI/RI has never been studied, the current work sought to determine the involvement of miR-181d in neuronal apoptosis after brain I/R injury. To replicate in vivo and in vitro CI/RI, a transient middle cerebral artery occlusion (tMCAO) model in rats and an oxygen-glucose deficiency/reoxygenation (OGD/R) model in neuro 2A cells were developed. In both in vivo and in vitro stroke models, the expression of miR-181d was considerably higher. miR-181d suppression reduced apoptosis and oxidative stress in OGD/R-treated neuroblastoma cells, but miR-181d overexpression increased both. Furthermore, it was observed that miR-181d has a direct target in dedicator of cytokinesis 4 (DOCK4). The overexpression of DOCK4 partially overcame cell apoptosis and oxidative stress induced by miR-181d upregulation and OGD/R injury. Furthermore, the DOCK4 rs2074130 mutation was related to lower DOCK4 levels in ischemic stroke (IS) peripheral blood and higher susceptibility to IS. These findings suggest that downregulating miR-181d protects neurons from ischemic damage by targeting DOCK4, implying that the miR-181d/DOCK4 axis might be a novel therapeutic target for IS.
Collapse
|
10
|
Ma S, Li P, Liu H, Xi Y, Xu Q, Qi J, Wang J, Li L, Wang J, Hu J, He H, Han C, Bai L. Genome-wide association analysis of the primary feather growth traits of duck: identification of potential Loci for growth regulation. Poult Sci 2022; 102:102243. [PMID: 36334470 PMCID: PMC9636485 DOI: 10.1016/j.psj.2022.102243] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 11/28/2022] Open
Abstract
The feather is an important epidermal appendage, plays an important role in the life activities of avian specie, and has important economic value. Revealing the molecular regulation mechanism of feather growth has a significant meaning in studying adaptive evolution, physiology, and mating of avian species and also provides a theoretical reference for poultry breeding. In this study, the genome-wide association analysis (GWAS) of 358 ducks was based on primary feather length phenotypic data (28-60 d), length growth rates (LGRs), and maturity scores (60 d) to explore the genetic basis affecting feather growth and maturation. The results showed that, among the primary feather 1 to 5 in ducks, the mean LGR of primary feather 2 was the fastest, with the longest length. The primary feathers in males grew and matured slightly faster than in females. The mean maturity scores of primary feather 10∼7 were higher than primary feather 1 to 3 in ducks. GWAS further showed 116 SNPs associated with feather length traits. In addition, 2 candidate regions (Chr1: 127,407,230-127,524,879 bp and Chr21: 182,061,707-183,616,298 bp) were associated with LGR, which contain total 13 candidate genes (The extremely significant SNPs were mainly located in 2 genes: Chr1: REPS2 and Chr21: PTPRT). Four candidate regions (Chr1: 29,113,036-28,675,018 bp, Chr2: 18,253,612-149,111,290 bp, Chr15: 6,489,774 to 12,138,221 bp and Chr21: 6,578,021-8,472,904 bp) were associated with feather maturity, which contain total 24 candidate genes (The extremely significant SNPs were mainly located in 4 genes: Chr1: IMMP2L, DOCK4 and DDX10, Chr2: LDLRAD4). In conclusion, sex factors influence feather growth and maturity, and the genetic basis of the growth /maturity trait between different feathers is similar. REPS2, PTPRT genes, and IMMP2L, DOCK4, DDX10, and LDLRAD4 are important candidate genes that influence feather growth and maturity, respectively.
Collapse
Affiliation(s)
- Shengchao Ma
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R. China,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. China,College of Animal Science, Xinjiang Agricultural University, P. R. China
| | - Pengcheng Li
- Berry Genomics Corporation, Beijing 100015, P. R. China
| | - Hehe Liu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R. China,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. China,Corresponding author:
| | - Yang Xi
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R. China,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. China
| | - Qian Xu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R. China,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. China
| | - Jingjing Qi
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R. China,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. China
| | - Jianmei Wang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R. China,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. China
| | - Liang Li
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R. China,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. China
| | - Jiwen Wang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R. China,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. China
| | - Jiwei Hu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R. China,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. China
| | - Hua He
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R. China,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. China
| | - Chunchun Han
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R. China,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. China
| | - Lili Bai
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R. China,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, P. R. China
| |
Collapse
|
11
|
Yang Y, Wang C, Liu L, Buxbaum J, He Z, Ionita-Laza I. KnockoffTrio: A knockoff framework for the identification of putative causal variants in genome-wide association studies with trio design. Am J Hum Genet 2022; 109:1761-1776. [PMID: 36150388 PMCID: PMC9606389 DOI: 10.1016/j.ajhg.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/24/2022] [Indexed: 01/25/2023] Open
Abstract
Family-based designs can eliminate confounding due to population substructure and can distinguish direct from indirect genetic effects, but these designs are underpowered due to limited sample sizes. Here, we propose KnockoffTrio, a statistical method to identify putative causal genetic variants for father-mother-child trio design built upon a recently developed knockoff framework in statistics. KnockoffTrio controls the false discovery rate (FDR) in the presence of arbitrary correlations among tests and is less conservative and thus more powerful than the conventional methods that control the family-wise error rate via Bonferroni correction. Furthermore, KnockoffTrio is not restricted to family-based association tests and can be used in conjunction with more powerful, potentially nonlinear models to improve the power of standard family-based tests. We show, using empirical simulations, that KnockoffTrio can prioritize causal variants over associations due to linkage disequilibrium and can provide protection against confounding due to population stratification. In applications to 14,200 trios from three study cohorts for autism spectrum disorders (ASDs), including AGP, SPARK, and SSC, we show that KnockoffTrio can identify multiple significant associations that are missed by conventional tests applied to the same data. In particular, we replicate known ASD association signals with variants in several genes such as MACROD2, NRXN1, PRKAR1B, CADM2, PCDH9, and DOCK4 and identify additional associations with variants in other genes including ARHGEF10, SLC28A1, ZNF589, and HINT1 at FDR 10%.
Collapse
Affiliation(s)
- Yi Yang
- Department of Biostatistics, Columbia University, New York, NY 10032, USA; Department of Biostatistics, City University of Hong Kong, Hong Kong SAR, China; School of Data Science, City University of Hong Kong, Hong Kong SAR, China
| | - Chen Wang
- Department of Biostatistics, Columbia University, New York, NY 10032, USA
| | - Linxi Liu
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Joseph Buxbaum
- Departments of Psychiatry, Neuroscience, and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zihuai He
- Quantitative Sciences Unit, Department of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
12
|
Dall' Aglio L, Rijlaarsdam J, Mulder RH, Neumann A, Felix JF, Kok R, Bakermans-Kranenburg MJ, van Ijzendoorn MH, Tiemeier H, Cecil CAM. Epigenome-wide associations between observed maternal sensitivity and offspring DNA methylation: a population-based prospective study in children. Psychol Med 2022; 52:2481-2491. [PMID: 33267929 DOI: 10.1017/s0033291720004353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Experimental work in animals has shown that DNA methylation (DNAm), an epigenetic mechanism regulating gene expression, is influenced by typical variation in maternal care. While emerging research in humans supports a similar association, studies to date have been limited to candidate gene and cross-sectional approaches, with a focus on extreme deviations in the caregiving environment. METHODS Here, we explored the prospective association between typical variation in maternal sensitivity and offspring epigenome-wide DNAm, in a population-based cohort of children (N = 235). Maternal sensitivity was observed when children were 3- and 4-years-old. DNAm, quantified with the Infinium 450 K array, was extracted at age 6 (whole blood). The influence of methylation quantitative trait loci (mQTLs), DNAm at birth (cord blood), and confounders (socioeconomic status, maternal psychopathology) was considered in follow-up analyses. RESULTS Genome-wide significant associations between maternal sensitivity and offspring DNAm were observed at 13 regions (p < 1.06 × 10-07), but not at single sites. Follow-up analyses indicated that associations at these regions were in part related to genetic factors, confounders, and baseline DNAm levels at birth, as evidenced by the presence of mQTLs at five regions and estimate attenuations. Robust associations with maternal sensitivity were found at four regions, annotated to ZBTB22, TAPBP, ZBTB12, and DOCK4. CONCLUSIONS These findings provide novel leads into the relationship between typical variation in maternal caregiving and offspring DNAm in humans, highlighting robust regions of associations, previously implicated in psychological and developmental problems, immune functioning, and stress responses.
Collapse
Affiliation(s)
- Lorenza Dall' Aglio
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Center Rotterdam-Sophia Children's Hospital, Rotterdam, The Netherlands
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jolien Rijlaarsdam
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Center Rotterdam-Sophia Children's Hospital, Rotterdam, The Netherlands
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Rosa H Mulder
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Center Rotterdam-Sophia Children's Hospital, Rotterdam, The Netherlands
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Alexander Neumann
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Center Rotterdam-Sophia Children's Hospital, Rotterdam, The Netherlands
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Rianne Kok
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | | | - Marinus H van Ijzendoorn
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, The Netherlands
- Primary Care Unit School of Clinical Medicine, University of Cambridge, UK
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Center Rotterdam-Sophia Children's Hospital, Rotterdam, The Netherlands
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Charlotte A M Cecil
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Center Rotterdam-Sophia Children's Hospital, Rotterdam, The Netherlands
- Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
| |
Collapse
|
13
|
Mochizuki S, Miki H, Zhou R, Noda Y. The involvement of oxysterol-binding protein related protein (ORP) 6 in the counter-transport of phosphatidylinositol-4-phosphate (PI4P) and phosphatidylserine (PS) in neurons. Biochem Biophys Rep 2022; 30:101257. [PMID: 35518199 PMCID: PMC9061615 DOI: 10.1016/j.bbrep.2022.101257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/27/2022] [Accepted: 03/31/2022] [Indexed: 11/26/2022] Open
Abstract
Oxysterol-binding protein (OSBP)-related protein (ORP) 6, a member of subfamily III in the ORP family, localizes to membrane contact sites between the endoplasmic reticulum (ER) and other organelles and functions in non-vesicular exchange of lipids including phosphatidylinositol-4-phosphate (PI4P) in neurons. In this study, we searched for the lipid counter-transported in exchange for PI4P by using molecular cell biology techniques. Deconvolution microscopy revealed that knockdown of ORP6 partially shifted localization of a phosphatidylserine (PS) marker but not filipin in primary cultured cerebellar neurons. Overexpression of ORP6 constructs lacking the OSBP-related ligand binding domain (ORD) resulted in the same shift of the PS marker. A PI4KⅢα inhibitor specifically inhibiting the synthesis and plasma membrane (PM) localization of PI4P, suppressed the localization of ORP6 and the PS marker at the PM. Overexpression of mutant PS synthase 1 (PSS1) inhibited transport of the PS marker to the PM and relocated the PI4P marker to the PM in Neuro-2A cells. Introduction of ORP6 but not the dominant negative ORP6 constructs, shifted the localization of PS back to the PM. These data collectively suggest the involvement of ORP6 in the counter-transport of PI4P and PS. Knockdown of ORP6 changed localization of PS marker. Localization of PS marker and ORP6 at the PM was suppressed by PI4K inhibitor. ORP6 restored PS from the ER to PM when mutant PSS1 is expressed.
Collapse
|
14
|
Yoshikawa A, Kushima I, Miyashita M, Suzuki K, Iino K, Toriumi K, Horiuchi Y, Kawaji H, Ozaki N, Itokawa M, Arai M. Exonic deletions in IMMP2L in schizophrenia with enhanced glycation stress subtype. PLoS One 2022; 17:e0270506. [PMID: 35776734 PMCID: PMC9249242 DOI: 10.1371/journal.pone.0270506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 06/12/2022] [Indexed: 11/24/2022] Open
Abstract
We previously identified a subtype of schizophrenia (SCZ) characterized by increased plasma pentosidine, a marker of glycation and oxidative stress (PEN-SCZ). However, the genetic factors associated with PEN-SCZ have not been fully clarified. We performed a genome-wide copy number variation (CNV) analysis to identify CNVs associated with PEN-SCZ to provide an insight into the novel therapeutic targets for PEN-SCZ. Plasma pentosidine was measured by high-performance liquid chromatography in 185 patients with SCZ harboring rare CNVs detected by array comparative genomic hybridization. In three patients with PEN-SCZ showing additional autistic features, we detected a novel deletion at 7q31.1 within exons 2 and 3 of IMMP2L, which encodes the inner mitochondrial membrane peptidase subunit 2. The deletion was neither observed in non-PEN-SCZ nor in public database of control subjects. IMMP2L is one of the SCZ risk loci genes identified in a previous SCZ genome-wide association study, and its trans-populational association was recently described. Interestingly, deletions in IMMP2L have been previously linked with autism spectrum disorder. Disrupted IMMP2L function has been shown to cause glycation/oxidative stress in neuronal cells in an age-dependent manner. To our knowledge, this is the first genome-wide CNV study to suggest the involvement of IMMP2L exons 2 and 3 in the etiology of PEN-SCZ. The combination of genomic information with plasma pentosidine levels may contribute to the classification of biological SCZ subtypes that show additional autistic features. Modifying IMMP2L functions may be useful for treating PEN-SCZ if the underlying biological mechanism can be clarified in further studies.
Collapse
Affiliation(s)
- Akane Yoshikawa
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
- Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Setagaya, Tokyo, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Medical Genomics Center, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Mitsuhiro Miyashita
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
- Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Setagaya, Tokyo, Japan
- Department of Psychiatry, Takatsuki Clinic, Akishima, Tokyo, Japan
| | - Kazuhiro Suzuki
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
- Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Setagaya, Tokyo, Japan
- Department of Psychiatry, Takatsuki Clinic, Akishima, Tokyo, Japan
| | - Kyoka Iino
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
| | - Kazuya Toriumi
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
| | - Yasue Horiuchi
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
- Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Setagaya, Tokyo, Japan
| | - Hideya Kawaji
- Research Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Masanari Itokawa
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
- Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Setagaya, Tokyo, Japan
| | - Makoto Arai
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
- Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Setagaya, Tokyo, Japan
- * E-mail:
| |
Collapse
|
15
|
Kunová N, Havalová H, Ondrovičová G, Stojkovičová B, Bauer JA, Bauerová-Hlinková V, Pevala V, Kutejová E. Mitochondrial Processing Peptidases-Structure, Function and the Role in Human Diseases. Int J Mol Sci 2022; 23:1297. [PMID: 35163221 PMCID: PMC8835746 DOI: 10.3390/ijms23031297] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial proteins are encoded by both nuclear and mitochondrial DNA. While some of the essential subunits of the oxidative phosphorylation (OXPHOS) complexes responsible for cellular ATP production are synthesized directly in the mitochondria, most mitochondrial proteins are first translated in the cytosol and then imported into the organelle using a sophisticated transport system. These proteins are directed mainly by targeting presequences at their N-termini. These presequences need to be cleaved to allow the proper folding and assembly of the pre-proteins into functional protein complexes. In the mitochondria, the presequences are removed by several processing peptidases, including the mitochondrial processing peptidase (MPP), the inner membrane processing peptidase (IMP), the inter-membrane processing peptidase (MIP), and the mitochondrial rhomboid protease (Pcp1/PARL). Their proper functioning is essential for mitochondrial homeostasis as the disruption of any of them is lethal in yeast and severely impacts the lifespan and survival in humans. In this review, we focus on characterizing the structure, function, and substrate specificities of mitochondrial processing peptidases, as well as the connection of their malfunctions to severe human diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Eva Kutejová
- Department of Biochemistry and Protein Structure, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 845 51 Bratislava, Slovakia; (H.H.); (G.O.); (B.S.); (J.A.B.); (V.B.-H.); (V.P.)
| |
Collapse
|
16
|
Zhang B, Hu X, Li Y, Ni Y, Xue L. Identification of methylation markers for diagnosis of autism spectrum disorder. Metab Brain Dis 2022; 37:219-228. [PMID: 34427843 DOI: 10.1007/s11011-021-00805-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/23/2021] [Indexed: 10/20/2022]
Abstract
Autism spectrum disorder (ASD) is a hereditary heterogeneous neurodevelopmental disorder characterized by social and speech dysplasia. We collected the expression profiles of ASD in GSE26415, GSE42133 and GSE123302 from the gene expression omnibus (GEO) database, as well as methylation data of GSE109905. Differentially expressed genes (DEGs) between ASD and controls were obtained by differential expression analysis. Enrichment analysis identified the biological functions and signaling pathways involved by common genes in three groups of DEGs. Protein-protein interaction (PPI) networks were used to identify genes with the highest connectivity as key genes. In addition, we identified methylation markers by associating differentially methylated positions. Key methylation markers were identified using the least absolute shrink and selection operator (LASSO) model. Receiver operating characteristic curves and nomograms were used to identify the diagnostic role of key methylation markers for ASD. A total of 57 common genes were identified in the three groups of DEGs. These genes were mainly enriched in Sphingolipid metabolism and PPAR signaling pathway. In the PPI network, we identified seven key genes with higher connectivity, and used qRT-PCR experiments to verify the expressions. In addition, we identified 31 methylation markers and screened 3 key methylation markers (RUNX2, IMMP2L and MDM2) by LASSO model. Their methylation levels were closely related to the diagnostic effects of ASD. Our analysis identified RUNX2, IMMP2L and MDM2 as possible diagnostic markers for ASD. Identifying different biomarkers and risk genes will contribute to the diagnosis of ASD and the development of new clinical and drug treatments.
Collapse
Affiliation(s)
- Bei Zhang
- Department of quality management, The Fourth People's Hospital of Urumqi, Jianquan street, Urumqi, Xinjiang, 830002, China
| | - Xiaoyuan Hu
- Xinjiang Uighur Autonomous Region Center for Disease Control and Prevention, Jianquan street, Tianshan District, Urumqi, Xinjiang, 830001, China
| | - Yuefei Li
- School of Public Health, Xinjiang Medical University, Liyushan Road, Xinshi District, Urumqi, Xinjiang, 830000, China
| | - Yongkang Ni
- School of Public Health, Xinjiang Medical University, Liyushan Road, Xinshi District, Urumqi, Xinjiang, 830000, China
| | - Lin Xue
- Department of quality management, The Fourth People's Hospital of Urumqi, Jianquan street, Urumqi, Xinjiang, 830002, China.
| |
Collapse
|
17
|
Duman JG, Blanco FA, Cronkite CA, Ru Q, Erikson KC, Mulherkar S, Saifullah AB, Firozi K, Tolias KF. Rac-maninoff and Rho-vel: The symphony of Rho-GTPase signaling at excitatory synapses. Small GTPases 2022; 13:14-47. [PMID: 33955328 PMCID: PMC9707551 DOI: 10.1080/21541248.2021.1885264] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 01/15/2023] Open
Abstract
Synaptic connections between neurons are essential for every facet of human cognition and are thus regulated with extreme precision. Rho-family GTPases, molecular switches that cycle between an active GTP-bound state and an inactive GDP-bound state, comprise a critical feature of synaptic regulation. Rho-GTPases are exquisitely controlled by an extensive suite of activators (GEFs) and inhibitors (GAPs and GDIs) and interact with many different signalling pathways to fulfill their roles in orchestrating the development, maintenance, and plasticity of excitatory synapses of the central nervous system. Among the mechanisms that control Rho-GTPase activity and signalling are cell surface receptors, GEF/GAP complexes that tightly regulate single Rho-GTPase dynamics, GEF/GAP and GEF/GEF functional complexes that coordinate multiple Rho-family GTPase activities, effector positive feedback loops, and mutual antagonism of opposing Rho-GTPase pathways. These complex regulatory mechanisms are employed by the cells of the nervous system in almost every step of development, and prominently figure into the processes of synaptic plasticity that underlie learning and memory. Finally, misregulation of Rho-GTPases plays critical roles in responses to neuronal injury, such as traumatic brain injury and neuropathic pain, and in neurodevelopmental and neurodegenerative disorders, including intellectual disability, autism spectrum disorder, schizophrenia, and Alzheimer's Disease. Thus, decoding the mechanisms of Rho-GTPase regulation and function at excitatory synapses has great potential for combatting many of the biggest current challenges in mental health.
Collapse
Affiliation(s)
- Joseph G. Duman
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Francisco A. Blanco
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Integrative Molecular and Biomedical Science Graduate Program, Baylor College of Medicine, Houston, TX, USA
| | - Christopher A. Cronkite
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Qin Ru
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Kelly C. Erikson
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Shalaka Mulherkar
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Ali Bin Saifullah
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Karen Firozi
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Kimberley F. Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
18
|
Clarke RA, Eapen V. LRRTM4 Terminal Exon Duplicated in Family with Tourette Syndrome, Autism and ADHD. Genes (Basel) 2021; 13:genes13010066. [PMID: 35052406 PMCID: PMC8774418 DOI: 10.3390/genes13010066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/25/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022] Open
Abstract
Tourette syndrome (TS) is a neurodevelopmental disorder characterised by motor and vocal tics and strong association with autistic deficits, obsessive–compulsive disorder (OCD) and attention-deficit/hyperactivity disorder (ADHD). The genetic overlap between TS and autism spectrum disorder (ASD) includes those genes that encode the neurexin trans-synaptic connexus (NTSC) inclusive of the presynaptic neurexins (NRXNs) and postsynaptic neuroligins (NLGNs), cerebellin precursors (CBLNs in complex with the glutamate ionotropic receptor deltas (GRIDs)) and the leucine-rich repeat transmembrane proteins (LRRTMs). In this study, we report the first evidence of a TS and ASD association with yet another NTSC gene family member, namely LRRTM4. Duplication of the terminal exon of LRRTM4 was found in two females with TS from the same family (mother and daughter) in association with autistic traits and ASD.
Collapse
|
19
|
Niescier RF, Lin YC. The Potential Role of AMPA Receptor Trafficking in Autism and Other Neurodevelopmental Conditions. Neuroscience 2021; 479:180-191. [PMID: 34571086 DOI: 10.1016/j.neuroscience.2021.09.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 09/06/2021] [Accepted: 09/15/2021] [Indexed: 12/21/2022]
Abstract
Autism Spectrum Disorder (ASD) is a multifaceted condition associated with difficulties in social interaction and communication. It also shares several comorbidities with other neurodevelopmental conditions. Intensive research examining the molecular basis and characteristics of ASD has revealed an association with a large number and variety of low-penetrance genes. Many of the variants associated with ASD are in genes underlying pathways involved in long-term potentiation (LTP) or depression (LTD). These mechanisms then control the tuning of neuronal connections in response to experience by modifying and trafficking ionotropic glutamate receptors at the post-synaptic areas. Despite the high genetic heterogeneity in ASD, surface trafficking of the α-amino-3-hydroxy-5-Methyl-4-isoxazolepropionate (AMPA) receptor is a vulnerable pathway in ASD. In this review, we discuss autism-related alterations in the trafficking of AMPA receptors, whose surface density and composition at the post-synapse determine the strength of the excitatory connection between neurons. We highlight genes associated with neurodevelopmental conditions that share the autism comorbidity, including Fragile X syndrome, Rett Syndrome, and Tuberous Sclerosis, as well as the autism-risk genes NLGNs, IQSEC2, DOCK4, and STXBP5, all of which are involved in regulating AMPAR trafficking to the post-synaptic surface.
Collapse
Affiliation(s)
- Robert F Niescier
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201, USA.
| | - Yu-Chih Lin
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201, USA.
| |
Collapse
|
20
|
Ahmed S, Rakib A, Uddin MMN, Islam MS, Ullah SA, Emran TB. Association of reelin gene (RELN) polymorphism with autism spectrum disorder in the Bangladeshi population. Meta Gene 2021. [DOI: 10.1016/j.mgene.2021.100901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
21
|
Shiva S, Gharesouran J, Sabaie H, Asadi MR, Arsang-Jang S, Taheri M, Rezazadeh M. Expression Analysis of Ermin and Listerin E3 Ubiquitin Protein Ligase 1 Genes in Autistic Patients. Front Mol Neurosci 2021; 14:701977. [PMID: 34349621 PMCID: PMC8326841 DOI: 10.3389/fnmol.2021.701977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/28/2021] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorder (ASD) is a severe neurodevelopmental disorder that involves social interaction defects, impairment of non-verbal and verbal interactions, and limited interests along with stereotypic activities. Its incidence has been increasing rapidly in recent decades. Despite numerous attempts to understand the pathophysiology of ASD, its exact etiology is still unclear. Recent data shows the role of accurate myelination and translational regulation in ASD's pathogenesis. In this study, we assessed Ermin (ERMN) and Listerin E3 Ubiquitin Protein Ligase 1 (LTN1) genes expression in Iranian ASD patients and age- and gender-matched healthy subjects' peripheral blood using quantitative real-time PCR to recognize any probable dysregulation in the expression of these genes and propose this disorder's mechanisms. Analysis of the expression demonstrated a significant ERMN downregulation in total ASD patients compared to the healthy individuals (posterior beta = -0.794, adjusted P-value = 0.025). LTN1 expression was suggestively higher in ASD patients in comparison with the corresponding control individuals. Considering the gender of study participants, the analysis showed that the mentioned genes' different expression levels were significant only in male subjects. Besides, a significant correlation was found between expression of the mentioned genes (r = -0.49, P < 0.0001). The present study provides further supports for the contribution of ERMN and LTN1 in ASD's pathogenesis.
Collapse
Affiliation(s)
- Shadi Shiva
- Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalal Gharesouran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hani Sabaie
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Asadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahram Arsang-Jang
- Cancer Gene Therapy Research Center, Zanjan University of Medical Science, Zanjan, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Rezazadeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
22
|
Vasilyev SA, Skryabin NA, Kashevarova AA, Tolmacheva EN, Savchenko RR, Vasilyeva OY, Lopatkina ME, Zarubin AA, Fishman VS, Belyaeva EO, Filippova MO, Shorina AR, Maslennikov AB, Shestovskikh OL, Gayner TA, Čulić V, Vulić R, Nazarenko LP, Lebedev IN. Differential DNA Methylation of the IMMP2L Gene in Families with Maternally Inherited 7q31.1 Microdeletions is Associated with Intellectual Disability and Developmental Delay. Cytogenet Genome Res 2021; 161:105-119. [PMID: 33849037 DOI: 10.1159/000514491] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/18/2021] [Indexed: 11/19/2022] Open
Abstract
Most copy number variations (CNVs) in the human genome display incomplete penetrance with unknown underlying mechanisms. One such mechanism may be epigenetic modification, particularly DNA methylation. The IMMP2L gene is located in a critical region for autism susceptibility on chromosome 7q (AUTS1). The level of DNA methylation was assessed by bisulfite sequencing of 87 CpG sites in the IMMP2L gene in 3 families with maternally inherited 7q31.1 microdeletions affecting the IMMP2L gene alone. Bisulfite sequencing revealed comparable levels of DNA methylation in the probands, healthy siblings without microdeletions, and their fathers. In contrast, a reduced DNA methylation index and increased IMMP2L expression were observed in lymphocytes from the healthy mothers compared with the probands. A number of genes were upregulated in the healthy mothers compared to controls and downregulated in probands compared to mothers. These genes were enriched in components of the ribosome and electron transport chain, as well as oxidative phosphorylation and various degenerative conditions. Differential expression in probands and mothers with IMMP2L deletions relative to controls may be due to compensatory processes in healthy mothers with IMMP2L deletions and disturbances of these processes in probands with intellectual disability. The results suggest a possible partial compensation for IMMP2L gene haploinsufficiency in healthy mothers with the 7q31.1 microdeletion by reducing the DNA methylation level. Differential DNA methylation of intragenic CpG sites may affect the phenotypic manifestation of CNVs and explain the incomplete penetrance of chromosomal microdeletions.
Collapse
Affiliation(s)
- Stanislav A Vasilyev
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Tomsk, Russian Federation
| | - Nikolay A Skryabin
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Tomsk, Russian Federation
| | - Anna A Kashevarova
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Tomsk, Russian Federation
| | - Ekaterina N Tolmacheva
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Tomsk, Russian Federation
| | - Renata R Savchenko
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Tomsk, Russian Federation
| | - Oksana Yu Vasilyeva
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Tomsk, Russian Federation
| | - Maria E Lopatkina
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Tomsk, Russian Federation
| | - Alexei A Zarubin
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Tomsk, Russian Federation
| | - Veniamin S Fishman
- Institute of Cytology and Genetics, SB RAS, Novosibirsk, Russian Federation
| | - Elena O Belyaeva
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Tomsk, Russian Federation
| | - Miroslava O Filippova
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Tomsk, Russian Federation
| | - Asia R Shorina
- Novosibirsk City Clinical Hospital, Novosibirsk, Russian Federation
| | | | | | - Tatyana A Gayner
- Group of Companies "Center of New Medical Technologies,", Novosibirsk, Russian Federation.,Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russian Federation
| | - Vida Čulić
- Gynecology and Obstetrics Private Outpatient Clinic, Split, Croatia
| | - Robert Vulić
- Gynecology and Obstetrics Private Outpatient Clinic, Split, Croatia
| | - Lyudmila P Nazarenko
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Tomsk, Russian Federation
| | - Igor N Lebedev
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Tomsk, Russian Federation
| |
Collapse
|
23
|
Wang H, Avillach P. Diagnostic Classification and Prognostic Prediction Using Common Genetic Variants in Autism Spectrum Disorder: Genotype-Based Deep Learning. JMIR Med Inform 2021; 9:e24754. [PMID: 33714937 PMCID: PMC8060867 DOI: 10.2196/24754] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 02/18/2021] [Accepted: 03/14/2021] [Indexed: 02/07/2023] Open
Abstract
Background In the United States, about 3 million people have autism spectrum disorder (ASD), and around 1 out of 59 children are diagnosed with ASD. People with ASD have characteristic social communication deficits and repetitive behaviors. The causes of this disorder remain unknown; however, in up to 25% of cases, a genetic cause can be identified. Detecting ASD as early as possible is desirable because early detection of ASD enables timely interventions in children with ASD. Identification of ASD based on objective pathogenic mutation screening is the major first step toward early intervention and effective treatment of affected children. Objective Recent investigation interrogated genomics data for detecting and treating autism disorders, in addition to the conventional clinical interview as a diagnostic test. Since deep neural networks perform better than shallow machine learning models on complex and high-dimensional data, in this study, we sought to apply deep learning to genetic data obtained across thousands of simplex families at risk for ASD to identify contributory mutations and to create an advanced diagnostic classifier for autism screening. Methods After preprocessing the genomics data from the Simons Simplex Collection, we extracted top ranking common variants that may be protective or pathogenic for autism based on a chi-square test. A convolutional neural network–based diagnostic classifier was then designed using the identified significant common variants to predict autism. The performance was then compared with shallow machine learning–based classifiers and randomly selected common variants. Results The selected contributory common variants were significantly enriched in chromosome X while chromosome Y was also discriminatory in determining the identification of autistic individuals from nonautistic individuals. The ARSD, MAGEB16, and MXRA5 genes had the largest effect in the contributory variants. Thus, screening algorithms were adapted to include these common variants. The deep learning model yielded an area under the receiver operating characteristic curve of 0.955 and an accuracy of 88% for identifying autistic individuals from nonautistic individuals. Our classifier demonstrated a considerable improvement of ~13% in terms of classification accuracy compared to standard autism screening tools. Conclusions Common variants are informative for autism identification. Our findings also suggest that the deep learning process is a reliable method for distinguishing the diseased group from the control group based on the common variants of autism.
Collapse
Affiliation(s)
- Haishuai Wang
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, United States.,Department of Computer Science and Engineering, Fairfield University, Fairfield, CT, United States
| | - Paul Avillach
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
24
|
Thompson AP, Bitsina C, Gray JL, von Delft F, Brennan PE. RHO to the DOCK for GDP disembarking: Structural insights into the DOCK GTPase nucleotide exchange factors. J Biol Chem 2021; 296:100521. [PMID: 33684443 PMCID: PMC8063744 DOI: 10.1016/j.jbc.2021.100521] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 01/16/2023] Open
Abstract
The human dedicator of cytokinesis (DOCK) family consists of 11 structurally conserved proteins that serve as atypical RHO guanine nucleotide exchange factors (RHO GEFs). These regulatory proteins act as mediators in numerous cellular cascades that promote cytoskeletal remodeling, playing roles in various crucial processes such as differentiation, migration, polarization, and axon growth in neurons. At the molecular level, DOCK DHR2 domains facilitate nucleotide dissociation from small GTPases, a process that is otherwise too slow for rapid spatiotemporal control of cellular signaling. Here, we provide an overview of the biological and structural characteristics for the various DOCK proteins and describe how they differ from other RHO GEFs and between DOCK subfamilies. The expression of the family varies depending on cell or tissue type, and they are consequently implicated in a broad range of disease phenotypes, particularly in the brain. A growing body of available structural information reveals the mechanism by which the catalytic DHR2 domain elicits nucleotide dissociation and also indicates strategies for the discovery and design of high-affinity small-molecule inhibitors. Such compounds could serve as chemical probes to interrogate the cellular function and provide starting points for drug discovery of this important class of enzymes.
Collapse
Affiliation(s)
- Andrew P Thompson
- Nuffield Department of Medicine, Alzheimer's Research UK Oxford Drug Discovery Institute, University of Oxford, Oxford, United Kingdom; Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom; Nuffield Department of Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, United Kingdom
| | - Christina Bitsina
- Nuffield Department of Medicine, Alzheimer's Research UK Oxford Drug Discovery Institute, University of Oxford, Oxford, United Kingdom; Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom; Nuffield Department of Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, United Kingdom
| | - Janine L Gray
- Nuffield Department of Medicine, Alzheimer's Research UK Oxford Drug Discovery Institute, University of Oxford, Oxford, United Kingdom; Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom; Nuffield Department of Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, United Kingdom
| | - Frank von Delft
- Nuffield Department of Medicine, Alzheimer's Research UK Oxford Drug Discovery Institute, University of Oxford, Oxford, United Kingdom; Nuffield Department of Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, United Kingdom; Diamond Light Source, Harwell Science and Innovation Campus, Didcot, United Kingdom; Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| | - Paul E Brennan
- Nuffield Department of Medicine, Alzheimer's Research UK Oxford Drug Discovery Institute, University of Oxford, Oxford, United Kingdom; Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom; Nuffield Department of Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
25
|
Yang X, Guo D, Li K, Shi L. Altered postnatal developmental patterns of ultrasonic vocalizations in Dock4 knockout mice. Behav Brain Res 2021; 406:113232. [PMID: 33705839 DOI: 10.1016/j.bbr.2021.113232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/24/2021] [Accepted: 03/03/2021] [Indexed: 10/22/2022]
Abstract
Ultrasonic vocalization (USV) characterization is useful for evaluating communication in mouse models of autism spectrum disorder (ASD). Here, by categorizing USVs into 12 types using a comprehensive classification method, we obtained the qualitative and quantitative characteristics of USV repertoire emitted by ASD-related Dock4 knockout (KO) mice and their wild-type (WT) littermates during social isolation over early postnatal development. Notably, USVs emitted by WT pups exhibited a developmental switch from a pattern with more multiple-note calls, which have more complex acoustic structure, lower pitch and larger volume, into one with more single-note calls, which have simpler acoustic structure, higher pitch and smaller volume. Comparing with WT pups, USVs emitted by Dock4 KO pups had larger volume and consisted of more multiple-note calls with higher pitch in later developmental stage. These findings collectively reveal a developmental pattern of USV in normal mice and identified a set of alterations in Dock4 KO pups.
Collapse
Affiliation(s)
- Xiaoman Yang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Daji Guo
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou, 510632, Guangdong, China; The First Affiliated Hospital of Jinan University, Guangzhou, 510632, Guangdong, China; Clinical Neuroscience Institute of Jinan University, Guangzhou, 510632, China
| | - Keshen Li
- The First Affiliated Hospital of Jinan University, Guangzhou, 510632, Guangdong, China; Clinical Neuroscience Institute of Jinan University, Guangzhou, 510632, China
| | - Lei Shi
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
26
|
Whitman MC, Di Gioia SA, Chan WM, Gelber A, Pratt BM, Bell JL, Collins TE, Knowles JA, Armoskus C, Pato M, Pato C, Shaaban S, Staffieri S, MacKinnon S, Maconachie GDE, Elder JE, Traboulsi EI, Gottlob I, Mackey DA, Hunter DG, Engle EC. Recurrent Rare Copy Number Variants Increase Risk for Esotropia. Invest Ophthalmol Vis Sci 2021; 61:22. [PMID: 32780866 PMCID: PMC7443120 DOI: 10.1167/iovs.61.10.22] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To determine whether rare copy number variants (CNVs) increase risk for comitant esotropia. Methods CNVs were identified in 1614 Caucasian individuals with comitant esotropia and 3922 Caucasian controls from Illumina SNP genotyping using two Hidden Markov model (HMM) algorithms, PennCNV and QuantiSNP, which call CNVs based on logR ratio and B allele frequency. Deletions and duplications greater than 10 kb were included. Common CNVs were excluded. Association testing was performed with 1 million permutations in PLINK. Significant CNVs were confirmed with digital droplet polymerase chain reaction (ddPCR). Whole genome sequencing was performed to determine insertion location and breakpoints. Results Esotropia patients have similar rates and proportions of CNVs compared with controls but greater total length and average size of both deletions and duplications. Three recurrent rare duplications significantly (P = 1 × 10−6) increase the risk of esotropia: chromosome 2p11.2 (hg19, 2:87428677-87965359), spanning one long noncoding RNA (lncRNA) and two microRNAs (OR 14.16; 95% confidence interval [CI] 5.4–38.1); chromosome 4p15.2 (hg19, 4:25554332-25577184), spanning one lncRNA (OR 11.1; 95% CI 4.6–25.2); chromosome 10q11.22 (hg19, 10:47049547-47703870) spanning seven protein-coding genes, one lncRNA, and four pseudogenes (OR 8.96; 95% CI 5.4–14.9). Overall, 114 cases (7%) and only 28 controls (0.7%) had one of the three rare duplications. No case nor control had more than one of these three duplications. Conclusions Rare CNVs are a source of genetic variation that contribute to the genetic risk for comitant esotropia, which is likely polygenic. Future research into the functional consequences of these recurrent duplications may shed light on the pathophysiology of esotropia.
Collapse
Affiliation(s)
- Mary C Whitman
- Department of Ophthalmology, Boston Children's Hospital, Boston, Massachusetts, United States.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts, United States
| | - Silvio Alessandro Di Gioia
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts, United States.,Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, United States
| | - Wai-Man Chan
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts, United States.,Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, United States
| | - Alon Gelber
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts, United States.,Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, United States
| | - Brandon M Pratt
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts, United States.,Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, United States
| | - Jessica L Bell
- Department of Ophthalmology, Boston Children's Hospital, Boston, Massachusetts, United States.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts, United States
| | - Thomas E Collins
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts, United States.,Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, United States
| | - James A Knowles
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York, United States
| | - Christopher Armoskus
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York, United States
| | - Michele Pato
- Institute for Genomic Health, SUNY Downstate Medical Center, Brooklyn, New York, United States
| | - Carlos Pato
- Institute for Genomic Health, SUNY Downstate Medical Center, Brooklyn, New York, United States
| | - Sherin Shaaban
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts, United States.,Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, United States.,Present address: Department of Pathology and ARUP Laboratories, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - Sandra Staffieri
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Sarah MacKinnon
- Department of Ophthalmology, Boston Children's Hospital, Boston, Massachusetts, United States.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Gail D E Maconachie
- Department of Neuroscience, Psychology and Behavior, The University of Leicester Ulverscroft Eye Unit, University of Leicester, Leicester, United Kingdom
| | - James E Elder
- Department of Ophthalmology, Royal Children's Hospital, University of Melbourne, Parkville, Victoria, Australia.,Department of Pediatrics, The University of Melbourne, Parkville, Victoria, Australia
| | - Elias I Traboulsi
- Department of Pediatric Ophthalmology and Strabismus, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - Irene Gottlob
- Department of Neuroscience, Psychology and Behavior, The University of Leicester Ulverscroft Eye Unit, University of Leicester, Leicester, United Kingdom
| | - David A Mackey
- Centre for Ophthalmology and Visual Science, Lions Eye Institute, University of Western Australia, Perth, Australia.,Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia.,Centre for Eye Research Australia, University of Melbourne, Melbourne, Australia
| | - David G Hunter
- Department of Ophthalmology, Boston Children's Hospital, Boston, Massachusetts, United States.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Elizabeth C Engle
- Department of Ophthalmology, Boston Children's Hospital, Boston, Massachusetts, United States.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts, United States.,Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, United States.,Department of Neurology, Harvard Medical School, Boston, Massachusetts, United States.,Howard Hughes Medical Institute, Chevy Chase, Maryland, United States
| | | |
Collapse
|
27
|
Autism-like social deficit generated by Dock4 deficiency is rescued by restoration of Rac1 activity and NMDA receptor function. Mol Psychiatry 2021; 26:1505-1519. [PMID: 31388105 PMCID: PMC8159750 DOI: 10.1038/s41380-019-0472-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 06/01/2019] [Accepted: 06/24/2019] [Indexed: 12/20/2022]
Abstract
Genetic studies of autism spectrum disorder (ASD) have revealed multigene variations that converge on synaptic dysfunction. DOCK4, a gene at 7q31.1 that encodes the Rac1 guanine nucleotide exchange factor Dock4, has been identified as a risk gene for ASD and other neuropsychiatric disorders. However, whether and how Dock4 disruption leads to ASD features through a synaptic mechanism remain unexplored. We generated and characterized a line of Dock4 knockout (KO) mice, which intriguingly displayed a series of ASD-like behaviors, including impaired social novelty preference, abnormal isolation-induced pup vocalizations, elevated anxiety, and perturbed object and spatial learning. Mice with conditional deletion of Dock4 in hippocampal CA1 recapitulated social preference deficit in KO mice. Examination in CA1 pyramidal neurons revealed that excitatory synaptic transmission was drastically attenuated in KO mice, accompanied by decreased spine density and synaptic content of AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid)- and NMDA (N-methyl-D-aspartate)-type glutamate receptors. Moreover, Dock4 deficiency markedly reduced Rac1 activity in the hippocampus, which resulted in downregulation of global protein synthesis and diminished expression of AMPA and NMDA receptor subunits. Notably, Rac1 replenishment in the hippocampal CA1 of Dock4 KO mice restored excitatory synaptic transmission and corrected impaired social deficits in these mice, and pharmacological activation of NMDA receptors also restored social novelty preference in Dock4 KO mice. Together, our findings uncover a previously unrecognized Dock4-Rac1-dependent mechanism involved in regulating hippocampal excitatory synaptic transmission and social behavior.
Collapse
|
28
|
Uddin MG, Siddiqui SA, Uddin MS, Aziz MA, Hussain MS, Furhatun-Noor, Millat MS, Sen N, Muhuri B, Islam MS. Genetic variants of ZNF385B and COMT are associated with autism spectrum disorder in the Bangladeshi children. Meta Gene 2020. [DOI: 10.1016/j.mgene.2020.100820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
29
|
Rho GTPases in the Amygdala-A Switch for Fears? Cells 2020; 9:cells9091972. [PMID: 32858950 PMCID: PMC7563696 DOI: 10.3390/cells9091972] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/22/2020] [Accepted: 08/25/2020] [Indexed: 12/28/2022] Open
Abstract
Fear is a fundamental evolutionary process for survival. However, excess or irrational fear hampers normal activity and leads to phobia. The amygdala is the primary brain region associated with fear learning and conditioning. There, Rho GTPases are molecular switches that act as signaling molecules for further downstream processes that modulate, among others, dendritic spine morphogenesis and thereby play a role in fear conditioning. The three main Rho GTPases—RhoA, Rac1, and Cdc42, together with their modulators, are known to be involved in many psychiatric disorders that affect the amygdala′s fear conditioning mechanism. Rich2, a RhoGAP mainly for Rac1 and Cdc42, has been studied extensively in such regard. Here, we will discuss these effectors, along with Rich2, as a molecular switch for fears, especially in the amygdala. Understanding the role of Rho GTPases in fear controlling could be beneficial for the development of therapeutic strategies targeting conditions with abnormal fear/anxiety-like behaviors.
Collapse
|
30
|
Rho GTPase Regulators and Effectors in Autism Spectrum Disorders: Animal Models and Insights for Therapeutics. Cells 2020; 9:cells9040835. [PMID: 32244264 PMCID: PMC7226772 DOI: 10.3390/cells9040835] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/22/2020] [Accepted: 03/26/2020] [Indexed: 12/18/2022] Open
Abstract
The Rho family GTPases are small G proteins that act as molecular switches shuttling between active and inactive forms. Rho GTPases are regulated by two classes of regulatory proteins, guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Rho GTPases transduce the upstream signals to downstream effectors, thus regulating diverse cellular processes, such as growth, migration, adhesion, and differentiation. In particular, Rho GTPases play essential roles in regulating neuronal morphology and function. Recent evidence suggests that dysfunction of Rho GTPase signaling contributes substantially to the pathogenesis of autism spectrum disorder (ASD). It has been found that 20 genes encoding Rho GTPase regulators and effectors are listed as ASD risk genes by Simons foundation autism research initiative (SFARI). This review summarizes the clinical evidence, protein structure, and protein expression pattern of these 20 genes. Moreover, ASD-related behavioral phenotypes in animal models of these genes are reviewed, and the therapeutic approaches that show successful treatment effects in these animal models are discussed.
Collapse
|
31
|
Yoon SH, Choi J, Lee WJ, Do JT. Genetic and Epigenetic Etiology Underlying Autism Spectrum Disorder. J Clin Med 2020; 9:E966. [PMID: 32244359 PMCID: PMC7230567 DOI: 10.3390/jcm9040966] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/28/2020] [Accepted: 03/28/2020] [Indexed: 12/19/2022] Open
Abstract
Autism spectrum disorder (ASD) is a pervasive neurodevelopmental disorder characterized by difficulties in social interaction, language development delays, repeated body movements, and markedly deteriorated activities and interests. Environmental factors, such as viral infection, parental age, and zinc deficiency, can be plausible contributors to ASD susceptibility. As ASD is highly heritable, genetic risk factors involved in neurodevelopment, neural communication, and social interaction provide important clues in explaining the etiology of ASD. Accumulated evidence also shows an important role of epigenetic factors, such as DNA methylation, histone modification, and noncoding RNA, in ASD etiology. In this review, we compiled the research published to date and described the genetic and epigenetic epidemiology together with environmental risk factors underlying the etiology of the different phenotypes of ASD.
Collapse
Affiliation(s)
| | | | | | - Jeong Tae Do
- Department of Stem Cell and Regenerative Biotechnology, KU Institute of Technology, Konkuk University, Seoul 05029, Korea; (S.H.Y.); (J.C.); (W.J.L.)
| |
Collapse
|
32
|
Bjerregaard VA, Schönewolf-Greulich B, Juel Rasmussen L, Desler C, Tümer Z. Mitochondrial Function in Gilles de la Tourette Syndrome Patients With and Without Intragenic IMMP2L Deletions. Front Neurol 2020; 11:163. [PMID: 32265818 PMCID: PMC7105681 DOI: 10.3389/fneur.2020.00163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/20/2020] [Indexed: 12/31/2022] Open
Abstract
Background: Gilles de la Tourette syndrome (GTS) is a neurodevelopmental condition characterized by motor and vocal tics. The underlying etiology remains largely unknown, and GTS is considered as a complex multifactorial disorder associated with effects of several genes in combination with environmental factors. The inner mitochondrial membrane peptidase, subunit 2 (IMMP2L) has been suggested as one of the susceptibility genes for GTS, and IMMP2L-deficient mouse and human cells show increased levels of mitochondrial oxidative stress and altered cell fate programming. Hence, a potential involvement of IMMP2L-induced mitochondrial dysfunction in GTS pathology is yet to be elucidated. To address this, we investigated mitochondrial function in a group of GTS patients with intragenic IMMP2L deletions and compared with GTS without IMMP2L deletions and healthy controls. Methods: Mitochondrial function in fibroblasts from GTS patients and non-GTS parents (with and without IMMP2L deletions) compared to healthy controls were evaluated by measuring mitochondrial superoxide production, mitochondrial membrane potential, mitochondrial mass, and mitochondrial respiration. In addition, we evaluated apoptosis and senescence. Results: None of the mitochondrial parameters assessed in this study were significantly distinctive when comparing GTS patients with and without IMMP2L deletions against healthy controls or parents with or without IMMP2L deletions, and we did not observe altered cell programming. Conclusion: This study suggests that IMMP2L deletions do not lead to a substantial general mitochondrial dysfunction in GTS fibroblasts. Assessing a large cohort of controls and patients of similar age and gender would possibly reveal small differences in mitochondrial function. However, it is possible that IMMP2L variants affect mitochondrial function during specific instances of stress stimuli or in brain regions suggested to be affected in GTS.
Collapse
Affiliation(s)
- Victoria A Bjerregaard
- Department of Clinical Genetics, Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Bitten Schönewolf-Greulich
- Department of Clinical Genetics, Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Lene Juel Rasmussen
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Claus Desler
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Zeynep Tümer
- Department of Clinical Genetics, Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW To better understand the shared basis of language and mental health, this review examines the behavioral and neurobiological features of aberrant language in five major neuropsychiatric conditions. Special attention is paid to genes implicated in both language and neuropsychiatric disorders, as they reveal biological domains likely to underpin the processes controlling both. RECENT FINDINGS Abnormal language and communication are common manifestations of neuropsychiatric conditions, and children with impaired language are more likely to develop psychiatric disorders than their peers. Major themes in the genetics of both language and psychiatry include master transcriptional regulators, like FOXP2; key developmental regulators, like AUTS2; and mediators of neurotransmission, like GRIN2A and CACNA1C.
Collapse
|
34
|
Huang M, Liang C, Li S, Zhang J, Guo D, Zhao B, Liu Y, Peng Y, Xu J, Liu W, Guo G, Shi L. Two Autism/Dyslexia Linked Variations of DOCK4 Disrupt the Gene Function on Rac1/Rap1 Activation, Neurite Outgrowth, and Synapse Development. Front Cell Neurosci 2020; 13:577. [PMID: 32009906 PMCID: PMC6974517 DOI: 10.3389/fncel.2019.00577] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/16/2019] [Indexed: 11/13/2022] Open
Abstract
Autism spectrum disorder (ASD) and dyslexia are both neurodevelopmental disorders with high prevalence in children. Both disorders have strong genetic basis, and share similar social communication deficits co-occurring with impairments of reading or language. However, whether these two disorders share common genetic risks remain elusive. DOCK4 (dedicator for cytokinesis 4), a guanine nucleotide exchange factor (GEF) for the small GTPase Rac1, is one of few genes that are associated with both ASD and dyslexia. Dock4 is important for neuronal development and social behaviors. Two DOCK4 variations, Exon27-52 deletion (protein product: Dock4-945VS) and a missense mutation at rs2074130 (protein product: Dock4-R853H), are associated with dyslexia and/or ASD with reading difficulties. The present study explores the molecular and cellular functions of these two DOCK4 variants on neuronal development, by comparing them with the wild-type Dock4 protein. Notably, it is revealed that both mutants of Dock4 showed decreased ability to activate not only Rac1, but also another small GTPase Rap1. Consistently, both mutants were dysfunctional for regulation of cell morphology and cytoskeleton. Using Neuro-2a cells and hippocampus neurons as models, we found that both mutants had compromised function in promoting neurite outgrowth and dendritic spine formation. Electrophysiological recordings further showed that R853H partially lost the ability to promote excitatory synaptic transmission, whereas 945VS totally lost the ability. Together, we identified R853 as a previously uncharacterized site for the regulation of the integrity of Dock4 function, and provides insights in understanding the common molecular pathophysiology of ASD and dyslexia.
Collapse
Affiliation(s)
- Miaoqi Huang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Chunmei Liang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Shengnan Li
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Jifeng Zhang
- Department of Anatomy, Medical College of Jinan University, Guangzhou, China
| | - Daji Guo
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Bo Zhao
- Department of Anatomy, Medical College of Jinan University, Guangzhou, China
| | - Yuyang Liu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Yinghui Peng
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Junyu Xu
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Liu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Guoqing Guo
- Department of Anatomy, Medical College of Jinan University, Guangzhou, China
| | - Lei Shi
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
35
|
Clarke RA, Furlong TM, Eapen V. Tourette Syndrome Risk Genes Regulate Mitochondrial Dynamics, Structure, and Function. Front Psychiatry 2020; 11:556803. [PMID: 33776808 PMCID: PMC7987655 DOI: 10.3389/fpsyt.2020.556803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 11/23/2020] [Indexed: 11/13/2022] Open
Abstract
Gilles de la Tourette syndrome (GTS) is a neurodevelopmental disorder characterized by motor and vocal tics with an estimated prevalence of 1% in children and adolescents. GTS has high rates of inheritance with many rare mutations identified. Apart from the role of the neurexin trans-synaptic connexus (NTSC) little has been confirmed regarding the molecular basis of GTS. The NTSC pathway regulates neuronal circuitry development, synaptic connectivity and neurotransmission. In this study we integrate GTS mutations into mitochondrial pathways that also regulate neuronal circuitry development, synaptic connectivity and neurotransmission. Many deleterious mutations in GTS occur in genes with complementary and consecutive roles in mitochondrial dynamics, structure and function (MDSF) pathways. These genes include those involved in mitochondrial transport (NDE1, DISC1, OPA1), mitochondrial fusion (OPA1), fission (ADCY2, DGKB, AMPK/PKA, RCAN1, PKC), mitochondrial metabolic and bio-energetic optimization (IMMP2L, MPV17, MRPL3, MRPL44). This study is the first to develop and describe an integrated mitochondrial pathway in the pathogenesis of GTS. The evidence from this study and our earlier modeling of GTS molecular pathways provides compounding support for a GTS deficit in mitochondrial supply affecting neurotransmission.
Collapse
Affiliation(s)
- Raymond A Clarke
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia.,Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Teri M Furlong
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Valsamma Eapen
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia.,Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia.,South West Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia
| |
Collapse
|
36
|
Kreilaus F, Chesworth R, Eapen V, Clarke R, Karl T. First behavioural assessment of a novel Immp2l knockdown mouse model with relevance for Gilles de la Tourette syndrome and Autism spectrum disorder. Behav Brain Res 2019; 374:112057. [PMID: 31233820 DOI: 10.1016/j.bbr.2019.112057] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/20/2019] [Accepted: 06/20/2019] [Indexed: 11/26/2022]
Abstract
Gilles de la Tourette syndrome (GTS) is a neurodevelopmental disorder, which shares some clinical features with Autism spectrum disorder (ASD). The genetic factors relevant to the development of both disorders are yet to be fully understood, however, some genetic association studies have identified inner mitochondrial membrane peptidase subunit 2 (IMMP2L) as a potential risk gene for both GTS and ASD. The impact of Immp2l deficiency on behavioural domains is currently unknown. A new genetic mouse model for Immp2l was developed. Adult heterozygous (HET) and homozygous (HOMO) Immp2l knockdown (Immp2l KD) mice of both sexes were compared to wild type-like (WT) littermates in the open field (OF), social interaction, novel object recognition, marble burying, and prepulse inhibition (PPI). The effect of acute dexamphetamine (2 mg/kg) on OF behaviour was also determined. OF locomotion was significantly higher in HET compared to HOMO male littermates. Male and female HOMO mice were much more sensitive to the locomotor-stimulating effects of dexamphetamine (DEX), whereas only HOMO males exhibited significant increased DEX-induced OF exploration compared to control groups. HOMO females failed to habituate to an acoustic startle stimulus. Furthermore, compared to HOMO females, HET females showed reduced social interaction, and a similar trend was seen in HET males. The Immp2l KD mouse model possesses moderate face validity for preclinical research into GTS and ASD, in particular as dysfunctional dopaminergic neurotransmission appears to be one mechanism leading to disease presentation. The sex-dependent differences observed in most findings reinforce the strong influence of sex in the pathophysiology of GTS and ASD.
Collapse
Affiliation(s)
- Fabian Kreilaus
- School of Medicine, Western Sydney University, NSW 2560, Australia
| | - Rose Chesworth
- School of Medicine, Western Sydney University, NSW 2560, Australia
| | - Valsamma Eapen
- School of Psychiatry, Faculty of Medicine and Ingham Institute, University of New South Wales, NSW, 2052, Australia
| | - Raymond Clarke
- School of Psychiatry, Faculty of Medicine and Ingham Institute, University of New South Wales, NSW, 2052, Australia.
| | - Tim Karl
- School of Medicine, Western Sydney University, NSW 2560, Australia; Neuroscience Research Australia (NeuRA), NSW, 2031, Australia; School of Medical Sciences, University of New South Wales, NSW, 2052, Australia.
| |
Collapse
|
37
|
Almandil NB, Alkuroud DN, AbdulAzeez S, AlSulaiman A, Elaissari A, Borgio JF. Environmental and Genetic Factors in Autism Spectrum Disorders: Special Emphasis on Data from Arabian Studies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16040658. [PMID: 30813406 PMCID: PMC6406800 DOI: 10.3390/ijerph16040658] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 12/28/2022]
Abstract
One of the most common neurodevelopmental disorders worldwide is autism spectrum disorder (ASD), which is characterized by language delay, impaired communication interactions, and repetitive patterns of behavior caused by environmental and genetic factors. This review aims to provide a comprehensive survey of recently published literature on ASD and especially novel insights into excitatory synaptic transmission. Even though numerous genes have been discovered that play roles in ASD, a good understanding of the pathophysiologic process of ASD is still lacking. The protein⁻protein interactions between the products of NLGN, SHANK, and NRXN synaptic genes indicate that the dysfunction in synaptic plasticity could be one reason for the development of ASD. Designing more accurate diagnostic tests for the early diagnosis of ASD would improve treatment strategies and could enhance the appropriate monitoring of prognosis. This comprehensive review describes the psychotropic and antiepileptic drugs that are currently available as effective pharmacological treatments and provides in-depth knowledge on the concepts related to clinical, diagnostic, therapeutic, and genetic perspectives of ASD. An increase in the prevalence of ASD in Gulf Cooperation Council countries is also addressed in the review. Further, the review emphasizes the need for international networking and multidimensional studies to design novel and effective treatment strategies.
Collapse
Affiliation(s)
- Noor B Almandil
- Department of Clinical Pharmacy Research, Institute for Research and Medical Consultation (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia.
| | - Deem N Alkuroud
- Department of Genetic Research, Institute for Research and Medical Consultation (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia.
| | - Sayed AbdulAzeez
- Department of Genetic Research, Institute for Research and Medical Consultation (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia.
| | - Abdulla AlSulaiman
- Department of Neurology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia.
| | - Abdelhamid Elaissari
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, LAGEP-UMR 5007, F-69622 Lyon, France.
| | - J Francis Borgio
- Department of Genetic Research, Institute for Research and Medical Consultation (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia.
| |
Collapse
|
38
|
Rose S, Niyazov DM, Rossignol DA, Goldenthal M, Kahler SG, Frye RE. Clinical and Molecular Characteristics of Mitochondrial Dysfunction in Autism Spectrum Disorder. Mol Diagn Ther 2018; 22:571-593. [PMID: 30039193 PMCID: PMC6132446 DOI: 10.1007/s40291-018-0352-x] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Autism spectrum disorder (ASD) affects ~ 2% of children in the United States. The etiology of ASD likely involves environmental factors triggering physiological abnormalities in genetically sensitive individuals. One of these major physiological abnormalities is mitochondrial dysfunction, which may affect a significant subset of children with ASD. Here we systematically review the literature on human studies of mitochondrial dysfunction related to ASD. Clinical aspects of mitochondrial dysfunction in ASD include unusual neurodevelopmental regression, especially if triggered by an inflammatory event, gastrointestinal symptoms, seizures, motor delays, fatigue and lethargy. Traditional biomarkers of mitochondrial disease are widely reported to be abnormal in ASD, but appear non-specific. Newer biomarkers include buccal cell enzymology, biomarkers of fatty acid metabolism, non-mitochondrial enzyme function, apoptosis markers and mitochondrial antibodies. Many genetic abnormalities are associated with mitochondrial dysfunction in ASD, including chromosomal abnormalities, mitochondrial DNA mutations and large-scale deletions, and mutations in both mitochondrial and non-mitochondrial nuclear genes. Mitochondrial dysfunction has been described in immune and buccal cells, fibroblasts, muscle and gastrointestinal tissue and the brains of individuals with ASD. Several environmental factors, including toxicants, microbiome metabolites and an oxidized microenvironment are shown to modulate mitochondrial function in ASD tissues. Investigations of treatments for mitochondrial dysfunction in ASD are promising but preliminary. The etiology of mitochondrial dysfunction and how to define it in ASD is currently unclear. However, preliminary evidence suggests that the mitochondria may be a fruitful target for treatment and prevention of ASD. Further research is needed to better understand the role of mitochondrial dysfunction in the pathophysiology of ASD.
Collapse
Affiliation(s)
- Shannon Rose
- Department of Pediatrics, University of Arkansas for Medical Sciences and Arkansas Children's Research Institute, Little Rock, AR, USA
| | - Dmitriy M Niyazov
- Section of Medical Genetics, Ochsner Health System, New Orleans, LA, USA
| | | | - Michael Goldenthal
- Department of Pediatrics, Neurology Section, St. Christopher's Hospital for Children, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Stephen G Kahler
- Department of Pediatrics, University of Arkansas for Medical Sciences and Arkansas Children's Research Institute, Little Rock, AR, USA
| | - Richard E Frye
- Division of Neurodevelopmental Disorders, Department of Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, 1919 E Thomas St, Phoenix, AZ, USA.
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA.
| |
Collapse
|
39
|
Zhu C, Tong ML, Chi X. Partial Deletion of the Long Arm of Chromosome 7: A Case Report. Open Med (Wars) 2018; 13:433-435. [PMID: 30294678 PMCID: PMC6172522 DOI: 10.1515/med-2018-0064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 08/25/2018] [Indexed: 11/15/2022] Open
Abstract
Study advances with a childhood case of partial deletion of the long arm of chromosome 7. The patient is a 36-month-old girl with growth retardation, mild mental retardation and delayed bone age. She showed no signs of hypotelorism, upslanting palpebral fissures, epicanthal folds, low-set ears, or flat and broad nasal bridge. Microarray testing using the Affymetrix CytoScan HD array revealed an approximately 58 kb deletion at 7q31.1 in the girl and her father, suggesting paternal origin. As the patient had no characteristic facial features, 7q deletions had not been considered. This case broadens the range of case presentations for microdeletions of chromosome 7.
Collapse
Affiliation(s)
- Chun Zhu
- Department of Child Health Care, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, China
| | - Mei-Ling Tong
- Department of Child Health Care, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, China
| | - Xia Chi
- Department of Child Health Care, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, China
| |
Collapse
|
40
|
Mochizuki S, Miki H, Zhou R, Kido Y, Nishimura W, Kikuchi M, Noda Y. Oxysterol-binding protein-related protein (ORP) 6 localizes to the ER and ER-plasma membrane contact sites and is involved in the turnover of PI4P in cerebellar granule neurons. Exp Cell Res 2018; 370:601-612. [PMID: 30028970 DOI: 10.1016/j.yexcr.2018.07.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 07/15/2018] [Accepted: 07/16/2018] [Indexed: 10/28/2022]
Abstract
Oxysterol-binding protein (OSBP)-related proteins (ORPs) are conserved lipid binding proteins found in organisms ranging from yeast to mammals. Recent findings have indicated that these proteins mainly localize to contact sites of 2 different membranous organelles. ORP6, a member of the ORP subfamily III, is one of the least studied ORPs. Using approaches in molecular cell biology, we attempted to study the characteristics of ORP6 and found that ORP6 is abundantly expressed in mouse cultured neurons. Deconvolution microscopy of cultured cerebellar granular cells revealed that ORP6 is localized to the endoplasmic reticulum (ER) and ER-plasma membrane (PM) contact sites, where it co-localized with extended synaptotagmin2 (E-Syt2), a well-known ER-PM contact site marker. E-Syt2 also co-localized with ORP3, another subfamily III member, and ORP5, a subfamily IV member. However, ORP5 does not distribute to the same ER-PM contact sites as subfamily III members. Also, the co-expression of ORP3 but not ORP5 altered the distribution of ORP6 into the processes of cerebellar neurons. Immunoprecipitation demonstrated binding between the intermediate region of ORP6 and ORP3 or ORP6 itself. Additionally, the localization of ORP6 in the PM decreased when co-expressed with the intermediate region of ORP6, in which the pleckstrin homology (PH) domain and OSBP-related ligand binding domain (ORD) are deleted. Over-expression of this intermediate region shifted the location of a phophtidylinositol-4-phosphate (PI4P) marker from the Golgi to the PM. Knockdown of ORP6 resulted in the same shift of the PI4P marker. Collectively, our data suggests that the recruitment of ORP6 to ER-PM contact sites is involved in the turnover of PI4P in cerebellar granular neurons.
Collapse
Affiliation(s)
- Shinya Mochizuki
- Dept. of Anatomy, Bioimaging and Neuro-cell Science, Jichi Medical University, Japan
| | - Harukata Miki
- Dept. of Anatomy, Bioimaging and Neuro-cell Science, Jichi Medical University, Japan
| | - Ruyun Zhou
- Dept. of Anatomy, Bioimaging and Neuro-cell Science, Jichi Medical University, Japan
| | - Yukiharu Kido
- Dept. of Anatomy, Bioimaging and Neuro-cell Science, Jichi Medical University, Japan
| | - Wataru Nishimura
- Dept. of Anatomy, Bioimaging and Neuro-cell Science, Jichi Medical University, Japan; Dept. of Molecular Biology, School of Medicine, International University of Health and Welfare, Japan
| | | | - Yasuko Noda
- Dept. of Anatomy, Bioimaging and Neuro-cell Science, Jichi Medical University, Japan.
| |
Collapse
|
41
|
Lebeau J, Rainbolt TK, Wiseman RL. Coordinating Mitochondrial Biology Through the Stress-Responsive Regulation of Mitochondrial Proteases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 340:79-128. [PMID: 30072094 PMCID: PMC6402875 DOI: 10.1016/bs.ircmb.2018.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteases are localized throughout mitochondria and function as critical regulators of all aspects of mitochondrial biology. As such, the activities of these proteases are sensitively regulated through transcriptional and post-translational mechanisms to adapt mitochondrial function to specific cellular demands. Here, we discuss the stress-responsive mechanisms responsible for regulating mitochondrial protease activity and the implications of this regulation on mitochondrial function. Furthermore, we describe how imbalances in the activity or regulation of mitochondrial proteases induced by genetic, environmental, or aging-related factors influence mitochondria in the context of disease. Understanding the molecular mechanisms by which cells regulate mitochondrial function through alterations in protease activity provide insights into the contributions of these proteases in pathologic mitochondrial dysfunction and reveals new therapeutic opportunities to ameliorate this dysfunction in the context of diverse classes of human disease.
Collapse
Affiliation(s)
- Justine Lebeau
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - T Kelly Rainbolt
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - R Luke Wiseman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
42
|
Viñas-Jornet M, Esteba-Castillo S, Baena N, Ribas-Vidal N, Ruiz A, Torrents-Rodas D, Gabau E, Vilella E, Martorell L, Armengol L, Novell R, Guitart M. High Incidence of Copy Number Variants in Adults with Intellectual Disability and Co-morbid Psychiatric Disorders. Behav Genet 2018; 48:323-336. [PMID: 29882083 PMCID: PMC6028865 DOI: 10.1007/s10519-018-9902-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 05/10/2018] [Indexed: 01/04/2023]
Abstract
A genetic analysis of unexplained mild-moderate intellectual disability and co-morbid psychiatric or behavioural disorders is not systematically conducted in adults. A cohort of 100 adult patients affected by both phenotypes were analysed in order to identify the presence of copy number variants (CNVs) responsible for their condition identifying a yield of 12.8% of pathogenic CNVs (19% when including clinically recognizable microdeletion syndromes). Moreover, there is a detailed clinical description of an additional 11% of the patients harbouring possible pathogenic CNVs—including a 7q31 deletion (IMMP2L) in two unrelated patients and duplications in 3q29, 9p24.2p24.1 and 15q14q15.1—providing new evidence of its contribution to the phenotype. This study adds further proof of including chromosomal microarray analysis (CMA) as a mandatory test to improve the diagnosis in the adult patients in psychiatric services.
Collapse
Affiliation(s)
- Marina Viñas-Jornet
- Genetics lab, UDIAT-centre diagnostic. Parc Taulí Hospital Universitari. Institut d'Investigació i Innovació Parc Taulí I3PT. Universitat Autònoma de Barcelona, C/Parc Tauli,1, 08208, Sabadell, Barcelona, Spain.,Cellular Biology, Physiology and Immunology Department, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Susanna Esteba-Castillo
- Mental Health and Intellectual Disability Specialized Service, Institut Assistència Sanitària (IAS), Parc Hospitalari Martí i Julià, Girona, Spain
| | - Neus Baena
- Genetics lab, UDIAT-centre diagnostic. Parc Taulí Hospital Universitari. Institut d'Investigació i Innovació Parc Taulí I3PT. Universitat Autònoma de Barcelona, C/Parc Tauli,1, 08208, Sabadell, Barcelona, Spain
| | - Núria Ribas-Vidal
- Mental Health and Intellectual Disability Specialized Service, Institut Assistència Sanitària (IAS), Parc Hospitalari Martí i Julià, Girona, Spain
| | - Anna Ruiz
- Genetics lab, UDIAT-centre diagnostic. Parc Taulí Hospital Universitari. Institut d'Investigació i Innovació Parc Taulí I3PT. Universitat Autònoma de Barcelona, C/Parc Tauli,1, 08208, Sabadell, Barcelona, Spain
| | - David Torrents-Rodas
- Mental Health and Intellectual Disability Specialized Service, Institut Assistència Sanitària (IAS), Parc Hospitalari Martí i Julià, Girona, Spain
| | - Elisabeth Gabau
- Pediatry-Clinical Genetics Service, Parc Taulí Hospital Universitari. Institut d'Investigació i Innovació Parc Taulí I3PT. Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Elisabet Vilella
- Hospital Universitari Institut Pere Mata, IISPV, Universitat Rovira i Virgili, CIBERSAM, Reus, Spain
| | - Lourdes Martorell
- Hospital Universitari Institut Pere Mata, IISPV, Universitat Rovira i Virgili, CIBERSAM, Reus, Spain
| | - Lluís Armengol
- Research and Development Department, qGenomics Laboratory, Barcelona, Spain
| | - Ramon Novell
- Mental Health and Intellectual Disability Specialized Service, Institut Assistència Sanitària (IAS), Parc Hospitalari Martí i Julià, Girona, Spain
| | - Míriam Guitart
- Genetics lab, UDIAT-centre diagnostic. Parc Taulí Hospital Universitari. Institut d'Investigació i Innovació Parc Taulí I3PT. Universitat Autònoma de Barcelona, C/Parc Tauli,1, 08208, Sabadell, Barcelona, Spain.
| |
Collapse
|
43
|
Baldan F, Gnan C, Franzoni A, Ferino L, Allegri L, Passon N, Damante G. Genomic Deletion Involving the IMMP2L Gene in Two Cases of Autism Spectrum Disorder. Cytogenet Genome Res 2018; 154:196-200. [PMID: 29788020 DOI: 10.1159/000489001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2018] [Indexed: 11/19/2022] Open
Abstract
Mutations/deletions of the IMMP2L gene have been associated with different cognitive/behavioral disturbances, including autism spectrum disorders (ASD). The penetrance of these defects is not complete since they often are inherited from a healthy parent. Using array-CGH in a cohort of 37 ASD patients, we found 2 subjects harboring a deletion inside the IMMP2L gene. In both cases, the IMMP2L gene deletion was inherited: from a healthy mother in one case and from a dyslectic father in the other. In the latter family, the IMMP2L deletion was also detected in the patient's brother, who showed delayed language development. In a cohort of 100 normal controls, no deletions including the IMMP2L gene were observed. However, a recent meta-analysis found no association between IMMP2L deletions and ASD. Our data would indicate that deletions involving the IMMP2L gene may contribute to the development of a subgroup of cognitive/behavioral disorders.
Collapse
|
44
|
Clinical significance of germline copy number variation in susceptibility of human diseases. J Genet Genomics 2018; 45:3-12. [PMID: 29396143 DOI: 10.1016/j.jgg.2018.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 12/27/2017] [Accepted: 01/02/2018] [Indexed: 02/06/2023]
Abstract
Germline copy number variation (CNV) is considered to be an important form of human genetic polymorphisms. Previous studies have identified amounts of CNVs in human genome by advanced technologies, such as comparative genomic hybridization, single nucleotide genotyping, and high-throughput sequencing. CNV is speculated to be derived from multiple mechanisms, such as nonallelic homologous recombination (NAHR) and nonhomologous end-joining (NHEJ). CNVs cover a much larger genome scale than single nucleotide polymorphisms (SNPs), and may alter gene expression levels by means of gene dosage, gene fusion, gene disruption, and long-range regulation effects, thus affecting individual phenotypes and playing crucial roles in human pathogenesis. The number of studies linking CNVs with common complex diseases has increased dramatically in recent years. Here, we provide a comprehensive review of the current understanding of germline CNVs, and summarize the association of germline CNVs with the susceptibility to a wide variety of human diseases that were identified in recent years. We also propose potential issues that should be addressed in future studies.
Collapse
|
45
|
Zhang Y, Liu Y, Zarrei M, Tong W, Dong R, Wang Y, Zhang H, Yang X, MacDonald JR, Uddin M, Scherer SW, Gai Z. Association of IMMP2L deletions with autism spectrum disorder: A trio family study and meta-analysis. Am J Med Genet B Neuropsychiatr Genet 2018; 177:93-100. [PMID: 29152845 DOI: 10.1002/ajmg.b.32608] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 08/28/2017] [Accepted: 10/02/2017] [Indexed: 11/10/2022]
Abstract
IMMP2L, the gene encoding the inner mitochondrial membrane peptidase subunit 2-like protein, has been reported as a candidate gene for Tourette syndrome, autism spectrum disorder (ASD) and additional neurodevelopmental disorders. Here we genotyped 100 trio families with an index proband with autism spectrum disorder in Han Chinese population and found three cases with rare exonic IMMP2L deletions. We have conducted a comprehensive meta-analysis to quantify the association of IMMP2L deletions with ASD using 5,568 cases and 10,279 controls. While the IMMP2L deletions carried non-recurrent breakpoints, in contrast to previous reports, our meta-analysis found no evidence of association (P > 0.05) between IMMP2L deletions and ASD. We also observed common exonic deletions impacting IMMP2L in a separate control (5,971 samples) cohort where subjects were screened for psychiatric conditions. This is the first systematic review and meta-analysis regarding the effect of IMMP2L deletions on ASD, but further investigations in different populations, especially Chinese population may be still needed to confirm our results.
Collapse
Affiliation(s)
- Yanqing Zhang
- Pediatric Health Care Institute, Qilu Children's Hospital of Shandong University, Ji'nan, China
| | - Yi Liu
- Pediatric Research Institute, Qilu Children's Hospital of Shandong University, Ji'nan, China
| | - Mehdi Zarrei
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Canada
| | - Winnie Tong
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Canada
| | - Rui Dong
- Pediatric Research Institute, Qilu Children's Hospital of Shandong University, Ji'nan, China
| | - Ying Wang
- Pediatric Research Institute, Qilu Children's Hospital of Shandong University, Ji'nan, China
| | - Haiyan Zhang
- Pediatric Research Institute, Qilu Children's Hospital of Shandong University, Ji'nan, China
| | - Xiaomeng Yang
- Pediatric Research Institute, Qilu Children's Hospital of Shandong University, Ji'nan, China
| | - Jeffrey R MacDonald
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Canada
| | - Mohammed Uddin
- Mohammed Bin Rashid University of Medicine and Health Sciences, College of Medicine, Dubai, UAE
| | - Stephen W Scherer
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Canada.,McLaughlin Centre and Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Zhongtao Gai
- Pediatric Health Care Institute, Qilu Children's Hospital of Shandong University, Ji'nan, China.,Pediatric Research Institute, Qilu Children's Hospital of Shandong University, Ji'nan, China
| |
Collapse
|
46
|
Akahoshi K, Yamamoto T. Interstitial deletion within 7q31.1q31.3 in a woman with mild intellectual disability and schizophrenia. Neuropsychiatr Dis Treat 2018; 14:1773-1778. [PMID: 30013349 PMCID: PMC6038873 DOI: 10.2147/ndt.s168469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
We report the case of a Japanese woman with an interstitial deletion within the 7q31.1q31.3 region, she presented with mild intellectual disability since infancy, and later developed characteristic psychiatric manifestations, including abnormal behavior, delusions, and hallucinations. She was diagnosed with paranoid schizophrenia (F20.0, International Statistical Classification of Diseases and Related Health Problems 10th Revision). Array comparative genomic hybridization examination revealed the deletion involving several important genes for neurodevelopment. Particularly, FOXP2, DOCK4, MET, and WNT2 in this region are suggested to be related to language impairment, autistic disorders, and cognitive disorders, via the WNT pathway. In addition, the WNT signal pathway has been suggested to be implicated in the pathogenesis of psychiatric disorders such as schizophrenia and bipolar disorder. However, there is no case report regarding schizophrenia associated with a 7q31 microdeletion. We suspect that the disruptions of these one or plural genes among the interstitial deletion of 7q31.1q31.3 may be involved in the development of schizophrenia in this woman. This is the first report on schizophrenia associated with a 7q31 microdeletion.
Collapse
Affiliation(s)
- Keiko Akahoshi
- Department of Pediatrics, Tokyo Children's Rehabilitation Hospital, Tokyo, Japan,
| | - Toshiyuki Yamamoto
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
47
|
Use of clinical chromosomal microarray in Chinese patients with autism spectrum disorder-implications of a copy number variation involving DPP10. Mol Autism 2017; 8:31. [PMID: 28670437 PMCID: PMC5485587 DOI: 10.1186/s13229-017-0136-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/08/2017] [Indexed: 11/23/2022] Open
Abstract
Background Array comparative genomic hybridization (aCGH) is recommended as a first-tier genetic test for children with autism spectrum disorder (ASD). However, interpretation of results can often be challenging partly due to the fact that copy number variants (CNVs) in non-European ASD patients are not well studied. To address this literature gap, we report the CNV findings in a cohort of Chinese children with ASD. Methods DNA samples were obtained from 258 Chinese ASD patients recruited from a child assessment center between January 2011 and August 2014. aCGH was performed using NimbleGen-CGX-135k or Agilent-CGX 60k oligonucleotide array. Results were classified based on existing guidelines and literature. Results Ten pathogenic CNVs and one likely pathogenic CNV were found in nine patients, with an overall diagnostic yield of 3.5%. A 138 kb duplication involving 3′ exons of DPP10 (arr[GRCh37] 2q14.1(116534689_116672358)x3), reported to be associated with ASD, was identified in one patient (0.39%). The same CNV was reported as variant of uncertain significance (VUS) in DECIPHER database. Multiple individuals of typical development carrying a similar duplication were identified among our ancestry-matched control with a frequency of 6/653 (0.92%) as well as from literature and genomic databases. Conclusions The DPP10 duplication is likely a benign CNV polymorphism enriched in Southern Chinese with a population frequency of ~1%. This highlights the importance of using ancestry-matched controls in interpretation of aCGH findings. Electronic supplementary material The online version of this article (doi:10.1186/s13229-017-0136-x) contains supplementary material, which is available to authorized users.
Collapse
|
48
|
Tandon N, Nanda P, Padmanabhan JL, Mathew IT, Eack SM, Narayanan B, Meda SA, Bergen SE, Ruaño G, Windemuth A, Kocherla M, Petryshen TL, Clementz B, Sweeney J, Tamminga C, Pearlson G, Keshavan MS. Novel gene-brain structure relationships in psychotic disorder revealed using parallel independent component analyses. Schizophr Res 2017; 182:74-83. [PMID: 27789186 DOI: 10.1016/j.schres.2016.10.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 10/14/2016] [Accepted: 10/16/2016] [Indexed: 01/13/2023]
Abstract
BACKGROUND Schizophrenia, schizoaffective disorder, and psychotic bipolar disorder overlap with regard to symptoms, structural and functional brain abnormalities, and genetic risk factors. Neurobiological pathways connecting genes to clinical phenotypes across the spectrum from schizophrenia to psychotic bipolar disorder remain largely unknown. METHODS We examined the relationship between structural brain changes and risk alleles across the psychosis spectrum in the multi-site Bipolar-Schizophrenia Network for Intermediate Phenotypes (B-SNIP) cohort. Regional MRI brain volumes were examined in 389 subjects with a psychotic disorder (139 schizophrenia, 90 schizoaffective disorder, and 160 psychotic bipolar disorder) and 123 healthy controls. 451,701 single-nucleotide polymorphisms were screened and processed using parallel independent component analysis (para-ICA) to assess associations between genes and structural brain abnormalities in probands. RESULTS 482 subjects were included after quality control (364 individuals with psychotic disorder and 118 healthy controls). Para-ICA identified four genetic components including several risk genes already known to contribute to schizophrenia and bipolar disorder and revealed three structural components that showed overlapping relationships with the disease risk genes across the three psychotic disorders. Functional ontologies representing these gene clusters included physiological pathways involved in brain development, synaptic transmission, and ion channel activity. CONCLUSIONS Heritable brain structural findings such as reduced cortical thickness and surface area in probands across the psychosis spectrum were associated with somewhat distinct genes related to putative disease pathways implicated in psychotic disorders. This suggests that brain structural alterations might represent discrete psychosis intermediate phenotypes along common neurobiological pathways underlying disease expression across the psychosis spectrum.
Collapse
Affiliation(s)
- Neeraj Tandon
- Psychiatry, Harvard Medical School, Beth Israel Deaconess Medical Ctr, Boston, MA, USA; Baylor College of Medicine, Texas Medical Center, Houston, TX, USA.
| | - Pranav Nanda
- Psychiatry, Harvard Medical School, Beth Israel Deaconess Medical Ctr, Boston, MA, USA; College of Physicians & Surgeons, Columbia University Medical Center, New York, NY, USA
| | - Jaya L Padmanabhan
- Psychiatry, Harvard Medical School, Beth Israel Deaconess Medical Ctr, Boston, MA, USA
| | - Ian T Mathew
- Psychiatry, Harvard Medical School, Beth Israel Deaconess Medical Ctr, Boston, MA, USA
| | - Shaun M Eack
- School of Social Work, University of Pittsburgh, Pittsburgh, PA, USA
| | - Balaji Narayanan
- Olin Neuropsychiatry Research Center, Hartford, CT, USA; Department of Psychiatry and Neurobiology, Yale University, New Haven, CT, USA
| | - Shashwath A Meda
- Olin Neuropsychiatry Research Center, Hartford, CT, USA; Department of Psychiatry and Neurobiology, Yale University, New Haven, CT, USA
| | - Sarah E Bergen
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | | | | | | | - Tracey L Petryshen
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Brett Clementz
- Department of Psychology, Department of Neuroscience, Bio-Imaging Research Center, University of Georgia, Athens, GA, USA
| | | | | | - Godfrey Pearlson
- Olin Neuropsychiatry Research Center, Hartford, CT, USA; Department of Psychiatry and Neurobiology, Yale University, New Haven, CT, USA
| | - Matcheri S Keshavan
- Psychiatry, Harvard Medical School, Beth Israel Deaconess Medical Ctr, Boston, MA, USA
| |
Collapse
|
49
|
Cheng N, Rho JM, Masino SA. Metabolic Dysfunction Underlying Autism Spectrum Disorder and Potential Treatment Approaches. Front Mol Neurosci 2017; 10:34. [PMID: 28270747 PMCID: PMC5318388 DOI: 10.3389/fnmol.2017.00034] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/30/2017] [Indexed: 12/14/2022] Open
Abstract
Autism spectrum disorder (ASD) is characterized by deficits in sociability and communication, and increased repetitive and/or restrictive behaviors. While the etio-pathogenesis of ASD is unknown, clinical manifestations are diverse and many possible genetic and environmental factors have been implicated. As such, it has been a great challenge to identify key neurobiological mechanisms and to develop effective treatments. Current therapies focus on co-morbid conditions (such as epileptic seizures and sleep disturbances) and there is no cure for the core symptoms. Recent studies have increasingly implicated mitochondrial dysfunction in ASD. The fact that mitochondria are an integral part of diverse cellular functions and are susceptible to many insults could explain how a wide range of factors can contribute to a consistent behavioral phenotype in ASD. Meanwhile, the high-fat, low-carbohydrate ketogenic diet (KD), used for nearly a century to treat medically intractable epilepsy, has been shown to enhance mitochondrial function through a multiplicity of mechanisms and affect additional molecular targets that may address symptoms and comorbidities of ASD. Here, we review the evidence for the use of metabolism-based therapies such as the KD in the treatment of ASD as well as emerging co-morbid models of epilepsy and autism. Future research directions aimed at validating such therapeutic approaches and identifying additional and novel mechanistic targets are also discussed.
Collapse
Affiliation(s)
- Ning Cheng
- Departments of Pediatrics, University of CalgaryCalgary, AB, Canada
| | - Jong M. Rho
- Departments of Pediatrics, University of CalgaryCalgary, AB, Canada
- Clinical Neurosciences, University of CalgaryCalgary, AB, Canada
- Physiology and Pharmacology, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of CalgaryCalgary, AB, Canada
| | - Susan A. Masino
- Neuroscience Program, Department of Psychology, Trinity CollegeHartford, CT, USA
| |
Collapse
|
50
|
CTNNA3 discordant regulation of nested LRRTM3, implications for autism spectrum disorder and Tourette syndrome. Meta Gene 2017. [DOI: 10.1016/j.mgene.2016.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|