1
|
Almalki WH, Almujri SS. Therapeutic approaches to microglial dysfunction in Alzheimer's disease: Enhancing phagocytosis and metabolic regulation. Pathol Res Pract 2024; 263:155614. [PMID: 39342887 DOI: 10.1016/j.prp.2024.155614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/04/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Microglia are essential in neurogenesis, synaptic pruning, and homeostasis. Nevertheless, aging, and cellular senescence may modify their role, causing them to shift from being shields to being players of neurodegeneration. In the aging brain, the population of microglia increases, followed by enhanced activity of genes related to neuroinflammation. This change increases their ability to cause inflammation, resulting in a long-lasting state of inflammation in the brain that harms the condition of neurons. In Alzheimer's Disease (AD), microglia are located inside amyloid plaques and exhibit an inflammatory phenotype characterized by a diminished ability to engulf and remove waste material, worsening the illness's advancement. Genetic polymorphisms in TREM2, APOE, and CD33 highlight the significant impact of microglial dysfunction in AD. This review examines therapeutic approaches that aim to address microglial dysfunction, such as enhancing the microglial capability to engulf and remove amyloid-β clumps and regulating microglial metabolism and mitochondrial activity. Microglial transplanting and reprogramming advancements show the potential to restore their ability to reduce inflammation. Although there has been notable advancement, there are still voids in our knowledge of microglial biology, including their relationships with other brain cells. Further studies should prioritize the improvement of human AD models, establish standardized methods for characterizing microglia, and explore how various factors influence microglial responses. It is essential to tackle these problems to create effective treatment plans that focus on reducing inflammation in the brain and protecting against damage in age-related neurodegenerative illnesses.
Collapse
Affiliation(s)
- Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Aseer 61421, Saudi Arabia
| |
Collapse
|
2
|
Soto JS, Neupane C, Kaur M, Pandey V, Wohlschlegel JA, Khakh BS. Astrocyte Gi-GPCR signaling corrects compulsive-like grooming and anxiety-related behaviors in Sapap3 knockout mice. Neuron 2024; 112:3412-3423.e6. [PMID: 39163865 PMCID: PMC11512628 DOI: 10.1016/j.neuron.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/06/2024] [Accepted: 07/23/2024] [Indexed: 08/22/2024]
Abstract
Astrocytes are morphologically complex cells that serve essential roles. They are widely implicated in central nervous system (CNS) disorders, with changes in astrocyte morphology and gene expression accompanying disease. In the Sapap3 knockout (KO) mouse model of compulsive and anxiety-related behaviors related to obsessive-compulsive disorder (OCD), striatal astrocytes display reduced morphology and altered actin cytoskeleton and Gi-G-protein-coupled receptor (Gi-GPCR) signaling proteins. Here, we show that normalizing striatal astrocyte morphology, actin cytoskeleton, and essential homeostatic support functions by targeting the astrocyte Gi-GPCR pathway using chemogenetics corrected phenotypes in Sapap3 KO mice, including anxiety-related and compulsive behaviors. Our data portend an astrocytic pharmacological strategy for rescuing phenotypes in brain disorders that include compromised astrocyte morphology and tissue support.
Collapse
Affiliation(s)
- Joselyn S Soto
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA.
| | - Chiranjivi Neupane
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Muskan Kaur
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Vijaya Pandey
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Baljit S Khakh
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA; Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA.
| |
Collapse
|
3
|
Hernández-González M, de la Torre-Vázquez J, Barrera-Cobos FJ, Flores-Soto M, Guevara MA, González-Burgos I. Correlation between compulsive behaviors and plastic changes in the dendritic spines of the prefrontal cortex and dorsolateral striatum of male rats. Behav Brain Res 2024; 475:115199. [PMID: 39182621 DOI: 10.1016/j.bbr.2024.115199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 08/27/2024]
Abstract
Obsessive-compulsive disorder (OCD) is a mental affliction characterized by compulsive behaviors often manifested in intrusive thoughts and repetitive actions. The quinpirole model has been used with rats to replicate compulsive behaviors and study the neurophysiological processes associated with this pathology. Several changes in the dendritic spines of the medial prefrontal cortex (mPFC) and dorsolateral striatum (DLS) have been related to the occurrence of compulsive behaviors. Dendritic spines regulate excitatory synaptic contacts, and their morphology is associated with various brain pathologies. The present study was designed to correlate the occurrence of compulsive behaviors (generated by administering the drug quinpirole) with the morphology of the different types of dendritic spines in the mPFC and DLS. A total of 18 male rats were used. Half were assigned to the experimental group, the other half to the control group. The former received injections of quinpirole, while the latter rats were injected with physiological saline solution, for 10 days in both cases. After the experimental treatment, the quinpirole rats exhibited all the parameters indicative of compulsive behavior and a significant correlation with the density of stubby and wide neckless spines in both the mPFC and DLS. Dendritic spines from both mPFC and DLS neurons showed plastic changes correlatively with the expression of compulsive behavior induced by quinpirole. Further studies are suggested to evaluate the involvement of glutamatergic neurotransmission in the neurobiology of OCD.
Collapse
Affiliation(s)
- Marisela Hernández-González
- Instituto de Neurociencias, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara. Guadalajara, Jalisco, Mexico
| | - Jahaziel de la Torre-Vázquez
- Instituto de Neurociencias, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara. Guadalajara, Jalisco, Mexico
| | - Francisco Javier Barrera-Cobos
- Instituto de Neurociencias, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara. Guadalajara, Jalisco, Mexico
| | - Mario Flores-Soto
- División de Neurociencias, Centro de Investigación Biomédica de Occidente, IMSS. Guadalajara, Jalisco, Mexico
| | - Miguel Angel Guevara
- Instituto de Neurociencias, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara. Guadalajara, Jalisco, Mexico
| | | |
Collapse
|
4
|
Campos-Sánchez JC, Meseguer J, Guardiola FA. Fish microglia: Beyond the resident macrophages of the central nervous system - A review of their morphofunctional characteristics. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 162:105274. [PMID: 39341477 DOI: 10.1016/j.dci.2024.105274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
From classical to modern literature on microglia, the importance of the potential and variability of these immune cells in vertebrates has been pointed out. Recent aspects such as relationships and interactions between microglia and neurons in both normal and injured neural tissues, as well as their nexus with other organs and with the microbiota, or how these cells are modulated during development and adulthood are current topics of major interest. State-of-the-art research methodologies, including microscopy and potent in vivo imaging techniques, genomic and proteomic methods, current culture conditions together with the easy maintenance and manipulation of some fish embryos and adult specimens such as zebrafish (Danio rerio), have emerged and adapted to the phylogenetic position of some fish species. Furthermore, these advancements have facilitated the development of successful protocols aimed at addressing significant hypotheses and unresolved questions regarding vertebrate glia. The present review aims to analyse the available information on fish microglia, mainly the most recent one concerning teleosts, to establish an overview of their structural and immune functional features as a basis for their potentialities, heterogeneity, diversification, involvement, and relationships with neurons under normal and pathological conditions.
Collapse
Affiliation(s)
- Jose Carlos Campos-Sánchez
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - José Meseguer
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Francisco A Guardiola
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
5
|
Minagawa K, Hayakawa T, Akimoto H, Nagashima T, Takahashi Y, Asai S. Late development of OCD-like phenotypes in Dlgap1 knockout mice. Psychopharmacology (Berl) 2024:10.1007/s00213-024-06668-9. [PMID: 39177810 DOI: 10.1007/s00213-024-06668-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 08/05/2024] [Indexed: 08/24/2024]
Abstract
RATIONALE Despite variants in the Dlgap1 gene having the two lowest p-value in a genome-wide association study of obsessive compulsive disorder (OCD), previous studies reported the absence of OCD-like phenotypes in Dlgap1 knockout (KO) mice. Since these studies observed behavioral phenotypes only for a short period, development of OCD-like phenotypes in these mice at older ages was still plausible. OBJECTIVE To examine the presence or absence of development of OCD-like phenotypes in Dlgap1 KO mice and their responsiveness to fluvoxamine. METHODS AND RESULTS Newly produced Dlgap1 KO mice were observed for a year. Modified SHIRPA primary screen in 2-month-old homozygous mutant mice showed only weak signs of anxiety, stress conditions and aggression. At older ages, however, these mutant mice exhibited excessive self-grooming characterized by increased scratching which led to skin lesions. A significant sex difference was observed in this scratching behavior. The penetrance of skin lesions reached 50% at 6-7 months of age and 90% at 12 months of age. In the open-field test performed just after the appearance of these lesions, homozygous mutant mice spent significantly less time in the center, an anxiety-like behavior, than did their wild-type and heterozygous littermates, none and less than 10% of which showed skin lesions at 1 year, respectively. The skin lesions and excessive self-grooming were significantly alleviated by two-week treatment with fluvoxamine. CONCLUSION Usefulness of Dlgap1 KO mice as a tool for investigating the pathogenesis of OCD-like phenotypes and its translational relevance was suggested.
Collapse
Affiliation(s)
- Kimino Minagawa
- Division of Genomic Epidemiology and Clinical Trials, Clinical Trials Research Center, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-ku, Tokyo, 173-8610, Japan.
| | - Takashi Hayakawa
- Division of Genomic Epidemiology and Clinical Trials, Clinical Trials Research Center, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-ku, Tokyo, 173-8610, Japan
- Division of Pharmacology, Department of Biomedical Sciences, Nihon University School of Medicine, Tokyo, Japan
| | - Hayato Akimoto
- Division of Genomic Epidemiology and Clinical Trials, Clinical Trials Research Center, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-ku, Tokyo, 173-8610, Japan
- Division of Pharmacology, Department of Biomedical Sciences, Nihon University School of Medicine, Tokyo, Japan
| | - Takuya Nagashima
- Division of Genomic Epidemiology and Clinical Trials, Clinical Trials Research Center, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-ku, Tokyo, 173-8610, Japan
- Division of Pharmacology, Department of Biomedical Sciences, Nihon University School of Medicine, Tokyo, Japan
| | - Yasuo Takahashi
- Division of Genomic Epidemiology and Clinical Trials, Clinical Trials Research Center, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Satoshi Asai
- Division of Genomic Epidemiology and Clinical Trials, Clinical Trials Research Center, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-ku, Tokyo, 173-8610, Japan
- Division of Pharmacology, Department of Biomedical Sciences, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
6
|
Cordeiro RC, Scaini G, Quevedo J. Are microglia in charge of controlling stress-response behavior? Mol Psychiatry 2024; 29:2599-2600. [PMID: 38499652 DOI: 10.1038/s41380-024-02511-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Affiliation(s)
- Rafaela C Cordeiro
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Giselli Scaini
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.
- Center for Interventional Psychiatry, Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| | - João Quevedo
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Center for Interventional Psychiatry, Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| |
Collapse
|
7
|
Zhang YD, Shi DD, Wang Z. Neurobiology of Obsessive-Compulsive Disorder from Genes to Circuits: Insights from Animal Models. Neurosci Bull 2024:10.1007/s12264-024-01252-9. [PMID: 38982026 DOI: 10.1007/s12264-024-01252-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/27/2024] [Indexed: 07/11/2024] Open
Abstract
Obsessive-compulsive disorder (OCD) is a chronic, severe psychiatric disorder that has been ranked by the World Health Organization as one of the leading causes of illness-related disability, and first-line interventions are limited in efficacy and have side-effect issues. However, the exact pathophysiology underlying this complex, heterogeneous disorder remains unknown. This scenario is now rapidly changing due to the advancement of powerful technologies that can be used to verify the function of the specific gene and dissect the neural circuits underlying the neurobiology of OCD in rodents. Genetic and circuit-specific manipulation in rodents has provided important insights into the neurobiology of OCD by identifying the molecular, cellular, and circuit events that induce OCD-like behaviors. This review will highlight recent progress specifically toward classic genetic animal models and advanced neural circuit findings, which provide theoretical evidence for targeted intervention on specific molecular, cellular, and neural circuit events.
Collapse
Affiliation(s)
- Ying-Dan Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Dong-Dong Shi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 201108, China.
| | - Zhen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 201108, China.
- Shanghai Intelligent Psychological Evaluation and Intervention Engineering Technology Research Center, Shanghai, 200030, China.
| |
Collapse
|
8
|
Borba JV, Canzian J, Resmim CM, Silva RM, Duarte MCF, Mohammed KA, Schoenau W, Adedara IA, Rosemberg DB. Towards zebrafish models to unravel translational insights of obsessive-compulsive disorder: A neurobehavioral perspective. Neurosci Biobehav Rev 2024; 162:105715. [PMID: 38734195 DOI: 10.1016/j.neubiorev.2024.105715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/08/2024] [Accepted: 05/04/2024] [Indexed: 05/13/2024]
Abstract
Obsessive-compulsive disorder (OCD) is a chronic and debilitating illness that has been considered a polygenic and multifactorial disorder, challenging effective therapeutic interventions. Although invaluable advances have been obtained from human and rodent studies, several molecular and mechanistic aspects of OCD etiology are still obscure. Thus, the use of non-traditional animal models may foster innovative approaches in this field, aiming to elucidate the underlying mechanisms of disease from an evolutionary perspective. The zebrafish (Danio rerio) has been increasingly considered a powerful organism in translational neuroscience research, especially due to the intrinsic features of the species. Here, we outline target mechanisms of OCD for translational research, and discuss how zebrafish-based models can contribute to explore neurobehavioral aspects resembling those found in OCD. We also identify possible advantages and limitations of potential zebrafish-based models, as well as highlight future directions in both etiological and therapeutic research. Lastly, we reinforce the use of zebrafish as a promising tool to unravel the biological basis of OCD, as well as novel pharmacological therapies in the field.
Collapse
Affiliation(s)
- João V Borba
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil.
| | - Julia Canzian
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Cássio M Resmim
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Rossano M Silva
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Maria C F Duarte
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Khadija A Mohammed
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - William Schoenau
- Department of Physiology and Pharmacology, Health Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Isaac A Adedara
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA.
| |
Collapse
|
9
|
Zhang YD, Shi DD, Liao BB, Li Y, Zhang S, Gao J, Lin LJ, Wang Z. Human microbiota from drug-naive patients with obsessive-compulsive disorder drives behavioral symptoms and neuroinflammation via succinic acid in mice. Mol Psychiatry 2024; 29:1782-1797. [PMID: 38273106 DOI: 10.1038/s41380-024-02424-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 01/27/2024]
Abstract
Emerging evidence suggests that the gut microbiota is closely related to psychiatric disorders. However, little is known about the role of the gut microbiota in the development of obsessive-compulsive disorder (OCD). Here, to investigate the contribution of gut microbiota to the pathogenesis of OCD, we transplanted fecal microbiota from first-episode, drug-naive OCD patients or demographically matched healthy individuals into antibiotic-treated specific pathogen-free (SPF) mice and showed that colonization with OCD microbiota is sufficient to induce core behavioral deficits, including abnormal anxiety-like and compulsive-like behaviors. The fecal microbiota was analyzed using 16 S rRNA full-length sequencing, and the results demonstrated a clear separation of the fecal microbiota of mice colonized with OCD and control microbiota. Notably, microbiota from OCD-colonized mice resulted in injured neuronal morphology and function in the mPFC, with inflammation in the mPFC and colon. Unbiased metabolomic analyses of the serum and mPFC region revealed the accumulation of succinic acid (SA) in OCD-colonized mice. SA impeded neuronal activity and induced an inflammatory response in both the colon and mPFC, impacting intestinal permeability and brain function, which act as vital signal mediators in gut microbiota-brain-immune crosstalk. Manipulations of dimethyl malonate (DM) have been reported to exert neuroprotective effects by suppressing the oxidation of accumulated succinic acid, attenuating the downstream inflammatory response and neuronal damage, and can help to partly improve abnormal behavior and reduce neuroinflammation and intestinal inflammation in OCD-colonized mice. We propose that the gut microbiota likely regulates brain function and behaviors in mice via succinic acid signaling, which contributes to the pathophysiology of OCD through gut-brain crosstalk and may provide new insights into the treatment of this disorder.
Collapse
Affiliation(s)
- Ying-Dan Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dong-Dong Shi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing-Bing Liao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sen Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Gao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liang-Jun Lin
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Institute of Psychological and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Intelligent Psychological Evaluation and Intervention Engineering Technology Research Center, Shanghai, PR China.
| |
Collapse
|
10
|
Nagarajan N, Capecchi MR. Optogenetic stimulation of mouse Hoxb8 microglia in specific regions of the brain induces anxiety, grooming, or both. Mol Psychiatry 2024; 29:1726-1740. [PMID: 37037872 PMCID: PMC11371632 DOI: 10.1038/s41380-023-02019-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 02/17/2023] [Accepted: 02/24/2023] [Indexed: 04/12/2023]
Abstract
Previously, we have shown that either disruption of the Hoxb8 gene or ablation of a microglial subpopulation, Hoxb8 microglia, results in mice exhibiting both chronic anxiety and OCSD-like behavior, compulsive pathological hair pulling (trichotillomania), to the point of showing lesions at the sites of overgrooming. Herein we show, that optogenetic stimulation of Hoxb8 microglia in specific regions of the brain induces elevated anxiety, grooming or both. Optogenetic stimulation of Hoxb8 microglia within the dorsomedial striatum (DMS) or the medial prefrontal cortex (mPFC) induces grooming, whereas stimulation of Hoxb8 microglia in the basolateral amygdala (BLA) or central amygdala (CeA) produces elevated anxiety. Optogenetic stimulation of Hoxb8 microglia in the ventral CA1 region of the hippocampus (vCA1) induces both behaviors as well as freezing. In vitro we directly demonstrate that optogenetic stimulation of Hoxb8 microglia in specific regions of the brain activate neighboring neural activity through the induction of the c-fos-immediate early response. These experiments connect outputs from optogenetically stimulated Hoxb8 microglia, within specific regions of the brain, to the activation of neurons and neural circuits that in turn enable induction of these behaviors. These experiments suggest that Hoxb8 microglia are likely to be among, or the main, first responders to signals that evoke these behaviors. The same regions of the brain (DMS, mPFC, BLA, CeA and vCA1) have previously been defined at the neuronal level, by optogenetics, to control anxiety in mice. Intriguingly, the optogenetic experiments in microglia suggest that the two populations of microglia, canonical non-Hoxb8 and Hoxb8 microglia, function in opposition rather than in parallel to each other, providing a biological reason for the presence of two microglial subpopulations in mice.
Collapse
Affiliation(s)
- Naveen Nagarajan
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, USA.
| | - Mario R Capecchi
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, USA.
| |
Collapse
|
11
|
Meng J, Zhang L, Zhang YW. Microglial Dysfunction in Autism Spectrum Disorder. Neuroscientist 2024:10738584241252576. [PMID: 38712859 DOI: 10.1177/10738584241252576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Autism spectrum disorder (ASD) is a highly heterogeneous neurodevelopmental disorder with onset in childhood. The molecular mechanisms underlying ASD have not yet been elucidated completely. Evidence has emerged to support a link between microglial dysfunction and the etiology of ASD. This review summarizes current research on microglial dysfunction in neuroinflammation and synaptic pruning, which are associated with altered transcriptomes and autophagy in ASD. Dysbiosis of gut microbiota in ASD and its correlation with microglial dysfunction are also addressed.
Collapse
Affiliation(s)
- Jian Meng
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Lingliang Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
12
|
Dadwal S, Heneka MT. Microglia heterogeneity in health and disease. FEBS Open Bio 2024; 14:217-229. [PMID: 37945346 PMCID: PMC10839410 DOI: 10.1002/2211-5463.13735] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/12/2023] [Accepted: 11/08/2023] [Indexed: 11/12/2023] Open
Abstract
Microglia, the resident immune cells of the central nervous system (CNS), have received significant attention due to their critical roles in maintaining brain homeostasis and mediating cerebral immune responses. Understanding the origin of microglia has been a subject of great interest, and emerging evidence suggests that microglia consist of multiple subpopulations with unique molecular and functional characteristics. These subpopulations of microglia may exhibit specialized roles in response to different environmental cues as in disease conditions. The newfound understanding of microglial heterogeneity has significant implications for elucidating their roles in both physiological and pathological conditions. In the context of disease, microglia have been studied rigorously as they play a very important role in neuroinflammation. Dysregulated microglial activation and function contribute to chronic inflammation. Further exploration of microglial heterogeneity and their interactions with other cell types in the CNS will undoubtedly pave the way to novel therapeutic strategies targeting microglia-mediated pathologies. In this review, we discuss the latest advances in the field of microglia research, focusing specifically on the origin and subpopulations of microglia, the populations of microglia types in the brains of patients with neurodegenerative diseases, and how microglia are regulated in the healthy CNS.
Collapse
Affiliation(s)
- Shilauni Dadwal
- Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgBelvalLuxembourg
| | - Michael T. Heneka
- Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgBelvalLuxembourg
- Division of Infectious Diseases and ImmunologyUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| |
Collapse
|
13
|
Rodrigues D, Monteiro P. Chronic stress promotes basal ganglia disinhibition by increasing the excitatory drive of direct-pathway neurons. Neurobiol Stress 2023; 27:100571. [PMID: 37781564 PMCID: PMC10540042 DOI: 10.1016/j.ynstr.2023.100571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/23/2023] [Accepted: 09/12/2023] [Indexed: 10/03/2023] Open
Abstract
Chronic stress (CS) is a well-recognized triggering factor in obsessive-compulsive disorder (OCD) and Tourette's syndrome (TS), two neuropsychiatric disorders characterized by the presence of stereotypic motor symptoms. Planning and execution of motor actions are controlled by the dorsal striatum, a brain region that promotes or suppresses motor movement by activating striatal neurons from the direct- or indirect-pathway, respectively. Despite the dorsal striatum being affected in motor disorders and by CS exposure, how CS affects the two opposing pathways is not fully understood. Here, we report that CS in mice selectively potentiates the direct-pathway, while sparing the indirect-pathway. Specifically, we show that CS both increases excitation and reduces inhibition over direct-pathway neurons in the dorsomedial striatum (DMS). Furthermore, inhibitory interneurons located in the DMS also display reduced excitatory drive after chronic stress, thus amplifying striatal disinhibition. Altogether, we propose a model where both increased excitatory drive and decreased inhibitory drive in the striatum causes disinhibition of basal ganglia's motor direct pathway - a mechanism that might explain the emergence of motor stereotypies and tic disorders under stress.
Collapse
Affiliation(s)
- Diana Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimaraes, Portugal
| | - Patricia Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimaraes, Portugal
- Department of Biomedicine - Experimental Biology Unit, Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| |
Collapse
|
14
|
Zhu H, Guan A, Liu J, Peng L, Zhang Z, Wang S. Noteworthy perspectives on microglia in neuropsychiatric disorders. J Neuroinflammation 2023; 20:223. [PMID: 37794488 PMCID: PMC10548593 DOI: 10.1186/s12974-023-02901-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 09/22/2023] [Indexed: 10/06/2023] Open
Abstract
Microglia are so versatile that they not only provide immune surveillance for central nervous system, but participate in neural circuitry development, brain blood vessels formation, blood-brain barrier architecture, and intriguingly, the regulation of emotions and behaviors. Microglia have a profound impact on neuronal survival, brain wiring and synaptic plasticity. As professional phagocytic cells in the brain, they remove dead cell debris and neurotoxic agents via an elaborate mechanism. The functional profile of microglia varies considerately depending on age, gender, disease context and other internal or external environmental factors. Numerous studies have demonstrated a pivotal involvement of microglia in neuropsychiatric disorders, including negative affection, social deficit, compulsive behavior, fear memory, pain and other symptoms associated with major depression disorder, anxiety disorder, autism spectrum disorder and schizophrenia. In this review, we summarized the latest discoveries regarding microglial ontogeny, cell subtypes or state spectrum, biological functions and mechanistic underpinnings of emotional and behavioral disorders. Furthermore, we highlight the potential of microglia-targeted therapies of neuropsychiatric disorders, and propose outstanding questions to be addressed in future research of human microglia.
Collapse
Affiliation(s)
- Hongrui Zhu
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Ao Guan
- School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Jiayuan Liu
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Li Peng
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Zhi Zhang
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Sheng Wang
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| |
Collapse
|
15
|
Shitova AD, Zharikova TS, Kovaleva ON, Luchina AM, Aktemirov AS, Olsufieva AV, Sinelnikov MY, Pontes-Silva A, Zharikov YO. Tourette syndrome and obsessive-compulsive disorder: A comprehensive review of structural alterations and neurological mechanisms. Behav Brain Res 2023; 453:114606. [PMID: 37524204 DOI: 10.1016/j.bbr.2023.114606] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/02/2023]
Abstract
Currently, it is possible to study the pathogenesis of Tourette's syndrome (TS) in more detail, due to more advanced methods of neuroimaging. However, medical and surgical treatment options are limited by a lack of understanding of the nature of the disorder and its relationship to some psychiatric disorders, the most common of which is obsessive-compulsive disorder (OCD). It is believed that the origin of chronic tic disorders is based on an imbalance of excitatory and inhibitory influences in the Cortico-Striato-Thalamo-Cortical circuits (CSTC). The main CSTCs involved in the pathological process have been identified by studying structural and neurotransmitter disturbances in the interaction between the cortex and the basal ganglia. A neurotransmitter deficiency in CSTC has been demonstrated by immunohistochemical and genetic methods, but it is still not known whether it arises as a consequence of genetically determined disturbances of neuronal migration during ontogenesis or as a consequence of altered production of proteins involved in neurotransmitter production. The aim of this review is to describe current ideas about the comorbidity of TS with OCD, the involvement of CSTC in the pathogenesis of both disorders and the background of structural and neurotransmitter changes in CSTC that may serve as targets for drug and neuromodulatory treatments.
Collapse
Affiliation(s)
| | - Tatyana S Zharikova
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 125009, Russia
| | - Olga N Kovaleva
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 125009, Russia
| | - Anastasia M Luchina
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 125009, Russia
| | - Arthur S Aktemirov
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 125009, Russia
| | - Anna V Olsufieva
- Moscow University for Industry and Finance "Synergy", Moscow 125315, Russia
| | - Mikhail Y Sinelnikov
- Department of Oncology and Radiotherapy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; Russian National Centre of Surgery, Avtsyn Research Institute of Human Morphology, Moscow 117418, Russia
| | - André Pontes-Silva
- Postgraduate Program in Physical Therapy, Department of Physical Therapy, Universidade Federal de São Carlos, São Carlos, SP, Brazil.
| | - Yury O Zharikov
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 125009, Russia
| |
Collapse
|
16
|
Mackay CE. Trichotillomania: a perspective synthesised from neuroscience and lived experience. BMJ MENTAL HEALTH 2023; 26:e300795. [PMID: 37734751 PMCID: PMC11146365 DOI: 10.1136/bmjment-2023-300795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/25/2023] [Indexed: 09/23/2023]
Abstract
Trichotillomania, or hair-pulling disorder, is one of a family of disorders called body-focused repetitive behaviours (BFRBs), which also include disordered skin-picking (dermotillomania) and nail-biting (onychophagia). The disorders affect 1%-2% of the population, cause high levels of distress and have high levels of comorbidity with other psychiatric diagnoses. The key facts and figures are briefly reviewed and some important points are further explored: (1) BFRBs are associated with psychological distress, but are distinct from other diagnoses, (2) The pathological behaviours mirror excessive self-grooming behaviours in other species, and may relate to immune-system mediated feedback loops, and (3) The resulting behaviours are stigmatised and cause intense shame and isolation for those who suffer, which might in itself maintain the feedback loop. These observations lead to the hypothesis that the core disorder is one of pathological grooming, which may have a basis in an immune response, with shame being both a consequence and a maintainer of the disorder. The major barrier to testing the hypotheses and potential interventions remains the stigma that keeps these disorders, and those who suffer from them, in the shadows.
Collapse
|
17
|
Wilson C, Gattuso JJ, Hannan AJ, Renoir T. Mechanisms of pathogenesis and environmental moderators in preclinical models of compulsive-like behaviours. Neurobiol Dis 2023; 185:106223. [PMID: 37423502 DOI: 10.1016/j.nbd.2023.106223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023] Open
Abstract
Obsessive-compulsive and related disorders (OCRD) is an emergent class of psychiatric illnesses that contributes substantially to the global mental health disease burden. In particular, the prototypical illness, obsessive-compulsive disorder (OCD), has a profoundly deleterious effect on the quality of life of those with lived experience. Both clinical and preclinical studies have investigated the genetic and environmental influences contributing to the pathogenesis of obsessive-compulsive and related disorders. Significant progress has been made in recent years in our understanding of the genetics of OCD, along with the critical role of common environmental triggers (e.g., stress). Some of this progress can be attributed to the sophistication of rodent models used in the field, particularly genetic mutant models, which demonstrate promising construct, face, and predictive validity. However, there is a paucity of studies investigating how these genetic and environmental influences interact to precipitate the behavioural, cellular, and molecular changes that occur in OCD. In this review, we assert that preclinical studies offer a unique opportunity to carefully manipulate environmental and genetic factors, and in turn to interrogate gene-environment interactions and relevant downstream sequelae. Such studies may serve to provide a mechanistic framework to build our understanding of the pathogenesis of complex neuropsychiatric disorders such as OCD. Furthermore, understanding gene-environment interactions and pathogenic mechanisms will facilitate precision medicine and other future approaches to enhance treatment, reduce side-effects of therapeutic interventions, and improve the lives of those suffering from these devastating disorders.
Collapse
Affiliation(s)
- Carey Wilson
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia
| | - James J Gattuso
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
| | - Thibault Renoir
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia.
| |
Collapse
|
18
|
Bohic M, Upadhyay A, Eisdorfer JT, Keating J, Simon RC, Briones BA, Azadegan C, Nacht HD, Oputa O, Martinez AM, Bethell BN, Gradwell MA, Romanienko P, Ramer MS, Stuber GD, Abraira VE. A new Hoxb8FlpO mouse line for intersectional approaches to dissect developmentally defined adult sensorimotor circuits. Front Mol Neurosci 2023; 16:1176823. [PMID: 37603775 PMCID: PMC10437123 DOI: 10.3389/fnmol.2023.1176823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/04/2023] [Indexed: 08/23/2023] Open
Abstract
Improvements in the speed and cost of expression profiling of neuronal tissues offer an unprecedented opportunity to define ever finer subgroups of neurons for functional studies. In the spinal cord, single cell RNA sequencing studies support decades of work on spinal cord lineage studies, offering a unique opportunity to probe adult function based on developmental lineage. While Cre/Flp recombinase intersectional strategies remain a powerful tool to manipulate spinal neurons, the field lacks genetic tools and strategies to restrict manipulations to the adult mouse spinal cord at the speed at which new tools develop. This study establishes a new workflow for intersectional mouse-viral strategies to dissect adult spinal function based on developmental lineages in a modular fashion. To restrict manipulations to the spinal cord, we generate a brain-sparing Hoxb8FlpO mouse line restricting Flp recombinase expression to caudal tissue. Recapitulating endogenous Hoxb8 gene expression, Flp-dependent reporter expression is present in the caudal embryo starting day 9.5. This expression restricts Flp activity in the adult to the caudal brainstem and below. Hoxb8FlpO heterozygous and homozygous mice do not develop any of the sensory or locomotor phenotypes evident in Hoxb8 heterozygous or mutant animals, suggesting normal developmental function of the Hoxb8 gene and protein in Hoxb8FlpO mice. Compared to the variability of brain recombination in available caudal Cre and Flp lines, Hoxb8FlpO activity is not present in the brain above the caudal brainstem, independent of mouse genetic background. Lastly, we combine the Hoxb8FlpO mouse line with dorsal horn developmental lineage Cre mouse lines to express GFP in developmentally determined dorsal horn populations. Using GFP-dependent Cre recombinase viruses and Cre recombinase-dependent inhibitory chemogenetics, we target developmentally defined lineages in the adult. We show how developmental knock-out versus transient adult silencing of the same ROR𝛃 lineage neurons affects adult sensorimotor behavior. In summary, this new mouse line and viral approach provides a blueprint to dissect adult somatosensory circuit function using Cre/Flp genetic tools to target spinal cord interneurons based on genetic lineage.
Collapse
Affiliation(s)
- Manon Bohic
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
| | - Aman Upadhyay
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
- Neuroscience PhD Program at Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, United States
| | - Jaclyn T. Eisdorfer
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
| | - Jessica Keating
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
- School of Medicine, Oregon Health and Science University, Portland, OR, United States
- M.D./PhD Program in Neuroscience, School of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Rhiana C. Simon
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Brandy A. Briones
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Chloe Azadegan
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
| | - Hannah D. Nacht
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
| | - Olisemeka Oputa
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
| | - Alana M. Martinez
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
| | - Bridget N. Bethell
- International Collaboration on Repair Discoveries and Department of Zoology, The University of British Columbia, Vancouver, BC, Canada
| | - Mark A. Gradwell
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
| | - Peter Romanienko
- Genome Editing Shared Resource, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Matt S. Ramer
- International Collaboration on Repair Discoveries and Department of Zoology, The University of British Columbia, Vancouver, BC, Canada
| | - Garret D. Stuber
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Victoria E. Abraira
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States
| |
Collapse
|
19
|
Liu Y, Zhang L, Ai M, Xia D, Chen H, Pang R, Mei R, Zhong L, Chen L. Upregulation of SLITRK5 in patients with epilepsy and in a rat model. Synapse 2023; 77:e22266. [PMID: 36811190 DOI: 10.1002/syn.22266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 02/24/2023]
Abstract
SLIT and NTRK-like protein-5 (SLITRK5) is one of the six members of SLITRK protein family, which is widely expressed in central nervous system (CNS). In brain, SLITRK5 plays important roles in neurite outgrowth, dendritic branching, neuron differentiation, synaptogenesis, and signal transmission of neurons. Epilepsy is a common, chronic neurological disorder characterized by recurrent spontaneous seizures. The pathophysiological mechanism of epilepsy remains unclear. Neuronal apoptosis, abnormal nerve excitatory transmission, and synaptic remodeling are thought to be involved in the development of epilepsy. To explore whether there is a potential relationship between SLITRK5 and epilepsy, we investigated the expression and distribution of SLITRK5 in patients with temporal lobe epilepsy (TLE) and a rat model of epilepsy. We collected cerebral cortex samples from patients with drug-refractory temporal lobe epilepsy, and a rat model of epilepsy induced by lithium chloride/pilocarpine was established. The ways of immunohistochemistry, double-immunofluorescence labeling and western blot have been used in our study to research the expression and distribution of SLITRK5 in the temporal lobe epilepsy patients and epilepsy animal model. All of the results have shown that SLITRK5 is mainly localized in the cell cytoplasm of neurons both in patients with TLE and in epilepsy model. In addition, compared with nonepileptic controls, the expression of SLITRK5 was upregulated in the temporal neocortex of TLE patients. And both in the temporal neocortex and hippocampus of pilocarpine-induced epilepsy rats, the expression of SLITRK5 was increased at 24 h after status epilepticus (SE), with a relatively high level within 30 days, and reached the peak on the 7th day after SE. Our preliminary results revealed that SLITRK5 may have a potential relationship with epilepsy, which may be a foundation for the further study of the underlying mechanism between SLITRK5 and epilepsy and the therapeutic targets of antiepileptic drugs.
Collapse
Affiliation(s)
- Yan Liu
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Linming Zhang
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Mingda Ai
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Di Xia
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hongyu Chen
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ruijing Pang
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Rong Mei
- Department of Neurology, Yunnan Provincial Clinical Research Center for Neurological Disease, Kunming, Yunnan, China
| | - Lianmei Zhong
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Department of Neurology, the First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Ling Chen
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Department of Neurology, the First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| |
Collapse
|
20
|
Wang J, He W, Zhang J. A richer and more diverse future for microglia phenotypes. Heliyon 2023; 9:e14713. [PMID: 37025898 PMCID: PMC10070543 DOI: 10.1016/j.heliyon.2023.e14713] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/01/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
Microglia are the only resident innate immune cells derived from the mesoderm in the nerve tissue. They play a role in the development and maturation of the central nervous system (CNS). Microglia mediate the repair of CNS injury and participate in endogenous immune response induced by various diseases by exerting neuroprotective or neurotoxic effects. Traditionally, microglia are considered to be in a resting state, the M0 type, under physiological conditions. In this state, they perform immune surveillance by constantly monitoring pathological responses in the CNS. In the pathological state, microglia undergo a series of morphological and functional changes from the M0 state and eventually polarize into classically activated microglia (M1) and alternatively activated microglia (M2). M1 microglia release inflammatory factors and toxic substances to inhibit pathogens, while M2 microglia exert neuroprotective effects by promoting nerve repair and regeneration. However, in recent years, the view regarding M1/M2 polarization of microglia has gradually changed. According to some researchers, the phenomenon of microglia polarization is not yet confirmed. The M1/M2 polarization term is used for a simplified description of its phenotype and function. Other researchers believe that the microglia polarization process is rich and diverse, and consequently, the classification method of M1/M2 has limitations. This conflict hinders the academic community from establishing more meaningful microglia polarization pathways and terms, and therefore, a careful revision of the concept of microglia polarization is required. The present article briefly reviews the current consensus and controversy regarding microglial polarization typing to provide supporting materials for a more objective understanding of the functional phenotype of microglia.
Collapse
|
21
|
Nanda H, Frye RE. Synchrony 2022: Catalyzing Research and Treatments to Benefit Individuals with Neurodevelopmental Disorders including Autism Spectrum Disorders. J Pers Med 2023; 13:jpm13030490. [PMID: 36983672 PMCID: PMC10053654 DOI: 10.3390/jpm13030490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
A unique translational medicine conference for research into treatments that can benefit individuals with neurodevelopmental disorders (NDD), including autism spectrum disorder (ASD), has been developed and hosted by The BRAIN Foundation (Pleasanton, CA, USA) since 2019 [...]
Collapse
Affiliation(s)
- Heer Nanda
- University of California, Berkeley, CA 94720, USA
| | - Richard E. Frye
- Autism Discovery and Treatment Foundation, Phoenix, AZ 85050, USA
- Rossignol Medical Center, Phoenix, AZ 85050, USA
- Southwest Autism Research and Resource Center, Phoenix, AZ 85006, USA
- Correspondence:
| |
Collapse
|
22
|
The Sapap3 -/- mouse reconsidered as a comorbid model expressing a spectrum of pathological repetitive behaviours. Transl Psychiatry 2023; 13:26. [PMID: 36717540 PMCID: PMC9886949 DOI: 10.1038/s41398-023-02323-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/30/2022] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
Symptom comorbidity is present amongst neuropsychiatric disorders with repetitive behaviours, complicating clinical diagnosis and impeding appropriate treatments. This is of particular importance for obsessive-compulsive disorder (OCD) and Tourette syndrome. Here, we meticulously analysed the behaviour of Sapap3 knockout mice, the recent rodent model predominantly used to study compulsive-like behaviours, and found that its behaviour is more complex than originally and persistently described. Indeed, we detected previously unreported elements of distinct pathologically repetitive behaviours, which do not form part of rodent syntactic cephalo-caudal self-grooming. These repetitive behaviours include sudden, rapid body and head/body twitches, resembling tic-like movements. We also observed that another type of repetitive behaviour, aberrant hindpaw scratching, might be responsible for the flagship-like skin lesions of this mouse model. In order to characterise the symptomatological nature of observed repetitive behaviours, we pharmacologically challenged these phenotypes by systemic aripiprazole administration, a first-line treatment for tic-like symptoms in Tourette syndrome and trichotillomania. A single treatment of aripiprazole significantly reduced the number of head/body twitches, scratching, and single-phase grooming, but not syntactic grooming events. These observations are in line with the high comorbidity of tic- and compulsive-like symptoms in Tourette, OCD and trichotillomania patients.
Collapse
|
23
|
Han S, Bang S, Kim HN, Choi N, Kim SH. Modulating and monitoring the functionality of corticostriatal circuits using an electrostimulable microfluidic device. Mol Brain 2023; 16:13. [PMID: 36670465 PMCID: PMC9863144 DOI: 10.1186/s13041-023-01007-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/14/2023] [Indexed: 01/22/2023] Open
Abstract
The central nervous system is organized into different neural circuits, each with particular functions and properties. Studying neural circuits is essential to understanding brain function and neuronal diseases. Microfluidic systems are widely used for reconstructing and studying neural circuits but still need improvement to allow modulation and monitoring of the physiological properties of circuits. In this study, we constructed an improved microfluidic device that supports the electrical modulation of neural circuits and proper reassembly. We demonstrated that our microfluidic device provides a platform for electrically modulating and monitoring the physiological function of neural circuits with genetic indicators for synaptic functionality in corticostriatal (CStr) circuits. In particular, our microfluidic device measures activity-driven Ca2+ dynamics using Ca2+ indicators (synaptophysin-GCaMP6f and Fluo5F-AM), as well as activity-driven synaptic transmission and retrieval using vGlut-pHluorin. Overall, our findings indicate that the improved microfluidic platform described here is an invaluable tool for studying the physiological properties of specific neural circuits.
Collapse
Affiliation(s)
- Sukmin Han
- grid.289247.20000 0001 2171 7818Department of Neuroscience, Graduate School, Kyung Hee University, Seoul, 02447 Republic of Korea
| | - Seokyoung Bang
- grid.35541.360000000121053345Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792 Republic of Korea
| | - Hong Nam Kim
- grid.35541.360000000121053345Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792 Republic of Korea
| | - Nakwon Choi
- grid.35541.360000000121053345Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792 Republic of Korea
| | - Sung Hyun Kim
- grid.289247.20000 0001 2171 7818Department of Neuroscience, Graduate School, Kyung Hee University, Seoul, 02447 Republic of Korea ,grid.289247.20000 0001 2171 7818Department of Physiology, School of Medicine, Kyung Hee University, Seoul, 02447 Republic of Korea ,grid.289247.20000 0001 2171 7818Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Kyung Hee University, Seoul, 02447 South Korea
| |
Collapse
|
24
|
Xiong Y, Chen J, Li Y. Microglia and astrocytes underlie neuroinflammation and synaptic susceptibility in autism spectrum disorder. Front Neurosci 2023; 17:1125428. [PMID: 37021129 PMCID: PMC10067592 DOI: 10.3389/fnins.2023.1125428] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/03/2023] [Indexed: 04/07/2023] Open
Abstract
Autism spectrum disorder (ASD) is a common neurodevelopmental disorder with onset in childhood. The mechanisms underlying ASD are unclear. In recent years, the role of microglia and astrocytes in ASD has received increasing attention. Microglia prune the synapses or respond to injury by sequestrating the injury site and expressing inflammatory cytokines. Astrocytes maintain homeostasis in the brain microenvironment through the uptake of ions and neurotransmitters. However, the molecular link between ASD and microglia and, or astrocytes remains unknown. Previous research has shown the significant role of microglia and astrocytes in ASD, with reports of increased numbers of reactive microglia and astrocytes in postmortem tissues and animal models of ASD. Therefore, an enhanced understanding of the roles of microglia and astrocytes in ASD is essential for developing effective therapies. This review aimed to summarize the functions of microglia and astrocytes and their contributions to ASD.
Collapse
|
25
|
Aberrant cortico-striatal white matter connectivity and associated subregional microstructure of the striatum in obsessive-compulsive disorder. Mol Psychiatry 2022; 27:3460-3467. [PMID: 35618882 DOI: 10.1038/s41380-022-01588-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 11/09/2022]
Abstract
The striatum and its cortical circuits play central roles in the pathophysiology of obsessive-compulsive disorder (OCD). The striatum is subdivided by cortical connections and functions; however, the anatomical aberrations in different cortico-striatal connections and coexisting microstructural anomalies in striatal subregions of OCD patients are poorly understood. Thus, we aimed to elucidate the aberrations in cortico-striatal white matter (WM) connectivity and the associated subregional microstructure of the striatum in patients with OCD. From diffusion tensor/kurtosis imaging of 107 unmedicated OCD patients and 110 matched healthy controls (HCs), we calculated the cortico-striatal WM connectivity and segmented the striatum using probabilistic tractography. For the segmented striatal subregions, we measured average diffusion kurtosis values, which represent microstructural complexity. Connectivity and mean kurtosis values in each cortical target and associated striatal subregions were compared between groups. We identified significantly reduced orbitofrontal WM connectivity with its associated striatal subregion in patients with OCD compared to that in HCs. However, OCD patients exhibited significantly increased caudal-motor and parietal connectivity with the associated striatal subregions. The mean kurtosis values of the striatal subregions connected to the caudal-motor and parietal cortex were significantly decreased in OCD patients. Our results highlighted contrasting patterns of striatal WM connections with the orbitofrontal and caudal-motor/parietal cortices, thus supporting the cortico-striatal circuitry imbalance model of OCD. We suggest that aberrations in WM connections and the microstructure of their downstream regions in the caudal-motor-/parietal-striatal circuits may underlie OCD pathophysiology and further provide potential neuromodulation targets for the treatment of OCD.
Collapse
|
26
|
Jagadapillai R, Qiu X, Ojha K, Li Z, El-Baz A, Zou S, Gozal E, Barnes GN. Potential Cross Talk between Autism Risk Genes and Neurovascular Molecules: A Pilot Study on Impact of Blood Brain Barrier Integrity. Cells 2022; 11:2211. [PMID: 35883654 PMCID: PMC9315816 DOI: 10.3390/cells11142211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 12/10/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is a common pediatric neurobiological disorder with up to 80% of genetic etiologies. Systems biology approaches may make it possible to test novel therapeutic strategies targeting molecular pathways to alleviate ASD symptoms. A clinical database of autism subjects was queried for individuals with a copy number variation (CNV) on microarray, Vineland, and Parent Concern Questionnaire scores. Pathway analyses of genes from pathogenic CNVs yielded 659 genes whose protein-protein interactions and mRNA expression mapped 121 genes with maximal antenatal expression in 12 brain regions. A Research Domain Criteria (RDoC)-derived neural circuits map revealed significant differences in anxiety, motor, and activities of daily living skills scores between altered CNV genes and normal microarrays subjects, involving Positive Valence (reward), Cognition (IQ), and Social Processes. Vascular signaling was identified as a biological process that may influence these neural circuits. Neuroinflammation, microglial activation, iNOS and 3-nitrotyrosine increase in the brain of Semaphorin 3F- Neuropilin 2 (Sema 3F-NRP2) KO, an ASD mouse model, agree with previous reports in the brain of ASD individuals. Signs of platelet deposition, activation, release of serotonin, and albumin leakage in ASD-relevant brain regions suggest possible blood brain barrier (BBB) deficits. Disruption of neurovascular signaling and BBB with neuroinflammation may mediate causative pathophysiology in some ASD subgroups. Although preliminary, these data demonstrate the potential for developing novel therapeutic strategies based on clinically derived data, genomics, cognitive neuroscience, and basic neuroscience methods.
Collapse
Affiliation(s)
- Rekha Jagadapillai
- Department of Neurology, Pediatric Research Institute, Louisville, KY 40202, USA; (R.J.); (X.Q.); (K.O.)
- University of Louisville Autism Center, Louisville, KY 40217, USA
| | - Xiaolu Qiu
- Department of Neurology, Pediatric Research Institute, Louisville, KY 40202, USA; (R.J.); (X.Q.); (K.O.)
- University of Louisville Autism Center, Louisville, KY 40217, USA
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Child Health, Jiangxi Provincial Children’s Hospital, Donghu District, Nanchang 330006, China;
| | - Kshama Ojha
- Department of Neurology, Pediatric Research Institute, Louisville, KY 40202, USA; (R.J.); (X.Q.); (K.O.)
- University of Louisville Autism Center, Louisville, KY 40217, USA
| | - Zhu Li
- Department of Neurology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA;
| | - Ayman El-Baz
- Department of Bioengineering, University of Louisville Speed School, Louisville, KY 40292, USA;
| | - Shipu Zou
- Department of Child Health, Jiangxi Provincial Children’s Hospital, Donghu District, Nanchang 330006, China;
| | - Evelyne Gozal
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Gregory N. Barnes
- Department of Neurology, Pediatric Research Institute, Louisville, KY 40202, USA; (R.J.); (X.Q.); (K.O.)
- University of Louisville Autism Center, Louisville, KY 40217, USA
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
27
|
Liu Y, Zhang L, Mei R, Ai M, Pang R, Xia D, Chen L, Zhong L. The Role of SliTrk5 in Central Nervous System. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4678026. [PMID: 35872846 PMCID: PMC9303146 DOI: 10.1155/2022/4678026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 06/06/2022] [Accepted: 06/23/2022] [Indexed: 11/18/2022]
Abstract
SLIT and NTRK-like protein-5 (SliTrk5) is one of the six members of SliTrk protein family, which is widely expressed in the central nervous system (CNS), regulating and participating in many essential steps of central nervous system development, including axon and dendritic growth, neuron differentiation, and synaptogenesis. SliTrk5, as a neuron transmembrane protein, contains two important conservative domains consisting of leucine repeats (LRRs) located at the amino terminal in the extracellular region and tyrosine residues (Tyr) located at the carboxyl terminal in the intracellular domains. These special structures make SliTrk5 play an important role in the pathological process of the CNS. A large number of studies have shown that SliTrk5 may be involved in the pathogenesis of CNS diseases, such as obsessive-compulsive-disorder (OCD), attention deficit/hyperactivity disorder (ADHD), glioma, autism spectrum disorders (ASDs), and Parkinson's disease (PD). Targeting SliTrk5 is expected to become a new target for the treatment of CNS diseases, promoting the functional recovery of CNS. The purpose of this article is to review the current research progression of the role of SliTrk5 in CNS and its potential mechanisms in CNS diseases.
Collapse
Affiliation(s)
- Yan Liu
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Linming Zhang
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
- Yunnan Provincial Clinical Research Center for Neurological Disease, Kunming, Yunnan 650032, China
| | - Rong Mei
- Department of Neurology, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650034, China
| | - Mingda Ai
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Ruijing Pang
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Di Xia
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Ling Chen
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
- Yunnan Provincial Clinical Research Center for Neurological Disease, Kunming, Yunnan 650032, China
| | - Lianmei Zhong
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
- Department of Neurology, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650034, China
| |
Collapse
|
28
|
Friedberg A, Ramos EM, Yang Z, Bonham LW, Yokoyama JS, Ljubenkov PA, Younes K, Geschwind DH, Miller BL. Case Report: Novel CSF1R Variant in a Patient With Behavioral Variant Frontotemporal Dementia Syndrome With Prodromal Repetitive Scratching Behavior. Front Neurol 2022; 13:909944. [PMID: 35812083 PMCID: PMC9256970 DOI: 10.3389/fneur.2022.909944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022] Open
Abstract
CSF1R-related leukoencephalopathy is an autosomal dominant neurodegenerative disease caused by mutations in the tyrosine kinase domain of the colony stimulating factor 1 receptor (CSF1R). Several studies have found that hematogenic stem cell transplantation is an effective disease modifying therapy however the literature regarding prodromal and early symptoms CSF1R-related leukoencephalopathy is limited. We describe a 63-year-old patient with 4 years of repetitive scratching and skin picking behavior followed by 10 years of progressive behavioral, cognitive, and motor decline in a pattern suggesting behavioral variant of frontotemporal dementia. Brain MRI demonstrated prominent frontal and parietal atrophy accompanied by underlying bilateral patchy white matter hyperintensities sparing the U fibers and cavum septum pellucidum. Whole-exome sequencing revealed a novel, predicted deleterious missense variant in a highly conserved amino acid in the tyrosine kinase domain of CSF1R (p.Gly872Arg). Given this evidence and the characteristic clinical and radiological findings this novel variant was classified as likely pathogenic according to the American College of Medical Genetics standard guidelines. Detailed description of the prodromal scratching and skin picking behavior and possible underlying mechanisms in this case furthers knowledge about early manifestations of CSF1R-related leukoencephalopathy with the hope that early detection and timely administration of disease modifying therapies becomes possible.
Collapse
Affiliation(s)
- Adit Friedberg
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, United States
- Trinity College Dublin, Dublin, Ireland
| | - Eliana Marisa Ramos
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Zhongan Yang
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Luke W. Bonham
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Jennifer S. Yokoyama
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, United States
- Trinity College Dublin, Dublin, Ireland
| | - Peter A. Ljubenkov
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Kyan Younes
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Daniel H. Geschwind
- Program in Neurogenetics, Department of Neurology, Center for Autism Research and Treatment, David Geffen School of Medicine, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, United States
| | - Bruce L. Miller
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, United States
- *Correspondence: Bruce L. Miller
| |
Collapse
|
29
|
Peng Z, He T, Ren P, Jin L, Yang Q, Xu C, Wen R, Chen J, Wei Z, Verguts T, Chen Q. Imbalance between the caudate and putamen connectivity in obsessive-compulsive disorder. Neuroimage Clin 2022; 35:103083. [PMID: 35717885 PMCID: PMC9213242 DOI: 10.1016/j.nicl.2022.103083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/04/2022] [Accepted: 06/11/2022] [Indexed: 11/30/2022]
Abstract
The imbalance between the caudate and putamen connectivity in OCD patient arises from the abnormal connection of caudate. The abnormal caudate connectivity mainly results from the outward extension of cortico-striato-thalamo-cortical loop. The caudate connectivity of OCD patients is negatively associated with their task-switch performance.
Background Compulsive behaviors in obsessive–compulsive disorder (OCD) have been suggested to result from an imbalance in cortico-striatal connectivity. However, the nature of this impairment, the relative involvement of different striatal areas, their imbalance in genetically related but unimpaired individuals, and their relationship with cognitive dysfunction in OCD patients, remain unknown. Methods In the current study, striatal (i.e., caudate and putamen) whole-brain connectivity was computed in a sample of OCD patients (OCD, n = 62), unaffected first-degree relatives (UFDR, n = 53) and healthy controls (HC, n = 73) by ROI-based resting-state functional magnetic resonance imaging (rs-fMRI). A behavioral task switch paradigm outside of the scanner was also performed to measure cognitive flexibility in OCD patients. Results There were significantly increased strengths (Z-transformed Pearson correlation coefficient) in caudate connectivity in OCD patients. A significant correlation between the two types of connectivity strengths in the relevant regions was observed only in the OCD patient group. Furthermore, the caudate connectivity of patients was negatively associated with their task-switch performance. Conclusions The imbalance between the caudate and putamen connectivity, arising from the abnormal increase of caudate activity, may serve as a clinical characteristic for obsessive–compulsive disorder.
Collapse
Affiliation(s)
- Ziwen Peng
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China.
| | - Tingxin He
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Ping Ren
- Department of Geriatric Psychiatry, Shenzhen Kangning Hospital, 518020 Shenzhen, China
| | - Lili Jin
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Qiong Yang
- Southern Medical University, 510515 Guangzhou, China; Affiliated Brain Hospital of Guangzhou Medical University, 510370 Guangzhou, China
| | - Chuanyong Xu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Rongzhen Wen
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Jierong Chen
- Department of Child Psychiatry and Rehabilitation, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, 518017 Shenzhen, China
| | - Zhen Wei
- Department of Child Psychiatry and Rehabilitation, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, 518017 Shenzhen, China
| | - Tom Verguts
- Department of Experimental Psychology, Ghent University, 9000 Ghent, Belgium
| | - Qi Chen
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China.
| |
Collapse
|
30
|
Cai Y, Liu J, Wang B, Sun M, Yang H. Microglia in the Neuroinflammatory Pathogenesis of Alzheimer's Disease and Related Therapeutic Targets. Front Immunol 2022; 13:856376. [PMID: 35558075 PMCID: PMC9086828 DOI: 10.3389/fimmu.2022.856376] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease worldwide, characterized by progressive neuron degeneration or loss due to excessive accumulation of β-amyloid (Aβ) peptides, formation of neurofibrillary tangles (NFTs), and hyperphosphorylated tau. The treatment of AD has been only partially successful as the majority of the pharmacotherapies on the market may alleviate some of the symptoms. In the occurrence of AD, increasing attention has been paid to neurodegeneration, while the resident glial cells, like microglia are also observed. Microglia, a kind of crucial glial cells associated with the innate immune response, functions as double-edge sword role in CNS. They exert a beneficial or detrimental influence on the adjacent neurons through secretion of both pro-inflammatory cytokines as well as neurotrophic factors. In addition, their endocytosis of debris and toxic protein like Aβ and tau ensures homeostasis of the neuronal microenvironment. In this review, we will systematically summarize recent research regarding the roles of microglia in AD pathology and latest microglia-associated therapeutic targets mainly including pro-inflammatory genes, anti-inflammatory genes and phagocytosis at length, some of which are contradictory and controversial and warrant to further be investigated.
Collapse
Affiliation(s)
| | | | | | - Miao Sun
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hao Yang
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
31
|
Van Deren DA, De S, Xu B, Eschenbacher KM, Zhang S, Capecchi MR. Defining the Hoxb8 cell lineage during murine definitive hematopoiesis. Development 2022; 149:dev200200. [PMID: 35452096 PMCID: PMC9124572 DOI: 10.1242/dev.200200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 04/04/2022] [Indexed: 12/02/2022]
Abstract
Previously, we have demonstrated that a subpopulation of microglia, known as Hoxb8 microglia, is derived from the Hoxb8 lineage during the second wave (E8.5) of yolk sac hematopoiesis, whereas canonical non-Hoxb8 microglia arise from the first wave (E7.5). Hoxb8 microglia have an ontogeny distinct from non-Hoxb8 microglia. Dysfunctional Hoxb8 microglia cause the acquisition of chronic anxiety and an obsessive-compulsive spectrum-like behavior, trichotillomania, in mice. The nature and fate of the progenitors generated during E8.5 yolk sac hematopoiesis have been controversial. Herein, we use the Hoxb8 cell lineage reporter to define the ontogeny of hematopoietic cells arising during the definitive waves of hematopoiesis initiated in the E8.5 yolk sac and aorta-gonad-mesonephros (AGM) region. Our murine cell lineage analysis shows that the Hoxb8 cell lineage reporter robustly marks erythromyeloid progenitors, hematopoietic stem cells and their progeny, particularly monocytes. Hoxb8 progenitors and microglia require Myb function, a hallmark transcription factor for definitive hematopoiesis, for propagation and maturation. During adulthood, all immune lineages and, interestingly, resident macrophages in only hematopoietic/lymphoid tissues are derived from Hoxb8 precursors. These results illustrate that the Hoxb8 lineage exclusively mirrors murine definitive hematopoiesis.
Collapse
Affiliation(s)
- Donn A. Van Deren
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Shrutokirti De
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Ben Xu
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Kayla M. Eschenbacher
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Interdepartmental Program in Neuroscience, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Shuhua Zhang
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Mario R. Capecchi
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Interdepartmental Program in Neuroscience, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| |
Collapse
|
32
|
Gene expression study in monocytes: evidence of inflammatory dysregulation in early-onset obsessive-compulsive disorder. Transl Psychiatry 2022; 12:134. [PMID: 35361798 PMCID: PMC8971392 DOI: 10.1038/s41398-022-01905-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 11/08/2022] Open
Abstract
Obsessive-compulsive disorder (OCD) has a complex etiology that seems to include immune dysfunction and alterations in circulating monocytes. To investigate the immune basis and the functional dysregulation of monocytes in this disease, we analyzed gene expression in the peripheral monocytes of pediatric patients with OCD (N = 102) compared to controls (N = 47). We examined gene expression in primary cultures of peripheral monocytes from participants, under basal conditions and under exposure to lipopolysaccharide (LPS) to stimulate immune response. Whole-genome expression was assessed in 8 patients and 8 controls. Differentially expressed genes were identified followed by protein-protein interaction network construction and functional annotation analysis to identify the genes and biological processes that are altered in the monocytes of OCD patients. We also explored the expression levels of selected genes in monocytes from the other participants using qPCR. Several changes in gene expression were observed in the monocytes of OCD patients, with several immune processes involved under basal conditions (antigen processing and presentation, regulation of immune system and leukocyte cell adhesion) and after LPS stimulation (immune and inflammatory response, cytokine production and leukocyte activation). Despite the qPCR analysis provided no significant differences between patients and controls, high correlations were observed between the expression levels of some of the genes and inflammatory markers (i.e., T helper 17 and regulatory T cell levels, total monocyte and proinflammatory monocyte subset levels, and the cytokine production by resting and stimulated monocytes) of the study participants. Our findings provide more evidence of the involvement of monocyte dysregulation in early-onset OCD, indicating a proinflammatory predisposition and an enhanced immune response to environmental triggers.
Collapse
|
33
|
Gibson AS, West PJ, Keefe KA. Effects of methamphetamine-induced neurotoxicity on striatal long-term potentiation. Psychopharmacology (Berl) 2022; 239:93-104. [PMID: 34985532 PMCID: PMC8728478 DOI: 10.1007/s00213-021-06055-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/27/2021] [Indexed: 11/28/2022]
Abstract
RATIONALE Methamphetamine (METH) exposure is associated with damage to central monoamine systems, particularly dopamine signaling. Rodent models of such damage have revealed a decrease in the amplitude of phasic dopamine signals and significant striatal dysfunction, including changes in the molecular, system, and behavioral functions of the striatum. Dopamine signaling through D1 receptors promotes corticostriatal long-term potentiation (LTP), a critical substrate of these striatal functions. OBJECTIVES Therefore, the purpose of this study was to determine if METH-induced dopamine neurotoxicity would impair D1 receptor-dependent striatal LTP in mice. METHODS Mice were treated with a METH binge regimen (4 × 10 mg/kg d,l-methamphetamine, s.c.) that recapitulates all of the known METH-induced neurotoxic effects observed in humans, including dopamine toxicity. Three weeks later, acute brain slices containing either the dorsomedial striatum (DMS) or dorsolateral striatum (DLS) were prepared, and plasticity was assessed using white matter, high-frequency stimulation (HFS), and striatal extracellular electrophysiology. RESULTS Under these conditions, LTP was induced in brain slices containing the DMS from saline-pretreated mice, but not mice with METH-induced neurotoxicity. Furthermore, the LTP observed in DMS slices from saline-pretreated mice was blocked by the dopamine D1 receptor antagonist SCH23390, indicating that this LTP is dopamine D1 receptor-dependent. Finally, acute in vivo treatment of METH-pretreated mice with bupropion (50 mg/kg, i.p.) promoted LTP in DMS slices. CONCLUSIONS Together, these studies demonstrate that METH-induced neurotoxicity impairs dopamine D1 receptor-dependent LTP within the DMS and that the FDA-approved drug bupropion restores induction of striatal LTP in mice with METH-induced dopamine neurotoxicity.
Collapse
Affiliation(s)
- Anne S. Gibson
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT USA ,Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, 30 S 2000 E Rm 201, Salt Lake City, UT 84112 USA
| | - Peter J. West
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT USA ,Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, 30 S 2000 E Rm 201, Salt Lake City, UT 84112 USA ,Anticonvulsant Drug Development Program, University of Utah, Salt Lake City, UT USA
| | - Kristen A. Keefe
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT USA ,Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, 30 S 2000 E Rm 201, Salt Lake City, UT 84112 USA
| |
Collapse
|
34
|
Soteros BM, Sia GM. Complement and microglia dependent synapse elimination in brain development. WIREs Mech Dis 2021; 14:e1545. [PMID: 34738335 PMCID: PMC9066608 DOI: 10.1002/wsbm.1545] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 01/31/2023]
Abstract
Synapse elimination, also known as synaptic pruning, is a critical step in the maturation of neural circuits during brain development. Mounting evidence indicates that the complement cascade of the innate immune system plays an important role in synapse elimination. Studies indicate that excess synapses during development are opsonized by complement proteins and subsequently phagocytosed by microglia which expresses complement receptors. The process is regulated by diverse molecular signals, including complement inhibitors that affect the activation of complement, as well as signals that affect microglial recruitment and activation. These signals may promote or inhibit the removal of specific sets of synapses during development. The complement-microglia system has also been implicated in the pathogenesis of several developmental brain disorders, suggesting that the dysregulation of mechanisms of synapse pruning may underlie the specific circuitry defects in these diseases. Here, we review the latest evidence on the molecular and cellular mechanisms of complement-dependent and microglia-dependent synapse elimination during brain development, and highlight the potential of this system as a therapeutic target for developmental brain disorders. This article is categorized under: Neurological Diseases > Molecular and Cellular Physiology Neurological Diseases > Stem Cells and Development Immune System Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Breeanne M Soteros
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Gek Ming Sia
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
35
|
Altered corticostriatal synchronization associated with compulsive-like behavior in APP/PS1 mice. Exp Neurol 2021; 344:113805. [PMID: 34242631 DOI: 10.1016/j.expneurol.2021.113805] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/17/2021] [Accepted: 07/02/2021] [Indexed: 11/22/2022]
Abstract
Mild behavioral impairment (MBI), which can include compulsive behavior, is an early sign of Alzheimer's disease (AD), but its underlying neural mechanisms remain unclear. Here, we show that 3-5-month-old APP/PS1 mice display obsessive-compulsive disorder (OCD)-like behavior. The number of parvalbumin-positive (PV) interneurons and level of high gamma (γhigh) oscillation are significantly decreased in the striatum of AD mice. This is accompanied by enhanced β-γhigh coupling and firing rates of putative striatal projection neurons (SPNs), indicating decorrelation between PV interneurons and SPNs. Local field potentials (LFPs) simultaneously recorded in prefrontal cortex (PFC) and striatum (Str) demonstrate a decrease in γhigh-band coherent activity and spike-field coherence in corticostriatal circuits of APP/PS1 mice. Furthermore, levels of GABAB receptor (GABABR), but not GABAA receptor (GABAAR), and glutamatergic receptors, were markedly reduced, in line with presymptomatic AD-related behavioral changes. These findings suggest that MBI occurs as early as 3-5 months in APP/PS1 mice and that altered corticostriatal synchronization may play a role in mediating the behavioral phenotypes observed.
Collapse
|
36
|
Hammond BP, Manek R, Kerr BJ, Macauley MS, Plemel JR. Regulation of microglia population dynamics throughout development, health, and disease. Glia 2021; 69:2771-2797. [PMID: 34115410 DOI: 10.1002/glia.24047] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/20/2021] [Accepted: 05/28/2021] [Indexed: 12/11/2022]
Abstract
The dynamic expansions and contractions of the microglia population in the central nervous system (CNS) to achieve homeostasis are likely vital for their function. Microglia respond to injury or disease but also help guide neurodevelopment, modulate neural circuitry throughout life, and direct regeneration. Throughout these processes, microglia density changes, as does the volume of area that each microglia surveys. Given that microglia are responsible for sensing subtle alterations to their environment, a change in their density could affect their capacity to mobilize rapidly. In this review, we attempt to synthesize the current literature on the ligands and conditions that promote microglial proliferation across development, adulthood, and neurodegenerative conditions. Microglia display an impressive proliferative capacity during development and in neurodegenerative diseases that is almost completely absent at homeostasis. However, the appropriate function of microglia in each state is critically dependent on density fluctuations that are primarily induced by proliferation. Proliferation is a natural microglial response to insult and often serves neuroprotective functions. In contrast, inappropriate microglial proliferation, whether too much or too little, often precipitates undesirable consequences for nervous system health. Thus, fluctuations in the microglia population are tightly regulated to ensure these immune cells can execute their diverse functions.
Collapse
Affiliation(s)
- Brady P Hammond
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Rupali Manek
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Bradley J Kerr
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Anesthesiology & Pain Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada.,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Jason R Plemel
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Medicine, Division of Neurology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
37
|
Zheng T, Zhang Z. Activated microglia facilitate the transmission of α-synuclein in Parkinson's disease. Neurochem Int 2021; 148:105094. [PMID: 34097990 DOI: 10.1016/j.neuint.2021.105094] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/23/2021] [Accepted: 05/31/2021] [Indexed: 01/31/2023]
Abstract
Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta and abnormal aggregates of α-synuclein protein called Lewy bodies. To date, there is no drug that can definitely slow down or stop the progression of this disease. The discovery of the cell-to-cell transmission of pathologic α-synuclein seeds offers the possibility to explore novel treatment strategies to prevent the spread of α-synuclein, with the purpose of slowing down the progression of PD in its tracks. Although recent studies have made tremendous progress in understanding how α-synuclein spreads throughout the brain, neuroinflammation seems to play a crucial role in the development of α-synuclein pathology in PD. The activation of microglia, one of the hallmarks of the neuroinflammatory process, is suggested to influence the neuron-to-neuron transmission of α-synuclein. This review summarizes how activated microglia facilitate this process, and focuses on the following mechanisms including the activation of microglia in PD, the reduced ability of activated microglia to clear α-synuclein and increased migratory capacity of microglia in PD, as well as the cooperation between microglia and exosomes in mediating α-synuclein release and propagation. In conclusion, this article help collate information on microglia in-relation to PD.
Collapse
Affiliation(s)
- Tingting Zheng
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), 54 Youdian Road, Hangzhou 310006, China
| | - Zhengxiang Zhang
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), 54 Youdian Road, Hangzhou 310006, China.
| |
Collapse
|
38
|
Troyer EA, Kohn JN, Ecklu-Mensah G, Aleti G, Rosenberg DR, Hong S. Searching for host immune-microbiome mechanisms in obsessive-compulsive disorder: A narrative literature review and future directions. Neurosci Biobehav Rev 2021; 125:517-534. [PMID: 33639178 DOI: 10.1016/j.neubiorev.2021.02.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 02/09/2021] [Accepted: 02/22/2021] [Indexed: 12/20/2022]
Abstract
Obsessive-compulsive disorder (OCD) is disabling and often treatment-refractory. Host immunity and gut microbiota have bidirectional communication with each other and with the brain. Perturbations to this axis have been implicated in neuropsychiatric disorders, but immune-microbiome signaling in OCD is relatively underexplored. We review support for further pursuing such investigations in OCD, including: 1) gut microbiota has been associated with OCD, but causal pathogenic mechanisms remain unclear; 2) early environmental risk factors for OCD overlap with critical periods of immune-microbiome development; 3) OCD is associated with increased risk of immune-mediated disorders and changes in immune parameters, which are separately associated with the microbiome; and 4) gut microbiome manipulations in animal models are associated with changes in immunity and some obsessive-compulsive symptoms. Theoretical pathogenic mechanisms could include microbiota programming of cytokine production, promotion of expansion and trafficking of peripheral immune cells to the CNS, and regulation of microglial function. Immune-microbiome signaling in OCD requires further exploration, and may offer novel insights into pathogenic mechanisms and potential treatment targets for this disabling disorder.
Collapse
Affiliation(s)
- Emily A Troyer
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States.
| | - Jordan N Kohn
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States
| | - Gertrude Ecklu-Mensah
- Department of Medicine and Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States
| | - Gajender Aleti
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States
| | - David R Rosenberg
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan, United States
| | - Suzi Hong
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States; Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, California, United States
| |
Collapse
|
39
|
Selective postnatal excitation of neocortical pyramidal neurons results in distinctive behavioral and circuit deficits in adulthood. iScience 2021; 24:102157. [PMID: 33665575 PMCID: PMC7907816 DOI: 10.1016/j.isci.2021.102157] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 10/03/2020] [Accepted: 02/03/2021] [Indexed: 01/08/2023] Open
Abstract
In genetic and pharmacological models of neurodevelopmental disorders, and human data, neural activity is altered within the developing neocortical network. This commonality begs the question of whether early enhancement in excitation might be a common driver, across etiologies, of characteristic behaviors. We tested this concept by chemogenetically driving cortical pyramidal neurons during postnatal days 4–14. Hyperexcitation of Emx1-, but not dopamine transporter-, parvalbumin-, or Dlx5/6-expressing neurons, led to decreased social interaction and increased grooming activity in adult animals. In vivo optogenetic interrogation in adults revealed decreased baseline but increased stimulus-evoked firing rates of pyramidal neurons and impaired recruitment of inhibitory neurons. Slice recordings in adults from prefrontal cortex layer 5 pyramidal neurons revealed decreased intrinsic excitability and increased synaptic E/I ratio. Together these results support the prediction that enhanced pyramidal firing during development, in otherwise normal cortex, can selectively drive altered adult circuit function and maladaptive changes in behavior. BL-OG allows chemogenetic activation and optogenetic interrogation in the same animal Developmental hyperexcitation in normal mice leads to neurodevelopmental disorders In these mice adult neurons show reduced baseline activity and increased excitability Reduced activity-triggered coherence and altered oscillations in cortex and striatum
Collapse
|
40
|
Cao X, Liu WP, Cheng LG, Li HJ, Wu H, Liu YH, Chen C, Xiao X, Li M, Wang GD, Zhang YP. Whole genome analyses reveal significant convergence in obsessive-compulsive disorder between humans and dogs. Sci Bull (Beijing) 2021; 66:187-196. [PMID: 36654227 DOI: 10.1016/j.scib.2020.09.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 08/20/2020] [Accepted: 08/31/2020] [Indexed: 01/20/2023]
Abstract
Obsessive-compulsive disorder (OCD) represents a heterogeneous collection of diseases with diverse levels of phenotypic, genetic, and etiologic variability, making it difficult to identify the underlying genetic and biological mechanisms in humans. Domestic dogs exhibit several OCD-like behaviors. Using continuous circling as a representative phenotype for OCD, we screened two independent dog breeds, the Belgian Malinois and Kunming Dog and subsequently sequenced ten circling dogs and ten unaffected dogs for each breed. Using population differentiation analyses, we identified 11 candidate genes in the extreme tail of the differentiated regions between cases and controls. These genes overlap significantly with genes identified in a genome wide association study (GWAS) of human OCD, indicating strong convergence between humans and dogs. Through gene expressional analysis and functional exploration, we found that two candidate OCD risk genes, PPP2R2B and ADAMTSL3, affected the density and morphology of dendritic spines. Therefore, changes in dendritic spine may underlie some common biological and physiological pathways shared between humans and dogs. Our study revealed an unprecedented level of convergence in OCD shared between humans and dogs, and highlighted the importance of using domestic dogs as a model species for many human diseases including OCD.
Collapse
Affiliation(s)
- Xue Cao
- State Key Laboratory of Genetic Resources and Evolution and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Department of Laboratory Animal Science, Kunming Medical University, Kunming 650500, China
| | - Wei-Peng Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650223, China
| | - Lu-Guang Cheng
- Kunming Police Dog Base, Ministry of Public Security, Kunming 650204, China
| | - Hui-Juan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650223, China
| | - Hong Wu
- Laboratory for Conservation and Utilization of Bio-resource & Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, China
| | - Yan-Hu Liu
- State Key Laboratory of Genetic Resources and Evolution and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Chao Chen
- Kunming Police Dog Base, Ministry of Public Security, Kunming 650204, China
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650223, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| | - Guo-Dong Wang
- State Key Laboratory of Genetic Resources and Evolution and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
41
|
Gandhi T, Lee CC. Neural Mechanisms Underlying Repetitive Behaviors in Rodent Models of Autism Spectrum Disorders. Front Cell Neurosci 2021; 14:592710. [PMID: 33519379 PMCID: PMC7840495 DOI: 10.3389/fncel.2020.592710] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
Autism spectrum disorder (ASD) is comprised of several conditions characterized by alterations in social interaction, communication, and repetitive behaviors. Genetic and environmental factors contribute to the heterogeneous development of ASD behaviors. Several rodent models display ASD-like phenotypes, including repetitive behaviors. In this review article, we discuss the potential neural mechanisms involved in repetitive behaviors in rodent models of ASD and related neuropsychiatric disorders. We review signaling pathways, neural circuits, and anatomical alterations in rodent models that display robust stereotypic behaviors. Understanding the mechanisms and circuit alterations underlying repetitive behaviors in rodent models of ASD will inform translational research and provide useful insight into therapeutic strategies for the treatment of repetitive behaviors in ASD and other neuropsychiatric disorders.
Collapse
Affiliation(s)
- Tanya Gandhi
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | | |
Collapse
|
42
|
Bentea E, Villers A, Moore C, Funk AJ, O’Donovan SM, Verbruggen L, Lara O, Janssen P, De Pauw L, Declerck NB, DePasquale EAK, Churchill MJ, Sato H, Hermans E, Arckens L, Meshul CK, Ris L, McCullumsmith RE, Massie A. Corticostriatal dysfunction and social interaction deficits in mice lacking the cystine/glutamate antiporter. Mol Psychiatry 2021; 26:4754-4769. [PMID: 32366950 PMCID: PMC7609546 DOI: 10.1038/s41380-020-0751-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/07/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022]
Abstract
The astrocytic cystine/glutamate antiporter system xc- represents an important source of extracellular glutamate in the central nervous system, with potential impact on excitatory neurotransmission. Yet, its function and importance in brain physiology remain incompletely understood. Employing slice electrophysiology and mice with a genetic deletion of the specific subunit of system xc-, xCT (xCT-/- mice), we uncovered decreased neurotransmission at corticostriatal synapses. This effect was partly mitigated by replenishing extracellular glutamate levels, indicating a defect linked with decreased extracellular glutamate availability. We observed no changes in the morphology of striatal medium spiny neurons, the density of dendritic spines, or the density or ultrastructure of corticostriatal synapses, indicating that the observed functional defects are not due to morphological or structural abnormalities. By combining electron microscopy with glutamate immunogold labeling, we identified decreased intracellular glutamate density in presynaptic terminals, presynaptic mitochondria, and in dendritic spines of xCT-/- mice. A proteomic and kinomic screen of the striatum of xCT-/- mice revealed decreased expression of presynaptic proteins and abnormal kinase network signaling, that may contribute to the observed changes in postsynaptic responses. Finally, these corticostriatal deregulations resulted in a behavioral phenotype suggestive of autism spectrum disorder in the xCT-/- mice; in tests sensitive to corticostriatal functioning we recorded increased repetitive digging behavior and decreased sociability. To conclude, our findings show that system xc- plays a previously unrecognized role in regulating corticostriatal neurotransmission and influences social preference and repetitive behavior.
Collapse
Affiliation(s)
- Eduard Bentea
- grid.8767.e0000 0001 2290 8069Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Agnès Villers
- grid.8364.90000 0001 2184 581XDepartment of Neurosciences, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Cynthia Moore
- grid.410404.50000 0001 0165 2383Research Services, Neurocytology Laboratory, Veterans Affairs Medical Center, Portland, OR USA
| | - Adam J. Funk
- grid.267337.40000 0001 2184 944XDepartment of Neurosciences, University of Toledo College of Medicine, Toledo, OH USA
| | - Sinead M. O’Donovan
- grid.267337.40000 0001 2184 944XDepartment of Neurosciences, University of Toledo College of Medicine, Toledo, OH USA
| | - Lise Verbruggen
- grid.8767.e0000 0001 2290 8069Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Olaya Lara
- grid.8767.e0000 0001 2290 8069Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Pauline Janssen
- grid.8767.e0000 0001 2290 8069Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Laura De Pauw
- grid.8767.e0000 0001 2290 8069Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Noemi B. Declerck
- grid.8767.e0000 0001 2290 8069Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Erica A. K. DePasquale
- grid.239573.90000 0000 9025 8099Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.24827.3b0000 0001 2179 9593Department of Biomedical Informatics, University of Cincinnati, Cincinnati, OH USA
| | - Madeline J. Churchill
- grid.410404.50000 0001 0165 2383Research Services, Neurocytology Laboratory, Veterans Affairs Medical Center, Portland, OR USA
| | - Hideyo Sato
- grid.260975.f0000 0001 0671 5144Department of Medical Technology, Faculty of Medicine, Laboratory of Biochemistry and Molecular Biology, Niigata University, Niigata, Japan
| | - Emmanuel Hermans
- grid.7942.80000 0001 2294 713XInstitute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Lutgarde Arckens
- grid.5596.f0000 0001 0668 7884Laboratory of Neuroplasticity and Neuroproteomics, and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, Leuven, Belgium
| | - Charles K. Meshul
- grid.410404.50000 0001 0165 2383Research Services, Neurocytology Laboratory, Veterans Affairs Medical Center, Portland, OR USA ,grid.5288.70000 0000 9758 5690Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR USA
| | - Laurence Ris
- grid.8364.90000 0001 2184 581XDepartment of Neurosciences, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Robert E. McCullumsmith
- grid.267337.40000 0001 2184 944XDepartment of Neurosciences, University of Toledo College of Medicine, Toledo, OH USA
| | - Ann Massie
- Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium.
| |
Collapse
|
43
|
Abstract
OCD has lagged behind other psychiatric illnesses in the identification of molecular treatment targets, due in part to a lack of significant findings in genome-wide association studies. However, while progress in this area is being made, OCD's symptoms of obsessions, compulsions, and anxiety can be deconstructed into distinct neural functions that can be dissected in animal models. Studies in rodents and non-human primates have highlighted the importance of cortico-basal ganglia-thalamic circuits in OCD pathophysiology, and emerging studies in human post-mortem brain tissue point to glutamatergic synapse abnormalities as a potential cellular substrate for observed dysfunctional behaviors. In addition, accumulated evidence points to a potential role for neuromodulators including serotonin and dopamine in both OCD pathology and treatment. Here, we review current efforts to use animal models for the identification of molecules, cell types, and circuits relevant to OCD pathophysiology. We start by describing features of OCD that can be modeled in animals, including circuit abnormalities and genetic findings. We then review different strategies that have been used to study OCD using animal model systems, including transgenic models, circuit manipulations, and dissection of OCD-relevant neural constructs. Finally, we discuss how these findings may ultimately help to develop new treatment strategies for OCD and other related disorders.
Collapse
Affiliation(s)
- Brittany L Chamberlain
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA.,Center for Neuroscience Program and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Susanne E Ahmari
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA. .,Center for Neuroscience Program and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
44
|
Glorie D, Verhaeghe J, Miranda A, De Lombaerde S, Stroobants S, Staelens S. Sapap3 deletion causes dynamic synaptic density abnormalities: a longitudinal [ 11C]UCB-J PET study in a model of obsessive-compulsive disorder-like behaviour. EJNMMI Res 2020; 10:140. [PMID: 33185747 PMCID: PMC7666267 DOI: 10.1186/s13550-020-00721-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/20/2020] [Indexed: 12/21/2022] Open
Abstract
Background Currently, the evidence on synaptic abnormalities in neuropsychiatric disorders—including obsessive–compulsive disorder (OCD)—is emerging. The newly established positron emission tomography (PET) ligand ((R)-1-((3-((11)C-methyl-(11)C)pyridin-4-yl)methyl)-4-(3,4,5-trifluorophenyl)pyrrolidin-2-one) ([11C]UCB-J) provides the opportunity to visualize synaptic density changes in vivo, by targeting the synaptic vesicle protein 2A (SV2A). Here, we aim to evaluate such alterations in the brain of the SAP90/PSD-95-associated protein 3 (Sapap3) knockout (ko) mouse model, showing an abnormal corticostriatal neurotransmission resulting in OCD-like behaviour. Methods Longitudinal [11C]UCB-J µPET/CT scans were acquired in Sapap3 ko and wildtype (wt) control mice (n = 9/group) to study SV2A availability. Based on the Logan reference method, we calculated the volume of distribution (VT(IDIF)) for [11C]UCB-J. Both cross-sectional (wt vs. ko) and longitudinal (3 vs. 9 months) volume-of-interest-based statistical analysis and voxel-based statistical parametric mapping were performed. Both [11C]UCB-J ex vivo autoradiography and [3H]UCB-J in vitro autoradiography were used for the validation of the µPET data. Results At the age of 3 months, Sapap3 ko mice are already characterized by a significantly lower SV2A availability compared to wt littermates (i.a. cortex − 12.69%, p < 0.01; striatum − 14.12%, p < 0.001, thalamus − 13.11%, p < 0.001, and hippocampus − 12.99%, p < 0.001). Healthy ageing in control mice was associated with a diffuse and significant (p < 0.001) decline throughout the brain, whereas in Sapap3 ko mice this decline was more confined to the corticostriatal level. A strong linear relationship (p < 0.0001) was established between the outcome parameters of [11C]UCB-J µPET and [11C]UCB-J ex vivo autoradiography, while such relationship was absent for [3H]UCB-J in vitro autoradiography. Conclusions [11C]UCB-J PET is a potential marker for synaptic density deficits in the Sapap3 ko mouse model for OCD, parallel to disease progression. Our data suggest that [11C]UCB-J ex vivo autoradiography is a suitable proxy for [11C]UCB-J PET data in mice.
Collapse
Affiliation(s)
- Dorien Glorie
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Universiteitsplein 1, Wilrijk, Belgium
| | - Jeroen Verhaeghe
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Universiteitsplein 1, Wilrijk, Belgium
| | - Alan Miranda
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Universiteitsplein 1, Wilrijk, Belgium
| | - Stef De Lombaerde
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Universiteitsplein 1, Wilrijk, Belgium.,Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Sigrid Stroobants
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Universiteitsplein 1, Wilrijk, Belgium.,Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Steven Staelens
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Universiteitsplein 1, Wilrijk, Belgium.
| |
Collapse
|
45
|
Muehlmann AM, Maletz S, King MA, Lewis MH. Pharmacological targeting of striatal indirect pathway neurons improves subthalamic nucleus dysfunction and reduces repetitive behaviors in C58 mice. Behav Brain Res 2020; 391:112708. [PMID: 32461129 DOI: 10.1016/j.bbr.2020.112708] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 12/14/2022]
Abstract
Repetitive behaviors (e.g., stereotypic movements, compulsions, rituals) are common features of a number of neurodevelopmental disorders. Clinical and animal model studies point to the importance of cortical-basal ganglia circuitry in the mediation of repetitive behaviors. In the current study, we tested whether a drug cocktail (dopamine D2 receptor antagonist + adenosine A2A receptor agonist + glutamate mGlu5 positive allosteric modulator) designed to activate the indirect basal ganglia pathway would reduce repetitive behavior in C58 mice after both acute and sub-chronic administration. In addition, we hypothesized that sub-chronic administration (i.e. 7 days of twice-daily injections) would increase the functional activation of the subthalamic nucleus (STN), a key node of the indirect pathway. Functional activation of STN was indexed by dendritic spine density, analysis of GABA, glutamate, and synaptic plasticity genes, and cytochrome oxidase activity. The drug cocktail used significantly reduced repetitive motor behavior in C58 mice after one night as well as seven nights of twice-nightly injections. These effects did not reflect generalized motor behavior suppression as non-repetitive motor behaviors such as grooming, digging and eating were not reduced relative to vehicle. Sub-chronic drug treatment targeting striatopallidal neurons resulted in significant changes in the STN, including a four-fold increase in brain-derived neurotrophic factor (BDNF) mRNA expression as well as a significant increase in dendritic spine density. The present findings are consistent with, and extend, our prior work linking decreased functioning of the indirect basal ganglia pathway to expression of repetitive motor behavior in C58 mice and suggest novel therapeutic targets.
Collapse
Affiliation(s)
| | | | - Michael A King
- Department of Pharmacology and Therapeutics, University of Florida, United States
| | - Mark H Lewis
- Department of Psychiatry, University of Florida, United States.
| |
Collapse
|
46
|
Dong Y, Li S, Lu Y, Li X, Liao Y, Peng Z, Li Y, Hou L, Yuan Z, Cheng J. Stress-induced NLRP3 inflammasome activation negatively regulates fear memory in mice. J Neuroinflammation 2020; 17:205. [PMID: 32635937 PMCID: PMC7341659 DOI: 10.1186/s12974-020-01842-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/14/2020] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Persistent inflammation dysregulation and cognitive decline have been associated with several trauma- and stress-related disorders such as posttraumatic stress disorder (PTSD) and anxiety disorder. Despite the abundant discoveries of neuroinflammation in such disorders, the underlying mechanisms still remain unclear. METHOD Wild-type and Nlrp3-/- mice were exposed to the electric foot shocks in the contextual fear memory paradigm. Three hours after the electric foot shocks, activation of the NLRP3 inflammasome was investigated through immunoblotting and ELISA. Microglia were isolated and analyzed by quantitative real-time PCR. Hippocampal tissues were collected 3 h and 72 h after the electric foot shocks and subjected to RNA sequencing. MCC950 was administrated to mice via intraperitoneal (i.p.) injection. Interleukin-1 receptor antagonist (IL-ra) and interleukin-1β (IL-1β) were delivered via intracerebroventricular (i.c.v.) infusion. Contextual fear responses of mice were tested on 4 consecutive days (test days 1-4) starting at 48 h after the electric foot shocks. Anxiety-like behaviors were examined by elevated plus maze and open-field test. RESULTS We demonstrated that, in the contextual fear memory paradigm, the NLRP3 inflammasome was activated 3 h after electric foot shocks. We also found an upregulation in toll-like receptor and RIG-I-like receptor signaling, and a decrease in postsynaptic density (PSD) related proteins, such as PSD95 and Shank proteins, in the hippocampus 72 h after the electric foot shocks, indicating an association between neuroinflammation and PSD protein loss after stress encounter. Meanwhile, Nlrp3 knockout could significantly prevent both neuroinflammation and loss of PSD-related proteins, suggesting a possible protective role of NLRP3 deletion during this process. For further studies, we demonstrated that both genetic knockout and pharmaceutical inhibition of the NLRP3 inflammasome remarkably enhanced the extinction of contextual fear memory and attenuated anxiety-like behavior caused by electric foot shocks. Moreover, cytokine IL-1β administration inhibited the extinction of contextual fear memory. Meanwhile, IL-1ra significantly enhanced the extinction of contextual fear memory and attenuated anxiety-like behavior. CONCLUSION Taken together, our data revealed the pivotal role of NLRP3 inflammasome activation in the regulation of fear memory and the development of PTSD and anxiety disorder, providing a novel target for the clinical treatment of such disorders.
Collapse
Affiliation(s)
- Yuan Dong
- Department of Biochemistry, Medical College, Qingdao University, Qingdao, 266071, Shandong, China
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Shuoshuo Li
- The State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- The College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiming Lu
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Xiaoheng Li
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Yajin Liao
- Center on Translational Neuroscience, College of Life & Environmental Science, Minzu University of China, Beijing, 100081, China
| | - Zhixin Peng
- School of Medicine, University of South China, Hengyang, Hunan, China
| | - Yunfeng Li
- Department of New Drug Evaluation, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Lin Hou
- Department of Biochemistry, Medical College, Qingdao University, Qingdao, 266071, Shandong, China.
| | - Zengqiang Yuan
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing, 100850, China.
| | - Jinbo Cheng
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing, 100850, China.
- Center on Translational Neuroscience, College of Life & Environmental Science, Minzu University of China, Beijing, 100081, China.
| |
Collapse
|
47
|
Everett GJ, Jafferany M, Skurya J. Recent advances in the treatment of trichotillomania (hair-pulling disorder). Dermatol Ther 2020; 33:e13818. [PMID: 32531098 DOI: 10.1111/dth.13818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/16/2022]
Abstract
Trichotillomania (TTM) is a condition in which affected individuals pull out their hair resulting in hair loss. This disorder affects roughly 0.5% to 2.0% of the population and can have significant psychological morbidity. Behavioral therapy has been used with success in the treatment of TTM, but not all patients are willing or able to comply with this treatment strategy. There is a need for effective pharmacological treatment options. Historically, pharmacotherapy for TTM has been inadequate in most cases, but recent advances have been made in this regard. Fluoxetine, clomipramine, olanzapine, and naltrexone have all been used in the treatment of TTM, but evidence of benefit has varied, and side effect profiles can limit practical utility. Recent advances in the understanding of the pathophysiology of TTM, as well as evidence of benefit seen with some glutamate-modulating agents such as N-acetylcysteine and dronabinol, have provided newer potential pharmacotherapy options.
Collapse
Affiliation(s)
- Gregory J Everett
- Division of Psychodermatology, Central Michigan University, Saginaw, Michigan, USA
| | - Mohammad Jafferany
- Division of Psychodermatology, Central Michigan University, Saginaw, Michigan, USA
| | - Jonathon Skurya
- Division of Psychodermatology, Central Michigan University, Saginaw, Michigan, USA
| |
Collapse
|
48
|
Yang Y, Zhang Z. Microglia and Wnt Pathways: Prospects for Inflammation in Alzheimer's Disease. Front Aging Neurosci 2020; 12:110. [PMID: 32477095 PMCID: PMC7241259 DOI: 10.3389/fnagi.2020.00110] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/30/2020] [Indexed: 01/27/2023] Open
Abstract
Alzheimer’s disease (AD) has been a major health issue for more than one century since it was first reported in 1906. As one of the most common neurodegenerative diseases, AD is characterized by the presence of senile plaques and neurofibrillary tangles (NFTs) in the affected brain area. Microglia are the major regulators of neuroinflammation in the brain, and neuroinflammation has become recognized as the core pathophysiological process of various neurodegenerative diseases. In the central nervous system (CNS), microglia play a dual role in AD development. For one thing, they degrade amyloid β (Aβ) to resist its deposition; for another, microglia release pro-inflammatory and inflammatory factors, contributing to neuroinflammation as well as the spreading of Aβ and tau pathology. Wnt pathways are important regulators of cell fate and cell activities. The dysregulation of Wnt pathways is responsible for both abnormal tau phosphorylation and synaptic loss in AD. Recent studies have also confirmed the regulatory effect of Wnt signaling on microglial inflammation. Thus, the study of microglia, Wnt pathways, and their possible interactions may open up a new direction for understanding the mechanisms of neuroinflammation in AD. In this review, we summarize the functions of microglia and Wnt pathways and their roles in AD in order to provide new ideas for understanding the pathogenesis of AD.
Collapse
Affiliation(s)
- Yunying Yang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
49
|
Tan YL, Yuan Y, Tian L. Microglial regional heterogeneity and its role in the brain. Mol Psychiatry 2020; 25:351-367. [PMID: 31772305 PMCID: PMC6974435 DOI: 10.1038/s41380-019-0609-8] [Citation(s) in RCA: 274] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/07/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023]
Abstract
Microglia have been recently shown to manifest a very interesting phenotypical heterogeneity across different regions in the mammalian central nervous system (CNS). However, the underlying mechanism and functional meaning of this phenomenon are currently unclear. Baseline diversities of adult microglia in their cell number, cellular and subcellular structures, molecular signature as well as relevant functions have been discovered. But recent transcriptomic studies using bulk RNAseq and single-cell RNAseq have produced conflicting results on region-specific signatures of microglia. It is highly speculative whether such spatial heterogeneity contributes to varying sensitivities of individual microglia to the same physiological and pathological signals in different CNS regions, and hence underlie their functional relevance for CNS disease development. This review aims to thoroughly summarize up-to-date knowledge on this specific topic and provide some insights on the potential underlying mechanisms, starting from microgliogenesis. Understanding regional heterogeneity of microglia in the context of their diverse neighboring neurons and other glia may provide an important clue for future development of innovative therapies for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Yun-Long Tan
- Psychiatry Research Centre, Beijing Huilongguan Hospital, Peking University Health Science Center, Beijing, China
| | - Yi Yuan
- Children's Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Li Tian
- Psychiatry Research Centre, Beijing Huilongguan Hospital, Peking University Health Science Center, Beijing, China.
- Institute of Biomedicine and Translational Medicine, Department of Physiology, Faculty of Medicine, University of Tartu, Tartu, Estonia.
| |
Collapse
|
50
|
Tränkner D, Boulet A, Peden E, Focht R, Van Deren D, Capecchi M. A Microglia Sublineage Protects from Sex-Linked Anxiety Symptoms and Obsessive Compulsion. Cell Rep 2019; 29:791-799.e3. [PMID: 31644903 PMCID: PMC6876991 DOI: 10.1016/j.celrep.2019.09.045] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/23/2019] [Accepted: 09/16/2019] [Indexed: 12/30/2022] Open
Abstract
Aberrant microglia activity is associated with many neurological and psychiatric disorders, yet our knowledge about the pathological mechanisms is incomplete. Here, we describe a genetically defined microglia sublineage in mice which has the ability to suppress obsessive compulsion and anxiety symptoms. These microglia derive from precursors expressing the transcription factor Hoxb8. Selective ablation of Hoxb8-lineage microglia or the Hoxb8 gene revealed that dysfunction in this cell type causes severe over-grooming and anxiety-like behavior and stress responses. Moreover, we show that the severity of the pathology is set by female sex hormones. Together, our findings reveal that different microglia lineages have distinct functions. In addition, our data suggest a mechanistic link between biological sex and genetics, two major risk factors for developing anxiety and related disorders in humans.
Collapse
Affiliation(s)
- Dimitri Tränkner
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA; Department of Human Genetics, School of Medicine, University of Utah, Salt Lake City, UT 84112, USA.
| | - Anne Boulet
- Department of Human Genetics, School of Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Erik Peden
- Department of Human Genetics, School of Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Richard Focht
- Department of Human Genetics, School of Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Donn Van Deren
- Department of Human Genetics, School of Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Mario Capecchi
- Department of Human Genetics, School of Medicine, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|