1
|
Meier TB, Savitz J, España LY, Goeckner BD, Kent Teague T, van der Horn HJ, Tugan Muftuler L, Mayer AR, Brett BL. Association of concussion history with psychiatric symptoms, limbic system structure, and kynurenine pathway metabolites in healthy, collegiate-aged athletes. Brain Behav Immun 2025; 123:619-630. [PMID: 39414174 PMCID: PMC11624060 DOI: 10.1016/j.bbi.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024] Open
Abstract
Psychiatric outcomes are commonly observed in individuals with repeated concussions, though their underlying mechanism is unknown. One potential mechanism linking concussion with psychiatric symptoms is inflammation-induced activation of the kynurenine pathway, which is thought to play a role in the pathogenesis of mood disorders. Here, we investigated the association of prior concussion with multiple psychiatric-related outcomes in otherwise healthy male and female collegiate-aged athletes (N = 212) with varying histories of concussion recruited from the community. Specially, we tested the hypotheses that concussion history is associated with worse psychiatric symptoms, limbic system structural abnormalities (hippocampal volume, white matter microstructure assessed using neurite orientation dispersion and density imaging; NODDI), and elevations in kynurenine pathway (KP) metabolites (e.g., Quinolinic acid; QuinA). Given known sex-effects on concussion risk and recovery, psychiatric outcomes, and the kynurenine pathway, the moderating effect of sex was considered for all analyses. More concussions were associated with greater depression, anxiety, and anhedonia symptoms in female athletes (ps ≤ 0.005) and greater depression symptoms in male athletes (p = 0.011). More concussions were associated with smaller bilateral hippocampal tail (ps < 0.010) and left hippocampal body (p < 0.001) volumes across male and female athletes. Prior concussion was also associated with elevations in the orientation dispersion index (ODI) and lower intracellular volume fraction in several white matter tracts including the in uncinate fasciculus, cingulum-gyrus, and forceps major and minor, with evidence of female-specific associations in select regions. Regarding serum KP metabolites, more concussions were associated with elevated QuinA in females and lower tryptophan in males (ps ≤ 0.010). Finally, serum levels of QuinA were associated with elevated ODI (male and female athletes) and worse anxiety symptoms (females only), while higher ODI in female athletes and smaller hippocampal volumes in male athletes were associated with more severe anxiety and depression symptoms (ps ≤ 0.05). These data suggest that cumulative concussion is associated with psychiatric symptoms and limbic system structure in healthy athletes, with increased susceptibility to these effects in female athletes. Moreover, the associations of outcomes with serum KP metabolites highlight the KP as one potential molecular pathway underlying these observations.
Collapse
Affiliation(s)
- Timothy B Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, the United States of America; Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, the United States of America; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, the United States of America.
| | - Jonathan Savitz
- Laureate Institute for Brain Research, Tulsa, OK 74136, the United States of America; Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK 74119, the United States of America
| | - Lezlie Y España
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, the United States of America
| | - Bryna D Goeckner
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, the United States of America
| | - T Kent Teague
- Department of Psychiatry, The University of Oklahoma School of Community Medicine, Tulsa, OK 74135, the United States of America; Department of Surgery, The University of Oklahoma School of Community Medicine, Tulsa, OK 74135, the United States of America; Department of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy, Tulsa, OK 74135, the United States of America
| | - Harm Jan van der Horn
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, the United States of America; University of Groningen, University Medical Center Groningen, the Netherlands
| | - L Tugan Muftuler
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, the United States of America
| | - Andrew R Mayer
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, the United States of America; Departments of Neurology and Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM, the United States of America; Department of Psychology, University of New Mexico, Albuquerque, NM, the United States of America
| | - Benjamin L Brett
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, the United States of America; Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, the United States of America
| |
Collapse
|
2
|
Klepits P, Koschutnig K, Zussner T, Fink A. Changes in hippocampal volume and affective functioning after a moderate intensity running intervention. Brain Struct Funct 2024; 230:2. [PMID: 39670994 PMCID: PMC11645311 DOI: 10.1007/s00429-024-02885-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/16/2024] [Indexed: 12/14/2024]
Abstract
This study examined the effects of a moderately intense seven-week running intervention on the hippocampal volume and depressive symptoms of young men (20-31 years of age) from the general population (N = 21). A within-subjects-design involving a two-week baseline period before the running intervention, and two subsequent intervention cycles was applied. At four time points of assessment (t1: start of the study; t2: end of baseline period/start of the intervention; t3: end of the first intervention cycle; t4: end of the 2nd intervention cycle/study end) magnetic resonance imaging was performed and symptoms related to depression were assessed employing the Center for Epidemiological Studies Depression (CES-D) Scale. The intervention resulted in a significant increase in the estimated maximum oxygen uptake (VO2max), measured with a standardized walking test (average increase from 42.07 ml*kg- 1*min- 1 to 46.07 ml*kg- 1*min- 1). The CES-D scores decreased significantly over the course of the running intervention (average decrease from 12.76 to 10.48 on a 20-point scale). Significant volumetric increases in the hippocampus were found, most notably after the first intervention cycle in the left (average increase from 613.41 mm³ to 620.55 mm³) and right hippocampal tail (average increase from 629.77 mm³ to 638.17 mm³). These findings provide new evidence regarding the temporal dynamics of hippocampal changes following engagement in physical activity.
Collapse
Affiliation(s)
| | - Karl Koschutnig
- University of Graz, Graz, Austria
- MRI-Lab Graz, Graz, Austria
| | - Thomas Zussner
- University of Graz, Graz, Austria
- MRI-Lab Graz, Graz, Austria
| | - Andreas Fink
- University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
3
|
Lu J, Xing X, Qu J, Wu J, Zheng M, Hua X, Xu J. Alterations of contralesional hippocampal subfield volumes and relations to cognitive functions in patients with unilateral stroke. Brain Behav 2024; 14:e3645. [PMID: 39135280 PMCID: PMC11319231 DOI: 10.1002/brb3.3645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 06/23/2024] [Accepted: 07/12/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND The volumes of the hippocampal subfields are related to poststroke cognitive dysfunctions. However, it remains unclear whether contralesional hippocampal subfield volume contributes to cognitive impairment. This study aimed to investigate the volumetric differences in the contralesional hippocampal subfields between patients with left and right hemisphere strokes (LHS/RHS). Additionally, correlations between contralesional hippocampal subfield volumes and clinical outcomes were explored. METHODS Fourteen LHS (13 males, 52.57 ± 7.10 years), 13 RHS (11 males, 51.23 ± 15.23 years), and 18 healthy controls (11 males, 46.94 ± 12.74 years) were enrolled. Contralesional global and regional hippocampal volumes were obtained with T1-weighted images. Correlations between contralesional hippocampal subfield volumes and clinical outcomes, including the Montreal Cognitive Assessment (MoCA) and Mini-Mental State Examination (MMSE), were analyzed. Bonferroni correction was applied for multiple comparisons. RESULTS Significant reductions were found in contralesional hippocampal as a whole (adjusted p = .011) and its subfield volumes, including the hippocampal tail (adjusted p = .005), cornu ammonis 1 (CA1) (adjusted p = .002), molecular layer (ML) (adjusted p = .004), granule cell and ML of the dentate gyrus (GC-ML-DG) (adjusted p = .015), CA3 (adjusted p = .009), and CA4 (adjusted p = .014) in the RHS group compared to the LHS group. MoCA and MMSE had positive correlations with volumes of contralesional hippocampal tail (p = .015, r = .771; p = .017, r = .763) and fimbria (p = .020, r = .750; p = .019, r = .753) in the LHS group, and CA3 (p = .007, r = .857; p = .009, r = .838) in the RHS group, respectively. CONCLUSION Unilateral stroke caused volumetric differences in different hippocampal subfields contralesionally, which correlated to cognitive impairment. RHS leads to greater volumetric reduction in the whole contralesional hippocampus and specific subfields (hippocampal tail, CA1, ML, GC-ML-DG, CA3, and CA4) compared to LHS. These changes are correlated with cognitive impairments, potentially due to disrupted neural pathways and interhemispheric communication.
Collapse
Affiliation(s)
- Juan‐Juan Lu
- School of Rehabilitation ScienceShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Xiang‐Xin Xing
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Jiao Qu
- Department of RadiologyShanghai Songjiang District Central HospitalShanghaiChina
| | - Jia‐Jia Wu
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Mou‐Xiong Zheng
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Xu‐Yun Hua
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Jian‐Guang Xu
- School of Rehabilitation ScienceShanghai University of Traditional Chinese MedicineShanghaiChina
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
- Engineering Research Center of Traditional Chinese Medicine Intelligent RehabilitationMinistry of EducationShanghaiChina
| |
Collapse
|
4
|
Patrick RE, Dickinson RA, Gentry MT, Kim JU, Oberlin LE, Park S, Principe JL, Teixeira AL, Weisenbach SL. Treatment resistant late-life depression: A narrative review of psychosocial risk factors, non-pharmacological interventions, and the role of clinical phenotyping. J Affect Disord 2024; 356:145-154. [PMID: 38593940 DOI: 10.1016/j.jad.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Treatment resistant depression (TRD) is a subset of major depressive disorder (MDD) in which symptoms do not respond to front line therapies. In older adults, the assessment and treatment of TRD is complicated by psychosocial risk factors unique to this population, as well as a relative paucity of research. METHODS Narrative review aimed at (1) defining TRLLD for clinical practice and research; (2) describing psychosocial risk factors; (3) reviewing psychological and non-pharmacological treatments; (4) discussing the role of clinical phenotyping for personalized treatment; and (5) outlining research priorities. RESULTS Our definition of TRLLD centers on response to medication and neuromodulation in primary depressive disorders. Psychosocial risk factors include trauma and early life adversity, chronic physical illness, social isolation, personality, and barriers to care. Promising non-pharmacological treatments include cognitive training, psychotherapy, and lifestyle interventions. The utility of clinical phenotyping is highlighted by studies examining the impact of comorbidities, symptom dimensions (e.g., apathy), and structural/functional brain changes. LIMITATIONS There is a relative paucity of TRLLD research. This limits the scope of empirical data from which to derive reliable patterns and complicates efforts to evaluate the literature quantitatively. CONCLUSIONS TRLLD is a complex disorder that demands further investigation given our aging population. While this review highlights the promising breadth of TRLLD research to date, more research is needed to help elucidate, for example, the optimal timing for implementing risk mitigation strategies, the value of collaborative care approaches, specific treatment components associated with more robust response, and phenotyping to help inform treatment decisions.
Collapse
Affiliation(s)
- Regan E Patrick
- Department of Neuropsychology, McLean Hospital, Belmont, MA, United States of America; Division of Geriatric Psychiatry, McLean Hospital, Belmont, MA, United States of America; Department of Psychiatry, Harvard Medical School, Boston, MA, United States of America.
| | - Rebecca A Dickinson
- Department of Neuropsychology, McLean Hospital, Belmont, MA, United States of America; Division of Geriatric Psychiatry, McLean Hospital, Belmont, MA, United States of America
| | - Melanie T Gentry
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States of America
| | - Joseph U Kim
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, United States of America
| | - Lauren E Oberlin
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, United States of America; AdventHealth Research Institute, Neuroscience, Orlando, FL, United States of America
| | - Soohyun Park
- Department of Psychiatry, Tufts Medical Center, Boston, MA, United States of America
| | - Jessica L Principe
- Division of Geriatric Psychiatry, McLean Hospital, Belmont, MA, United States of America; Department of Psychiatry, Harvard Medical School, Boston, MA, United States of America; Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States of America; Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, United States of America
| | - Antonio L Teixeira
- Department of Psychiatry & Behavioral Sciences, UT Health Houston, Houston, TX, United States of America
| | - Sara L Weisenbach
- Department of Neuropsychology, McLean Hospital, Belmont, MA, United States of America; Division of Geriatric Psychiatry, McLean Hospital, Belmont, MA, United States of America; Department of Psychiatry, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
5
|
Chang Z, Wang QY, Li LH, Jiang B, Zhou XM, Zhu H, Sun YP, Pan X, Tu XX, Wang W, Liu CY, Kuang HX. Potential Plausible Role of Stem Cell for Treating Depressive Disorder: a Retrospective Review. Mol Neurobiol 2024; 61:4454-4472. [PMID: 38097915 DOI: 10.1007/s12035-023-03843-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/29/2023] [Indexed: 07/11/2024]
Abstract
Depression poses a significant threat to global physical and mental health, impacting around 3.8% of the population with a rising incidence. Current treatment options primarily involve medication and psychological support, yet their effectiveness remains limited, contributing to high relapse rates. There is an urgent need for innovative and more efficacious treatment modalities. Stem cell therapy, a promising avenue in regenerative medicine for a spectrum of neurodegenerative conditions, has recently garnered attention for its potential application in depression. While much of this work remains preclinical, it has demonstrated considerable promise. Identified mechanisms underlying the antidepressant effects of stem cell therapy encompass the stimulation of neurotrophic factors, immune function modulation, and augmented monoamine levels. Nonetheless, these pathways and other undiscovered mechanisms necessitate further investigation. Depression fundamentally manifests as a neurodegenerative disorder. Given stem cell therapy's success in addressing a range of neurodegenerative pathologies, it opens the door to explore its application in depression treatment. This exploration may include repairing damaged nerves directly or indirectly and inhibiting neurotoxicity. Nevertheless, significant challenges must be overcome before stem cell therapies can be applied clinically. Successful resolution of these issues will ultimately determine the feasibility of incorporating stem cell therapies into the clinical landscape. This narrative review provides insights into the progress of research, potential avenues for exploration, and the prevailing challenges in the implementation of stem cell therapy for treatment of depression.
Collapse
Affiliation(s)
- Zhuo Chang
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Qing-Yi Wang
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Lu-Hao Li
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Bei Jiang
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Xue-Ming Zhou
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Hui Zhu
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Yan-Ping Sun
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Xue Pan
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xu-Xu Tu
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Wei Wang
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Chen-Yue Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hai-Xue Kuang
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China.
| |
Collapse
|
6
|
Zhao X, Du Y, Yao Y, Dai W, Yin Y, Wang G, Li Y, Zhang L. Psilocybin promotes neuroplasticity and induces rapid and sustained antidepressant-like effects in mice. J Psychopharmacol 2024; 38:489-499. [PMID: 38680011 DOI: 10.1177/02698811241249436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
BACKGROUND Psilocybin offers new hope for treating mood disorders due to its rapid and sustained antidepressant effects, as standard medications require weeks or months to exert their effects. However, the mechanisms underlying this action of psilocybin have not been identified. AIMS To investigate whether psilocybin has rapid and sustained antidepressant-like effects in mice and investigate whether its potential mechanisms of action are related to promoted neuroplasticity. METHODS We first examined the antidepressant-like effects of psilocybin in normal mice by the forced swimming test and in chronic corticosterone (CORT)-exposed mice by the sucrose preference test and novelty-suppressed feeding test. Furthermore, to explore the role of neuroplasticity in mediating the antidepressant-like effects of psilocybin, we measured structural neuroplasticity and neuroplasticity-associated protein levels in the prefrontal cortex (PFC) and hippocampus. RESULTS We observed that a single dose of psilocybin had rapid and sustained antidepressant-like effects in both healthy mice and chronic CORT-exposed mice. Moreover, psilocybin ameliorated chronic CORT exposure-induced inhibition of neuroplasticity in the PFC and hippocampus, including by increasing neuroplasticity (total number of dendritic branches and dendritic spine density), synaptic protein (p-GluA1, PSD95 and synapsin-1) levels, BDNF-mTOR signalling pathway activation (BDNF, TrkB and mTOR levels), and promoting neurogenesis (number of DCX-positive cells). CONCLUSIONS Our results demonstrate that psilocybin elicits robust, rapid and sustained antidepressant-like effects which is accompanied by the promotion of neuroplasticity in the PFC and hippocampus.
Collapse
Affiliation(s)
- Xiangting Zhao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- Inner Mongolia Traditional Chinese and Mongolian Medical Research Institute, Hohhot, China
| | - Yingjie Du
- Department of Anaesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yishan Yao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Wei Dai
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yongyu Yin
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Guyan Wang
- Department of Anaesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yunfeng Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Liming Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
7
|
Kuai C, Pu J, Wang D, Tan Z, Wang Y, Xue SW. The association between gray matter volume in the hippocampal subfield and antidepressant efficacy mediated by abnormal dynamic functional connectivity. Sci Rep 2024; 14:8940. [PMID: 38637536 PMCID: PMC11026377 DOI: 10.1038/s41598-024-56866-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/12/2024] [Indexed: 04/20/2024] Open
Abstract
An abnormality of structures and functions in the hippocampus may have a key role in the pathophysiology of major depressive disorder (MDD). However, it is unclear whether structure factors of the hippocampus effectively impact antidepressant responses by hippocampal functional activity in MDD patients. We collected longitudinal data from 36 MDD patients before and after a 3-month course of antidepressant pharmacotherapy. Additionally, we obtained baseline data from 43 healthy controls matched for sex and age. Using resting-state functional magnetic resonance imaging (rs-fMRI), we estimated the dynamic functional connectivity (dFC) of the hippocampal subregions using a sliding-window method. The gray matter volume was calculated using voxel-based morphometry (VBM). The results indicated that patients with MDD exhibited significantly lower dFC of the left rostral hippocampus (rHipp.L) with the right precentral gyrus, left superior temporal gyrus and left postcentral gyrus compared to healthy controls at baseline. In MDD patients, the dFC of the rHipp.L with right precentral gyrus at baseline was correlated with both the rHipp.L volume and HAMD remission rate, and also mediated the effects of the rHipp.L volume on antidepressant performance. Our findings suggested that the interaction between hippocampal structure and functional activity might affect antidepressant performance, which provided a novel insight into the hippocampus-related neurobiological mechanism of MDD.
Collapse
Affiliation(s)
- Changxiao Kuai
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, No. 2318, Yuhangtang Rd, Hangzhou, 311121, Zhejiang Province, People's Republic of China
- Institute of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, People's Republic of China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, People's Republic of China
| | - Jiayong Pu
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, No. 2318, Yuhangtang Rd, Hangzhou, 311121, Zhejiang Province, People's Republic of China
- Institute of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, People's Republic of China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, People's Republic of China
| | - Donglin Wang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, No. 2318, Yuhangtang Rd, Hangzhou, 311121, Zhejiang Province, People's Republic of China.
| | - Zhonglin Tan
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China
| | - Yan Wang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, No. 2318, Yuhangtang Rd, Hangzhou, 311121, Zhejiang Province, People's Republic of China
| | - Shao-Wei Xue
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, No. 2318, Yuhangtang Rd, Hangzhou, 311121, Zhejiang Province, People's Republic of China.
- Institute of Psychological Science, Hangzhou Normal University, Hangzhou, Zhejiang Province, People's Republic of China.
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, People's Republic of China.
| |
Collapse
|
8
|
Chu Z, Yuan L, Lian K, He M, Lu Y, Cheng Y, Xu X, Shen Z. Reduced gray matter volume of the hippocampal tail in melancholic depression: evidence from an MRI study. BMC Psychiatry 2024; 24:183. [PMID: 38443878 PMCID: PMC10913289 DOI: 10.1186/s12888-024-05630-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/21/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Melancholic depression (MD) is one of the most prevalent and severe subtypes of major depressive disorder (MDD). Previous studies have revealed inconsistent results regarding alterations in grey matter volume (GMV) of the hippocampus and amygdala of MD patients, possibly due to overlooking the complexity of their internal structure. The hippocampus and amygdala consist of multiple and functionally distinct subregions, and these subregions may play different roles in MD. This study aims to investigate the volumetric alterations of each subregion of the hippocampus and amygdala in patients with MD and non-melancholic depression (NMD). METHODS A total of 146 drug-naïve, first-episode MDD patients (72 with MD and 74 with NMD) and 81 gender-, age-, and education-matched healthy controls (HCs) were included in the study. All participants underwent magnetic resonance imaging (MRI) scans. The subregional segmentation of hippocampus and amygdala was performed using the FreeSurfer 6.0 software. The multivariate analysis of covariance (MANCOVA) was used to detect GMV differences of the hippocampal and amygdala subregions between three groups. Partial correlation analysis was conducted to explore the relationship between hippocampus or amygdala subfields and clinical characteristics in the MD group. Age, gender, years of education and intracranial volume (ICV) were included as covariates in both MANCOVA and partial correlation analyses. RESULTS Patients with MD exhibited a significantly lower GMV of the right hippocampal tail compared to HCs, which was uncorrelated with clinical characteristics of MD. No significant differences were observed among the three groups in overall and subregional GMV of amygdala. CONCLUSIONS Our findings suggest that specific hippocampal subregions in MD patients are more susceptible to volumetric alterations than the entire hippocampus. The reduced right hippocampal tail may underlie the unique neuropathology of MD. Future longitudinal studies are required to better investigate the associations between reduced right hippocampal tail and the onset and progression of MD.
Collapse
Affiliation(s)
- Zhaosong Chu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, 650032, Kunming, China
- Yunnan Province Clinical Research Center for Mental Health, 650032, Kunming, China
| | - Lijin Yuan
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, 650032, Kunming, China
- Yunnan Province Clinical Research Center for Mental Health, 650032, Kunming, China
| | - Kun Lian
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, 650032, Kunming, China
- Yunnan Province Clinical Research Center for Mental Health, 650032, Kunming, China
| | - Mengxin He
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, 650032, Kunming, China
- Yunnan Province Clinical Research Center for Mental Health, 650032, Kunming, China
| | - Yi Lu
- Department of Medical Imaging, The First Affiliated Hospital of Kunming Medical University, 650032, Kunming, China
| | - Yuqi Cheng
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, 650032, Kunming, China
- Yunnan Province Clinical Research Center for Mental Health, 650032, Kunming, China
| | - Xiufeng Xu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, 650032, Kunming, China.
- Yunnan Province Clinical Research Center for Mental Health, 650032, Kunming, China.
| | - Zonglin Shen
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, 650032, Kunming, China.
- Yunnan Province Clinical Research Center for Mental Health, 650032, Kunming, China.
| |
Collapse
|
9
|
Gliozzi M, Coppoletta AR, Cardamone A, Musolino V, Carresi C, Nucera S, Ruga S, Scarano F, Bosco F, Guarnieri L, Macrì R, Mollace R, Belzung C, Mollace V. The dangerous "West Coast Swing" by hyperglycaemia and chronic stress in the mouse hippocampus: Role of kynurenine catabolism. Pharmacol Res 2024; 201:107087. [PMID: 38301816 DOI: 10.1016/j.phrs.2024.107087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/03/2024]
Abstract
Growing epidemiological studies highlight a bi-directional relationship between depressive symptoms and diabetes mellitus. However, the detrimental impact of their co-existence on mental health suggests the need to treat this comorbidity as a separate entity rather than the two different pathologies. Herein, we characterized the peculiar mechanisms activated in mouse hippocampus from the concurrent development of hyperglycaemia, characterizing the different diabetes subtypes, and chronic stress, recognized as a possible factor predisposing to major depression. Our work demonstrates that kynurenine overproduction, leading to apoptosis in the hippocampus, is triggered in a different way depending on hyperglycaemia or chronic stress. Indeed, in the former, kynurenine appears produced by infiltered macrophages whereas, in the latter, peripheral kynurenine preferentially promotes resident microglia activation. In this scenario, QA, derived from kynurenine catabolism, appears a key mediator causing glutamatergic synapse dysfunction and apoptosis, thus contributing to brain atrophy. We demonstrated that the coexistence of hyperglycaemia and chronic stress worsened hippocampal damage through alternative mechanisms, such as GLUT-4 and BDNF down-expression, denoting mitochondrial dysfunction and apoptosis on one hand and evoking the compromission of neurogenesis on the other. Overall, in the degeneration of neurovascular unit, hyperglycaemia and chronic stress interacted each other as the partners of a "West Coast Swing" in which the leading role can be assumed alternatively by each partner of the dance. The comprehension of these mechanisms can open novel perspectives in the management of diabetic/depressed patients, but also in the understanding the pathogenesis of other neurodegenerative disease characterized by the compromission of hippocampal function.
Collapse
Affiliation(s)
- Micaela Gliozzi
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy.
| | - Anna Rita Coppoletta
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Antonio Cardamone
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Musolino
- Laboratory of Pharmaceutical Biology, Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Cristina Carresi
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Saverio Nucera
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Stefano Ruga
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Federica Scarano
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Bosco
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Lorenza Guarnieri
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Roberta Macrì
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Rocco Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Italy
| | - Catherine Belzung
- UMR 1253, iBrain, Inserm, Université de Tours, CEDEX 1, 37032 Tours, France
| | - Vincenzo Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
10
|
Xu R, Liu Z, Li H, Luo L, Zheng Y, Mu F, Liu Y, Zhang W, Zhang Y, Wang J, Liu Y. Influence of PCDH9 (rs9540720) and narcissistic personality traits on the incidence of major depressive disorder in Chinese first-year university students: findings from a 2-year cohort study. Front Genet 2024; 14:1267972. [PMID: 38384361 PMCID: PMC10879931 DOI: 10.3389/fgene.2023.1267972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/28/2023] [Indexed: 02/23/2024] Open
Abstract
Objective: The objective of this study was to explore the influence of the polymorphism of the protocadherin 9 (PCDH9) gene and the narcissistic personality trait (NPT) on the risk of major depressive disorder (MDD) in Chinese first-year university students. Methods: A 2-year cohort study was conducted among Chinese first-year university students who were enrolled in 2018 from two universities in Shandong Province, China. The snapshot technique was used to detect the genotypes of PCDH9 (rs9540720). The Chinese version of the Composite International Diagnostic Interview was used for the MDD assessment. The NPTs were measured by 11 items based on DSM-IV. Patient Health Questionnaire-9 and the Beck Anxiety Inventory were used to assess depressive and anxiety symptoms, respectively. Logistic regression modeling was carried out to examine the relationship between rs9540720, NPTs, and the incidence of MDD. Results: A total of 5,327 students participated in the baseline and follow-up studies and provided their blood samples. PCDH9 (rs9540720) (ORGG+GA = 2.33, 95% CI: 1.35-4.02) and NPTs (OR5-9 = 2.26, 95% CI: 1.40-3.64) increased the risk of MDD onset. There was no multiplicative interaction between NPTs and Rs9540720 (OR = 1.51, 95% CI: 0.30-7.63). Furthermore, there was no additive interaction between them (RERI = 2.40, 95% CI: -0.82-5.62; AP = 0.47, 95% CI: -0.04-0.97; and S = 2.37, 95% CI: 0.54-10.33). Conclusion: PCDH9 (rs9540720) and more NPTs are the risk factors for the incidence of MDD in Chinese first-year university students.
Collapse
Affiliation(s)
- Ruixue Xu
- School of Public Health, Binzhou Medical University, Yantai, China
- School of Public Health, Jining Medical University, Jining, China
| | - Zhaorui Liu
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
| | - Hanyun Li
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Linlin Luo
- Department of Hematology, Tai’an City Central Hospital of Qingdao University, Tai’an, China
| | - Yi Zheng
- School of Mental Health, Jining Medical University, Jining, China
| | - Fuqin Mu
- School of Mental Health, Jining Medical University, Jining, China
| | - Yujia Liu
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Weixin Zhang
- School of Clinical Medicine, Jining Medical University, Jining, China
| | - Ying Zhang
- School of Public Health, University of Sydney, Sydney, NSW, Australia
| | - Jianli Wang
- School of Mental Health, Jining Medical University, Jining, China
- Department of Community Health and Epidemiology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Yan Liu
- School of Public Health, Jining Medical University, Jining, China
| |
Collapse
|
11
|
Tong Y, Zhao G, Shuang R, Wang H, Zeng N. Saikosaponin a activates tet1/dll3/notch1 signalling and promotes hippocampal neurogenesis to improve depression-like behavior in mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117289. [PMID: 37844745 DOI: 10.1016/j.jep.2023.117289] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Radix Bupleuri, also named "Chaihu" in Chinese, is a substance derived from the dry roots of Bupleurum chinense DC. [Apiaceae] and Bupleurum scorzonerifolium Willd. [Apiaceae]. Radix Bupleuri was initially recorded as a medicinal herb in Shen Nong Ben Cao Jing, the earliest monograph concerning traditional Chinese medicine (TCM). Ever since, Radix Bupleuri has been broadly used to alleviate exterior syndrome, disperse heat, modulate the liver-qi, and elevate yang-qi in TCM. Radix Bupleuri has also been utilized as an important component in Xiaoyaosan, a classical formula for relieving depression, which was originated from the famous Chinese medical book called "Tai Ping Hui Min He Ji Ju Fang" in Song Dynasty. Currently, many valuable pharmacological effects of Radix Bupleuri have been explored, such as antidepressant, neuroprotective activities, antiinflammation, anticancer, immunoregulation, etc. Former studies have illustrated that Saikosaponin A (SSa), one of the primary active components of Radix Bupleuri, possesses potential antidepressant properties. However, the underlying mechanisms still remain unknown. AIM OF THE STUDY We used a chronic social defeat stress (CSDS) mouse model to explore the ameliorative effects and potential mechanisms of SSa in depressive disorder in vivo. MATERIALS AND METHODS The CSDS mouse model was established and mice underwent behavioral studies using assays such as the social interaction test (SIT), sucrose preference test (SPT), forced-swim test (FST), tail suspension test (TST), and open field test (OFT). Western blotting, immunofluorescence, and Golgi staining were performed to investigate signaling pathway activity, and alterations in synaptic spines in the hippocampus. To model the anticipated interaction between SSa and Tet1, molecular docking and microscale thermophoresis (MST) techniques were employed. Finally, sh-RNA Tet1 was employed for validation via lentiviral transfection in CSDS mice to confirm the requirement of Tet1 for SSA efficacy. RESULTS SSa dramatically reduced depressed symptoms, boosted the expression of Tet1, Notch, DLL3, and BDNF, encouraged hippocampus development, and enhanced the dendritic spine density of hippocampal neurons. In contrast, Tet1 knockdown in CSDS mice dampened the beneficial effects of SSa on depressive symptoms. CONCLUSIONS Therefore, our results suggest that SSa significantly activates the Tet1/Notch/DLL3 signaling pathways and promotes hippocampal neurogenesis to exert antidepressant effects in the CSDS mouse model in vivo. The present results also provide new insight into the importance of the Tet1/DLL3/Notch pathways as potential targets for novel antidepressant development.
Collapse
Affiliation(s)
- Yue Tong
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China
| | - Ge Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China; Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, PR China
| | - Ruonan Shuang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China
| | - Hanqing Wang
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia, 750004, PR China.
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China.
| |
Collapse
|
12
|
van Rooij SJH, Arulpragasam AR, McDonald WM, Philip NS. Accelerated TMS - moving quickly into the future of depression treatment. Neuropsychopharmacology 2024; 49:128-137. [PMID: 37217771 PMCID: PMC10700378 DOI: 10.1038/s41386-023-01599-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/24/2023]
Abstract
Accelerated TMS is an emerging application of Transcranial Magnetic Stimulation (TMS) aimed to reduce treatment length and improve response time. Extant literature generally shows similar efficacy and safety profiles compared to the FDA-cleared protocols for TMS to treat major depressive disorder (MDD), yet accelerated TMS research remains at a very early stage in development. The few applied protocols have not been standardized and vary significantly across a set of core elements. In this review, we consider nine elements that include treatment parameters (i.e., frequency and inter-stimulation interval), cumulative exposure (i.e., number of treatment days, sessions per day, and pulses per session), individualized parameters (i.e., treatment target and dose), and brain state (i.e., context and concurrent treatments). Precisely which of these elements is critical and what parameters are most optimal for the treatment of MDD remains unclear. Other important considerations for accelerated TMS include durability of effect, safety profiles as doses increase over time, the possibility and advantage of individualized functional neuronavigation, use of biological readouts, and accessibility for patients most in need of the treatment. Overall, accelerated TMS appears to hold promise to reduce treatment time and achieve rapid reduction in depressive symptoms, but at this time significant work remains to be done. Rigorous clinical trials combining clinical outcomes and neuroscientific measures such as electroencephalogram, magnetic resonance imaging and e-field modeling are needed to define the future of accelerated TMS for MDD.
Collapse
Affiliation(s)
- Sanne J H van Rooij
- Emory University School of Medicine, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | - Amanda R Arulpragasam
- Alpert Medical School of Brown University, Department of Psychiatry and Human Behavior, Providence, RI, USA
- VA RR&D Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence, RI, USA
| | - William M McDonald
- Emory University School of Medicine, Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | - Noah S Philip
- Alpert Medical School of Brown University, Department of Psychiatry and Human Behavior, Providence, RI, USA.
- VA RR&D Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence, RI, USA.
| |
Collapse
|
13
|
Dutton M, Boyes A, Can AT, Mohamed AZ, Hajishafiee M, Shan ZY, Lagopoulos J, Hermens DF. Hippocampal subfield volumes predict treatment response to oral ketamine in people with suicidality. J Psychiatr Res 2024; 169:192-200. [PMID: 38042058 DOI: 10.1016/j.jpsychires.2023.11.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/31/2023] [Accepted: 11/22/2023] [Indexed: 12/04/2023]
Abstract
Ongoing stress results in hippocampal neuro-structural alterations which produce pathological consequences, including depression and suicidality. Ketamine may ameliorate stress related illnesses, including suicidality, via neuroplasticity processes. This novel study sought to determine whether oral ketamine treatment specifically affects hippocampal (whole and subfield) volumes in patients with chronic suicidality and MDD. It was hypothesised that oral ketamine treatment would differentially alter hippocampal volumes in trial participants categorised as ketamine responders, versus those who were non-responders. Twenty-eight participants received 6 single, weekly doses of oral ketamine (0.5-3 mg/kg) and underwent MRI scans at pre-ketamine (week 0), post-ketamine (week 6), and follow up (week 10). Hippocampal subfield volumes were extracted using the longitudinal pipeline in FreeSurfer. Participants were grouped according to ketamine response status and then compared in terms of grey matter volume (GMV) changes, among 10 hippocampal regions, over 6 and 10 weeks. Mixed ANOVAs were used to analyse interactions between time and group. Post treatment analysis revealed a significant main effect of group for three left hippocampal GMVs as well in the left and right whole hippocampus. Ketamine acute responders (Week 6) showed increased GMVs in both left and right whole hippocampus and in three subfields compared to acute non-responders, across all three timepoints, suggesting that pre-treatment increased hippocampal GMVs (particularly left hemisphere) may be predictive biomarkers of acute treatment response. Future studies should further investigate the potential of hippocampal volumes as a biomarker of ketamine treatment response.
Collapse
Affiliation(s)
- Megan Dutton
- Thompson Institute, University of the Sunshine Coast, Queensland, Australia.
| | - Amanda Boyes
- Thompson Institute, University of the Sunshine Coast, Queensland, Australia
| | - Adem T Can
- Thompson Institute, University of the Sunshine Coast, Queensland, Australia
| | - Abdalla Z Mohamed
- Thompson Institute, University of the Sunshine Coast, Queensland, Australia
| | - Maryam Hajishafiee
- Thompson Institute, University of the Sunshine Coast, Queensland, Australia
| | - Zack Y Shan
- Thompson Institute, University of the Sunshine Coast, Queensland, Australia
| | - Jim Lagopoulos
- Thompson Institute, University of the Sunshine Coast, Queensland, Australia
| | - Daniel F Hermens
- Thompson Institute, University of the Sunshine Coast, Queensland, Australia
| |
Collapse
|
14
|
Ma H, Zhang D, Wang Y, Ding Y, Yang J, Li K. Prediction of early improvement of major depressive disorder to antidepressant medication in adolescents with radiomics analysis after ComBat harmonization based on multiscale structural MRI. BMC Psychiatry 2023; 23:466. [PMID: 37365541 DOI: 10.1186/s12888-023-04966-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Due to individual differences and lack of objective biomarkers, only 30-40% patients with major depressive disorder (MDD) achieve remission after initial antidepressant medication (ADM). We aimed to employ radiomics analysis after ComBat harmonization to predict early improvement to ADM in adolescents with MDD by using brain multiscale structural MRI (sMRI) and identify the radiomics features with high prediction power for selection of selective serotonin reuptake inhibitors (SSRIs) and serotonin norepinephrine reuptake inhibitors (SNRIs). METHODS 121 MDD patients were recruited for brain sMRI, including three-dimensional T1 weighted imaging (3D-T1WI)and diffusion tensor imaging (DTI). After receiving SSRIs or SNRIs for 2 weeks, the subjects were divided into ADM improvers (SSRIs improvers and SNRIs improvers) and non-improvers according to reduction rate of the Hamilton Depression Rating Scale, 17 item (HAM-D17) score. Then, sMRI data were preprocessed, and conventional imaging indicators and radiomics features of gray matter (GM) based on surface-based morphology (SBM) and voxel-based morphology (VBM) and diffusion properties of white matter (WM) were extracted and harmonized with ComBat harmonization. Two-level reduction strategy with analysis of variance (ANOVA) and recursive feature elimination (RFE) was utilized sequentially to decrease high-dimensional features. Support vector machine with radial basis function kernel (RBF-SVM) was used to integrate multiscale sMRI features to construct models for early improvement prediction. Area under the curve (AUC), accuracy, sensitivity, and specificity based on the leave-one-out cross-validation (LOO-CV) and receiver operating characteristic (ROC) curve analysis were calculated to evaluate the model performance. Permutation tests were used for assessing the generalization rate. RESULTS After 2-week ADM, 121 patients were divided into 67 ADM improvers (31 SSRIs improvers and 36 SNRIs improvers) and 54 ADM non-improvers. After two-level dimensionality reduction, 8 conventional indicators (2 VBM-based features and 6 diffusion features) and 49 radiomics features (16 VBM-based features and 33 diffusion features) were selected. The overall accuracy of RBF-SVM models based on conventional indicators and radiomics features was 74.80% and 88.19%. The radiomics model achieved the AUC, sensitivity, specificity, and accuracy of 0.889, 91.2%, 80.1% and 85.1%, 0.954, 89.2%, 87.4% and 88.5%, 0.942, 91.9%, 82.5% and 86.8% for predicting ADM improvers, SSRIs improvers and SNRIs improvers, respectively. P value of permutation tests were less than 0.001. The radiomics features predicting ADM improver were mainly located in the hippocampus, medial orbitofrontal gyrus, anterior cingulate gyrus, cerebellum (lobule vii-b), body of corpus callosum, etc. The radiomics features predicting SSRIs improver were primarily distributed in hippocampus, amygdala, inferior temporal gyrus, thalamus, cerebellum (lobule vi), fornix, cerebellar peduncle, etc. The radiomics features predicting SNRIs improver were primarily located in the medial orbitofrontal cortex, anterior cingulate gyrus, ventral striatum, corpus callosum, etc. CONCLUSIONS: These findings suggest the radiomics analysis based on brain multiscale sMRI after ComBat harmonization could effectively predict the early improvement of ADM in adolescent MDD patients with a high accuracy, which was superior to the model based on the conventional indicators. The radiomics features with high prediction power may help for the individual selection of SSRIs and SNRIs.
Collapse
Affiliation(s)
- Huan Ma
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650018, China
- Department of Psychiatry, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Dafu Zhang
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650018, China
| | - Yao Wang
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650018, China
| | - Yingying Ding
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650018, China
| | - Jianzhong Yang
- Department of Psychiatry, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Kun Li
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650018, China.
| |
Collapse
|
15
|
Abi-Dargham A, Moeller SJ, Ali F, DeLorenzo C, Domschke K, Horga G, Jutla A, Kotov R, Paulus MP, Rubio JM, Sanacora G, Veenstra-VanderWeele J, Krystal JH. Candidate biomarkers in psychiatric disorders: state of the field. World Psychiatry 2023; 22:236-262. [PMID: 37159365 PMCID: PMC10168176 DOI: 10.1002/wps.21078] [Citation(s) in RCA: 78] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/08/2023] [Indexed: 05/11/2023] Open
Abstract
The field of psychiatry is hampered by a lack of robust, reliable and valid biomarkers that can aid in objectively diagnosing patients and providing individualized treatment recommendations. Here we review and critically evaluate the evidence for the most promising biomarkers in the psychiatric neuroscience literature for autism spectrum disorder, schizophrenia, anxiety disorders and post-traumatic stress disorder, major depression and bipolar disorder, and substance use disorders. Candidate biomarkers reviewed include various neuroimaging, genetic, molecular and peripheral assays, for the purposes of determining susceptibility or presence of illness, and predicting treatment response or safety. This review highlights a critical gap in the biomarker validation process. An enormous societal investment over the past 50 years has identified numerous candidate biomarkers. However, to date, the overwhelming majority of these measures have not been proven sufficiently reliable, valid and useful to be adopted clinically. It is time to consider whether strategic investments might break this impasse, focusing on a limited number of promising candidates to advance through a process of definitive testing for a specific indication. Some promising candidates for definitive testing include the N170 signal, an event-related brain potential measured using electroencephalography, for subgroup identification within autism spectrum disorder; striatal resting-state functional magnetic resonance imaging (fMRI) measures, such as the striatal connectivity index (SCI) and the functional striatal abnormalities (FSA) index, for prediction of treatment response in schizophrenia; error-related negativity (ERN), an electrophysiological index, for prediction of first onset of generalized anxiety disorder, and resting-state and structural brain connectomic measures for prediction of treatment response in social anxiety disorder. Alternate forms of classification may be useful for conceptualizing and testing potential biomarkers. Collaborative efforts allowing the inclusion of biosystems beyond genetics and neuroimaging are needed, and online remote acquisition of selected measures in a naturalistic setting using mobile health tools may significantly advance the field. Setting specific benchmarks for well-defined target application, along with development of appropriate funding and partnership mechanisms, would also be crucial. Finally, it should never be forgotten that, for a biomarker to be actionable, it will need to be clinically predictive at the individual level and viable in clinical settings.
Collapse
Affiliation(s)
- Anissa Abi-Dargham
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Scott J Moeller
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Farzana Ali
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Christine DeLorenzo
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Centre for Basics in Neuromodulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Guillermo Horga
- Department of Psychiatry, Columbia University, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Amandeep Jutla
- Department of Psychiatry, Columbia University, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Roman Kotov
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | | | - Jose M Rubio
- Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, USA
- Feinstein Institute for Medical Research - Northwell, Manhasset, NY, USA
- Zucker Hillside Hospital - Northwell Health, Glen Oaks, NY, USA
| | - Gerard Sanacora
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Jeremy Veenstra-VanderWeele
- Department of Psychiatry, Columbia University, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - John H Krystal
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
16
|
Ahmad Hariza AM, Mohd Yunus MH, Murthy JK, Wahab S. Clinical Improvement in Depression and Cognitive Deficit Following Electroconvulsive Therapy. Diagnostics (Basel) 2023; 13:diagnostics13091585. [PMID: 37174977 PMCID: PMC10178332 DOI: 10.3390/diagnostics13091585] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Electroconvulsive therapy (ECT) is a long-standing treatment choice for disorders such as depression when pharmacological treatments have failed. However, a major drawback of ECT is its cognitive side effects. While numerous studies have investigated the therapeutic effects of ECT and its mechanism, much less research has been conducted regarding the mechanism behind the cognitive side effects of ECT. As both clinical remission and cognitive deficits occur after ECT, it is possible that both may share a common mechanism. This review highlights studies related to ECT as well as those investigating the mechanism of its outcomes. The process underlying these effects may lie within BDNF and NMDA signaling. Edema in the astrocytes may also be responsible for the adverse cognitive effects and is mediated by metabotropic glutamate receptor 5 and the protein Homer1a.
Collapse
Affiliation(s)
- Ahmad Mus'ab Ahmad Hariza
- Department of Physiology, Faculty of Medicine, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Mohd Heikal Mohd Yunus
- Department of Physiology, Faculty of Medicine, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Jaya Kumar Murthy
- Department of Physiology, Faculty of Medicine, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Suzaily Wahab
- Department of Psychiatry, Faculty of Medicine, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
17
|
Zhang F, Wang C, Lan X, Li W, Ye Y, Liu H, Hu Z, You Z, Zhou Y, Ning Y. Ketamine-induced hippocampal functional connectivity alterations associated with clinical remission in major depression. J Affect Disord 2023; 325:534-541. [PMID: 36646174 DOI: 10.1016/j.jad.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/26/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Hippocampal functional connectivity (FC) alterations, which may happen following ketamine treatment, play a key role in major depression remission. This study aims to investigate the resting-state FC changes of the hippocampus associated with clinical remission after repeated ketamine infusions. METHODS Forty-four major depressive patients received six intravenous ketamine (0.5 mg/kg) infusions in 12 days. The FC change of the hippocampus subregions following ketamine treatment was compared between remitters (MADRS score ≤ 10 post-treatment) and nonremitters. We also investigated whether baseline hippocampus FC predicted the antidepressant efficiency of ketamine using Receiver Operating Characteristic Curve analyses. RESULTS Thirty-nine patients were included in the analysis. There were significant differences in change of left rostral hippocampus FC with the right angular gyrus (the key node of the default mode network, DMN), left inferior parietal cortex and the right superior parietal cortex (parts of the dorsal attention network, dAN) between remitters and nonremitters following ketamine treatment. Specifically, while the remitters showed significantly less negative hippocampus FC than the nonremitters at baseline, the FC significantly decreased in remitters but increased in nonremitters after ketamine injections. Moreover, baseline hippocampus FC with the above three regions predicted the antidepressant effect of ketamine, with the highest predictive strength identified in the hippocampus-right angular gyrus FC (Area-Under-Curve = 0.8179, p < 0.05). CONCLUSION Ketamine treat depression by modulating the left rostral hippocampus resting-state FC with the DMN and dAN. The FC between the hippocampus and parts of the DMN and dAN may show promising potential in predicting remission after ketamine treatment in MDD.
Collapse
Affiliation(s)
- Fan Zhang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Chengyu Wang
- Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Xiaofeng Lan
- Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Weicheng Li
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Yanxiang Ye
- Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Haiyan Liu
- Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Zhibo Hu
- Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Zerui You
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Yanling Zhou
- Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China.
| | - Yuping Ning
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Child and Adolescent Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China.
| |
Collapse
|
18
|
Categorical and Dimensional Deficits in Hippocampal Subfields Among Schizophrenia, Obsessive-Compulsive Disorder, Bipolar Disorder, and Major Depressive Disorder. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:91-101. [PMID: 35803485 DOI: 10.1016/j.bpsc.2022.06.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND The hippocampus is a core region of interest for all major mental disorders, and its subfields implement distinctive functions. It is unclear whether the mental disorders exhibit common patterns of hippocampal impairments, and we lack knowledge on whether and how hippocampal subfields represent deficit spectra across mental disorders. METHODS Using brain images of 1123 individuals scanned on a single magnetic resonance imaging scanner, we examined the commonality, specificity, and symptom associations of the volume of hippocampal subfields across patients with schizophrenia, patients with obsessive-compulsive disorder, patients with bipolar disorder, patients with major depressive disorder, and healthy control subjects. We further performed a transdiagnostic analysis of the individual variability of the volume of hippocampal subfields to reflect cross-disease gradients in the hippocampus. RESULTS We found common and disease-specific abnormalities in a few hippocampal fields and identified 2 reliable transdiagnostic factors in the hippocampal subfields, each reflecting a spectrum of mental disorders. The plane spanned by the 2 most reliable factors provided a clearer view of hippocampal volume abnormality spectra among the major mental disorders. In addition, functional and genetic enrichment analyses supported the different roles of the 2 hippocampal factors in mental disorders. CONCLUSIONS The volume of hippocampal subfields reflected some commonality and specificity among the 3 major mental disorders. We propose a new pathophysiological dimensional view of the hippocampus, reflecting at least 2 spectra of mental disorders, suggesting multivariate links among the diseases. This work highlights the value of the complementary categorical and dimensional views of the hippocampal deficits in mental disorders.
Collapse
|
19
|
Environmental neuroscience linking exposome to brain structure and function underlying cognition and behavior. Mol Psychiatry 2023; 28:17-27. [PMID: 35790874 DOI: 10.1038/s41380-022-01669-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 06/02/2022] [Accepted: 06/09/2022] [Indexed: 01/07/2023]
Abstract
Individual differences in human brain structure, function, and behavior can be attributed to genetic variations, environmental exposures, and their interactions. Although genome-wide association studies have identified many genetic variants associated with brain imaging phenotypes, environmental exposures associated with these phenotypes remain largely unknown. Here, we propose that environmental neuroscience should pay more attention on exploring the associations between lifetime environmental exposures (exposome) and brain imaging phenotypes and identifying both cumulative environmental effects and their vulnerable age windows during the life course. Exposome-neuroimaging association studies face several challenges including the accurate measurement of the totality of environmental exposures varied in space and time, the highly correlated structure of the exposome, and the lack of standardized approaches for exposome-wide association studies. By agnostically scanning the effects of environmental exposures on brain imaging phenotypes and their interactions with genomic variations, exposome-neuroimaging association analyses will improve our understanding of causal factors associated with individual differences in brain structure and function as well as their relations with cognitive abilities and neuropsychiatric disorders.
Collapse
|
20
|
Twait EL, Blom K, Koek HL, Zwartbol MHT, Ghaznawi R, Hendrikse J, Gerritsen L, Geerlings MI. Psychosocial factors and hippocampal subfields: The Medea-7T study. Hum Brain Mapp 2022; 44:1964-1984. [PMID: 36583397 PMCID: PMC9980899 DOI: 10.1002/hbm.26185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/21/2022] [Accepted: 12/05/2022] [Indexed: 12/31/2022] Open
Abstract
Specific subfields within the hippocampus have shown vulnerability to chronic stress, highlighting the importance of looking regionally within the hippocampus to understand the role of psychosocial factors in the development of neurodegenerative diseases. A systematic review on psychosocial factors and hippocampal subfield volumes was performed and showed inconsistent results, highlighting the need for future studies to explore this relationship. The current study aimed to explore the association of psychosocial factors with hippocampal (subfield) volumes, using high-field 7T MRI. Data were from the Memory Depression and Aging (Medea)-7T study, which included 333 participants without dementia. Hippocampal subfields were automatically segmented from T2-weighted images using ASHS software. Generalized linear models accounting for correlated outcomes were used to assess the association between subfields (i.e., entorhinal cortex, subiculum, Cornu Ammonis [CA]1, CA2, CA3, dentate gyrus, and tail) and each psychosocial factor (i.e., depressive symptoms, anxiety symptoms, childhood maltreatment, recent stressful life events, and social support), adjusted for age, sex, and intracranial volume. Neither depression nor anxiety was associated with specific hippocampal (subfield) volumes. A trend for lower total hippocampal volume was found in those reporting childhood maltreatment, and a trend for higher total hippocampal volume was found in those who experienced a recent stressful life event. Among subfields, low social support was associated with lower volume in the CA3 (B = -0.43, 95% CI: -0.72; -0.15). This study suggests possible differential effects among hippocampal (subfield) volumes and psychosocial factors.
Collapse
Affiliation(s)
- Emma L. Twait
- Department of Epidemiology, Julius Center for Health Sciences and Primary CareUniversity Medical Center Utrecht and Utrecht UniversityUtrechtThe Netherlands
| | - Kim Blom
- Department of Epidemiology, Julius Center for Health Sciences and Primary CareUniversity Medical Center Utrecht and Utrecht UniversityUtrechtThe Netherlands
| | - Huiberdina L. Koek
- Department of GeriatricsUniversity Medical Center Utrecht and Utrecht UniversityUtrechtThe Netherlands
| | - Maarten H. T. Zwartbol
- Department of RadiologyUniversity Medical Center Utrecht and Utrecht UniversityUtrechtThe Netherlands
| | - Rashid Ghaznawi
- Department of RadiologyUniversity Medical Center Utrecht and Utrecht UniversityUtrechtThe Netherlands
| | - Jeroen Hendrikse
- Department of RadiologyUniversity Medical Center Utrecht and Utrecht UniversityUtrechtThe Netherlands
| | - Lotte Gerritsen
- Department of PsychologyUtrecht UniversityUtrechtThe Netherlands
| | - Mirjam I. Geerlings
- Department of Epidemiology, Julius Center for Health Sciences and Primary CareUniversity Medical Center Utrecht and Utrecht UniversityUtrechtThe Netherlands,Department of General PracticeAmsterdam UMC, Location University of AmsterdamAmsterdamThe Netherlands,Amsterdam Public Health, Aging & Later life, and Personalized MedicineAmsterdamThe Netherlands,Amsterdam Neuroscience, Neurodegeneration, and Mood, Anxiety, Psychosis, Stress, and SleepAmsterdamThe Netherlands
| | | |
Collapse
|
21
|
Zhang L, Hu X, Hu Y, Tang M, Qiu H, Zhu Z, Gao Y, Li H, Kuang W, Ji W. Structural covariance network of the hippocampus-amygdala complex in medication-naïve patients with first-episode major depressive disorder. PSYCHORADIOLOGY 2022; 2:190-198. [PMID: 38665275 PMCID: PMC10917195 DOI: 10.1093/psyrad/kkac023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/05/2022] [Accepted: 12/14/2022] [Indexed: 04/28/2024]
Abstract
Background The hippocampus and amygdala are densely interconnected structures that work together in multiple affective and cognitive processes that are important to the etiology of major depressive disorder (MDD). Each of these structures consists of several heterogeneous subfields. We aim to explore the topologic properties of the volume-based intrinsic network within the hippocampus-amygdala complex in medication-naïve patients with first-episode MDD. Methods High-resolution T1-weighted magnetic resonance imaging scans were acquired from 123 first-episode, medication-naïve, and noncomorbid MDD patients and 81 age-, sex-, and education level-matched healthy control participants (HCs). The structural covariance network (SCN) was constructed for each group using the volumes of the hippocampal subfields and amygdala subregions; the weights of the edges were defined by the partial correlation coefficients between each pair of subfields/subregions, controlled for age, sex, education level, and intracranial volume. The global and nodal graph metrics were calculated and compared between groups. Results Compared with HCs, the SCN within the hippocampus-amygdala complex in patients with MDD showed a shortened mean characteristic path length, reduced modularity, and reduced small-worldness index. At the nodal level, the left hippocampal tail showed increased measures of centrality, segregation, and integration, while nodes in the left amygdala showed decreased measures of centrality, segregation, and integration in patients with MDD compared with HCs. Conclusion Our results provide the first evidence of atypical topologic characteristics within the hippocampus-amygdala complex in patients with MDD using structure network analysis. It provides more delineate mechanism of those two structures that underlying neuropathologic process in MDD.
Collapse
Affiliation(s)
- Lianqing Zhang
- Functional and molecular imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Xinyue Hu
- Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, PR China
| | - Yongbo Hu
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu 610041, PR China
| | - Mengyue Tang
- Functional and molecular imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Hui Qiu
- Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, PR China
| | - Ziyu Zhu
- Functional and molecular imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Yingxue Gao
- Functional and molecular imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Hailong Li
- Functional and molecular imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Weihong Kuang
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu 610041, PR China
| | - Weidong Ji
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science and Affiliated Mental Health Center, East China Normal University, Shanghai 200335, China
- Child Psychiatry, Shanghai Changning Mental Health Center, Shanghai 200335, China
| |
Collapse
|
22
|
Gerlach AR, Karim HT, Peciña M, Ajilore O, Taylor WD, Butters MA, Andreescu C. MRI predictors of pharmacotherapy response in major depressive disorder. Neuroimage Clin 2022; 36:103157. [PMID: 36027717 PMCID: PMC9420953 DOI: 10.1016/j.nicl.2022.103157] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/11/2022] [Accepted: 08/15/2022] [Indexed: 02/08/2023]
Abstract
Major depressive disorder is among the most prevalent psychiatric disorders, exacting a substantial personal, social, and economic toll. Antidepressant treatment typically involves an individualized trial and error approach with an inconsistent success rate. Despite a pressing need, no reliable biomarkers for predicting treatment outcome have yet been discovered. Brain MRI measures hold promise in this regard, though clinical translation remains elusive. In this review, we summarize structural MRI and functional MRI (fMRI) measures that have been investigated as predictors of treatment outcome. We broadly divide these into five categories including three structural measures: volumetric, white matter burden, and white matter integrity; and two functional measures: resting state fMRI and task fMRI. Currently, larger hippocampal volume is the most widely replicated predictor of successful treatment. Lower white matter hyperintensity burden has shown robustness in late life depression. However, both have modest discriminative power. Higher fractional anisotropy of the cingulum bundle and frontal white matter, amygdala hypoactivation and anterior cingulate cortex hyperactivation in response to negative emotional stimuli, and hyperconnectivity within the default mode network (DMN) and between the DMN and executive control network also show promise as predictors of successful treatment. Such network-focused measures may ultimately provide a higher-dimensional measure of treatment response with closer ties to the underlying neurobiology.
Collapse
Affiliation(s)
- Andrew R Gerlach
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Helmet T Karim
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marta Peciña
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Olusola Ajilore
- Department of Psychiatry, University of Illinois-Chicago, Chicago, IL, USA
| | - Warren D Taylor
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Geriatric Research, Education, and Clinical Center, Veterans Affairs Tennessee Valley Health System, Nashville, TN, USA
| | - Meryl A Butters
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Carmen Andreescu
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
23
|
Lin L, Zhang J, Dai X, Xiao N, Ye Q, Chen X. A Moderate Duration of Stress Promotes Behavioral Adaptation and Spatial Memory in Young C57BL/6J Mice. Brain Sci 2022; 12:brainsci12081081. [PMID: 36009144 PMCID: PMC9405600 DOI: 10.3390/brainsci12081081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 12/02/2022] Open
Abstract
Stress may serve multiple roles in cerebral functioning, ranging from a highly appropriate behavioral adaptation to a critical risk factor for susceptibility to mood disorder and cognitive impairment. It is well known that E/I (excitation/inhibition) balance is essential for maintaining brain homeostasis. However, it remains largely unknown how GABAergic and Glutamatergic neurons respond to different stressful stimuli and whether the GABAergic-Glutamatergic neuron balance is related to the transition between adaptive and maladaptive behaviors. Here, we subjected 3-month-old mice to chronic mild stress (CMS) for a period of one, two, and four weeks, respectively. The results showed that the two-week CMS procedure produced adaptive effects on behaviors and cognitive performance, with a higher number of GABAergic neuron and VGluT1-positive neurons, increasing the expressions of p-GluN2B, Reelin, and syn-PSD-95 protein in the hippocampus. In contrast, the prolonged behavioral challenge (4 week) imposes a passive coping behavioral strategy and cognitive impairment, decreased the number of GABAergic neuron, hyperactivity of VGluT1-positive neuron, increased the ratio of p-GluN2B, and decreased the expression of Reelin, syn-PSD-95 in the hippocampus. These findings suggest that a moderate duration of stress probably promotes behavioral adaptation and spatial memory by maintaining a GABAergic-Glutamatergic neuron balance and promoting the expression of synaptic plasticity-related proteins in the brain.
Collapse
Affiliation(s)
- Lanyan Lin
- Department of Geriatrics, Fujian Provincial Hospital, 134 Dongjie Road, Fuzhou 350001, China
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
| | - Jing Zhang
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China
| | - Xiaoman Dai
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China
| | - Nai’an Xiao
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China
| | - Qinyong Ye
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China
| | - Xiaochun Chen
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China
- Correspondence: ; Tel.: +86-591-8333-3995; Fax: +86-591-8337-0393
| |
Collapse
|
24
|
Altered hippocampus and amygdala subregion connectome hierarchy in major depressive disorder. Transl Psychiatry 2022; 12:209. [PMID: 35589678 PMCID: PMC9120054 DOI: 10.1038/s41398-022-01976-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 01/04/2023] Open
Abstract
The hippocampus and amygdala limbic structures are critical to the etiology of major depressive disorder (MDD). However, there are no high-resolution characterizations of the role of their subregions in the whole brain network (connectome). Connectomic examination of these subregions can uncover disorder-related patterns that are otherwise missed when treated as single structures. 38 MDD patients and 40 healthy controls (HC) underwent anatomical and diffusion imaging using 7-Tesla MRI. Whole-brain segmentation was performed along with hippocampus and amygdala subregion segmentation, each representing a node in the connectome. Graph theory analysis was applied to examine the importance of the limbic subregions within the brain network using centrality features measured by node strength (sum of weights of the node's connections), Betweenness (number of shortest paths that traverse the node), and clustering coefficient (how connected the node's neighbors are to one another and forming a cluster). Compared to HC, MDD patients showed decreased node strength of the right hippocampus cornu ammonis (CA) 3/4, indicating decreased connectivity to the rest of the brain, and decreased clustering coefficient of the right dentate gyrus, implying it is less embedded in a cluster. Additionally, within the MDD group, the greater the embedding of the right amygdala central nucleus (CeA) in a cluster, the greater the severity of depressive symptoms. The altered role of these limbic subregions in the whole-brain connectome is related to diagnosis and depression severity, contributing to our understanding of the limbic system involvement in MDD and may elucidate the underlying mechanisms of depression.
Collapse
|
25
|
Shengli C, Yingli Z, Zheng G, Shiwei L, Ziyun X, Han F, Yingwei Q, Gangqiang H. An aberrant hippocampal subregional network, rather than structure, characterizes major depressive disorder. J Affect Disord 2022; 302:123-130. [PMID: 35085667 DOI: 10.1016/j.jad.2022.01.087] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 01/13/2022] [Accepted: 01/22/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Behavioral and neuroimaging studies have implicated the hippocampus as a cardinal neural structure in major depressive disorder (MDD) pathogenesis. The hippocampal subregion-specific structural and functional abnormalities in MDD remain unknown. METHODS Multimodal magnetic resonance imaging (MRI) was acquired in 140 patients with MDD and 44 age- and sex-matched healthy controls (HCs). We quantified hippocampal subregional volumes and fractional anisotropy (FA) following a structural and diffusion MRI data analysis processing stream. Hippocampal subregional networks were established using seed-based functional connectivity (FC) analysis. Univariate analysis was used to investigate the differences between the two groups. Significant subfield metrics were correlated with depression severity. RESULTS Compared with HCs, we did not find significant differences in subregional volumes or FA metrics in the MDD group. The MDD group exhibited a significantly weaker connectivity of the right hippocampal subregional networks with the temporal cortex (extending to the insula) and basal ganglia but showed increased connectivity of the right subiculum to the bilateral lingual gyrus. The FC between the right cornu ammonis 1 and right fusiform, between the right hippocampal amygdala transition area and the bilateral basal ganglia, were negatively correlated with depression severity (r = -0.224, p = 0.010; r = -0.196, p = 0.025, respectively) in the MDD group. LIMITATIONS This study did not consider the longitudinal changes in the structure and functional connectivity of the hippocampal subregion. CONCLUSION These findings advance our understanding of the neurobiological basis of depression by identifying the hippocampal subregional structural and functional abnormalities.
Collapse
Affiliation(s)
- Chen Shengli
- Department of Radiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Duobao AVE 56, Liwan district, Guangzhou, China; Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Taoyuan AVE 89, Nanshan district, Shenzhen 518000, China
| | - Zhang Yingli
- Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Cuizhu AVE 1080, Luohu district, Shenzhen 518020, China
| | - Guo Zheng
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen Univeristy Clincal Medical Academy, Shenzhen University Health Science Center, Xueyuan AVE 1098, Nanshan district, Shenzhen, Guangdong 518000, China
| | - Lin Shiwei
- Department of Radiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Duobao AVE 56, Liwan district, Guangzhou, China
| | - Xu Ziyun
- Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Cuizhu AVE 1080, Luohu district, Shenzhen 518020, China
| | - Fang Han
- Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Cuizhu AVE 1080, Luohu district, Shenzhen 518020, China
| | - Qiu Yingwei
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Taoyuan AVE 89, Nanshan district, Shenzhen 518000, China,.
| | - Hou Gangqiang
- Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Cuizhu AVE 1080, Luohu district, Shenzhen 518020, China.
| |
Collapse
|
26
|
Murphy F, Nasa A, Cullinane D, Raajakesary K, Gazzaz A, Sooknarine V, Haines M, Roman E, Kelly L, O'Neill A, Cannon M, Roddy DW. Childhood Trauma, the HPA Axis and Psychiatric Illnesses: A Targeted Literature Synthesis. Front Psychiatry 2022; 13:748372. [PMID: 35599780 PMCID: PMC9120425 DOI: 10.3389/fpsyt.2022.748372] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Studies of early life stress (ELS) demonstrate the long-lasting effects of acute and chronic stress on developmental trajectories. Such experiences can become biologically consolidated, creating individual vulnerability to psychological and psychiatric issues later in life. The hippocampus, amygdala, and the medial prefrontal cortex are all important limbic structures involved in the processes that undermine mental health. Hyperarousal of the sympathetic nervous system with sustained allostatic load along the Hypothalamic Pituitary Adrenal (HPA) axis and its connections has been theorized as the basis for adult psychopathology following early childhood trauma. In this review we synthesize current understandings and hypotheses concerning the neurobiological link between childhood trauma, the HPA axis, and adult psychiatric illness. We examine the mechanisms at play in the brain of the developing child and discuss how adverse environmental stimuli may become biologically incorporated into the structure and function of the adult brain via a discussion of the neurosequential model of development, sensitive periods and plasticity. The HPA connections and brain areas implicated in ELS and psychopathology are also explored. In a targeted review of HPA activation in mood and psychotic disorders, cortisol is generally elevated across mood and psychotic disorders. However, in bipolar disorder and psychosis patients with previous early life stress, blunted cortisol responses are found to awakening, psychological stressors and physiological manipulation compared to patients without previous early life stress. These attenuated responses occur in bipolar and psychosis patients on a background of increased cortisol turnover. Although cortisol measures are generally raised in depression, the evidence for a different HPA activation profile in those with early life stress is inconclusive. Further research is needed to explore the stress responses commonalities between bipolar disorder and psychosis in those patients with early life stress.
Collapse
Affiliation(s)
- Felim Murphy
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Anurag Nasa
- Department of Psychiatry, Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland
| | | | - Kesidha Raajakesary
- Department of Psychiatry, Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Areej Gazzaz
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Vitallia Sooknarine
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Madeline Haines
- Department of Psychiatry, Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Elena Roman
- Department of Psychiatry, Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Linda Kelly
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Aisling O'Neill
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Mary Cannon
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Darren William Roddy
- Department of Psychiatry, Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
27
|
Aydin S, Yazici ZG, Kilic C, Ercelen Ozozturk B, Kilic FS. An overview of the behavioral, neurobiological and morphological effects of topiramate in rats exposed to chronic unpredictable mild stress. Eur J Pharmacol 2021; 912:174578. [PMID: 34695423 DOI: 10.1016/j.ejphar.2021.174578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/07/2021] [Accepted: 10/18/2021] [Indexed: 10/20/2022]
Abstract
The environmental psychological stress causes depressive disorders. Stress causes many neurobiological, neurodegenerative changes in brain. Topiramate (TPM) is used in the treatment of epilepsy and psychiatric diseases. However, there are conflicting findings that TPM disrupts cognitive functions. We aimed to investigate the effects of TPM on depression, anxiety, learning and memory as well as neurobiological, morphological changes in rats exposed to chronic unpredictable mild stress (CUMS). After CUMS was formed by random application of nine mild stressors for 45 days, TPM (at doses of 0.1, 1, 10, 100 mg/kg) was administered for 21 days. Sucrose preference, locomotor activity, forced swimming, elevated plus maze and Morris water maze tests were performed. Corticosterone, BDNF (Brain-derived neurotrophic factor) and glutamate levels and volumes of hippocampus were evaluated. Body weights of the rats were measured. Immobilization time increased in CUMS, CUMS + TPM0.1 in forced swimming test and time spent in platform quadrant increased in Control + TPM1, CUMS, CUMS + TPM0.1, CUMS + TPM1 in Morris water maze test. Control + TPM1 decreased distance to platform in Morris water maze while CUMS + TPM100 increased. Learning is impaired in CUMS + TPM100 while it is improved in Control + TPM1. BDNF levels increased in CUMS and glutamate levels increased in CUMS, CUMS + TPM10. Body weight decreased in CUMS, CUMS + TPM0.1, CUMS + TPM1, CUMS + TPM100. Hippocampus volumes increased in CUMS. In conclusion, CUMS improved cognition and this finding was supported by the increase of BDNF levels and volume of hippocampus. TPM 1 mg/kg improved cognition in non-stressed rats. TPM 0.1 and 1 mg/kg improved while TPM 100 mg/kg impaired memory in rats exposed to stress.
Collapse
Affiliation(s)
- Sule Aydin
- Eskisehir Osmangazi University, Faculty of Medicine, Department of Pharmacology, Meselik Kampusu, Eskisehir, Turkey.
| | - Zeynep Gul Yazici
- Eskisehir Osmangazi University, Faculty of Medicine, Department of Pharmacology, Meselik Kampusu, Eskisehir, Turkey.
| | - Cansu Kilic
- Eskisehir Osmangazi University, Faculty of Medicine, Department of Pharmacology, Meselik Kampusu, Eskisehir, Turkey.
| | | | - Fatma Sultan Kilic
- Eskisehir Osmangazi University, Faculty of Medicine, Department of Pharmacology, Meselik Kampusu, Eskisehir, Turkey.
| |
Collapse
|
28
|
Xiong G, Dong D, Cheng C, Jiang Y, Sun X, He J, Li C, Gao Y, Zhong X, Zhao H, Wang X, Yao S. Potential structural trait markers of depression in the form of alterations in the structures of subcortical nuclei and structural covariance network properties. NEUROIMAGE-CLINICAL 2021; 32:102871. [PMID: 34749291 PMCID: PMC8578037 DOI: 10.1016/j.nicl.2021.102871] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 10/20/2021] [Accepted: 10/29/2021] [Indexed: 11/18/2022]
Abstract
It has been proposed recently that major depressive disorder (MDD) could represent an adaptation to conserve energy after the perceived loss of an investment in a vital source, such as group identity, personal assets, or relationships. Energy conserving behaviors associated with MDD may form a persistent marker in brain regions and networks involved in cognition and emotion regulation. In this study, we examined whether subcortical regions and volume-based structural covariance networks (SCNs) have state-independent alterations (trait markers). First-episode drug-naïve currently depressed (cMDD) patients (N = 131), remitted MDD (RD) patients (N = 67), and healthy controls (HCs, N = 235) underwent structural magnetic resonance imaging (MRI). Subcortical gray matter volumes (GMVs) were calculated in FreeSurfer software, and group differences in GMVs and SCN were analyzed. Compared to HCs, major findings were decreased GMVs of left pallidum and pulvinar anterior of thalamus in the cMDD and RD groups, indicative of a trait marker. Relative to HCs, subcortical SCNs of both cMDD and RD patients were found to have reduced small-world-ness and path length, which together may represent a trait-like topological feature of depression. In sum, the left pallidum, left pulvinar anterior of thalamus volumetric alterations may represent trait marker and reduced small-world-ness, path length may represent trait-like topological feature of MDD.
Collapse
Affiliation(s)
- Ge Xiong
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Medical Psychological Institute of Central South University, Changsha, Hunan 410011, China
| | - Daifeng Dong
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Medical Psychological Institute of Central South University, Changsha, Hunan 410011, China
| | - Chang Cheng
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Medical Psychological Institute of Central South University, Changsha, Hunan 410011, China
| | - Yali Jiang
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Medical Psychological Institute of Central South University, Changsha, Hunan 410011, China; School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Xiaoqiang Sun
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Medical Psychological Institute of Central South University, Changsha, Hunan 410011, China
| | - Jiayue He
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Medical Psychological Institute of Central South University, Changsha, Hunan 410011, China
| | - Chuting Li
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Medical Psychological Institute of Central South University, Changsha, Hunan 410011, China; China National Clinical Research Center on Mental Disorders (Xiangya), Changsha, Hunan 410011, China
| | - Yidian Gao
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Medical Psychological Institute of Central South University, Changsha, Hunan 410011, China
| | - Xue Zhong
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Medical Psychological Institute of Central South University, Changsha, Hunan 410011, China
| | - Haofei Zhao
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Medical Psychological Institute of Central South University, Changsha, Hunan 410011, China
| | - Xiang Wang
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Medical Psychological Institute of Central South University, Changsha, Hunan 410011, China; China National Clinical Research Center on Mental Disorders (Xiangya), Changsha, Hunan 410011, China
| | - Shuqiao Yao
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Medical Psychological Institute of Central South University, Changsha, Hunan 410011, China; China National Clinical Research Center on Mental Disorders (Xiangya), Changsha, Hunan 410011, China.
| |
Collapse
|
29
|
Fink A, Koschutnig K, Zussner T, Perchtold-Stefan CM, Rominger C, Benedek M, Papousek I. A two-week running intervention reduces symptoms related to depression and increases hippocampal volume in young adults. Cortex 2021; 144:70-81. [PMID: 34653905 DOI: 10.1016/j.cortex.2021.08.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/09/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
This study examined the effects of a two-week running intervention on depressive symptoms and structural changes of different subfields of the hippocampus in young adults from the general population. The intervention was realized in small groups of participants in a mostly forested area and was organized into seven units of about 60 min each. The study design included two intervention groups which were tested at three time points and which received the intervention time-delayed: The first group between the first and the second time point, and the second group between the second and the third time point (waiting control group). At each test session, magnetic resonance imaging (MRI) was performed and symptoms related to depression were measured by means of the Center for Epidemiological Studies Depression (CES-D) Scale. Results revealed a significant reduction of CES-D scores after the running intervention. The intervention also resulted in significant increases in the volume of the hippocampus, and reductions of CES-D scores right after the intervention were associated with increases in hippocampal volume. These findings add important new evidence on the beneficial role of aerobic exercise on depressive symptoms and related structural alterations of the hippocampus.
Collapse
Affiliation(s)
- Andreas Fink
- Institute of Psychology, University of Graz, Austria.
| | | | | | | | | | | | | |
Collapse
|
30
|
Chinna Meyyappan A, Sgarbossa C, Vazquez G, Bond DJ, Müller DJ, Milev R. The Safety and Efficacy of Microbial Ecosystem Therapeutic-2 in People With Major Depression: Protocol for a Phase 2, Double-Blind, Placebo-Controlled Study. JMIR Res Protoc 2021; 10:e31439. [PMID: 34550085 PMCID: PMC8495575 DOI: 10.2196/31439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
Background The gut-brain axis is a bidirectional signaling pathway between the gastrointestinal tract and the brain; it is being studied because of its potential influence in mediating mood, anxiety, and other neuropsychiatric symptoms. Previous research examining the effects of gut microbiota on neuropsychiatric disorders suggests that gut repopulation treatments such as probiotics, microbe therapy, and fecal microbiota transplantation show promising results in treating symptoms of anxiety and depression. This study explores the use of an alternative gut repopulation treatment to fecal microbiota transplantation, known as Microbial Ecosystem Therapeutic (MET)-2, as an intervention against symptoms of depression. MET-2 is a daily, orally administered capsule containing 40 bacterial strains purified from a single healthy donor. Objective The primary aim of this study is to assess changes in mood in people with major depression that occur pre-, post-, and during the administration of MET-2. The secondary aims are to assess changes in anxiety symptoms, blood biomarker concentrations, and the level of repopulation of healthy gut bacteria as a response to treatment. Methods In this study, we will recruit 60 adults aged between 18 and 45 years old with major depression and randomly assign them to treatment or placebo groups. Patients in the treatment group will receive MET-2 once a day for 6 weeks, whereas patients in the placebo group will receive a matching placebo for 6 weeks. Participants will complete biweekly visits during the treatment period and a follow-up visit at 2 weeks post treatment. As a primary outcome measure, participants’ mood will be assessed using the Montgomery-Asberg Depression Rating Scale. Secondary outcome measures include changes in mood, anxiety, early stress, gastrointestinal symptoms, and tolerability of MET-2 treatment using a series of clinical scales and changes in blood markers, particularly immunoglobulins (Igs; IgA, IgG, and IgM) and inflammatory markers (C-reactive protein, tumor necrosis factor-α, transforming growth factor-β, interleukin-6, and interleukin-10). Changes in the relative abundance, diversity, and level of engraftment in fecal samples will be assessed using 16S rRNA sequencing. All data will be integrated to identify biomarkers that could indicate disease state or predict improvement in depressive symptoms in response to MET-2 treatment. Results Given the association between the gut microbiome and depression, we hypothesized that participants receiving MET-2 would experience greater improvement in depressive symptoms than those receiving placebo owing to the recolonization of the gut microbiome with healthy bacteria modulating the gut-brain axis connection. Conclusions This study is the first of its kind to evaluate the safety and efficacy of a microbial therapy such as MET-2 in comparison with placebo for major depressive disorder. We hope that this study will also reveal the potential capabilities of microbial therapies to treat other psychiatric illnesses and mood disorders. Trial Registration ClinicalTrials.gov NCT04602715; https://clinicaltrials.gov/ct2/show/NCT04602715 International Registered Report Identifier (IRRID) DERR1-10.2196/31439
Collapse
Affiliation(s)
- Arthi Chinna Meyyappan
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.,Providence Care Hospital, Kingston, ON, Canada.,Department of Psychiatry, Queen's University, Kingston, ON, Canada.,Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Cassandra Sgarbossa
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.,Providence Care Hospital, Kingston, ON, Canada.,Department of Psychiatry, Queen's University, Kingston, ON, Canada
| | - Gustavo Vazquez
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.,Providence Care Hospital, Kingston, ON, Canada.,Department of Psychiatry, Queen's University, Kingston, ON, Canada
| | - David J Bond
- Department of Psychiatry & Behavioral Sciences, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Daniel J Müller
- Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Roumen Milev
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.,Providence Care Hospital, Kingston, ON, Canada.,Department of Psychiatry, Queen's University, Kingston, ON, Canada.,Department of Psychology, Queen's University, Kingston, ON, Canada
| |
Collapse
|
31
|
Association between the expression of lncRNA BASP-AS1 and volume of right hippocampal tail moderated by episode duration in major depressive disorder: a CAN-BIND 1 report. Transl Psychiatry 2021; 11:469. [PMID: 34508068 PMCID: PMC8433329 DOI: 10.1038/s41398-021-01592-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/16/2021] [Accepted: 08/26/2021] [Indexed: 02/08/2023] Open
Abstract
The pathophysiology of major depressive disorder (MDD) encompasses an array of changes at molecular and neurobiological levels. As chronic stress promotes neurotoxicity there are alterations in the expression of genes and gene-regulatory molecules. The hippocampus is particularly sensitive to the effects of stress and its posterior volumes can deliver clinically valuable information about the outcomes of antidepressant treatment. In the present work, we analyzed individuals with MDD (N = 201) and healthy controls (HC = 104), as part of the CAN-BIND-1 study. We used magnetic resonance imaging (MRI) to measure hippocampal volumes, evaluated gene expression with RNA sequencing, and assessed DNA methylation with the (Infinium MethylationEpic Beadchip), in order to investigate the association between hippocampal volume and both RNA expression and DNA methylation. We identified 60 RNAs which were differentially expressed between groups. Of these, 21 displayed differential methylation, and seven displayed a correlation between methylation and expression. We found a negative association between expression of Brain Abundant Membrane Attached Signal Protein 1 antisense 1 RNA (BASP1-AS1) and right hippocampal tail volume in the MDD group (β = -0.218, p = 0.021). There was a moderating effect of the duration of the current episode on the association between the expression of BASP1-AS1 and right hippocampal tail volume in the MDD group (β = -0.48, 95% C.I. [-0.80, -0.16]. t = -2.95 p = 0.004). In conclusion, we found that overexpression of BASP1-AS1 was correlated with DNA methylation, and was negatively associated with right tail hippocampal volume in MDD.
Collapse
|
32
|
Hayley S, Hakim AM, Albert PR. Depression, dementia and immune dysregulation. Brain 2021; 144:746-760. [PMID: 33279966 DOI: 10.1093/brain/awaa405] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/26/2020] [Accepted: 09/20/2020] [Indexed: 12/17/2022] Open
Abstract
Major depression is a prevalent illness that increases the risk of several neurological conditions. These include stroke, cardiovascular disease, and dementia including Alzheimer's disease. In this review we ask whether certain types of depression and associated loneliness may be a harbinger of cognitive decline and possibly even dementia. We propose that chronic stress and inflammation combine to compromise vascular and brain function. The resulting increases in proinflammatory cytokines and microglial activation drive brain pathology leading to depression and mild cognitive impairment, which may progress to dementia. We present evidence that by treating the inflammatory changes, depression can be reversed in many cases. Importantly, there is evidence that anti-inflammatory and antidepressant treatments may reduce or prevent dementia in people with depression. Thus, we propose a model in which chronic stress and inflammation combine to increase brain permeability and cytokine production. This leads to microglial activation, white matter damage, neuronal and glial cell loss. This is first manifest as depression and mild cognitive impairment, but can eventually evolve into dementia. Further research may identify clinical subgroups with inflammatory depression at risk for dementia. It would then be possible to address in clinical trials whether effective treatment of the depression can delay the onset of dementia.
Collapse
Affiliation(s)
- Shawn Hayley
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Antoine M Hakim
- Ottawa Hospital Research Institute (Neuroscience), uOttawa Brain and Mind Research Institute, Ottawa, ON, Canada
| | - Paul R Albert
- Ottawa Hospital Research Institute (Neuroscience), uOttawa Brain and Mind Research Institute, Ottawa, ON, Canada
| |
Collapse
|
33
|
Peng Q, Ehlers CL. Long tracks of homozygosity predict the severity of alcohol use disorders in an American Indian population. Mol Psychiatry 2021; 26:2200-2211. [PMID: 33398086 PMCID: PMC8254832 DOI: 10.1038/s41380-020-00989-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 11/20/2022]
Abstract
Runs of homozygosity (ROH) arise when an individual inherits two copies of the same haplotype segment. While ROH are ubiquitous across human populations, Native populations-with shared parental ancestry arising from isolation and endogamy-can carry a substantial enrichment for ROH. We have been investigating genetic and environmental risk factors for alcohol use disorders (AUD) in a group of American Indians (AI) who have higher rates of AUD than the general U. S. population. Here we explore whether ROH might be associated with incidence and severity of AUD in this admixed AI population (n = 742) that live on geographically contiguous reservations, using low-coverage whole genome sequences. We have found that the genomic regions in the ROH that were identified in this population had significantly elevated American Indian heritage compared with the rest of the genome. Increased ROH abundance and ROH burden are likely risk factors for AUD severity in this AI population, especially in those diagnosed with severe and moderate AUD. The association between ROH and AUD was mostly driven by ROH of moderate lengths between 1 and 2 Mb. An ROH island on chromosome 1p32.3 and a rare ROH pool on chromosome 3p12.3 were found to be significantly associated with AUD severity. They contain genes involved in lipid metabolism, oxidative stress and inflammatory responses; and OSBPL9 was found to reside on the consensus part of the ROH island. These data demonstrate that ROH are associated with risk for AUD severity in this AI population.
Collapse
Affiliation(s)
- Qian Peng
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| | - Cindy L Ehlers
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
34
|
Zhao Z, Cai H, Zheng W, Liu T, Sun D, Han G, Zhang Y, Wu D. Atrophic Pattern of Hippocampal Subfields in Post-Stroke Demented Patient. J Alzheimers Dis 2021; 80:1299-1309. [PMID: 33646148 DOI: 10.3233/jad-200804] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Previous studies have demonstrated that hippocampal atrophy is a hallmark of dementia and can be used to predict the outcome of post-stroke demented (PSD) patients. The hippocampus consists of several subfields but their involvement in the pathophysiology of the PSD remains unclear. OBJECTIVE The present study aimed to investigate volumetric alterations of hippocampal subfields in patients with PSD. METHODS High-resolution T1-weighted images were collected from 27 PSD and 28 post-stroke nondemented (PSND) patients who recovered from ischemic stroke, and 17 age-matched normal control (NC). We estimated the volumes of the hippocampal subfields using FreeSurfer 6.0 which segmented the hippocampus into 12 subfields in each hemisphere. The volumetric differences between the groups were evaluated by the two-sample tests after regressing out the age, sex, education, and total intracranial volume. RESULTS Compared with NC group, PSD group showed smaller volumes in the entire hippocampus and its subfields, and such differences were not found in PSND group. Moreover, we found the dementia-specific atrophy in the left granule cell layer of dentate gyrus (GC-DG) and CA4 in the PSD patients compared with NC and PSND. Regression analysis showed positive correlations between the changes of cognitive performance and the asymmetry index in the CA3/4 and GC-DG of the PSD group. Furthermore, we found that the volumes of hippocampal subfields provided a better classification performance than the entire hippocampus. CONCLUSION Our findings suggest that the hippocampus is reduced in the PSD patients and it presents a selective subfield involvement.
Collapse
Affiliation(s)
- Zhiyong Zhao
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Huaying Cai
- Department of Neurology, Neuroscience Center, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Weihao Zheng
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Tingting Liu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Di Sun
- Department of Neurology, Neuroscience Center, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Guocan Han
- Department of Radiology, Neuroscience Center, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Yi Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China.,Department of Neurology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
35
|
Huang W, Hu W, Cai L, Zeng G, Fang W, Dai X, Ye Q, Chen X, Zhang J. Acetate supplementation produces antidepressant-like effect via enhanced histone acetylation. J Affect Disord 2021; 281:51-60. [PMID: 33290927 DOI: 10.1016/j.jad.2020.11.121] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND Abnormal energy metabolism is often documented in the brain of patients and rodents with depression. In metabolic stress, acetate serves as an important source of acetyl coenzyme A (Ac-CoA). However, its exact role and underlying mechanism remain to be investigated. METHOD We used chronic social failure stress (CSDS) to induce depression-like phenotype of C57BL/6J mice. The drugs were administered by gavage. We evaluated the depressive symptoms by sucrose preference test, social interaction, tail suspension test and forced swimming test. The dendritic branches and spine density were detected by Golgi staining, mRNA level was analyzed by real-time quantitative RT-PCR, protein expression level was detected by western blot, and the content of Ac-CoA was detected by ELISA kit. RESULT The present study found that acetate supplementation significantly improved the depression-like behaviors of mice either in acute forced swimming test (FST) or in CSDS model and that acetate administration enhanced the dendritic branches and spine density of the CA1 pyramidal neurons. Moreover, the down-regulated levels of BDNF and TrkB were rescued in the acetate-treated mice. Of note, chronic acetate treatment obviously lowered the transcription level of HDAC2, HDAC5, HDAC7, HDAC8, increased the transcription level of HAT and P300, and boosted the content of Ac-CoA in the nucleus, which facilitated the acetylation levels of histone H3 and H4. LIMITATIONS The effect of acetate supplementation on other brain regions is not further elucidated. CONCLUSION These findings indicate that acetate supplementation can produce antidepressant-like effects by increasing histone acetylation and improving synaptic plasticity in hippocampus.
Collapse
Affiliation(s)
- Weibin Huang
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian 350001, China; Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Wenming Hu
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian 350001, China; Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Lili Cai
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian 350001, China; Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Guirong Zeng
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian 350001, China; Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Wenting Fang
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian 350001, China; Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Xiaoman Dai
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian 350001, China; Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Qinyong Ye
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian 350001, China; Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Xiaochun Chen
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian 350001, China; Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian 350005, China.
| | - Jing Zhang
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian 350001, China; Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian 350005, China.
| |
Collapse
|
36
|
Hubachek S, Botdorf M, Riggins T, Leong HC, Klein DN, Dougherty LR. Hippocampal subregion volume in high-risk offspring is associated with increases in depressive symptoms across the transition to adolescence. J Affect Disord 2021; 281:358-366. [PMID: 33348179 PMCID: PMC7856102 DOI: 10.1016/j.jad.2020.12.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 11/18/2020] [Accepted: 12/05/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND The hippocampus has been implicated in the pathophysiology of depression. This study examined whether youth hippocampal subregion volumes were differentially associated with maternal depression history and youth's depressive symptoms across the transition to adolescence. METHODS 74 preadolescent offspring (Mage=10.74+/-0.84 years) of mothers with (n = 33) and without a lifetime depression history (n = 41) completed a structural brain scan. Youth depressive symptoms were assessed with clinical interviews and mother- and youth-reports prior to the neuroimaging assessment at age 9 (Mage=9.08+/-0.29 years), at the neuroimaging assessment, and in early adolescence (Mage=12.56+/-0.40 years). RESULTS Maternal depression was associated with preadolescent offspring's reduced bilateral hippocampal head volumes and increased left hippocampal body volume. Reduced bilateral head volumes were associated with offspring's increased concurrent depressive symptoms. Furthermore, reduced right hippocampal head volume mediated associations between maternal depression and increases in offspring depressive symptoms from age 9 to age 12. LIMITATIONS This study included a modest-sized sample that was oversampled for early temperamental characteristics, one neuroimaging assessment, and no correction for multiple comparisons. CONCLUSIONS Findings implicate reductions in hippocampal head volume in the intergenerational transmission of risk from parents to offspring.
Collapse
|
37
|
Li Z, Ruan M, Chen J, Fang Y. Major Depressive Disorder: Advances in Neuroscience Research and Translational Applications. Neurosci Bull 2021; 37:863-880. [PMID: 33582959 PMCID: PMC8192601 DOI: 10.1007/s12264-021-00638-3] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023] Open
Abstract
Major depressive disorder (MDD), also referred to as depression, is one of the most common psychiatric disorders with a high economic burden. The etiology of depression is still not clear, but it is generally believed that MDD is a multifactorial disease caused by the interaction of social, psychological, and biological aspects. Therefore, there is no exact pathological theory that can independently explain its pathogenesis, involving genetics, neurobiology, and neuroimaging. At present, there are many treatment measures for patients with depression, including drug therapy, psychotherapy, and neuromodulation technology. In recent years, great progress has been made in the development of new antidepressants, some of which have been applied in the clinic. This article mainly reviews the research progress, pathogenesis, and treatment of MDD.
Collapse
Affiliation(s)
- Zezhi Li
- Clinical Research Center and Division of Mood Disorders of Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.,Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Meihua Ruan
- Shanghai Institute of Nutrition and Health, Shanghai Information Center for Life Sciences, Chinese Academy of Science, Shanghai, 200031, China
| | - Jun Chen
- Clinical Research Center and Division of Mood Disorders of Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai, 201108, China
| | - Yiru Fang
- Clinical Research Center and Division of Mood Disorders of Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China. .,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Science, Shanghai, 200031, China. .,Shanghai Key Laboratory of Psychotic Disorders, Shanghai, 201108, China.
| |
Collapse
|
38
|
Translational application of neuroimaging in major depressive disorder: a review of psychoradiological studies. Front Med 2021; 15:528-540. [PMID: 33511554 DOI: 10.1007/s11684-020-0798-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 04/25/2020] [Indexed: 02/05/2023]
Abstract
Major depressive disorder (MDD) causes great decrements in health and quality of life with increments in healthcare costs, but the causes and pathogenesis of depression remain largely unknown, which greatly prevent its early detection and effective treatment. With the advancement of neuroimaging approaches, numerous functional and structural alterations in the brain have been detected in MDD and more recently attempts have been made to apply these findings to clinical practice. In this review, we provide an updated summary of the progress in translational application of psychoradiological findings in MDD with a specified focus on potential clinical usage. The foreseeable clinical applications for different MRI modalities were introduced according to their role in disorder classification, subtyping, and prediction. While evidence of cerebral structural and functional changes associated with MDD classification and subtyping was heterogeneous and/or sparse, the ACC and hippocampus have been consistently suggested to be important biomarkers in predicting treatment selection and treatment response. These findings underlined the potential utility of brain biomarkers for clinical practice.
Collapse
|
39
|
Bourin M. Neurogenesis and Neuroplasticity in Major Depression: Its Therapeutic Implication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1305:157-173. [PMID: 33834400 DOI: 10.1007/978-981-33-6044-0_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The neurochemical model of depression, based on monoaminergic theories, does not allow on its own to understand the mechanism of action of antidepressants. This approach does not explain the gap between the immediate biochemical modulations induced by antidepressants and the time required for their clinical action. Several hypotheses have been developed to try to explain more precisely the action of these molecules, each of them involving mechanisms of receptor regulation. At the same time, data on the neuroanatomy of depression converge toward the existence of specific lesions of this pathology. This chapter aims to provide an overview of recent advances in understanding the mechanisms of neural plasticity involved in pathophysiology depression and in its treatment.
Collapse
Affiliation(s)
- Michel Bourin
- Neurobiology of Mood Disorders, University of Nantes, Nantes, France.
| |
Collapse
|
40
|
Tai HH, Cha J, Vedaei F, Dunlop BW, Craighead WE, Mayberg HS, Choi KS. Treatment-Specific Hippocampal Subfield Volume Changes With Antidepressant Medication or Cognitive-Behavior Therapy in Treatment-Naive Depression. Front Psychiatry 2021; 12:718539. [PMID: 35002790 PMCID: PMC8739262 DOI: 10.3389/fpsyt.2021.718539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/08/2021] [Indexed: 12/02/2022] Open
Abstract
Background: Hippocampal atrophy has been consistently reported in major depressive disorder with more recent focus on subfields. However, literature on hippocampal volume changes after antidepressant treatment has been limited. The first-line treatments for depression include antidepressant medication (ADM) or cognitive-behavior therapy (CBT). To understand the differential effects of CBT and ADM on the hippocampus, we investigated the volume alterations of hippocampal subfields with treatment, outcome, and chronicity in treatment-naïve depression patients. Methods: Treatment-naïve depressed patients from the PReDICT study were included in this analysis. A total of 172 patients who completed 12 weeks of randomized treatment with CBT (n = 45) or ADM (n = 127) were included for hippocampal subfield volume analysis. Forty healthy controls were also included for the baseline comparison. Freesurfer 6.0 was used to segment 26 hippocampal substructures and bilateral whole hippocampus from baseline and week 12 structural MRI scans. A generalized linear model with covariates of age and gender was used for group statistical tests. A linear mixed model for the repeated measures with covariates of age and gender was used to examine volumetric changes over time and the contributing effects of treatment type, outcome, and illness chronicity. Results: Of the 172 patients, 85 achieved remission (63/127 ADM, 22/45 CBT). MDD patients showed smaller baseline volumes than healthy controls in CA1, CA3, CA4, parasubiculum, GC-ML-DG, Hippocampal Amygdala Transition Area (HATA), and fimbria. Over 12 weeks of treatment, further declines in the volumes of CA1, fimbria, subiculum, and HATA were observed regardless of treatment type or outcome. CBT remitters, but not ADM remitters, showed volume reduction in the right hippocampal tail. Unlike ADM remitters, ADM non-responders had a decline in volume in the bilateral hippocampal tails. Baseline volume of left presubiculum (regardless of treatment type) and right fimbria and HATA in CBT patients were correlated with a continuous measure of clinical improvement. Chronicity of depression had no effect on any measures of hippocampal subfield volumes. Conclusion: Two first-line antidepressant treatments, CBT and ADM, have different effects on hippocampal tail after 12 weeks. This finding suggests that remission achieved via ADM may protect against progressive hippocampal atrophy by altering neuronal plasticity or supporting neurogenesis. Studies with multimodal neuroimaging, including functional and structural analysis, are needed to assess further the impact of two different antidepressant treatments on hippocampal subfields.
Collapse
Affiliation(s)
- Hua-Hsin Tai
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jungho Cha
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Faezeh Vedaei
- Thomas Jefferson University, Philadelphia, PA, United States
| | - Boadie W Dunlop
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - W Edward Craighead
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Helen S Mayberg
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ki Sueng Choi
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
41
|
Sämann PG, Iglesias JE, Gutman B, Grotegerd D, Leenings R, Flint C, Dannlowski U, Clarke‐Rubright EK, Morey RA, Erp TG, Whelan CD, Han LKM, Velzen LS, Cao B, Augustinack JC, Thompson PM, Jahanshad N, Schmaal L. FreeSurfer
‐based segmentation of hippocampal subfields: A review of methods and applications, with a novel quality control procedure for
ENIGMA
studies and other collaborative efforts. Hum Brain Mapp 2020; 43:207-233. [PMID: 33368865 PMCID: PMC8805696 DOI: 10.1002/hbm.25326] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/26/2020] [Accepted: 12/13/2020] [Indexed: 12/11/2022] Open
Abstract
Structural hippocampal abnormalities are common in many neurological and psychiatric disorders, and variation in hippocampal measures is related to cognitive performance and other complex phenotypes such as stress sensitivity. Hippocampal subregions are increasingly studied, as automated algorithms have become available for mapping and volume quantification. In the context of the Enhancing Neuro Imaging Genetics through Meta Analysis Consortium, several Disease Working Groups are using the FreeSurfer software to analyze hippocampal subregion (subfield) volumes in patients with neurological and psychiatric conditions along with data from matched controls. In this overview, we explain the algorithm's principles, summarize measurement reliability studies, and demonstrate two additional aspects (subfield autocorrelation and volume/reliability correlation) with illustrative data. We then explain the rationale for a standardized hippocampal subfield segmentation quality control (QC) procedure for improved pipeline harmonization. To guide researchers to make optimal use of the algorithm, we discuss how global size and age effects can be modeled, how QC steps can be incorporated and how subfields may be aggregated into composite volumes. This discussion is based on a synopsis of 162 published neuroimaging studies (01/2013–12/2019) that applied the FreeSurfer hippocampal subfield segmentation in a broad range of domains including cognition and healthy aging, brain development and neurodegeneration, affective disorders, psychosis, stress regulation, neurotoxicity, epilepsy, inflammatory disease, childhood adversity and posttraumatic stress disorder, and candidate and whole genome (epi‐)genetics. Finally, we highlight points where FreeSurfer‐based hippocampal subfield studies may be optimized.
Collapse
Affiliation(s)
| | - Juan Eugenio Iglesias
- Centre for Medical Image Computing University College London London UK
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology Massachusetts General Hospital/Harvard Medical School Boston Massachusetts US
- Computer Science and AI Laboratory (CSAIL), Massachusetts Institute of Technology (MIT) Cambridge Massachusetts US
| | - Boris Gutman
- Department of Biomedical Engineering Illinois Institute of Technology Chicago USA
| | | | - Ramona Leenings
- Department of Psychiatry University of Münster Münster Germany
| | - Claas Flint
- Department of Psychiatry University of Münster Münster Germany
- Department of Mathematics and Computer Science University of Münster Germany
| | - Udo Dannlowski
- Department of Psychiatry University of Münster Münster Germany
| | - Emily K. Clarke‐Rubright
- Brain Imaging and Analysis Center, Duke University Durham North Carolina USA
- VISN 6 MIRECC, Durham VA Durham North Carolina USA
| | - Rajendra A. Morey
- Brain Imaging and Analysis Center, Duke University Durham North Carolina USA
- VISN 6 MIRECC, Durham VA Durham North Carolina USA
| | - Theo G.M. Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior University of California Irvine California USA
- Center for the Neurobiology of Learning and Memory University of California Irvine Irvine California USA
| | - Christopher D. Whelan
- Imaging Genetics Center Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California Los Angeles California USA
| | - Laura K. M. Han
- Department of Psychiatry Amsterdam University Medical Centers, Vrije Universiteit and GGZ inGeest, Amsterdam Neuroscience Amsterdam The Netherlands
| | - Laura S. Velzen
- Orygen Parkville Australia
- Centre for Youth Mental Health The University of Melbourne Melbourne Australia
| | - Bo Cao
- Department of Psychiatry, Faculty of Medicine & Dentistry University of Alberta Edmonton Canada
| | - Jean C. Augustinack
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology Massachusetts General Hospital/Harvard Medical School Boston Massachusetts US
| | - Paul M. Thompson
- Imaging Genetics Center Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California Los Angeles California USA
| | - Neda Jahanshad
- Imaging Genetics Center Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California Los Angeles California USA
| | - Lianne Schmaal
- Orygen Parkville Australia
- Centre for Youth Mental Health The University of Melbourne Melbourne Australia
| |
Collapse
|
42
|
Hallmarks of Health. Cell 2020; 184:33-63. [PMID: 33340459 DOI: 10.1016/j.cell.2020.11.034] [Citation(s) in RCA: 261] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/09/2020] [Accepted: 11/19/2020] [Indexed: 12/16/2022]
Abstract
Health is usually defined as the absence of pathology. Here, we endeavor to define health as a compendium of organizational and dynamic features that maintain physiology. The biological causes or hallmarks of health include features of spatial compartmentalization (integrity of barriers and containment of local perturbations), maintenance of homeostasis over time (recycling and turnover, integration of circuitries, and rhythmic oscillations), and an array of adequate responses to stress (homeostatic resilience, hormetic regulation, and repair and regeneration). Disruption of any of these interlocked features is broadly pathogenic, causing an acute or progressive derailment of the system coupled to the loss of numerous stigmata of health.
Collapse
|
43
|
Changes in Hippocampal Plasticity in Depression and Therapeutic Approaches Influencing These Changes. Neural Plast 2020; 2020:8861903. [PMID: 33293948 PMCID: PMC7718046 DOI: 10.1155/2020/8861903] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/30/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Depression is a common neurological disease that seriously affects human health. There are many hypotheses about the pathogenesis of depression, and the most widely recognized and applied is the monoamine hypothesis. However, no hypothesis can fully explain the pathogenesis of depression. At present, the brain-derived neurotrophic factor (BDNF) and neurogenesis hypotheses have highlighted the important role of plasticity in depression. The plasticity of neurons and glial cells plays a vital role in the transmission and integration of signals in the central nervous system. Plasticity is the adaptive change in the nervous system in response to changes in external signals. The hippocampus is an important anatomical area associated with depression. Studies have shown that some antidepressants can treat depression by changing the plasticity of the hippocampus. Furthermore, caloric restriction has also been shown to affect antidepressant and hippocampal plasticity changes. In this review, we summarize the latest research, focusing on changes in the plasticity of hippocampal neurons and glial cells in depression and the role of BDNF in the changes in hippocampal plasticity in depression, as well as caloric restriction and mitochondrial plasticity. This review may contribute to the development of antidepressant drugs and elucidating the mechanism of depression.
Collapse
|
44
|
Haukvik UK, Gurholt TP, Nerland S, Elvsåshagen T, Akudjedu TN, Alda M, Alnæs D, Alonso‐Lana S, Bauer J, Baune BT, Benedetti F, Berk M, Bettella F, Bøen E, Bonnín CM, Brambilla P, Canales‐Rodríguez EJ, Cannon DM, Caseras X, Dandash O, Dannlowski U, Delvecchio G, Díaz‐Zuluaga AM, Erp TGM, Fatjó‐Vilas M, Foley SF, Förster K, Fullerton JM, Goikolea JM, Grotegerd D, Gruber O, Haarman BCM, Haatveit B, Hajek T, Hallahan B, Harris M, Hawkins EL, Howells FM, Hülsmann C, Jahanshad N, Jørgensen KN, Kircher T, Krämer B, Krug A, Kuplicki R, Lagerberg TV, Lancaster TM, Lenroot RK, Lonning V, López‐Jaramillo C, Malt UF, McDonald C, McIntosh AM, McPhilemy G, Meer D, Melle I, Melloni EMT, Mitchell PB, Nabulsi L, Nenadić I, Oertel V, Oldani L, Opel N, Otaduy MCG, Overs BJ, Pineda‐Zapata JA, Pomarol‐Clotet E, Radua J, Rauer L, Redlich R, Repple J, Rive MM, Roberts G, Ruhe HG, Salminen LE, Salvador R, Sarró S, Savitz J, Schene AH, Sim K, Soeiro‐de‐Souza MG, Stäblein M, Stein DJ, Stein F, Tamnes CK, Temmingh HS, Thomopoulos SI, Veltman DJ, Vieta E, Waltemate L, Westlye LT, Whalley HC, Sämann PG, Thompson PM, Ching CRK, Andreassen OA, Agartz I. In vivo hippocampal subfield volumes in bipolar disorder—A mega‐analysis from The Enhancing Neuro Imaging Genetics through
Meta‐Analysis
Bipolar Disorder Working Group. Hum Brain Mapp 2020; 43:385-398. [PMID: 33073925 PMCID: PMC8675404 DOI: 10.1002/hbm.25249] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/18/2020] [Accepted: 10/06/2020] [Indexed: 01/02/2023] Open
Abstract
The hippocampus consists of anatomically and functionally distinct subfields that may be differentially involved in the pathophysiology of bipolar disorder (BD). Here we, the Enhancing NeuroImaging Genetics through Meta‐Analysis Bipolar Disorder workinggroup, study hippocampal subfield volumetry in BD. T1‐weighted magnetic resonance imaging scans from 4,698 individuals (BD = 1,472, healthy controls [HC] = 3,226) from 23 sites worldwide were processed with FreeSurfer. We used linear mixed‐effects models and mega‐analysis to investigate differences in hippocampal subfield volumes between BD and HC, followed by analyses of clinical characteristics and medication use. BD showed significantly smaller volumes of the whole hippocampus (Cohen's d = −0.20), cornu ammonis (CA)1 (d = −0.18), CA2/3 (d = −0.11), CA4 (d = −0.19), molecular layer (d = −0.21), granule cell layer of dentate gyrus (d = −0.21), hippocampal tail (d = −0.10), subiculum (d = −0.15), presubiculum (d = −0.18), and hippocampal amygdala transition area (d = −0.17) compared to HC. Lithium users did not show volume differences compared to HC, while non‐users did. Antipsychotics or antiepileptic use was associated with smaller volumes. In this largest study of hippocampal subfields in BD to date, we show widespread reductions in nine of 12 subfields studied. The associations were modulated by medication use and specifically the lack of differences between lithium users and HC supports a possible protective role of lithium in BD.
Collapse
Affiliation(s)
- Unn K. Haukvik
- Department of Adult Mental Health Institute of Clinical Medicine, University of Oslo Oslo Norway
- Norwegian Centre for Mental Disorders Research (NORMENT) Division of Mental Health and Addiction, Oslo University Hospital Oslo Norway
| | - Tiril P. Gurholt
- Norwegian Centre for Mental Disorders Research (NORMENT) Division of Mental Health and Addiction, Oslo University Hospital Oslo Norway
- Norwegian Centre for Mental Disorders Research (NORMENT) Institute of Clinical Medicine, University of Oslo Oslo Norway
- Department of Psychiatric Research Diakonhjemmet Hospital Oslo Norway
| | - Stener Nerland
- Norwegian Centre for Mental Disorders Research (NORMENT) Institute of Clinical Medicine, University of Oslo Oslo Norway
- Department of Psychiatric Research Diakonhjemmet Hospital Oslo Norway
| | - Torbjørn Elvsåshagen
- Norwegian Centre for Mental Disorders Research (NORMENT) Division of Mental Health and Addiction, Oslo University Hospital Oslo Norway
- Department of Neurology Oslo University Hospital Oslo Norway
- Institute of Clinical Medicine University of Oslo Oslo Norway
| | - Theophilus N. Akudjedu
- Centre for Neuroimaging & Cognitive Genomics (NICOG) Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway Galway Ireland
- Institute of Medical Imaging & Visualisation Faculty of Health & Social Sciences, Bournemouth University Bournemouth UK
| | - Martin Alda
- Department of Psychiatry Dalhousie University Halifax Nova Scotia Canada
- National Institute of Mental Health Klecany Czech Republic
| | - Dag Alnæs
- Norwegian Centre for Mental Disorders Research (NORMENT) Division of Mental Health and Addiction, Oslo University Hospital Oslo Norway
- Norwegian Centre for Mental Disorders Research (NORMENT) Institute of Clinical Medicine, University of Oslo Oslo Norway
| | - Silvia Alonso‐Lana
- FIDMAG Germanes Hospitalàries Research Foundation CIBERSAM Barcelona Spain
| | - Jochen Bauer
- Institute of Clinical Radiology University of Münster Münster Germany
| | - Bernhard T. Baune
- Department of Psychiatry University of Münster Münster Germany
- Department of Psychiatry Melbourne Medical School, The University of Melbourne Melbourne Australia
- The Florey Institute of Neuroscience and Mental Health The University of Melbourne Parkville Australia
| | - Francesco Benedetti
- Psychiatry and Clinical Psychobiology Scientific Institute Ospedale San Raffaele Milan Italy
- University Vita‐Salute San Raffaele Milan Italy
| | - Michael Berk
- Deakin University IMPACT, the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health Geelong Victoria Australia
- Orygen, The National Centre of Excellence in Youth Mental Health and Centre for Youth Mental Health, the Department of Psychiatry and the Florey Institute for Neuroscience and Mental Health The University of Melbourne Melbourne Victoria Australia
| | - Francesco Bettella
- Norwegian Centre for Mental Disorders Research (NORMENT) Division of Mental Health and Addiction, Oslo University Hospital Oslo Norway
| | - Erlend Bøen
- Psychosomatic and CL Psychiatry Division of Mental Health and Addiction, Oslo University Hospital Oslo Norway
| | - Caterina M. Bonnín
- Barcelona Bipolar Disorders and Depressive Unit Hospital Clinic, Institute of Neurosciences, University of Barcelona, IDIBAPS, CIBERSAM Barcelona Spain
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan Italy
- Department of Pathophysiology and Transplantation University of Milan Milan Italy
| | | | - Dara M. Cannon
- Centre for Neuroimaging & Cognitive Genomics (NICOG) Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway Galway Ireland
| | - Xavier Caseras
- MRC Centre for Neuropsychiatric Genetics and Genomics, Department of Psychological Medicine and Clinical Neurosciences Cardiff University Cardiff UK
| | - Orwa Dandash
- Brain, Mind and Society Research Hub, Turner Institute for Brain and Mental Health, School of Psychological Sciences Monash University Clayton Victoria Australia
- Melbourne Neuropsychiatry Centre, Department of Psychiatry University of Melbourne and Melbourne Health Melbourne Victoria Australia
| | - Udo Dannlowski
- Department of Psychiatry University of Münster Münster Germany
| | - Giuseppe Delvecchio
- Department of Pathophysiology and Transplantation University of Milan Milan Italy
| | - Ana M. Díaz‐Zuluaga
- Research Group in Psychiatry, Department of Psychiatry Faculty of Medicine, Universidad de Antioquia Medellín Antioquia Colombia
| | - Theo G. M. Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior University of California Irvine Irvine California USA
- Center for the Neurobiology of Learning University of California Irvine and Memory Irvine California USA
| | - Mar Fatjó‐Vilas
- FIDMAG Germanes Hospitalàries Research Foundation CIBERSAM Barcelona Spain
| | - Sonya F. Foley
- Cardiff University Brain Research Imaging Centre (CUBRIC) Cardiff University Cardiff UK
| | | | - Janice M. Fullerton
- Neuroscience Research Australia Randwick New South Wales Australia
- School of Medical Sciences The University of New South Wales Sydney New South Wales Australia
| | - José M. Goikolea
- Barcelona Bipolar Disorders and Depressive Unit Hospital Clinic, Institute of Neurosciences, University of Barcelona, IDIBAPS, CIBERSAM Barcelona Spain
| | | | - Oliver Gruber
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry Heidelberg University Hospital Heidelberg Germany
| | - Bartholomeus C. M. Haarman
- Department of Psychiatry University Medical Center Groningen, University of Groningen Groningen The Netherlands
| | - Beathe Haatveit
- Norwegian Centre for Mental Disorders Research (NORMENT) Division of Mental Health and Addiction, Oslo University Hospital Oslo Norway
- Norwegian Centre for Mental Disorders Research (NORMENT) Institute of Clinical Medicine, University of Oslo Oslo Norway
| | - Tomas Hajek
- Department of Psychiatry Dalhousie University Halifax Nova Scotia Canada
- National Institute of Mental Health Klecany Czech Republic
| | - Brian Hallahan
- Centre for Neuroimaging & Cognitive Genomics (NICOG) Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway Galway Ireland
| | - Mathew Harris
- Division of Psychiatry University of Edinburgh Edinburgh UK
| | | | - Fleur M. Howells
- Department of Psychiatry and Mental Health University of Cape Town Cape Town Western Cape South Africa
- Neuroscience Institute University of Cape Town Cape Town Western Cape South Africa
| | - Carina Hülsmann
- Department of Psychiatry University of Münster Münster Germany
| | - Neda Jahanshad
- Imaging Genetics Center USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California Marina del Rey California USA
| | - Kjetil N. Jørgensen
- Norwegian Centre for Mental Disorders Research (NORMENT) Institute of Clinical Medicine, University of Oslo Oslo Norway
- Department of Psychiatric Research Diakonhjemmet Hospital Oslo Norway
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy Philipps‐University Marburg Marburg Germany
- Center for Mind Brain and Behavior (CMBB) Marburg Germany
| | - Bernd Krämer
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry Heidelberg University Hospital Heidelberg Germany
| | - Axel Krug
- Department of Psychiatry and Psychotherapy Philipps‐University Marburg Marburg Germany
- Center for Mind Brain and Behavior (CMBB) Marburg Germany
- Department of Psychiatry and Psychotherapy University of Bonn Bonn Germany
| | - Rayus Kuplicki
- Laureate Institute for Brain Research Tulsa Oklahoma USA
| | - Trine V. Lagerberg
- Norwegian Centre for Mental Disorders Research (NORMENT) Division of Mental Health and Addiction, Oslo University Hospital Oslo Norway
| | - Thomas M. Lancaster
- Cardiff University Brain Research Imaging Centre (CUBRIC) Cardiff University Cardiff UK
- School of Psychology Bath University Bath UK
| | - Rhoshel K. Lenroot
- Neuroscience Research Australia Randwick New South Wales Australia
- School of Psychiatry University of New South Wales Sydney New South Wales Australia
- University of New Mexico Albuquerque New Mexico USA
| | - Vera Lonning
- Norwegian Centre for Mental Disorders Research (NORMENT) Institute of Clinical Medicine, University of Oslo Oslo Norway
- Department of Psychiatric Research Diakonhjemmet Hospital Oslo Norway
| | - Carlos López‐Jaramillo
- Research Group in Psychiatry, Department of Psychiatry Faculty of Medicine, Universidad de Antioquia Medellín Antioquia Colombia
- Mood Disorders Program Hospital Universitario San Vicente Fundación Medellín Antioquia Colombia
| | - Ulrik F. Malt
- Institute of Clinical Medicine University of Oslo Oslo Norway
| | - Colm McDonald
- Centre for Neuroimaging & Cognitive Genomics (NICOG) Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway Galway Ireland
| | | | - Genevieve McPhilemy
- Centre for Neuroimaging & Cognitive Genomics (NICOG) Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway Galway Ireland
| | - Dennis Meer
- Norwegian Centre for Mental Disorders Research (NORMENT) Institute of Clinical Medicine, University of Oslo Oslo Norway
- School of Mental Health and Neuroscience Faculty of Health, Medicine and Life Sciences, Maastricht University Maastricht The Netherlands
| | - Ingrid Melle
- Norwegian Centre for Mental Disorders Research (NORMENT) Division of Mental Health and Addiction, Oslo University Hospital Oslo Norway
- Norwegian Centre for Mental Disorders Research (NORMENT) Institute of Clinical Medicine, University of Oslo Oslo Norway
| | - Elisa M. T. Melloni
- Psychiatry and Clinical Psychobiology Scientific Institute Ospedale San Raffaele Milan Italy
- University Vita‐Salute San Raffaele Milan Italy
| | - Philip B. Mitchell
- School of Psychiatry University of New South Wales Sydney New South Wales Australia
- Black Dog Institute Sydney New South Wales Australia
| | - Leila Nabulsi
- Centre for Neuroimaging & Cognitive Genomics (NICOG) Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway Galway Ireland
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy Philipps‐University Marburg Marburg Germany
- Center for Mind Brain and Behavior (CMBB) Marburg Germany
| | - Viola Oertel
- Department of Psychiatry Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt Frankfurt am Main Germany
| | - Lucio Oldani
- Department of Neurosciences and Mental Health Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan Italy
| | - Nils Opel
- Department of Psychiatry University of Münster Münster Germany
| | - Maria C. G. Otaduy
- LIM44, Department of Radiology and Oncology University of São Paulo São Paulo Brazil
| | - Bronwyn J. Overs
- Neuroscience Research Australia Randwick New South Wales Australia
| | - Julian A. Pineda‐Zapata
- Research Group in Psychiatry, Department of Psychiatry Faculty of Medicine, Universidad de Antioquia Medellín Antioquia Colombia
- Research Group Instituto de Alta Tecnología Médica Medellín Antioquia Colombia
| | | | - Joaquim Radua
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBERSAM Barcelona Spain
- Department of Psychosis Studies Institute of Psychiatry, Psychology and Neuroscience, King's College London London UK
- Department of Clinical Neuroscience Centre for Psychiatry Research, Karolinska Institutet Stockholm Sweden
| | - Lisa Rauer
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry Heidelberg University Hospital Heidelberg Germany
| | - Ronny Redlich
- Department of Psychiatry University of Münster Münster Germany
| | - Jonathan Repple
- Department of Psychiatry University of Münster Münster Germany
| | - Maria M. Rive
- Psychiatry Amsterdam UMC, Location AMC Amsterdam The Netherlands
| | - Gloria Roberts
- School of Psychiatry University of New South Wales Sydney New South Wales Australia
- Black Dog Institute Sydney New South Wales Australia
| | - Henricus G. Ruhe
- Psychiatry Amsterdam UMC, Location AMC Amsterdam The Netherlands
- Donders Institute for Brain, Cognition and Behavior Radboud University Nijmegen The Netherlands
- Department of Psychiatry Radboudumc Nijmegen The Netherlands
| | - Lauren E. Salminen
- Imaging Genetics Center USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California Marina del Rey California USA
| | - Raymond Salvador
- FIDMAG Germanes Hospitalàries Research Foundation CIBERSAM Barcelona Spain
| | - Salvador Sarró
- FIDMAG Germanes Hospitalàries Research Foundation CIBERSAM Barcelona Spain
| | - Jonathan Savitz
- Laureate Institute for Brain Research Tulsa Oklahoma USA
- Oxley College of Health Sciences The University of Tulsa Tulsa Oklahoma USA
| | - Aart H. Schene
- Donders Institute for Brain, Cognition and Behavior Radboud University Nijmegen The Netherlands
- Department of Psychiatry Radboudumc Nijmegen The Netherlands
| | - Kang Sim
- West Region/Institute of Mental Health Singapore Singapore
- Yong Loo Lin School of Medicine/National University of Singapore Singapore Singapore
- Lee Kong Chian School of Medicine/Nanyang Technological University Singapore Singapore
| | | | - Michael Stäblein
- Department of Psychiatry Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt Frankfurt am Main Germany
| | - Dan J. Stein
- Department of Psychiatry and Mental Health University of Cape Town Cape Town Western Cape South Africa
- Neuroscience Institute University of Cape Town Cape Town Western Cape South Africa
- SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry & Neuroscience Institute University of Cape Town Cape Town Western Cape South Africa
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy Philipps‐University Marburg Marburg Germany
- Center for Mind Brain and Behavior (CMBB) Marburg Germany
| | - Christian K. Tamnes
- Norwegian Centre for Mental Disorders Research (NORMENT) Division of Mental Health and Addiction, Oslo University Hospital Oslo Norway
- Norwegian Centre for Mental Disorders Research (NORMENT) Institute of Clinical Medicine, University of Oslo Oslo Norway
- Department of Psychiatric Research Diakonhjemmet Hospital Oslo Norway
- PROMENTA Research Center, Department of Psychology University of Oslo Oslo Norway
| | - Henk S. Temmingh
- Department of Psychiatry and Mental Health University of Cape Town Cape Town Western Cape South Africa
- General Adult Psychiatry Division Valkenberg Hospital Cape Town Western Cape South Africa
| | - Sophia I. Thomopoulos
- Imaging Genetics Center USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California Marina del Rey California USA
| | - Dick J. Veltman
- Department of Psychiatry Amsterdam UMC, Location VUMC Amsterdam The Netherlands
- Amsterdam Neuroscience Amsterdam UMC Amsterdam The Netherlands
| | - Eduard Vieta
- Hospital Clinic University of Barcelona, IDIBAPS, CIBERSAM Barcelona Catalonia Spain
| | - Lena Waltemate
- Department of Psychiatry University of Münster Münster Germany
| | - Lars T. Westlye
- Norwegian Centre for Mental Disorders Research (NORMENT) Division of Mental Health and Addiction, Oslo University Hospital Oslo Norway
- Department of Psychology University of Oslo Oslo Norway
| | | | | | - Paul M. Thompson
- Imaging Genetics Center USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California Marina del Rey California USA
| | - Christopher R. K. Ching
- Imaging Genetics Center USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California Marina del Rey California USA
| | - Ole A. Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT) Division of Mental Health and Addiction, Oslo University Hospital Oslo Norway
- Norwegian Centre for Mental Disorders Research (NORMENT) Institute of Clinical Medicine, University of Oslo Oslo Norway
| | - Ingrid Agartz
- Norwegian Centre for Mental Disorders Research (NORMENT) Institute of Clinical Medicine, University of Oslo Oslo Norway
- Department of Psychiatric Research Diakonhjemmet Hospital Oslo Norway
- Department of Clinical Neuroscience Centre for Psychiatric Research, Karolinska Institutet Stockholm Sweden
| | | |
Collapse
|
45
|
Zhao L, Han G, Zhao Y, Jin Y, Ge T, Yang W, Cui R, Xu S, Li B. Gender Differences in Depression: Evidence From Genetics. Front Genet 2020; 11:562316. [PMID: 33193645 PMCID: PMC7593575 DOI: 10.3389/fgene.2020.562316] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022] Open
Abstract
Compared with men, female accounts for a larger proportion of patients with depression. Behavioral genetics researches find gender differences in genetic underpinnings of depression. We found that gender differences exist in heritability and the gene associated with depression after reviewing relevant research. Both genes and gene-environment interactions contribute to the risk of depression in a gender-specific manner. We detailed the relationships between serotonin transporter gene-linked promoter region (5-HTTLPR) and depression. However, the results of these studies are very different. We explored the reasons for the contradictory conclusions and provided some suggestions for future research on the gender differences in genetic underpinnings of depression.
Collapse
Affiliation(s)
- Lihong Zhao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, Second Hospital of Jilin University, Changchun, China
| | - Guanghong Han
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yinghao Zhao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, Second Hospital of Jilin University, Changchun, China
| | - Yang Jin
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, Second Hospital of Jilin University, Changchun, China
| | - Tongtong Ge
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, Second Hospital of Jilin University, Changchun, China
| | - Songbai Xu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
46
|
Lynch KM, Shi Y, Toga AW, Clark KA. Hippocampal Shape Maturation in Childhood and Adolescence. Cereb Cortex 2020; 29:3651-3665. [PMID: 30272143 DOI: 10.1093/cercor/bhy244] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/29/2018] [Accepted: 09/07/2018] [Indexed: 11/14/2022] Open
Abstract
The hippocampus is a subcortical structure critical for learning and memory, and a thorough understanding of its neurodevelopment is important for studying these processes in health and disease. However, few studies have quantified the typical developmental trajectory of the structure in childhood and adolescence. This study examined the cross-sectional age-related changes and sex differences in hippocampal shape in a multisite, multistudy cohort of 1676 typically developing children (age 1-22 years) using a novel intrinsic brain mapping method based on Laplace-Beltrami embedding of surfaces. Significant age-related expansion was observed bilaterally and nonlinear growth was observed primarily in the right head and tail of the hippocampus. Sex differences were also observed bilaterally along the lateral and medial aspects of the surface, with females exhibiting relatively larger surface expansion than males. Additionally, the superior posterior lateral surface of the left hippocampus exhibited an age-sex interaction with females expanding faster than males. Shape analysis provides enhanced sensitivity to regional changes in hippocampal morphology over traditional volumetric approaches and allows for the localization of developmental effects. Our results further support evidence that hippocampal structures follow distinct maturational trajectories that may coincide with the development of learning and memory skills during critical periods of development.
Collapse
Affiliation(s)
- Kirsten M Lynch
- Keck School of Medicine of USC, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA 90033, USA.,Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA
| | - Yonggang Shi
- Keck School of Medicine of USC, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA 90033, USA
| | - Arthur W Toga
- Keck School of Medicine of USC, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA 90033, USA
| | - Kristi A Clark
- Keck School of Medicine of USC, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA 90033, USA
| | | |
Collapse
|
47
|
Li M, Huang L, Yang D, Luo C, Qin R, Zhang B, Zhao H, Xu Y. Atrophy patterns of hippocampal subfields in T2DM patients with cognitive impairment. Endocrine 2020; 68:536-548. [PMID: 32172485 PMCID: PMC7308251 DOI: 10.1007/s12020-020-02249-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/26/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE To identify the volume changes of hippocampus subfields in T2DM patients with cognitive impairment and to determine how these atrophy patterns associate with impairments in different cognitive domain. METHODS A total of 117 individuals were recruited, including T2DM patients with cognitive impairment (T2DM-CI) (n = 34), T2DM patients without cognitive impairment (T2DM-non-CI) (n = 36) and normal controls (NC) (n = 47). All subjects went through a 3.0 T magnetic resonance (MR) scan and a neuropsychological assessment. Hippocampal subfield volumes were processed using the FreeSurfer 6.0.0 and compared among the three groups. Partial correlation analyses were used to estimate the relationship between cognitive function and hippocampal subfield volume, with age, sex, education, and eTIV (estimated total intracranial volume) as covariants. RESULTS The total hippocampal volume had a reduction trend among the three groups, and the significantly statistical difference only was found between T2DM-CI group and NC group. Regarding the hippocampal subfields, the volumes of left subiculum, left presubiculum, left fimbria, right CA1 and right molecular layer HP decreased significantly in the T2DM-CI group (P < 0.05/12). Partial correlation analyses showed that the volumes of the left subiculum, left fimbria, and left presubiculum were significantly related to executive function. The right hippocampal CA1 volume was significantly correlated with memory in the T2DM-CI group (P < 0.05). But in T2DM-non-CI group, the correlation between the left fimbria volume and the memory, the left subiculum volume and MoCA were different with the T2DM-CI group and NC group (P < 0.05). CONCLUSIONS The smaller the volume of left presubiculum, the worse the executive function, and the atrophy of the right CA1 was related to memory impairment in T2DM-CI group. However the result was the opposite in T2DM-non-CI group. There might be a compensation mechanism of hippocampus of T2DM patients before cognitive impairment.
Collapse
Affiliation(s)
- MengChun Li
- Department of Neurology, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, China
- Nanjing Medicine Center For Neurological and Psychiatric Diseases, Nanjing, China
| | - LiLi Huang
- Department of Neurology, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, China
- Nanjing Medicine Center For Neurological and Psychiatric Diseases, Nanjing, China
| | - Dan Yang
- Department of Neurology, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, China
- Nanjing Medicine Center For Neurological and Psychiatric Diseases, Nanjing, China
| | - CaiMei Luo
- Department of Neurology, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, China
- Nanjing Medicine Center For Neurological and Psychiatric Diseases, Nanjing, China
| | - RuoMeng Qin
- Department of Neurology, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, China
- Nanjing Medicine Center For Neurological and Psychiatric Diseases, Nanjing, China
| | - Bing Zhang
- Department of Neurology, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, China
- Department of Radiology, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Hui Zhao
- Department of Neurology, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China.
- Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, China.
- Nanjing Medicine Center For Neurological and Psychiatric Diseases, Nanjing, China.
| | - Yun Xu
- Department of Neurology, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China.
- Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, China.
- Nanjing Medicine Center For Neurological and Psychiatric Diseases, Nanjing, China.
| |
Collapse
|
48
|
Katsuki A, Watanabe K, Nguyen L, Otsuka Y, Igata R, Ikenouchi A, Kakeda S, Korogi Y, Yoshimura R. Structural Changes in Hippocampal Subfields in Patients with Continuous Remission of Drug-Naive Major Depressive Disorder. Int J Mol Sci 2020; 21:ijms21093032. [PMID: 32344826 PMCID: PMC7246866 DOI: 10.3390/ijms21093032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/22/2020] [Accepted: 04/22/2020] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE Hippocampal volume is reduced in patients with major depressive disorder (MDD) compared with healthy controls. The hippocampus is a limbic structure that has a critical role in MDD. The aim of the present study was to investigate the changes in the volume of the hippocampus and its subfields in MDD patients who responded to antidepressants and subsequently were in continuous remission. SUBJECTS AND METHODS Eighteen patients who met the following criteria were enrolled in the present study: the DSM-IV-TR criteria for MDD, drug-naïve at least 8 weeks or more, scores on the 17-items of Hamilton Rating Scale for Depression (HAMD) of 14 points or more, and antidepressant treatment response within 8 weeks and continuous remission for at least 6 months. All participants underwent T1-weighted structural MRI and were treated with antidepressants for more than 8 weeks. We compared the volumes of the hippocampus, including its subfields, in responders at baseline to the volumes at 6 months. The volumes of the whole hippocampus and the hippocampal subfields were measured using FreeSurfer v6.0. RESULTS The volumes of the left cornu Ammonis (CA) 3 (p = 0.016) and the granule cell layer of the dentate gyrus (GC-DG) region (p = 0.021) were significantly increased after 6 months of treatment compared with those at baseline. CONCLUSIONS Increases in volume was observed in MDD patients who were in remission for at least 6 months.
Collapse
Affiliation(s)
- Asuka Katsuki
- Department of Psychiatry, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan; (A.K.); (L.N.); (Y.O.); (R.I.); (A.I.)
| | - Keita Watanabe
- Department of Radiology, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan; (K.W.); (Y.K.)
| | - LeHoa Nguyen
- Department of Psychiatry, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan; (A.K.); (L.N.); (Y.O.); (R.I.); (A.I.)
| | - Yuka Otsuka
- Department of Psychiatry, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan; (A.K.); (L.N.); (Y.O.); (R.I.); (A.I.)
| | - Ryohei Igata
- Department of Psychiatry, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan; (A.K.); (L.N.); (Y.O.); (R.I.); (A.I.)
| | - Atsuko Ikenouchi
- Department of Psychiatry, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan; (A.K.); (L.N.); (Y.O.); (R.I.); (A.I.)
| | - Shingo Kakeda
- Department of Radiology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan;
| | - Yukunori Korogi
- Department of Radiology, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan; (K.W.); (Y.K.)
| | - Reiji Yoshimura
- Department of Psychiatry, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan; (A.K.); (L.N.); (Y.O.); (R.I.); (A.I.)
- Correspondence: ; Tel.: +81-936917253; Fax: +81-936924894
| |
Collapse
|
49
|
Linnemann C, Lang UE. Pathways Connecting Late-Life Depression and Dementia. Front Pharmacol 2020; 11:279. [PMID: 32231570 PMCID: PMC7083108 DOI: 10.3389/fphar.2020.00279] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/26/2020] [Indexed: 12/12/2022] Open
Abstract
Late-life depression is associated with significant cognitive impairment. Meta-analyses showed that depression is associated with an increased risk for Alzheimer’s disease (AD) and it might be an etiological factor for AD. Since late-life depression is often connected with cognitive impairment and dementia is usually associated with depressive symptoms, a simple diagnostic approach to distinguish between the disorders is challenging. Several overlapping pathophysiological substrates might explain the comorbidity of both syndromes. Firstly, a stress syndrome, i.e., elevated cortisol levels, has been observed in up to 70% of depressed patients and also in AD pathology. Stress conditions can cause hippocampal neuronal damage as well as cognitive impairment. Secondly, the development of a depression and dementia after the onset of vascular diseases, the profile of cerebrovascular risk factors in both disorders and the impairments depending on the location of cerebrovascular lesions, speak in favor of a vascular hypothesis as a common factor for both disorders. Thirdly, neuroinflammatory processes play a key role in the etiology of depression as well as in dementia. Increased activation of microglia, changes in Transforming-Growth-Factor beta1 (TGF-beta1) signaling, production of pro-inflammatory cytokines as well as reduction of anti-inflammatory molecules are examples of common pathways impaired in dementia and depression. Fourthly, the neurotrophin BDNF is highly expressed in the central nervous system, especially in the hippocampus, where it plays a key role in the proliferation, differentiation and the maintenance of neuronal integrity throughout lifespan. It has been associated not only with antidepressant properties but also a reduction of cognitive impairment and therefore could be involved also in AD. Another etiologic factor is amyloid accumulation, as plasma amyloid beta-42 independently predicts both late-onset depression and AD. Higher plasma amyloid beta-42 predicts the development of late onset depression and conversion to possible AD. However, clinical trials with antibodies against beta amyloid recently failed, i.e., Solanezumab, Aducanumab, and Crenezumab. An overproduction of amyloid-beta might simply reflect a form of synaptic plasticity to compensate for neuronal dysfunction in different kind of neurological and psychiatric diseases of multiple etiologies. The tau hypothesis, sex/gender specific differences, epigenetics and the gut microbiota-brain axis imply other potential common pathways connecting late-life depression and dementia. In conclusion, different potential pathophysiological links between dementia and depression highlight several specific synergistic and multifaceted treatment possibilities, depending on the individual risk profile of the patient.
Collapse
Affiliation(s)
- Christoph Linnemann
- University of Basel, Universitäre Psychiatrische Kliniken (UPK), Basel, Switzerland
| | - Undine E Lang
- University of Basel, Universitäre Psychiatrische Kliniken (UPK), Basel, Switzerland
| |
Collapse
|
50
|
Tannous J, Godlewska BR, Tirumalaraju V, Soares JC, Cowen PJ, Selvaraj S. Stress, inflammation and hippocampal subfields in depression: A 7 Tesla MRI Study. Transl Psychiatry 2020; 10:78. [PMID: 32098947 PMCID: PMC7042360 DOI: 10.1038/s41398-020-0759-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 12/03/2019] [Accepted: 01/02/2020] [Indexed: 11/25/2022] Open
Abstract
Experiencing stressful events throughout one's life, particularly childhood trauma, increases the likelihood of being diagnosed with Major Depressive Disorder (MDD). Raised levels of cortisol, and markers of inflammation such as Interleukin (IL-6) and C-reactive protein (CRP), have been linked to both early life stress and MDD. We aimed to explore the biological stress signatures of early stress and MDD on hippocampal sub regional volumes using 7 Tesla MRI imaging. A cohort of 71 MDD patients was compared against 46 age and sex-matched healthy volunteers. MDD subjects had higher averages of IL-6 and CRP levels. These differences were significant for IL-6 levels and trended for CRP. There were no significant group differences in any of the hippocampal subfields or global hippocampal volumes; further, there were no hippocampal subfield differences between MDD subjects with high levels of our biological stress measures and MDDs with normal levels.
Collapse
Affiliation(s)
- Jonika Tannous
- grid.267308.80000 0000 9206 2401Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas USA
| | - Beata R. Godlewska
- grid.4991.50000 0004 1936 8948Department of Psychiatry, University of Oxford, Oxford, OX3 7JX United Kingdom
| | - Vaishali Tirumalaraju
- grid.267308.80000 0000 9206 2401Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas USA
| | - Jair C. Soares
- grid.267308.80000 0000 9206 2401Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas USA
| | - Phil J. Cowen
- grid.4991.50000 0004 1936 8948Department of Psychiatry, University of Oxford, Oxford, OX3 7JX United Kingdom
| | - Sudhakar Selvaraj
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA.
| |
Collapse
|