1
|
Yang Y, Wen D, Lin F, Song X, Pang R, Sun W, Yu D, Zhang Z, Yu T, Kong J, Zhang L, Cao X, Liao W, Wang D, Yang Q, Liang J, Zhang N, Li K, Xiong C, Liu Y. Suppression of non-muscle myosin II boosts T cell cytotoxicity against tumors. SCIENCE ADVANCES 2024; 10:eadp0631. [PMID: 39485850 PMCID: PMC11529714 DOI: 10.1126/sciadv.adp0631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/25/2024] [Indexed: 11/03/2024]
Abstract
Increasing evidence highlights the importance of immune mechanoregulation in establishing and sustaining tumor-specific cytotoxicity required for desirable immunotherapeutic outcomes. However, the molecular connections between mechanobiological inputs and outputs and the designated immune activities remain largely unclear. Here, we show that partial inhibition of non-muscle myosin II (NM II) augmented the traction force exerted by T cells and potentiated T cell cytotoxicity against tumors. By using T cells from mice and patients with cancer, we found that NM II is required for the activity of NKX3-2 in maintaining the expression of ADGRB3, which shapes the filamentous actin (F-actin) organization and ultimately attributes to the reduced traction force of T cells in the tumor microenvironment. In animal models, suppressing the NM II-NKX3-2-ADGRB3 pathway in T cells effectively suppressed tumor growth and improved the efficacy of the checkpoint-specific immunotherapy. Overall, this work provides insights into the biomechanical regulation of T cell cytotoxicity that can be exploited to optimize clinical immunotherapies.
Collapse
Affiliation(s)
- Yingyun Yang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Dahan Wen
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Feng Lin
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Xiaowei Song
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruiyang Pang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Weihao Sun
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Donglin Yu
- Department of Biochemistry and Biophysics, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Ziyi Zhang
- Department of Biochemistry and Biophysics, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Tao Yu
- Department of Biochemistry and Biophysics, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jie Kong
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Lei Zhang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinyuan Cao
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Wanying Liao
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Dingding Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Qianyi Yang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junbo Liang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Ning Zhang
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Kailong Li
- Department of Biochemistry and Biophysics, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Chunyang Xiong
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Yuying Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Clinical Immunology Center, CAMS, Beijing, China
| |
Collapse
|
2
|
Minguet S, Maus MV, Schamel WW. From TCR fundamental research to innovative chimeric antigen receptor design. Nat Rev Immunol 2024:10.1038/s41577-024-01093-7. [PMID: 39433885 DOI: 10.1038/s41577-024-01093-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 10/23/2024]
Abstract
Engineered T cells that express chimeric antigen receptors (CARs) have transformed the treatment of haematological cancers. CARs combine the tumour-antigen-binding function of antibodies with the signalling functions of the T cell receptor (TCR) ζ chain and co-stimulatory receptors. The resulting constructs aim to mimic the TCR-based and co-receptor-based activation of T cells. Although these have been successful for some types of cancer, new CAR formats are needed, to limit side effects and broaden their use to solid cancers. Insights into the mechanisms of TCR signalling, including the identification of signalling motifs that are not present in the TCR ζ chain and mechanistic insights in TCR activation, have enabled the development of CAR formats that outcompete the current CARs in preclinical mouse models and clinical trials. In this Perspective, we explore the mechanistic rationale behind new CAR designs.
Collapse
Affiliation(s)
- Susana Minguet
- Signalling Research Centers BIOSS and CIBSS, Freiburg, Germany.
- Department of Synthetic Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany.
- Centre for Chronic Immunodeficiency (CCI), Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Marcela V Maus
- Cellular Immunotherapy Program and Krantz Family Center for Cancer Research, Mass General Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Wolfgang W Schamel
- Signalling Research Centers BIOSS and CIBSS, Freiburg, Germany.
- Centre for Chronic Immunodeficiency (CCI), Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
3
|
Singh N, Zachariah S, Phillips AT, Tscharke D. Lytic promoter activity during herpes simplex virus latency is dependent on genome location. J Virol 2024:e0125824. [PMID: 39431845 DOI: 10.1128/jvi.01258-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 09/24/2024] [Indexed: 10/22/2024] Open
Abstract
Herpes simplex virus 1 (HSV-1) is a significant pathogen that establishes lifelong latent infections with intermittent episodes of resumed disease. In mouse models of HSV infection, sporadic low-level lytic gene expression has been detected during latency in the absence of reactivation events that lead to production of new viruses. This viral activity during latency has been reported using a sensitive Cre-marking model for several lytic gene promoters placed in one location in the HSV-1 genome. Here, we extend these findings in the same model by examining first, the activity of an ectopic lytic gene promoter in several places in the genome and second, whether any promoters might be active in their natural context. We found that Cre expression was detected during latency from ectopic and native promoters, but only in locations near the ends of the unique long genome segment. This location is significant because it is in close proximity to the region from which latency-associated transcripts (LATs) are derived. These results show that native HSV-1 lytic gene promoters can produce protein products during latency, but that this activity is only detectable when they are located close to the LAT locus.IMPORTANCEHSV is a significant human pathogen and the best studied model of mammalian virus latency. Traditionally, the active (lytic) and inactive (latent) phases of infection were considered to be distinct, but the notion of latency being entirely quiescent is evolving due to the detection of some lytic gene expression during latency. Here, we add to this literature by finding that the activity can be found for native lytic gene promoters as well as for constructs placed ectopically in the HSV genome. However, this activity was only detectable when these promoters were located close by a region known to be transcriptionally active during latency. These data have implications for our understanding of HSV gene regulation during latency and the extent to which transcriptionally active regions are insulated from adjacent parts of the viral genome.
Collapse
Affiliation(s)
- Navneet Singh
- John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Sherin Zachariah
- John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Aaron T Phillips
- John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - David Tscharke
- John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| |
Collapse
|
4
|
Wilhelm KB, Vissa A, Groves JT. Differential roles of kinetic on- and off-rates in T-cell receptor signal integration revealed with a modified Fab'-DNA ligand. Proc Natl Acad Sci U S A 2024; 121:e2406680121. [PMID: 39298491 PMCID: PMC11441509 DOI: 10.1073/pnas.2406680121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/05/2024] [Indexed: 09/21/2024] Open
Abstract
Antibody-derived T-cell receptor (TCR) agonists are commonly used to activate T cells. While antibodies can trigger TCRs regardless of clonotype, they bypass native T cell signal integration mechanisms that rely on monovalent, membrane-associated, and relatively weakly binding ligand in the context of cellular adhesion. Commonly used antibodies and their derivatives bind much more strongly than native peptide major histocompatibility complex (pMHC) ligands bind their cognate TCRs. Because ligand dwell time is a critical parameter that tightly correlates with physiological function of the TCR signaling system, there is a general need, both in research and therapeutics, for universal TCR ligands with controlled kinetic binding parameters. To this end, we have introduced point mutations into recombinantly expressed α-TCRβ H57 Fab to modulate the dwell time of monovalent Fab binding to TCR. When tethered to a supported lipid bilayer via DNA complementation, these monovalent Fab'-DNA ligands activate T cells with potencies well-correlated with their TCR binding dwell time. Single-molecule tracking studies in live T cells reveal that individual binding events between Fab'-DNA ligands and TCRs elicit local signaling responses closely resembling native pMHC. The unique combination of high on- and off-rates of the H57 R97L mutant enables direct observations of cooperative interplay between ligand binding and TCR-proximal condensation of the linker for activation of T cells, which is not readily visualized with pMHC. This work provides insights into how T cells integrate kinetic information from TCR ligands and introduces a method to develop affinity panels for polyclonal T cells, such as cells from a human patient.
Collapse
MESH Headings
- Humans
- Kinetics
- Ligands
- Signal Transduction
- Immunoglobulin Fab Fragments/metabolism
- Immunoglobulin Fab Fragments/immunology
- Immunoglobulin Fab Fragments/chemistry
- Immunoglobulin Fab Fragments/genetics
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- DNA/metabolism
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Protein Binding
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Lymphocyte Activation
- Point Mutation
Collapse
Affiliation(s)
- Kiera B. Wilhelm
- Department of Chemistry, University of California-Berkeley, Berkeley, CA94720
| | - Anand Vissa
- Department of Chemistry, University of California-Berkeley, Berkeley, CA94720
| | - Jay T. Groves
- Department of Chemistry, University of California-Berkeley, Berkeley, CA94720
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| |
Collapse
|
5
|
Fritzsche M, Kruse K. Mechanical force matters in early T cell activation. Proc Natl Acad Sci U S A 2024; 121:e2404748121. [PMID: 39240966 PMCID: PMC11406235 DOI: 10.1073/pnas.2404748121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2024] Open
Abstract
Mechanical force has repeatedly been highlighted to be involved in T cell activation. However, the biological significance of mechanical force for T cell receptor signaling remains under active consideration. Here, guided by theoretical analysis, we provide a perspective on how mechanical forces between a T cell and an antigen-presenting cell can influence the bond of a single T cell receptor major histocompatibility complex during early T cell activation. We point out that the lifetime of T cell receptor bonds and thus the degree of their phosphorylation which is essential for T cell activation depends considerably on the T cell receptor rigidity and the average magnitude and frequency of an applied oscillatory force. Such forces could be, for example, produced by protrusions like microvilli during early T cell activation or invadosomes during full T cell activation. These features are suggestive of mechanical force being exploited by T cells to advance self-nonself discrimination in early T cell activation.
Collapse
Affiliation(s)
- Marco Fritzsche
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Oxford OX37FY, United Kingdom
- Rosalind Franklin Institute, Harwell Campus, Didcot OX11 0FA, United Kingdom
| | - Karsten Kruse
- Department of Biochemistry, University of Geneva, Geneva 1205, Switzerland
- Department of Theoretical Physics, University of Geneva, Geneva 1205, Switzerland
| |
Collapse
|
6
|
Mühlgrabner V, Peters T, Velasco Cárdenas RMH, Salzer B, Göhring J, Plach A, Höhrhan M, Perez ID, Goncalves VDR, Farfán JS, Lehner M, Stockinger H, Schamel WW, Schober K, Busch DH, Hudecek M, Dushek O, Minguet S, Platzer R, Huppa JB. TCR/CD3-based synthetic antigen receptors (TCC) convey superior antigen sensitivity combined with high fidelity of activation. SCIENCE ADVANCES 2024; 10:eadj4632. [PMID: 39231214 PMCID: PMC11373591 DOI: 10.1126/sciadv.adj4632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/30/2024] [Indexed: 09/06/2024]
Abstract
Low antigen sensitivity and a gradual loss of effector functions limit the clinical applicability of chimeric antigen receptor (CAR)-modified T cells and call for alternative antigen receptor designs for effective T cell-based cancer immunotherapy. Here, we applied advanced microscopy to demonstrate that TCR/CD3-based synthetic constructs (TCC) outperform second-generation CAR formats with regard to conveyed antigen sensitivities by up to a thousandfold. TCC-based antigen recognition occurred without adverse nonspecific signaling, which is typically observed in CAR-T cells, and did not depend-unlike sensitized peptide/MHC detection by conventional T cells-on CD4 or CD8 coreceptor engagement. TCC-endowed signaling properties may prove critical when targeting antigens in low abundance and aiming for a durable anticancer response.
Collapse
Affiliation(s)
- Vanessa Mühlgrabner
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Timo Peters
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Rubí M-H Velasco Cárdenas
- Department of Immunology, Faculty of Biology, University of Freiburg, Germany
- Center for Biological Signaling Studies (BIOSS), University of Freiburg, Germany
- Center for Integrative Biological Signaling Studies (CIBSS), University of Freiburg, Germany
| | - Benjamin Salzer
- St. Anna Children's Cancer Research Institute (CCRI), 1090, Vienna, Austria
- Christian Doppler Laboratory for Next Generation CAR T Cells, 1090, Vienna, Austria
| | - Janett Göhring
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Angelika Plach
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Maria Höhrhan
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Iago Doel Perez
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | | | - Jesús Siller Farfán
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, UK
| | - Manfred Lehner
- St. Anna Children's Cancer Research Institute (CCRI), 1090, Vienna, Austria
- Christian Doppler Laboratory for Next Generation CAR T Cells, 1090, Vienna, Austria
| | - Hannes Stockinger
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Wolfgang W Schamel
- Department of Immunology, Faculty of Biology, University of Freiburg, Germany
- Center for Biological Signaling Studies (BIOSS), University of Freiburg, Germany
- Center for Integrative Biological Signaling Studies (CIBSS), University of Freiburg, Germany
| | - Kilian Schober
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich, Munich, Germany
| | - Michael Hudecek
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Omer Dushek
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, UK
| | - Susana Minguet
- Department of Immunology, Faculty of Biology, University of Freiburg, Germany
- Center for Biological Signaling Studies (BIOSS), University of Freiburg, Germany
- Center for Integrative Biological Signaling Studies (CIBSS), University of Freiburg, Germany
| | - René Platzer
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Johannes B Huppa
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| |
Collapse
|
7
|
Sabile JMG, Swords R, Tyner JW. Evaluating targeted therapies in older patients with TP53-mutated AML. Leuk Lymphoma 2024; 65:1201-1218. [PMID: 38646877 DOI: 10.1080/10428194.2024.2344057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/23/2024]
Abstract
Mutation of thetumor suppressor gene, TP53 (tumor protein 53), occurs in up to 15% of all patients with acute myeloid leukemia (AML) and is enriched within specific clinical subsets, most notably in older adults, and including secondary AML cases arising from preceding myeloproliferative neoplasm (MPN), myelodysplastic syndrome (MDS), patients exposed to prior DNA-damaging, cytotoxic therapies. In all cases, these tumors have remained difficult to effectively treat with conventional therapeutic regimens. Newer approaches fortreatmentofTP53-mutated AML have shifted to interventions that maymodulateTP53 function, target downstream molecular vulnerabilities, target non-p53 dependent molecular pathways, and/or elicit immunogenic responses. This review will describe the basic biology of TP53, the clinical and biological patterns of TP53 within myeloid neoplasms with a focus on elderly AML patients and will summarize newer therapeutic strategies and current clinical trials.
Collapse
Affiliation(s)
- Jean M G Sabile
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Ronan Swords
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Jeffrey W Tyner
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
8
|
Balit N, Cermakian N, Khadra A. The influence of circadian rhythms on CD8 + T cell activation upon vaccination: A mathematical modeling perspective. J Theor Biol 2024; 590:111852. [PMID: 38796098 DOI: 10.1016/j.jtbi.2024.111852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/30/2024] [Accepted: 05/14/2024] [Indexed: 05/28/2024]
Abstract
Circadian rhythms have been implicated in the modulation of many physiological processes, including those associated with the immune system. For example, these rhythms influence CD8+ T cell responses within the adaptive immune system. The mechanism underlying this immune-circadian interaction, however, remains unclear, particularly in the context of vaccination. Here, we devise a molecularly-explicit gene regulatory network model of early signaling in the naïve CD8+ T cell activation pathway, comprised of three axes (or subsystems) labeled ZAP70, LAT and CD28, to elucidate the molecular details of this immune-circadian mechanism and its relation to vaccination. This is done by coupling the model to a periodic forcing function to identify the molecular players targeted by circadian rhythms, and analyzing how these rhythms subsequently affect CD8+ T cell activation under differing levels of T cell receptor (TCR) phosphorylation, which we designate as vaccine load. By performing both bifurcation and parameter sensitivity analyses on the model at the single cell and ensemble levels, we find that applying periodic forcing on molecular targets within the ZAP70 axis is sufficient to create a day-night discrepancy in CD8+ T cell activation in a manner that is dependent on the bistable switch inherent in CD8+ T cell early signaling. We also demonstrate that the resulting CD8+ T cell activation is dependent on the strength of the periodic coupling as well as on the level of TCR phosphorylation. Our results show that this day-night discrepancy is not transmitted to certain downstream molecules within the LAT subsystem, such as mTORC1, suggesting a secondary, independent circadian regulation on that protein complex. We also corroborate experimental results by showing that the circadian regulation of CD8+ T cell primarily acts at a baseline, pre-vaccination state, playing a facilitating role in priming CD8+ T cells to vaccine inputs according to the time of day. By applying an ensemble level analysis using bifurcation theory and by including several hypothesized molecular targets of this circadian rhythm, we further demonstrate an increased variability between CD8+ T cells (due to heterogeneity) induced by its circadian regulation, which may allow an ensemble of CD8+ T cells to activate at a lower vaccine load, improving its sensitivity. This modeling study thus provides insights into the immune targets of the circadian clock, and proposes an interaction between vaccine load and the influence of circadian rhythms on CD8+ T cell activation.
Collapse
Affiliation(s)
- Nasri Balit
- Department of Physiology, McGill University, Montreal, Quebec, Canada.
| | - Nicolas Cermakian
- Douglas Research Center, Department of Psychiatry, McGill University, Montreal, Quebec, Canada.
| | - Anmar Khadra
- Department of Physiology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
9
|
Hou Y, Treanor B. DNA origami: Interrogating the nano-landscape of immune receptor activation. Biophys J 2024; 123:2211-2223. [PMID: 37838832 PMCID: PMC11331043 DOI: 10.1016/j.bpj.2023.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/22/2023] [Accepted: 10/12/2023] [Indexed: 10/16/2023] Open
Abstract
The immune response is orchestrated by elaborate protein interaction networks that interweave ligand-mediated receptor reorganization with signaling cascades. While the biochemical processes have been extensively investigated, delineating the biophysical principles governing immune receptor activation has remained challenging due to design limitations of traditional ligand display platforms. These constraints have been overcome by advances in DNA origami nanotechnology, enabling unprecedented control over ligand geometry on configurable scaffolds. It is now possible to systematically dissect the independent roles of ligand stoichiometry, spatial distribution, and rigidity in immune receptor activation, signaling, and cooperativity. In this review, we highlight pioneering efforts in manipulating the ligand presentation landscape to understand immune receptor triggering and to engineer functional immune responses.
Collapse
Affiliation(s)
- Yuchen Hou
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario.
| | - Bebhinn Treanor
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario; Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario; Department of Immunology, University of Toronto, Toronto, Ontario.
| |
Collapse
|
10
|
Zhang S, Ma Z. trans-Interacting Plasma Membrane Proteins and Binding Partner Identification. J Proteome Res 2024; 23:3322-3331. [PMID: 38937710 PMCID: PMC11533685 DOI: 10.1021/acs.jproteome.4c00289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Plasma membrane proteins (PMPs) play critical roles in a myriad of physiological and disease conditions. A unique subset of PMPs functions through interacting with each other in trans at the interface between two contacting cells. These trans-interacting PMPs (tiPMPs) include adhesion molecules and ligands/receptors that facilitate cell-cell contact and direct communication between cells. Among the tiPMPs, a significant number have apparent extracellular binding domains but remain orphans with no known binding partners. Identification of their potential binding partners is therefore important for the understanding of processes such as organismal development and immune cell activation. While a number of methods have been developed for the identification of protein binding partners in general, very few are applicable to tiPMPs, which interact in a two-dimensional fashion with low intrinsic binding affinities. In this review, we present the significance of tiPMP interactions, the challenges of identifying binding partners for tiPMPs, and the landscape of method development. We describe current avidity-based screening approaches for identifying novel tiPMP binding partners and discuss their advantages and limitations. We conclude by highlighting the importance of developing novel methods of identifying new tiPMP interactions for deciphering the complex protein interactome and developing targeted therapeutics for diseases.
Collapse
Affiliation(s)
- Shenyu Zhang
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Zhengyu Ma
- Nemours Children’s Hospital, Wilmington, DE 19803, USA
| |
Collapse
|
11
|
Manjili MH, Manjili SH. The quantum model of T-cell activation: Revisiting immune response theories. Scand J Immunol 2024; 100:e13375. [PMID: 38750629 PMCID: PMC11250909 DOI: 10.1111/sji.13375] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/15/2024] [Accepted: 04/29/2024] [Indexed: 07/16/2024]
Abstract
Our understanding of the immune response is far from complete, missing out on more detailed explanations that could be provided by molecular insights. To bridge this gap, we introduce the quantum model of T-cell activation. This model suggests that the transfer of energy during protein phosphorylation within T cells is not a continuous flow but occurs in discrete bursts, or 'quanta', of phosphates. This quantized energy transfer is mediated by oscillating cycles of receptor phosphorylation and dephosphorylation, initiated by dynamic 'catch-slip' pulses in the peptide-major histocompatibility complex-T-cell receptor (pMHC-TcR) interactions. T-cell activation is predicated upon achieving a critical threshold of catch-slip pulses at the pMHC-TcR interface. Costimulation is relegated to a secondary role, becoming crucial only when the frequency of pMHC-TcR catch-slip pulses does not meet the necessary threshold for this quanta-based energy transfer. Therefore, our model posits that it is the quantum nature of energy transfer-not the traditional signal I or signal II-that plays the decisive role in T-cell activation. This paradigm shift highlights the importance of understanding T-cell activation through a quantum lens, offering a potentially transformative perspective on immune response regulation.
Collapse
Affiliation(s)
- Masoud H. Manjili
- Department of Microbiology & Immunology, VCU School of Medicine
- Massey Comprehensive Cancer Center, 401 College Street, Richmond, VA, 23298, USA
| | - Saeed H. Manjili
- AMF Automation Technologies LLC, 2115 W. Laburnum Ave., Richmond, VA 23227
| |
Collapse
|
12
|
Wermke M, Holderried TAW, Luke JJ, Morris VK, Alsdorf WH, Wetzko K, Andersson BS, Wistuba II, Parra ER, Hossain MB, Grund-Gröschke S, Aslan K, Satelli A, Marisetty A, Satam S, Kalra M, Hukelmann J, Kursunel MA, Pozo K, Acs A, Backert L, Baumeister M, Bunk S, Wagner C, Schoor O, Mohamed AS, Mayer-Mokler A, Hilf N, Krishna D, Walter S, Tsimberidou AM, Britten CM. First-in-human dose escalation trial to evaluate the clinical safety and efficacy of an anti-MAGEA1 autologous TCR-transgenic T cell therapy in relapsed and refractory solid tumors. J Immunother Cancer 2024; 12:e008668. [PMID: 39038917 PMCID: PMC11268062 DOI: 10.1136/jitc-2023-008668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2024] [Indexed: 07/24/2024] Open
Abstract
RATIONALE OF THE TRIAL Although the use of engineered T cells in cancer immunotherapy has greatly advanced the treatment of hematological malignancies, reaching meaningful clinical responses in the treatment of solid tumors is still challenging. We investigated the safety and tolerability of IMA202 in a first-in-human, dose escalation basket trial in human leucocyte antigen A*02:01 positive patients with melanoma-associated antigen A1 (MAGEA1)-positive advanced solid tumors. TRIAL DESIGN The 2+2 trial design was an algorithmic design based on a maximally acceptable dose-limiting toxicity (DLT) rate of 25% and the sample size was driven by the algorithmic design with a maximum of 16 patients. IMA202 consists of autologous genetically modified cytotoxic CD8+ T cells expressing a T cell receptor (TCR), which is specific for a nine amino acid peptide derived from MAGEA1. Eligible patients underwent leukapheresis, T cells were isolated, transduced with lentiviral vector carrying MAGEA1-specific TCR and following lymphodepletion (fludarabine/cyclophosphamide), infused with a median of 1.4×109 specific T cells (range, 0.086×109-2.57×109) followed by interleukin 2. SAFETY OF IMA202: No DLT was observed. The most common grade 3-4 adverse events were cytopenias, that is, neutropenia (81.3%), lymphopenia (75.0%), anemia (50.0%), thrombocytopenia (50.0%) and leukopenia (25.0%). 13 patients experienced cytokine release syndrome, including one grade 3 event. Immune effector cell-associated neurotoxicity syndrome was observed in two patients and was grade 1 in both. EFFICACY OF IMA202: Of the 16 patients dosed, 11 (68.8%) patients had stable disease (SD) as their best overall response (Response Evaluation Criteria in Solid Tumors V.1.1). Five patients had initial tumor shrinkage in target lesions and one patient with SD experienced continued shrinkage in target lesions for 3 months in total but had to be classified as progressive disease due to progressive non-target lesions. IMA202 T cells were persistent in peripheral blood for several weeks to months and were also detectable in tumor tissue. Peak persistence was higher in patients who received higher doses. CONCLUSION In conclusion, IMA202 had a manageable safety profile, and it was associated with biological and potential clinical activity of MAGEA1-targeting genetically engineered TCR-T cells in a poor prognosis, multi-indication solid tumor cohort. TRIAL REGISTRATION NUMBERS NCT04639245, NCT05430555.
Collapse
Affiliation(s)
- Martin Wermke
- Department of Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
- National Center for Tumor Diseases, Dresden, Germany
| | - Tobias A W Holderried
- Department of Hematology, Oncology, Immunooncology, Stem Cell Transplantation, and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Jason John Luke
- Cancer Immunotherapeutics Center, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Van K Morris
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center Division of Cancer Medicine, Houston, Texas, USA
| | - Winfried H Alsdorf
- Department of Oncology, Hematology, and Bone Marrow Transplantation with Section Pneumology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Katrin Wetzko
- Department of Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Borje S Andersson
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Edwin R Parra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | - Katrin Aslan
- Immatics Biotechnologies GmbH, Tuebingen, Germany
| | | | | | - Swapna Satam
- Immatics Biotechnologies GmbH, Tuebingen, Germany
| | | | | | | | | | - Andreas Acs
- Immatics Biotechnologies GmbH, Tuebingen, Germany
| | | | | | | | | | | | | | | | - Norbert Hilf
- Immatics Biotechnologies GmbH, Tuebingen, Germany
| | | | | | - Apostolia M Tsimberidou
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | |
Collapse
|
13
|
Mog BJ, Marcou N, DiNapoli SR, Pearlman AH, Nichakawade TD, Hwang MS, Douglass J, Hsiue EHC, Glavaris S, Wright KM, Konig MF, Paul S, Wyhs N, Ge J, Miller MS, Azurmendi P, Watson E, Pardoll DM, Gabelli SB, Bettegowda C, Papadopoulos N, Kinzler KW, Vogelstein B, Zhou S. Preclinical studies show that Co-STARs combine the advantages of chimeric antigen and T cell receptors for the treatment of tumors with low antigen densities. Sci Transl Med 2024; 16:eadg7123. [PMID: 38985855 DOI: 10.1126/scitranslmed.adg7123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/01/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024]
Abstract
Two types of engineered T cells have been successfully used to treat patients with cancer, one with an antigen recognition domain derived from antibodies [chimeric antigen receptors (CARs)] and the other derived from T cell receptors (TCRs). CARs use high-affinity antigen-binding domains and costimulatory domains to induce T cell activation but can only react against target cells with relatively high amounts of antigen. TCRs have a much lower affinity for their antigens but can react against target cells displaying only a few antigen molecules. Here, we describe a new type of receptor, called a Co-STAR (for costimulatory synthetic TCR and antigen receptor), that combines aspects of both CARs and TCRs. In Co-STARs, the antigen-recognizing components of TCRs are replaced by high-affinity antibody fragments, and costimulation is provided by two modules that drive NF-κB signaling (MyD88 and CD40). Using a TCR-mimic antibody fragment that targets a recurrent p53 neoantigen presented in a common human leukocyte antigen (HLA) allele, we demonstrate that T cells equipped with Co-STARs can kill cancer cells bearing low densities of antigen better than T cells engineered with conventional CARs and patient-derived TCRs in vitro. In mouse models, we show that Co-STARs mediate more robust T cell expansion and more durable tumor regressions than TCRs similarly modified with MyD88 and CD40 costimulation. Our data suggest that Co-STARs may have utility for other peptide-HLA antigens in cancer and other targets where antigen density may limit the efficacy of engineered T cells.
Collapse
Affiliation(s)
- Brian J Mog
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Nikita Marcou
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sarah R DiNapoli
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Alexander H Pearlman
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Tushar D Nichakawade
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Michael S Hwang
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jacqueline Douglass
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Emily Han-Chung Hsiue
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Stephanie Glavaris
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Katharine M Wright
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - Maximilian F Konig
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Suman Paul
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Nicolas Wyhs
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jiaxin Ge
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Michelle S Miller
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - P Azurmendi
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - Evangeline Watson
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Drew M Pardoll
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - Sandra B Gabelli
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chetan Bettegowda
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nickolas Papadopoulos
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kenneth W Kinzler
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - Bert Vogelstein
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shibin Zhou
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| |
Collapse
|
14
|
Li J, Xing H, Liu K, Fan N, Xu K, Zhao H, Jiao D, Wei T, Cheng W, Guo J, Zhang X, Zhu F, Bu Z, Zhao D, Wang W, Wei HJ. Dysfunction of Complementarity Determining Region 1 Encoded by T Cell Receptor Beta Variable Gene Is Potentially Associated with African Swine Fever Virus Infection in Pigs. Microorganisms 2024; 12:1113. [PMID: 38930494 PMCID: PMC11205859 DOI: 10.3390/microorganisms12061113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
The beta T-cell receptor (TRB) expressed by beta T cells is essential for foreign antigen recognition. The TRB locus contains a TRBV family that encodes three complementarity determining regions (CDRs). CDR1 is associated with antigen recognition and interactions with MHC molecules. In contrast to domestic pigs, African suids lack a 284-bp segment spanning exons 1 and 2 of the TRBV27 gene that contains a sequence encoding CDR1. In this study, we used the African swine fever virus (ASFV) as an example to investigate the effect of deleting the TRBV27-encoded CDR1 on the resistance of domestic pigs to exotic pathogens. We first successfully generated TRBV27-edited fibroblasts with disruption of the CDR1 sequence using CRISPR/Cas9 technology and used them as donor cells to generate gene-edited pigs via somatic cell nuclear transfer. The TRBV-edited and wild-type pigs were selected for synchronous ASFV infection. White blood cells were significantly reduced in the genetically modified pigs before ASFV infection. The genetically modified and wild-type pigs were susceptible to ASFV and exhibited typical fevers (>40 °C). However, the TRBV27-edited pigs had a higher viral load than the wild-type pigs. Consistent with this, the gene-edited pigs showed more clinical signs than the wild-type pigs. In addition, both groups of pigs died within 10 days and showed similar severe lesions in organs and tissues. Future studies using lower virulence ASFV isolates are needed to determine the relationship between the TRBV27 gene and ASFV infection in pigs over a relatively long period.
Collapse
Affiliation(s)
- Jiayu Li
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China; (J.L.); (H.X.); (K.L.); (N.F.); (K.X.); (H.Z.); (D.J.); (T.W.); (W.C.); (J.G.); (X.Z.); (F.Z.)
- Xenotransplantation Engineering Research Center in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Huiyan Xing
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China; (J.L.); (H.X.); (K.L.); (N.F.); (K.X.); (H.Z.); (D.J.); (T.W.); (W.C.); (J.G.); (X.Z.); (F.Z.)
- Xenotransplantation Engineering Research Center in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Kai Liu
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China; (J.L.); (H.X.); (K.L.); (N.F.); (K.X.); (H.Z.); (D.J.); (T.W.); (W.C.); (J.G.); (X.Z.); (F.Z.)
- Xenotransplantation Engineering Research Center in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Ninglin Fan
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China; (J.L.); (H.X.); (K.L.); (N.F.); (K.X.); (H.Z.); (D.J.); (T.W.); (W.C.); (J.G.); (X.Z.); (F.Z.)
- Xenotransplantation Engineering Research Center in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Kaixiang Xu
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China; (J.L.); (H.X.); (K.L.); (N.F.); (K.X.); (H.Z.); (D.J.); (T.W.); (W.C.); (J.G.); (X.Z.); (F.Z.)
- Xenotransplantation Engineering Research Center in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Heng Zhao
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China; (J.L.); (H.X.); (K.L.); (N.F.); (K.X.); (H.Z.); (D.J.); (T.W.); (W.C.); (J.G.); (X.Z.); (F.Z.)
- Xenotransplantation Engineering Research Center in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Deling Jiao
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China; (J.L.); (H.X.); (K.L.); (N.F.); (K.X.); (H.Z.); (D.J.); (T.W.); (W.C.); (J.G.); (X.Z.); (F.Z.)
- Xenotransplantation Engineering Research Center in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Taiyun Wei
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China; (J.L.); (H.X.); (K.L.); (N.F.); (K.X.); (H.Z.); (D.J.); (T.W.); (W.C.); (J.G.); (X.Z.); (F.Z.)
- Xenotransplantation Engineering Research Center in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Wenjie Cheng
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China; (J.L.); (H.X.); (K.L.); (N.F.); (K.X.); (H.Z.); (D.J.); (T.W.); (W.C.); (J.G.); (X.Z.); (F.Z.)
- Xenotransplantation Engineering Research Center in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jianxiong Guo
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China; (J.L.); (H.X.); (K.L.); (N.F.); (K.X.); (H.Z.); (D.J.); (T.W.); (W.C.); (J.G.); (X.Z.); (F.Z.)
- Xenotransplantation Engineering Research Center in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Xiong Zhang
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China; (J.L.); (H.X.); (K.L.); (N.F.); (K.X.); (H.Z.); (D.J.); (T.W.); (W.C.); (J.G.); (X.Z.); (F.Z.)
- Xenotransplantation Engineering Research Center in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Feiyan Zhu
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China; (J.L.); (H.X.); (K.L.); (N.F.); (K.X.); (H.Z.); (D.J.); (T.W.); (W.C.); (J.G.); (X.Z.); (F.Z.)
- Xenotransplantation Engineering Research Center in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Zhigao Bu
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (Z.B.); (D.Z.)
| | - Dongming Zhao
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (Z.B.); (D.Z.)
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Hong-Jiang Wei
- Key Laboratory for Porcine Gene Editing and Xenotransplantation in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China; (J.L.); (H.X.); (K.L.); (N.F.); (K.X.); (H.Z.); (D.J.); (T.W.); (W.C.); (J.G.); (X.Z.); (F.Z.)
- Xenotransplantation Engineering Research Center in Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
15
|
Konecny AJ, Huang Y, Setty M, Prlic M. Signals that control MAIT cell function in healthy and inflamed human tissues. Immunol Rev 2024; 323:138-149. [PMID: 38520075 DOI: 10.1111/imr.13325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
Mucosal-associated invariant T (MAIT) cells have a semi-invariant T-cell receptor that allows recognition of antigen in the context of the MHC class I-related (MR1) protein. Metabolic intermediates of the riboflavin synthesis pathway have been identified as MR1-restricted antigens with agonist properties. As riboflavin synthesis occurs in many bacterial species, but not human cells, it has been proposed that the main purpose of MAIT cells is antibacterial surveillance and protection. The majority of human MAIT cells secrete interferon-gamma (IFNg) upon activation, while some MAIT cells in tissues can also express IL-17. Given that MAIT cells are present in human barrier tissues colonized by a microbiome, MAIT cells must somehow be able to distinguish colonization from infection to ensure effector functions are only elicited when necessary. Importantly, MAIT cells have additional functional properties, including the potential to contribute to restoring tissue homeostasis by expression of CTLA-4 and secretion of the cytokine IL-22. A recent study provided compelling data indicating that the range of human MAIT cell functional properties is explained by plasticity rather than distinct lineages. This further underscores the necessity to better understand how different signals regulate MAIT cell function. In this review, we highlight what is known in regards to activating and inhibitory signals for MAIT cells with a specific focus on signals relevant to healthy and inflamed tissues. We consider the quantity, quality, and the temporal order of these signals on MAIT cell function and discuss the current limitations of computational tools to extrapolate which signals are received by MAIT cells in human tissues. Using lessons learned from conventional CD8 T cells, we also discuss how TCR signals may integrate with cytokine signals in MAIT cells to elicit distinct functional states.
Collapse
Affiliation(s)
- Andrew J Konecny
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Yin Huang
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Herbold Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, USA
| | - Manu Setty
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Herbold Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Martin Prlic
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Immunology, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
16
|
Huang X, Meng L, Cao G, Prominski A, Hu Y, Yang C, Chen M, Shi J, Gallagher C, Cao T, Yue J, Huang J, Tian B. Multimodal probing of T-cell recognition with hexapod heterostructures. Nat Methods 2024; 21:857-867. [PMID: 38374262 DOI: 10.1038/s41592-023-02165-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/26/2023] [Indexed: 02/21/2024]
Abstract
Studies using antigen-presenting systems at the single-cell and ensemble levels can provide complementary insights into T-cell signaling and activation. Although crucial for advancing basic immunology and immunotherapy, there is a notable absence of synthetic material toolkits that examine T cells at both levels, and especially those capable of single-molecule-level manipulation. Here we devise a biomimetic antigen-presenting system (bAPS) for single-cell stimulation and ensemble modulation of T-cell recognition. Our bAPS uses hexapod heterostructures composed of a submicrometer cubic hematite core (α-Fe2O3) and nanostructured silica branches with diverse surface modifications. At single-molecule resolution, we show T-cell activation by a single agonist peptide-loaded major histocompatibility complex; distinct T-cell receptor (TCR) responses to structurally similar peptides that differ by only one amino acid; and the superior antigen recognition sensitivity of TCRs compared with that of chimeric antigen receptors (CARs). We also demonstrate how the magnetic field-induced rotation of hexapods amplifies the immune responses in suspended T and CAR-T cells. In addition, we establish our bAPS as a precise and scalable method for identifying stimulatory antigen-specific TCRs at the single-cell level. Thus, our multimodal bAPS represents a unique biointerface tool for investigating T-cell recognition, signaling and function.
Collapse
Affiliation(s)
- Xiaodan Huang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Lingyuan Meng
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Guoshuai Cao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | | | - Yifei Hu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
- Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
| | - Chuanwang Yang
- The James Franck Institute, University of Chicago, Chicago, IL, USA
| | - Min Chen
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Jiuyun Shi
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | | | - Thao Cao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Jiping Yue
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Jun Huang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA.
| | - Bozhi Tian
- Department of Chemistry, University of Chicago, Chicago, IL, USA.
- The James Franck Institute, University of Chicago, Chicago, IL, USA.
- The Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
17
|
Lee MS, Tuohy PJ, Kim CY, Yost PP, Lichauco K, Parrish HL, Van Doorslaer K, Kuhns MS. The CD4 transmembrane GGXXG and juxtamembrane (C/F)CV+C motifs mediate pMHCII-specific signaling independently of CD4-LCK interactions. eLife 2024; 12:RP88225. [PMID: 38639990 PMCID: PMC11031086 DOI: 10.7554/elife.88225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
CD4+ T cell activation is driven by five-module receptor complexes. The T cell receptor (TCR) is the receptor module that binds composite surfaces of peptide antigens embedded within MHCII molecules (pMHCII). It associates with three signaling modules (CD3γε, CD3δε, and CD3ζζ) to form TCR-CD3 complexes. CD4 is the coreceptor module. It reciprocally associates with TCR-CD3-pMHCII assemblies on the outside of a CD4+ T cells and with the Src kinase, LCK, on the inside. Previously, we reported that the CD4 transmembrane GGXXG and cytoplasmic juxtamembrane (C/F)CV+C motifs found in eutherian (placental mammal) CD4 have constituent residues that evolved under purifying selection (Lee et al., 2022). Expressing mutants of these motifs together in T cell hybridomas increased CD4-LCK association but reduced CD3ζ, ZAP70, and PLCγ1 phosphorylation levels, as well as IL-2 production, in response to agonist pMHCII. Because these mutants preferentially localized CD4-LCK pairs to non-raft membrane fractions, one explanation for our results was that they impaired proximal signaling by sequestering LCK away from TCR-CD3. An alternative hypothesis is that the mutations directly impacted signaling because the motifs normally play an LCK-independent role in signaling. The goal of this study was to discriminate between these possibilities. Using T cell hybridomas, our results indicate that: intracellular CD4-LCK interactions are not necessary for pMHCII-specific signal initiation; the GGXXG and (C/F)CV+C motifs are key determinants of CD4-mediated pMHCII-specific signal amplification; the GGXXG and (C/F)CV+C motifs exert their functions independently of direct CD4-LCK association. These data provide a mechanistic explanation for why residues within these motifs are under purifying selection in jawed vertebrates. The results are also important to consider for biomimetic engineering of synthetic receptors.
Collapse
Affiliation(s)
- Mark S Lee
- Department of Immunobiology, The University of Arizona College of MedicineTucsonUnited States
| | - Peter J Tuohy
- Department of Immunobiology, The University of Arizona College of MedicineTucsonUnited States
| | - Caleb Y Kim
- Department of Immunobiology, The University of Arizona College of MedicineTucsonUnited States
| | - Philip P Yost
- Department of Immunobiology, The University of Arizona College of MedicineTucsonUnited States
| | - Katrina Lichauco
- Department of Immunobiology, The University of Arizona College of MedicineTucsonUnited States
| | - Heather L Parrish
- Department of Immunobiology, The University of Arizona College of MedicineTucsonUnited States
| | - Koenraad Van Doorslaer
- Department of Immunobiology, The University of Arizona College of MedicineTucsonUnited States
- School of Animal and Comparative Biomedical Sciences, The University of ArizonaTucsonUnited States
- Cancer Biology Graduate Interdisciplinary Program and Genetics Graduate Interdisciplinary Program, The University of ArizonaTucsonUnited States
- The BIO-5 Institute, The University of ArizonaTucsonUnited States
- The University of Arizona Cancer CenterTucsonUnited States
- The Arizona Center on Aging, The University of Arizona College of MedicineTucsonUnited States
| | - Michael S Kuhns
- Department of Immunobiology, The University of Arizona College of MedicineTucsonUnited States
- Cancer Biology Graduate Interdisciplinary Program and Genetics Graduate Interdisciplinary Program, The University of ArizonaTucsonUnited States
- The BIO-5 Institute, The University of ArizonaTucsonUnited States
- The University of Arizona Cancer CenterTucsonUnited States
- The Arizona Center on Aging, The University of Arizona College of MedicineTucsonUnited States
| |
Collapse
|
18
|
Hiscox MJ, Wasmuth A, Williams CL, Foot JN, Wiedermann GE, Fadda V, Boiani S, Cornforth TV, Wikiert KA, Bruton S, Cartwright N, Anderson VE, Barnes CS, Vieira JV, Birch-Machin I, Gerry AB, Miller K, Pumphrey NJ. Selection, engineering, and in vivo testing of a human leukocyte antigen-independent T-cell receptor recognizing human mesothelin. PLoS One 2024; 19:e0301175. [PMID: 38574067 PMCID: PMC10994368 DOI: 10.1371/journal.pone.0301175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 03/12/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Canonical α/β T-cell receptors (TCRs) bind to human leukocyte antigen (HLA) displaying antigenic peptides to elicit T cell-mediated cytotoxicity. TCR-engineered T-cell immunotherapies targeting cancer-specific peptide-HLA complexes (pHLA) are generating exciting clinical responses, but owing to HLA restriction they are only able to target a subset of antigen-positive patients. More recently, evidence has been published indicating that naturally occurring α/β TCRs can target cell surface proteins other than pHLA, which would address the challenges of HLA restriction. In this proof-of-concept study, we sought to identify and engineer so-called HLA-independent TCRs (HiTs) against the tumor-associated antigen mesothelin. METHODS Using phage display, we identified a HiT that bound well to mesothelin, which when expressed in primary T cells, caused activation and cytotoxicity. We subsequently engineered this HiT to modulate the T-cell response to varying levels of mesothelin on the cell surface. RESULTS The isolated HiT shows cytotoxic activity and demonstrates killing of both mesothelin-expressing cell lines and patient-derived xenograft models. Additionally, we demonstrated that HiT-transduced T cells do not require CD4 or CD8 co-receptors and, unlike a TCR fusion construct, are not inhibited by soluble mesothelin. Finally, we showed that HiT-transduced T cells are highly efficacious in vivo, completely eradicating xenografted human solid tumors. CONCLUSION HiTs can be isolated from fully human TCR-displaying phage libraries against cell surface-expressed antigens. HiTs are able to fully activate primary T cells both in vivo and in vitro. HiTs may enable the efficacy seen with pHLA-targeting TCRs in solid tumors to be translated to cell surface antigens.
Collapse
Affiliation(s)
| | | | | | - Jaelle N. Foot
- Research, Adaptimmune, Abingdon, Oxfordshire, United Kingdom
| | | | - Valeria Fadda
- Research, Adaptimmune, Abingdon, Oxfordshire, United Kingdom
| | - Sara Boiani
- Research, Adaptimmune, Abingdon, Oxfordshire, United Kingdom
| | | | | | - Shaun Bruton
- Research, Adaptimmune, Abingdon, Oxfordshire, United Kingdom
| | - Neil Cartwright
- Research, Adaptimmune, Abingdon, Oxfordshire, United Kingdom
| | | | | | - Joao V. Vieira
- Research, Adaptimmune, Abingdon, Oxfordshire, United Kingdom
| | | | - Andrew B. Gerry
- Research, Adaptimmune, Abingdon, Oxfordshire, United Kingdom
| | - Karen Miller
- Research, Adaptimmune, Abingdon, Oxfordshire, United Kingdom
| | | |
Collapse
|
19
|
Wilhelm KB, Vissa A, Groves JT. Differential Roles of Kinetic On- and Off-Rates in T-Cell Receptor Signal Integration Revealed with a Modified Fab'-DNA Ligand. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.01.587588. [PMID: 38617215 PMCID: PMC11014569 DOI: 10.1101/2024.04.01.587588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Antibody-derived T-cell receptor (TCR) agonists are commonly used to activate T cells. While antibodies can trigger TCRs regardless of clonotype, they bypass native T cell signal integration mechanisms that rely on monovalent, membrane-associated, and relatively weakly-binding ligand in the context of cellular adhesion. Commonly used antibodies and their derivatives bind much more strongly than native peptide-MHC (pMHC) ligands bind their cognate TCRs. Because ligand dwell time is a critical parameter that tightly correlates with physiological function of the TCR signaling system, there is a general need, both in research and therapeutics, for universal TCR ligands with controlled kinetic binding parameters. To this end, we have introduced point mutations into recombinantly expressed α-TCRβ H57 Fab to modulate the dwell time of monovalent Fab binding to TCR. When tethered to a supported lipid bilayer via DNA complementation, these monovalent Fab'-DNA ligands activate T cells with potencies well-correlated with their TCR binding dwell time. Single-molecule tracking studies in live T cells reveal that individual binding events between Fab'-DNA ligands and TCRs elicit local signaling responses closely resembling native pMHC. The unique combination of high on- and off-rate of the H57 R97L mutant enables direct observations of cooperative interplay between ligand binding and TCR-proximal condensation of the linker for activation of T cells (LAT), which is not readily visualized with pMHC. This work provides insights into how T cells integrate kinetic information from synthetic ligands and introduces a method to develop affinity panels for polyclonal T cells, such as cells from a human patient.
Collapse
Affiliation(s)
- Kiera B Wilhelm
- Department of Chemistry, University of California-Berkeley, Berkeley, CA, 93720
| | - Anand Vissa
- Department of Chemistry, University of California-Berkeley, Berkeley, CA, 93720
| | - Jay T Groves
- Department of Chemistry, University of California-Berkeley, Berkeley, CA, 93720
| |
Collapse
|
20
|
Wang Y, Wang Z, Yang J, Lei X, Liu Y, Frankiw L, Wang J, Li G. Deciphering Membrane-Protein Interactions and High-Throughput Antigen Identification with Cell Doublets. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305750. [PMID: 38342599 PMCID: PMC10987144 DOI: 10.1002/advs.202305750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/02/2024] [Indexed: 02/13/2024]
Abstract
Deciphering cellular interactions is essential to both understand the mechanisms underlying a broad range of human diseases, but also to manipulate therapies targeting these diseases. Here, the formation of cell doublets resulting from specific membrane ligand-receptor interactions is discovered. Based on this phenomenon, the study developed DoubletSeeker, a novel high-throughput method for the reliable identification of ligand-receptor interactions. The study shows that DoubletSeeker can accurately identify T cell receptor (TCR)-antigen interactions with high sensitivity and specificity. Notably, DoubletSeeker effectively captured paired TCR-peptide major histocompatibility complex (pMHC) information during a highly complex library-on-library screening and successfully identified three mutant TCRs that specifically recognize the MART-1 epitope. In turn, DoubletSeeker can act as an antigen discovery platform that allows for the development of novel immunotherapy targets, making it valuable for investigating fundamental tumor immunology.
Collapse
Affiliation(s)
- Yuqian Wang
- National Key Laboratory of Immunity and InflammationSuzhou Institute of Systems MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeSuzhouJiangsu215123China
- Key Laboratory of Synthetic Biology Regulatory ElementSuzhou Institute of Systems MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeSuzhouJiangsu215123China
| | - Zhe Wang
- National Key Laboratory of Immunity and InflammationSuzhou Institute of Systems MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeSuzhouJiangsu215123China
- Key Laboratory of Synthetic Biology Regulatory ElementSuzhou Institute of Systems MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeSuzhouJiangsu215123China
| | - Juan Yang
- National Key Laboratory of Immunity and InflammationSuzhou Institute of Systems MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeSuzhouJiangsu215123China
- Key Laboratory of Synthetic Biology Regulatory ElementSuzhou Institute of Systems MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeSuzhouJiangsu215123China
| | - Xiaobo Lei
- NHC Key Laboratory of Systems Biology of PathogensInstitute of Pathogen BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100730China
| | - Yisu Liu
- National Key Laboratory of Immunity and InflammationSuzhou Institute of Systems MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeSuzhouJiangsu215123China
- Key Laboratory of Synthetic Biology Regulatory ElementSuzhou Institute of Systems MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeSuzhouJiangsu215123China
| | - Luke Frankiw
- Department of PediatricsBoston Children's HospitalBostonMA02115USA
| | - Jianwei Wang
- NHC Key Laboratory of Systems Biology of PathogensInstitute of Pathogen BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100730China
| | - Guideng Li
- National Key Laboratory of Immunity and InflammationSuzhou Institute of Systems MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeSuzhouJiangsu215123China
- Key Laboratory of Synthetic Biology Regulatory ElementSuzhou Institute of Systems MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeSuzhouJiangsu215123China
| |
Collapse
|
21
|
Rogers J, Ma R, Foote A, Hu Y, Salaita K. Force-Induced Site-Specific Enzymatic Cleavage Probes Reveal That Serial Mechanical Engagement Boosts T Cell Activation. J Am Chem Soc 2024; 146:7233-7242. [PMID: 38451498 PMCID: PMC10958510 DOI: 10.1021/jacs.3c08137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 03/08/2024]
Abstract
The T cell membrane is studded with >104 T cell receptors (TCRs) that are used to scan target cells to identify short peptide fragments associated with viral infection or cancerous mutation. These peptides are presented as peptide-major-histocompatibility complexes (pMHCs) on the surface of virtually all nucleated cells. The TCR-pMHC complex forms at cell-cell junctions, is highly transient, and experiences mechanical forces. An important question in this area pertains to the role of the force duration in immune activation. Herein, we report the development of force probes that autonomously terminate tension within a time window following mechanical triggering. Force-induced site-specific enzymatic cleavage (FUSE) probes tune the tension duration by controlling the rate of a force-triggered endonuclease hydrolysis reaction. This new capability provides a method to study how the accumulated force duration contributes to T cell activation. We screened DNA sequences and identified FUSE probes that disrupt mechanical interactions with F > 7.1 piconewtons (pN) between TCRs and pMHCs. This rate of disruption, or force lifetime (τF), is tunable from tens of minutes down to 1.9 min. T cells challenged with FUSE probes with F > 7.1 pN presenting cognate antigens showed up to a 23% decrease in markers of early activation. FUSE probes with F > 17.0 pN showed weaker influence on T cell triggering further showing that TCR-pMHC with F > 17.0 pN are less frequent compared to F > 7.1 pN. Taken together, FUSE probes allow a new strategy to investigate the role of force dynamics in mechanotransduction broadly and specifically suggest a model of serial mechanical engagement boosting TCR activation.
Collapse
Affiliation(s)
- Jhordan Rogers
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Rong Ma
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Alexander Foote
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Yuesong Hu
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Khalid Salaita
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| |
Collapse
|
22
|
Kocyła AM, Czogalla A, Wessels I, Rink L, Krężel A. A combined biochemical and cellular approach reveals Zn 2+-dependent hetero- and homodimeric CD4 and Lck assemblies in T cells. Structure 2024; 32:292-303.e7. [PMID: 38157858 DOI: 10.1016/j.str.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/25/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024]
Abstract
The CD4 or CD8 co-receptors' interaction with the protein-tyrosine kinase Lck initiates the tyrosine phosphorylation cascade leading to T cell activation. A critical question is: to what extent are co-receptors and Lck coupled? Our contribution concerns Zn2+, indispensable for CD4- and CD8-Lck formation. We combined biochemical and cellular approaches to show that dynamic fluctuations of free Zn2+ in physiological ranges influence Zn(CD4)2 and Zn(CD4)(Lck) species formation and their ratio, although the same Zn(Cys)2(Cys)2 cores. Moreover, we demonstrated that the affinity of Zn2+ to CD4 and CD4-Lck species differs significantly. Increased intracellular free Zn2+ concentration in T cells causes higher CD4 partitioning in the plasma membrane. We additionally found that CD4 palmitoylation decreases the specificity of CD4-Lck formation in the reconstituted membrane model. Our findings help elucidate co-receptor-Lck coupling stoichiometry and demonstrate that intracellular free Zn2+ has a major role in the interplay between CD4 dimers and CD4-Lck assembly.
Collapse
Affiliation(s)
- Anna M Kocyła
- Department of Chemical Biology, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - Aleksander Czogalla
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - Inga Wessels
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | - Lothar Rink
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | - Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland.
| |
Collapse
|
23
|
Jeffreys N, Brockman JM, Zhai Y, Ingber DE, Mooney DJ. Mechanical forces amplify TCR mechanotransduction in T cell activation and function. APPLIED PHYSICS REVIEWS 2024; 11:011304. [PMID: 38434676 PMCID: PMC10848667 DOI: 10.1063/5.0166848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/08/2023] [Indexed: 03/05/2024]
Abstract
Adoptive T cell immunotherapies, including engineered T cell receptor (eTCR) and chimeric antigen receptor (CAR) T cell immunotherapies, have shown efficacy in treating a subset of hematologic malignancies, exhibit promise in solid tumors, and have many other potential applications, such as in fibrosis, autoimmunity, and regenerative medicine. While immunoengineering has focused on designing biomaterials to present biochemical cues to manipulate T cells ex vivo and in vivo, mechanical cues that regulate their biology have been largely underappreciated. This review highlights the contributions of mechanical force to several receptor-ligand interactions critical to T cell function, with central focus on the TCR-peptide-loaded major histocompatibility complex (pMHC). We then emphasize the role of mechanical forces in (i) allosteric strengthening of the TCR-pMHC interaction in amplifying ligand discrimination during T cell antigen recognition prior to activation and (ii) T cell interactions with the extracellular matrix. We then describe approaches to design eTCRs, CARs, and biomaterials to exploit TCR mechanosensitivity in order to potentiate T cell manufacturing and function in adoptive T cell immunotherapy.
Collapse
Affiliation(s)
| | | | - Yunhao Zhai
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
24
|
Acuto O. T-cell virtuosity in ''knowing thyself". Front Immunol 2024; 15:1343575. [PMID: 38415261 PMCID: PMC10896960 DOI: 10.3389/fimmu.2024.1343575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/17/2024] [Indexed: 02/29/2024] Open
Abstract
Major Histocompatibility Complex (MHC) I and II and the αβ T-cell antigen receptor (TCRαβ) govern fundamental traits of adaptive immunity. They form a membrane-borne ligand-receptor system weighing host proteome integrity to detect contamination by nonself proteins. MHC-I and -II exhibit the "MHC-fold", which is able to bind a large assortment of short peptides as proxies for self and nonself proteins. The ensuing varying surfaces are mandatory ligands for Ig-like TCRαβ highly mutable binding sites. Conserved molecular signatures guide TCRαβ ligand binding sites to focus on the MHC-fold (MHC-restriction) while leaving many opportunities for its most hypervariable determinants to contact the peptide. This riveting molecular strategy affords many options for binding energy compatible with specific recognition and signalling aimed to eradicated microbial pathogens and cancer cells. While the molecular foundations of αβ T-cell adaptive immunity are largely understood, uncertainty persists on how peptide-MHC binding induces the TCRαβ signals that instruct cell-fate decisions. Solving this mystery is another milestone for understanding αβ T-cells' self/nonself discrimination. Recent developments revealing the innermost links between TCRαβ structural dynamics and signalling modality should help dissipate this long-sought-after enigma.
Collapse
Affiliation(s)
- Oreste Acuto
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
25
|
Robertson IB, Mulvaney R, Dieckmann N, Vantellini A, Canestraro M, Amicarella F, O'Dwyer R, Cole DK, Harper S, Dushek O, Kirk P. Tuning the potency and selectivity of ImmTAC molecules by affinity modulation. Clin Exp Immunol 2024; 215:105-119. [PMID: 37930865 PMCID: PMC10847821 DOI: 10.1093/cei/uxad120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/08/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023] Open
Abstract
T-cell-engaging bispecifics have great clinical potential for the treatment of cancer and infectious diseases. The binding affinity and kinetics of a bispecific molecule for both target and T-cell CD3 have substantial effects on potency and specificity, but the rules governing these relationships are not fully understood. Using immune mobilizing monoclonal TCRs against cancer (ImmTAC) molecules as a model, we explored the impact of altering affinity for target and CD3 on the potency and specificity of the redirected T-cell response. This class of bispecifics binds specific target peptides presented by human leukocyte antigen on the cell surface via an affinity-enhanced T-cell receptor and can redirect T-cell activation with an anti-CD3 effector moiety. The data reveal that combining a strong affinity TCR with an intermediate affinity anti-CD3 results in optimal T-cell activation, while strong affinity of both targeting and effector domains significantly reduces maximum cytokine release. Moreover, by optimizing the affinity of both parts of the molecule, it is possible to improve the selectivity. These results could be effectively modelled based on kinetic proofreading with limited signalling. This model explained the experimental observation that strong binding at both ends of the molecules leads to reduced activity, through very stable target-bispecific-effector complexes leading to CD3 entering a non-signalling dark state. These findings have important implications for the design of anti-CD3-based bispecifics with optimal biophysical parameters for both activity and specificity.
Collapse
Affiliation(s)
- Ian B Robertson
- Immunocore Limited, Drug Discovery and Protein Engineering, Abingdon, Oxon, UK
| | - Rachel Mulvaney
- Immunocore Limited, Drug Discovery and Protein Engineering, Abingdon, Oxon, UK
| | - Nele Dieckmann
- Immunocore Limited, Drug Discovery and Protein Engineering, Abingdon, Oxon, UK
| | - Alessio Vantellini
- Immunocore Limited, Drug Discovery and Protein Engineering, Abingdon, Oxon, UK
| | - Martina Canestraro
- Immunocore Limited, Drug Discovery and Protein Engineering, Abingdon, Oxon, UK
| | | | - Ronan O'Dwyer
- Immunocore Limited, Drug Discovery and Protein Engineering, Abingdon, Oxon, UK
| | - David K Cole
- Immunocore Limited, Drug Discovery and Protein Engineering, Abingdon, Oxon, UK
| | - Stephen Harper
- Immunocore Limited, Drug Discovery and Protein Engineering, Abingdon, Oxon, UK
| | - Omer Dushek
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Peter Kirk
- Immunocore Limited, Drug Discovery and Protein Engineering, Abingdon, Oxon, UK
| |
Collapse
|
26
|
Takizawa F, Hashimoto K, Miyazawa R, Ohta Y, Veríssimo A, Flajnik MF, Parra D, Tokunaga K, Suetake H, Sunyer JO, Dijkstra JM. CD4 and LAG-3 from sharks to humans: related molecules with motifs for opposing functions. Front Immunol 2023; 14:1267743. [PMID: 38187381 PMCID: PMC10768021 DOI: 10.3389/fimmu.2023.1267743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024] Open
Abstract
CD4 and LAG-3 are related molecules that are receptors for MHC class II molecules. Their major functional differences are situated in their cytoplasmic tails, in which CD4 has an activation motif and LAG-3 an inhibitory motif. Here, we identify shark LAG-3 and show that a previously identified shark CD4-like gene has a genomic location, expression pattern, and motifs similar to CD4 in other vertebrates. In nurse shark (Ginglymostoma cirratum) and cloudy catshark (Scyliorhinus torazame), the highest CD4 expression was consistently found in the thymus whereas such was not the case for LAG-3. Throughout jawed vertebrates, the CD4 cytoplasmic tail possesses a Cx(C/H) motif for binding kinase LCK, and the LAG-3 cytoplasmic tail possesses (F/Y)xxL(D/E) including the previously determined FxxL inhibitory motif resembling an immunoreceptor tyrosine-based inhibition motif (ITIM). On the other hand, the acidic end of the mammalian LAG-3 cytoplasmic tail, which is believed to have an inhibitory function as well, was acquired later in evolution. The present study also identified CD4-1, CD4-2, and LAG-3 in the primitive ray-finned fishes bichirs, sturgeons, and gars, and experimentally determined these sequences for sterlet sturgeon (Acipenser ruthenus). Therefore, with CD4-1 and CD4-2 already known in teleosts (modern ray-finned fish), these two CD4 lineages have now been found within all major clades of ray-finned fish. Although different from each other, the cytoplasmic tails of ray-finned fish CD4-1 and chondrichthyan CD4 not only contain the Cx(C/H) motif but also an additional highly conserved motif which we expect to confer a function. Thus, although restricted to some species and gene copies, in evolution both CD4 and LAG-3 molecules appear to have acquired functional motifs besides their canonical Cx(C/H) and ITIM-like motifs, respectively. The presence of CD4 and LAG-3 molecules with seemingly opposing functions from the level of sharks, the oldest living vertebrates with a human-like adaptive immune system, underlines their importance for the jawed vertebrate immune system. It also emphasizes the general need of the immune system to always find a balance, leading to trade-offs, between activating and inhibiting processes.
Collapse
Affiliation(s)
- Fumio Takizawa
- Faculty of Marine Science and Technology, Fukui Prefectural University, Obama, Fukui, Japan
| | - Keiichiro Hashimoto
- Emeritus Professor, Center for Medical Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Ryuichiro Miyazawa
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Yuko Ohta
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD, United States
| | - Ana Veríssimo
- CIBIO‐InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Martin F. Flajnik
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD, United States
| | | | | | - Hiroaki Suetake
- Faculty of Marine Science and Technology, Fukui Prefectural University, Obama, Fukui, Japan
| | - J. Oriol Sunyer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | | |
Collapse
|
27
|
Lee MS, Tuohy PJ, Kim CY, Yost P, Lichauco K, Parrish HL, Van Doorslaer K, Kuhns MS. The CD4 transmembrane GGXXG and juxtamembrane (C/F)CV+C motifs mediate pMHCII-specific signaling independently of CD4-LCK interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.05.539613. [PMID: 37214965 PMCID: PMC10197521 DOI: 10.1101/2023.05.05.539613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
CD4+ T cell activation is driven by 5-module receptor complexes. The T cell receptor (TCR) is the receptor module that binds composite surfaces of peptide antigens embedded within MHCII molecules (pMHCII). It associates with three signaling modules (CD3γε, CD3δε, and CD3ζζ) to form TCR-CD3 complexes. CD4 is the coreceptor module. It reciprocally associates with TCR-CD3-pMHCII assemblies on the outside of a CD4+ T cells and with the Src kinase, LCK, on the inside. Previously, we reported that the CD4 transmembrane GGXXG and cytoplasmic juxtamembrane (C/F)CV+C motifs found in eutherian (placental mammal) CD4 have constituent residues that evolved under purifying selection (Lee, et al., 2022). Expressing mutants of these motifs together in T cell hybridomas increased CD4-LCK association but reduced CD3ζ, ZAP70, and PLCγ1 phosphorylation levels, as well as IL-2 production, in response to agonist pMHCII. Because these mutants preferentially localized CD4-LCK pairs to non-raft membrane fractions, one explanation for our results was that they impaired proximal signaling by sequestering LCK away from TCR-CD3. An alternative hypothesis is that the mutations directly impacted signaling because the motifs normally play an LCK-independent role in signaling. The goal of this study was to discriminate between these possibilities. Using T cell hybridomas, our results indicate that: intracellular CD4-LCK interactions are not necessary for pMHCII-specific signal initiation; the GGXXG and (C/F)CV+C motifs are key determinants of CD4-mediated pMHCII-specific signal amplification; the GGXXG and (C/F)CV+C motifs exert their functions independently of direct CD4-LCK association. These data provide a mechanistic explanation for why residues within these motifs are under purifying selection in jawed vertebrates. The results are also important to consider for biomimetic engineering of synthetic receptors.
Collapse
Affiliation(s)
- Mark S Lee
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Peter J Tuohy
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Caleb Y Kim
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Philip Yost
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Katrina Lichauco
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Heather L Parrish
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Koenraad Van Doorslaer
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, AZ 85724, USA
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85724, USA
- Cancer Biology Graduate Interdisciplinary Program and Genetics Graduate Interdisciplinary Program, The University of Arizona, Tucson, AZ 85724, USA
- The BIO-5 Institute, The University of Arizona, Tucson, AZ 85724, USA
- The University of Arizona Cancer Center, Tucson, AZ, USA
- The Arizona Center on Aging, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Michael S Kuhns
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, AZ 85724, USA
- Cancer Biology Graduate Interdisciplinary Program and Genetics Graduate Interdisciplinary Program, The University of Arizona, Tucson, AZ 85724, USA
- The BIO-5 Institute, The University of Arizona, Tucson, AZ 85724, USA
- The University of Arizona Cancer Center, Tucson, AZ, USA
- The Arizona Center on Aging, The University of Arizona College of Medicine, Tucson, AZ, USA
| |
Collapse
|
28
|
Platzer R, Hellmeier J, Göhring J, Perez ID, Schatzlmaier P, Bodner C, Focke‐Tejkl M, Schütz GJ, Sevcsik E, Stockinger H, Brameshuber M, Huppa JB. Monomeric agonist peptide/MHCII complexes activate T-cells in an autonomous fashion. EMBO Rep 2023; 24:e57842. [PMID: 37768718 PMCID: PMC10626418 DOI: 10.15252/embr.202357842] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/04/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Molecular crowding of agonist peptide/MHC class II complexes (pMHCIIs) with structurally similar, yet per se non-stimulatory endogenous pMHCIIs is postulated to sensitize T-cells for the recognition of single antigens on the surface of dendritic cells and B-cells. When testing this premise with the use of advanced live cell microscopy, we observe pMHCIIs as monomeric, randomly distributed entities diffusing rapidly after entering the APC surface. Synaptic TCR engagement of highly abundant endogenous pMHCIIs is low or non-existent and affects neither TCR engagement of rare agonist pMHCII in early and advanced synapses nor agonist-induced TCR-proximal signaling. Our findings highlight the capacity of single freely diffusing agonist pMHCIIs to elicit the full T-cell response in an autonomous and peptide-specific fashion with consequences for adaptive immunity and immunotherapeutic approaches.
Collapse
Affiliation(s)
- René Platzer
- Center for Pathophysiology, Infectiology, Immunology, Institute for Hygiene and Applied ImmunologyMedical University of ViennaViennaAustria
| | - Joschka Hellmeier
- TU Wien, Institute of Applied PhysicsViennaAustria
- Present address:
Max Planck Institute of Biochemistry, Molecular Imaging and BionanotechnologyMartinsriedGermany
| | - Janett Göhring
- Center for Pathophysiology, Infectiology, Immunology, Institute for Hygiene and Applied ImmunologyMedical University of ViennaViennaAustria
| | - Iago Doel Perez
- Center for Pathophysiology, Infectiology, Immunology, Institute for Hygiene and Applied ImmunologyMedical University of ViennaViennaAustria
- Present address:
Takeda Manufacturing Austria AGViennaAustria
| | - Philipp Schatzlmaier
- Center for Pathophysiology, Infectiology, Immunology, Institute for Hygiene and Applied ImmunologyMedical University of ViennaViennaAustria
| | - Clara Bodner
- TU Wien, Institute of Applied PhysicsViennaAustria
| | - Margarete Focke‐Tejkl
- Center for Pathophysiology, Infectiology, Immunology, Institute for Pathophysiology and Allergy ResearchMedical University of ViennaViennaAustria
| | | | - Eva Sevcsik
- TU Wien, Institute of Applied PhysicsViennaAustria
| | - Hannes Stockinger
- Center for Pathophysiology, Infectiology, Immunology, Institute for Hygiene and Applied ImmunologyMedical University of ViennaViennaAustria
| | | | - Johannes B Huppa
- Center for Pathophysiology, Infectiology, Immunology, Institute for Hygiene and Applied ImmunologyMedical University of ViennaViennaAustria
| |
Collapse
|
29
|
Zhang X, Xiao Q, Zeng L, Hashmi F, Su X. IDR-induced CAR condensation improves the cytotoxicity of CAR-Ts against low-antigen cancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560460. [PMID: 37873222 PMCID: PMC10592880 DOI: 10.1101/2023.10.02.560460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Chimeric antigen receptor (CAR)-T cell-based therapies demonstrate remarkable efficacy for the treatment of otherwise intractable cancers, particularly B-cell malignancies. However, existing FDA-approved CAR-Ts are limited by low antigen sensitivity, rendering their insufficient targeting to low antigen-expressing cancers. To improve the antigen sensitivity of CAR-Ts, we engineered CARs targeting CD19, CD22, and HER2 by including intrinsically disordered regions (IDRs) that promote signaling condensation. The "IDR CARs" triggered enhanced membrane-proximal signaling in the CAR-T synapse, which led to an increased release of cytotoxic factors, a higher killing activity towards low antigen-expressing cancer cells in vitro, and an improved anti-tumor efficacy in vivo. No elevated tonic signaling was observed in IDR CAR-Ts. Together, we demonstrated IDRs as a new tool set to enhance CAR-T cytotoxicity and to broaden CAR-T's application to low antigen-expressing cancers.
Collapse
Affiliation(s)
- Xinyan Zhang
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520
| | - Qian Xiao
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520
| | - Longhui Zeng
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520
| | - Fawzaan Hashmi
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520
- Yale College, New Haven, CT 06520
| | - Xiaolei Su
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520
- Yale Cancer Center, New Haven, CT 06520
- Yale Stem Cell Center, New Haven, CT 06520
| |
Collapse
|
30
|
Herrera A, Jones RB. Whack-a-virus: HIV-specific T cells play an exhausting game. Cell Host Microbe 2023; 31:1427-1430. [PMID: 37708850 PMCID: PMC11070188 DOI: 10.1016/j.chom.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 09/16/2023]
Abstract
T cell responses are important for the control of acute HIV infection but become progressively dysfunctional. In this issue of Cell Host & Microbe, Dubé et al. and Takata et al. provide insights into their ongoing interplay with persistent HIV reservoirs, with implications for harnessing functional, durable responses to eliminate HIV.
Collapse
Affiliation(s)
- Alberto Herrera
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA; Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - R Brad Jones
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA; Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
31
|
Ade CM, Sporn MJ, Das S, Yu Z, Hanada KI, Qi YA, Maity T, Zhang X, Guha U, Andresson T, Yang JC. Identification of neoepitope reactive T-cell receptors guided by HLA-A*03:01 and HLA-A*11:01 immunopeptidomics. J Immunother Cancer 2023; 11:e007097. [PMID: 37758652 PMCID: PMC10537849 DOI: 10.1136/jitc-2023-007097] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Tumor-specific mutated proteins can create immunogenic non-self, mutation-containing 'neoepitopes' that are attractive targets for adoptive T-cell therapies. To avoid the complexity of defining patient-specific, private neoepitopes, there has been major interest in targeting common shared mutations in driver genes using off-the-shelf T-cell receptors (TCRs) engineered into autologous lymphocytes. However, identifying the precise naturally processed neoepitopes to pursue is a complex and challenging process. One method to definitively demonstrate whether an epitope is presented at the cell surface is to elute peptides bound to a specific major histocompatibility complex (MHC) allele and analyze them by mass spectrometry (MS). These MS data can then be prospectively applied to isolate TCRs specific to the neoepitope. METHODS We created mono-allelic cell lines expressing one class I HLA allele and one common mutated oncogene in order to eliminate HLA deconvolution requirements and increase the signal of recovered peptides. MHC-bound peptides on the surface of these cell lines were immunoprecipitated, purified, and analyzed using liquid chromatography-tandem mass spectrometry, producing a list of mutation-containing minimal epitopes. To validate the immunogenicity of these neoepitopes, HLA-transgenic mice were vaccinated using the minimal peptides identified by MS in order to generate neoepitope-reactive TCRs. Specificity of these candidate TCRs was confirmed by peptide titration and recognition of transduced targets. RESULTS We identified precise neoepitopes derived from mutated isoforms of KRAS, EGFR, BRAF, and PIK3CA presented by HLA-A*03:01 and/or HLA-A*11:01 across multiple biological replicates. From our MS data, we were able to successfully isolate murine TCRs that specifically recognize four HLA-A*11:01 restricted neoepitopes (KRAS G13D, PIK3CA E545K, EGFR L858R and BRAF V600E) and three HLA-A*03:01 restricted neoepitopes (KRAS G12V, EGFR L858R and BRAF V600E). CONCLUSIONS Our data show that an MS approach can be used to demonstrate which shared oncogene-derived neoepitopes are processed and presented by common HLA alleles, and those MS data can rapidly be used to develop TCRs against these common tumor-specific antigens. Although further characterization of these neoepitope-specific murine TCRs is required, ultimately, they have the potential to be used clinically for adoptive cell therapy.
Collapse
Affiliation(s)
- Catherine M Ade
- Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Matthew J Sporn
- Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Sudipto Das
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Zhiya Yu
- Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Ken-Ichi Hanada
- Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Yue A Qi
- Thoracic and GI Malignancies Branch, National Cancer Institute, Bethesda, Maryland, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Tapan Maity
- Thoracic and GI Malignancies Branch, National Cancer Institute, Bethesda, Maryland, USA
- Laboratory of Cell Biology, National Cancer Institute, Bethesda, MD, USA
| | - Xu Zhang
- Thoracic and GI Malignancies Branch, National Cancer Institute, Bethesda, Maryland, USA
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD, USA
| | - Udayan Guha
- Thoracic and GI Malignancies Branch, National Cancer Institute, Bethesda, Maryland, USA
- NextCure Inc, Beltsville, MD, USA
| | - Thorkell Andresson
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - James C Yang
- Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
32
|
Rogers J, Ma R, Hu Y, Salaita K. Force-induced site-specific enzymatic cleavage probes reveal that serial mechanical engagement boosts T cell activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.07.552310. [PMID: 37609308 PMCID: PMC10441320 DOI: 10.1101/2023.08.07.552310] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The surface of T cells is studded with T cell receptors (TCRs) that are used to scan target cells to identify peptide-major histocompatibility complexes (pMHCs) signatures of viral infection or cancerous mutation. It is now established that the TCR-pMHC complex is highly transient and experiences mechanical forces that augment the fidelity of T cell activation. An important question in this area pertains to the role of force duration in immune activation. Herein, we report the development of force probes that autonomously terminate tension within a time window following mechanical triggering. Force-induced site-specific enzymatic cleavage (FUSE) probes tune tension duration by controlling the rate of a force-triggered endonuclease hydrolysis reaction. This new capability provides a method to study how accumulated force duration contributes to T cell activation. We screened DNA sequences and identified FUSE probes that disrupt mechanical interactions with F >7.1 piconewtons (pN) between TCRs and pMHCs. Force lifetimes (τF) are tunable from tens of min down to 1.9 min. T cells challenged with FUSE probes presenting cognate antigens with τF of 1.9 min demonstrated dampened markers of early activation, thus demonstrating that repeated mechanical sampling boosts TCR activation. Repeated mechanical sampling F >7.1 pN was found to be particularly critical at lower pMHC antigen densities, wherein the T cell activation declined by 23% with τF of 1.9 min. FUSE probes with F >17.0 pN response showed weaker influence on T cell triggering further showing that TCR-pMHC with F >17.0 pN are less frequent compared to F >7.1 pN. Taken together, FUSE probes allow a new strategy to investigate the role of force dynamics in mechanotransduction broadly and specifically suggest a model of serial mechanical engagement in antigen recognition.
Collapse
Affiliation(s)
- Jhordan Rogers
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia, 30322, USA
| | - Rong Ma
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia, 30322, USA
| | - Yuesong Hu
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia, 30322, USA
| | - Khalid Salaita
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia, 30322, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, 30332, USA
| |
Collapse
|
33
|
Morgan J, Lindsay AE. Modulation of antigen discrimination by duration of immune contacts in a kinetic proofreading model of T cell activation with extreme statistics. PLoS Comput Biol 2023; 19:e1011216. [PMID: 37647345 PMCID: PMC10497171 DOI: 10.1371/journal.pcbi.1011216] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/12/2023] [Accepted: 08/05/2023] [Indexed: 09/01/2023] Open
Abstract
T cells form transient cell-to-cell contacts with antigen presenting cells (APCs) to facilitate surface interrogation by membrane bound T cell receptors (TCRs). Upon recognition of molecular signatures (antigen) of pathogen, T cells may initiate an adaptive immune response. The duration of the T cell/APC contact is observed to vary widely, yet it is unclear what constructive role, if any, such variations might play in immune signaling. Modeling efforts describing antigen discrimination often focus on steady-state approximations and do not account for the transient nature of cellular contacts. Within the framework of a kinetic proofreading (KP) mechanism, we develop a stochastic First Receptor Activation Model (FRAM) describing the likelihood that a productive immune signal is produced before the expiry of the contact. Through the use of extreme statistics, we characterize the probability that the first TCR triggering is induced by a rare agonist antigen and not by that of an abundant self-antigen. We show that defining positive immune outcomes as resilience to extreme statistics and sensitivity to rare events mitigates classic tradeoffs associated with KP. By choosing a sufficient number of KP steps, our model is able to yield single agonist sensitivity whilst remaining non-reactive to large populations of self antigen, even when self and agonist antigen are similar in dissociation rate to the TCR but differ largely in expression. Additionally, our model achieves high levels of accuracy even when agonist positive APCs encounters are rare. Finally, we discuss potential biological costs associated with high classification accuracy, particularly in challenging T cell environments.
Collapse
Affiliation(s)
- Jonathan Morgan
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, South Bend, Indiana, United States of America
- Biophysics Graduate Program, University of Notre Dame, South Bend, Indiana, United States of America
| | - Alan E. Lindsay
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, South Bend, Indiana, United States of America
| |
Collapse
|
34
|
Windheim M, Reubold TF, Aichane K, Gaestel M, Burgert HG. Enforced Dimerization of CD45 by the Adenovirus E3/49K Protein Inhibits T Cell Receptor Signaling. J Virol 2023; 97:e0189822. [PMID: 37125921 PMCID: PMC10231199 DOI: 10.1128/jvi.01898-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/07/2023] [Indexed: 05/02/2023] Open
Abstract
Human adenoviruses (HAdVs) are widespread pathogens that generally cause mild infections in immunocompetent individuals but severe or even fatal diseases in immunocompromised patients. In order to counteract the host immune defenses, HAdVs encode various immunomodulatory proteins in the early transcription unit 3 (E3). The E3/49K protein is a highly glycosylated type I transmembrane protein uniquely expressed by species D HAdVs. Its N-terminal ectodomain sec49K is released by metalloprotease-mediated shedding at the cell surface and binds to the receptor-like protein tyrosine phosphatase CD45, a critical regulator of leukocyte activation and functions. It remained elusive which domains of CD45 and E3/49K are involved in the interaction and whether such an interaction can also occur on the cell surface with membrane-anchored full-length E3/49K. Here, we show that the two extracellular domains R1 and R2 of E3/49K bind to the same site in the domain d3 of CD45. This interaction enforces the dimerization of CD45, causing the inhibition of T cell receptor signaling. Intriguingly, the membrane-anchored E3/49K appears to be designed like a "molecular fishing rod" using an extended disordered region of E3/49K as a "fishing line" to bridge the distance between the plasma membrane of infected cells and the CD45 binding site on T cells to effectively position the domains R1 and R2 as baits for CD45 binding. This design strongly suggests that both secreted sec49K as well as membrane-anchored full-length E3/49K have immunomodulatory functions. The forced dimerization of CD45 may be applied as a therapeutic strategy in chronic inflammatory disorders and cancer. IMPORTANCE The battle between viruses and their hosts is an ongoing arms race. Whereas the host tries to detect and eliminate the virus, the latter counteracts such antiviral measures to replicate and spread. Adenoviruses have evolved various mechanisms to evade the human immune response. The E3/49K protein of species D adenoviruses mediates the inhibition of immune cell function via binding to the protein tyrosine phosphatase CD45. Here, we show that E3/49K triggers the dimerization of CD45 and thereby inhibits its phosphatase activity. Intriguingly, the membrane-anchored E3/49K seems to be designed like a "molecular fishing rod" with the two CD45 binding domains of E3/49K as baits positioned at the end of an extended disordered region reminiscent of a fishing line. The adenoviral strategy to inhibit CD45 activity by forced dimerization may be used for therapeutic intervention in autoimmune diseases or to prevent graft rejection after transplantation.
Collapse
Affiliation(s)
- Mark Windheim
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Thomas F. Reubold
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Khadija Aichane
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Matthias Gaestel
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Hans-Gerhard Burgert
- Institute of Virology, University Medical Center, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| |
Collapse
|
35
|
Tabaei SR, Fernandez-Villamarin M, Vafaei S, Rooney L, Mendes PM. Recapitulating the Lateral Organization of Membrane Receptors at the Nanoscale. ACS NANO 2023. [PMID: 37200265 DOI: 10.1021/acsnano.3c00683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Many cell membrane functions emerge from the lateral presentation of membrane receptors. The link between the nanoscale organization of the receptors and ligand binding remains, however, mostly unclear. In this work, we applied surface molecular imprinting and utilized the phase behavior of lipid bilayers to create platforms that recapitulate the lateral organization of membrane receptors at the nanoscale. We used liposomes decorated with amphiphilic boronic acids that commonly serve as synthetic saccharide receptors and generated three lateral modes of receptor presentation─random distribution, nanoclustering, and receptor crowding─and studied their interaction with saccharides. In comparison to liposomes with randomly dispersed receptors, surface-imprinted liposomes resulted in more than a 5-fold increase in avidity. Quantifying the binding affinity and cooperativity proved that the boost was mediated by the formation of the nanoclusters rather than a local increase in the receptor concentration. In contrast, receptor crowding, despite the presence of increased local receptor concentrations, prevented multivalent oligosaccharide binding due to steric effects. The findings demonstrate the significance of nanometric aspects of receptor presentation and generation of multivalent ligands including artificial lectins for the sensitive and specific detection of glycans.
Collapse
Affiliation(s)
- Seyed R Tabaei
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Stranmillis Road, Belfast, BT9 5AG, U.K
| | | | - Setareh Vafaei
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K
| | - Lorcan Rooney
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Stranmillis Road, Belfast, BT9 5AG, U.K
| | - Paula M Mendes
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K
| |
Collapse
|
36
|
Huppa JB, Schütz GJ. T-cell antigen recognition: catch-as-catch-can or catch-22? EMBO J 2023; 42:e113507. [PMID: 36808636 PMCID: PMC10068317 DOI: 10.15252/embj.2023113507] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/08/2023] [Indexed: 02/22/2023] Open
Abstract
T-cell antigen recognition is invariably affected by tensile forces as they are exerted on T-cell antigen receptors (TCRs) transiently binding antigenic peptide/MHC complexes. In this issue of The EMBO Journal, Pettmann and colleagues promote the concept that forces reduce the lifetime of more stable stimulatory TCR-pMHC interactions to a larger extent than that of less stable non-stimulatory TCR-pMHC interactions. The authors argue that forces impede rather than boost T-cell antigen discrimination, which is promoted by force-shielding within the immunological synapse through cell adhesion via CD2/CD58 and LFA-1/ICAM-1.
Collapse
Affiliation(s)
- Johannes B Huppa
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology, ImmunologyMedical University of ViennaViennaAustria
| | | |
Collapse
|
37
|
Hyun J, Kim SJ, Cho SD, Kim HW. Mechano-modulation of T cells for cancer immunotherapy. Biomaterials 2023; 297:122101. [PMID: 37023528 DOI: 10.1016/j.biomaterials.2023.122101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/12/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023]
Abstract
Immunotherapy, despite its promise for future anti-cancer approach, faces significant challenges, such as off-tumor side effects, innate or acquired resistance, and limited infiltration of immune cells into stiffened extracellular matrix (ECM). Recent studies have highlighted the importance of mechano-modulation/-activation of immune cells (mainly T cells) for effective caner immunotherapy. Immune cells are highly sensitive to the applied physical forces and matrix mechanics, and reciprocally shape the tumor microenvironment. Engineering T cells with tuned properties of materials (e.g., chemistry, topography, and stiffness) can improve their expansion and activation ex vivo, and their ability to mechano-sensing the tumor specific ECM in vivo where they perform cytotoxic effects. T cells can also be exploited to secrete enzymes that soften ECM, thus increasing tumor infiltration and cellular therapies. Furthermore, T cells, such as chimeric antigen receptor (CAR)-T cells, genomic engineered to be spatiotemporally controllable by physical stimuli (e.g., ultrasound, heat, or light), can mitigate adverse off-tumor effects. In this review, we communicate these recent cutting-edge endeavors devoted to mechano-modulating/-activating T cells for effective cancer immunotherapy, and discuss future prospects and challenges in this field.
Collapse
|
38
|
ElAbd H, Bacher P, Tholey A, Lenz TL, Franke A. Challenges and opportunities in analyzing and modeling peptide presentation by HLA-II proteins. Front Immunol 2023; 14:1107266. [PMID: 37063883 PMCID: PMC10090296 DOI: 10.3389/fimmu.2023.1107266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
The human leukocyte antigen (HLA) proteins are an indispensable component of adaptive immunity because of their role in presenting self and foreign peptides to T cells. Further, many complex diseases are associated with genetic variation in the HLA region, implying an important role for specific HLA-presented peptides in the etiology of these diseases. Identifying the specific set of peptides presented by an individual’s HLA proteins in vivo, as a whole being referred to as the immunopeptidome, has therefore gathered increasing attention for different reasons. For example, identifying neoepitopes for cancer immunotherapy, vaccine development against infectious pathogens, or elucidating the role of HLA in autoimmunity. Despite the tremendous progress made during the last decade in these areas, several questions remain unanswered. In this perspective, we highlight five remaining key challenges in the analysis of peptide presentation and T cell immunogenicity and discuss potential solutions to these problems. We believe that addressing these questions would not only improve our understanding of disease etiology but will also have a direct translational impact in terms of engineering better vaccines and in developing more potent immunotherapies.
Collapse
Affiliation(s)
- Hesham ElAbd
- Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany
| | - Petra Bacher
- Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany
- Institute of Immunology, University of Kiel, Kiel, Germany
| | - Andreas Tholey
- Proteomics & Bioanalytics, Institute for Experimental Medicine, University of Kiel, Kiel, Germany
| | - Tobias L. Lenz
- Research Unit for Evolutionary Immunogenomics, Department of Biology, University of Hamburg, Hamburg, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany
- *Correspondence: Andre Franke,
| |
Collapse
|
39
|
Labanieh L, Mackall CL. CAR immune cells: design principles, resistance and the next generation. Nature 2023; 614:635-648. [PMID: 36813894 DOI: 10.1038/s41586-023-05707-3] [Citation(s) in RCA: 184] [Impact Index Per Article: 184.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 01/04/2023] [Indexed: 02/24/2023]
Abstract
The remarkable clinical activity of chimeric antigen receptor (CAR) therapies in B cell and plasma cell malignancies has validated the use of this therapeutic class for liquid cancers, but resistance and limited access remain as barriers to broader application. Here we review the immunobiology and design principles of current prototype CARs and present emerging platforms that are anticipated to drive future clinical advances. The field is witnessing a rapid expansion of next-generation CAR immune cell technologies designed to enhance efficacy, safety and access. Substantial progress has been made in augmenting immune cell fitness, activating endogenous immunity, arming cells to resist suppression via the tumour microenvironment and developing approaches to modulate antigen density thresholds. Increasingly sophisticated multispecific, logic-gated and regulatable CARs display the potential to overcome resistance and increase safety. Early signs of progress with stealth, virus-free and in vivo gene delivery platforms provide potential paths for reduced costs and increased access of cell therapies in the future. The continuing clinical success of CAR T cells in liquid cancers is driving the development of increasingly sophisticated immune cell therapies that are poised to translate to treatments for solid cancers and non-malignant diseases in the coming years.
Collapse
Affiliation(s)
- Louai Labanieh
- Department of Bioengineering, Stanford University, Stanford, CA, USA.,Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA.,Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Crystal L Mackall
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA. .,Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA. .,Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA. .,Division of Blood and Marrow Transplantation and Cell Therapy, Department of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
40
|
Pleshakova TO, Ivanov YD, Valueva AA, Shumyantseva VV, Ilgisonis EV, Ponomarenko EA, Lisitsa AV, Chekhonin VP, Archakov AI. Analysis of Single Biomacromolecules and Viruses: Is It a Myth or Reality? Int J Mol Sci 2023; 24:1877. [PMID: 36768195 PMCID: PMC9915366 DOI: 10.3390/ijms24031877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/04/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023] Open
Abstract
The beginning of the twenty-first century witnessed novel breakthrough research directions in the life sciences, such as genomics, transcriptomics, translatomics, proteomics, metabolomics, and bioinformatics. A newly developed single-molecule approach addresses the physical and chemical properties and the functional activity of single (individual) biomacromolecules and viral particles. Within the alternative approach, the combination of "single-molecule approaches" is opposed to "omics approaches". This new approach is fundamentally unique in terms of its research object (a single biomacromolecule). Most studies are currently performed using postgenomic technologies that allow the properties of several hundreds of millions or even billions of biomacromolecules to be analyzed. This paper discusses the relevance and theoretical, methodological, and practical issues related to the development potential of a single-molecule approach using methods based on molecular detectors.
Collapse
|
41
|
McAffee DB, O'Dair MK, Lin JJ, Low-Nam ST, Wilhelm KB, Kim S, Morita S, Groves JT. Discrete LAT condensates encode antigen information from single pMHC:TCR binding events. Nat Commun 2022; 13:7446. [PMID: 36460640 PMCID: PMC9718779 DOI: 10.1038/s41467-022-35093-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022] Open
Abstract
LAT assembly into a two-dimensional protein condensate is a prominent feature of antigen discrimination by T cells. Here, we use single-molecule imaging techniques to resolve the spatial position and temporal duration of each pMHC:TCR molecular binding event while simultaneously monitoring LAT condensation at the membrane. An individual binding event is sufficient to trigger a LAT condensate, which is self-limiting, and neither its size nor lifetime is correlated with the duration of the originating pMHC:TCR binding event. Only the probability of the LAT condensate forming is related to the pMHC:TCR binding dwell time. LAT condenses abruptly, but after an extended delay from the originating binding event. A LAT mutation that facilitates phosphorylation at the PLC-γ1 recruitment site shortens the delay time to LAT condensation and alters T cell antigen specificity. These results identify a function for the LAT protein condensation phase transition in setting antigen discrimination thresholds in T cells.
Collapse
Affiliation(s)
- Darren B McAffee
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Mark K O'Dair
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Jenny J Lin
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Shalini T Low-Nam
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Kiera B Wilhelm
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Sungi Kim
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Shumpei Morita
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Jay T Groves
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA.
- Institute for Digital Molecular Analytics and Science, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore.
| |
Collapse
|
42
|
Abstract
Immune cells are being engineered to recognize and respond to disease states, acting as a "living drug" when transferred into patients. Therapies based on engineered immune cells are now a clinical reality, with multiple engineered T cell therapies approved for treatment of hematologic malignancies. Ongoing preclinical and clinical studies are testing diverse strategies to modify the fate and function of immune cells for applications in cancer, infectious disease, and beyond. Here, we discuss current progress in treating human disease with immune cell therapeutics, emerging strategies for immune cell engineering, and challenges facing the field, with a particular emphasis on the treatment of cancer, where the most effort has been applied to date.
Collapse
Affiliation(s)
- Darrell J. Irvine
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Howard Hughes Medical Institute, Cambridge, MA, USA
| | - Marcela V. Maus
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA.,Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Boston, MA, USA,Harvard Medical School, Boston MA, USA
| | - David J. Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, U.S.A.,Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, U.S.A
| | - Wilson W. Wong
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, USA
| |
Collapse
|
43
|
Onnis A, Andreano E, Cassioli C, Finetti F, Della Bella C, Staufer O, Pantano E, Abbiento V, Marotta G, D’Elios MM, Rappuoli R, Baldari CT. SARS-CoV-2 Spike protein suppresses CTL-mediated killing by inhibiting immune synapse assembly. J Exp Med 2022; 220:213689. [PMID: 36378226 PMCID: PMC9671159 DOI: 10.1084/jem.20220906] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/28/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022] Open
Abstract
CTL-mediated killing of virally infected or malignant cells is orchestrated at the immune synapse (IS). We hypothesized that SARS-CoV-2 may target lytic IS assembly to escape elimination. We show that human CD8+ T cells upregulate the expression of ACE2, the Spike receptor, during differentiation to CTLs. CTL preincubation with the Wuhan or Omicron Spike variants inhibits IS assembly and function, as shown by defective synaptic accumulation of TCRs and tyrosine phosphoproteins as well as defective centrosome and lytic granule polarization to the IS, resulting in impaired target cell killing and cytokine production. These defects were reversed by anti-Spike antibodies interfering with ACE2 binding and reproduced by ACE2 engagement by angiotensin II or anti-ACE2 antibodies, but not by the ACE2 product Ang (1-7). IS defects were also observed ex vivo in CTLs from COVID-19 patients. These results highlight a new strategy of immune evasion by SARS-CoV-2 based on the Spike-dependent, ACE2-mediated targeting of the lytic IS to prevent elimination of infected cells.
Collapse
Affiliation(s)
- Anna Onnis
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Emanuele Andreano
- Monoclonal Antibody Discovery Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Chiara Cassioli
- Department of Life Sciences, University of Siena, Siena, Italy
| | | | - Chiara Della Bella
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Oskar Staufer
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, University of Oxford, Oxford, UK
| | - Elisa Pantano
- Monoclonal Antibody Discovery Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Valentina Abbiento
- Monoclonal Antibody Discovery Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | | | - Mario Milco D’Elios
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Rino Rappuoli
- Monoclonal Antibody Discovery Lab, Fondazione Toscana Life Sciences, Siena, Italy,Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Cosima T. Baldari
- Department of Life Sciences, University of Siena, Siena, Italy,Correspondence to Cosima T. Baldari:
| |
Collapse
|
44
|
Morgan J, Pettmann J, Dushek O, Lindsay AE. T cell microvilli simulations show operation near packing limit and impact on antigen recognition. Biophys J 2022; 121:4128-4136. [PMID: 36181267 PMCID: PMC9675027 DOI: 10.1016/j.bpj.2022.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 07/11/2022] [Accepted: 09/26/2022] [Indexed: 11/02/2022] Open
Abstract
T cells are immune cells that continuously scan for foreign-derived antigens on the surfaces of nearly all cells, termed antigen-presenting cells (APCs). They do this by dynamically extending numerous protrusions called microvilli (MVs) that contain T cell receptors toward the APC surface in order to scan for antigens. The number, size, and dynamics of these MVs, and the complex multiscale topography that results, play a yet unknown role in antigen recognition. We develop an anatomically informed model that confines antigen recognition to small areas representing MVs that can dynamically form and dissolve and use the model to study how MV dynamics impact antigen sensitivity and discrimination. We find that MV surveillance reduces antigen sensitivity compared with a completely flat interface, unless MV are stabilized in an antigen-dependent manner, and observe that MVs have only a modest impact on antigen discrimination. The model highlights that MV contacts optimize the competing demands of fast scanning speeds of the APC surface with antigen sensitivity. Our model predicts an interface packing fraction that corresponds closely to those observed experimentally, indicating that T cells operate their MVs near the limits imposed by anatomical and geometric constraints. Finally, we find that observed MV contact lifetimes can be largely influenced by conditions in the T cell/APC interface, with these lifetimes often being longer than the simulation or experimental observation period. This work highlights the role of MVs in antigen recognition.
Collapse
Affiliation(s)
- Jonathan Morgan
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, Indiana; Biophysics Graduate Program, University of Notre Dame, Notre Dame, Indiana
| | - Johannes Pettmann
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Omer Dushek
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Alan E Lindsay
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, Indiana.
| |
Collapse
|
45
|
Gerber HP, Presta LG. TCR mimic compounds for pHLA targeting with high potency modalities in oncology. Front Oncol 2022; 12:1027548. [PMID: 36338746 PMCID: PMC9635445 DOI: 10.3389/fonc.2022.1027548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/29/2022] [Indexed: 12/02/2022] Open
Abstract
pHLA complexes represent the largest class of cell surface markers on cancer cells, making them attractive for targeted cancer therapies. Adoptive cell therapies expressing TCRs that recognize tumor specific pHLAs take advantage of the unique selectivity and avidity of TCR: pHLA interactions. More recently, additional protein binding domains binding to pHLAs, known as TCR mimics (TCRm), were developed for tumor targeting of high potency therapeutic modalities, including bispecifics, ADCs, CAR T and -NK cells. TCRm compounds take advantage of the exquisite tumor specificity of certain pHLA targets, including cell lineage commitment markers and cancer testis antigens (CTAs). To achieve meaningful anti-tumor responses, it is critical that TCRm compounds integrate both, high target binding affinities and a high degree of target specificity. In this review, we describe the most advanced approaches to achieve both criteria, including affinity- and specificity engineering of TCRs, antibodies and alternative protein scaffolds. We also discuss the status of current TCRm based therapeutics developed in the clinic, key challenges, and emerging trends to improve treatment options for cancer patients treated with TCRm based therapeutics in Oncology.
Collapse
|
46
|
A bead-based method for high-throughput mapping of the sequence- and force-dependence of T cell activation. Nat Methods 2022; 19:1295-1305. [PMID: 36064771 DOI: 10.1038/s41592-022-01592-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/21/2022] [Indexed: 11/08/2022]
Abstract
Adaptive immunity relies on T lymphocytes that use αβ T cell receptors (TCRs) to discriminate among peptides presented by major histocompatibility complex molecules (pMHCs). Identifying pMHCs capable of inducing robust T cell responses will not only enable a deeper understanding of the mechanisms governing immune responses but could also have broad applications in diagnosis and treatment. T cell recognition of sparse antigenic pMHCs in vivo relies on biomechanical forces. However, in vitro screening methods test potential pMHCs without force and often at high (nonphysiological) pMHC densities and thus fail to predict potent agonists in vivo. Here, we present a technology termed BATTLES (biomechanically assisted T cell triggering for large-scale exogenous-pMHC screening) that uses biomechanical force to initiate T cell triggering for peptides and cells in parallel. BATTLES displays candidate pMHCs on spectrally encoded beads composed of a thermo-responsive polymer capable of applying shear loads to T cells, facilitating exploration of the force- and sequence-dependent landscape of T cell responses. BATTLES can be used to explore basic T cell mechanobiology and T cell-based immunotherapies.
Collapse
|
47
|
Britain DM, Town JP, Weiner OD. Progressive enhancement of kinetic proofreading in T cell antigen discrimination from receptor activation to DAG generation. eLife 2022; 11:e75263. [PMID: 36125261 PMCID: PMC9536835 DOI: 10.7554/elife.75263] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 09/18/2022] [Indexed: 11/16/2022] Open
Abstract
T cells use kinetic proofreading to discriminate antigens by converting small changes in antigen-binding lifetime into large differences in cell activation, but where in the signaling cascade this computation is performed is unknown. Previously, we developed a light-gated immune receptor to probe the role of ligand kinetics in T cell antigen signaling. We found significant kinetic proofreading at the level of the signaling lipid diacylglycerol (DAG) but lacked the ability to determine where the multiple signaling steps required for kinetic discrimination originate in the upstream signaling cascade (Tiseher and Weiner, 2019). Here, we uncover where kinetic proofreading is executed by adapting our optogenetic system for robust activation of early signaling events. We find the strength of kinetic proofreading progressively increases from Zap70 recruitment to LAT clustering to downstream DAG generation. Leveraging the ability of our system to rapidly disengage ligand binding, we also measure slower reset rates for downstream signaling events. These data suggest a distributed kinetic proofreading mechanism, with proofreading steps both at the receptor and at slower resetting downstream signaling complexes that could help balance antigen sensitivity and discrimination.
Collapse
Affiliation(s)
- Derek M Britain
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Jason P Town
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Orion David Weiner
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
48
|
Kim GB, Fritsche J, Bunk S, Mahr A, Unverdorben F, Tosh K, Kong H, Maldini CR, Lau C, Srivatsa S, Jiang S, Glover J, Dopkin D, Zhang CX, Schuster H, Kowalewski DJ, Goldfinger V, Ott M, Fuhrmann D, Baues M, Boesmueller H, Schraeder C, Schimmack G, Song C, Hoffgaard F, Roemer M, Tsou CC, Hofmann M, Treiber T, Hutt M, Alten L, Jaworski M, Alpert A, Missel S, Reinhardt C, Singh H, Schoor O, Walter S, Wagner C, Maurer D, Weinschenk T, Riley JL. Quantitative immunopeptidomics reveals a tumor stroma-specific target for T cell therapy. Sci Transl Med 2022; 14:eabo6135. [PMID: 36044599 PMCID: PMC10130759 DOI: 10.1126/scitranslmed.abo6135] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
T cell receptor (TCR)-based immunotherapy has emerged as a promising therapeutic approach for the treatment of patients with solid cancers. Identifying peptide-human leukocyte antigen (pHLA) complexes highly presented on tumors and rarely expressed on healthy tissue in combination with high-affinity TCRs that when introduced into T cells can redirect T cells to eliminate tumor but not healthy tissue is a key requirement for safe and efficacious TCR-based therapies. To discover promising shared tumor antigens that could be targeted via TCR-based adoptive T cell therapy, we employed population-scale immunopeptidomics using quantitative mass spectrometry across ~1500 tumor and normal tissue samples. We identified an HLA-A*02:01-restricted pan-cancer epitope within the collagen type VI α-3 (COL6A3) gene that is highly presented on tumor stroma across multiple solid cancers due to a tumor-specific alternative splicing event that rarely occurs outside the tumor microenvironment. T cells expressing natural COL6A3-specific TCRs demonstrated only modest activity against cells presenting high copy numbers of COL6A3 pHLAs. One of these TCRs was affinity-enhanced, enabling transduced T cells to specifically eliminate tumors in vivo that expressed similar copy numbers of pHLAs as primary tumor specimens. The enhanced TCR variants exhibited a favorable safety profile with no detectable off-target reactivity, paving the way to initiate clinical trials using COL6A3-specific TCRs to target an array of solid tumors.
Collapse
Affiliation(s)
- Gloria B Kim
- Department of Microbiology, Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jens Fritsche
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | - Sebastian Bunk
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | - Andrea Mahr
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | - Felix Unverdorben
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | - Kevin Tosh
- Department of Microbiology, Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hong Kong
- Department of Microbiology, Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Colby R Maldini
- Department of Microbiology, Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chui Lau
- Department of Microbiology, Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sriram Srivatsa
- Department of Microbiology, Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shuguang Jiang
- Department of Microbiology, Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joshua Glover
- Department of Microbiology, Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Derek Dopkin
- Department of Microbiology, Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Carolyn X Zhang
- Department of Microbiology, Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Heiko Schuster
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | - Daniel J Kowalewski
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | | | - Martina Ott
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | - David Fuhrmann
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | - Maike Baues
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | - Hans Boesmueller
- Institute of Pathology and Neuropathology, Eberhard Karls University, 72076 Tuebingen, Germany
| | - Christoph Schraeder
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | - Gisela Schimmack
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | - Colette Song
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | - Franziska Hoffgaard
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | - Michael Roemer
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | - Chih-Chiang Tsou
- Immatics US, 2201 W. Holcombe Blvd., Suite 205, Houston, TX 77030, USA
| | - Martin Hofmann
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | - Thomas Treiber
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | - Meike Hutt
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | - Leonie Alten
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | - Maike Jaworski
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | - Amir Alpert
- Immatics US, 2201 W. Holcombe Blvd., Suite 205, Houston, TX 77030, USA
| | - Sarah Missel
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | - Carsten Reinhardt
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | - Harpreet Singh
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany.,Immatics US, 2201 W. Holcombe Blvd., Suite 205, Houston, TX 77030, USA
| | - Oliver Schoor
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | - Steffen Walter
- Immatics US, 2201 W. Holcombe Blvd., Suite 205, Houston, TX 77030, USA
| | - Claudia Wagner
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | - Dominik Maurer
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany
| | - Toni Weinschenk
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076 Tuebingen, Germany.,Immatics US, 2201 W. Holcombe Blvd., Suite 205, Houston, TX 77030, USA
| | - James L Riley
- Department of Microbiology, Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
49
|
Lee MS, Tuohy PJ, Kim CY, Lichauco K, Parrish HL, Van Doorslaer K, Kuhns MS. Enhancing and inhibitory motifs regulate CD4 activity. eLife 2022; 11:e79508. [PMID: 35861317 PMCID: PMC9333989 DOI: 10.7554/elife.79508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/20/2022] [Indexed: 11/15/2022] Open
Abstract
CD4+ T cells use T cell receptor (TCR)-CD3 complexes, and CD4, to respond to peptide antigens within MHCII molecules (pMHCII). We report here that, through ~435 million years of evolution in jawed vertebrates, purifying selection has shaped motifs in the extracellular, transmembrane, and intracellular domains of eutherian CD4 that enhance pMHCII responses, and covary with residues in an intracellular motif that inhibits responses. Importantly, while CD4 interactions with the Src kinase, Lck, are viewed as key to pMHCII responses, our data indicate that CD4-Lck interactions derive their importance from the counterbalancing activity of the inhibitory motif, as well as motifs that direct CD4-Lck pairs to specific membrane compartments. These results have implications for the evolution and function of complex transmembrane receptors and for biomimetic engineering.
Collapse
Affiliation(s)
- Mark S Lee
- Department of Immunobiology, The University of Arizona College of MedicineTucsonUnited States
| | - Peter J Tuohy
- Department of Immunobiology, The University of Arizona College of MedicineTucsonUnited States
| | - Caleb Y Kim
- Department of Immunobiology, The University of Arizona College of MedicineTucsonUnited States
| | - Katrina Lichauco
- Department of Immunobiology, The University of Arizona College of MedicineTucsonUnited States
| | - Heather L Parrish
- Department of Immunobiology, The University of Arizona College of MedicineTucsonUnited States
| | - Koenraad Van Doorslaer
- Department of Immunobiology, The University of Arizona College of MedicineTucsonUnited States
- School of Animal and Comparative Biomedical Sciences, University of ArizonaTucsonUnited States
- Cancer Biology Graduate Interdisciplinary Program and Genetics Graduate Interdisciplinary Program, The University of ArizonaTucsonUnited States
- The BIO-5 Institute, The University of ArizonaTucsonUnited States
- The University of Arizona Cancer CenterTucsonUnited States
| | - Michael S Kuhns
- Department of Immunobiology, The University of Arizona College of MedicineTucsonUnited States
- Cancer Biology Graduate Interdisciplinary Program and Genetics Graduate Interdisciplinary Program, The University of ArizonaTucsonUnited States
- The BIO-5 Institute, The University of ArizonaTucsonUnited States
- The University of Arizona Cancer CenterTucsonUnited States
- The Arizona Center on Aging, The University of Arizona College of MedicineTucsonUnited States
| |
Collapse
|
50
|
Alnefaie A, Albogami S, Asiri Y, Ahmad T, Alotaibi SS, Al-Sanea MM, Althobaiti H. Chimeric Antigen Receptor T-Cells: An Overview of Concepts, Applications, Limitations, and Proposed Solutions. Front Bioeng Biotechnol 2022; 10:797440. [PMID: 35814023 PMCID: PMC9256991 DOI: 10.3389/fbioe.2022.797440] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Adaptive immunity, orchestrated by B-cells and T-cells, plays a crucial role in protecting the body from pathogenic invaders and can be used as tools to enhance the body's defense mechanisms against cancer by genetically engineering these immune cells. Several strategies have been identified for cancer treatment and evaluated for their efficacy against other diseases such as autoimmune and infectious diseases. One of the most advanced technologies is chimeric antigen receptor (CAR) T-cell therapy, a pioneering therapy in the oncology field. Successful clinical trials have resulted in the approval of six CAR-T cell products by the Food and Drug Administration for the treatment of hematological malignancies. However, there have been various obstacles that limit the use of CAR T-cell therapy as the first line of defense mechanism against cancer. Various innovative CAR-T cell therapeutic designs have been evaluated in preclinical and clinical trial settings and have demonstrated much potential for development. Such trials testing the suitability of CARs against solid tumors and HIV are showing promising results. In addition, new solutions have been proposed to overcome the limitations of this therapy. This review provides an overview of the current knowledge regarding this novel technology, including CAR T-cell structure, different applications, limitations, and proposed solutions.
Collapse
Affiliation(s)
- Alaa Alnefaie
- Department of Medical Services, King Faisal Medical Complex, Taif, Saudi Arabia
| | - Sarah Albogami
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Yousif Asiri
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Tanveer Ahmad
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Saqer S. Alotaibi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Mohammad M. Al-Sanea
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Hisham Althobaiti
- Chief of Medical Department, King Faisal Medical Complex (KFMC), Taif, Saudi Arabia
| |
Collapse
|