1
|
Hanahan D, Michielin O, Pittet MJ. Convergent inducers and effectors of T cell paralysis in the tumour microenvironment. Nat Rev Cancer 2024:10.1038/s41568-024-00761-z. [PMID: 39448877 DOI: 10.1038/s41568-024-00761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
Tumorigenesis embodies the formation of a heterotypic tumour microenvironment (TME) that, among its many functions, enables the evasion of T cell-mediated immune responses. Remarkably, most TME cell types, including cancer cells, fibroblasts, myeloid cells, vascular endothelial cells and pericytes, can be stimulated to deploy immunoregulatory programmes. These programmes involve regulatory inducers (signals-in) and functional effectors (signals-out) that impair CD8+ and CD4+ T cell activity through cytokines, growth factors, immune checkpoints and metabolites. Some signals target specific cell types, whereas others, such as transforming growth factor-β (TGFβ) and prostaglandin E2 (PGE2), exert broad, pleiotropic effects; as signals-in, they trigger immunosuppressive programmes in most TME cell types, and as signals-out, they directly inhibit T cells and also modulate other cells to reinforce immunosuppression. This functional diversity and redundancy pose a challenge for therapeutic targeting of the immune-evasive TME. Fundamentally, the commonality of regulatory programmes aimed at abrogating T cell activity, along with paracrine signalling between cells of the TME, suggests that many normal cell types are hard-wired with latent functions that can be triggered to prevent inappropriate immune attack. This intrinsic capability is evidently co-opted throughout the TME, enabling tumours to evade immune destruction.
Collapse
Affiliation(s)
- Douglas Hanahan
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland.
- Agora Cancer Research Center, Lausanne, Switzerland.
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland.
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland.
| | - Olivier Michielin
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
- Department of Oncology, Geneva University Hospitals (HUG), Geneva, Switzerland
- Department of Medicine, University of Geneva (UNIGE), Geneva, Switzerland
| | - Mikael J Pittet
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
- Department of Oncology, Geneva University Hospitals (HUG), Geneva, Switzerland
- Department of Pathology and Immunology, University of Geneva (UNIGE), Geneva, Switzerland
| |
Collapse
|
2
|
Scott EN, Ye C, Yano H, Lipatova Z, Brunazzi E, Vignali KM, Workman CJ, Vignali DA. Ebi3 Binding to IFN-γ and IL-10 Limits Their Function. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1115-1124. [PMID: 39240167 PMCID: PMC11458358 DOI: 10.4049/jimmunol.2400236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024]
Abstract
EBV-induced gene 3 (Ebi3) is a β subunit within the IL-12 cytokine family that canonically binds to α subunits p19, p28, or p35 to form the heterodimeric cytokines IL-39, IL-27, and IL-35, respectively. In the last decade, the binding partners for Ebi3 have continued to expand to include IL-6 and the other IL-12 family β subunit p40, revealing the possibility that Ebi3 may be able to bind to other cytokines and have distinct functions. We first explored this possibility utilizing an in vivo mouse model of regulatory T cell-restricted deletions of the subunits composing the cytokine IL-35, p35, and Ebi3, and we observed a differential impact on CD8+ T cell inhibitory receptor expression despite comparable reduction in tumor growth. We then screened the ability of Ebi3 to bind to different cytokines with varying structural resemblance to the IL-12 family α subunits. These in vitro screens revealed extracellular binding of Ebi3 to both IFN-γ and IL-10. Ebi3 bound to IFN-γ and IL-10 abrogated signal transduction and downstream functions of both cytokines. Lastly, we validated that extracellular complex formation after mixing native proteins resulted in loss of function. These data suggest that secreted partnerless Ebi3 may bind to cytokines within the extracellular microenvironment and act as a cytokine sink, further expanding the potential immunological impact of Ebi3.
Collapse
Affiliation(s)
- Ellen N. Scott
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Program in Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA
| | - Cheng Ye
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA
- Present address: Neurophth Therapeutics, Minhang District, Shanghai, China
| | - Hiroshi Yano
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Program in Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA
- Present address and affiliation: Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY
| | - Zhanna Lipatova
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA
| | - Erin Brunazzi
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA
| | - Kate M. Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA
| | - Creg J. Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA
| | - Dario A.A. Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA
| |
Collapse
|
3
|
Bakery HH, Hussein HAA, Ahmed OM, Abuelsaad ASA, Khalil RG. The potential therapeutic role of IL-35 in pathophysiological processes in type 1 diabetes mellitus. Cytokine 2024; 182:156732. [PMID: 39126765 DOI: 10.1016/j.cyto.2024.156732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/01/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
A chronic autoimmune condition known as type 1 diabetes mellitus (T1DM) has characteristics marked by a gradual immune-mediated deterioration of the β-cells that produce insulin and causes overt hyperglycemia. it affects more than 1.2 million kids and teenagers (0-19 years old). In both, the initiation and elimination phases of T1DM, cytokine-mediated immunity is crucial in controlling inflammation. T regulatory (Treg) cells, a crucial anti-inflammatory CD4+ T cell subset, secretes interleukin-35 (IL-35). The IL-35 has immunomodulatory properties by inhibiting pro-inflammatory cells and cytokines, increasing the secretion of interleukin-10 (IL-10) as well as transforming Growth Factor- β (TGF-β), along with stimulating the Treg and B regulatory (Breg) cells. IL-35, it is a possible target for cutting-edge therapies for cancers, inflammatory, infectious, and autoimmune diseases, including TIDM. Unanswered questions surround IL-35's function in T1DM. Increasing data suggests Treg cells play a crucial role in avoiding autoimmune T1DM. Throughout this review, we will explain the biological impacts of IL-35 and highlight the most recently progresses in the roles of IL-35 in treatment of T1DM; the knowledge gathered from these findings might lead to the development of new T1DM treatments. This review demonstrates the potential of IL-35 as an effective autoimmune diabetes inhibitor and points to its potential therapeutic value in T1DM clinical trials.
Collapse
Affiliation(s)
- Heba H Bakery
- Immunology Division, Faculty of Science, Beni-Suef University, Egypt
| | - Heba A A Hussein
- Faculty of Medicine, Egyptian Fellowship of Radiology, Beni-Suef University, Egypt
| | - Osama M Ahmed
- Molecular Physiology Division, Faculty of Science, Beni-Suef University, Egypt
| | | | - Rehab G Khalil
- Immunology Division, Faculty of Science, Beni-Suef University, Egypt.
| |
Collapse
|
4
|
Wang A, Wang Y, Liang R, Li B, Pan F. Improving regulatory T cell-based therapy: insights into post-translational modification regulation. J Genet Genomics 2024:S1673-8527(24)00252-2. [PMID: 39357622 DOI: 10.1016/j.jgg.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Regulatory T (Treg) cells are pivotal for maintaining immune homeostasis and play essential roles in various diseases, such as autoimmune diseases, graft-versus-host disease (GVHD), tumors, and infectious diseases. Treg cells exert suppressive function via distinct mechanisms including inhibitory cytokines, granzyme or perforin-mediated cytolysis, metabolic disruption, and suppression of dendritic cells. Forkhead Box P3 (FOXP3), the characteristic transcription factor, is essential for Treg cell function and plasticity. Cumulative evidence has demonstrated that FOXP3 activity and Treg cell function are modulated by a variety of post-translational modifications (PTMs), including ubiquitination, acetylation, phosphorylation, methylation, glycosylation, poly(ADP-ribosyl)ation, and uncharacterized modifications. This review describes Treg cell suppressive mechanisms and summarizes the current evidence on PTM regulation of FOXP3 and Treg cell function. Understanding the regulatory role of PTMs in Treg cell plasticity and function will be helpful in designing therapeutic strategies for autoimmune diseases, GVHD, tumors, and infectious diseases.
Collapse
Affiliation(s)
- Aiting Wang
- Center for Cancer Immunology Research, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| | - Yanwen Wang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rui Liang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Bin Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Fan Pan
- Center for Cancer Immunology Research, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
5
|
Ahmed EN, Cutmore LC, Marshall JF. Syngeneic Mouse Models for Pre-Clinical Evaluation of CAR T Cells. Cancers (Basel) 2024; 16:3186. [PMID: 39335157 PMCID: PMC11430534 DOI: 10.3390/cancers16183186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cells have revolutionized the treatment of hematological malignancies. Unfortunately, this improvement has yet to be translated into the solid tumor field. Current immunodeficient models used in pre-clinical testing often overestimate the efficacy of CAR T cell therapy as they fail to recapitulate the immunosuppressive tumor microenvironment characteristic of solid tumors. As CAR T cell monotherapy is unlikely to be curative for many solid tumors, combination therapies must be investigated, for example, stromal remodeling agents and immunomodulators. The evaluation of these combination therapies requires a fully immunocompetent mouse model in order to recapitulate the interaction between the host's immune system and the CAR T cells. This review will discuss the need for improved immunocompetent murine models for the pre-clinical evaluation of CAR T cells, the current use of such models and future directions.
Collapse
Affiliation(s)
- Eman N Ahmed
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Lauren C Cutmore
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - John F Marshall
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| |
Collapse
|
6
|
Cui Y, David M, Bouchareychas L, Rouquier S, Sajuthi S, Ayrault M, Navarin C, Lara G, Lafon A, Saviane G, Boulakirba S, Menardi A, Demory A, Frikeche J, de la Forest Divonne Beghelli S, Lu HH, Dumont C, Abel T, Fenard D, de la Rosa M, Gertner-Dardenne J. IL23R-specific CAR Tregs for the treatment of Crohn's disease. J Crohns Colitis 2024:jjae135. [PMID: 39252592 DOI: 10.1093/ecco-jcc/jjae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND AND AIMS Regulatory T cells (Tregs) are key regulators in maintaining tissue homeostasis. Disrupted immune homeostasis is associated with Crohn's disease (CD) pathogenesis. Thus, Treg therapy represents a promising long-acting treatment to restore immune balance in the diseased intestine. CAR (Chimeric Antigen Receptor) T-cell therapy has revolutionized cancer treatment. This innovative approach also provides the opportunity to improve therapy for CD. By targeting a disease-relevant protein, Interleukin-23 receptor (IL23R), we engineered Tregs expressing IL23R-CAR for treating active CD. METHODS Intestinal IL23R expression from active CD was verified by immunohistochemical analysis. Phenotypic and functional characteristics of IL23R-CAR Tregs were assessed using in vitro assays and their migration capacity was monitored in a xenograft tumor model. Transcriptomic and proteomic analyses were performed to associate molecular profiles with IL23R-CAR Treg activation against colon biopsy-derived cells from active CD patients. RESULTS Our study showed that IL23R-CAR displayed negligible tonic signalling and strong signal-to-noise ratio. IL23R-CAR Tregs maintained regulatory phenotype during in vitro expansion, even when chronically exposed to proinflammatory cytokines and target antigen. IL23R engagement on IL23R-CAR Tregs triggered CAR-specific activation and significantly enhanced their suppressive activity. Also, IL23R-CAR Tregs migrated to IL23R-expressing tissue in humanized mice. Finally, IL23R-CAR Tregs elicited a specific activation against colon biopsy-derived cells from active CD, suggesting an efficient CAR engagement in active CD. Molecular profiling of CD patient biopsies also revealed transcriptomic and proteomic patterns associated with IL23R-CAR activation. CONCLUSIONS Overall, our results demonstrate that IL23R-CAR Tregs represent a promising therapy for active CD.
Collapse
Affiliation(s)
- Yue Cui
- Research, Sangamo Therapeutics, Valbonne, France
| | - Marion David
- Research, Sangamo Therapeutics, Valbonne, France
| | | | | | | | | | | | - Gregory Lara
- Research, Sangamo Therapeutics, Valbonne, France
| | - Audrey Lafon
- Research, Sangamo Therapeutics, Valbonne, France
| | | | | | | | | | | | | | | | | | - Tobias Abel
- Research, Sangamo Therapeutics, Valbonne, France
| | - David Fenard
- Research, Sangamo Therapeutics, Valbonne, France
| | | | | |
Collapse
|
7
|
Murayama M, Chow SK, Lee ML, Young B, Ergul YS, Shinohara I, Susuki Y, Toya M, Gao Q, Goodman SB. The interactions of macrophages, lymphocytes, and mesenchymal stem cells during bone regeneration. Bone Joint Res 2024; 13:462-473. [PMID: 39237112 PMCID: PMC11377107 DOI: 10.1302/2046-3758.139.bjr-2024-0122.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/07/2024] Open
Abstract
Bone regeneration and repair are crucial to ambulation and quality of life. Factors such as poor general health, serious medical comorbidities, chronic inflammation, and ageing can lead to delayed healing and nonunion of fractures, and persistent bone defects. Bioengineering strategies to heal bone often involve grafting of autologous bone marrow aspirate concentrate (BMAC) or mesenchymal stem cells (MSCs) with biocompatible scaffolds. While BMAC shows promise, variability in its efficacy exists due to discrepancies in MSC concentration and robustness, and immune cell composition. Understanding the mechanisms by which macrophages and lymphocytes - the main cellular components in BMAC - interact with MSCs could suggest novel strategies to enhance bone healing. Macrophages are polarized into pro-inflammatory (M1) or anti-inflammatory (M2) phenotypes, and influence cell metabolism and tissue regeneration via the secretion of cytokines and other factors. T cells, especially helper T1 (Th1) and Th17, promote inflammation and osteoclastogenesis, whereas Th2 and regulatory T (Treg) cells have anti-inflammatory pro-reconstructive effects, thereby supporting osteogenesis. Crosstalk among macrophages, T cells, and MSCs affects the bone microenvironment and regulates the local immune response. Manipulating the proportion and interactions of these cells presents an opportunity to alter the local regenerative capacity of bone, which potentially could enhance clinical outcomes.
Collapse
Affiliation(s)
- Masatoshi Murayama
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Simon K Chow
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Max L Lee
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Bill Young
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Yasemin S Ergul
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Issei Shinohara
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Yosuke Susuki
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Masakazu Toya
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Qi Gao
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
- Department of Bioengineering, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
8
|
Chakraborty R, Mukherjee AK, Bala A. Breakthroughs in road mapping IL-35 mediated immunotherapy for type-1 and autoimmune diabetes mellitus. Cytokine 2024; 181:156692. [PMID: 38986251 DOI: 10.1016/j.cyto.2024.156692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/22/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
IL-35 is a recently discovered protein made up of IL-12α and IL-27β chains. It is encoded by IL12A and EBI3 genes. Interest in researching IL-35 has significantly increased in recent years, as evidenced by numerous scientific publications. Diabetes is on the rise globally, causing more illness and death in developing countries. The International Diabetes Federation (IDF) reports that diabetes is increasingly affecting children and teenagers, with varying rates across different regions. Therefore, scientists seek new diabetes treatments despite the growth of drug research. Recent research aims to emphasize IL-35 as a critical regulator of diabetes, especially type 1 and autoimmune diabetes. This review provides an overview of recent research on IL-35 and its link to diabetes and its associated complications. Studies suggest that IL-35 can offer protection against type-1 diabetes and autoimmune diabetes by regulating macrophage polarization, T-cell-related cytokines, and regulatory B cells (Bregs). This review will hopefully assist biomedical scientists in exploring the potential role of IL-35-mediated immunotherapy in treating diabetes. However, further research is necessary to determine the exact mechanism and plan clinical trials.
Collapse
Affiliation(s)
- Ratul Chakraborty
- Pharmacology and Drug Discovery Research Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Guwahati 781035, Assam, India; Academy of Scientific and Innovative Research (AcSIR), AcSIR (an Indian Institute of National Importance), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| | - Ashis K Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Guwahati 781035, Assam, India
| | - Asis Bala
- Pharmacology and Drug Discovery Research Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Guwahati 781035, Assam, India; Academy of Scientific and Innovative Research (AcSIR), AcSIR (an Indian Institute of National Importance), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India.
| |
Collapse
|
9
|
Burlingham WJ. Extracellular vesicles in fetal-maternal immune tolerance. Biomed J 2024; 47:100785. [PMID: 39214456 DOI: 10.1016/j.bj.2024.100785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
Two key problems of allo-tolerance during fetal-maternal co-existence are: 1) it's focus must be local, allowing the mother's continued peripheral immune competence to resist pathogens ubiquitously, and 2) it must propagate itself, i.e. continuously recruit new re-enforcements of the local tolerant state. Both are solved by the exosomal pathway of Tregs & Bregs. While the fetal-maternal accomodations of pregnancy terminate at the time of partrurition, geography, climate and the endemic pathogens of the environment surrounding the mother-baby pair would then define the short and long-term effects of their immunologic interaction.
Collapse
|
10
|
Zhao L, Jin S, Wang S, Zhang Z, Wang X, Chen Z, Wang X, Huang S, Zhang D, Wu H. Tertiary lymphoid structures in diseases: immune mechanisms and therapeutic advances. Signal Transduct Target Ther 2024; 9:225. [PMID: 39198425 PMCID: PMC11358547 DOI: 10.1038/s41392-024-01947-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/02/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024] Open
Abstract
Tertiary lymphoid structures (TLSs) are defined as lymphoid aggregates formed in non-hematopoietic organs under pathological conditions. Similar to secondary lymphoid organs (SLOs), the formation of TLSs relies on the interaction between lymphoid tissue inducer (LTi) cells and lymphoid tissue organizer (LTo) cells, involving multiple cytokines. Heterogeneity is a distinguishing feature of TLSs, which may lead to differences in their functions. Growing evidence suggests that TLSs are associated with various diseases, such as cancers, autoimmune diseases, transplant rejection, chronic inflammation, infection, and even ageing. However, the detailed mechanisms behind these clinical associations are not yet fully understood. The mechanisms by which TLS maturation and localization affect immune function are also unclear. Therefore, it is necessary to enhance the understanding of TLS development and function at the cellular and molecular level, which may allow us to utilize them to improve the immune microenvironment. In this review, we delve into the composition, formation mechanism, associations with diseases, and potential therapeutic applications of TLSs. Furthermore, we discuss the therapeutic implications of TLSs, such as their role as markers of therapeutic response and prognosis. Finally, we summarize various methods for detecting and targeting TLSs. Overall, we provide a comprehensive understanding of TLSs and aim to develop more effective therapeutic strategies.
Collapse
Affiliation(s)
- Lianyu Zhao
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Song Jin
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Shengyao Wang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Zhe Zhang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Xuan Wang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Zhanwei Chen
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Xiaohui Wang
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Shengyun Huang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| | - Dongsheng Zhang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| | - Haiwei Wu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| |
Collapse
|
11
|
Lv J, Ibrahim YS, Yumashev A, Hjazi A, Faraz A, Alnajar MJ, Qasim MT, Ghildiyal P, Hussein Zwamel A, Fakri Mustafa Y. A comprehensive immunobiology review of IBD: With a specific glance to Th22 lymphocytes development, biology, function, and role in IBD. Int Immunopharmacol 2024; 137:112486. [PMID: 38901239 DOI: 10.1016/j.intimp.2024.112486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
The two primary forms of inflammatory disorders of the small intestine andcolon that make up inflammatory bowel disease (IBD) are ulcerative colitis (UC) and Crohn's disease (CD). While ulcerative colitis primarily affects the colon and the rectum, CD affects the small and large intestines, as well as the esophagus,mouth, anus, andstomach. Although the etiology of IBD is not completely clear, and there are many unknowns about it, the development, progression, and recurrence of IBD are significantly influenced by the activity of immune system cells, particularly lymphocytes, given that the disease is primarily caused by the immune system stimulation and activation against gastrointestinal (GI) tract components due to the inflammation caused by environmental factors such as viral or bacterial infections, etc. in genetically predisposed individuals. Maintaining homeostasis and the integrity of the mucosal barrier are critical in stopping the development of IBD. Specific immune system cells and the quantity of secretory mucus and microbiome are vital in maintaining this stability. Th22 cells are helper T lymphocyte subtypes that are particularly important for maintaining the integrity and equilibrium of the mucosal barrier. This review discusses the most recent research on these cells' biology, function, and evolution and their involvement in IBD.
Collapse
Affiliation(s)
- Jing Lv
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, PR China
| | - Yousif Saleh Ibrahim
- Department of Chemistry and Biochemistry, College of Medicine, University of Fallujah, Fallujah, Iraq
| | - Alexey Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Ali Faraz
- Department of Basic Medical Sciences, College of Medicine, Majmaah University, Majmaah 11952, Saudi Arabia.
| | | | - Maytham T Qasim
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar 64001, Iraq
| | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq; Medical Laboratory Technique College, The Islamic University of Aldiwaniyah, Aldiwaniyah, Iraq; Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| |
Collapse
|
12
|
Sun X, Gu R, Bai J. Differentiation and regulation of CD4 + T cell subsets in Parkinson's disease. Cell Mol Life Sci 2024; 81:352. [PMID: 39153043 PMCID: PMC11335276 DOI: 10.1007/s00018-024-05402-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, and its hallmark pathological features are the loss of dopaminergic (DA) neurons in the midbrain substantia nigra pars compacta (SNpc) and the accumulation of alpha-synuclein (α-syn). It has been shown that the integrity of the blood-brain barrier (BBB) is damaged in PD patients, and a large number of infiltrating T cells and inflammatory cytokines have been detected in the cerebrospinal fluid (CSF) and brain parenchyma of PD patients and PD animal models, including significant change in the number and proportion of different CD4+ T cell subsets. This suggests that the neuroinflammatory response caused by CD4+ T cells is an important risk factor for the development of PD. Here, we systematically review the differentiation of CD4+ T cell subsets, and focus on describing the functions and mechanisms of different CD4+ T cell subsets and their secreted cytokines in PD. We also summarize the current immunotherapy targeting CD4+ T cells with a view to providing assistance in the diagnosis and treatment of PD.
Collapse
Affiliation(s)
- Xiaowei Sun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
- Southwest United Graduate School, Kunming, 650500, China
| | - Rou Gu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jie Bai
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China.
- Southwest United Graduate School, Kunming, 650500, China.
| |
Collapse
|
13
|
Khattab S, El Sorady M, El-Ghandour A, Visani G, Piccaluga PP. Hematopoietic and leukemic stem cells homeostasis: the role of bone marrow niche. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:1027-1055. [PMID: 39351440 PMCID: PMC11438561 DOI: 10.37349/etat.2024.00262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 07/01/2024] [Indexed: 10/04/2024] Open
Abstract
The bone marrow microenvironment (BMM) has highly specialized anatomical characteristics that provide a sanctuary place for hematopoietic stem cells (HSCs) that allow appropriate proliferation, maintenance, and self-renewal capacity. Several cell types contribute to the constitution and function of the bone marrow niche. Interestingly, uncovering the secrets of BMM and its interaction with HSCs in health paved the road for research aiming at better understanding the concept of leukemic stem cells (LSCs) and their altered niche. In fact, they share many signals that are responsible for interactions between LSCs and the bone marrow niche, due to several biological similarities between LSCs and HSCs. On the other hand, LSCs differ from HSCs in their abnormal activation of important signaling pathways that regulate survival, proliferation, drug resistance, invasion, and spread. Targeting these altered niches can help in better treatment choices for hematological malignancies and bone marrow disorders in general and acute myeloid leukemia (AML) in particular. Moreover, targeting those niches may help in decreasing the emergence of drug resistance and lower the relapse rate. In this article, the authors reviewed the most recent literature on bone marrow niches and their relations with either normal HSCs and AML cells/LSC, by focusing on pathogenetic and therapeutic implications.
Collapse
Affiliation(s)
- Shaimaa Khattab
- Biobank of Research, IRCCS Azienda Ospedaliera-Universitaria di Bologna Policlinico di S. Orsola, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences, Bologna University School of Medicine, 40138 Bologna, Italy
- Medical Research Institute, Hematology department, Alexandria University, Alexandria 21561, Egypt
| | - Manal El Sorady
- Department of Internal Medicine, Faculty of Medicine, Alexandria University, Alexandria 5310002, Egypt
| | - Ashraf El-Ghandour
- Department of Internal Medicine, Faculty of Medicine, Alexandria University, Alexandria 5310002, Egypt
| | - Giuseppe Visani
- Hematology and Stem Cell Transplant Center, Azienda Ospedaliera Marche Nord, 61121 Pesaro, Italy
| | - Pier Paolo Piccaluga
- Biobank of Research, IRCCS Azienda Ospedaliera-Universitaria di Bologna Policlinico di S. Orsola, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences, Bologna University School of Medicine, 40138 Bologna, Italy
| |
Collapse
|
14
|
Even Z, Meli AP, Tyagi A, Vidyarthi A, Briggs N, de Kouchkovsky DA, Kong Y, Wang Y, Waizman DA, Rice TA, De Kumar B, Wang X, Palm NW, Craft J, Basu MK, Ghosh S, Rothlin CV. The amalgam of naive CD4 + T cell transcriptional states is reconfigured by helminth infection to dampen the amplitude of the immune response. Immunity 2024; 57:1893-1907.e6. [PMID: 39096910 PMCID: PMC11421571 DOI: 10.1016/j.immuni.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/20/2024] [Accepted: 07/10/2024] [Indexed: 08/05/2024]
Abstract
Naive CD4+ T cells in specific pathogen-free (SPF) mice are characterized by transcriptional heterogeneity and subpopulations distinguished by the expression of quiescence, the extracellular matrix (ECM) and cytoskeleton, type I interferon (IFN-I) response, memory-like, and T cell receptor (TCR) activation genes. We demonstrate that this constitutive heterogeneity, including the presence of the IFN-I response cluster, is commensal independent insofar as being identical in germ-free and SPF mice. By contrast, Nippostrongylus brasiliensis infection altered this constitutive heterogeneity. Naive T cell-intrinsic transcriptional changes acquired during helminth infection correlated with and accounted for decreased immunization response to an unrelated antigen. These compositional and functional changes were dependent variables of helminth infection, as they disappeared at the established time point of its clearance in mice. Collectively, our results indicate that the naive T cell pool is subject to dynamic transcriptional changes in response to certain environmental cues, which in turn permutes the magnitude of the immune response.
Collapse
Affiliation(s)
- Zachary Even
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Alexandre P Meli
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Antariksh Tyagi
- Yale Center for Genome Analysis, Yale School of Medicine, West Haven, CT 06516, USA
| | - Aurobind Vidyarthi
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Neima Briggs
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA; Department of Internal Medicine (Infectious Diseases), Yale School of Medicine, New Haven, CT 06520, USA
| | | | - Yong Kong
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06520, USA
| | - Yaqiu Wang
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Daniel A Waizman
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Tyler A Rice
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Bony De Kumar
- Yale Center for Genome Analysis, Yale School of Medicine, West Haven, CT 06516, USA
| | - Xusheng Wang
- Department of Genetics, Genomics and Informatics, University of Tennessee, Memphis, TN 38163, USA
| | - Noah W Palm
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Joe Craft
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Malay K Basu
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sourav Ghosh
- Department of Neurology, Yale School of Medicine, New Haven, CT 06520, USA; Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA.
| | - Carla V Rothlin
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA; Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
15
|
Karwig L, Moore PF, Alber G, Eschke M. Distinct characteristics of unique immunoregulatory canine non-conventional TCRαβ pos CD4 negCD8α neg double-negative T cell subpopulations. Front Immunol 2024; 15:1439213. [PMID: 39185407 PMCID: PMC11341405 DOI: 10.3389/fimmu.2024.1439213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/12/2024] [Indexed: 08/27/2024] Open
Abstract
Conventional CD4pos regulatory T (Treg) cells characterized by expression of the key transcription factor forkhead box P3 (FoxP3) are crucial to control immune responses, thereby maintaining homeostasis and self-tolerance. Within the substantial population of non-conventional T cell receptor (TCR)αβpos CD4negCD8αneg double-negative (dn) T cells of dogs, a novel FoxP3pos Treg-like subset was described that, similar to conventional CD4pos Treg cells, is characterized by high expression of CD25. Noteworthy, human and murine TCRαβpos regulatory dn T cells lack FoxP3. Immunosuppressive capacity of canine dn T cells was hypothesized based on expression of inhibitory molecules (interleukin (IL)-10, cytotoxic T-lymphocyte associated protein 4, CTLA4). Here, to verify their regulatory function, the dnCD25pos (enriched for FoxP3pos Treg-like cells) and the dnCD25neg fraction, were isolated by fluorescence-activated cell sorting from peripheral blood mononuclear cells (PBMC) of Beagle dogs and analyzed in an in vitro suppression assay in comparison to conventional CD4posCD25pos Treg cells (positive control) and CD4posCD25neg T cells (negative control). Canine dnCD25pos T cells suppressed the Concanavalin A-driven proliferation of responder PBMC to a similar extent as conventional CD4posCD25pos Treg cells. Albeit to a lesser extent than FoxP3-enriched dn and CD4posCD25pos populations, even dnCD25neg T cells reduced the proliferation of responder cells. This is remarkable, as dnCD25neg T cells have a FoxP3neg phenotype comparable to non-suppressive CD4posCD25neg T cells. Both, CD25pos and CD25neg dn T cells, can mediate suppression independent of cell-cell contact and do not require additional signals from CD4posCD25neg T cells to secrete inhibitory factors in contrast to CD4posCD25pos T cells. Neutralization of IL-10 completely abrogated the suppression by dnCD25pos and CD4posCD25pos Treg cells in a Transwell™ system, while it only partially reduced suppression by dnCD25neg T cells. Taken together, unique canine non-conventional dnCD25pos FoxP3pos Treg-like cells are potent suppressor cells in vitro. Moreover, inhibition of proliferation of responder T cells by the dnCD25neg fraction indicates suppressive function of a subset of dn T cells even in the absence of FoxP3. The identification of unique immunoregulatory non-conventional dn T cell subpopulations of the dog in vitro is of high relevance, given the immunotherapeutic potential of manipulating regulatory T cell responses in vivo.
Collapse
Affiliation(s)
- Laura Karwig
- Institute of Immunology/Molecular Pathogenesis, Center for Biotechnology and Biomedicine, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Peter F. Moore
- Department of Veterinary Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Gottfried Alber
- Institute of Immunology/Molecular Pathogenesis, Center for Biotechnology and Biomedicine, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Maria Eschke
- Institute of Immunology/Molecular Pathogenesis, Center for Biotechnology and Biomedicine, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| |
Collapse
|
16
|
Wei Y, Tang W, Mao P, Mao J, Ni Z, Hou K, Valencak TG, Liu D, Ji J, Wang H. Sexually Dimorphic Response to Hepatic Injury in Newborn Suffering from Intrauterine Growth Restriction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403095. [PMID: 38867614 PMCID: PMC11321654 DOI: 10.1002/advs.202403095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/22/2024] [Indexed: 06/14/2024]
Abstract
Intrauterine growth restriction (IUGR), when a fetus does not grow as expected, is associated with a reduction in hepatic functionality and a higher risk for chronic liver disease in adulthood. Utilizing early developmental plasticity to reverse the outcome of poor fetal programming remains an unexplored area. Focusing on the biochemical profiles of neonates and previous transcriptome findings, piglets from the same fetus are selected as models for studying IUGR. The cellular landscape of the liver is created by scRNA-seq to reveal sex-dependent patterns in IUGR-induced hepatic injury. One week after birth, IUGR piglets experience hypoxic stress. IUGR females exhibit fibroblast-driven T cell conversion into an immune-adapted phenotype, which effectively alleviates inflammation and fosters hepatic regeneration. In contrast, males experience even more severe hepatic injury. Prolonged inflammation due to disrupted lipid metabolism hinders intercellular communication among non-immune cells, which ultimately impairs liver regeneration even into adulthood. Additionally, Apolipoprotein A4 (APOA4) is explored as a novel biomarker by reducing hepatic triglyceride deposition as a protective response against hypoxia in IUGR males. PPARα activation can mitigate hepatic damage and meanwhile restore over-expressed APOA4 to normal in IUGR males. The pioneering study offers valuable insights into the sexually dimorphic responses to hepatic injury during IUGR.
Collapse
Affiliation(s)
- Yu‐Sen Wei
- College of Animal ScienceZhejiang UniversityThe Key Laboratory of Molecular Animal NutritionMinistry of EducationHangzhou310000China
| | - Wen‐Jie Tang
- College of Animal ScienceZhejiang UniversityThe Key Laboratory of Molecular Animal NutritionMinistry of EducationHangzhou310000China
| | - Pei‐Yu Mao
- Department of Gynecology and ObstetricsThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)Hangzhou310006China
| | - Jiang‐Di Mao
- College of Animal ScienceZhejiang UniversityThe Key Laboratory of Molecular Animal NutritionMinistry of EducationHangzhou310000China
| | - Zhi‐Xiang Ni
- College of Animal ScienceZhejiang UniversityThe Key Laboratory of Molecular Animal NutritionMinistry of EducationHangzhou310000China
| | - Kang‐Wei Hou
- College of Animal ScienceZhejiang UniversityThe Key Laboratory of Molecular Animal NutritionMinistry of EducationHangzhou310000China
| | - Teresa G. Valencak
- College of Animal ScienceZhejiang UniversityThe Key Laboratory of Molecular Animal NutritionMinistry of EducationHangzhou310000China
| | - Da‐Ren Liu
- The Second Affiliated Hospital of Zhejiang UniversityHangzhou310009China
| | - Jun‐Fang Ji
- The MOE Key Laboratory of Biosystems Homeostasis & ProtectionLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Hai‐Feng Wang
- College of Animal ScienceZhejiang UniversityThe Key Laboratory of Molecular Animal NutritionMinistry of EducationHangzhou310000China
| |
Collapse
|
17
|
Wang Y, Liu L. Immunological factors, important players in the development of asthma. BMC Immunol 2024; 25:50. [PMID: 39060923 PMCID: PMC11282818 DOI: 10.1186/s12865-024-00644-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Asthma is a heterogeneous disease, and its development is the result of a combination of factors, including genetic factors, environmental factors, immune dysfunction and other factors. Its specific mechanism has not yet been fully investigated. With the improvement of disease models, research on the pathogenesis of asthma has made great progress. Immunological disorders play an important role in asthma. Previously, we thought that asthma was mainly caused by an imbalance between Th1 and Th2 immune responses, but this theory cannot fully explain the pathogenesis of asthma. Recent studies have shown that T-cell subsets such as Th1 cells, Th2 cells, Th17 cells, Tregs and their cytokines contribute to asthma through different mechanisms. For the purpose of the present study, asthma was classified into distinct phenotypes based on airway inflammatory cells, such as eosinophilic asthma, characterized by predominant eosinophil aggregates, and neutrophilic asthma, characterized by predominant neutrophil aggregates. This paper will examine the immune mechanisms underlying different types of asthma, and will utilize data from animal models and clinical studies targeting specific immune pathways to inform more precise treatments for this condition.
Collapse
Affiliation(s)
- Yang Wang
- Department of Pediatric Respiratory, Children's Medical Center,The First Hospital of Jilin University, Changchun, 130021, China
| | - Li Liu
- Department of Pediatric Respiratory, Children's Medical Center,The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
18
|
Liu T, Yao W, Sun W, Yuan Y, Liu C, Liu X, Wang X, Jiang H. Components, Formulations, Deliveries, and Combinations of Tumor Vaccines. ACS NANO 2024; 18:18801-18833. [PMID: 38979917 DOI: 10.1021/acsnano.4c05065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Tumor vaccines, an important part of immunotherapy, prevent cancer or kill existing tumor cells by activating or restoring the body's own immune system. Currently, various formulations of tumor vaccines have been developed, including cell vaccines, tumor cell membrane vaccines, tumor DNA vaccines, tumor mRNA vaccines, tumor polypeptide vaccines, virus-vectored tumor vaccines, and tumor-in-situ vaccines. There are also multiple delivery systems for tumor vaccines, such as liposomes, cell membrane vesicles, viruses, exosomes, and emulsions. In addition, to decrease the risk of tumor immune escape and immune tolerance that may exist with a single tumor vaccine, combination therapy of tumor vaccines with radiotherapy, chemotherapy, immune checkpoint inhibitors, cytokines, CAR-T therapy, or photoimmunotherapy is an effective strategy. Given the critical role of tumor vaccines in immunotherapy, here, we look back to the history of tumor vaccines, and we discuss the antigens, adjuvants, formulations, delivery systems, mechanisms, combination therapy, and future directions of tumor vaccines.
Collapse
Affiliation(s)
- Tengfei Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Wenyan Yao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Wenyu Sun
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Yihan Yuan
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Chen Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Hui Jiang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| |
Collapse
|
19
|
Kumar V, Narisawa M, Cheng XW. Overview of multifunctional Tregs in cardiovascular disease: From insights into cellular functions to clinical implications. FASEB J 2024; 38:e23786. [PMID: 38979903 DOI: 10.1096/fj.202400839r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/01/2024] [Accepted: 06/21/2024] [Indexed: 07/10/2024]
Abstract
Regulatory T cells (Tregs) are crucial in regulating T-cell-mediated immune responses. Numerous studies have shown that dysfunction or decreased numbers of Tregs may be involved in inflammatory cardiovascular diseases (CVDs) such as atherosclerosis, hypertension, myocardial infarction, myocarditis, cardiomyopathy, valvular heart diseases, heart failure, and abdominal aortic aneurysm. Tregs can help to ameliorate CVDs by suppressing excessive inflammation through various mechanisms, including inhibition of T cells and B cells, inhibition of macrophage-induced inflammation, inhibition of dendritic cells and foam cell formation, and induction of anti-inflammatory macrophages. Enhancing or restoring the immunosuppressive activity of Tregs may thus serve as a fundamental immunotherapy to treat hypertension and CVDs. However, the precise molecular mechanisms underlying the Tregs-induced protection against hypertension and CVDs remain to be investigated. This review focuses on recent advances in our understanding of Tregs subsets and function in CVDs. In addition, we discuss promising strategies for using Tregs through various pharmacological approaches to treat hypertension and CVDs.
Collapse
Affiliation(s)
- Vipin Kumar
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, Jilin, P.R. China
| | - Megumi Narisawa
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Xian Wu Cheng
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, Jilin, P.R. China
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
20
|
Jama M, Tabana Y, Barakat KH. Targeting cytotoxic lymphocyte antigen 4 (CTLA-4) in breast cancer. Eur J Med Res 2024; 29:353. [PMID: 38956700 PMCID: PMC11218087 DOI: 10.1186/s40001-024-01901-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/23/2024] [Indexed: 07/04/2024] Open
Abstract
Breast cancer (BC) has a high mortality rate and is one of the most common malignancies in the world. Initially, BC was considered non-immunogenic, but a paradigm shift occurred with the discovery of tumor-infiltrating lymphocytes (TILs) and regulatory T cells (Tregs) in the BC tumor microenvironment. CTLA-4 (Cytotoxic T-lymphocyte-associated protein 4) immunotherapy has emerged as a treatment option for BC, but it has limitations, including suboptimal antitumor effects and toxicity. Research has demonstrated that anti-CTLA-4 combination therapies, such as Treg depletion, cancer vaccines, and modulation of the gut microbiome, are significantly more effective than CTLA-4 monoclonal antibody (mAB) monotherapy. Second-generation CTLA-4 antibodies are currently being developed to mitigate immune-related adverse events (irAEs) and augment antitumor efficacy. This review examines anti-CTLA-4 mAB in BC, both as monotherapy and in combination with other treatments, and sheds light on ongoing clinical trials, novel CTLA-4 therapeutic strategies, and potential utility of biomarkers in BC.
Collapse
Affiliation(s)
- Maryam Jama
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Yasser Tabana
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Khaled H Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada.
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Canada.
| |
Collapse
|
21
|
Franks ML, An JH, Leavenworth JW. The Role of Natural Killer Cells in Oncolytic Virotherapy: Friends or Foes? Vaccines (Basel) 2024; 12:721. [PMID: 39066359 PMCID: PMC11281503 DOI: 10.3390/vaccines12070721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Oncolytic virotherapy (OVT) has emerged as a promising cancer immunotherapy, and is capable of potentiating other immunotherapies due to its capacity to increase tumor immunogenicity and to boost host antitumor immunity. Natural killer (NK) cells are a critical cellular component for mediating the antitumor response, but hold a mixed reputation for their role in mediating the therapeutic efficacy of OVT. This review will discuss the pros and cons of how NK cells impact OVT, and how to harness this knowledge for the development of effective strategies that could modulate NK cells to improve OVT-based therapeutic outcomes.
Collapse
Affiliation(s)
- Michael L. Franks
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (M.L.F.)
- Graduate Biomedical Sciences Program, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ju-Hyun An
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (M.L.F.)
| | - Jianmei W. Leavenworth
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (M.L.F.)
- The O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
22
|
Contreras-Castillo E, García-Rasilla VY, García-Patiño MG, Licona-Limón P. Stability and plasticity of regulatory T cells in health and disease. J Leukoc Biol 2024; 116:33-53. [PMID: 38428948 DOI: 10.1093/jleuko/qiae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/09/2024] [Accepted: 02/19/2024] [Indexed: 03/03/2024] Open
Abstract
The mechanisms that negatively regulate inflammation upon a pathogenic stimulus are crucial for the maintenance of tissue integrity and organ function. T regulatory cells are one of the main drivers in controlling inflammation. The ability of T regulatory cells to adapt to different inflammatory cues and suppress inflammation is one of the relevant features of T regulatory cells. During this process, T regulatory cells express different transcription factors associated with their counterparts, Th helper cells, including Tbx21, GATA-3, Bcl6, and Rorc. The acquisition of this transcription factor helps the T regulatory cells to suppress and migrate to the different inflamed tissues. Additionally, the T regulatory cells have different mechanisms that preserve stability while acquiring a particular T regulatory cell subtype. This review focuses on describing T regulatory cell subtypes and the mechanisms that maintain their identity in health and diseases.
Collapse
Affiliation(s)
- Eugenio Contreras-Castillo
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, CU Coyoacán, México City 04510, Mexico
| | - Verónica Yutsil García-Rasilla
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, CU Coyoacán, México City 04510, Mexico
| | - María Guadalupe García-Patiño
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, CU Coyoacán, México City 04510, Mexico
| | - Paula Licona-Limón
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, CU Coyoacán, México City 04510, Mexico
| |
Collapse
|
23
|
Andres-Martin F, James C, Catalfamo M. IL-27 expression regulation and its effects on adaptive immunity against viruses. Front Immunol 2024; 15:1395921. [PMID: 38966644 PMCID: PMC11222398 DOI: 10.3389/fimmu.2024.1395921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024] Open
Abstract
IL-27, a member of the IL-6/IL-12 cytokine superfamily, is primarily secreted by antigen presenting cells, specifically by dendric cells, macrophages and B cells. IL-27 has antiviral activities and modulates both innate and adaptive immune responses against viruses. The role of IL-27 in the setting of viral infections is not well defined and both pro-inflammatory and anti-inflammatory functions have been described. Here, we discuss the latest advancements in the role of IL-27 in several viral infection models of human disease. We highlight important aspects of IL-27 expression regulation, the critical cell sources at different stages of the infection and their impact in cell mediated immunity. Lastly, we discuss the need to better define the antiviral and modulatory (pro-inflammatory vs anti-inflammatory) properties of IL-27 in the context of human chronic viral infections.
Collapse
Affiliation(s)
| | | | - Marta Catalfamo
- Department of Microbiology Immunology, Georgetown University School of Medicine, Washington, DC, United States
| |
Collapse
|
24
|
Zhang P, Zheng Z, Sun H, Gao T, Xiao X. A review of common influencing factors and possible mechanisms associated with allergic diseases complicating tic disorders in children. Front Pediatr 2024; 12:1360420. [PMID: 38957776 PMCID: PMC11218626 DOI: 10.3389/fped.2024.1360420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/31/2024] [Indexed: 07/04/2024] Open
Abstract
Over the past few decades, the incidence of childhood allergic diseases has increased globally, and their impact on the affected child extends beyond the allergy itself. There is evidence of an association between childhood allergic diseases and the development of neurological disorders. Several studies have shown a correlation between allergic diseases and tic disorders (TD), and allergic diseases may be an important risk factor for TD. Possible factors influencing the development of these disorders include neurotransmitter imbalance, maternal anxiety or depression, gut microbial disorders, sleep disturbances, maternal allergic status, exposure to tobacco, and environmental factors. Moreover, gut microbial disturbances, altered immunological profiles, and DNA methylation in patients with allergic diseases may be potential mechanisms contributing to the development of TD. An in-depth investigation of the relationship between allergic diseases and TD in children will be important for preventing and treating TD.
Collapse
Affiliation(s)
- Panpan Zhang
- Department of Child Health, Dalian Municipal Women and Children’s Medical Center (Group), Dalian, Liaoning, China
- Dalian Medical University, Dalian, Liaoning, China
| | - Zhimin Zheng
- Department of Child Health, Dalian Municipal Women and Children’s Medical Center (Group), Dalian, Liaoning, China
- Dalian Medical University, Dalian, Liaoning, China
| | - Hao Sun
- Department of Child Health, Dalian Municipal Women and Children’s Medical Center (Group), Dalian, Liaoning, China
- Dalian Medical University, Dalian, Liaoning, China
| | - Tieying Gao
- Department of Child Health, Dalian Municipal Women and Children’s Medical Center (Group), Dalian, Liaoning, China
- Dalian Medical University, Dalian, Liaoning, China
| | - Xuwu Xiao
- Department of Child Health, Dalian Municipal Women and Children’s Medical Center (Group), Dalian, Liaoning, China
- Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
25
|
Shang Y, Zheng L, Du Y, Shang T, Liu X, Zou W. Role of Regulatory T Cells in Intracerebral Hemorrhage. Mol Neurobiol 2024:10.1007/s12035-024-04281-7. [PMID: 38877366 DOI: 10.1007/s12035-024-04281-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Abstract
Intracerebral hemorrhage (ICH) is a common cerebrovascular disease that can lead to severe neurological dysfunction in surviving patients, resulting in a heavy burden on patients and their families. When ICH occurs, the blood‒brain barrier is disrupted, thereby promoting immune cell migration into damaged brain tissue. As important immunosuppressive T cells, regulatory T (Treg) cells are involved in the maintenance of immune homeostasis and the suppression of immune responses after ICH. Treg cells mitigate brain tissue damage after ICH in a variety of ways, such as inhibiting the neuroinflammatory response, protecting against blood‒brain barrier damage, reducing oxidative stress damage and promoting nerve repair. In this review, we discuss the changes in Treg cells in ICH clinical patients and experimental animals, the mechanisms by which Treg cells regulate ICH and treatments targeting Treg cells in ICH, aiming to support new therapeutic strategies for clinical treatment.
Collapse
Affiliation(s)
- Yaxin Shang
- The Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150000, Heilongjiang, People's Republic of China
| | - Lei Zheng
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150000, Heilongjiang, People's Republic of China
- Molecular Biology Laboratory of Clinical Integrated of Traditional Chinese and Western Medicine of Heilong Jiang Province, Heilongjiang University of Chinese Medicine, Harbin, 150000, Heilongjiang, People's Republic of China
| | - Yunpeng Du
- The Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150000, Heilongjiang, People's Republic of China
| | - Tong Shang
- The Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150000, Heilongjiang, People's Republic of China
| | - Xueting Liu
- The Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150000, Heilongjiang, People's Republic of China
| | - Wei Zou
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150000, Heilongjiang, People's Republic of China.
- Molecular Biology Laboratory of Clinical Integrated of Traditional Chinese and Western Medicine of Heilong Jiang Province, Heilongjiang University of Chinese Medicine, Harbin, 150000, Heilongjiang, People's Republic of China.
| |
Collapse
|
26
|
Zhang B, Sun C, Zhu Y, Qin H, Kong D, Zhang J, Shao B, Li X, Ren S, Wang H, Hao J, Wang H. Upregulation of TCPTP in Macrophages Is Involved in IL-35 Mediated Attenuation of Experimental Colitis. Mediators Inflamm 2024; 2024:3282679. [PMID: 38962170 PMCID: PMC11221972 DOI: 10.1155/2024/3282679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 04/11/2024] [Accepted: 06/01/2024] [Indexed: 07/05/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic intestinal inflammatory disease with complex etiology. Interleukin-35 (IL-35), as a cytokine with immunomodulatory function, has been shown to have therapeutic effects on UC, but its mechanism is not yet clear. Therefore, we constructed Pichia pastoris stably expressing IL-35 which enables the cytokines to reach the diseased mucosa, and explored whether upregulation of T-cell protein tyrosine phosphatase (TCPTP) in macrophages is involved in the mechanisms of IL-35-mediated attenuation of UC. After the successful construction of engineered bacteria expressing IL-35, a colitis model was successfully induced by giving BALB/c mice a solution containing 3% dextran sulfate sodium (DSS). Mice were treated with Pichia/IL-35, empty plasmid-transformed Pichia (Pichia/0), or PBS by gavage, respectively. The expression of TCPTP in macrophages (RAW264.7, BMDMs) and intestinal tissues after IL-35 treatment was detected. After administration of Pichia/IL-35, the mice showed significant improvement in weight loss, bloody stools, and shortened colon. Colon pathology also showed that the inflammatory condition of mice in the Pichia/IL-35 treatment group was alleviated. Notably, Pichia/IL-35 treatment not only increases local M2 macrophages but also decreases the expression of inflammatory cytokine IL-6 in the colon. With Pichia/IL-35 treatment, the proportion of M1 macrophages, Th17, and Th1 cells in mouse MLNs were markedly decreased, while Tregs were significantly increased. In vitro experiments, IL-35 significantly promoted the expression of TCPTP in macrophages stimulated with LPS. Similarly, the mice in the Pichia/IL-35 group also expressed more TCPTP than that of the untreated group and the Pichia/0 group.
Collapse
Affiliation(s)
- Baoren Zhang
- Department of General SurgeryTianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Chenglu Sun
- Department of General SurgeryTianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Yanglin Zhu
- Department of General SurgeryTianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Hong Qin
- Department of General SurgeryTianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Dejun Kong
- School of MedicineNankai University, Tianjin, China
| | - Jingyi Zhang
- Department of General SurgeryTianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Bo Shao
- Department of General SurgeryTianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Xiang Li
- Department of General SurgeryTianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Shaohua Ren
- Department of General SurgeryTianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Hongda Wang
- Department of General SurgeryTianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Jingpeng Hao
- Department of General SurgeryTianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
- Department of Anorectal SurgeryTianjin Medical University Second Hospital, Tianjin, China
| | - Hao Wang
- Department of General SurgeryTianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
- Tianjin Key Laboratory of Precise Vascular Reconstruction and Organ Function Repair, Tianjin, China
| |
Collapse
|
27
|
Nikolic I, Ruiz-Garrido I, Crespo M, Romero-Becerra R, Leiva-Vega L, Mora A, León M, Rodríguez E, Leiva M, Plata-Gómez AB, Alvarez Flores MB, Torres JL, Hernández-Cosido L, López JA, Vázquez J, Efeyan A, Martin P, Marcos M, Sabio G. Lack of p38 activation in T cells increases IL-35 and protects against obesity by promoting thermogenesis. EMBO Rep 2024; 25:2635-2661. [PMID: 38730210 PMCID: PMC11169359 DOI: 10.1038/s44319-024-00149-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
Obesity is characterized by low-grade inflammation, energy imbalance and impaired thermogenesis. The role of regulatory T cells (Treg) in inflammation-mediated maladaptive thermogenesis is not well established. Here, we find that the p38 pathway is a key regulator of T cell-mediated adipose tissue (AT) inflammation and browning. Mice with T cells specifically lacking the p38 activators MKK3/6 are protected against diet-induced obesity, leading to an improved metabolic profile, increased browning, and enhanced thermogenesis. We identify IL-35 as a driver of adipocyte thermogenic program through the ATF2/UCP1/FGF21 pathway. IL-35 limits CD8+ T cell infiltration and inflammation in AT. Interestingly, we find that IL-35 levels are reduced in visceral fat from obese patients. Mechanistically, we demonstrate that p38 controls the expression of IL-35 in human and mouse Treg cells through mTOR pathway activation. Our findings highlight p38 signaling as a molecular orchestrator of AT T cell accumulation and function.
Collapse
Affiliation(s)
- Ivana Nikolic
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain.
| | - Irene Ruiz-Garrido
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
| | - María Crespo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
| | | | - Luis Leiva-Vega
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
- Programme of Molecular Oncology, Spanish National Cancer Research Center (CNIO), Madrid, 28029, Spain
| | - Alfonso Mora
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
- Programme of Molecular Oncology, Spanish National Cancer Research Center (CNIO), Madrid, 28029, Spain
| | - Marta León
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
| | - Elena Rodríguez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
- Programme of Molecular Oncology, Spanish National Cancer Research Center (CNIO), Madrid, 28029, Spain
| | - Magdalena Leiva
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
- Department of Immunology, School of Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Ana Belén Plata-Gómez
- Programme of Molecular Oncology, Spanish National Cancer Research Center (CNIO), Madrid, 28029, Spain
| | | | - Jorge L Torres
- Department of Internal Medicine, University Hospital of Salamanca-IBSAL, Department of Medicine, University of Salamanca, Salamanca, 37007, Spain
- Complejo Asistencial de Zamora, Zamora, 49022, Spain
| | - Lourdes Hernández-Cosido
- Bariatric Surgery Unit, Department of General Surgery, University Hospital of Salamanca, Department of Surgery, University of Salamanca, Salamanca, 37007, Spain
| | - Juan Antonio López
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, 28029, Spain
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, 28029, Spain
| | - Alejo Efeyan
- Programme of Molecular Oncology, Spanish National Cancer Research Center (CNIO), Madrid, 28029, Spain
| | - Pilar Martin
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, 28029, Spain
| | - Miguel Marcos
- Department of Internal Medicine, University Hospital of Salamanca-IBSAL, Department of Medicine, University of Salamanca, Salamanca, 37007, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain.
- Programme of Molecular Oncology, Spanish National Cancer Research Center (CNIO), Madrid, 28029, Spain.
| |
Collapse
|
28
|
M Yusoff NNF, Ahmad S, Wan Abdul Rahman WF, Mohamud R, C Boer J, Plebanski M, Abdullah B, Chen X, Tengku Din TADAA. CD4+ Foxp3+ Regulatory T-cells in Modulating Inflammatory Microenvironment in Chronic Rhinosinusitis with Nasal Polyps: Progress and Future Prospect. Cytokine 2024; 178:156557. [PMID: 38452440 DOI: 10.1016/j.cyto.2024.156557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/26/2024] [Accepted: 02/20/2024] [Indexed: 03/09/2024]
Abstract
Chronic rhinosinusitis with nasal polyps (CRSwNP) is a subtype of chronic rhinosinusitis (CRS) characterized by the presence of nasal polyps (NP) in the paranasal mucosa. Despite the complex etiology, NP is believed to result from chronic inflammation. The long-term aftermath of the type 2 response is responsible for symptoms seen in NP patients, i.e. rhinorrhea, hyposmia, and nasal obstruction. Immune cellular tolerogenic mechanisms, particularly CD4 + Foxp3 + regulatory T cells (Tregs), are crucial to curtail inflammatory responses. Current evidence suggests impaired Treg activity is the main reason underlying the compromise of self-tolerance, contributing to the onset of CRSwNP. There is compelling evidence that tumor necrosis factor 2 (TNFR2) is preferentially expressed by Tregs, and TNFR2 is able to identify the most potent suppressive subset of Tregs. Tumor necrosis factor (TNF)-TNFR2 interaction plays a decisive role in the activation and expansion of Tregs. This review summarizes current understanding of Tregs biology, focusing on the discussion of the recent advances in the study of TNF-TNFR2 axis in the upregulation of Treg function as a negative feedback mechanism in the control of chronic inflammation. The role of dysregulation of Tregs in the immunopathogenesis of CRSwNP will be analyzed. The future perspective on the harnessing Tregs-mediated self-tolerant mechanism in the management of CRSwNP will be introduced.
Collapse
Affiliation(s)
- Nur Najwa Farahin M Yusoff
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Suhana Ahmad
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | | | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Jennifer C Boer
- Translational Immunology and Nanotechnology Unit, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| | - Magdalena Plebanski
- Translational Immunology and Nanotechnology Unit, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| | - Baharudin Abdullah
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia.
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | | |
Collapse
|
29
|
Chen Z, Balachandran YL, Chong WP, Chan KWY. Roles of Cytokines in Alzheimer's Disease. Int J Mol Sci 2024; 25:5803. [PMID: 38891990 PMCID: PMC11171747 DOI: 10.3390/ijms25115803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/18/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
The neuroimmune system is a collection of immune cells, cytokines, and the glymphatic system that plays a pivotal role in the pathogenesis and progression of Alzheimer's disease (AD). Of particular focus are cytokines, a group of immune signaling molecules that facilitate communication among immune cells and contribute to inflammation in AD. Extensive research has shown that the dysregulated secretion of certain cytokines (IL-1β, IL-17, IL-12, IL-23, IL-6, and TNF-α) promotes neuroinflammation and exacerbates neuronal damage in AD. However, anti-inflammatory cytokines (IL-2, IL-3, IL-33, and IL-35) are also secreted during AD onset and progression, thereby preventing neuroinflammation. This review summarizes the involvement of pro- and anti-inflammatory cytokines in AD pathology and discusses their therapeutic potential.
Collapse
Affiliation(s)
- Zilin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (Z.C.); (Y.L.B.)
| | - Yekkuni L. Balachandran
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (Z.C.); (Y.L.B.)
| | - Wai Po Chong
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen 518057, China
| | - Kannie W. Y. Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (Z.C.); (Y.L.B.)
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
30
|
Kovacheva E, Gevezova M, Maes M, Sarafian V. The mast cells - Cytokines axis in Autism Spectrum Disorder. Neuropharmacology 2024; 249:109890. [PMID: 38431049 DOI: 10.1016/j.neuropharm.2024.109890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/19/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disturbance, diagnosed in early childhood. It is associated with varying degrees of dysfunctional communication and social skills, repetitive and stereotypic behaviors. Regardless of the constant increase in the number of diagnosed patients, there are still no established treatment schemes in global practice. Many children with ASD have allergic symptoms, often in the absence of mast cell (MC) positive tests. Activation of MCs may release molecules related to inflammation and neurotoxicity, which contribute to the pathogenesis of ASD. The aim of the present paper is to enrich the current knowledge regarding the relationship between MCs and ASD by providing PPI network analysis-based data that reveal key molecules and immune pathways associated with MCs in the pathogenesis of autism. Network and enrichment analyzes were performed using receptor information and secreted molecules from activated MCs identified in ASD patients. Our analyses revealed cytokines and key marker molecules for MCs degranulation, molecular pathways of key mediators released during cell degranulation, as well as various receptors. Understanding the relationship between ASD and the activation of MCs, as well as the involved molecules and interactions, is important for elucidating the pathogenesis of ASD and developing effective future treatments for autistic patients by discovering new therapeutic target molecules.
Collapse
Affiliation(s)
- Eleonora Kovacheva
- Department of Medical Biology, Medical University-Plovdiv, Plovdiv, Bulgaria; Research Institute at Medical University-Plovdiv, Plovdiv, Bulgaria
| | - Maria Gevezova
- Department of Medical Biology, Medical University-Plovdiv, Plovdiv, Bulgaria; Research Institute at Medical University-Plovdiv, Plovdiv, Bulgaria
| | - Michael Maes
- Research Institute at Medical University-Plovdiv, Plovdiv, Bulgaria; Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu, 610072, China; Department of Psychiatry, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand; Cognitive Fitness and Technology Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Psychiatry, Medical University-Plovdiv, Plovdiv, Bulgaria; Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, South Korea
| | - Victoria Sarafian
- Department of Medical Biology, Medical University-Plovdiv, Plovdiv, Bulgaria; Research Institute at Medical University-Plovdiv, Plovdiv, Bulgaria.
| |
Collapse
|
31
|
Zong Y, Deng K, Chong WP. Regulation of Treg cells by cytokine signaling and co-stimulatory molecules. Front Immunol 2024; 15:1387975. [PMID: 38807592 PMCID: PMC11131382 DOI: 10.3389/fimmu.2024.1387975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/29/2024] [Indexed: 05/30/2024] Open
Abstract
CD4+CD25+Foxp3+ regulatory T cells (Tregs), a vital component of the immune system, are responsible for maintaining immune homeostasis and preventing excessive immune responses. This review explores the signaling pathways of the cytokines that regulate Treg cells, including transforming growth factor beta (TGF-β), interleukin (IL)-2, IL-10, and IL-35, which foster the differentiation and enhance the immunosuppressive capabilities of Tregs. It also examines how, conversely, signals mediated by IL-6 and tumor necrosis factor -alpha (TNF-α) can undermine Treg suppressive functions or even drive their reprogramming into effector T cells. The B7 family comprises indispensable co-stimulators for T cell activation. Among its members, this review focuses on the capacity of CTLA-4 and PD-1 to regulate the differentiation, function, and survival of Tregs. As Tregs play an essential role in maintaining immune homeostasis, their dysfunction contributes to the pathogenesis of autoimmune diseases. This review delves into the potential of employing Treg-based immunotherapy for the treatment of autoimmune diseases, transplant rejection, and cancer. By shedding light on these topics, this article aims to enhance our understanding of the regulation of Tregs by cytokines and their therapeutic potential for various pathological conditions.
Collapse
Affiliation(s)
- Yuan Zong
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | - Kaihang Deng
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Wai Po Chong
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| |
Collapse
|
32
|
Zhao X, Li X, Miao Z. Identification and validation of regulatory T cell-associated gene signatures to predict colon adenocarcinoma prognosis. Int Immunopharmacol 2024; 132:112034. [PMID: 38588631 DOI: 10.1016/j.intimp.2024.112034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/17/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
Colon adenocarcinoma (COAD) is a common cause of cancer-related death. Due to the difficulty in early diagnosis and drug resistance, conventional treatments are difficult to be effective. Some studies have found that the functional recovery of T cells in the tumor microenvironment, especially regulatory T cells (Tregs), plays an important role in the progression of cancer. This study used the TCGA data set, clinical information and RNA-seq data of COAD patients to construct a Tregs-related risk score (TRS) through methods such as WGCNA, single-factor Cox, multi-factor Cox and random survival forest (RSF). Moreover, we also used the TCGA test set and internal validation set to verify the predictive ability of TRS, and used functional enrichment analysis and somatic mutation analysis to mine genes related to TRS, such as like thrombin/trypsin receptor 2 (F2RL2), inhibin subunit beta B (INHBB) and melanoma antigen family A12 (MAGEA12). Moreover, this study confirmed the expression of these prognostic genes using scRNA-seq data. We also performed qPCR analysis of various genes in normal and cancerous colon cancer cell lines to verify that these genes indeed play a role in CODA patients. We also constructed a mouse CODA model to study and evaluate the impact of key genes such as MAGEA12 on tumor growth in mice. This study explores the important role of Treg cells in the prognosis of COAD and discovers some potential biomarkers for the occurrence and development of COAD, which provides some new ideas for the treatment of COAD.
Collapse
Affiliation(s)
- Xiaomeng Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
| | - Xuanwen Li
- Department of Nutritional, Tianjin Beichen Hospital of Chinese Medicine, Tianjin, PR China
| | - Zhi Miao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China.
| |
Collapse
|
33
|
Deng X, Hou S, Wang Y, Yang H, Wang C. Genetic insights into the relationship between immune cell characteristics and ischemic stroke: A bidirectional Mendelian randomization study. Eur J Neurol 2024; 31:e16226. [PMID: 38323746 PMCID: PMC11236043 DOI: 10.1111/ene.16226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND AND PURPOSE Ischemic stroke, a major contributor to global disability and mortality, is underpinned by intricate pathophysiological mechanisms, notably neuroinflammation and immune cell dynamics. Prior research has identified a nuanced and often paradoxical link between immune cell phenotypes and ischemic stroke susceptibility. The aim of this study was to elucidate the potential causal links between the median fluorescence intensity (MFI) and morphological parameters (MP) of 731 immune cell types and ischemic stroke risk. METHODS By analyzing extensive genetic datasets, we conducted comprehensive Mendelian randomization (MR) analyses to discern the genetic correlations between diverse immune cell attributes (MFI and MP) and ischemic stroke risk. RESULTS Our study identified key immune cell signatures linked to ischemic stroke risk. Both B cells and T cells, among other immune cell types, have a bidirectional influence on stroke risk. Notably, the regulatory T-cell phenotype demonstrates significant neuroprotective properties, with all odds ratio (OR) values and confidence intervals (CIs) being less than 1. Furthermore, CD39 phenotype immune cells, particularly CD39+ CD8+ T cells (inverse variance weighting [IVW] OR 0.92, 95% CI 0.87-0.97; p = 0.002) and CD39+ activated CD4 regulatory T cells (IVW OR 0.93, 95% CI 0.90-0.97; p < 0.001), show notable neuroprotection against ischemic stroke. CONCLUSION This investigation provides new genetic insights into the interplay between various immune cells and ischemic stroke, underscoring the complex role of immune processes in stroke pathogenesis. These findings lay a foundation for future research, which may confirm and expand upon these links, potentially leading to innovative immune-targeted therapies for stroke prevention and management.
Collapse
Affiliation(s)
- Xia Deng
- Shandong Second Medical UniversityWeifangChina
| | - Shuai Hou
- Shandong Second Medical UniversityWeifangChina
| | - Yanqiang Wang
- Department II of NeurologyAffiliated Hospital of Shandong Second Medical UniversityWeifangChina
| | - Haiyan Yang
- Emergency DepartmentYantaishan hospitalYantaiChina
| | | |
Collapse
|
34
|
Kojima K, Chambers JK, Nakashima K, Uchida K. Pro-inflammatory cytokine expression and the STAT1/3 pathway in canine chronic enteropathy and intestinal T-cell lymphoma. Vet Pathol 2024; 61:382-392. [PMID: 37906531 DOI: 10.1177/03009858231207017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The accumulation of intraepithelial lymphocytes (IELs) is a histopathological feature of canine chronic enteropathy (CE), and IELs are considered the cells of origin of intestinal T-cell lymphoma (ITCL). However, the pathogenic mechanism of IEL activation in CE remains unclear. This study hypothesized that the expression of proinflammatory cytokines, associated with cytotoxic T/NK-cell activation, is upregulated in CE and ITCL, and examined the expression of IFN-γ, IL-2, IL-12p35, IL-12p40, IL-15, and IL-21 and the downstream signal transducers and activators of transcription (STAT) pathway in the duodenal mucosa of dogs without lesions (n = 11; NC), with IEL-CE (n = 19; CE without intraepithelial lymphocytosis), IEL+CE (n = 29; CE with intraepithelial lymphocytosis), and with ITCL (n = 60). Quantitative polymerase chain reaction (PCR) revealed that IFN-γ and IL-21 were higher in IEL+CE than in IEL-CE or NC. Western blot revealed upregulation of STAT1 and STAT3 in IEL+CE. Double-labeling immunohistochemistry revealed a positive correlation between the Ki67 index of CD3+ T-cells and IFN-γ expression levels. Immunohistochemistry revealed a higher ratio of p-STAT1-positive villi in IEL+CE and ITCL than IEL-CE and NC, which positively correlated with IFN-γ expression levels. Among the 60 ITCL cases, neoplastic lymphocytes were immunopositive for p-STAT1 in 28 cases and p-STAT3 in 29 cases. These results suggest that IFN-γ and IL-21 contribute to the pathogenesis of IEL+CE, and IFN-γ may be involved in T-cell activation and mucosal injury in CE. STAT1 and STAT3 activation in ITCL cells suggests a role for the upregulation of the STAT pathway in the pathogenesis of ITCL.
Collapse
Affiliation(s)
| | | | - Ko Nakashima
- Japan Small Animal Medical Center, Tokorozawa, Japan
| | | |
Collapse
|
35
|
Li Q, Yang C, Liu C, Zhang Y, An N, Ma X, Zheng Y, Cui X, Li Q. The circulating IL-35 + regulatory B cells are associated with thyroid associated opthalmopathy. Immun Inflamm Dis 2024; 12:e1304. [PMID: 38804861 PMCID: PMC11131934 DOI: 10.1002/iid3.1304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/26/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Thyroid-associated ophthalmopathy (TAO) is the most common orbital disease in adults, potentially leading to disfigurement and visual impairment. However, the causes of TAO are not fully understood. IL-35+B cells are a newly identified regulatory B cells (Bregs) in maintaining immune balance in various autoimmune diseases. Yet, the influence of IL-35+Bregs in TAO remains unexplored. METHODS This study enrolled 36 healthy individuals and 14 TAO patients. We isolated peripheral blood mononuclear cells and stimulated them with IL-35 and CpG for 48 h. Flow cytometry was used to measure the percentages of IL-35+Bregs. RESULTS The percentage of circulating IL-35+Bregs was higher in TAO patients, and this increase correlated positively with disease activity. IL-35 significantly increased the generation of IL-35+Bregs in healthy individuals. However, B cells from TAO patients exhibited potential impairment in transitioning into IL-35+Breg phenotype under IL-35 stimulation. CONCLUSIONS Our results suggest a potential role of IL-35+Bregs in the development of TAO, opening new avenues for understanding disease mechanisms and developing therapeutic approaches.
Collapse
Affiliation(s)
- Qian Li
- Department of Ophthalmology, People's Hospital of Ningxia Hui Autonomous RegionThe Third Affiliated Clinical College of Ningxia Medical UniversityYinchuanNingxia Hui Autonomous RegionChina
| | - Cuixia Yang
- Department of Ophthalmology, People's Hospital of Ningxia Hui Autonomous RegionThe Third Affiliated Clinical College of Ningxia Medical UniversityYinchuanNingxia Hui Autonomous RegionChina
| | - Cheng Liu
- Medical Science Research Institution of Ningxia Hui Autonomous RegionMedical Sci‐Tech Research Center of Ningxia Medical UniversityYinchuanNingxia Hui Autonomous RegionChina
| | - Yuehui Zhang
- Department of Ophthalmology, People's Hospital of Ningxia Hui Autonomous RegionThe Third Affiliated Clinical College of Ningxia Medical UniversityYinchuanNingxia Hui Autonomous RegionChina
| | - Ningyu An
- Department of Ophthalmology, People's Hospital of Ningxia Hui Autonomous RegionThe Third Affiliated Clinical College of Ningxia Medical UniversityYinchuanNingxia Hui Autonomous RegionChina
| | - Xiumei Ma
- Department of Ophthalmology, People's Hospital of Ningxia Hui Autonomous RegionThe Third Affiliated Clinical College of Ningxia Medical UniversityYinchuanNingxia Hui Autonomous RegionChina
| | - Yang Zheng
- Department of Ophthalmology, People's Hospital of Ningxia Hui Autonomous RegionThe Third Affiliated Clinical College of Ningxia Medical UniversityYinchuanNingxia Hui Autonomous RegionChina
| | - Xiaomin Cui
- Department of Ophthalmology, People's Hospital of Ningxia Hui Autonomous RegionThe Third Affiliated Clinical College of Ningxia Medical UniversityYinchuanNingxia Hui Autonomous RegionChina
| | - Qian Li
- Department of Ophthalmology, People's Hospital of Ningxia Hui Autonomous RegionThe Third Affiliated Clinical College of Ningxia Medical UniversityYinchuanNingxia Hui Autonomous RegionChina
| |
Collapse
|
36
|
Kumagai S, Itahashi K, Nishikawa H. Regulatory T cell-mediated immunosuppression orchestrated by cancer: towards an immuno-genomic paradigm for precision medicine. Nat Rev Clin Oncol 2024; 21:337-353. [PMID: 38424196 DOI: 10.1038/s41571-024-00870-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
Accumulating evidence indicates that aberrant signalling stemming from genetic abnormalities in cancer cells has a fundamental role in their evasion of antitumour immunity. Immune escape mechanisms include enhanced expression of immunosuppressive molecules, such as immune-checkpoint proteins, and the accumulation of immunosuppressive cells, including regulatory T (Treg) cells, in the tumour microenvironment. Therefore, Treg cells are key targets for cancer immunotherapy. Given that therapies targeting molecules predominantly expressed by Treg cells, such as CD25 or GITR, have thus far had limited antitumour efficacy, elucidating how certain characteristics of cancer, particularly genetic abnormalities, influence Treg cells is necessary to develop novel immunotherapeutic strategies. Hence, Treg cell-targeted strategies based on the particular characteristics of cancer in each patient, such as the combination of immune-checkpoint inhibitors with molecularly targeted agents that disrupt the immunosuppressive networks mediating Treg cell recruitment and/or activation, could become a new paradigm of cancer therapy. In this Review, we discuss new insights on the mechanisms by which cancers generate immunosuppressive networks that attenuate antitumour immunity and how these networks confer resistance to cancer immunotherapy, with a focus on Treg cells. These insights lead us to propose the concept of 'immuno-genomic precision medicine' based on specific characteristics of cancer, especially genetic profiles, that correlate with particular mechanisms of tumour immune escape and might, therefore, inform the optimal choice of immunotherapy for individual patients.
Collapse
Affiliation(s)
- Shogo Kumagai
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo, Japan
- Division of Cancer Immunology, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Chiba, Japan
- Division of Cellular Signalling, Research Institute, National Cancer Center, Tokyo, Japan
| | - Kota Itahashi
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo, Japan
- Division of Cancer Immunology, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Chiba, Japan
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo, Japan.
- Division of Cancer Immunology, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Chiba, Japan.
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
37
|
Headen K, Jakaite V, Mesaric VA, Scotta C, Lombardi G, Nicolaides KH, Shangaris P. The Role of Regulatory T Cells and Their Therapeutic Potential in Hypertensive Disease of Pregnancy: A Literature Review. Int J Mol Sci 2024; 25:4884. [PMID: 38732104 PMCID: PMC11084408 DOI: 10.3390/ijms25094884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Hypertensive disorders of pregnancy (HDP), including preeclampsia (PE) and gestational hypertension (GH), are major causes of maternal and foetal morbidity and mortality. This review elucidates the role of regulatory T cells (Tregs) in the immunological aspects of HDP and explores their therapeutic potential. Tregs, which play a critical role in maintaining immune homeostasis, are crucial in pregnancy to prevent immune-mediated rejection of the foetus. The review highlights that Tregs contribute to immunological adaptation in normal pregnancy, ensuring foetal acceptance. In contrast, HDP is associated with Treg dysfunction, which is marked by decreased numbers and impaired regulatory capacity, leading to inadequate immune tolerance and abnormal placental development. This dysfunction is particularly evident in PE, in which Tregs fail to adequately modulate the maternal immune response against foetal antigens, contributing to the pathophysiology of the disorder. Therapeutic interventions aiming to modulate Treg activity represent a promising avenue for HDP management. Studies in animal models and limited clinical trials suggest that enhancing Treg functionality could mitigate HDP symptoms and improve pregnancy outcomes. However, given the multifactorial nature of HDP and the intricate regulatory mechanisms of Tregs, the review explores the complexities of translating in vitro and animal model findings into effective clinical therapies. In conclusion, while the precise role of Tregs in HDP is still being unravelled, their central role in immune regulation during pregnancy is indisputable. Further research is needed to fully understand the mechanisms by which Tregs contribute to HDP and to develop targeted therapies that can safely and effectively harness their regulatory potential for treating hypertensive diseases of pregnancy.
Collapse
Affiliation(s)
- Kyle Headen
- Department of Women and Children’s Health, School of Life Course Sciences, Faculty of Life Sciences & Medicine, King’s College London, London SE5 8AF, UK; (K.H.); (K.H.N.)
- Harris Birthright Research Centre for Fetal Medicine, King’s College Hospital, London SE5 8BB, UK; (V.J.); (V.A.M.)
| | - Vaidile Jakaite
- Harris Birthright Research Centre for Fetal Medicine, King’s College Hospital, London SE5 8BB, UK; (V.J.); (V.A.M.)
| | - Vita Andreja Mesaric
- Harris Birthright Research Centre for Fetal Medicine, King’s College Hospital, London SE5 8BB, UK; (V.J.); (V.A.M.)
| | - Cristiano Scotta
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King’s College London, London SE1 1UL, UK; (C.S.); (G.L.)
| | - Giovanna Lombardi
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King’s College London, London SE1 1UL, UK; (C.S.); (G.L.)
| | - Kypros H. Nicolaides
- Department of Women and Children’s Health, School of Life Course Sciences, Faculty of Life Sciences & Medicine, King’s College London, London SE5 8AF, UK; (K.H.); (K.H.N.)
- Harris Birthright Research Centre for Fetal Medicine, King’s College Hospital, London SE5 8BB, UK; (V.J.); (V.A.M.)
| | - Panicos Shangaris
- Department of Women and Children’s Health, School of Life Course Sciences, Faculty of Life Sciences & Medicine, King’s College London, London SE5 8AF, UK; (K.H.); (K.H.N.)
- Harris Birthright Research Centre for Fetal Medicine, King’s College Hospital, London SE5 8BB, UK; (V.J.); (V.A.M.)
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King’s College London, London SE1 1UL, UK; (C.S.); (G.L.)
- Immunoregulation Laboratory, Faculty of Life Sciences & Medicine, 5th Floor, Bermondsey Wing, Guy’s Hospital, London SE1 9RT, UK
| |
Collapse
|
38
|
Sheikhlary S, Lopez DH, Moghimi S, Sun B. Recent Findings on Therapeutic Cancer Vaccines: An Updated Review. Biomolecules 2024; 14:503. [PMID: 38672519 PMCID: PMC11048403 DOI: 10.3390/biom14040503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/06/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Cancer remains one of the global leading causes of death and various vaccines have been developed over the years against it, including cell-based, nucleic acid-based, and viral-based cancer vaccines. Although many vaccines have been effective in in vivo and clinical studies and some have been FDA-approved, there are major limitations to overcome: (1) developing one universal vaccine for a specific cancer is difficult, as tumors with different antigens are different for different individuals, (2) the tumor antigens may be similar to the body's own antigens, and (3) there is the possibility of cancer recurrence. Therefore, developing personalized cancer vaccines with the ability to distinguish between the tumor and the body's antigens is indispensable. This paper provides a comprehensive review of different types of cancer vaccines and highlights important factors necessary for developing efficient cancer vaccines. Moreover, the application of other technologies in cancer therapy is discussed. Finally, several insights and conclusions are presented, such as the possibility of using cold plasma and cancer stem cells in developing future cancer vaccines, to tackle the major limitations in the cancer vaccine developmental process.
Collapse
Affiliation(s)
- Sara Sheikhlary
- Department of Biomedical Engineering, College of Engineering, The University of Arizona, Tucson, AZ 85721, USA
| | - David Humberto Lopez
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (D.H.L.); (S.M.)
| | - Sophia Moghimi
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (D.H.L.); (S.M.)
| | - Bo Sun
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (D.H.L.); (S.M.)
| |
Collapse
|
39
|
Dicks LMT. Gut Bacteria Provide Genetic and Molecular Reporter Systems to Identify Specific Diseases. Int J Mol Sci 2024; 25:4431. [PMID: 38674014 PMCID: PMC11050607 DOI: 10.3390/ijms25084431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
With genetic information gained from next-generation sequencing (NGS) and genome-wide association studies (GWAS), it is now possible to select for genes that encode reporter molecules that may be used to detect abnormalities such as alcohol-related liver disease (ARLD), cancer, cognitive impairment, multiple sclerosis (MS), diabesity, and ischemic stroke (IS). This, however, requires a thorough understanding of the gut-brain axis (GBA), the effect diets have on the selection of gut microbiota, conditions that influence the expression of microbial genes, and human physiology. Bacterial metabolites such as short-chain fatty acids (SCFAs) play a major role in gut homeostasis, maintain intestinal epithelial cells (IECs), and regulate the immune system, neurological, and endocrine functions. Changes in butyrate levels may serve as an early warning of colon cancer. Other cancer-reporting molecules are colibactin, a genotoxin produced by polyketide synthetase-positive Escherichia coli strains, and spermine oxidase (SMO). Increased butyrate levels are also associated with inflammation and impaired cognition. Dysbiosis may lead to increased production of oxidized low-density lipoproteins (OX-LDLs), known to restrict blood vessels and cause hypertension. Sudden changes in SCFA levels may also serve as a warning of IS. Early signs of ARLD may be detected by an increase in regenerating islet-derived 3 gamma (REG3G), which is associated with changes in the secretion of mucin-2 (Muc2). Pro-inflammatory molecules such as cytokines, interferons, and TNF may serve as early reporters of MS. Other examples of microbial enzymes and metabolites that may be used as reporters in the early detection of life-threatening diseases are reviewed.
Collapse
Affiliation(s)
- Leon M T Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
40
|
Sun Y, Liu Z, Yang J, Jia Q, Sun J, Wang L, Liang F, Song S, Wang K, Zhou X. Risk of secondary immune thrombocytopenia following alemtuzumab treatment for multiple sclerosis: a systematic review and meta-analysis. Front Neurol 2024; 15:1375615. [PMID: 38660089 PMCID: PMC11039963 DOI: 10.3389/fneur.2024.1375615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/18/2024] [Indexed: 04/26/2024] Open
Abstract
Object The purpose of this study was to evaluate the risk of secondary immune thrombocytopenia in multiple sclerosis patients treated with alemtuzumab through a meta-analysis. Methods We searched databases including PubMed, Web of Science, OVID and EMBASE for studies reporting changes in platelet levels in MS patients treated with alemtuzumab from their inception until May 2023 and performed a meta-analysis. Information and data were screened and extracted by two researchers. The inclusion and exclusion criteria were established according to the PICOS principle. The obtained data were analyzed using the R software meta package and the quality assessment was conducted using Newcastle-Ottawa Scale (NOS). The causes of heterogeneity were analyzed using subgroup analysis and sensitivity analysis. Publication bias was evaluated using funnel plots and Egger test. Results A total of 15 studies were included, encompassing 1,729 multiple sclerosis patients. Meta-analysis of overall secondary ITP in the included studies yielded a pooled rate of 0.0243. The overall incidence of secondary autoimmune events was 0.2589. In addition, subgroup analysis was applied using study regions and study types. The results showed that the incidence rate of secondary ITP in Europe was about 0.0207, while the incidence of autoimmune events (AEs) was 0.2158. The incidence rate of secondary ITP and AEs in North America was significantly higher than in Europe, being 0.0352 and 0.2622. And the analysis showed that the incidence rates of secondary ITP and AEs in prospective studies were 0.0391 and 0.1771. Retrospective studies had an incidence rate of secondary ITP at 2.16, and an incidence rate of AEs at 0.2743. Conclusion This study found that there was a certain incidence of Immune thrombocytopenia in multiple sclerosis patients after treatment with alemtuzumab. Alemtuzumab may have some interference with platelet levels, and the mechanism may be associated with Treg cells. But due to the absence of a control group in the included literature, we cannot determine the specific impact of Alemtuzumab on platelet levels in patients with MS. Therefore, clinical physicians should perform a comprehensive assessment of the patient's benefit-to-risk ratio before initiating alemtuzumab. Systematic Review Registration Inplasy website, DOI number is 10.37766/inplasy2024.3.0007.
Collapse
Affiliation(s)
- Yuying Sun
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhimei Liu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jianguo Yang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qingqing Jia
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinglong Sun
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Wang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fengjiao Liang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shiyuan Song
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kaixi Wang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xia Zhou
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
41
|
Rodríguez-Zhurbenko N, Hernández AM. The role of B-1 cells in cancer progression and anti-tumor immunity. Front Immunol 2024; 15:1363176. [PMID: 38629061 PMCID: PMC11019000 DOI: 10.3389/fimmu.2024.1363176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/14/2024] [Indexed: 04/19/2024] Open
Abstract
In recent years, in addition to the well-established role of T cells in controlling or promoting tumor growth, a new wave of research has demonstrated the active involvement of B cells in tumor immunity. B-cell subsets with distinct phenotypes and functions play various roles in tumor progression. Plasma cells and activated B cells have been linked to improved clinical outcomes in several types of cancer, whereas regulatory B cells have been associated with disease progression. However, we are only beginning to understand the role of a particular innate subset of B cells, referred to as B-1 cells, in cancer. Here, we summarize the characteristics of B-1 cells and review their ability to infiltrate tumors. We also describe the potential mechanisms through which B-1 cells suppress anti-tumor immune responses and promote tumor progression. Additionally, we highlight recent studies on the protective anti-tumor function of B-1 cells in both mouse models and humans. Understanding the functions of B-1 cells in tumor immunity could pave the way for designing more effective cancer immunotherapies.
Collapse
Affiliation(s)
- Nely Rodríguez-Zhurbenko
- Immunobiology Department, Immunology and Immunotherapy Division, Center of Molecular Immunology, Habana, Cuba
| | - Ana M. Hernández
- Applied Genetics Group, Department of Biochemistry, Faculty of Biology, University of Habana, Habana, Cuba
| |
Collapse
|
42
|
Taskaldiran ES, Tuter G, Yucel AA, Yaman M. Effects of smoking on the salivary and GCF levels of IL-17 and IL-35 in periodontitis. Odontology 2024; 112:616-623. [PMID: 37566245 DOI: 10.1007/s10266-023-00843-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023]
Abstract
Periodontitis progression is associated with a host response in which anti-inflammatory and pro-inflammatory cytokine networks play a key role. Smoking is involved in the production of various mediators. The study aims to evaluate the levels of IL-17 and IL-35 in saliva and gingival crevicular fluid (GCF), to investigate the effects of smoking on these cytokines in smoker and non-smoker periodontitis patients. 19 smokers with periodontitis, 20 non-smokers with periodontitis, and 18 periodontally healthy subjects were included in the study. Periodontal clinical indexes were recorded and the levels of IL-17 and IL-35 in saliva and GCF were analyzed. No significant difference was detected among the groups in terms of salivary IL-17 and IL-35 levels. GCF IL-17 and IL-35 concentration levels in the non-smoker periodontitis group were significantly lower than the others (p < 0.05). Total levels of GCF IL-17 were significantly higher in both periodontitis groups than the control group; and total levels of GCF IL-35 were significantly higher in non-smoker periodontitis group than the others (p < 0.05). A positive correlation was detected between the salivary IL-17 and IL-35 levels (r = 0.884), GCF IL-17 and IL-35 concentrations (r = 0.854), and total GCF IL-17 and IL-35 (r = 0.973) levels (p < 0.01). The present study revealed a positive correlation between the IL-35 and IL-17 levels both in saliva and GCF. IL-17 and IL-35 can be considered as one of the cytokines that play a role in periodontal health and periodontitis; and smoking may be among the factors that affect the levels of these cytokines in GCF and saliva.
Collapse
Affiliation(s)
- Ezgi Sila Taskaldiran
- Department of Periodontology, Faculty of Dentistry, Istanbul Aydin University, Istanbul, Turkey
- Department of Periodontology, Faculty of Dentistry, Gazi University, Ankara, Turkey
| | - Gulay Tuter
- Department of Periodontology, Faculty of Dentistry, Gazi University, Ankara, Turkey.
| | - Aysegul Atak Yucel
- Department of Immunology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Melek Yaman
- Department of Immunology, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
43
|
Cochrane RW, Robino RA, Granger B, Allen E, Vaena S, Romeo MJ, de Cubas AA, Berto S, Ferreira LM. High affinity chimeric antigen receptor signaling induces an inflammatory program in human regulatory T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.31.587467. [PMID: 38617240 PMCID: PMC11014479 DOI: 10.1101/2024.03.31.587467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Regulatory T cells (Tregs) are promising cellular therapies to induce immune tolerance in organ transplantation and autoimmune disease. The success of chimeric antigen receptor (CAR) T-cell therapy for cancer has sparked interest in using CARs to generate antigen-specific Tregs. Here, we compared CAR with endogenous T cell receptor (TCR)/CD28 activation in human Tregs. Strikingly, CAR Tregs displayed increased cytotoxicity and diminished suppression of antigen-presenting cells and effector T (Teff) cells compared with TCR/CD28 activated Tregs. RNA sequencing revealed that CAR Tregs activate Teff cell gene programs. Indeed, CAR Tregs secreted high levels of inflammatory cytokines, with a subset of FOXP3+ CAR Tregs uniquely acquiring CD40L surface expression and producing IFNγ. Interestingly, decreasing CAR antigen affinity reduced Teff cell gene expression and inflammatory cytokine production by CAR Tregs. Our findings showcase the impact of engineered receptor activation on Treg biology and support tailoring CAR constructs to Tregs for maximal therapeutic efficacy.
Collapse
Affiliation(s)
- Russell W. Cochrane
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Rob A. Robino
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Bryan Granger
- Bioinformatics Core, Medical University of South Carolina, Charleston, SC, USA
| | - Eva Allen
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Silvia Vaena
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Martin J. Romeo
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Aguirre A. de Cubas
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Stefano Berto
- Bioinformatics Core, Medical University of South Carolina, Charleston, SC, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Leonardo M.R. Ferreira
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
44
|
Bahadorian D, Faraj TA, Kheder RK, Najmaldin SK, Haghmorad D, Mollazadeh S, Esmaeili SA. A glance on the role of IL-35 in systemic lupus erythematosus (SLE). Cytokine 2024; 176:156501. [PMID: 38290255 DOI: 10.1016/j.cyto.2024.156501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/08/2023] [Accepted: 01/03/2024] [Indexed: 02/01/2024]
Abstract
It is well known that systemic lupus erythematosus (SLE) is an auto-inflammatory disease that is characterized by chronic and widespread inflammation. The exact pathogenesis of SLE is still a matter of debate. However, it has been suggested that the binding of autoantibodies to autoantigens forms immune complexes (ICs), activators of the immune response, in SLE patients. Ultimately, all of these responses lead to an imbalance between anti-inflammatory and pro-inflammatory cytokines, resulting in cumulative inflammation. IL-35, the newest member of the IL-12 family, is an immunosuppressive and anti-inflammatory cytokine secreted mainly by regulatory cells. Structurally, IL-35 is a heterodimeric cytokine, composed of Epstein-Barr virus-induced gene 3 (EBI3) and p35. IL-35 appears to hold therapeutic and diagnostic potential in cancer and autoimmune diseases. In this review, we summarized the most recent associations between IL and 35 and SLE. Unfortunately, the comparative review of IL-35 in SLE indicates many differences and contradictions, which make it difficult to generalize the use of IL-35 in the treatment of SLE. With the available information, it is not possible to talk about targeting this cytokine for the lupus treatment. So, further studies would be needed to establish the clear and exact levels of this cytokine and its related receptors in people with lupus to provide IL-35 as a preferential therapeutic or diagnostic candidate in SLE management.
Collapse
Affiliation(s)
- Davood Bahadorian
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tola Abdulsattar Faraj
- Department of Basic Sciences, College of Medicine, Hawler Medical University, Erbil, Iraq; Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Iraq
| | - Ramiar Kamal Kheder
- Medical Laboratory Science Department, College of Science, University of Raparin, Rania, Sulaymaniyah, Iraq; Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Iraq
| | - Soran K Najmaldin
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Iraq
| | - Dariush Haghmorad
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran; Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
45
|
Pan Y, Zhang X, Geng H, Yu Y, Liu J, Li M, Yang H, Yuan Y, Xu Y, Wu Y, Wu G, Ma X, Cheng L. Increased Nasal Blimp1 + Treg Cells After Sublingual Immunotherapy Reflect the Efficacy of Treatment in Allergic Rhinitis. Adv Ther 2024; 41:1698-1710. [PMID: 38443650 DOI: 10.1007/s12325-024-02819-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 02/07/2024] [Indexed: 03/07/2024]
Abstract
INTRODUCTION Allergen-specific immunotherapy (AIT) plays a pivotal role in altering the immune status and tissue responses in allergic rhinitis (AR). This study focuses on the impact of sublingual immunotherapy (SLIT) involving dust mite drops, exploring the modulation of regulatory T cells (Treg) and their specific marker, BLIMP1, in the nasal mucosa. METHODS Immune cells were isolated from nasal lavage fluid of patients with AR undergoing SLIT (n = 94). Treg cells were analyzed for BLIMP1 expression, and chemokine levels associated with Treg recruitment were assessed using Luminex assay. Patients were categorized on the basis of SLIT efficacy and followed for changes after discontinuation. RESULTS SLIT induced a significant increase in nasal Treg cells (7.09 ± 2.59% vs. 0.75 ± 0.27%, P < 0.0001). BLIMP1 expression in Treg cells notably increased after SLIT (0.36 ± 0.22% to 16.86 ± 5.74%, P < 0.0001). Ineffective SLIT cases exhibited lower levels of nasal Treg and Blimp1 + Treg cells (both P < 0.0001). Receiver operating characteristic (ROC) analysis confirmed their potential as efficacy predictors (AUC = 0.908 and 0.968, respectively). SLIT discontinuation led to a significant reduction in Treg and Blimp1 + Treg cells (P < 0.001), emphasizing their maintenance during treatment. Pro-inflammatory cytokines decreased (P < 0.001), while CCL2 associated with Treg recruitment increased (P = 0.0015). CONCLUSION Elevated nasal Blimp1 + Treg cells serve as a predictive biomarker for SLIT responsiveness in pediatric AR. Their influence on immunotherapy effectiveness contributes to a nuanced understanding of SLIT mechanisms, allowing for disease stratification and personalized treatment plans. This study offers scientific support for predicting SLIT efficacy, enhancing the prospects of improved treatment outcomes in AR.
Collapse
Affiliation(s)
- Yue Pan
- Department of Otolaryngology, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, 215600, China
| | - Xinxin Zhang
- Department of Otolaryngology, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, 215600, China
| | - Huanting Geng
- Department of Otolaryngology, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, 215600, China
| | - Yan Yu
- Department of Otolaryngology, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, 215600, China
| | - Jianyong Liu
- Department of Otolaryngology, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, 215600, China
| | - Menglin Li
- Department of Otolaryngology, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, 215600, China
| | - Huijun Yang
- Department of Otolaryngology, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, 215600, China
| | - Yifang Yuan
- Department of Otolaryngology, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, 215600, China
| | - Yao Xu
- Department of Otolaryngology, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, 215600, China
| | - Yujia Wu
- Department of Otolaryngology, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, 215600, China
| | - Geping Wu
- Department of Otolaryngology, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, 215600, China.
- Office of Science Education, Zhangjiagang Hospital Affiliated to Soochow University, 68 West Jiyang Road, Suzhou, 215000, China.
| | - Xingkai Ma
- Department of Otolaryngology, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, 215600, China
- Information Center, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, 215000, China
| | - Lei Cheng
- Department of Otorhinolaryngology and Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
46
|
Zhu Z, Peng Q, Duan X, Li J. Interleukin-12: Structure, Function, and Its Impact in Colorectal Cancer. J Interferon Cytokine Res 2024; 44:158-169. [PMID: 38498032 DOI: 10.1089/jir.2023.0190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024] Open
Abstract
Interleukin 12 (IL-12) is a heterodimer consisting of 2 subunits, p35 and p40, with unique associations and interacting functions with its family members. IL-12 is one of the most important cytokines regulating the immune system response and is integral to adaptive immunity. IL-12 has shown marked therapeutic potential in a variety of tumor types. This review therefore summarizes the characteristics of IL-12 and its application in tumor treatment, focusing on its antitumor effects in colorectal cancer (CRC) and potential radiosensitization mechanisms. We aim to provide a current reference for IL-12 and other potential CRC treatment strategies.
Collapse
Affiliation(s)
- Ziwei Zhu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Qian Peng
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Xingmei Duan
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine University of Electronic Science and Technology of China, Chengdu, People's Republic of. China
| | - Jie Li
- School of Medicine, Southwest Medical University of China, Luzhou, People's Republic of China
- Department of Radiotherapy, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| |
Collapse
|
47
|
Racca NM, Dontu A, Riley K, Yolcu ES, Shirwan H, Coronel MM. Bending the Rules: Amplifying PD-L1 Immunoregulatory Function Through Flexible Polyethylene Glycol Synthetic Linkers. Tissue Eng Part A 2024; 30:299-313. [PMID: 38318841 DOI: 10.1089/ten.tea.2023.0274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
Immune checkpoint signaling, such as programmed cell death protein-1 (PD-1), is a key target for immunotherapy due to its role in dampening immune responses. PD-1 signaling in T cells is regulated by complex physicochemical and mechanical cues. However, how these mechanical forces are integrated with biochemical responses remains poorly understood. Our previous work demonstrated that the use of an immobilizing polyethylene glycol (PEG) linker on synthetic microgels for the presentation of a chimeric form of PD-L1, SA-PD-L1, lead to local regulatory responses capable of abrogating allograft rejection in a model of cell-based transplantation. We herein provide evidence that enhanced immune regulating function can be obtained when presentation of SA-PD-L1 is achieved through a longer more flexible PEG chain. Presentation of SA-PD-L1 through a linker of high molecular weight, and thus longer length (10 kDa, 60 nm in length), led to enhance conversion of naive T cells into T regulatory cells (Tregs) in vitro. In addition, using a subcutaneous implant model and protein tethered through three different linker sizes (6, 30, and 60 nm) to the surface of PEG hydrogels, we demonstrated that longer linkers promoted PD-1 immunomodulatory role in vivo through three main functions: (1) augmenting immune cell recruitment at the transplant site; (2) promoting the accumulation of naive Tregs expressing migratory markers; and (3) dampening CD8+ cytolytic molecule production while augmenting expression of exhaustion phenotypes locally. Notably, accumulation of Treg cells at the implant site persisted for over 30 days postimplantation, an effect not observed when protein was presented with the shorter version of the linkers (6 and 30 nm). Collectively, these studies reveal a facile approach by which PD-L1 function can be modulated through external tuning of synthetic presenting linkers. Impact statement Recently, there has been a growing interest in immune checkpoint molecules as potential targets for tolerance induction, including programmed cell death protein-1 (PD-1). However, how the mechanics of ligand binding to PD-1 receptor affect downstream activation signaling pathways remains unresolved. By taking advantage of the effect of polyethylene glycol chain length on molecule kinetics in an aqueous solution, we herein show that PD-L1 function can be amplified by adjusting the length of the grafting linker. Our results uncover a potential facile mechanism that can be exploited to advance the role of immune checkpoint ligands, in particular PD-L1, in tolerance induction for immunosuppression-free cell-based therapies.
Collapse
Affiliation(s)
- Nicole M Racca
- Department of Biomedical Engineering and Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
- Elizabeth Caswell Diabetes Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Alexander Dontu
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kayle Riley
- Department of Biomedical Engineering and Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
- Elizabeth Caswell Diabetes Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Esma S Yolcu
- Department of Pediatrics and University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
| | - Haval Shirwan
- Department of Pediatrics and University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
- Associate Director, Immunomodulation and Regenerative Medicine Program, Ellis Fischel Cancer Center, Columbia, Missouri, USA
| | - María M Coronel
- Department of Biomedical Engineering and Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
- Elizabeth Caswell Diabetes Institute, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
48
|
Hu A, Sun L, Lin H, Liao Y, Yang H, Mao Y. Harnessing innate immune pathways for therapeutic advancement in cancer. Signal Transduct Target Ther 2024; 9:68. [PMID: 38523155 PMCID: PMC10961329 DOI: 10.1038/s41392-024-01765-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 03/26/2024] Open
Abstract
The innate immune pathway is receiving increasing attention in cancer therapy. This pathway is ubiquitous across various cell types, not only in innate immune cells but also in adaptive immune cells, tumor cells, and stromal cells. Agonists targeting the innate immune pathway have shown profound changes in the tumor microenvironment (TME) and improved tumor prognosis in preclinical studies. However, to date, the clinical success of drugs targeting the innate immune pathway remains limited. Interestingly, recent studies have shown that activation of the innate immune pathway can paradoxically promote tumor progression. The uncertainty surrounding the therapeutic effectiveness of targeted drugs for the innate immune pathway is a critical issue that needs immediate investigation. In this review, we observe that the role of the innate immune pathway demonstrates heterogeneity, linked to the tumor development stage, pathway status, and specific cell types. We propose that within the TME, the innate immune pathway exhibits multidimensional diversity. This diversity is fundamentally rooted in cellular heterogeneity and is manifested as a variety of signaling networks. The pro-tumor effect of innate immune pathway activation essentially reflects the suppression of classical pathways and the activation of potential pro-tumor alternative pathways. Refining our understanding of the tumor's innate immune pathway network and employing appropriate targeting strategies can enhance our ability to harness the anti-tumor potential of the innate immune pathway and ultimately bridge the gap from preclinical to clinical application.
Collapse
Affiliation(s)
- Ankang Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Li Sun
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Hao Lin
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Yuheng Liao
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Key Laboratory of Metabolism and Molecular Medicine (Ministry of Education), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, P.R. China
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China.
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
| |
Collapse
|
49
|
Chaudhuri SM, Weinberg SE, Wang D, Yalom LK, Montauti E, Iyer R, Tang AY, Torres Acosta MA, Shen J, Mani NL, Wang S, Liu K, Lu W, Bui TM, Manzanares LD, Dehghani Z, Wai CM, Gao B, Wei J, Yue F, Cui W, Singer BD, Sumagin R, Zhang Y, Fang D. Mediator complex subunit 1 architects a tumorigenic Treg cell program independent of inflammation. Cell Rep Med 2024; 5:101441. [PMID: 38428427 PMCID: PMC10983042 DOI: 10.1016/j.xcrm.2024.101441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/18/2023] [Accepted: 02/01/2024] [Indexed: 03/03/2024]
Abstract
While immunotherapy has revolutionized cancer treatment, its safety has been hampered by immunotherapy-related adverse events. Unexpectedly, we show that Mediator complex subunit 1 (MED1) is required for T regulatory (Treg) cell function specifically in the tumor microenvironment. Treg cell-specific MED1 deletion does not predispose mice to autoimmunity or excessive inflammation. In contrast, MED1 is required for Treg cell promotion of tumor growth because MED1 is required for the terminal differentiation of effector Treg cells in the tumor. Suppression of these terminally differentiated Treg cells is sufficient for eliciting antitumor immunity. Both human and murine Treg cells experience divergent paths of differentiation in tumors and matched tissues with non-malignant inflammation. Collectively, we identify a pathway promoting the differentiation of a Treg cell effector subset specific to tumors and demonstrate that suppression of a subset of Treg cells is sufficient for promoting antitumor immunity in the absence of autoimmune consequences.
Collapse
Affiliation(s)
- Shuvam M Chaudhuri
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Samuel E Weinberg
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Dongmei Wang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lenore K Yalom
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Elena Montauti
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Radhika Iyer
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Amy Y Tang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Manuel A Torres Acosta
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Medical Scientist Training Program, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jian Shen
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Nikita L Mani
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Shengnan Wang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kun Liu
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Weiyuan Lu
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Triet M Bui
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Laura D Manzanares
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Zeinab Dehghani
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ching Man Wai
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Beixue Gao
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Juncheng Wei
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Feng Yue
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Weiguo Cui
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Benjamin D Singer
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ronen Sumagin
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Yana Zhang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Deyu Fang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
50
|
Feng J, Li K, Xie F, Han L, Wu Y. IL-35 ameliorates lipopolysaccharide-induced endothelial dysfunction by inhibiting endothelial-to-mesenchymal transition. Int Immunopharmacol 2024; 129:111567. [PMID: 38335651 DOI: 10.1016/j.intimp.2024.111567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024]
Abstract
Sepsis is a systemic inflammatory response syndrome (SIRS) caused mainly by bacterial infection. The morbidity and mortality rates of sepsis are extremely high. About 18 million people worldwide suffer from severe sepsis each year, and about 14,000 people die from it every day. Previous studies have revealed that endothelial dysfunction plays a vital role in the pathological change of sepsis. Furthermore, endothelial-mesenchymal transition (EndMT, EndoMT) is capable of triggering endothelial dysfunction. And yet, it remains obscure whether interleukin-35 (IL-35) can alleviate endothelial dysfunction by attenuating LPS-induced EndMT. Here, through in vivo and in vitro experiments, we revealed that IL-35 has a previously unknown function to attenuate LPS-induced endothelial dysfunction by inhibiting LPS-induced EndMT. Mechanistically, IL-35 acts by regulating the NFκB signaling pathway.
Collapse
Affiliation(s)
- Jie Feng
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Kai Li
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Feng Xie
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Leilei Han
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yanqing Wu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| |
Collapse
|