1
|
Caratis F, Karaszewski B, Klejbor I, Furihata T, Rutkowska A. Differential expression and modulation of EBI2 and 7α,25-OHC synthesizing (CH25H, CYP7B1) and degrading (HSD3B7) enzymes in mouse and human brain vascular cells. PLoS One 2025; 20:e0318822. [PMID: 39999050 PMCID: PMC11856462 DOI: 10.1371/journal.pone.0318822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
The endogenous ligand for the EBI2 receptor, oxysterol 7α,25OHC, crucial for immune responses, is finely regulated by CH25H, CYP7B1 and HSD3B7 enzymes. Lymphoid stromal cells and follicular dendritic cells within T cell follicles maintain a gradient of 7α,25OHC, with stromal cells increasing and dendritic cells decreasing its concentration. This gradient is pivotal for proper B cell positioning in lymphoid tissue. In the animal model of multiple sclerosis, the experimental autoimmune encephalomyelitis, the levels of 7α,25OHC rapidly increase in the central nervous system driving the migration of EBI2 expressing immune cells through the blood-brain barrier (BBB). To explore if blood vessel cells in the brain express these enzymes, we examined normal mouse brain microvessels and studied changes in their expression during inflammation. Ebi2 was abundantly expressed in endothelial cells, pericytes/smooth muscle cells, and astrocytic endfeet. Ch25h, Cyp7b1, and Hsd3b7 were variably detected in each cell type, suggesting their active involvement in oxysterol 7α,25OHC synthesis and gradient maintenance under normal conditions. Significant species-specific differences emerged in EBI2 and the enzyme levels between mouse and human BBB-forming cells. Under acute inflammatory conditions, Ebi2 and synthesizing enzyme modulation occurred in the brain, with the magnitude and direction of change based on the enzyme. Lastly, in an in vitro astrocyte migration model, CYP7B1 inhibitor clotrimazole, as well as EBI2 antagonist, NIBR189, inhibited lipopolysaccharide-induced cell migration indicating the involvement of EBI2 and its ligand in brain cell migration under inflammatory conditions.
Collapse
Affiliation(s)
- Fionä Caratis
- Department of Anatomy and Neurobiology, Medical University of Gdansk, Gdansk, Poland
| | - Bartosz Karaszewski
- Department of Adult Neurology, Medical University of Gdansk & University Clinical Center, Gdansk, Poland
- Brain Diseases Centre, Medical University of Gdansk, Gdansk, Poland
| | - Ilona Klejbor
- Department of Anatomy, Collegium Medicum, Jan Kochanowski University in Kielce, Kielce, Poland
| | - Tomomi Furihata
- Laboratory of Clinical Pharmacy and Experimental Therapeutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Aleksandra Rutkowska
- Department of Anatomy and Neurobiology, Medical University of Gdansk, Gdansk, Poland
- Brain Diseases Centre, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
2
|
Zhang Y, Alzahrani M, Dambaeva S, Kwak-Kim J. Dyslipidemia and female reproductive failures: perspectives on lipid metabolism and endometrial immune dysregulation. Semin Immunopathol 2025; 47:18. [PMID: 39966179 DOI: 10.1007/s00281-025-01043-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/20/2025] [Indexed: 02/20/2025]
Abstract
Dyslipidemia is a common metabolic disorder around the world, with a higher incidence in the population of childbearing age and those experiencing infertility. Increasing research has been focused on the impact of dyslipidemia on female reproduction. This article reviews relevant clinical and basic science research on the effects of dyslipidemia on female reproduction, particularly paying attention to immune inflammatory changes in the endometrium. A comprehensive overview of the physiological effects of lipid metabolism on innate and adaptive immunity is provided, specifically examining the relationship between lipid metabolism and endometrial immune homeostasis, as well as the changes observed in women with reproductive failures. Moreover, the alterations in endometrial gene expressions and immune effectors in women with dyslipidemia and reproductive disorders are discussed, offering a new perspective on the reproductive disorders in women with dyslipidemia. Considering the significant involvement of lipid metabolism in human reproduction, gaining a deeper insight into dyslipidemia and female reproduction could have important clinical implications for the diagnosis and management of female reproductive disorders.
Collapse
Affiliation(s)
- Yuan Zhang
- Reproductive Medicine and Immunology, Obstetrics and Gynecology, Clinical Sciences Department, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3471 North Green Bay Road, North Chicago, Illinois, 60064, USA
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Guangzhou Road 300, Nanjing, Jiangsu, 210029, China
| | - Monira Alzahrani
- Reproductive Medicine and Immunology, Obstetrics and Gynecology, Clinical Sciences Department, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3471 North Green Bay Road, North Chicago, Illinois, 60064, USA
- IVF and Reproductive Endocrinology Department, Women's Health Hospital, King Abdulaziz Medical City, King Saud Bin Abdulaziz Road, Al-Nakhil District, Riyadh, 11481, Saudi Arabia
| | - Svetlana Dambaeva
- Clinical Immunology Laboratory, Center for Cancer Cell Biology, Immunology, and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, Illinois, 60064, USA
| | - Joanne Kwak-Kim
- Reproductive Medicine and Immunology, Obstetrics and Gynecology, Clinical Sciences Department, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3471 North Green Bay Road, North Chicago, Illinois, 60064, USA.
- Clinical Immunology Laboratory, Center for Cancer Cell Biology, Immunology, and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, Illinois, 60064, USA.
| |
Collapse
|
3
|
Sun M, Garnier L, Chevalier R, Roumain M, Wang C, Angelillo J, Montorfani J, Pick R, Brighouse D, Fournier N, Tarussio D, Tissot S, Lobaccaro JM, Petrova TV, Jandus C, Speiser DE, Kopf M, Pot C, Scheiermann C, Homicsko K, Muccioli GG, Garg AD, Hugues S. Lymphatic-derived oxysterols promote anti-tumor immunity and response to immunotherapy in melanoma. Nat Commun 2025; 16:1217. [PMID: 39890772 DOI: 10.1038/s41467-025-55969-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/07/2025] [Indexed: 02/03/2025] Open
Abstract
In melanoma, lymphangiogenesis correlates with metastasis and poor prognosis and promotes immunosuppression. However, it also potentiates immunotherapy by supporting immune cell trafficking. We show in a lymphangiogenic murine melanoma that lymphatic endothelial cells (LECs) upregulate the enzyme Ch25h, which catalyzes the formation of 25-hydroxycholesterol (25-HC) from cholesterol and plays important roles in lipid metabolism, gene regulation, and immune activation. We identify a role for LECs as a source of extracellular 25-HC in tumors inhibiting PPAR-γ in intra-tumoral macrophages and monocytes, preventing their immunosuppressive function and instead promoting their conversion into proinflammatory myeloid cells that support effector T cell functions. In human melanoma, LECs also upregulate Ch25h, and its expression correlates with the lymphatic vessel signature, infiltration of pro-inflammatory macrophages, better patient survival, and better response to immunotherapy. We identify here in mechanistic detail an important LEC function that supports anti-tumor immunity, which can be therapeutically exploited in combination with immunotherapy.
Collapse
Affiliation(s)
- Mengzhu Sun
- Department of Pathology and Immunology; Geneva Medical School, Geneva, Switzerland
| | - Laure Garnier
- Department of Pathology and Immunology; Geneva Medical School, Geneva, Switzerland
| | - Romane Chevalier
- Department of Pathology and Immunology; Geneva Medical School, Geneva, Switzerland
| | - Martin Roumain
- Metabolism and Nutrition Research Group, Walloon Excellence in Life sciences and BIOtechnology (WELBIO), Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Chen Wang
- Department of Pathology and Immunology; Geneva Medical School, Geneva, Switzerland
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
| | - Julien Angelillo
- Department of Pathology and Immunology; Geneva Medical School, Geneva, Switzerland
| | - Julien Montorfani
- Department of Pathology and Immunology; Geneva Medical School, Geneva, Switzerland
| | - Robert Pick
- Department of Pathology and Immunology; Geneva Medical School, Geneva, Switzerland
| | - Dale Brighouse
- Department of Pathology and Immunology; Geneva Medical School, Geneva, Switzerland
| | - Nadine Fournier
- Translational Data Science (TDS), Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - David Tarussio
- Swiss Cancer Center Leman, Lausanne, Switzerland
- Department of Oncology, Center for Experimental Therapeutics, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne, Switzerland
| | - Stéphanie Tissot
- Swiss Cancer Center Leman, Lausanne, Switzerland
- Department of Oncology, Center for Experimental Therapeutics, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne, Switzerland
| | - Jean-Marc Lobaccaro
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
| | - Tatiana V Petrova
- Ludwig Institute for Cancer Research, Lausanne, Switzerland
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - Camilla Jandus
- Department of Pathology and Immunology; Geneva Medical School, Geneva, Switzerland
- Ludwig Institute for Cancer Research, Lausanne, Switzerland
- Geneva Centre for Inflammation Research, Geneva, Switzerland
- Translational Research Centre in Oncohaematology, Geneva, Switzerland
| | - Daniel E Speiser
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - Manfred Kopf
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - Caroline Pot
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Christoph Scheiermann
- Department of Pathology and Immunology; Geneva Medical School, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Geneva, Switzerland
- Translational Research Centre in Oncohaematology, Geneva, Switzerland
- Biomedical Center (BMC), Institute for Cardiovascular Physiology and Pathophysiology, Walter-Brendel-Center for Experimental Medicine (WBex), Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Planegg-Martinsried, Germany
| | | | - Giulio G Muccioli
- Metabolism and Nutrition Research Group, Walloon Excellence in Life sciences and BIOtechnology (WELBIO), Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Abhishek D Garg
- Laboratory for Cell Stress & Immunity (CSI), Department of Cellular & Molecular Medicine (CMM), KU Leuven, Belgium
| | - Stéphanie Hugues
- Department of Pathology and Immunology; Geneva Medical School, Geneva, Switzerland.
- Geneva Centre for Inflammation Research, Geneva, Switzerland.
- Translational Research Centre in Oncohaematology, Geneva, Switzerland.
| |
Collapse
|
4
|
Liu Y, Qin J, Li X, Wu G. Oxysterols in tumor immune microenvironment (TIME). J Steroid Biochem Mol Biol 2025; 245:106634. [PMID: 39551164 DOI: 10.1016/j.jsbmb.2024.106634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/22/2024] [Accepted: 11/09/2024] [Indexed: 11/19/2024]
Abstract
Oxysterols are compounds generated through oxidative reactions involving cholesterol and other steroid molecules. They play a crucial role in the tumor immune microenvironment by interacting with molecules such as the cell membrane receptor EBI2 and nuclear receptors like LXR and PXR. This interaction regulates immune cell signaling pathways, affecting proliferation, apoptosis, migration, and invasion in tumor-related processes. Activating these receptors alters the function and behavior of immune cells-such as macrophages, T cells, and dendritic cells-within the tumor microenvironment, thus promoting or inhibiting tumor development. Certain oxidized steroids can increase both the number and activation of infiltrating T cells, synergizing with anti-PD-1 to enhance anti-tumor efficacy. An in-depth study of the biological mechanisms of oxidized sterols will not only enhance our understanding of the complexity of the tumor immune microenvironment but may also reveal new therapeutic targets, providing innovative strategies for tumor immunotherapy.
Collapse
Affiliation(s)
- Yuanxin Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Jie Qin
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Xiaorui Li
- Department of Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, China.
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| |
Collapse
|
5
|
Tsang CH, Kozielewicz P. Exploring G Protein-Coupled Receptors in Hematological Cancers. ACS Pharmacol Transl Sci 2024; 7:4000-4009. [PMID: 39698279 PMCID: PMC11651347 DOI: 10.1021/acsptsci.4c00473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 12/20/2024]
Abstract
Hematological cancers, such as lymphomas and leukemias, pose significant challenges in oncology, necessitating a deeper understanding of their molecular landscape to enhance therapeutic strategies. This article critically examines and discusses recent research on the roles of G protein-coupled receptors (GPCRs) in myeloma, lymphomas, and leukemias with a particular focus on pediatric acute lymphoblastic (lymphocytic) leukemia (ALL). By utilizing RNA sequencing (RNA-seq), we analyzed GPCR expression patterns in pediatric ALL samples (aged 3-12 years old), with a further focus on Class A orphan GPCRs. Our analysis revealed distinct GPCR expression profiles in pediatric ALL, identifying several candidates with aberrant upregulated expression compared with healthy counterparts. Among these GPCRs, GPR85, GPR65, and GPR183 have varying numbers of studies in the field of hematological cancers and pediatric ALL. Furthermore, we explored missense mutations of pediatric ALL in relation to the RNA gene expression findings, providing insights into the genetic underpinnings of this disease. By integrating both RNA-seq and missense mutation data, this article aims to provide an insightful and broader perspective on the potential correlations between specific GPCR and their roles in pediatric ALL.
Collapse
Affiliation(s)
- Choi Har Tsang
- Molecular Pharmacology of GPCRs, Department Physiology & Pharmacology,
Karolinska Institutet, Biomedicum, 171 65 Stockholm,
Sweden
| | - Pawel Kozielewicz
- Molecular Pharmacology of GPCRs, Department Physiology & Pharmacology,
Karolinska Institutet, Biomedicum, 171 65 Stockholm,
Sweden
| |
Collapse
|
6
|
Thomas DG, Yang J, Cho SJ, Stout-Delgado H. Heightened cholesterol 25-hydroxylase expression in aged lung during Streptococcus pneumoniae. FRONTIERS IN AGING 2024; 5:1480886. [PMID: 39717487 PMCID: PMC11663934 DOI: 10.3389/fragi.2024.1480886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/13/2024] [Indexed: 12/25/2024]
Abstract
Introduction Alveolar macrophages (AM) are critical effectors of the immune response and are essential for host responses to Streptococcus pneumoniae. Changes in lipid metabolism in AM can alter cellular function and biology. Impaired metabolism can contribute to excessive lipid accumulation and pro-inflammatory signaling. Our current study was designed to examine the role of cholesterol 25-hydroxylase (Ch25h), a redox enzyme that catalyzes the oxidation of cholesterol to 25-hydroxycholesterol (25-HC), in modulating AM responses in the aged lung during S. pneumoniae infection. Methods To observe the impact of aging on Ch25h expression in AM during infection, in vitro and in vivo murine models of S. pneumoniae were used. Results At baseline and in response to infection, cholesterol metabolism significantly altered in aged AM, which corresponded with increased lipid droplet formation. In vitro, treatment of aged macrophages with Ch25 h-specific siRNA improved S. pneumoniae clearance and enhanced phagocytic receptor expression. In vivo siRNA targeting significantly reduced Ch25h expression in aged lungs and improved clinical parameters during S. pneumoniae infection. Reduction of Ch25h was associated with changes in phagocytosis and antibacterial signaling, correlated with changes in cholesterol metabolism, and increased S. pneumoniae clearance. Discussion The results of our current study demonstrate that Ch25h plays an essential role in modulating aged AM responses to S. pneumoniae.
Collapse
Affiliation(s)
- David G. Thomas
- Department of Medicine, Pulmonary and Critical Care, Weill Cornell Medicine, New York, NY, United States
- New York-Presbyterian Hospital/Weill Cornell Medicine, New York, NY, United States
| | - Jianjun Yang
- Department of Medicine, Pulmonary and Critical Care, Weill Cornell Medicine, New York, NY, United States
| | - Soo Jung Cho
- Department of Medicine, Pulmonary and Critical Care, Weill Cornell Medicine, New York, NY, United States
- New York-Presbyterian Hospital/Weill Cornell Medicine, New York, NY, United States
| | - Heather Stout-Delgado
- Department of Medicine, Pulmonary and Critical Care, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
7
|
Konieczna-Wolska K, Caratis F, Opiełka M, Biernacki K, Urbanowicz K, Klimaszewska J, Pobiarzyn P, Krajewski O, Demkowicz S, Smoleński RT, Karaszewski B, Seuwen K, Rutkowska A. Accelerated remyelination and immune modulation by the EBI2 agonist 7α,25-dihydroxycholesterol analogue in the cuprizone model. Biomed Pharmacother 2024; 181:117653. [PMID: 39489122 DOI: 10.1016/j.biopha.2024.117653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/15/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024] Open
Abstract
Research indicates a role for EBI2 receptor in remyelination, demonstrating that its deficiency or antagonism inhibits this process. However, activation of EBI2 with its endogenous ligand, oxysterol 7α,25-dihydroxycholesterol (7α,25OHC), does not enhance remyelination beyond the levels observed in spontaneously remyelinating tissue. We hypothesized that the short half-life of the natural ligand might explain this lack of beneficial effects and tested a synthetic analogue, CF3-7α,25OHC, in the cuprizone model. The data showed that extending the bioavailability of 7α,25OHC is sufficient to accelerate remyelination in vivo. Moreover, the analogue, in contrast to the endogenous ligand, upregulated brain expression of Ebi2 and the synthesis of 15 lipids in the mouse corpus callosum. Mechanistically, the increased concentration of oxysterol likely disrupted its gradient in demyelinated areas of the brain, leading to the dispersion of infiltrating EBI2-expressing immune cells rather than their accumulation in demyelinated regions. Remarkably, the analogue CF3-7α,25OHC markedly decreased the lymphocyte and monocyte counts mimicking the key mechanism of action of some of the most effective disease-modifying therapies for multiple sclerosis. Furthermore, the Cd4+ transcripts in the cerebellum and CD4+ cell number in the corpus callosum were reduced compared to vehicle-treated mice. These findings suggest a mechanism by which EBI2/7α,25OHC signalling modulates the immune response and accelerates remyelination in vivo.
Collapse
Affiliation(s)
- Klaudia Konieczna-Wolska
- Brain Diseases Centre, Medical University of Gdańsk, Gdańsk, Poland; Tri-City Central Animal Laboratory Research and Service Center, Medical University of Gdańsk, Gdańsk, Poland
| | - Fionä Caratis
- Department of Anatomy and Neurobiology, Medical University of Gdańsk, Gdańsk, Poland; Department of Biochemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - Mikołaj Opiełka
- Brain Diseases Centre, Medical University of Gdańsk, Gdańsk, Poland; Department of Biochemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - Karol Biernacki
- Department of Organic Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | | | - Joanna Klimaszewska
- Department of Laboratory Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Piotr Pobiarzyn
- Brain Diseases Centre, Medical University of Gdańsk, Gdańsk, Poland
| | - Oliwier Krajewski
- Department of Anatomy and Neurobiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Sebastian Demkowicz
- Department of Organic Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | | | - Bartosz Karaszewski
- Brain Diseases Centre, Medical University of Gdańsk, Gdańsk, Poland; Department of Adult Neurology, Medical University of Gdańsk and University Clinical Center, Gdańsk, Poland
| | - Klaus Seuwen
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Aleksandra Rutkowska
- Brain Diseases Centre, Medical University of Gdańsk, Gdańsk, Poland; Department of Anatomy and Neurobiology, Medical University of Gdańsk, Gdańsk, Poland.
| |
Collapse
|
8
|
Bhattacharjee A, Kar S, Ojha PK. First report on chemometrics-driven multilayered lead prioritization in addressing oxysterol-mediated overexpression of G protein-coupled receptor 183. Mol Divers 2024; 28:4199-4220. [PMID: 38460065 DOI: 10.1007/s11030-024-10811-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/12/2024] [Indexed: 03/11/2024]
Abstract
Contemporary research has convincingly demonstrated that upregulation of G protein-coupled receptor 183 (GPR183), orchestrated by its endogenous agonist, 7α,25-dihydroxyxcholesterol (7α,25-OHC), leads to the development of cancer, diabetes, multiple sclerosis, infectious, and inflammatory diseases. A recent study unveiled the cryo-EM structure of 7α,25-OHC bound GPR183 complex, presenting an untapped opportunity for computational exploration of potential GPR183 inhibitors, which served as our inspiration for the current work. A predictive and validated two-dimensional QSAR model using genetic algorithm (GA) and multiple linear regression (MLR) on experimental GPR183 inhibition data was developed. QSAR study highlighted that structural features like dissimilar electronegative atoms, quaternary carbon atoms, and CH2RX fragment (X: heteroatoms) influence positively, while the existence of oxygen atoms with a topological separation of 3, negatively affects GPR183 inhibitory activity. Post assessment of true external set prediction capability, the MLR model was deployed to screen 12,449 DrugBank compounds, followed by a screening pipeline involving molecular docking, druglikeness, ADMET, protein-ligand stability assessment using deep learning algorithm, molecular dynamics, and molecular mechanics. The current findings strongly evidenced DB05790 as a potential lead for prospective interference of oxysterol-mediated GPR183 overexpression, warranting further in vitro and in vivo validation.
Collapse
Affiliation(s)
- Arnab Bhattacharjee
- Drug Discovery and Development Laboratory (DDD Lab), Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Supratik Kar
- Chemometrics and Molecular Modeling Laboratory, Department of Chemistry and Physics, Kean University, 1000 Morris Avenue, Union, NJ, 07083, USA
| | - Probir Kumar Ojha
- Drug Discovery and Development Laboratory (DDD Lab), Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
9
|
von Voss L, Arora T, Assis J, Kuentzel KB, Arfelt KN, Nøhr MK, Grevengoed TJ, Arumugam M, Mandrup-Poulsen T, Rosenkilde MM. Sexual Dimorphism in the Immunometabolic Role of Gpr183 in Mice. J Endocr Soc 2024; 8:bvae188. [PMID: 39545055 PMCID: PMC11561910 DOI: 10.1210/jendso/bvae188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Indexed: 11/17/2024] Open
Abstract
Context Excessive eating and intake of a Western diet negatively affect the intestinal immune system, resulting in compromised glucose homeostasis and lower gut bacterial diversity. The G protein-coupled receptor GPR183 regulates immune cell migration and intestinal immune response and has been associated with tuberculosis, type 1 diabetes, and inflammatory bowel diseases. Objective We hypothesized that with these implications, GPR183 has an important immunometabolic role and investigated this using a global Gpr183 knockout mouse model. Methods Wild-type (WT) and Gpr183-deficient (Gpr183-/-) mice were fed a high-fat, high-sucrose diet (HFSD) for 15 weeks. We investigated changes in weight, body composition, fecal immunoglobulin A (IgA) levels, fecal microbiome, and glucose tolerance before and after the diet. Macrophage infiltration into visceral fat was determined by flow cytometry, and hepatic gene expression was measured. Results A sexual dimorphism was discovered, whereby female Gpr183-/- mice showed adverse metabolic outcomes compared to WT counterparts with inferior glucose tolerance, lower fecal IgA levels, and increased macrophage infiltration in visceral fat. In contrast, male Gpr183-/- mice had significantly lower fasting blood glucose after diet than male WT mice. Liver gene expression showed reduced inflammation and macrophage markers in Gpr183-/- livers, regardless of sex, while the pancreatic islet area did not differ between the groups. No conclusive differences were found after microbiome sequencing. Conclusion Gpr183 maintains metabolic homeostasis in female but not in male mice independent of diet. If confirmed in humans, future therapy targeting GPR183 should consider this sexual dimorphism.
Collapse
Affiliation(s)
- Liv von Voss
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, DK 2200 Copenhagen, Denmark
| | - Tulika Arora
- Novo Nordisk Foundation Center for Basic Metabolic Research and Medical Sciences, University of Copenhagen, DK 2200 Copenhagen, Denmark
| | - Juliana Assis
- Novo Nordisk Foundation Center for Basic Metabolic Research and Medical Sciences, University of Copenhagen, DK 2200 Copenhagen, Denmark
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Department of Immunotechnology, Lund University, SE 223 63 Lund, Sweden
| | - Katharina B Kuentzel
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, DK 2200 Copenhagen, Denmark
| | - Kristine N Arfelt
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, DK 2200 Copenhagen, Denmark
| | - Mark K Nøhr
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, DK 2200 Copenhagen, Denmark
| | - Trisha J Grevengoed
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, DK 2200 Copenhagen, Denmark
| | - Manimozhiyan Arumugam
- Novo Nordisk Foundation Center for Basic Metabolic Research and Medical Sciences, University of Copenhagen, DK 2200 Copenhagen, Denmark
| | - Thomas Mandrup-Poulsen
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, DK 2200 Copenhagen, Denmark
| | - Mette M Rosenkilde
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, DK 2200 Copenhagen, Denmark
| |
Collapse
|
10
|
Back P, Yu M, Modaresahmadi S, Hajimirzaei S, Zhang Q, Islam MR, Schwendeman AA, La-Beck NM. Immune Implications of Cholesterol-Containing Lipid Nanoparticles. ACS NANO 2024; 18:28480-28501. [PMID: 39388645 PMCID: PMC11505898 DOI: 10.1021/acsnano.4c06369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024]
Abstract
The majority of clinically approved nanoparticle-mediated therapeutics are lipid nanoparticles (LNPs), and most of these LNPs are liposomes containing cholesterol. LNP formulations significantly alter the drug pharmacokinetics (PK) due to the propensity of nanoparticles for uptake by macrophages. In addition to readily engulfing LNPs, the high expression of cholesterol hydroxylases and reactive oxygen species (ROS) in macrophages suggests that they will readily produce oxysterols from LNP-associated cholesterol. Oxysterols are a heterogeneous group of cholesterol oxidation products that have potent immune modulatory effects. Oxysterols are implicated in the pathogenesis of atherosclerosis and certain malignancies; they have also been found in commercial liposome preparations. Yet, the in vivo metabolic fate of LNP-associated cholesterol remains unclear. We review herein the mechanisms of cellular uptake, trafficking, metabolism, and immune modulation of endogenous nanometer-sized cholesterol particles (i.e., lipoproteins) that are also relevant for cholesterol-containing nanoparticles. We believe that it would be imperative to better understand the in vivo metabolic fate of LNP-associated cholesterol and the immune implications for LNP-therapeutics. We highlight critical knowledge gaps that we believe need to be addressed in order to develop safer and more efficacious lipid nanoparticle delivery systems.
Collapse
Affiliation(s)
- Patricia
Ines Back
- Department
of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of
Pharmacy, Texas Tech University Health Sciences
Center, Abilene, Texas 79601, United States
| | - Minzhi Yu
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, Michigan 48109, United States
| | - Shadan Modaresahmadi
- Department
of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of
Pharmacy, Texas Tech University Health Sciences
Center, Abilene, Texas 79601, United States
| | - Sahelosadat Hajimirzaei
- Department
of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of
Pharmacy, Texas Tech University Health Sciences
Center, Abilene, Texas 79601, United States
| | - Qisheng Zhang
- Division
of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Md Rakibul Islam
- Department
of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of
Pharmacy, Texas Tech University Health Sciences
Center, Abilene, Texas 79601, United States
| | - Anna A. Schwendeman
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, Michigan 48109, United States
- Biointerfaces
Institute, University of Michigan, North
Campus Research Complex, 2800 Plymouth Road, Ann Arbor, Michigan 48109, United States
| | - Ninh M. La-Beck
- Department
of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of
Pharmacy, Texas Tech University Health Sciences
Center, Abilene, Texas 79601, United States
- Department
of Pharmacy Practice, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, Texas 79601, United States
| |
Collapse
|
11
|
Chen X, Ouyang L, Jia S, Zhao M. Oxysterols contribute to immune cell recruitment in SLE skin lesions. Arthritis Res Ther 2024; 26:181. [PMID: 39438997 PMCID: PMC11494867 DOI: 10.1186/s13075-024-03414-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Abnormal oxysterol metabolism has been observed in the peripheral blood of SLE patients, but its role in systemic lupus erythematosus (SLE) skin lesions remains unclear. METHODS Targeted oxidized lipid metabolomics analysis using liquid chromatography-mass spectrometry (LC-MS) was performed to quantify oxysterols in SLE skin lesions. Immunohistochemical staining and single-cell sequencing data analysis confirmed the upregulation of oxysterol-encoding enzymes CH25H and CYP7B1. The impact on fibroblast-mediated PBMCs chemotaxis was assessed using a transwell chamber. RESULTS We identified aberrant oxidized cholesterol metabolism in SLE skin lesions, characterized by elevated levels of 7-ketocholesterol, 5α-6α-cholestane-3β,5α,6β-triol, and so on. Fibroblasts were the primary cells expressing oxysterol-encoding genes, with CH25H and CYP7B1 expression upregulated via the IL-1β-mediated p38 MAPK and NFκB pathways. Notably, IL-1β-stimulated fibroblasts demonstrated enhanced PBMCs recruitment, which was attenuated by a GPR183 inhibitor. CONCLUSION Our findings reveal a potential mechanism by which fibroblasts contribute to immune cell recruitment in SLE skin lesions by expression of CH25H and CYP7B1. This study underscores the significance of oxysterol metabolism in SLE skin lesion pathogenesis and highlights potential therapeutic targets for SLE skin lesion treatment.
Collapse
Affiliation(s)
- Xiaoyun Chen
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Lianlian Ouyang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Sujie Jia
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China.
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China.
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
| |
Collapse
|
12
|
Chu Q, Li Y, Wu J, Gao Y, Guo X, Li J, Lv H, Liu M, Tang W, Zhan P, Zhang T, Hu H, Liu H, Sun J, Wang X, Yi F. Oxysterol Sensing Through GPR183 Triggers Endothelial Senescence in Hypertension. Circ Res 2024; 135:708-721. [PMID: 39176657 DOI: 10.1161/circresaha.124.324722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Despite endothelial dysfunction being an initial step in the development of hypertension and associated cardiovascular/renal injuries, effective therapeutic strategies to prevent endothelial dysfunction are still lacking. GPR183 (G protein-coupled receptor 183), a recently identified G protein-coupled receptor for oxysterols and hydroxylated metabolites of cholesterol, has pleiotropic roles in lipid metabolism and immune responses. However, the role of GPR183 in the regulation of endothelial function remains unknown. METHODS Endothelial-specific GPR183 knockout mice were generated and used to examine the role of GPR183 in endothelial senescence by establishing 2 independent hypertension models: desoxycorticosterone acetate/salt-induced and Ang II (angiotensin II)-induced hypertensive mice. Echocardiography, transmission electron microscopy, blood pressure measurement, vasorelaxation response experiments, flow cytometry analysis, and chromatin immunoprecipitation analysis were performed in this study. RESULTS Endothelial GPR183 was significantly induced in hypertensive mice, which was further confirmed in renal biopsies from subjects with hypertensive nephropathy. Endothelial-specific deficiency of GPR183 markedly alleviated cardiovascular and renal injuries in hypertensive mice. Moreover, we found that GPR183 regulated endothelial senescence in both hypertensive mice and aged mice. Mechanistically, GPR183 disrupted circadian signaling by inhibiting PER1 (period circadian regulator 1) expression, thereby facilitating endothelial senescence and dysfunction through the cAMP (cyclic adenosine monophosphate)/PKA (protein kinase A)/CREB (cAMP-response element binding protein) signaling pathway. Importantly, pharmacological inhibition of the oxysterol-GPR183 axis by NIBR189 or clotrimazole ameliorated endothelial senescence and cardiovascular/renal injuries in hypertensive mice. CONCLUSIONS This study discovers a previously unrecognized role of GPR183 in promoting endothelial senescence. Pharmacological targeting of GPR183 may be an innovative therapeutic strategy for hypertension and its associated complications.
Collapse
Affiliation(s)
- Qingqing Chu
- Department of Pharmacology, School of Basic Medical Sciences (Q.C., Y.L., J.W., Y.G., X.G., J.L., H. Lv, M.L., X.W., F.Y.), Shandong University, Jinan, China
| | - Yujia Li
- Department of Pharmacology, School of Basic Medical Sciences (Q.C., Y.L., J.W., Y.G., X.G., J.L., H. Lv, M.L., X.W., F.Y.), Shandong University, Jinan, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital (Y.L., F.Y.), Shandong University, Jinan, China
| | - Jichao Wu
- Department of Pharmacology, School of Basic Medical Sciences (Q.C., Y.L., J.W., Y.G., X.G., J.L., H. Lv, M.L., X.W., F.Y.), Shandong University, Jinan, China
| | - Yanjiao Gao
- Department of Pharmacology, School of Basic Medical Sciences (Q.C., Y.L., J.W., Y.G., X.G., J.L., H. Lv, M.L., X.W., F.Y.), Shandong University, Jinan, China
| | - Xiangyun Guo
- Department of Pharmacology, School of Basic Medical Sciences (Q.C., Y.L., J.W., Y.G., X.G., J.L., H. Lv, M.L., X.W., F.Y.), Shandong University, Jinan, China
| | - Jing Li
- Department of Pharmacology, School of Basic Medical Sciences (Q.C., Y.L., J.W., Y.G., X.G., J.L., H. Lv, M.L., X.W., F.Y.), Shandong University, Jinan, China
| | - Hang Lv
- Department of Pharmacology, School of Basic Medical Sciences (Q.C., Y.L., J.W., Y.G., X.G., J.L., H. Lv, M.L., X.W., F.Y.), Shandong University, Jinan, China
| | - Min Liu
- Department of Pharmacology, School of Basic Medical Sciences (Q.C., Y.L., J.W., Y.G., X.G., J.L., H. Lv, M.L., X.W., F.Y.), Shandong University, Jinan, China
| | - Wei Tang
- Department of Pathogenic Biology, School of Basic Medical Sciences (W.T.), Shandong University, Jinan, China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences (P.Z.), Shandong University, Jinan, China
| | - Tao Zhang
- Department of Biostatistics, School of Public Health (T.Z.), Shandong University, Jinan, China
| | - Huili Hu
- Department of Systems Biomedicine and Research Center of Stem Cell and Regenerative Medicine, School of Basic Medical Sciences (H.H.), Shandong University, Jinan, China
| | - Hong Liu
- State Key Laboratory of Crystal Materials (H. Liu), Shandong University, Jinan, China
| | - Jinpeng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences (J.S.), Shandong University, Jinan, China
| | - Xiaojie Wang
- Department of Pharmacology, School of Basic Medical Sciences (Q.C., Y.L., J.W., Y.G., X.G., J.L., H. Lv, M.L., X.W., F.Y.), Shandong University, Jinan, China
| | - Fan Yi
- Department of Pharmacology, School of Basic Medical Sciences (Q.C., Y.L., J.W., Y.G., X.G., J.L., H. Lv, M.L., X.W., F.Y.), Shandong University, Jinan, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital (Y.L., F.Y.), Shandong University, Jinan, China
| |
Collapse
|
13
|
Bai J, Kato A, Hulse KE, Wechsler JB, Gujar V, Poposki JA, Harmon R, Iwasaki N, Wang BF, Huang JH, Stevens WW, Conley DB, Welch KC, Kern RC, Peters AT, Eisenbarth SC, Schleimer RP, Tan BK. Increased autoreactivity and maturity of EBI2+ antibody-secreting cells from nasal polyps. JCI Insight 2024; 9:e177729. [PMID: 39253973 PMCID: PMC11385095 DOI: 10.1172/jci.insight.177729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 07/18/2024] [Indexed: 09/11/2024] Open
Abstract
Elevated numbers of antibody-secreting cells (ASCs) and anti-double-stranded DNA (anti-dsDNA) antibodies are found in nasal polyp (NP) tissue. The presence of anti-dsDNA IgG in tissue prospectively predicts recurrent NP but the characteristics of the source ASCs are unknown. Here, we investigated whether NP B cells expressing the extrafollicular marker EBI2 have increased propensity for autoantibody production and evaluated the molecular characteristics of NP ASCs. NPs showed increased frequencies of anti-dsDNA IgG and total IgG ASCs compared with tonsils, with more pronounced differences among EBI2+ cells. In NPs, EBI2+ cells were frequently double negative (IgD-CD27-) and ASCs. Single-cell RNA-Seq analysis of tonsils and NPs revealed substantial differences in B lineage composition, including differences in percentages of ASCs, germinal centers, proliferative cells, and non-ASCs. NPs exhibited higher expression of specific isotypes (IGHE, IGHA1, IGHA2, and IGHG4) and mature plasma genes, including SDC1 and XBP1, than tonsils. Gene Ontology biological processes indicated upregulated NF-κB and downregulated apoptosis pathways in NP ASCs. Together, these data indicate that NP EBI2+ ASCs secret increased total and anti-dsDNA IgG compared with those from tonsils and had molecular features of mature plasma cell differentiation.
Collapse
Affiliation(s)
| | - Atsushi Kato
- Department of Otolaryngology
- Division of Allergy and Immunology, Department of Medicine, and
| | | | - Joshua B. Wechsler
- Departments of Pediatrics and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Vikram Gujar
- Department of Anatomy and Cell Biology, Oklahoma State University, Tulsa, Oklahoma, USA
| | | | | | | | - Bao-Feng Wang
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Wuhan, China
| | | | - Whitney W. Stevens
- Department of Otolaryngology
- Division of Allergy and Immunology, Department of Medicine, and
| | | | | | | | - Anju T. Peters
- Department of Otolaryngology
- Division of Allergy and Immunology, Department of Medicine, and
| | | | - Robert P. Schleimer
- Department of Otolaryngology
- Division of Allergy and Immunology, Department of Medicine, and
| | - Bruce K. Tan
- Department of Otolaryngology
- Division of Allergy and Immunology, Department of Medicine, and
| |
Collapse
|
14
|
Sajkowska JJ, Tsang CH, Kozielewicz P. Application of FRET- and BRET-based live-cell biosensors in deorphanization and ligand discovery studies on orphan G protein-coupled receptors. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100174. [PMID: 39084335 DOI: 10.1016/j.slasd.2024.100174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Bioluminescence- and fluorescence-based resonance energy transfer assays have gained considerable attention in pharmacological research as high-throughput scalable tools applicable to drug discovery. To this end, G protein-coupled receptors represent the biggest target class for marketed drugs, and among them, orphan G protein-coupled receptors have the biggest untapped therapeutic potential. In this review, the cases where biophysical methods, BRET and FRET, were employed for deorphanization and ligand discovery studies on orphan G protein-coupled receptors are listed and discussed.
Collapse
Affiliation(s)
- Joanna J Sajkowska
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden; Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland; Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Choi Har Tsang
- Department of Physiology and Pharmacology, Molecular Pharmacology of GPCRs, Karolinska Institute, Stockholm, Sweden
| | - Paweł Kozielewicz
- Department of Physiology and Pharmacology, Molecular Pharmacology of GPCRs, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
15
|
Song H, Lv A, Zhu Z, Li R, Zhao Q, Yu X, Jiang J, Lin X, Zhang C, Li R, Yan Y, Chen W, Wang N, Fu Y. CYP7B1 deficiency impairs myeloid cell activation in autoimmune disease of the central nervous system. PNAS NEXUS 2024; 3:pgae334. [PMID: 39262855 PMCID: PMC11388006 DOI: 10.1093/pnasnexus/pgae334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/29/2024] [Indexed: 09/13/2024]
Abstract
Dysregulation of cholesterol metabolism underlies neurodegenerative disease and is increasingly implicated in neuroinflammatory diseases, such as multiple sclerosis (MS). Cytochrome P450 family 7 subfamily B member 1 (CYP7B1) is a key enzyme in alternative cholesterol metabolism. A recessive mutation in the gene CYP7B1 is known to cause a neurodegenerative disease, hereditary spastic paraplegia type 5 and oxysterol accumulation. However, the role of CYP7B1 in neuroinflammation has been little revealed. In this study, we induced experimental autoimmune encephalomyelitis (EAE), as a murine model of MS, using CYP7B1 homozygous knockout (KO) mice. We found that CYP7B1 deficiency can significantly attenuate EAE severity. CYP7B1 deficiency is sufficient to reduce leukocyte infiltration into the central nervous system, suppress proliferation of pathogenic CD4+ T cells, and decrease myeloid cell activation during EAE. Additionally, live-animal imaging targeting translocator protein expression, an outer mitochondrial membrane protein biomarker of neuroinflammation, showed that CYP7B1 deficiency results in suppressed neuroinflammation. Using human monocyte-derived microglia-like cellular disease model and primary microglia of CYP7B1 KO mice, we also found that activation of microglia of CYP7B1 deficiency was impaired. These cumulative results suggest that CYP7B1 can regulate neuroinflammation, thus providing potential new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Huanhuan Song
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
| | - Aowei Lv
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
| | - Zhibao Zhu
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
| | - Runyun Li
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
| | - Qiuping Zhao
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
| | - Xintong Yu
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
| | - Junyi Jiang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
| | - Xiang Lin
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Cunjin Zhang
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Rui Li
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
- Institute of Immunotherapy, Fujian Medical University, Fuzhou 350122, China
| | - Yaping Yan
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (the Ministry of Education), National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710000, China
| | - Wanjin Chen
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Ning Wang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Ying Fu
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| |
Collapse
|
16
|
Cinti I, Vezyrgianni K, Denton AE. Unravelling the contribution of lymph node fibroblasts to vaccine responses. Adv Immunol 2024; 164:1-37. [PMID: 39523027 DOI: 10.1016/bs.ai.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Vaccination is one of the most effective medical interventions, saving millions of lives and reducing the morbidity of infections across the lifespan, from infancy to older age. The generation of plasma cells and memory B cells that produce high affinity class switched antibodies is central to this protection, and these cells are the ultimate output of the germinal centre response. Optimal germinal centre responses require different immune cells to interact with one another in the right place and at the right time and this delicate cellular ballet is coordinated by a network of interconnected stromal cells. In this review we will discuss the various types of lymphoid stromal cells and how they coordinate immune cell homeostasis, the induction and maintenance of the germinal centre response, and how this is disorganised in older bodies.
Collapse
Affiliation(s)
- Isabella Cinti
- Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Kassandra Vezyrgianni
- Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Alice E Denton
- Department of Immunology and Inflammation, Imperial College London, London, United Kingdom.
| |
Collapse
|
17
|
Frąk M, Grenda A, Krawczyk P, Kuźnar-Kamińska B, Pazdrowski P, Kędra K, Chmielewska I, Milanowski J. The influence of nutritional status, lipid profile, leptin concentration and polymorphism of genes encoding leptin and neuropeptide Y on the effectiveness of immunotherapy in advanced NSCLC patients. BMC Cancer 2024; 24:937. [PMID: 39090596 PMCID: PMC11295594 DOI: 10.1186/s12885-024-12716-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
INTRODUCTION Neuropeptide Y is a neurotransmitter in the nervous system and belongs to the orexigenic system that increases appetite. Its excessive secretion leads to obesity. Leptin is a pro-inflammatory adipokine (produced in adipose tissue) induced in obesity and may mediate increased antitumor immunity in obesity (including the promotion of M1 macrophages). Leptin and neuropeptide Y gene polymorphisms, causing increased leptin levels and the occurrence of obesity, and lipid profile disorders, may increase the effectiveness of immunotherapy. MATERIALS AND METHODS In 121 patients with advanced NSCLC without mutations in the EGFR gene and rearrangements of the ALK and ROS1 genes, undergoing immunotherapy (1st and 2nd line of treatment) or chemoimmunotherapy (1st line of treatment), we assessed BMI, lipid profile, PD-L1 expression on cancer cells using the immunohistochemical method (clone SP263 antibody), leptin concentration in blood serum by ELISA, polymorphisms in the promoter region of the genes for leptin (LEP) and neuropeptide Y (NPY) by real-time PCR. RESULTS Leptin concentration was significantly higher in obese patients than in patients with normal or low weight (p = 0.00003) and in patients with disease stabilization compared to patients with progression observed during immunotherapy (p = 0.012). Disease control occurred significantly more often in patients with the GA or AA genotype than patients with the GG genotype in the rs779039 polymorphism of the LEP gene. The median PFS in the entire study group was five months (95% CI: 3-5.5), and the median OS was 12 months (95% CI: 8-16). Median PFS was highest in patients with TPS ≥ 50% (6.5 months) and in obese patients (6.6 months). Obese patients also had a slightly longer median OS compared to other patients (23.8 vs. 13 months). The multivariate Cox logistic regression test showed that the only factor reducing the risk of progression was TPS ≥ 50% (HR = 0.6068, 95% CI: 0.4001-0.9204, p = 0, 0187), and the only factor reducing the risk of death was high leptin concentration (HR = 0.6743, 95% CI: 0.4243-1.0715, p = 0.0953). CONCLUSION Assessment of nutritional status, serum leptin concentration and polymorphisms in the LEP gene may be of additional importance in predicting the effectiveness of immunotherapy and chemoimmunotherapy in patients with advanced NSCLC.
Collapse
Affiliation(s)
- Małgorzata Frąk
- Department of Pneumonology, Oncology and Allergology Medical, University of Lublin, Jaczewskiego 8, Lublin, 20-954, Poland.
| | - Anna Grenda
- Department of Pneumonology, Oncology and Allergology Medical, University of Lublin, Jaczewskiego 8, Lublin, 20-954, Poland.
| | - Paweł Krawczyk
- Department of Pneumonology, Oncology and Allergology Medical, University of Lublin, Jaczewskiego 8, Lublin, 20-954, Poland
| | - Barbara Kuźnar-Kamińska
- Department of Pulmonology, Allergology and Pulmonary Oncology, Poznan University of Medical Sciences, Poznań, Poland
| | - Paweł Pazdrowski
- Department of Head, Neck Surgery and Laryngological Oncology, Poznan University of Medical Sciences, Poznań, Poland
| | - Karolina Kędra
- Institute of Physical Chemistry, Polish Academy of Sciences in Warsaw, Warsaw, Poland
| | - Izabela Chmielewska
- Department of Pneumonology, Oncology and Allergology Medical, University of Lublin, Jaczewskiego 8, Lublin, 20-954, Poland
| | - Janusz Milanowski
- Department of Pneumonology, Oncology and Allergology Medical, University of Lublin, Jaczewskiego 8, Lublin, 20-954, Poland
| |
Collapse
|
18
|
Guigues A, Gimenez S, Mettling C, Maurel D, Doumazane E, Prézeau L, François V, Corbeau P. The EBI2 receptor is coexpressed with CCR5 in CD4 + T cells and boosts HIV-1 R5 replication. AIDS 2024; 38:1449-1459. [PMID: 38770825 DOI: 10.1097/qad.0000000000003931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
OBJECTIVE CCR5, a G protein-coupled receptor (GPCR), is used by most HIV strains as a coreceptor. In this study, we looked for other GPCR able to modify HIV-1 infection. DESIGN We analyzed the effects of one GPCR coexpressed with CCR5, EBI2, on HIV-1 replicative cycle. METHODS We identified GPCR expressed in primary CD4 + CCR5 + T cells by multi-RT-qPCR. We studied GPCR dimerization by FRET technology. Cell lines expressing EBI2 were established by transduction with HIV vectors. HIV-1 entry was quantified with virions harboring β-lactamase fused to the viral protein vpr, early and late HIV-1 transcriptions by qPCR, NFkB nuclear activation by immunofluorescence and transfection, and viral production by measuring p24 concentration in culture supernatant by ELISA. RESULTS We showed that EBI2 is naturally expressed in primary CD4 + CCR5 + T cells, and that CCR5 and EBI2 heterodimerize. We observed that this coexpression reduced viral entry by 50%. The amount of HIV reverse transcripts was similar in cells expressing or not EBI2. Finally, the presence of EBI2 induced the translocation of NFkB and activated HIV-1 genome expression. Globally, the result was a drastic HIV-1 R5, but not X4, overproduction in EBI2 -transduced cells. CONCLUSION EBI2 expression in CD4 + CCR5 + cells boosts HIV-1 R5 productive infection. As the natural ligand for EBI2 is present in blood and lymphoid tissues, the constant EBI2 activation might increase HIV replication in CD4 + T cells. It might be of interest to test the effect of EBI2 antagonists on the residual viral production persisting in patients aviremic under treatment.
Collapse
Affiliation(s)
- Adeline Guigues
- Institut de Génétique Humaine, CNRS-Université de Montpellier UMR9002
| | - Sandrine Gimenez
- Institut de Génétique Humaine, CNRS-Université de Montpellier UMR9002
| | - Clément Mettling
- Institut de Génétique Humaine, CNRS-Université de Montpellier UMR9002
| | - Damien Maurel
- ARPEGE Pharmacology Screening Interactome Platform Facility
| | - Etienne Doumazane
- Institut de Génomique Fonctionnelle, CNRS-UMR5203, INSERM-U661, Universités Montpellier 1 & 2
- Paris Brain Institute (ICM), Sorbonne Université, INSERM U1127, CNRS UMR7225, Paris, France
| | - Laurent Prézeau
- Institut de Génomique Fonctionnelle, CNRS-UMR5203, INSERM-U661, Universités Montpellier 1 & 2
| | - Vincent François
- Institut de Génétique Humaine, CNRS-Université de Montpellier UMR9002
| | - Pierre Corbeau
- Institut de Génétique Humaine, CNRS-Université de Montpellier UMR9002
- Université de Montpellier
- Centre Hospitalier Universitaire Carémeau, UF d'Immunologie, Nîmes Cedex 9
| |
Collapse
|
19
|
Peeters R, Jellusova J. Lipid metabolism in B cell biology. Mol Oncol 2024; 18:1795-1813. [PMID: 38013654 PMCID: PMC11223608 DOI: 10.1002/1878-0261.13560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/30/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023] Open
Abstract
In recent years, the field of immunometabolism has solidified its position as a prominent area of investigation within the realm of immunological research. An expanding body of scientific literature has unveiled the intricate interplay between energy homeostasis, signalling molecules, and metabolites in relation to fundamental aspects of our immune cells. It is now widely accepted that disruptions in metabolic equilibrium can give rise to a myriad of pathological conditions, ranging from autoimmune disorders to cancer. Emerging evidence, although sometimes fragmented and anecdotal, has highlighted the indispensable role of lipids in modulating the behaviour of immune cells, including B cells. In light of these findings, this review aims to provide a comprehensive overview of the current state of knowledge regarding lipid metabolism in the context of B cell biology.
Collapse
Affiliation(s)
- Rens Peeters
- School of Medicine and Health, Institute of Clinical Chemistry and PathobiochemistryTechnical University of MunichGermany
- TranslaTUM, Center for Translational Cancer ResearchTechnical University of MunichGermany
| | - Julia Jellusova
- School of Medicine and Health, Institute of Clinical Chemistry and PathobiochemistryTechnical University of MunichGermany
- TranslaTUM, Center for Translational Cancer ResearchTechnical University of MunichGermany
| |
Collapse
|
20
|
Mahardhika AB, Załuski M, Schoeder CT, Boshta NM, Schabikowski J, Perri F, Łażewska D, Neumann A, Kremers S, Oneto A, Ressemann A, Latacz G, Namasivayam V, Kieć-Kononowicz K, Müller CE. Potent, Selective Agonists for the Cannabinoid-like Orphan G Protein-Coupled Receptor GPR18: A Promising Drug Target for Cancer and Immunity. J Med Chem 2024; 67:9896-9926. [PMID: 38885438 DOI: 10.1021/acs.jmedchem.3c02423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The human orphan G protein-coupled receptor GPR18, activated by Δ9-tetrahydrocannabinol (THC), constitutes a promising drug target in immunology and cancer. However, studies on GPR18 are hampered by the lack of suitable tool compounds. In the present study, potent and selective GPR18 agonists were developed showing low nanomolar potency at human and mouse GPR18, determined in β-arrestin recruitment assays. Structure-activity relationships were analyzed, and selectivity versus cannabinoid (CB) and CB-like receptors was assessed. Compound 51 (PSB-KK1415, EC50 19.1 nM) was the most potent GPR18 agonist showing at least 25-fold selectivity versus CB receptors. The most selective GPR18 agonist 50 (PSB-KK1445, EC50 45.4 nM) displayed >200-fold selectivity versus both CB receptor subtypes, GPR55, and GPR183. The new GPR18 agonists showed minimal species differences, while THC acted as a weak partial agonist at the mouse receptor. The newly discovered compounds represent the most potent and selective GPR18 agonists reported to date.
Collapse
Affiliation(s)
- Andhika B Mahardhika
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
- Research Training Group 1873, University of Bonn, 53127 Bonn, Germany
- Research Training Group 2873, University of Bonn, 53121 Bonn, Germany
| | - Michal Załuski
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Pl 30-688 Kraków, Poland
| | - Clara T Schoeder
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
- Research Training Group 1873, University of Bonn, 53127 Bonn, Germany
| | - Nader M Boshta
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Jakub Schabikowski
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Pl 30-688 Kraków, Poland
| | - Filomena Perri
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
- Research Training Group 1873, University of Bonn, 53127 Bonn, Germany
| | - Dorota Łażewska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Pl 30-688 Kraków, Poland
| | - Alexander Neumann
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
- Research Training Group 1873, University of Bonn, 53127 Bonn, Germany
| | - Sarah Kremers
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Angelo Oneto
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Anastasiia Ressemann
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Pl 30-688 Kraków, Poland
| | - Vigneshwaran Namasivayam
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Pl 30-688 Kraków, Poland
| | - Christa E Müller
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
- Research Training Group 1873, University of Bonn, 53127 Bonn, Germany
- Research Training Group 2873, University of Bonn, 53121 Bonn, Germany
| |
Collapse
|
21
|
Hu L, An K, Zhang Y, Bai C. Exploring the Activation Mechanism of the GPR183 Receptor. J Phys Chem B 2024; 128:6071-6081. [PMID: 38877985 DOI: 10.1021/acs.jpcb.4c02812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
The G protein-coupled receptors (GPCRs) play a pivotal role in numerous biological processes as crucial cell membrane receptors. However, the dynamic mechanisms underlying the activation of GPR183, a specific GPCR, remain largely elusive. To address this, we employed computational simulation techniques to elucidate the activation process and key events associated with GPR183, including conformational changes from inactive to active state, binding interactions with the Gi protein complex, and GDP release. Our findings demonstrate that the association between GPR183 and the Gi protein involves the formation of receptor-specific conformations, the gradual proximity of the Gi protein to the binding pocket, and fine adjustments of the protein conformation, ultimately leading to a stable GPR183-Gi complex characterized by a high energy barrier. The presence of Gi protein partially promotes GPR183 activation, which is consistent with the observation of GPCR constitutive activity test experiments, thus illustrating the reliability of our calculations. Moreover, our study suggests the existence of a stable partially activated state preceding complete activation, providing novel avenues for future investigations. In addition, the relevance of GPR183 for various diseases, such as colitis, the response of eosinophils to Mycobacterium tuberculosis infection, antiviral properties, and pulmonary inflammation, has been emphasized, underscoring its therapeutic potential. Consequently, understanding the activation process of GPR183 through molecular dynamic simulations offers valuable kinetic insights that can aid in the development of targeted therapies.
Collapse
Affiliation(s)
- Linfeng Hu
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, PR China
- Warshel Institute for Computational Biology, Shenzhen, Guangdong 518172, PR China
| | - Ke An
- Chenzhu (MoMeD) Biotechnology Co., Ltd, Hangzhou, Zhejiang 310005, PR China
| | - Yue Zhang
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, PR China
- Warshel Institute for Computational Biology, Shenzhen, Guangdong 518172, PR China
| | - Chen Bai
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, PR China
- Warshel Institute for Computational Biology, Shenzhen, Guangdong 518172, PR China
- Chenzhu (MoMeD) Biotechnology Co., Ltd, Hangzhou, Zhejiang 310005, PR China
| |
Collapse
|
22
|
Xu C, Wang Y, Ni H, Yao M, Cheng L, Lin X. The role of orphan G protein-coupled receptors in pain. Heliyon 2024; 10:e28818. [PMID: 38590871 PMCID: PMC11000026 DOI: 10.1016/j.heliyon.2024.e28818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/10/2024] Open
Abstract
G protein-coupled receptors (GPCRs), which form the largest family of membrane protein receptors in humans, are highly complex signaling systems with intricate structures and dynamic conformations and locations. Among these receptors, a specific subset is referred to as orphan GPCRs (oGPCRs) and has garnered significant interest in pain research due to their role in both central and peripheral nervous system function. The diversity of GPCR functions is attributed to multiple factors, including allosteric modulators, signaling bias, oligomerization, constitutive signaling, and compartmentalized signaling. This review primarily focuses on the recent advances in oGPCR research on pain mechanisms, discussing the role of specific oGPCRs including GPR34, GPR37, GPR65, GPR83, GPR84, GPR85, GPR132, GPR151, GPR160, GPR171, GPR177, and GPR183. The orphan receptors among these receptors associated with central nervous system diseases are also briefly described. Understanding the functions of these oGPCRs can contribute not only to a deeper understanding of pain mechanisms but also offer a reference for discovering new targets for pain treatment.
Collapse
Affiliation(s)
- Chengfei Xu
- Department of Anesthesiology, The Third People's Hospital of Bengbu, Bengbu, 233000, PR China
| | - Yahui Wang
- Department of Anesthesiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, PR China
| | - Huadong Ni
- Department of Anesthesiology and Pain Research Center, Affiliated Hospital of Jiaxing University, Jiaxing, 314000, PR China
| | - Ming Yao
- Department of Anesthesiology and Pain Research Center, Affiliated Hospital of Jiaxing University, Jiaxing, 314000, PR China
| | - Liang Cheng
- Department of Anesthesiology, The Third People's Hospital of Bengbu, Bengbu, 233000, PR China
| | - Xuewu Lin
- Department of Anesthesiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, PR China
| |
Collapse
|
23
|
Roth AT, Philips JA, Chandra P. The role of cholesterol and its oxidation products in tuberculosis pathogenesis. IMMUNOMETABOLISM (COBHAM, SURREY) 2024; 6:e00042. [PMID: 38693938 PMCID: PMC11060060 DOI: 10.1097/in9.0000000000000042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024]
Abstract
Mycobacterium tuberculosis causes tuberculosis (TB), one of the world's most deadly infections. Lipids play an important role in M. tuberculosis pathogenesis. M. tuberculosis grows intracellularly within lipid-laden macrophages and extracellularly within the cholesterol-rich caseum of necrotic granulomas and pulmonary cavities. Evolved from soil saprophytes that are able to metabolize cholesterol from organic matter in the environment, M. tuberculosis inherited an extensive and highly conserved machinery to metabolize cholesterol. M. tuberculosis uses this machinery to degrade host cholesterol; the products of cholesterol degradation are incorporated into central carbon metabolism and used to generate cell envelope lipids, which play important roles in virulence. The host also modifies cholesterol by enzymatically oxidizing it to a variety of derivatives, collectively called oxysterols, which modulate cholesterol homeostasis and the immune response. Recently, we found that M. tuberculosis converts host cholesterol to an oxidized metabolite, cholestenone, that accumulates in the lungs of individuals with TB. M. tuberculosis encodes cholesterol-modifying enzymes, including a hydroxysteroid dehydrogenase, a putative cholesterol oxidase, and numerous cytochrome P450 monooxygenases. Here, we review what is known about cholesterol and its oxidation products in the pathogenesis of TB. We consider the possibility that the biological function of cholesterol metabolism by M. tuberculosis extends beyond a nutritional role.
Collapse
Affiliation(s)
- Andrew T. Roth
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jennifer A. Philips
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Pallavi Chandra
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
24
|
Toral-Rios D, Long JM, Ulrich JD, Yu J, Strickland MR, Han X, Holtzman DM, Cashikar AG, Paul SM. Cholesterol 25-hydroxylase mediates neuroinflammation and neurodegeneration in a mouse model of tauopathy. J Exp Med 2024; 221:e20232000. [PMID: 38442267 PMCID: PMC10908359 DOI: 10.1084/jem.20232000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/03/2024] [Accepted: 02/01/2024] [Indexed: 03/07/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by amyloid plaques and neurofibrillary tangles, in addition to neuroinflammation and changes in brain lipid metabolism. 25-Hydroxycholesterol (25-HC), a known modulator of both inflammation and lipid metabolism, is produced by cholesterol 25-hydroxylase encoded by Ch25h expressed as a "disease-associated microglia" signature gene. However, whether Ch25h influences tau-mediated neuroinflammation and neurodegeneration is unknown. Here, we show that in the absence of Ch25h and the resultant reduction in 25-HC, there is strikingly reduced age-dependent neurodegeneration and neuroinflammation in the hippocampus and entorhinal/piriform cortex of PS19 mice, which express the P301S mutant human tau transgene. Transcriptomic analyses of bulk hippocampal tissue and single nuclei revealed that Ch25h deficiency in PS19 mice strongly suppressed proinflammatory signaling in microglia. Our results suggest a key role for Ch25h/25-HC in potentiating proinflammatory signaling to promote tau-mediated neurodegeneration. Ch25h may represent a novel therapeutic target for primary tauopathies, AD, and other neuroinflammatory diseases.
Collapse
Affiliation(s)
- Danira Toral-Rios
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - Justin M. Long
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, MO, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St Louis, MO, USA
| | - Jason D. Ulrich
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, MO, USA
| | - Jinsheng Yu
- Department of Genetics, Genome Technology Access Center at the McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, USA
| | - Michael R. Strickland
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Xianlin Han
- Department of Medicine, Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - David M. Holtzman
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, MO, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St Louis, MO, USA
| | - Anil G. Cashikar
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, MO, USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St Louis, MO, USA
| | - Steven M. Paul
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, MO, USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
25
|
Zeng R, Fang M, Shen A, Chai X, Zhao Y, Liu M, Zhu L, Rui W, Feng B, Hong L, Ding C, Song Z, Lu W, Zhang A. Discovery of a Highly Potent Oxysterol Receptor GPR183 Antagonist Bearing the Benzo[ d]thiazole Structural Motif for the Treatment of Inflammatory Bowel Disease (IBD). J Med Chem 2024; 67:3520-3541. [PMID: 38417036 DOI: 10.1021/acs.jmedchem.3c01905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Accumulating evidence has demonstrated a critical pathological role of oxysterol receptor GPR183 in various inflammatory and autoimmune diseases, including inflammatory bowel disease (IBD). However, the currently reported GPR183 antagonists are very limited and not qualified for in vivo studies due to their inferior druglike properties. Herein, we conducted a structural elaboration focusing on improving its PK and safety profile based on a reference antagonist NIBR189. Of note, compound 33, bearing an aminobenzothiazole motif, exhibited reduced hERG inhibition, improved PK properties, and robust antagonistic activity (IC50 = 0.82 nM) with high selectivity against GPR183. Moreover, compound 33 displayed strong in vitro antimigration and anti-inflammatory activity in monocytes. Oral administration of compound 33 effectively improved the pathological symptoms of DSS-induced experimental colitis. All of these findings demonstrate that compound 33 is a novel and promising GPR183 antagonist suitable for further investigation to treat IBD.
Collapse
Affiliation(s)
- Ruoqing Zeng
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai 200240, China
| | - Meimiao Fang
- Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Ancheng Shen
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Lingang Laboratory, Shanghai 200210, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai 200240, China
| | - Xiaolei Chai
- Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yumiao Zhao
- Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Lingfeng Zhu
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Weiwei Rui
- Department of General Surgery and Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Bo Feng
- Department of General Surgery and Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Liang Hong
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai 200240, China
| | - Chunyong Ding
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai 200240, China
| | - Zilan Song
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai 200240, China
| | - Weiqiang Lu
- Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Ao Zhang
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Lingang Laboratory, Shanghai 200210, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai 200240, China
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
26
|
He Y, Vinuesa CG. Germinal center versus extrafollicular responses in systemic autoimmunity: Who turns the blade on self? Adv Immunol 2024; 162:109-133. [PMID: 38866437 PMCID: PMC7616122 DOI: 10.1016/bs.ai.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Spontaneously formed germinal centers (GCs) have been reported in most mouse models of human autoimmune disease and autoimmune patients, and have long been considered a source of somatically-mutated and thus high affinity autoantibodies, but their role in autoimmunity is becoming increasingly controversial, particularly in the context of systemic autoimmune diseases like lupus. On the one hand, there is good evidence that some pathogenic lupus antibodies have acquired somatic mutations that increase affinity for self-antigens. On the other hand, recent studies that have genetically prevented GC formation, suggest that GCs are dispensable for systemic autoimmunity, pointing instead to pathogenic extrafollicular (EF) B-cell responses. Furthermore, several lines of evidence suggest germinal centers may in fact be somewhat protective in the context of autoimmunity. Here we review how some of the conflicting evidence arose, and current views on the role of GCs in autoimmunity, outlining mechanisms by which GC may eliminate self-reactivity. We also discuss recent advances in understanding extrafollicular B cell subsets that participate in autoimmunity.
Collapse
Affiliation(s)
- Yuke He
- China-Australia Centre for Personalised Immunology, Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Carola G Vinuesa
- China-Australia Centre for Personalised Immunology, Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China; Francis Crick Institute, London, United Kingdom.
| |
Collapse
|
27
|
Wyss J, Raselli T, Wyss A, Telzerow A, Rogler G, Krupka N, Yilmaz B, Schmidt TSB, Misselwitz B. Development of non-alcoholic steatohepatitis is associated with gut microbiota but not with oxysterol enzymes CH25H, EBI2, or CYP7B1 in mice. BMC Microbiol 2024; 24:69. [PMID: 38418983 PMCID: PMC10900623 DOI: 10.1186/s12866-024-03195-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/11/2024] [Indexed: 03/02/2024] Open
Abstract
Liver steatosis is the most frequent liver disorder and its advanced stage, non-alcoholic steatohepatitis (NASH), will soon become the main reason for liver fibrosis and cirrhosis. The "multiple hits hypothesis" suggests that progression from simple steatosis to NASH is triggered by multiple factors including the gut microbiota composition. The Epstein Barr virus induced gene 2 (EBI2) is a receptor for the oxysterol 7a, 25-dihydroxycholesterol synthesized by the enzymes CH25H and CYP7B1. EBI2 and its ligand control activation of immune cells in secondary lymphoid organs and the gut. Here we show a concurrent study of the microbial dysregulation and perturbation of the EBI2 axis in a mice model of NASH.We used mice with wildtype, or littermates with CH25H-/-, EBI2-/-, or CYP7B1-/- genotypes fed with a high-fat diet (HFD) containing high amounts of fat, cholesterol, and fructose for 20 weeks to induce liver steatosis and NASH. Fecal and small intestinal microbiota samples were collected, and microbiota signatures were compared according to genotype and NASH disease state.We found pronounced differences in microbiota composition of mice with HFD developing NASH compared to mice did not developing NASH. In mice with NASH, we identified significantly increased 33 taxa mainly belonging to the Clostridiales order and/ or the family, and significantly decreased 17 taxa. Using an Elastic Net algorithm, we suggest a microbiota signature that predicts NASH in animals with a HFD from the microbiota composition with moderate accuracy (area under the receiver operator characteristics curve = 0.64). In contrast, no microbiota differences regarding the studied genotypes (wildtype vs knock-out CH25H-/-, EBI2-/-, or CYP7B1-/-) were observed.In conclusion, our data confirm previous studies identifying the intestinal microbiota composition as a relevant marker for NASH pathogenesis. Further, no link of the EBI2 - oxysterol axis to the intestinal microbiota was detectable in the current study.
Collapse
Affiliation(s)
- Jacqueline Wyss
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Tina Raselli
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Annika Wyss
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Anja Telzerow
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Niklas Krupka
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Bahtiyar Yilmaz
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, 3008, Bern, Switzerland
| | - Thomas S B Schmidt
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| | - Benjamin Misselwitz
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
28
|
Wu H, Wu X, Zhao M, Yan J, Li C, Zhang Z, Tang S, Wang R, Fei W. Regulating Cholesterol in Tumorigenesis: A Novel Paradigm for Tumor Nanotherapeutics. Int J Nanomedicine 2024; 19:1055-1076. [PMID: 38322754 PMCID: PMC10844012 DOI: 10.2147/ijn.s439828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/23/2024] [Indexed: 02/08/2024] Open
Abstract
During the past decade, "membrane lipid therapy", which involves the regulation of the structure and function of tumor cell plasma membranes, has emerged as a new strategy for cancer treatment. Cholesterol is an important component of the tumor plasma membrane and serves an essential role in tumor initiation and progression. This review elucidates the role of cholesterol in tumorigenesis (including tumor cell proliferation, invasion/metastasis, drug resistance, and immunosuppressive microenvironment) and elaborates on the potential therapeutic targets for tumor treatment by regulating cholesterol. More meaningfully, this review provides an overview of cholesterol-integrated membrane lipid nanotherapeutics for cancer therapy through cholesterol regulation. These strategies include cholesterol biosynthesis interference, cholesterol uptake disruption, cholesterol metabolism regulation, cholesterol depletion, and cholesterol-based combination treatments. In summary, this review demonstrates the tumor nanotherapeutics based on cholesterol regulation, which will provide a reference for the further development of "membrane lipid therapy" for tumors.
Collapse
Affiliation(s)
- Huifeng Wu
- Department of Urology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Xiaodong Wu
- Department of Gynecologic Oncology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People’s Republic of China
| | - Mengdan Zhao
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People’s Republic of China
| | - Jingjing Yan
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People’s Republic of China
| | - Chaoqun Li
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People’s Republic of China
| | - Zhewei Zhang
- Department of Urology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Sangsang Tang
- Department of Gynecologic Oncology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People’s Republic of China
| | - Rong Wang
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People’s Republic of China
| | - Weidong Fei
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People’s Republic of China
| |
Collapse
|
29
|
Saito H, Nishimura M, Sato R, Yamauchi Y. Quantitative Determination of Cholesterol Hydroxylase Specificities by GC-MS/MS in Living Mammalian Cells. Bio Protoc 2024; 14:e4924. [PMID: 38268974 PMCID: PMC10804311 DOI: 10.21769/bioprotoc.4924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024] Open
Abstract
Cholesterol is oxygenated by a variety of cholesterol hydroxylases; oxysterols play diverse important roles in physiological and pathophysiological conditions by regulating several transcription factors and cell-surface receptors. Each oxysterol has distinct and overlapping functions. The expression of cholesterol hydroxylases is highly regulated, but their physiological and pathophysiological roles are not fully understood. Although the activity of cholesterol hydroxylases has been characterized biochemically using radiolabeled cholesterol as the substrate, their specificities remain to be comprehensively determined quantitatively. To better understand their roles, a highly sensitive method to measure the amount of various oxysterols synthesized by cholesterol hydroxylases in living mammalian cells is required. Our method described here, with gas chromatography coupled with tandem mass spectrometry (GC-MS/MS), can quantitatively determine a series of oxysterols endogenously synthesized by forced expression of one of the four major cholesterol hydroxylases-CH25H, CYP7A1, CYP27A1, and CYP46A1-or induction of CH25H expression by a physiological stimulus. This protocol can also simultaneously measure the amount of intermediate sterols, which serve as markers for cellular cholesterol synthesis activity. Key features • Allows measuring the amount of a variety of oxysterols synthesized endogenously by cholesterol hydroxylases using GC-MS/MS. • Comprehensive and quantitative analysis of cholesterol hydroxylase specificities in living mammalian cells. • Simultaneous quantification of intermediate sterols to assess cholesterol synthesis activity.
Collapse
Affiliation(s)
- Hodaka Saito
- Laboratory of Food Biochemistry, Department of
Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences,
The University of Tokyo, Tokyo, Japan
| | - Mizuki Nishimura
- Laboratory of Food Biochemistry, Department of
Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences,
The University of Tokyo, Tokyo, Japan
| | - Ryuichiro Sato
- Nutri-Life Science Laboratory, Department of Applied
Biological Chemistry, Graduate School of Agricultural and Life Sciences, The
University of Tokyo, Tokyo, Japan
- AMED-CREST, Japan Agency for Medical Research and
Development, Tokyo, Japan
| | - Yoshio Yamauchi
- Laboratory of Food Biochemistry, Department of
Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences,
The University of Tokyo, Tokyo, Japan
- Nutri-Life Science Laboratory, Department of Applied
Biological Chemistry, Graduate School of Agricultural and Life Sciences, The
University of Tokyo, Tokyo, Japan
- AMED-CREST, Japan Agency for Medical Research and
Development, Tokyo, Japan
| |
Collapse
|
30
|
Ksila M, Ghzaiel I, Sassi K, Zarrouk A, Leoni V, Poli G, Rezig L, Pires V, Meziane S, Atanasov AG, Hammami S, Hammami M, Masmoudi-Kouki O, Hamdi O, Jouanny P, Samadi M, Vejux A, Ghrairi T, Lizard G. Therapeutic Applications of Oxysterols and Derivatives in Age-Related Diseases, Infectious and Inflammatory Diseases, and Cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:379-400. [PMID: 38036890 DOI: 10.1007/978-3-031-43883-7_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Oxysterols, resulting from the oxidation of cholesterol, are formed either by autoxidation, enzymatically, or by both processes. These molecules, which are provided in more or less important quantities depending on the type of diet, are also formed in the body and their presence is associated with a normal physiological activity. Their increase and decrease at the cellular level and in biological fluids can have significant consequences on health due or not to the interaction of some of these molecules with different types of receptors but also because oxysterols are involved in the regulation of RedOx balance, cytokinic and non-cytokinic inflammation, lipid metabolism, and induction of cell death. Currently, various pathologies such as age-related diseases, inflammatory and infectious diseases, and several cancers are associated with abnormal levels of oxysterols. Due to the important biological activities of oxysterols, their interaction with several receptors and their very likely implications in several diseases, this review focuses on these molecules and on oxysterol derivatives, which are often more efficient, in a therapeutic context. Currently, several oxysterol derivatives are developed and are attracting a lot of interest.
Collapse
Affiliation(s)
- Mohamed Ksila
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne & Inserm, Dijon, France
- Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules (LR18ES03), Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis, Tunisia
| | - Imen Ghzaiel
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne & Inserm, Dijon, France
- Laboratory of Rangeland Ecosystems and Valorization of Spontaneous Plants and Associated Microorganisms (LR16IRA03), Arid Regions Institute, University of Gabes, Medenine, Tunisia
| | - Khouloud Sassi
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne & Inserm, Dijon, France
| | - Amira Zarrouk
- Laboratory of Rangeland Ecosystems and Valorization of Spontaneous Plants and Associated Microorganisms (LR16IRA03), Arid Regions Institute, University of Gabes, Medenine, Tunisia
- Faculty of Medicine, University of Sousse, Laboratory of Biochemistry, Sousse, Tunisia
| | - Valerio Leoni
- Department of Laboratory Medicine, University of Milano-Bicocca, Azienda Socio Sanitaria Territoriale Brianza ASST-Brianza, Desio Hospital, Desio, Italy
| | - Giuseppe Poli
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, Turin, Italy
| | - Leila Rezig
- University of Carthage, National Institute of Applied Sciences and Technology, LR11ES26, LIP-MB 'Laboratory of Protein Engineering and Bioactive Molecules', Tunis, Tunisia
- University of Carthage, High Institute of Food Industries, El Khadra City, Tunis, Tunisia
| | - Vivien Pires
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne & Inserm, Dijon, France
| | - Smail Meziane
- Institut Européen des Antioxydants (IEA), Neuves-Maisons, France
| | - Atanas G Atanasov
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Magdalenka, Poland
| | - Sonia Hammami
- Laboratory of Rangeland Ecosystems and Valorization of Spontaneous Plants and Associated Microorganisms (LR16IRA03), Arid Regions Institute, University of Gabes, Medenine, Tunisia
- University Hospital Fattouma Bourguiba, Monastir, Tunisia
| | - Mohamed Hammami
- Laboratory of Rangeland Ecosystems and Valorization of Spontaneous Plants and Associated Microorganisms (LR16IRA03), Arid Regions Institute, University of Gabes, Medenine, Tunisia
| | - Olfa Masmoudi-Kouki
- Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules (LR18ES03), Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis, Tunisia
| | - Oumaima Hamdi
- University Hospital Fattouma Bourguiba, Monastir, Tunisia
- Pôle Personnes Agées, CHU de Dijon, Centre de Champmaillot, Dijon Cedex, France
| | - Pierre Jouanny
- Pôle Personnes Agées, CHU de Dijon, Centre de Champmaillot, Dijon Cedex, France
| | - Mohammad Samadi
- Laboratory of Chemistry and Physics Multi-Scale Approach to Complex Environments, Department of Chemistry, University Lorraine, Metz, France
| | - Anne Vejux
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne & Inserm, Dijon, France
| | - Taoufik Ghrairi
- Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules (LR18ES03), Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis, Tunisia
| | - Gérard Lizard
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne & Inserm, Dijon, France.
| |
Collapse
|
31
|
Nguyen C, Saint-Pol J, Dib S, Pot C, Gosselet F. 25-Hydroxycholesterol in health and diseases. J Lipid Res 2024; 65:100486. [PMID: 38104944 PMCID: PMC10823077 DOI: 10.1016/j.jlr.2023.100486] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/02/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023] Open
Abstract
Cholesterol is an essential structural component of all membranes of mammalian cells where it plays a fundamental role not only in cellular architecture, but also, for example, in signaling pathway transduction, endocytosis process, receptor functioning and recycling, or cytoskeleton remodeling. Consequently, intracellular cholesterol concentrations are tightly regulated by complex processes, including cholesterol synthesis, uptake from circulating lipoproteins, lipid transfer to these lipoproteins, esterification, and metabolization into oxysterols that are intermediates for bile acids. Oxysterols have been considered for long time as sterol waste products, but a large body of evidence has clearly demonstrated that they play key roles in central nervous system functioning, immune cell response, cell death, or migration and are involved in age-related diseases, cancers, autoimmunity, or neurological disorders. Among all the existing oxysterols, this review summarizes basic as well as recent knowledge on 25-hydroxycholesterol which is mainly produced during inflammatory or infectious situations and that in turn contributes to immune response, central nervous system disorders, atherosclerosis, macular degeneration, or cancer development. Effects of its metabolite 7α,25-dihydroxycholesterol are also presented and discussed.
Collapse
Affiliation(s)
- Cindy Nguyen
- UR 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Univ. Artois, Lens, France
| | - Julien Saint-Pol
- UR 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Univ. Artois, Lens, France
| | - Shiraz Dib
- UR 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Univ. Artois, Lens, France
| | - Caroline Pot
- Department of Clinical Neurosciences, Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Fabien Gosselet
- UR 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Univ. Artois, Lens, France.
| |
Collapse
|
32
|
Ayadi S, Friedrichs S, Soulès R, Pucheu L, Lütjohann D, Silvente-Poirot S, Poirot M, de Medina P. 27-Hydroxylation of oncosterone by CYP27A1 switches its activity from pro-tumor to anti-tumor. J Lipid Res 2023; 64:100479. [PMID: 37981011 PMCID: PMC10770617 DOI: 10.1016/j.jlr.2023.100479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/08/2023] [Accepted: 11/11/2023] [Indexed: 11/21/2023] Open
Abstract
Oncosterone (6-oxo-cholestane-3β,5α-diol; OCDO) is an oncometabolite and a tumor promoter on estrogen receptor alpha-positive breast cancer (ER(+) BC) and triple-negative breast cancers (TN BC). OCDO is an oxysterol formed in three steps from cholesterol: 1) oxygen addition at the double bond to give α- or β- isomers of 5,6-epoxycholestanols (5,6-EC), 2) hydrolyses of the epoxide ring of 5,6-ECs to give cholestane-3β,5α,6β-triol (CT), and 3) oxidation of the C6 hydroxyl of CT to give OCDO. On the other hand, cholesterol can be hydroxylated by CYP27A1 at the ultimate methyl carbon of its side chain to give 27-hydroxycholesterol ((25R)-Cholest-5-ene-3beta,26-diol, 27HC), which is a tumor promoter for ER(+) BC. It is currently unknown whether OCDO and its precursors can be hydroxylated at position C27 by CYP27A1, as is the impact of such modification on the proliferation of ER(+) and TN BC cells. We investigated, herein, whether 27H-5,6-ECs ((25R)-5,6-epoxycholestan-3β,26-diol), 27H-CT ((25R)-cholestane-3β,5α,6β,26-tetrol) and 27H-OCDO ((25R)-cholestane-6-oxo-3β,5α,26-triol) exist as metabolites and can be produced by cells expressing CYP27A1. We report, for the first time, that these compounds exist as metabolites in humans. We give pharmacological and genetic evidence that CYP27A1 is responsible for their production. Importantly, we found that 27-hydroxy-OCDO (27H-OCDO) inhibits BC cell proliferation and blocks OCDO and 27-HC-induced proliferation in BC cells, showing that this metabolic conversion commutes the proliferative properties of OCDO into antiproliferative ones. These data suggest an unprecedented role of CYP27A1 in the control of breast carcinogenesis by inhibiting the tumor promoter activities of oncosterone and 27-HC.
Collapse
Affiliation(s)
- Silia Ayadi
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV:"Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France; Equipe labellisée par la Ligue Nationale contre le Cancer, Toulouse, France; French Network for Nutrition Physical Acitivity and Cancer Research (NACRe network), Jouy en Josas, France
| | - Silvia Friedrichs
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Regis Soulès
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV:"Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France; Equipe labellisée par la Ligue Nationale contre le Cancer, Toulouse, France; French Network for Nutrition Physical Acitivity and Cancer Research (NACRe network), Jouy en Josas, France
| | - Laly Pucheu
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV:"Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France; Equipe labellisée par la Ligue Nationale contre le Cancer, Toulouse, France; French Network for Nutrition Physical Acitivity and Cancer Research (NACRe network), Jouy en Josas, France
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Sandrine Silvente-Poirot
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV:"Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France.
| | - Marc Poirot
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV:"Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France; Equipe labellisée par la Ligue Nationale contre le Cancer, Toulouse, France; French Network for Nutrition Physical Acitivity and Cancer Research (NACRe network), Jouy en Josas, France.
| | - Philippe de Medina
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV:"Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France; Equipe labellisée par la Ligue Nationale contre le Cancer, Toulouse, France; French Network for Nutrition Physical Acitivity and Cancer Research (NACRe network), Jouy en Josas, France.
| |
Collapse
|
33
|
Fessler MB, Madenspacher JH, Baker PJ, Hilligan KL, Bohrer AC, Castro E, Meacham J, Chen SH, Johnson RF, McDonald JG, Martin NP, Tucker CJ, Mahapatra D, Cesta M, Mayer-Barber KD. Endogenous and Therapeutic 25-Hydroxycholesterols May Worsen Early SARS-CoV-2 Pathogenesis in Mice. Am J Respir Cell Mol Biol 2023; 69:638-648. [PMID: 37578898 DOI: 10.1165/rcmb.2023-0007oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 08/14/2023] [Indexed: 08/16/2023] Open
Abstract
Oxysterols (i.e., oxidized cholesterol species) have complex roles in biology. 25-Hydroxycholesterol (25HC), a product of the activity of cholesterol-25-hydroxylase (CH25H) on cholesterol, has recently been shown to be broadly antiviral, suggesting therapeutic potential against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, 25HC can also amplify inflammation and be converted by CYP7B1 (cytochrome P450 family 7 subfamily B member 1) to 7α,25-dihydroxycholesterol, a lipid with chemoattractant activity, via the G protein-coupled receptor EBI2 (Epstein-Barr virus-induced gene 2)/GPR183 (G protein-coupled receptor 183). Here, using in vitro studies and two different murine models of SARS-CoV-2 infection, we investigate the effects of these two oxysterols on SARS-CoV-2 pneumonia. We show that although 25HC and enantiomeric-25HC are antiviral in vitro against human endemic coronavirus-229E, they did not inhibit SARS-CoV-2; nor did supplemental 25HC reduce pulmonary SARS-CoV-2 titers in the K18-human ACE2 (angiotensin-converting enzyme 2) mouse model in vivo. Treatment with 25HC also did not alter immune cell influx into the airway, airspace cytokines, lung pathology, weight loss, symptoms, or survival but was associated with increased airspace albumin, an indicator of microvascular injury, and increased plasma proinflammatory cytokines. Conversely, mice treated with the EBI2/GPR183 inhibitor NIBR189 displayed a modest increase in lung viral load only at late time points but no change in weight loss. Consistent with these findings, although Ch25h and 25HC were upregulated in the lungs of SARS-CoV-2-infected wild-type mice, lung viral titers and weight loss in Ch25h-/- and Gpr183-/- mice infected with the β variant were similar to those in control animals. Taken together, endogenous 25HCs do not significantly regulate early SARS-CoV-2 replication or pathogenesis, and supplemental 25HC may have proinjury rather than therapeutic effects in SARS-CoV-2 pneumonia.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Reed F Johnson
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Jeffrey G McDonald
- Department of Molecular Genetics and
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | | | - Charles J Tucker
- Fluorescence Microscopy and Imaging Center, Signal Transduction Laboratory, and
| | | | - Mark Cesta
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | | |
Collapse
|
34
|
Zhou HY, Feng X, Wang LW, Zhou R, Sun H, Chen X, Lu RB, Huang Y, Guo Q, Luo XH. Bone marrow immune cells respond to fluctuating nutritional stress to constrain weight regain. Cell Metab 2023; 35:1915-1930.e8. [PMID: 37703873 DOI: 10.1016/j.cmet.2023.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/19/2023] [Accepted: 08/18/2023] [Indexed: 09/15/2023]
Abstract
Weight regain after weight loss is a major challenge in the treatment of obesity. Immune cells adapt to fluctuating nutritional stress, but their roles in regulating weight regain remain unclear. Here, we identify a stem cell-like CD7+ monocyte subpopulation accumulating in the bone marrow (BM) of mice and humans that experienced dieting-induced weight loss. Adoptive transfer of CD7+ monocytes suppresses weight regain, whereas inducible depletion of CD7+ monocytes accelerates it. These cells, accumulating metabolic memories via epigenetic adaptations, preferentially migrate to the subcutaneous white adipose tissue (WAT), where they secrete fibrinogen-like protein 2 (FGL2) to activate the protein kinase A (PKA) signaling pathway and facilitate beige fat thermogenesis. Nevertheless, CD7+ monocytes gradually enter a quiescent state after weight loss, accompanied by increased susceptibility to weight regain. Notably, administration of FMS-like tyrosine kinase 3 ligand (FLT3L) remarkably rejuvenates CD7+ monocytes, thus ameliorating rapid weight regain. Together, our findings identify a unique bone marrow-derived metabolic-memory immune cell population that could be targeted to combat obesity.
Collapse
Affiliation(s)
- Hai-Yan Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Xu Feng
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Li-Wen Wang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Rui Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Heng Sun
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Xin Chen
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Ren-Bin Lu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Yan Huang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Qi Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Xiang-Hang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China; Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Hunan 410008, China.
| |
Collapse
|
35
|
Kjær VMS, Stępniewski TM, Medel-Lacruz B, Reinmuth L, Ciba M, Rexen Ulven E, Bonomi M, Selent J, Rosenkilde MM. Ligand entry pathways control the chemical space recognized by GPR183. Chem Sci 2023; 14:10671-10683. [PMID: 37829039 PMCID: PMC10566501 DOI: 10.1039/d2sc05962b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 08/26/2023] [Indexed: 10/14/2023] Open
Abstract
The G protein-coupled receptor GPR183 is a chemotactic receptor with an important function in the immune system and association with a variety of diseases. It recognizes ligands with diverse physicochemical properties as both the endogenous oxysterol ligand 7α,25-OHC and synthetic molecules can activate the G protein pathway of the receptor. To better understand the ligand promiscuity of GPR183, we utilized both molecular dynamics simulations and cell-based validation experiments. Our work reveals that the receptor possesses two ligand entry channels: one lateral between transmembrane helices 4 and 5 facing the membrane, and one facing the extracellular environment. Using enhanced sampling, we provide a detailed structural model of 7α,25-OHC entry through the lateral membrane channel. Importantly, the first ligand recognition point at the receptor surface has been captured in diverse experimentally solved structures of different GPCRs. The proposed ligand binding pathway is supported by in vitro data employing GPR183 mutants with a sterically blocked lateral entrance, which display diminished binding and signaling. In addition, computer simulations and experimental validation confirm the existence of a polar water channel which might serve as an alternative entrance gate for less lipophilic ligands from the extracellular milieu. Our study reveals knowledge to understand GPR183 functionality and ligand recognition with implications for the development of drugs for this receptor. Beyond, our work provides insights into a general mechanism GPCRs may use to respond to chemically diverse ligands.
Collapse
Affiliation(s)
- Viktoria Madeline Skovgaard Kjær
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences University of Copenhagen Blegdamsvej 3B 2200 København N Denmark
| | - Tomasz Maciej Stępniewski
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Research Institute (IMIM) & Pompeu Fabra University (UPF) Dr Aiguader 88 E-8003 Barcelona Spain
- InterAx Biotech AG, PARK innovAARE 5234 Villigen Switzerland
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw 02-089 Warsaw Poland
| | - Brian Medel-Lacruz
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Research Institute (IMIM) & Pompeu Fabra University (UPF) Dr Aiguader 88 E-8003 Barcelona Spain
| | - Lisa Reinmuth
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences University of Copenhagen Blegdamsvej 3B 2200 København N Denmark
| | - Marija Ciba
- Department of Drug Design and Pharmacology, University of Copenhagen Jagtvej 160 2100 København Ø Denmark
| | - Elisabeth Rexen Ulven
- Department of Drug Design and Pharmacology, University of Copenhagen Jagtvej 160 2100 København Ø Denmark
| | - Massimiliano Bonomi
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Structural Bioinformatics Unit 75015 Paris France
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Research Institute (IMIM) & Pompeu Fabra University (UPF) Dr Aiguader 88 E-8003 Barcelona Spain
| | - Mette Marie Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences University of Copenhagen Blegdamsvej 3B 2200 København N Denmark
| |
Collapse
|
36
|
Ji X, Wu L, Marion T, Luo Y. Lipid metabolism in regulation of B cell development and autoimmunity. Cytokine Growth Factor Rev 2023; 73:40-51. [PMID: 37419766 DOI: 10.1016/j.cytogfr.2023.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
B cells play an important role in adaptive immunity and participate in the process of humoral immunity mainly by secreting antibodies. The entire development and differentiation process of B cells occurs in multiple microenvironments and is regulated by a variety of environmental factors and immune signals. Differentiation biases or disfunction of B cells participate in the process of many autoimmune diseases. Emerging studies report the impact of altered metabolism in B cell biology, including lipid metabolism. Here, we discuss how extracellular lipid environment and metabolites, membrane lipid-related components, and lipid synthesis and catabolism programs coordinate B cell biology and describe the crosstalk of lipid metabolic programs with signal transduction pathways and transcription factors. We conclude with a summary of therapeutic targets for B cell lipid metabolism and signaling in autoimmune diseases and discuss important future directions.
Collapse
Affiliation(s)
- Xing Ji
- Laboratory of Rheumatology and Immunology, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liang Wu
- Laboratory of Rheumatology and Immunology, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tony Marion
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Yubin Luo
- Laboratory of Rheumatology and Immunology, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
37
|
Qi Z, Zhong W, Jiao B, Chen K, Yang X, Wang L, Zeng W, Huang J, Xie J. Activation of G-protein-coupled receptor 183 initiates inflammatory pain via macrophage CCL22 secretion. Eur J Pharmacol 2023; 954:175872. [PMID: 37353188 DOI: 10.1016/j.ejphar.2023.175872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Chronic pain is a major public health problem with limited effective therapeutic options. G-protein-coupled receptors play a significant role in pain modulation; however, whether and how G-protein-coupled receptor 183 participates in pain regulation remain unclear. In the present study, we found that G-protein-coupled receptor 183 expression was specifically upregulated in the hind paws of mice in various inflammatory pain models. Activation of G-protein-coupled receptor 183 induced acute pain, whereas inhibition or silencing of this receptor alleviated mechanical allodynia and thermal hyperalgesia in complete Freund's adjuvant (CFA) model. Mechanistically, activating G-protein-coupled receptor 183 triggers pain responses via the upregulation of C-C motif chemokine 22(CCL22) in macrophages while blocking the CCL22 receptor C-C motif chemokine receptor 4 (CCR4) attenuates pain hypersensitivity. Taken together, our findings indicate that the G-protein-coupled receptor 183-CCL22 axis has a critical role in the development and maintenance of inflammatory pain.
Collapse
Affiliation(s)
- Zhenhua Qi
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Weiqiang Zhong
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Boyu Jiao
- Department of Acupuncture, The First Affiliated Hospital, SunYat-sen University, Guangzhou, Guangdong, 510080, China
| | - Kang Chen
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xiaohua Yang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Linjie Wang
- Department of Human Anatomy and Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Weian Zeng
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Junting Huang
- Department of Human Anatomy and Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China.
| | - Jingdun Xie
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
38
|
Shi Q, Zhan T, Bi X, Ye BC, Qi N. Cholesterol-autoxidation metabolites in host defense against infectious diseases. Eur J Immunol 2023; 53:e2350501. [PMID: 37369622 DOI: 10.1002/eji.202350501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023]
Abstract
Cholesterol plays essential roles in biological processes, including cell membrane stability and myelin formation. Cholesterol can be metabolized to oxysterols by enzymatic or nonenzymatic ways. Nonenzymatic cholesterol metabolites, also called cholesterol-autoxidation metabolites, are formed dependent on the oxidation of reactive oxygen species (ROS) such as OH• or reactive nitrogen species, such as ONOO- . Cholesterol-autoxidation metabolites are abundantly produced in diseases such as inflammatory bowel disease and atherosclerosis, which are associated with oxidative stress. Recent studies have shown that cholesterol-autoxidation metabolites can further regulate the immune system. Here, we review the literature and summarize how cholesterol-autoxidation metabolites, such as 25-hydroxycholesterol (25-OHC), 7α/β-OHC, and 7-ketocholesterol, deal with the occurrence and development of infectious diseases through pattern recognition receptors, inflammasomes, ROS production, nuclear receptors, G-protein-coupled receptor 183, and lipid availability. In addition, we include the research regarding the roles of these metabolites in COVID-19 infection and discuss our viewpoints on the future research directions.
Collapse
Affiliation(s)
- Qiwen Shi
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Tingzhu Zhan
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Xiaobao Bi
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Bang-Ce Ye
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Nan Qi
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Laboratory, Department of Basic Research, Guangzhou International Bio-Island, Guangzhou, Guangdong, China
| |
Collapse
|
39
|
Zhang F, Zhang B, Ding H, Li X, Wang X, Zhang X, Liu Q, Feng Q, Han M, Chen L, Qi L, Yang D, Li X, Zhu X, Zhao Q, Qiu J, Zhu Z, Tang H, Shen N, Wang H, Wei B. The Oxysterol Receptor EBI2 Links Innate and Adaptive Immunity to Limit IFN Response and Systemic Lupus Erythematosus. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207108. [PMID: 37469011 PMCID: PMC10520634 DOI: 10.1002/advs.202207108] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 05/19/2023] [Indexed: 07/21/2023]
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease with abnormal activation of the immune system. Recent attention is increasing about how aberrant lipid and cholesterol metabolism is linked together with type I interferon (IFN-I) signaling in the regulation of the pathogenesis of SLE. Here, a metabonomic analysis is performed and increased plasma concentrations of oxysterols, especially 7α, 25-dihydroxycholesterol (7α, 25-OHC), are identified in SLE patients. The authors find that 7α, 25-OHC binding to its receptor Epstein-Barr virus-induced gene 2 (EBI2) in macrophages can suppress STAT activation and the production of IFN-β, chemokines, and cytokines. Importantly, monocytes/macrophages from SLE patients and mice show significantly reduced EBI2 expression, which can be triggered by IFN-γ produced in activated T cells. Previous findings suggest that EBI2 enhances immune cell migration. Opposite to this effect, the authors demonstrate that EBI2-deficient macrophages produce higher levels of chemokines and cytokines, which recruits and activates myeloid cells,T and B lymphocytes to exacerbate tetramethylpentadecane-induced SLE. Together, via sensing the oxysterol 7α, 25-OHC, EBI2 in macrophages can modulate innate and adaptive immune responses, which may be used as a potential diagnostic marker and therapeutic target for SLE.
Collapse
Affiliation(s)
- Fang Zhang
- Institute of GeriatricsAffiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong)School of MedicineShanghai UniversityNantong226011China
- Immune Cells and Human Diseases Lab, Shanghai Engineering Research Center of Organ RepairSchool of Life SciencesShanghai UniversityShanghai200444China
- Cancer CenterShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
| | - Baokai Zhang
- Institute of GeriatricsAffiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong)School of MedicineShanghai UniversityNantong226011China
- Immune Cells and Human Diseases Lab, Shanghai Engineering Research Center of Organ RepairSchool of Life SciencesShanghai UniversityShanghai200444China
| | - Huihua Ding
- Shanghai Institute of RheumatologyRenji HospitalShanghai Jiao Tong University School of Medicine (SJTUSM)Shanghai200127China
| | - Xiangyue Li
- Institute of GeriatricsAffiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong)School of MedicineShanghai UniversityNantong226011China
- Immune Cells and Human Diseases Lab, Shanghai Engineering Research Center of Organ RepairSchool of Life SciencesShanghai UniversityShanghai200444China
| | - Xilin Wang
- Institute of GeriatricsAffiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong)School of MedicineShanghai UniversityNantong226011China
- Immune Cells and Human Diseases Lab, Shanghai Engineering Research Center of Organ RepairSchool of Life SciencesShanghai UniversityShanghai200444China
| | - Xiaomin Zhang
- State Key Laboratory of VirologyWuhan Institute of VirologyChinese Academy of SciencesUniversity of Chinese Academy of ScienceWuhan430071China
| | - Qiaojie Liu
- State Key Laboratory of VirologyWuhan Institute of VirologyChinese Academy of SciencesUniversity of Chinese Academy of ScienceWuhan430071China
| | - Qiuyun Feng
- Institute of GeriatricsAffiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong)School of MedicineShanghai UniversityNantong226011China
- Immune Cells and Human Diseases Lab, Shanghai Engineering Research Center of Organ RepairSchool of Life SciencesShanghai UniversityShanghai200444China
| | - Mingshun Han
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Longlong Chen
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesHuman Phenome InstituteZhangjiang Fudan International Innovation CenterZhongshan HospitalFudan UniversityShanghai200032China
- Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular PhenomicsFudan UniversityShanghai200032China
| | - Linlin Qi
- Institute of GeriatricsAffiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong)School of MedicineShanghai UniversityNantong226011China
- Immune Cells and Human Diseases Lab, Shanghai Engineering Research Center of Organ RepairSchool of Life SciencesShanghai UniversityShanghai200444China
| | - Dan Yang
- State Key Laboratory of VirologyWuhan Institute of VirologyChinese Academy of SciencesUniversity of Chinese Academy of ScienceWuhan430071China
| | - Xiaojing Li
- Institute of GeriatricsAffiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong)School of MedicineShanghai UniversityNantong226011China
- Immune Cells and Human Diseases Lab, Shanghai Engineering Research Center of Organ RepairSchool of Life SciencesShanghai UniversityShanghai200444China
| | - Xingguo Zhu
- Institute of GeriatricsAffiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong)School of MedicineShanghai UniversityNantong226011China
- Immune Cells and Human Diseases Lab, Shanghai Engineering Research Center of Organ RepairSchool of Life SciencesShanghai UniversityShanghai200444China
| | - Qi Zhao
- Institute of GeriatricsAffiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong)School of MedicineShanghai UniversityNantong226011China
- Immune Cells and Human Diseases Lab, Shanghai Engineering Research Center of Organ RepairSchool of Life SciencesShanghai UniversityShanghai200444China
| | - Jiaqian Qiu
- Interdisciplinary Research Center on Biology and ChemistryShanghai Institute of Organic ChemistryChinese Academy of SciencesShanghai200032China
| | - Zhengjiang Zhu
- Interdisciplinary Research Center on Biology and ChemistryShanghai Institute of Organic ChemistryChinese Academy of SciencesShanghai200032China
| | - Huiru Tang
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesHuman Phenome InstituteZhangjiang Fudan International Innovation CenterZhongshan HospitalFudan UniversityShanghai200032China
- Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular PhenomicsFudan UniversityShanghai200032China
| | - Nan Shen
- Shanghai Institute of RheumatologyRenji HospitalShanghai Jiao Tong University School of Medicine (SJTUSM)Shanghai200127China
| | - Hongyan Wang
- State Key Laboratory of Cell BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
- School of Life ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
| | - Bin Wei
- Institute of GeriatricsAffiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong)School of MedicineShanghai UniversityNantong226011China
- Immune Cells and Human Diseases Lab, Shanghai Engineering Research Center of Organ RepairSchool of Life SciencesShanghai UniversityShanghai200444China
- Cancer CenterShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
- State Key Laboratory of VirologyWuhan Institute of VirologyChinese Academy of SciencesUniversity of Chinese Academy of ScienceWuhan430071China
- Department of Laboratory MedicineGene Diagnosis Research CenterFujian Key Laboratory of Laboratory MedicineThe First Affiliated HospitalFujian Medical UniversityFuzhou350000China
| |
Collapse
|
40
|
Zhong G, He C, Wang S, Lin C, Li M. Research progress on the mechanism of cholesterol-25-hydroxylase in intestinal immunity. Front Immunol 2023; 14:1241262. [PMID: 37720208 PMCID: PMC10500599 DOI: 10.3389/fimmu.2023.1241262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
Inflammatory bowel disease (IBD), a general term encompassing Crohn's disease (CD) and ulcerative colitis (UC), and other conditions, is a chronic and relapsing autoimmune disease that can occur in any part of the digestive tract. While the cause of IBD remains unclear, it is acknowledged that the disease has much to do with the dysregulation of intestinal immunity. In the intestinal immune regulatory system, Cholesterol-25-hydroxylase (CH25H) plays an important role in regulating the function of immune cells and lipid metabolism through catalyzing the oxidation of cholesterol into 25-hydroxycholesterol (25-HC). Specifically, CH25H focuses its mechanism of regulating the inflammatory response, signal transduction and cell migration on various types of immune cells by binding to relevant receptors, and the mechanism of regulating lipid metabolism and immune cell function via the transcription factor Sterol Regulator-Binding Protein. Based on this foundation, this article will review the function of CH25H in intestinal immunity, aiming to provide evidence for supporting the discovery of early diagnostic and treatment targets for IBD.
Collapse
Affiliation(s)
| | | | | | | | - Mingsong Li
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
41
|
Abstract
Dendritic cells (DCs) are innate immune cells that detect and process environmental signals and communicate them with T cells to bridge innate and adaptive immunity. Immune signals and microenvironmental cues shape the function of DC subsets in different contexts, which is associated with reprogramming of cellular metabolic pathways. In addition to integrating these extracellular cues to meet bioenergetic and biosynthetic demands, cellular metabolism interplays with immune signaling to shape DC-dependent immune responses. Emerging evidence indicates that lipid metabolism serves as a key regulator of DC responses. Here, we summarize the roles of fatty acid and cholesterol metabolism, as well as selective metabolites, in orchestrating the functions of DCs. Specifically, we highlight how different lipid metabolic programs, including de novo fatty acid synthesis, fatty acid β oxidation, lipid storage, and cholesterol efflux, influence DC function in different contexts. Further, we discuss how dysregulation of lipid metabolism shapes DC intracellular signaling and contributes to the impaired DC function in the tumor microenvironment. Finally, we conclude with a discussion on key future directions for the regulation of DC biology by lipid metabolism. Insights into the connections between lipid metabolism and DC functional specialization may facilitate the development of new therapeutic strategies for human diseases.
Collapse
Affiliation(s)
- Zhiyuan You
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
42
|
Akiyama Y, Katsuki S, Matoba T, Nakano Y, Takase S, Nakashiro S, Yamamoto M, Mukai Y, Inoue S, Oi K, Higo T, Takemoto M, Suematsu N, Eshima K, Miyata K, Usui M, Sadamatsu K, Kadokami T, Hironaga K, Ichi I, Todaka K, Kishimoto J, Tsutsui H. Association of Serum Oxysterols with Cholesterol Metabolism Markers and Clinical Factors in Patients with Coronary Artery Disease: A Covariance Structure Analysis. Nutrients 2023; 15:2997. [PMID: 37447327 DOI: 10.3390/nu15132997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Oxysterols have been implicated in the pathogenesis of cardiovascular diseases. Serum levels of oxysterols could be positively correlated with cholesterol absorption and synthesis. However, physiological regulation of various serum oxysterols is largely unknown. The aim of this study was to investigate the relationship between clinical factors and cholesterol metabolism markers, and identify oxysterols associated with cholesterol absorption and synthesis in patients with coronary artery disease. Subjects (n = 207) who underwent coronary stenting between 2011 and 2013 were studied cross-sectionally. We measured lipid profiles including serum oxysterols. As for the serum biomarkers of cholesterol synthesis and absorption, oxysterol levels were positively correlated with campesterol and lathosterol. Covariance structure analysis revealed that dyslipidemia and statin usage had a positive correlation with "cholesterol absorption". Statin usage also had a positive correlation with "cholesterol synthesis". Several oxysterols associated with cholesterol absorption and/or synthesis. In conclusion, we elucidated the potential clinical factors that may affect cholesterol metabolism, and the associations between various oxysterols with cholesterol absorption and/or synthesis in patients with coronary artery disease.
Collapse
Affiliation(s)
- Yusuke Akiyama
- Department of Cardiovascular, Respiratory and Geriatric Medicine, Kyushu University Beppu Hospital, Oita 874-0838, Japan
| | - Shunsuke Katsuki
- Department of Cardiovascular Medicine, Kyushu University Hospital, Fukuoka 812-8582, Japan
| | - Tetsuya Matoba
- Department of Cardiovascular Medicine, Kyushu University Hospital, Fukuoka 812-8582, Japan
| | - Yasuhiro Nakano
- Department of Cardiovascular Medicine, Kyushu University Hospital, Fukuoka 812-8582, Japan
| | - Susumu Takase
- Department of Cardiovascular Medicine, Kyushu University Hospital, Fukuoka 812-8582, Japan
| | - Soichi Nakashiro
- Department of Cardiovascular Medicine, Saiseikai Fukuoka General Hospital, Fukuoka 810-0001, Japan
| | - Mitsutaka Yamamoto
- Department of Cardiovascular Medicine, Harasanshin Hospital, Fukuoka 812-0033, Japan
| | - Yasushi Mukai
- Department of Cardiovascular Medicine, Japanese Red Cross Fukuoka Hospital, Fukuoka 815-0082, Japan
| | - Shujiro Inoue
- Department of Cardiovascular Medicine, National Hospital Organization Kyushu Medical Centre, Fukuoka 810-0065, Japan
| | - Keiji Oi
- Department of Cardiovascular Medicine, Harasanshin Hospital, Fukuoka 812-0033, Japan
| | - Taiki Higo
- Wakaba Heart Clinic, Fukuoka 810-0073, Japan
| | - Masao Takemoto
- Cardiovascular Center, Steel Memorial Yahata Hospital, Fukuoka 805-8508, Japan
| | - Nobuhiro Suematsu
- Department of Cardiovascular Medicine, Harasanshin Hospital, Fukuoka 812-0033, Japan
| | - Kenichi Eshima
- Matsuguchi Internal Medicine and Cardiology Clinic, Fukuoka 814-0133, Japan
| | - Kenji Miyata
- Department of Cardiovascular Medicine, Japan Community Health Care Organization, Kyushu Hospital, Fukuoka 806-8501, Japan
| | - Makoto Usui
- Department of Cardiovascular Medicine, Hamanomachi Hospital, Fukuoka 810-0072, Japan
| | - Kenji Sadamatsu
- Department of Cardiovascular Medicine, Omuta City Hospital, Fukuoka 836-0861, Japan
| | - Toshiaki Kadokami
- Department of Cardiovascular Medicine, Saiseikai Futsukaichi Hospital, Fukuoka 818-8516, Japan
| | - Kiyoshi Hironaga
- Department of Cardiovascular Medicine, Fukuoka City Hospital, Fukuoka 812-0046, Japan
| | - Ikuyo Ichi
- Graduate School of Humanities and Science, Ochanomizu University, Tokyo 112-8610, Japan
| | - Koji Todaka
- Center for Clinical and Translational Research, Kyushu University Hospital, Fukuoka 812-8582, Japan
| | - Junji Kishimoto
- Center for Clinical and Translational Research, Kyushu University Hospital, Fukuoka 812-8582, Japan
| | - Hiroyuki Tsutsui
- School of Medicine and Graduate School, International University of Health and Welfare, Fukuoka 831-8501, Japan
| |
Collapse
|
43
|
Gc JB, Chen J, Pokharel SM, Mohanty I, Mariasoosai C, Obi P, Panipinto P, Bandyopadhyay S, Bose S, Natesan S. Molecular basis for the recognition of 24-(S)-hydroxycholesterol by integrin αvβ3. Sci Rep 2023; 13:9166. [PMID: 37280310 DOI: 10.1038/s41598-023-36040-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/28/2023] [Indexed: 06/08/2023] Open
Abstract
A growing body of evidence suggests that oxysterols such as 25-hydroxycholesterol (25HC) are biologically active and involved in many physiological and pathological processes. Our previous study demonstrated that 25HC induces an innate immune response during viral infections by activating the integrin-focal adhesion kinase (FAK) pathway. 25HC produced the proinflammatory response by binding directly to integrins at a novel binding site (site II) and triggering the production of proinflammatory mediators such as tumor necrosis factor-α (TNF) and interleukin-6 (IL-6). 24-(S)-hydroxycholesterol (24HC), a structural isomer of 25HC, plays a critical role in cholesterol homeostasis in the human brain and is implicated in multiple inflammatory conditions, including Alzheimer's disease. However, whether 24HC can induce a proinflammatory response like 25HC in non-neuronal cells has not been studied and remains unknown. The aim of this study was to examine whether 24HC produces such an immune response using in silico and in vitro experiments. Our results indicate that despite being a structural isomer of 25HC, 24HC binds at site II in a distinct binding mode, engages in varied residue interactions, and produces significant conformational changes in the specificity-determining loop (SDL). In addition, our surface plasmon resonance (SPR) study reveals that 24HC could directly bind to integrin αvβ3, with a binding affinity three-fold lower than 25HC. Furthermore, our in vitro studies with macrophages support the involvement of FAK and NFκB signaling pathways in triggering 24HC-mediated production of TNF. Thus, we have identified 24HC as another oxysterol that binds to integrin αvβ3 and promotes a proinflammatory response via the integrin-FAK-NFκB pathway.
Collapse
Affiliation(s)
- Jeevan B Gc
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, 992020, USA
| | - Justin Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, 992020, USA
| | - Swechha M Pokharel
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, 99210, USA
| | - Indira Mohanty
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, 99210, USA
| | - Charles Mariasoosai
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, 992020, USA
| | - Peter Obi
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, 992020, USA
| | - Paul Panipinto
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, 992020, USA
| | - Smarajit Bandyopadhyay
- Molecular Biotechnology Core Laboratory, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Santanu Bose
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, 99210, USA
| | - Senthil Natesan
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, 992020, USA.
| |
Collapse
|
44
|
Kjær VMS, Daugvilaite V, Stepniewski TM, Madsen CM, Jørgensen AS, Bhuskute KR, Inoue A, Ulven T, Benned-Jensen T, Hjorth SA, Hjortø GM, Moo EV, Selent J, Rosenkilde MM. Migration mediated by the oxysterol receptor GPR183 depends on arrestin coupling but not receptor internalization. Sci Signal 2023; 16:eabl4283. [PMID: 37014928 DOI: 10.1126/scisignal.abl4283] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
The chemotactic G protein-coupled receptor GPR183 and its most potent endogenous oxysterol ligand 7α,25-dihydroxycholesterol (7α,25-OHC) are important for immune cell positioning in secondary lymphoid tissues. This receptor-ligand pair is associated with various diseases, in some cases contributing favorably and in other cases adversely, making GPR183 an attractive target for therapeutic intervention. We investigated the mechanisms underlying GPR183 internalization and the role of internalization in the main biological function of the receptor, chemotaxis. We found that the C terminus of the receptor was important for ligand-induced internalization but less so for constitutive (ligand-independent) internalization. β-arrestin potentiated ligand-induced internalization but was not required for ligand-induced or constitutive internalization. Caveolin and dynamin were the main mediators of both constitutive and ligand-induced receptor internalization in a mechanism independent of G protein activation. Clathrin-mediated endocytosis also contributed to constitutive GPR183 internalization in a β-arrestin-independent manner, suggesting the existence of different pools of surface-localized GPR183. Chemotaxis mediated by GPR183 depended on receptor desensitization by β-arrestins but could be uncoupled from internalization, highlighting an important biological role for the recruitment of β-arrestin to GPR183. The role of distinct pathways in internalization and chemotaxis may aid in the development of GPR183-targeting drugs for specific disease contexts.
Collapse
Affiliation(s)
- Viktoria M S Kjær
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Viktorija Daugvilaite
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tomasz M Stepniewski
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM)-Pompeu Fabra University (UPF), Barcelona 08003, Spain
- InterAx Biotech AG, Villigen 5234, Switzerland
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw 02-089, Poland
| | - Christian M Madsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Astrid S Jørgensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kaustubh R Bhuskute
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Trond Ulven
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tau Benned-Jensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Siv A Hjorth
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gertrud M Hjortø
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ee Von Moo
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM)-Pompeu Fabra University (UPF), Barcelona 08003, Spain
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
45
|
Elchaninov A, Vishnyakova P, Lokhonina A, Kiseleva V, Menyailo E, Antonova M, Mamedov A, Arutyunyan I, Bolshakova G, Goldshtein D, Bao X, Fatkhudinov T, Sukhikh G. Spleen regeneration after subcutaneous heterotopic autotransplantation in a mouse model. Biol Res 2023; 56:15. [PMID: 36991509 DOI: 10.1186/s40659-023-00427-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Splenectomy may lead to severe postoperative complications, including sepsis and cancers. A possible solution to this problem is heterotopic autotransplantation of the spleen. Splenic autografts rapidly restore the regular splenic microanatomy in model animals. However, the functional competence of such regenerated autografts in terms of lympho- and hematopoietic capacity remains uncertain. Therefore, this study aimed to monitor the dynamics of B and T lymphocyte populations, the monocyte-macrophage system, and megakaryocytopoiesis in murine splenic autografts. METHODS The model of subcutaneous splenic engraftment was implemented in C57Bl male mice. Cell sources of functional recovery were studied using heterotopic transplantations from B10-GFP donors to C57Bl recipients. The cellular composition dynamics were studied by immunohistochemistry and flow cytometry. Expression of regulatory genes at mRNA and protein levels was assessed by real-time PCR and Western blot, respectively. RESULTS Characteristic splenic architecture is restored within 30 days post-transplantation, consistent with other studies. The monocyte-macrophage system, megakaryocytes, and B lymphocytes show the highest rates, whereas the functional recovery of T cells takes longer. Cross-strain splenic engraftments using B10-GFP donors indicate the recipient-derived cell sources of the recovery. Transplantations of scaffolds populated with splenic stromal cells or without them afforded no restoration of the characteristic splenic architecture. CONCLUSIONS Allogeneic subcutaneous transplantation of splenic fragments in a mouse model leads to their structural recovery within 30 days, with full reconstitution of the monocyte-macrophage, megakaryocyte and B lymphocyte populations. The circulating hematopoietic cells provide the likely source for the cell composition recovery.
Collapse
Affiliation(s)
- Andrey Elchaninov
- Laboratory of Growth and Development, Avtsyn Research Institute of Human Morphology of FSBI Petrovsky National Research Centre of Surgery, Moscow, Russia.
- Histology Department, Medical Institute, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia.
| | - Polina Vishnyakova
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
- Histology Department, Medical Institute, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - Anastasiya Lokhonina
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
- Histology Department, Medical Institute, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - Viktoria Kiseleva
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Egor Menyailo
- Laboratory of Growth and Development, Avtsyn Research Institute of Human Morphology of FSBI Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - Maria Antonova
- Histology Department, Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Aiaz Mamedov
- Histology Department, Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Irina Arutyunyan
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Galina Bolshakova
- Laboratory of Growth and Development, Avtsyn Research Institute of Human Morphology of FSBI Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - Dmitry Goldshtein
- Laboratory of Stem Cells Genetics, Research Center of Medical Genetics, Moscow, Russia
| | - Xuhui Bao
- Institute of Therapeutic Cancer Vaccines, Fudan University Pudong Medical Center, Shanghai, China
| | - Timur Fatkhudinov
- Laboratory of Growth and Development, Avtsyn Research Institute of Human Morphology of FSBI Petrovsky National Research Centre of Surgery, Moscow, Russia
- Histology Department, Medical Institute, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - Gennady Sukhikh
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| |
Collapse
|
46
|
Ruiz F, Peter B, Rebeaud J, Vigne S, Bressoud V, Roumain M, Wyss T, Yersin Y, Wagner I, Kreutzfeldt M, Pimentel Mendes M, Kowalski C, Boivin G, Roth L, Schwaninger M, Merkler D, Muccioli GG, Hugues S, Petrova TV, Pot C. Endothelial cell-derived oxysterol ablation attenuates experimental autoimmune encephalomyelitis. EMBO Rep 2023; 24:e55328. [PMID: 36715148 PMCID: PMC9986812 DOI: 10.15252/embr.202255328] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 12/21/2022] [Accepted: 01/05/2023] [Indexed: 01/31/2023] Open
Abstract
The vasculature is a key regulator of leukocyte trafficking into the central nervous system (CNS) during inflammatory diseases including multiple sclerosis (MS). However, the impact of endothelial-derived factors on CNS immune responses remains unknown. Bioactive lipids, in particular oxysterols downstream of Cholesterol-25-hydroxylase (Ch25h), promote neuroinflammation but their functions in the CNS are not well-understood. Using floxed-reporter Ch25h knock-in mice, we trace Ch25h expression to CNS endothelial cells (ECs) and myeloid cells and demonstrate that Ch25h ablation specifically from ECs attenuates experimental autoimmune encephalomyelitis (EAE). Mechanistically, inflamed Ch25h-deficient CNS ECs display altered lipid metabolism favoring polymorphonuclear myeloid-derived suppressor cell (PMN-MDSC) expansion, which suppresses encephalitogenic T lymphocyte proliferation. Additionally, endothelial Ch25h-deficiency combined with immature neutrophil mobilization into the blood circulation nearly completely protects mice from EAE. Our findings reveal a central role for CNS endothelial Ch25h in promoting neuroinflammation by inhibiting the expansion of immunosuppressive myeloid cell populations.
Collapse
Affiliation(s)
- Florian Ruiz
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical NeurosciencesLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Benjamin Peter
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical NeurosciencesLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Jessica Rebeaud
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical NeurosciencesLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Solenne Vigne
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical NeurosciencesLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Valentine Bressoud
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical NeurosciencesLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Martin Roumain
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research InstituteUCLouvain, Université Catholique de LouvainBrusselsBelgium
| | - Tania Wyss
- Department of OncologyUniversity of Lausanne and Ludwig Institute for Cancer ResearchLausanneSwitzerland
- SIB Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Yannick Yersin
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical NeurosciencesLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Ingrid Wagner
- Department of Pathology and ImmunologyUniversity of GenevaGenevaSwitzerland
- Division of Clinical Pathology, Diagnostic DepartmentUniversity Hospitals of GenevaGenevaSwitzerland
| | - Mario Kreutzfeldt
- Department of Pathology and ImmunologyUniversity of GenevaGenevaSwitzerland
- Division of Clinical Pathology, Diagnostic DepartmentUniversity Hospitals of GenevaGenevaSwitzerland
| | - Marisa Pimentel Mendes
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical NeurosciencesLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Camille Kowalski
- Department of Pathology and ImmunologyGeneva Medical SchoolGenevaSwitzerland
| | - Gael Boivin
- Radio‐Oncology Laboratory, Department of OncologyLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Leonard Roth
- Department of Epidemiology and Health Systems, Centre for Primary Care and Public Health (Unisanté)University of LausanneLausanneSwitzerland
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and ToxicologyUniversity of LübeckLuebeckGermany
| | - Doron Merkler
- Department of Pathology and ImmunologyUniversity of GenevaGenevaSwitzerland
- Division of Clinical Pathology, Diagnostic DepartmentUniversity Hospitals of GenevaGenevaSwitzerland
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research InstituteUCLouvain, Université Catholique de LouvainBrusselsBelgium
| | - Stephanie Hugues
- Department of Pathology and ImmunologyGeneva Medical SchoolGenevaSwitzerland
| | - Tatiana V Petrova
- Department of OncologyUniversity of Lausanne and Ludwig Institute for Cancer ResearchLausanneSwitzerland
| | - Caroline Pot
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical NeurosciencesLausanne University Hospital and University of LausanneLausanneSwitzerland
| |
Collapse
|
47
|
Jiang S, Feng R, Tian Z, Zhou J, Zhang W. Metabolic dialogs between B cells and the tumor microenvironment: Implications for anticancer immunity. Cancer Lett 2023; 556:216076. [PMID: 36724837 DOI: 10.1016/j.canlet.2023.216076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/13/2023] [Accepted: 01/26/2023] [Indexed: 01/30/2023]
Abstract
Immunometabolism, a branch of biology describing the link between immunity and metabolism, is an emerging topic in cancer immunology. It is currently well accepted that B cells and tertiary lymph structures formed by them are associated with favorable outcomes when patients undergo cancer immunotherapy. Understanding the determinants of B-cell fate and function in cancer patients is necessary for improving cancer immunotherapy. Accumulating evidence points to the tumor microenvironment being a critical metabolic hurdle to an efficient antitumor B-cell response. At the same time, several B-cell-derived metabolites have recently been reported to inhibit anticancer immunity. In this literature review, key B-cell immunometabolism studies and the metabolic life of B cells were summarized. Then, we discussed the intrinsic metabolic pathways of B cells themselves and how the tumor microenvironment and B cells in tumors metabolically influence each other. Finally, we pointed out key questions to provide some inspiration for further study of the role of B-cell immunometabolism in the antitumor immune response.
Collapse
Affiliation(s)
- Su Jiang
- Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ranran Feng
- Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ziying Tian
- Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jieyu Zhou
- Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenling Zhang
- Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
48
|
Foo CX, Bartlett S, Chew KY, Ngo MD, Bielefeldt-Ohmann H, Arachchige BJ, Matthews B, Reed S, Wang R, Smith C, Sweet MJ, Burr L, Bisht K, Shatunova S, Sinclair JE, Parry R, Yang Y, Lévesque JP, Khromykh A, Rosenkilde MM, Short KR, Ronacher K. GPR183 antagonism reduces macrophage infiltration in influenza and SARS-CoV-2 infection. Eur Respir J 2023; 61:2201306. [PMID: 36396144 PMCID: PMC9686317 DOI: 10.1183/13993003.01306-2022] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/20/2022] [Indexed: 11/19/2022]
Abstract
RATIONALE Severe viral respiratory infections are often characterised by extensive myeloid cell infiltration and activation and persistent lung tissue injury. However, the immunological mechanisms driving excessive inflammation in the lung remain poorly understood. OBJECTIVES To identify the mechanisms that drive immune cell recruitment in the lung during viral respiratory infections and identify novel drug targets to reduce inflammation and disease severity. METHODS Preclinical murine models of influenza A virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. RESULTS Oxidised cholesterols and the oxysterol-sensing receptor GPR183 were identified as drivers of monocyte/macrophage infiltration to the lung during influenza A virus (IAV) and SARS-CoV-2 infection. Both IAV and SARS-CoV-2 infection upregulated the enzymes cholesterol 25-hydroxylase (CH25H) and cytochrome P450 family 7 subfamily member B1 (CYP7B1) in the lung, resulting in local production of the oxidised cholesterols 25-hydroxycholesterol (25-OHC) and 7α,25-dihydroxycholesterol (7α,25-OHC). Loss-of-function mutation of Gpr183 or treatment with a GPR183 antagonist reduced macrophage infiltration and inflammatory cytokine production in the lungs of IAV- or SARS-CoV-2-infected mice. The GPR183 antagonist significantly attenuated the severity of SARS-CoV-2 infection and viral loads. Analysis of single-cell RNA-sequencing data on bronchoalveolar lavage samples from healthy controls and COVID-19 patients with moderate and severe disease revealed that CH25H, CYP7B1 and GPR183 are significantly upregulated in macrophages during COVID-19. CONCLUSION This study demonstrates that oxysterols drive inflammation in the lung via GPR183 and provides the first preclinical evidence for the therapeutic benefit of targeting GPR183 during severe viral respiratory infections.
Collapse
Affiliation(s)
- Cheng Xiang Foo
- Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, Australia
- Contributed equally to this work
| | - Stacey Bartlett
- Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, Australia
- Contributed equally to this work
| | - Keng Yih Chew
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Minh Dao Ngo
- Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, Australia
| | - Helle Bielefeldt-Ohmann
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia
| | | | - Benjamin Matthews
- Centre for Clinical Research, The University of Queensland, Brisbane, Australia
| | - Sarah Reed
- Centre for Clinical Research, The University of Queensland, Brisbane, Australia
| | - Ran Wang
- Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, Australia
| | - Christian Smith
- Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, Australia
| | - Matthew J Sweet
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia
- Institute for Molecular Bioscience (IMB), IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Australia
| | - Lucy Burr
- Dept of Respiratory Medicine, Mater Adult Hospital, Brisbane, Australia
| | - Kavita Bisht
- Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, Australia
| | - Svetlana Shatunova
- Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, Australia
| | - Jane E Sinclair
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Rhys Parry
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Yuanhao Yang
- Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, Australia
| | - Jean-Pierre Lévesque
- Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, Australia
| | - Alexander Khromykh
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia
| | | | - Kirsty R Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia
| | - Katharina Ronacher
- Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia
| |
Collapse
|
49
|
Conlon TM, Yildirim AÖ. Oxysterol metabolism dictates macrophage influx during SARS-CoV-2 infection. Eur Respir J 2023; 61:13993003.02417-2022. [PMID: 36858446 DOI: 10.1183/13993003.02417-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/07/2023] [Indexed: 03/03/2023]
Affiliation(s)
- Thomas M Conlon
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Ali Önder Yildirim
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| |
Collapse
|
50
|
Cho SJ, Pronko A, Yang J, Pagan K, Stout-Delgado H. Role of Cholesterol 25-Hydroxylase (Ch25h) in Mediating Innate Immune Responses to Streptococcus pneumoniae Infection. Cells 2023; 12:570. [PMID: 36831236 PMCID: PMC9953875 DOI: 10.3390/cells12040570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023] Open
Abstract
Alveolar macrophages (AM) are long-lived tissue-resident innate immune cells of the airways. AM are key effectors of recognition, initiation, and resolution of the host defense against microbes and play an essential role in mediating host responses to Streptococcus pneumoniae infection. Lipid metabolism in AM can significantly impact cellular function and biology. Dysregulated metabolism contributes to an accumulation of lipids, unfolded protein response induction, and inflammatory cytokine production. Our study was designed to investigate the impact of Ch25h on mediating innate immune responses by macrophages during S. pneumoniae infection. Using wild-type and Ch25-/- mice, we examined the role of cholesterol metabolism on inflammatory cytokine production and bacterial clearance. Our results demonstrate that Ch25h plays an important role in the initiation and intensity of cytokine and chemokine production in the lung during S. pneumoniae infection. In the absence of Ch25h, there was enhanced phagocytosis and bacterial clearance. Taken together, our findings demonstrate the important role of Ch25h in modulating host responsiveness to S. pneumoniae infection.
Collapse
|