1
|
Zhang L, Nonaka E, Higgie M, Egan S. How Important Is Variation in Extrinsic Reproductive Isolation to the Process of Speciation? Cold Spring Harb Perspect Biol 2024; 16:a041430. [PMID: 38503503 PMCID: PMC11529849 DOI: 10.1101/cshperspect.a041430] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The strength of reproductive isolation (RI) between two or more lineages during the process of speciation can vary by the ecological conditions. However, most speciation research has been limited to studying how ecologically dependent RI varies among a handful of broadly categorized environments. Very few studies consider the variability of RI and its effects on speciation at finer scales-that is, within each environment due to spatial or temporal environmental heterogeneity. Such variation in RI across time and/or space may inhibit speciation through leaky reproductive barriers or promote speciation by facilitating reinforcement. To investigate this overlooked aspect of speciation research, we conducted a literature review of existing studies of variation in RI in the field and then conducted individual-based simulations to examine how variation in hybrid fitness across time and space affects the degree of gene flow. Our simulations indicate that the presence of variation in hybrid fitness across space and time often leads to an increase in gene flow compared to scenarios where hybrid fitness remains static. This observation can be attributed to the convex relationship between the degree of gene flow and the strength of selection on hybrids. Our simulations also show that the effect of variation in RI on facilitating gene flow is most pronounced when RI, on average, is relatively low. This finding suggests that it could serve as an important mechanism to explain why the completion of speciation is often challenging. While direct empirical evidence documenting variation in extrinsic RI is limited, we contend that it is a prevalent yet underexplored phenomenon. We support this argument by proposing common scenarios in which RI is likely to exhibit variability and thus influence the process of speciation.
Collapse
Affiliation(s)
- Linyi Zhang
- Department of Biological Sciences, George Washington University, Washington, D.C. 20052, USA
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S3B2, Canada
| | - Etsuko Nonaka
- Department of Agricultural Science, University of Helsinki 00170, Finland
- Station Linné, Förjestaden, Öland 00014, Sweden
| | - Megan Higgie
- College of Science & Engineering, James Cook University, Townsville City, Queensland 4814, Australia
| | - Scott Egan
- Department of BioSciences, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
2
|
Scholz T, de Chambrier A, Brabec J, Knudsen R, Blasco-Costa I. Redescription of Proteocephalus fallax La Rue, 1911 (Cestoda) and a list of proteocephalid tapeworms of whitefish (Coregonus spp.). Folia Parasitol (Praha) 2024; 71:2024.019. [PMID: 39498539 DOI: 10.14411/fp.2024.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/30/2024] [Indexed: 11/07/2024]
Abstract
Tapeworms of the genus Proteocephalus Weinland, 1858 (Cestoda: Proteocephalidae) are common and widespread intestinal parasites of whitefish (Coregonus spp., Salmonidae: Coregoninae). Previous taxonomic studies, based solely on morphology and inconsistently fixed specimens, concluded that all salmoniform fish, including whitefish, are parasitised by a single euryxenous and highly polymorphic species, Proteocephalus longicollis (Zeder, 1800). However, recent molecular phylogenetic analyses have revealed the existence of several species specific to individual genera or even species of salmoniform fish. In this study, Proteocephalus fallax La Rue, 1911 is redescribed based on newly collected and genetically characterised specimens from several Coregonus species in Switzerland, the type locality of the species, and in Norway. This cestode was previously synonymised with P. exiguus La Rue, 1911, a parasite of whitefish in North America, but the two species are not closely related. Proteocephalus fallax differs from P. exiguus in its larger body size, wider proglottids, shorter cirrus sac and broader scolex. In addition, the other Proteocephalus species described in whitefish are briefly discussed, with comments on their validity, host range and distribution.
Collapse
Affiliation(s)
- Tomas Scholz
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Alain de Chambrier
- Department of Invertebrates, Natural History Museum of Geneva, Geneva, Switzerland
| | - Jan Brabec
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
- Department of Invertebrates, Natural History Museum of Geneva, Geneva, Switzerland
| | - Rune Knudsen
- Department of Arctic and Marine Biology, The Arctic University of Norway, Tromso, Norway *Address for correspondence: Tomas Scholz, Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic. ; ORCID-iD 0000-0002-6340-3750
| | - Isabel Blasco-Costa
- Department of Invertebrates, Natural History Museum of Geneva, Geneva, Switzerland
- Department of Arctic and Marine Biology, The Arctic University of Norway, Tromso, Norway *Address for correspondence: Tomas Scholz, Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic. ; ORCID-iD 0000-0002-6340-3750
| |
Collapse
|
3
|
Woronowicz KC, Esin EV, Markevich GN, Martinez CS, McMenamin SK, Daane JM, Harris MP, Shkil FN. Phylogenomic analysis of the Lake Kronotskoe species flock of Dolly Varden charr reveals genetic and developmental signatures of sympatric radiation. Development 2024; 151:dev203002. [PMID: 39417576 DOI: 10.1242/dev.203002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
Recent adaptive radiations provide experimental opportunities to parse the relationship between genomic variation and the origins of distinct phenotypes. Sympatric radiations of the charr complex (genus Salvelinus) present a trove for phylogenetic analyses as charrs have repeatedly diversified into multiple morphs with distinct feeding specializations. However, charr species flocks normally comprise only two to three lineages. Dolly Varden charr inhabiting Lake Kronotskoe represent the most extensive radiation described for the genus, containing at least seven lineages, each with defining morphological and ecological traits. Here, we perform the first genome-wide analysis of this species flock to parse the foundations of adaptive change. Our data support distinct, reproductively isolated lineages within the clade. We find that changes in genes associated with thyroid signaling and craniofacial development provided a foundational shift in evolution to the lake. The thyroid axis is further implicated in subsequent lineage partitioning events. These results delineate a genetic scenario for the diversification of specialized lineages and highlight a common axis of change biasing the generation of specific forms during adaptive radiation.
Collapse
Affiliation(s)
- Katherine C Woronowicz
- Department of Orthopedics, Boston Children's Hospital and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Evgeny V Esin
- Laboratory of Lower Vertebrate Ecology, Severtsov Institute, Moscow 119071, Russian Federation
| | - Grigorii N Markevich
- Laboratory of Lower Vertebrate Ecology, Severtsov Institute, Moscow 119071, Russian Federation
| | | | | | - Jacob M Daane
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Matthew P Harris
- Department of Orthopedics, Boston Children's Hospital and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Fedor N Shkil
- Laboratory of Evolutionary Morphology, Severtsov Institute, Moscow 119071, Russian Federation
- Laboratory of Postembryonic Development, Koltzov Institute, Moscow 119071, Russian Federation
| |
Collapse
|
4
|
Brand JA, Thorstad EB, Quinn TP, Brodin T, Bertram MG. Salmonid fishes. Curr Biol 2024; 34:R882-R884. [PMID: 39378842 DOI: 10.1016/j.cub.2024.08.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Jack Brand and colleagues introduce the salmonid fishes comprising over 200 species.
Collapse
Affiliation(s)
- Jack A Brand
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden; Institute of Zoology, Zoological Society of London, London, UK.
| | - Eva B Thorstad
- Norwegian Institute for Nature Research, Trondheim, Norway
| | - Thomas P Quinn
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, USA
| | - Tomas Brodin
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Michael G Bertram
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden; Department of Zoology, Stockholm University, Stockholm, Sweden; School of Biological Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
5
|
Burbrink FT, Myers EA, Pyron RA. Understanding species limits through the formation of phylogeographic lineages. Ecol Evol 2024; 14:e70263. [PMID: 39364037 PMCID: PMC11446989 DOI: 10.1002/ece3.70263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 10/05/2024] Open
Abstract
The outcomes of speciation across organismal dimensions (e.g., ecological, genetic, phenotypic) are often assessed using phylogeographic methods. At one extreme, reproductively isolated lineages represent easily delimitable species differing in many or all dimensions, and at the other, geographically distinct genetic segments introgress across broad environmental gradients with limited phenotypic disparity. In the ambiguous gray zone of speciation, where lineages are genetically delimitable but still interacting ecologically, it is expected that these lineages represent species in the context of ontology and the evolutionary species concept when they are maintained over time with geographically well-defined hybrid zones, particularly at the intersection of distinct environments. As a result, genetic structure is correlated with environmental differences and not space alone, and a subset of genes fail to introgress across these zones as underlying genomic differences accumulate. We present a set of tests that synthesize species delimitation with the speciation process. We can thereby assess historical demographics and diversification processes while understanding how lineages are maintained through space and time by exploring spatial and genome clines, genotype-environment interactions, and genome scans for selected loci. Employing these tests in eight lineage-pairs of snakes in North America, we show that six pairs represent 12 "good" species and that two pairs represent local adaptation and regional population structure. The distinct species pairs all have the signature of divergence before or near the mid-Pleistocene, often with low migration, stable hybrid zones of varying size, and a subset of loci showing selection on alleles at the hybrid zone corresponding to transitions between distinct ecoregions. Locally adapted populations are younger, exhibit higher migration, and less ecological differentiation. Our results demonstrate that interacting lineages can be delimited using phylogeographic and population genetic methods that properly integrate spatial, temporal, and environmental data.
Collapse
Affiliation(s)
- Frank T Burbrink
- Department of Herpetology American Museum of Natural History New York New York USA
| | - Edward A Myers
- Department of Herpetology California Academy of Sciences San Francisco California USA
| | - R Alexander Pyron
- Department of Biological Sciences The George Washington University Washington DC USA
| |
Collapse
|
6
|
Leal-Cardín M, Bracamonte SE, Aldegunde J, Magalhaes IS, Ornelas-García CP, Barluenga M. Signatures of convergence in Neotropical cichlid fish. Mol Ecol 2024; 33:e17524. [PMID: 39279721 DOI: 10.1111/mec.17524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/17/2024] [Accepted: 08/02/2024] [Indexed: 09/18/2024]
Abstract
Convergent evolution of similar phenotypes suggests some predictability in the evolutionary trajectories of organisms, due to strong and repeated selective pressures, and/or developmental constraints. In adaptive radiations, particularly in cichlid fish radiations, convergent phenotypes are commonly found within and across geographical settings. Cichlids show major repeated axes of morphological diversification. Recurrent changes in body patterns reveal adaption to alternative habitats, and modifications of the trophic apparatus respond to the exploitation of different food resources. Here we compare morphologically and genetically two Neotropical cichlid assemblages, the Mexican desert cichlid and the Nicaraguan Midas cichlid, with similar polymorphic body and trophic adaptations despite their independent evolution. We found a common morphological axis of differentiation in trophic structures in both cichlid radiations, but two different axes of differentiation in body shape, defining two alternative limnetic body patterns. Adaptation to limnetic habitats implied regulation of immune functions in the Midas cichlid, while morphogenesis and metabolic functions in the desert cichlid. Convergent phenotypic adaptions could be associated to divergent gene regulation.
Collapse
Affiliation(s)
- Mariana Leal-Cardín
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
- University of Alcalá de Henares, Madrid, Spain
| | - Seraina E Bracamonte
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Javier Aldegunde
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Isabel S Magalhaes
- School of Life and Health Sciences, Centre for Integrated Research in Life and Health Sciences, University of Roehampton, London, UK
| | - Claudia Patricia Ornelas-García
- Colección Nacional de Peces, Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de Mexico, México City, Mexico
| | - Marta Barluenga
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| |
Collapse
|
7
|
Brabec J, Gauthier J, Selz OM, Knudsen R, Bilat J, Alvarez N, Seehausen O, Feulner PGD, Præbel K, Blasco-Costa I. Testing the radiation cascade in postglacial radiations of whitefish and their parasites: founder events and host ecology drive parasite evolution. Evol Lett 2024; 8:706-718. [PMID: 39328289 PMCID: PMC11424076 DOI: 10.1093/evlett/qrae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/01/2024] [Accepted: 05/31/2024] [Indexed: 09/28/2024] Open
Abstract
Reciprocal effects of adaptive radiations on the evolution of interspecific interactions, like parasitism, remain barely explored. We test whether the recent radiations of European whitefish (Coregonus spp.) across and within perialpine and subarctic lakes promote its parasite Proteocephalus fallax (Platyhelminthes: Cestoda) to undergo host repertoire expansion via opportunity and ecological fitting, or adaptive radiation by specialization. Using de novo genomic data, we examined P. fallax differentiation across lakes, within lakes across sympatric host species, and the contributions of host genetics versus host habitat use and trophic preferences. Whitefish intralake radiations prompted parasite host repertoire expansion in all lakes, whereas P. fallax differentiation remains incipient among sympatric fish hosts. Whitefish genetic differentiation per se did not explain the genetic differentiation among its parasite populations, ruling out codivergence with the host. Instead, incipient parasite differentiation was driven by whitefish phenotypic radiation in trophic preferences and habitat use in an arena of parasite opportunity and ecological fitting to utilize resources from emerging hosts. Whilst the whitefish radiation provides a substrate for the parasite to differentiate along the same water-depth ecological axis as Coregonus spp., the role of the intermediate hosts in parasite speciation may be overlooked. Parasite multiple-level ecological fitting to both fish and crustacean intermediate hosts resources may be responsible for parasite population substructure in Coregonus spp. We propose parasites' delayed arrival was key to the initial burst of postglacial intralake whitefish diversification, followed by opportunistic tapeworm host repertoire expansion and a delayed nonadaptive radiation cascade of incipient tapeworm differentiation. At the geographical scale, dispersal, founder events, and genetic drift following colonization of spatially heterogeneous landscapes drove strong parasite differentiation. We argue that these microevolutionary processes result in the mirroring of host-parasite phylogenies through phylogenetic tracking at macroevolutionary and geographical scales.
Collapse
Affiliation(s)
- Jan Brabec
- Department of Invertebrates, Natural History Museum of Geneva, Geneva, Switzerland
- Department of Evolutionary Parasitology, Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Jérémy Gauthier
- Department of Invertebrates, Natural History Museum of Geneva, Geneva, Switzerland
| | - Oliver M Selz
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry (CEEB), Eawag Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
- Aquatic Restoration and Fisheries section, Federal Office for the Environment (FOEN), Bern, Switzerland
| | - Rune Knudsen
- Department of Arctic Biology, The Arctic University of Norway, Tromsø, Norway
| | - Julia Bilat
- Department of Invertebrates, Natural History Museum of Geneva, Geneva, Switzerland
| | - Nadir Alvarez
- Department of Invertebrates, Natural History Museum of Geneva, Geneva, Switzerland
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Ole Seehausen
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry (CEEB), Eawag Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
- Division of Aquatic Ecology & Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Philine G D Feulner
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry (CEEB), Eawag Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
- Division of Aquatic Ecology & Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Kim Præbel
- Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Science, Elverum, Norway
| | - Isabel Blasco-Costa
- Department of Invertebrates, Natural History Museum of Geneva, Geneva, Switzerland
- Department of Arctic Biology, The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
8
|
Pallarés S, Ortego J, Carbonell JA, Franco-Fuentes E, Bilton DT, Millán A, Abellán P. Genomic, morphological and physiological data support fast ecotypic differentiation and incipient speciation in an alpine diving beetle. Mol Ecol 2024; 33:e17487. [PMID: 39108249 DOI: 10.1111/mec.17487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/31/2024] [Accepted: 07/22/2024] [Indexed: 08/28/2024]
Abstract
An intricate interplay between evolutionary and demographic processes has frequently resulted in complex patterns of genetic and phenotypic diversity in alpine lineages, posing serious challenges to species delimitation and biodiversity conservation planning. Here we integrate genomic data, geometric morphometric analyses and thermal tolerance experiments to explore the role of Pleistocene climatic changes and adaptation to alpine environments on patterns of genomic and phenotypic variation in diving beetles from the taxonomically complex Agabus bipustulatus species group. Genetic structure and phylogenomic analyses revealed the presence of three geographically cohesive lineages, two representing trans-Palearctic and Iberian populations of the elevation-generalist A. bipustulatus and another corresponding to the strictly-alpine A. nevadensis, a narrow-range endemic taxon from the Sierra Nevada mountain range in southeastern Iberia. The best-supported model of lineage divergence, along with the existence of pervasive genetic introgression and admixture in secondary contact zones, is consistent with a scenario of population isolation and connectivity linked to Quaternary climatic oscillations. Our results suggest that A. nevadensis is an alpine ecotype of A. bipustulatus, whose genotypic, morphological and physiological differentiation likely resulted from an interplay between population isolation and local altitudinal adaptation. Remarkably, within the Iberian Peninsula, such ecotypic differentiation is unique to Sierra Nevada populations and has not been replicated in other alpine populations of A. bipustulatus. Collectively, our study supports fast ecotypic differentiation and incipient speciation processes within the study complex and points to Pleistocene glaciations and local adaptation along elevational gradients as key drivers of biodiversity generation in alpine environments.
Collapse
Affiliation(s)
- Susana Pallarés
- Department of Zoology, University of Seville, Seville, Spain
| | - Joaquín Ortego
- Department of Ecology and Evolution, Estación Biológica de Doñana, EBD-CSIC, Seville, Spain
| | | | | | - David T Bilton
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
- Department of Zoology, University of Johannesburg, Johannesburg, South Africa
| | - Andrés Millán
- Department of Ecology and Hydrology, University of Murcia, Murcia, Spain
| | - Pedro Abellán
- Department of Zoology, University of Seville, Seville, Spain
| |
Collapse
|
9
|
Wang S, Wu L, Zhu Q, Wu J, Tang S, Zhao Y, Cheng Y, Zhang D, Qiao G, Zhang R, Lei F. Trait Variation and Spatiotemporal Dynamics across Avian Secondary Contact Zones. BIOLOGY 2024; 13:643. [PMID: 39194581 DOI: 10.3390/biology13080643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024]
Abstract
A secondary contact zone (SCZ) is an area where incipient species or divergent populations may meet, mate, and hybridize. Due to the diverse patterns of interspecific hybridization, SCZs function as field labs for illuminating the on-going evolutionary processes of speciation and the establishment of reproductive isolation. Interspecific hybridization is widely present in avian populations, making them an ideal system for SCZ studies. This review exhaustively summarizes the variations in unique traits within avian SCZs (vocalization, plumage, beak, and migratory traits) and the various movement patterns of SCZs observed in previous publications. It also highlights several potential future research directions in the genomic era, such as the relationship between phenotypic and genomic differentiation in SCZs, the genomic basis of trait differentiation, SCZs shared by multiple species, and accurate predictive models for forecasting future movements under climate change and human disturbances. This review aims to provide a more comprehensive understanding of speciation processes and offers a theoretical foundation for species conservation.
Collapse
Affiliation(s)
- Shangyu Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Wu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianghui Zhu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiahao Wu
- University of Chinese Academy of Sciences, Beijing 100049, China
- Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Shiyu Tang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifang Zhao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yalin Cheng
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Dezhi Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Gexia Qiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Runzhi Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Ramirez-Duarte WF, Moran BM, Powell DL, Bank C, Sousa VC, Rosenthal GG, Schumer M, Rochman CM. Hybridization in the Anthropocene - how pollution and climate change disrupt mate selection in freshwater fish. Biol Rev Camb Philos Soc 2024. [PMID: 39092475 DOI: 10.1111/brv.13126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Chemical pollutants and/or climate change have the potential to break down reproductive barriers between species and facilitate hybridization. Hybrid zones may arise in response to environmental gradients and secondary contact between formerly allopatric populations, or due to the introduction of non-native species. In freshwater ecosystems, field observations indicate that changes in water quality and chemistry, due to pollution and climate change, are correlated with an increased frequency of hybridization. Physical and chemical disturbances of water quality can alter the sensory environment, thereby affecting chemical and visual communication among fish. Moreover, multiple chemical compounds (e.g. pharmaceuticals, metals, pesticides, and industrial contaminants) may impair fish physiology, potentially affecting phenotypic traits relevant for mate selection (e.g. pheromone production, courtship, and coloration). Although warming waters have led to documented range shifts, and chemical pollution is ubiquitous in freshwater ecosystems, few studies have tested hypotheses about how these stressors may facilitate hybridization and what this means for biodiversity and species conservation. Through a systematic literature review across disciplines (i.e. ecotoxicology and evolutionary biology), we evaluate the biological interactions, toxic mechanisms, and roles of physical and chemical environmental stressors (i.e. chemical pollution and climate change) in disrupting mate preferences and inducing interspecific hybridization in freshwater fish. Our study indicates that climate change-driven changes in water quality and chemical pollution may impact visual and chemical communication crucial for mate choice and thus could facilitate hybridization among fishes in freshwater ecosystems. To inform future studies and conservation management, we emphasize the importance of further research to identify the chemical and physical stressors affecting mate choice, understand the mechanisms behind these interactions, determine the concentrations at which they occur, and assess their impact on individuals, populations, species, and biological diversity in the Anthropocene.
Collapse
Affiliation(s)
- Wilson F Ramirez-Duarte
- Department of Ecology & Evolutionary Biology, University of Toronto, 25 Willcocks Street, Room 3055, Toronto, Ontario, M5S 3B2, Canada
| | - Benjamin M Moran
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA, 94305, USA
| | - Daniel L Powell
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA, 94305, USA
| | - Claudia Bank
- Institute of Ecology and Evolution, Universität Bern, Baltzerstrasse 6, Bern, 3012, Switzerland
- Swiss Institute for Bioinformatics, Lausanne, 1015, Switzerland
| | - Vitor C Sousa
- Centre for Ecology, Evolution and Environmental Changes, University of Lisbon, Campo Grande 016, Lisbon, 1749-016, Portugal
| | - Gil G Rosenthal
- Department of Biology, Università degli Studi di Padova, Padova, 35131, Italy
- Centro de Investigaciones Científicas de las Huastecas 'Aguazarca', Calnali, Hgo, 43244, Mexico
| | - Molly Schumer
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA, 94305, USA
| | - Chelsea M Rochman
- Department of Ecology & Evolutionary Biology, University of Toronto, 25 Willcocks Street, Room 3055, Toronto, Ontario, M5S 3B2, Canada
| |
Collapse
|
11
|
Boughman JW, Brand JA, Brooks RC, Bonduriansky R, Wong BBM. Sexual selection and speciation in the Anthropocene. Trends Ecol Evol 2024; 39:654-665. [PMID: 38503640 DOI: 10.1016/j.tree.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 03/21/2024]
Abstract
Anthropogenic change threatens global biodiversity by causing severe ecological disturbance and extinction. Here, we consider the effects of anthropogenic change on one process that generates biodiversity. Sexual selection (a potent evolutionary force and driver of speciation) is highly sensitive to the environment and, thus, vulnerable to anthropogenic ecological change. Anthropogenic alterations to sexual display and mate preference can make it harder to distinguish between conspecific and heterospecific mates or can weaken divergence via sexual selection, leading to higher rates of hybridization and biodiversity loss. Occasionally, anthropogenically altered sexual selection can abet diversification, but this appears less likely than biodiversity loss. In our rapidly changing world, a full understanding of sexual selection and speciation requires a global change perspective.
Collapse
Affiliation(s)
- Janette W Boughman
- Department of Integrative Biology & Evolution, Ecology and Behavior Program, Michigan State University, East Lansing, MI 48824, USA.
| | - Jack A Brand
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia; Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Västerbotten, SE-907 36, Sweden
| | - Robert C Brooks
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Russell Bonduriansky
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| |
Collapse
|
12
|
Hendry AP, Barrett RDH, Bell AM, Bell MA, Bolnick DI, Gotanda KM, Haines GE, Lind ÅJ, Packer M, Peichel CL, Peterson CR, Poore HA, Massengill RL, Milligan‐McClellan K, Steinel NC, Sanderson S, Walsh MR, Weber JN, Derry AM. Designing eco-evolutionary experiments for restoration projects: Opportunities and constraints revealed during stickleback introductions. Ecol Evol 2024; 14:e11503. [PMID: 38932947 PMCID: PMC11199335 DOI: 10.1002/ece3.11503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
Eco-evolutionary experiments are typically conducted in semi-unnatural controlled settings, such as mesocosms; yet inferences about how evolution and ecology interact in the real world would surely benefit from experiments in natural uncontrolled settings. Opportunities for such experiments are rare but do arise in the context of restoration ecology-where different "types" of a given species can be introduced into different "replicate" locations. Designing such experiments requires wrestling with consequential questions. (Q1) Which specific "types" of a focal species should be introduced to the restoration location? (Q2) How many sources of each type should be used-and should they be mixed together? (Q3) Which specific source populations should be used? (Q4) Which type(s) or population(s) should be introduced into which restoration sites? We recently grappled with these questions when designing an eco-evolutionary experiment with threespine stickleback (Gasterosteus aculeatus) introduced into nine small lakes and ponds on the Kenai Peninsula in Alaska that required restoration. After considering the options at length, we decided to use benthic versus limnetic ecotypes (Q1) to create a mixed group of colonists from four source populations of each ecotype (Q2), where ecotypes were identified based on trophic morphology (Q3), and were then introduced into nine restoration lakes scaled by lake size (Q4). We hope that outlining the alternatives and resulting choices will make the rationales clear for future studies leveraging our experiment, while also proving useful for investigators considering similar experiments in the future.
Collapse
Affiliation(s)
| | | | - Alison M. Bell
- School of Integrative BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Michael A. Bell
- Museum of PaleontologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Daniel I. Bolnick
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticutUSA
| | - Kiyoko M. Gotanda
- Department of Biological SciencesBrock UniversitySaint CatharinesOntarioCanada
| | - Grant E. Haines
- Aquaculture and Fish BiologyHólar University CollegeSauðárkrókurIceland
| | - Åsa J. Lind
- Institute of Ecology and EvolutionUniversity of BernBernSwitzerland
| | - Michelle Packer
- Department of BiologyUniversity of Texas at ArlingtonArlingtonTexasUSA
| | | | | | | | | | | | - Natalie C. Steinel
- Biological SciencesUniversity of Massachusetts LowellLowellMassachusettsUSA
| | | | - Matthew R. Walsh
- Department of BiologyUniversity of Texas at ArlingtonArlingtonTexasUSA
| | - Jesse N. Weber
- Integrative BiologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Alison M. Derry
- Sciences BiologiquesUniversité du Québec á MontréalMontréalQuébecCanada
| |
Collapse
|
13
|
Yang X, Su Y, Huang S, Hou Q, Wei P, Hao Y, Huang J, Xiao H, Ma Z, Xu X, Wang X, Cao S, Cao X, Zhang M, Wen X, Ma Y, Peng Y, Zhou Y, Cao K, Qiao G. Comparative population genomics reveals convergent and divergent selection in the apricot-peach-plum-mei complex. HORTICULTURE RESEARCH 2024; 11:uhae109. [PMID: 38883333 PMCID: PMC11179850 DOI: 10.1093/hr/uhae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/06/2024] [Indexed: 06/18/2024]
Abstract
The economically significant genus Prunus includes fruit and nut crops that have been domesticated for shared and specific agronomic traits; however, the genomic signals of convergent and divergent selection have not been elucidated. In this study, we aimed to detect genomic signatures of convergent and divergent selection by conducting comparative population genomic analyses of the apricot-peach-plum-mei (APPM) complex, utilizing a haplotype-resolved telomere-to-telomere (T2T) genome assembly and population resequencing data. The haplotype-resolved T2T reference genome for the plum cultivar was assembled through HiFi and Hi-C reads, resulting in two haplotypes 251.25 and 251.29 Mb in size, respectively. Comparative genomics reveals a chromosomal translocation of ~1.17 Mb in the apricot genomes compared with peach, plum, and mei. Notably, the translocation involves the D locus, significantly impacting titratable acidity (TA), pH, and sugar content. Population genetic analysis detected substantial gene flow between plum and apricot, with introgression regions enriched in post-embryonic development and pollen germination processes. Comparative population genetic analyses revealed convergent selection for stress tolerance, flower development, and fruit ripening, along with divergent selection shaping specific crop, such as somatic embryogenesis in plum, pollen germination in mei, and hormone regulation in peach. Notably, selective sweeps on chromosome 7 coincide with a chromosomal collinearity from the comparative genomics, impacting key fruit-softening genes such as PG, regulated by ERF and RMA1H1. Overall, this study provides insights into the genetic diversity, evolutionary history, and domestication of the APPM complex, offering valuable implications for genetic studies and breeding programs of Prunus crops.
Collapse
Affiliation(s)
- Xuanwen Yang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang 550025, China
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Science, Zhengzhou 450009, China
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Ying Su
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Xinjiang, Urumqi 830046, China
| | - Siyang Huang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Qiandong Hou
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Pengcheng Wei
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Science, Zhengzhou 450009, China
| | - Yani Hao
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Department of Bioinformatics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Jiaqi Huang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hua Xiao
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Zhiyao Ma
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xiaodong Xu
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xu Wang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Shuo Cao
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuejing Cao
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Mengyan Zhang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xiaopeng Wen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Yuhua Ma
- Institute of Pomology Science, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Yanling Peng
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yongfeng Zhou
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- National Key Laboratory of Tropical Crop Breeding, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 570100, China
| | - Ke Cao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Science, Zhengzhou 450009, China
| | - Guang Qiao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang 550025, China
| |
Collapse
|
14
|
Tengstedt ANB, Liu S, Jacobsen MW, Gundlund C, Møller PR, Berg S, Bekkevold D, Hansen MM. Genomic insights on conservation priorities for North Sea houting and European lake whitefish (Coregonus spp.). Mol Ecol 2024:e17367. [PMID: 38686435 DOI: 10.1111/mec.17367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 05/02/2024]
Abstract
Population genomics analysis holds great potential for informing conservation of endangered populations. We focused on a controversial case of European whitefish (Coregonus spp.) populations. The endangered North Sea houting is the only coregonid fish that tolerates oceanic salinities and was previously considered a species (C. oxyrhinchus) distinct from European lake whitefish (C. lavaretus). However, no firm evidence for genetic-based salinity adaptation has been available. Also, studies based on microsatellite and mitogenome data suggested surprisingly recent divergence (c. 2500 years bp) between houting and lake whitefish. These data types furthermore have provided no evidence for possible inbreeding. Finally, a controversial taxonomic revision recently classified all whitefish in the region as C. maraena, calling conservation priorities of houting into question. We used whole-genome and ddRAD sequencing to analyse six lake whitefish populations and the only extant indigenous houting population. Demographic inference indicated post-glacial expansion and divergence between lake whitefish and houting occurring not long after the Last Glaciation, implying deeper population histories than previous analyses. Runs of homozygosity analysis suggested not only high inbreeding (FROH up to 30.6%) in some freshwater populations but also FROH up to 10.6% in the houting prompting conservation concerns. Finally, outlier scans provided evidence for adaptation to high salinities in the houting. Applying a framework for defining conservation units based on current and historical reproductive isolation and adaptive divergence led us to recommend that the houting be treated as a separate conservation unit regardless of species status. In total, the results underscore the potential of genomics to inform conservation practices, in this case clarifying conservation units and highlighting populations of concern.
Collapse
Affiliation(s)
| | - Shenglin Liu
- Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Magnus W Jacobsen
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | | | - Peter Rask Møller
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Søren Berg
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Dorte Bekkevold
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | | |
Collapse
|
15
|
Tiddy IC, Schneider K, Elmer KR. Environmental correlates of adaptive diversification in postglacial freshwater fishes. JOURNAL OF FISH BIOLOGY 2024; 104:517-535. [PMID: 37984834 DOI: 10.1111/jfb.15621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023]
Abstract
Determining how environmental conditions contribute to divergence among populations and drive speciation is fundamental to resolving mechanisms and understanding outcomes in evolutionary biology. Postglacial freshwater fish species in the Northern Hemisphere are ideal biological systems to explore the effects of environment on diversification in morphology, ecology, and genetics (ecomorph divergences) within lakes. To date, various environmental factors have been implicated in the presence of multiple ecomorphs within particular lakes or regions. However, concerted evidence for generalizable patterns in environmental variables associated with speciation across geographical regions and across species and genera has been lacking. Here, we aimed to identify key biotic and abiotic factors associated with ecological divergence of postglacial freshwater fish species into multiple sympatric ecomorphs, focusing on species in the well-studied, widespread, and co-distributed genera Gasterosteus, Salvelinus, and Coregonus (stickleback, charr, and whitefish, respectively). We found that the presence of multiple sympatric ecomorphs tended to be associated with increasing lake surface area, maximum depth, and nutrient availability. In addition, predation, competition, and prey availability were suggested to play a role in divergence into multiple ecomorphs, but the effects of biotic factors require further study. Although we identified several environmental factors correlated with the presence of multiple ecomorphs, there were substantial data gaps across species and regions. An improved understanding of these systems may provide insight into both generalizable environmental factors involved in speciation in other systems, and potential ecological and evolutionary responses of species complexes when these variables are altered by environmental change.
Collapse
Affiliation(s)
- Isabelle C Tiddy
- School of Biodiversity, One Health & Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Kevin Schneider
- School of Biodiversity, One Health & Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Kathryn R Elmer
- School of Biodiversity, One Health & Veterinary Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
16
|
Zhou J, Mogollón JM, van Bodegom PM, Beusen AHW, Scherer L. Global regionalized characterization factors for phosphorus and nitrogen impacts on freshwater fish biodiversity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169108. [PMID: 38065495 DOI: 10.1016/j.scitotenv.2023.169108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/26/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023]
Abstract
Inefficient global nutrient (i.e., phosphorus (P) and nitrogen (N)) management leads to an increase in nutrient delivery to freshwater and coastal ecosystems and induces eutrophication in these aquatic environments. This process threatens the various species inhabiting these ecosystems. In this study, we developed regionalized characterization factors (CFs) for freshwater eutrophication at 0.5 × 0.5-degree resolution, considering different fates for direct emissions to freshwater, diffuse emissions, and increased erosion due to agricultural land use. The CFs were provided for global and regional species loss of freshwater fish. CFs for global species loss were quantified by integrating global extinction probabilities. Results showed that the CFs for P and N impacts on freshwater fish are higher in densely populated regions that encompass either large lakes or the headwaters of large rivers. Focusing on nutrient-limited areas increases country-level CFs in 51.9 % of the countries for P and 49.5 % of the countries for N compared to not considering nutrient limitation. This study highlights the relevance of considering freshwater eutrophication impacts via both P and N emissions and identifying the limiting nutrient when performing life cycle impact assessments.
Collapse
Affiliation(s)
- Jinhui Zhou
- Institute of Environmental Sciences (CML), Leiden University, Leiden, the Netherlands.
| | - José M Mogollón
- Institute of Environmental Sciences (CML), Leiden University, Leiden, the Netherlands
| | - Peter M van Bodegom
- Institute of Environmental Sciences (CML), Leiden University, Leiden, the Netherlands
| | - Arthur H W Beusen
- PBL Netherlands Environmental Assessment Agency, the Hague, the Netherlands; Department of Earth Sciences, Utrecht University, Utrecht, the Netherlands
| | - Laura Scherer
- Institute of Environmental Sciences (CML), Leiden University, Leiden, the Netherlands
| |
Collapse
|
17
|
Dong R, Peng K, Zhang Q, Heino J, Cai Y, Gong Z. Spatial and temporal variation in lake macroinvertebrate communities is decreased by eutrophication. ENVIRONMENTAL RESEARCH 2024; 243:117872. [PMID: 38086502 DOI: 10.1016/j.envres.2023.117872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/15/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023]
Abstract
Eutrophication impacts freshwater ecosystems and biodiversity across the world. While temporal monitoring has shown changes in the nutrient inputs in many areas, how spatial and temporal beta diversity change along the eutrophication gradient under a changing context remains unclear. In this regard, analyses based on time series spanning multiple years are particularly scarce. We sampled benthic macroinvertebrates in 32 sites across three lake habitat types (MACROPHYTE, OPEN WATER, PHYTOPLANKTON) along the eutrophication gradient of Lake Taihu in four seasons from 2007 to 2019. Our purpose was to identify the relative contributions of spatial and temporal dissimilarity (i.e., inter-annual dissimilarity and seasonal dissimilarity) to overall benthic biodiversity. We also examined spatio-temporal patterns in community assembly mechanisms and how associated variation in benthic macroinvertebrate communities responded to nutrient indicators. Results showed that eutrophication caused macroinvertebrate community homogenization both along spatial and temporal gradients. Though spatial variability dominated the variation of species richness, abundance and community dissimilarity, seasons within years dissimilarity, inter-annual dissimilarity and seasonal dissimilarity were much more sensitive to eutrophication. Moreover, eutrophication inhibited a strong environmental control in benthic macroinvertebrate community assembly, including a dominant role of deterministic process in the spatial variation of macroinvertebrate communities and transition from stochastic to deterministic process in the temporal assembly of macroinvertebrate communities along the eutrophication gradient. In addition, some sites in PHYTOPLANKTON habitats showed similar spatial dissimilarity and spatial SES as sites in MACROPHYTE habitats, and the decreased spatial dissimilarity of three habitats implying that lake ecosystem recovery projects have achieved their goal at least to a certain degree.
Collapse
Affiliation(s)
- Rui Dong
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Kai Peng
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, PR China
| | - Qingji Zhang
- School of Geography and Ocean Science, Nanjing University, Nanjing, PR China
| | - Jani Heino
- Geography Research Unit, University of Oulu, P.O. Box 8000, FI-90014, Oulu, Finland
| | - Yongjiu Cai
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, PR China; University of Chinese Academy of Sciences, Beijing, PR China.
| | - Zhijun Gong
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, PR China; University of Chinese Academy of Sciences, Beijing, PR China.
| |
Collapse
|
18
|
Frei D, Mwaiko S, Seehausen O, Feulner PGD. Ecological disturbance reduces genomic diversity across an Alpine whitefish adaptive radiation. Evol Appl 2024; 17:e13617. [PMID: 38343775 PMCID: PMC10853656 DOI: 10.1111/eva.13617] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 10/28/2024] Open
Abstract
Genomic diversity is associated with the adaptive potential of a population and thereby impacts the extinction risk of a species during environmental change. However, empirical data on genomic diversity of populations before environmental perturbations are rare and hence our understanding of the impact of perturbation on diversity is often limited. We here assess genomic diversity utilising whole-genome resequencing data from all four species of the Lake Constance Alpine whitefish radiation. Our data covers a period of strong but transient anthropogenic environmental change and permits us to track changes in genomic diversity in all species over time. Genomic diversity became strongly reduced during the period of anthropogenic disturbance and has not recovered yet. The decrease in genomic diversity varies between 18% and 30%, depending on the species. Interspecific allele frequency differences of SNPs located in potentially ecologically relevant genes were homogenized over time. This suggests that in addition to the reduction of genome-wide genetic variation, the differentiation that evolved in the process of adaptation to alternative ecologies between species might have been lost during the ecological disturbance. The erosion of substantial amounts of genomic variation within just a few generations in combination with the loss of potentially adaptive genomic differentiation, both of which had evolved over thousands of years, demonstrates the sensitivity of biodiversity in evolutionary young adaptive radiations towards environmental disturbance. Natural history collections, such as the one used for this study, are instrumental in the assessment of genomic consequences of anthropogenic environmental change. Historical samples enable us to document biodiversity loss against the shifting baseline syndrome and advance our understanding of the need for efficient biodiversity conservation on a global scale.
Collapse
Affiliation(s)
- David Frei
- Department of Fish Ecology and EvolutionEAWAG Swiss Federal Institute of Aquatic Science and TechnologyKastanienbaumSwitzerland
- Division of Aquatic Ecology and Evolution, Institute of Ecology and EvolutionUniversity of BernBernSwitzerland
| | - Salome Mwaiko
- Department of Fish Ecology and EvolutionEAWAG Swiss Federal Institute of Aquatic Science and TechnologyKastanienbaumSwitzerland
| | - Ole Seehausen
- Department of Fish Ecology and EvolutionEAWAG Swiss Federal Institute of Aquatic Science and TechnologyKastanienbaumSwitzerland
- Division of Aquatic Ecology and Evolution, Institute of Ecology and EvolutionUniversity of BernBernSwitzerland
| | - Philine G. D. Feulner
- Department of Fish Ecology and EvolutionEAWAG Swiss Federal Institute of Aquatic Science and TechnologyKastanienbaumSwitzerland
- Division of Aquatic Ecology and Evolution, Institute of Ecology and EvolutionUniversity of BernBernSwitzerland
| |
Collapse
|
19
|
Kulmuni J, Wiley B, Otto SP. On the fast track: hybrids adapt more rapidly than parental populations in a novel environment. Evol Lett 2024; 8:128-136. [PMID: 38370548 PMCID: PMC10871894 DOI: 10.1093/evlett/qrad002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/22/2022] [Accepted: 01/26/2023] [Indexed: 02/20/2024] Open
Abstract
Rates of hybridization are predicted to increase due to climate change and human activity that cause redistribution of species and bring previously isolated populations into contact. At the same time climate change leads to rapid changes in the environment, requiring populations to adapt rapidly in order to survive. A few empirical cases suggest hybridization can facilitate adaptation despite its potential for incompatibilities and deleterious fitness consequences. Here we use simulations and Fisher's Geometric model to evaluate the conditions and time frame of adaptation via hybridization in both diploids and haplodiploids. We find that hybrids adapt faster to new environments compared to parental populations in nearly all simulated scenarios, generating a fitness advantage that can offset intrinsic incompatibilities and last for tens of generations, regardless of whether the population was diploid or haplodiploid. Our results highlight the creative role of hybridization and suggest that hybridization may help contemporary populations adapt to the changing climate. However, adaptation by hybrids may well happen at the cost of reduced biodiversity, if previously isolated lineages collapse into one.
Collapse
Affiliation(s)
- Jonna Kulmuni
- Organismal & Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
- Tvärminne Zoological Station, University of Helsinki, Hanko, Finland
- Institute for Biodiversity and Ecosystem Dynamics, Department of Evolutionary and Population Biology, University of Amsterdam, Amsterdam, The Netherlands
| | - Bryn Wiley
- Department of Zoology and Biodiversity Research Center, University of British Columbia, Vancouver, Canada
| | - Sarah P Otto
- Department of Zoology and Biodiversity Research Center, University of British Columbia, Vancouver, Canada
| |
Collapse
|
20
|
Ålund M, Cenzer M, Bierne N, Boughman JW, Cerca J, Comerford MS, Culicchi A, Langerhans B, McFarlane SE, Möst MH, North H, Qvarnström A, Ravinet M, Svanbäck R, Taylor SA. Anthropogenic Change and the Process of Speciation. Cold Spring Harb Perspect Biol 2023; 15:a041455. [PMID: 37788888 PMCID: PMC10691492 DOI: 10.1101/cshperspect.a041455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Anthropogenic impacts on the environment alter speciation processes by affecting both geographical contexts and selection patterns on a worldwide scale. Here we review evidence of these effects. We find that human activities often generate spatial isolation between populations and thereby promote genetic divergence but also frequently cause sudden secondary contact and hybridization between diverging lineages. Human-caused environmental changes produce new ecological niches, altering selection in diverse ways that can drive diversification; but changes also often remove niches and cause extirpations. Human impacts that alter selection regimes are widespread and strong in magnitude, ranging from local changes in biotic and abiotic conditions to direct harvesting to global climate change. Altered selection, and evolutionary responses to it, impacts early-stage divergence of lineages, but does not necessarily lead toward speciation and persistence of separate species. Altogether, humans both promote and hinder speciation, although new species would form very slowly relative to anthropogenic hybridization, which can be nearly instantaneous. Speculating about the future of speciation, we highlight two key conclusions: (1) Humans will have a large influence on extinction and "despeciation" dynamics in the short term and on early-stage lineage divergence, and thus potentially speciation in the longer term, and (2) long-term monitoring combined with easily dated anthropogenic changes will improve our understanding of the processes of speciation. We can use this knowledge to preserve and restore ecosystems in ways that promote (re-)diversification, increasing future opportunities of speciation and enhancing biodiversity.
Collapse
Affiliation(s)
- Murielle Ålund
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala 75236, Sweden
| | - Meredith Cenzer
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637, USA
| | - Nicolas Bierne
- ISEM, Université de Montpellier, CNRS, IRD, Montpellier 34095, France
| | - Janette W Boughman
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - José Cerca
- CEES - Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo 0316, Norway
| | | | - Alessandro Culicchi
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala 75236, Sweden
| | - Brian Langerhans
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - S Eryn McFarlane
- Department of Botany, University of Wyoming, Laramie, Wyoming 82071, USA
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - Markus H Möst
- Research Department for Limnology, University of Innsbruck, Innsbruck 6020, Austria
| | - Henry North
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
| | - Anna Qvarnström
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala 75236, Sweden
| | - Mark Ravinet
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Richard Svanbäck
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala 75236, Sweden
| | - Scott A Taylor
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado 80309, USA
| |
Collapse
|
21
|
Coimbra RTF, Winter S, Muneza A, Fennessy S, Otiende M, Mijele D, Masiaine S, Stacy-Dawes J, Fennessy J, Janke A. Genomic analysis reveals limited hybridization among three giraffe species in Kenya. BMC Biol 2023; 21:215. [PMID: 37833744 PMCID: PMC10576358 DOI: 10.1186/s12915-023-01722-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND In the speciation continuum, the strength of reproductive isolation varies, and species boundaries are blurred by gene flow. Interbreeding among giraffe (Giraffa spp.) in captivity is known, and anecdotal reports of natural hybrids exist. In Kenya, Nubian (G. camelopardalis camelopardalis), reticulated (G. reticulata), and Masai giraffe sensu stricto (G. tippelskirchi tippelskirchi) are parapatric, and thus, the country might be a melting pot for these taxa. We analyzed 128 genomes of wild giraffe, 113 newly sequenced, representing these three taxa. RESULTS We found varying levels of Nubian ancestry in 13 reticulated giraffe sampled across the Laikipia Plateau most likely reflecting historical gene flow between these two lineages. Although comparatively weaker signs of ancestral gene flow and potential mitochondrial introgression from reticulated into Masai giraffe were also detected, estimated admixture levels between these two lineages are minimal. Importantly, contemporary gene flow between East African giraffe lineages was not statistically significant. Effective population sizes have declined since the Late Pleistocene, more severely for Nubian and reticulated giraffe. CONCLUSIONS Despite historically hybridizing, these three giraffe lineages have maintained their overall genomic integrity suggesting effective reproductive isolation, consistent with the previous classification of giraffe into four species.
Collapse
Affiliation(s)
- Raphael T F Coimbra
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt, Germany.
- Institute for Ecology, Evolution and Diversity, Goethe University, Frankfurt, Germany.
| | - Sven Winter
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt, Germany
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | | | | | | | | | | | - Julian Fennessy
- Giraffe Conservation Foundation, Windhoek, Namibia
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Axel Janke
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt, Germany.
- Institute for Ecology, Evolution and Diversity, Goethe University, Frankfurt, Germany.
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany.
| |
Collapse
|
22
|
Meier JI, McGee MD, Marques DA, Mwaiko S, Kishe M, Wandera S, Neumann D, Mrosso H, Chapman LJ, Chapman CA, Kaufman L, Taabu-Munyaho A, Wagner CE, Bruggmann R, Excoffier L, Seehausen O. Cycles of fusion and fission enabled rapid parallel adaptive radiations in African cichlids. Science 2023; 381:eade2833. [PMID: 37769075 DOI: 10.1126/science.ade2833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 08/21/2023] [Indexed: 09/30/2023]
Abstract
Although some lineages of animals and plants have made impressive adaptive radiations when provided with ecological opportunity, the propensities to radiate vary profoundly among lineages for unknown reasons. In Africa's Lake Victoria region, one cichlid lineage radiated in every lake, with the largest radiation taking place in a lake less than 16,000 years old. We show that all of its ecological guilds evolved in situ. Cycles of lineage fusion through admixture and lineage fission through speciation characterize the history of the radiation. It was jump-started when several swamp-dwelling refugial populations, each of which were of older hybrid descent, met in the newly forming lake, where they fused into a single population, resuspending old admixture variation. Each population contributed a different set of ancient alleles from which a new adaptive radiation assembled in record time, involving additional fusion-fission cycles. We argue that repeated fusion-fission cycles in the history of a lineage make adaptive radiation fast and predictable.
Collapse
Affiliation(s)
- Joana I Meier
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Department of Fish Ecology and Evolution, Centre for Ecology, Evolution, and Biogeochemistry, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Kastanienbaum, Switzerland
- Department of Zoology, University of Cambridge, Cambridge, UK
- Tree of Life Programme, Wellcome Sanger Institute, Hinxton, UK
| | - Matthew D McGee
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Department of Fish Ecology and Evolution, Centre for Ecology, Evolution, and Biogeochemistry, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Kastanienbaum, Switzerland
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - David A Marques
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Department of Fish Ecology and Evolution, Centre for Ecology, Evolution, and Biogeochemistry, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Kastanienbaum, Switzerland
- Natural History Museum Basel, Basel, Switzerland
| | - Salome Mwaiko
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Department of Fish Ecology and Evolution, Centre for Ecology, Evolution, and Biogeochemistry, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Kastanienbaum, Switzerland
| | - Mary Kishe
- Tanzania Fisheries Research Institute (TAFIRI), Dar es Salaam, Tanzania
| | - Sylvester Wandera
- National Fisheries Resources Research Institute (NAFIRRI), Jinja, Uganda
| | - Dirk Neumann
- Leipniz Institute for Biodiversity Change, Hamburg, Germany
| | - Hilary Mrosso
- Tanzania Fisheries Research Institute (TAFIRI), Dar es Salaam, Tanzania
| | - Lauren J Chapman
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Colin A Chapman
- Wilson Center, Washington, DC, USA
- Biology Department, Vancouver Island University, Nanaimo, British Columbia, Canada
- School of Life Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, China
- Biology Department, Vancouver Island University, Nanaimo, British Columbia, Canada
| | - Les Kaufman
- Boston University Marine Program, Department of Biology, Boston University, Boston, MA, USA
| | | | | | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Laurent Excoffier
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Ole Seehausen
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Department of Fish Ecology and Evolution, Centre for Ecology, Evolution, and Biogeochemistry, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Kastanienbaum, Switzerland
| |
Collapse
|
23
|
Yamamichi M, Ellner SP, Hairston NG. Beyond simple adaptation: Incorporating other evolutionary processes and concepts into eco-evolutionary dynamics. Ecol Lett 2023; 26 Suppl 1:S16-S21. [PMID: 37840027 DOI: 10.1111/ele.14197] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/18/2023] [Accepted: 02/20/2023] [Indexed: 10/17/2023]
Abstract
Studies of eco-evolutionary dynamics have integrated evolution with ecological processes at multiple scales (populations, communities and ecosystems) and with multiple interspecific interactions (antagonistic, mutualistic and competitive). However, evolution has often been conceptualised as a simple process: short-term directional adaptation that increases population growth. Here we argue that diverse other evolutionary processes, well studied in population genetics and evolutionary ecology, should also be considered to explore the full spectrum of feedback between ecological and evolutionary processes. Relevant but underappreciated processes include (1) drift and mutation, (2) disruptive selection causing lineage diversification or speciation reversal and (3) evolution driven by relative fitness differences that may decrease population growth. Because eco-evolutionary dynamics have often been studied by population and community ecologists, it will be important to incorporate a variety of concepts in population genetics and evolutionary ecology to better understand and predict eco-evolutionary dynamics in nature.
Collapse
Affiliation(s)
- Masato Yamamichi
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Stephen P Ellner
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Nelson G Hairston
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
24
|
Burbrink FT, Ruane S, Rabibisoa N, Raselimanana AP, Raxworthy CJ, Kuhn A. Speciation rates are unrelated to the formation of population structure in Malagasy gemsnakes. Ecol Evol 2023; 13:e10344. [PMID: 37529593 PMCID: PMC10375368 DOI: 10.1002/ece3.10344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/07/2023] [Accepted: 06/30/2023] [Indexed: 08/03/2023] Open
Abstract
Speciation rates vary substantially across the tree of life. These rates should be linked to the rate at which population structure forms if a continuum between micro and macroevolutionary patterns exists. Previous studies examining the link between speciation rates and the degree of population formation in clades have been shown to be either correlated or uncorrelated depending on the group, but no study has yet examined the relationship between speciation rates and population structure in a young group that is constrained spatially to a single-island system. We examine this correlation in 109 gemsnakes (Pseudoxyrhophiidae) endemic to Madagascar and originating in the early Miocene, which helps control for extinction variation across time and space. We find no relationship between rates of speciation and the formation rates of population structure over space in 33 species of gemsnakes. Rates of speciation show low variation, yet population structure varies widely across species, indicating that speciation rates and population structure are disconnected. We suspect this is largely due to the persistence of some lineages not susceptible to extinction. Importantly, we discuss how delimiting populations versus species may contribute to problems understanding the continuum between shallow and deep evolutionary processes.
Collapse
Affiliation(s)
- Frank T. Burbrink
- Department of HerpetologyAmerican Museum of Natural HistoryNew York CityNew YorkUSA
| | - Sara Ruane
- Life Sciences Section, Negaunee Integrative Research CenterField Museum of Natural HistoryChicagoIllinoisUSA
| | - Nirhy Rabibisoa
- Sciences de la Vie et de l'Environnement, Faculté des Sciences, de Technologies et de l'EnvironnementUniversité de MahajangaMahajangaMadagascar
| | - Achille P. Raselimanana
- Zoologie et Biodiversité Animale, Faculté des SciencesUniversité d'AntananarivoAntananarivoMadagascar
| | | | - Arianna Kuhn
- Department of HerpetologyAmerican Museum of Natural HistoryNew York CityNew YorkUSA
- Virginia Museum of Natural HistoryMartinsvilleVirginiaUSA
| |
Collapse
|
25
|
Stiller J, Wilson NG, Rouse GW. Range-wide population genomics of common seadragons shows secondary contact over a former barrier and insights on illegal capture. BMC Biol 2023; 21:129. [PMID: 37248474 DOI: 10.1186/s12915-023-01628-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND Common seadragons (Phyllopteryx taeniolatus, Syngnathidae) are an emblem of the diverse endemic fauna of Australia's southern rocky reefs, the newly recognized "Great Southern Reef." A lack of assessments spanning this global biodiversity hotspot in its entirety is currently hampering an understanding of the factors that have contributed to its diversity. The common seadragon has a wide range across Australia's entire temperate south and includes a geogenetic break over a former land bridge, which has called its status as a single species into question. As a popular aquarium display that sells for high prices, common seadragons are also vulnerable to illegal capture. RESULTS Here, we provide range-wide nuclear sequences (986 variable Ultraconserved Elements) for 198 individuals and mitochondrial genomes for 140 individuals to assess species status, identify genetic units and their diversity, and trace the source of two poached individuals. Using published data of the other two seadragon species, we found that lineages of common seadragons have diverged relatively recently (< 0.63 Ma). Within common seadragons, we found pronounced genetic structure, falling into three major groups in the western, central, and eastern parts of the range. While populations across the Bassian Isthmus were divergent, there is also evidence for secondary contact since the passage opened. We found a strong cline of genetic diversity from the range center tapering symmetrically towards the range peripheries. Based on their genetic similarities, the poached individuals were inferred to have originated from around Albany in southwestern Australia. CONCLUSIONS We conclude that common seadragons constitute a single species with strong geographic structure but coherence through gene flow. The low genetic diversity on the east and west coasts is concerning given that these areas are projected to face fast climate change. Our results suggest that in addition to their life history, geological events and demographic expansions have all played a role in shaping populations in the temperate south. These insights are an important step towards understanding the historical determinants of the diversity of species endemic to the Great Southern Reef.
Collapse
Affiliation(s)
- Josefin Stiller
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, 92093 , USA.
- Centre for Biodiversity Genomics, University of Copenhagen, 2100, Copenhagen, Denmark.
| | - Nerida G Wilson
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, 92093 , USA
- Research & Collections, Western Australian Museum, Perth, Western Australia, 6106, Australia
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Greg W Rouse
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, 92093 , USA.
| |
Collapse
|
26
|
Zhou J, Mogollón JM, van Bodegom PM, Barbarossa V, Beusen AHW, Scherer L. Effects of Nitrogen Emissions on Fish Species Richness across the World's Freshwater Ecoregions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37216582 DOI: 10.1021/acs.est.2c09333] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The increasing application of synthetic fertilizer has tripled nitrogen (N) inputs over the 20th century. N enrichment decreases water quality and threatens aquatic species such as fish through eutrophication and toxicity. However, the impacts of N on freshwater ecosystems are typically neglected in life cycle assessment (LCA). Due to the variety of environmental conditions and species compositions, the response of species to N emissions differs among ecoregions, requiring a regionalized effect assessment. Our study tackled this issue by establishing regionalized species sensitivity distributions (SSDs) of freshwater fish against N concentrations for 367 ecoregions and 48 combinations of realms and major habitat types globally. Subsequently, effect factors (EFs) were derived for LCA to assess the effects of N on fish species richness at a 0.5 degree × 0.5 degree resolution. Results show good SSD fits for all of the ecoregions that contain sufficient data and similar patterns for average and marginal EFs. The SSDs highlight strong effects on species richness due to high N concentrations in the tropical zone and the vulnerability of cold regions. Our study revealed the regional differences in sensitivities of freshwater ecosystems against N content in great spatial detail and can be used to assess more precisely and comprehensively nutrient-induced impacts in LCA.
Collapse
Affiliation(s)
- Jinhui Zhou
- Institute of Environmental Sciences (CML), Leiden University, 2311 EZ Leiden, The Netherlands
| | - José M Mogollón
- Institute of Environmental Sciences (CML), Leiden University, 2311 EZ Leiden, The Netherlands
| | - Peter M van Bodegom
- Institute of Environmental Sciences (CML), Leiden University, 2311 EZ Leiden, The Netherlands
| | - Valerio Barbarossa
- Institute of Environmental Sciences (CML), Leiden University, 2311 EZ Leiden, The Netherlands
- PBL Netherlands Environmental Assessment Agency, 2594 AV The Hague, The Netherlands
| | - Arthur H W Beusen
- PBL Netherlands Environmental Assessment Agency, 2594 AV The Hague, The Netherlands
- Department of Earth Sciences, Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Laura Scherer
- Institute of Environmental Sciences (CML), Leiden University, 2311 EZ Leiden, The Netherlands
| |
Collapse
|
27
|
Lackey ACR, Murray AC, Mirza NA, Powell THQ. The role of sexual isolation during rapid ecological divergence: Evidence for a new dimension of isolation in Rhagoletis pomonella. J Evol Biol 2023. [PMID: 37173822 DOI: 10.1111/jeb.14179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 03/05/2023] [Accepted: 03/23/2023] [Indexed: 05/15/2023]
Abstract
The pace of divergence and likelihood of speciation often depends on how and when different types of reproductive barriers evolve. Questions remain about how reproductive isolation evolves after initial divergence. We tested for the presence of sexual isolation (reduced mating between populations due to divergent mating preferences and traits) in Rhagoletis pomonella flies, a model system for incipient ecological speciation. We measured the strength of sexual isolation between two very recently diverged (~170 generations) sympatric populations, adapted to different host fruits (hawthorn and apple). We found that flies from both populations were more likely to mate within than between populations. Thus, sexual isolation may play an important role in reducing gene flow allowed by early-acting ecological barriers. We also tested how warmer temperatures predicted under climate change could alter sexual isolation and found that sexual isolation was markedly asymmetric under warmer temperatures - apple males and hawthorn females mated randomly while apple females and hawthorn males mated more within populations than between. Our findings provide a window into the early speciation process and the role of sexual isolation after initial ecological divergence, in addition to examining how environmental conditions could shape the likelihood of further divergence.
Collapse
Affiliation(s)
- Alycia C R Lackey
- University of Louisville, Louisville, Kentucky, USA
- Binghamton University, Binghamton, New York, USA
| | | | | | | |
Collapse
|
28
|
Baer J, Schliewen UK, Schedel FDB, Straube N, Roch S, Brinker A. Cryptic persistence and loss of local endemism in Lake Constance charr subject to anthropogenic disturbance. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2773. [PMID: 36317855 DOI: 10.1002/eap.2773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 08/15/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
In the welcome circumstance that species believed extinct are rediscovered, it is often the case that biological knowledge acquired before the presumed extinction is limited. Efforts to address these knowledge gaps, in particular to assess the taxonomic integrity and conservation status of such species, can be hampered by a lack of genetic data and scarcity of samples in museum collections. Here, we present a proof-of-concept case study based on a multidisciplinary data evaluation approach to tackle such problems. The approach was developed after the rediscovery, 40 years after its presumed extinction, of the enigmatic Lake Constance deep-water charr Salvelinus profundus. Targeted surveys led to the capture of further species and additional sympatric normal charr, Salvelinus cf. umbla. Since the lake had been subject to massive stocking in the past, an evaluation of the genetic integrity of both extant forms was called for in order to assess possible introgression. A two-step genomic approach was developed based on restriction site associated DNA (RAD). Diagnostic population genomic (single nucleotide polymorphism [SNP]) data were harvested from contemporary samples and used for RNA bait design to perform target capture in DNA libraries of archival scale material, enabling a comparison between extant and historic samples. Furthermore, life history traits and morphological data for both extant forms were gathered and compared with historical data from the past 60-120 years. While extant deep-water charr matched historical deep-water specimens in body shape, gill raker count, and growth rates, significant differences were discovered between historical and extant normal charr. These resulted were supported by genomic analyses of contemporary samples, revealing the two extant forms to be highly divergent. The results of population assignment tests suggest that the endemic deep-water charr persisted in Lake Constance during the eutrophic phase, but not one of the historical genomic samples could be assigned to the extant normal charr taxon. Stocking with non-endemic charr seems to be the most likely reason for these changes. This proof-of-concept study presents a multidisciplinary data evaluation approach that simultaneously tests population genomic integrity and addresses some of the conservation issues arising from rediscovery of a species characterized by limited data availability.
Collapse
Affiliation(s)
- Jan Baer
- Fisheries Research Station Baden-Württemberg, Langenargen, Germany
| | | | - Frederic D B Schedel
- SNSB-ZSM Bavarian State Collection of Zoology, Munich, Germany
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Nicolas Straube
- Department of Natural History, University Museum of Bergen, Bergen, Norway
| | - Samuel Roch
- Fisheries Research Station Baden-Württemberg, Langenargen, Germany
| | - Alexander Brinker
- Fisheries Research Station Baden-Württemberg, Langenargen, Germany
- University of Konstanz, Institute for Limnology, Constance, Germany
| |
Collapse
|
29
|
Kyogoku D, Yamaguchi R. Males and females contribute differently to the evolution of habitat segregation driven by hybridization. J Evol Biol 2023; 36:515-528. [PMID: 36721300 DOI: 10.1111/jeb.14156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/27/2022] [Accepted: 01/11/2023] [Indexed: 02/02/2023]
Abstract
Costly heterospecific mating interactions, such as hybridization, select for prezygotic reproductive isolation. One of the potential traits responding to the selection arising from maladaptive hybridization is habitat preference, whose divergence results in interspecific habitat segregation. Theoretical studies have so far assumed that habitat preference is a sexually shared trait. However, male and female habitat preferences can experience different selection pressures. Here, by combining analytical and simulation approaches, we theoretically examine the evolution of sex-specific habitat preferences. Habitat segregation can have demographic consequences, potentially generating eco-evolutionary dynamics. We thus explicitly consider demography in the simulation model. We also vary the degrees of species discrimination to examine how mate choice influences the evolution of habitat preferences. Results show that both sexes can reduce hybridisation risk by settling in the habitats where abundant conspecific mates reside. However, when females can discriminate species, excess conspecific male aggregation intensifies male-male competition for mating opportunities, posing an obstacle to conspecific aggregation. Meanwhile, conspecific female aggregation attracts conspecific males, by offering the mating opportunity. Therefore, under effective species discrimination, females play a leading role in initiating habitat use divergence. Simulations typically result in either the coexistence with established habitat segregation or the extinction of one of the species. The former result is especially likely when the species differ to some extent in habitat preferences upon secondary contact. Our results disentangle the selection pressures acting on male and female habitat preferences, deepening our understanding of the evolutionary process of habitat segregation due to hybridization.
Collapse
Affiliation(s)
| | - Ryo Yamaguchi
- Department of Advanced Transdisciplinary Science, Hokkaido University, Sapporo, Japan.,Department of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
30
|
Yi X, Zou R, Liao X, Guo H, Liu Y. Too ill to cure? - An uncertainty-based probabilistic model assessment on one of China's most eutrophic lakes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 328:116916. [PMID: 36470004 DOI: 10.1016/j.jenvman.2022.116916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/21/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Eutrophication is a global challenge, which is exemplified by the tremendous efforts but little results in restoring the sixth largest and also one of the most eutrophic freshwater lakes in China, Lake Dianchi. Considering large parametric uncertainties in water quality modeling, the traditionally used deterministic water quality model is expanded to a probabilistic model to explore the Lake Dianchi's potential responses to different levels of pollutant load reductions. The results show that, given the long pollution history and severe pollution state in Lake Dianchi, a minimum pollution load reduction by half (base year 2003) is required to maintain the water quality state as it is now in 40 years. At least a 60% nutrient load reduction is required to generate any likelihood of water quality improvement, however, the system stabilizes quickly after about 10 years, which may explain why tremendous investments have generated little results. 80% of nutrient load reduction for 40 years has 95% probability of meeting the TN target but only a below 50% (45%) probability in meeting the TP target, and even less to meet water quality target for Chla. The feasibility of ever reaching the Chinese drinking water standards for total phosphorous and total nitrogen is questionable.
Collapse
Affiliation(s)
- Xuan Yi
- China South-to-North Water Diversion Corporation Limited, Beijing, 100036, China; College of Environmental Science and Engineering, The Key Laboratory of Water and Sediment Sciences Ministry of Education, Peking University, Beijing, 100871, China
| | - Rui Zou
- Rays Computational Intelligence Lab, Beijing Inteliway Environmental Ltd, Beijing, 100871, China; Yunnan Key Laboratory of Pollution Process and Management of Plateau Lake-Watershed, Kunming, 650034, China
| | - Xiawei Liao
- Bay Area International Business School, Beijing Normal University, Zhuhai, 519087, Guangdong Province, China.
| | - Huaicheng Guo
- College of Environmental Science and Engineering, The Key Laboratory of Water and Sediment Sciences Ministry of Education, Peking University, Beijing, 100871, China
| | - Yong Liu
- College of Environmental Science and Engineering, The Key Laboratory of Water and Sediment Sciences Ministry of Education, Peking University, Beijing, 100871, China
| |
Collapse
|
31
|
Selz OM, Seehausen O. A taxonomic revision of ten whitefish species from the lakes Lucerne, Sarnen, Sempach and Zug, Switzerland, with descriptions of seven new species (Teleostei, Coregonidae). Zookeys 2023; 1144:95-169. [DOI: 10.3897/zookeys.1144.67747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/22/2022] [Indexed: 02/04/2023] Open
Abstract
The taxonomy of the endemic whitefish of the lakes of the Reuss River system (Lucerne, Sarnen, Zug) and Lake Sempach, Switzerland, is reviewed and revised. Lake Lucerne harbours five species. Coregonus intermundiasp. nov. and C. suspensussp. nov., are described. Coregonus nobilis Haack, 1882, C. suidteri Fatio, 1885, and C. zugensis Nüsslin, 1882, are redescribed. Genetic studies have shown that C. suidteri and C. zugensis are composed of several distinct species endemic to different lakes. The names C. suidteri and C. zugensis are restricted to the species of lakes Sempach and Zug, respectively. The whitefish populations previously referred to as C. suidteri and C. zugensis from Lake Lucerne are described as C. litoralissp. nov. and C. muellerisp. nov., respectively. Furthermore, the whitefish from Lake Zug that were previously referred to as C. suidteri are described as C. supersumsp. nov. A holotype is designated for C. supersum that was previously one of two syntypes of C. zugensis. The other syntype is retained for C. zugensis. Coregonus obliterussp. nov. is described from Lake Zug, and C. obliterus and C. zugensis from Lake Zug are extinct. Finally, we describe C. sarnensissp. nov. from lakes Sarnen and Alpnach. Coregonus suidteri from Lake Sempach shows strong signals of introgression from deliberately translocated non-native whitefish species, which questions if the extant population still carries a genetic legacy from the original species and thus may need to be considered extinct. Coregonus suspensus is genetically partially of allochthonous origin, closely related to the radiation of Lake Constance. It is therefore compared to all known and described species of Lake Constance: C. wartmanni Bloch, 1784, C. macrophthalmus Nüsslin, 1882, C. arenicolus Kottelat,1997, and C. gutturosus Gmelin, 1818.
Collapse
|
32
|
Hanashiro FTT, De Meester L, Vanhamel M, Mukherjee S, Gianuca AT, Verbeek L, van den Berg E, Souffreau C. Bacterioplankton Assembly Along a Eutrophication Gradient Is Mainly Structured by Environmental Filtering, Including Indirect Effects of Phytoplankton Composition. MICROBIAL ECOLOGY 2023; 85:400-410. [PMID: 35306576 DOI: 10.1007/s00248-022-01994-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Biotic interactions are suggested to be key factors structuring bacterioplankton community assembly but are rarely included in metacommunity studies. Eutrophication of ponds and lakes provides a useful opportunity to evaluate how bacterioplankton assembly is affected by specific environmental conditions, especially also by biotic interactions with other trophic levels such as phytoplankton and zooplankton. Here, we evaluated the importance of deterministic and stochastic processes on bacterioplankton community assembly in 35 shallow ponds along a eutrophication gradient in Belgium and assessed the direct and indirect effects of phytoplankton and zooplankton community variation on bacterioplankton assembly through a path analysis and network analysis. Environmental filtering by abiotic factors (suspended matter concentration and pH) explained the largest part of the bacterioplankton community variation. Phytoplankton community structure affected bacterioplankton structure through its effect on variation in chlorophyll-a and suspended matter concentration. Bacterioplankton communities were also spatially structured through pH. Overall, our results indicate that environmental variation is a key component driving bacterioplankton assembly along a eutrophication gradient and that indirect biotic interactions can also be important in explaining bacterioplankton community composition. Furthermore, eutrophication led to divergence in community structure and more eutrophic ponds had a higher diversity of bacteria.
Collapse
Affiliation(s)
- Fabio Toshiro T Hanashiro
- Laboratory of Aquatic Ecology, Evolution & Conservation, KU Leuven, Charles Deberiotstraat 32, 3000, Leuven, Belgium.
| | - Luc De Meester
- Laboratory of Aquatic Ecology, Evolution & Conservation, KU Leuven, Charles Deberiotstraat 32, 3000, Leuven, Belgium
- Leibniz Institut für Gewässerökologie und Binnenfischerei (IGB), Müggelseedamm 310, 12587, Berlin, Germany
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Strasse 1-3, 14195, Berlin, Germany
| | - Matthias Vanhamel
- Laboratory of Aquatic Ecology, Evolution & Conservation, KU Leuven, Charles Deberiotstraat 32, 3000, Leuven, Belgium
| | - Shinjini Mukherjee
- Laboratory of Aquatic Ecology, Evolution & Conservation, KU Leuven, Charles Deberiotstraat 32, 3000, Leuven, Belgium
- Laboratory of Reproductive Genomics, KU Leuven, ON I Herestraat 49, 3000, Leuven, Belgium
| | - Andros T Gianuca
- Laboratory of Aquatic Ecology, Evolution & Conservation, KU Leuven, Charles Deberiotstraat 32, 3000, Leuven, Belgium
- Departamento de Ecologia, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, 59078-900, Brazil
| | - Laura Verbeek
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Schleusenstrasse 1, 26382, Wilhelmshaven, Germany
| | - Edwin van den Berg
- Laboratory of Aquatic Ecology, Evolution & Conservation, KU Leuven, Charles Deberiotstraat 32, 3000, Leuven, Belgium
| | - Caroline Souffreau
- Laboratory of Aquatic Ecology, Evolution & Conservation, KU Leuven, Charles Deberiotstraat 32, 3000, Leuven, Belgium
| |
Collapse
|
33
|
McFadden IR, Sendek A, Brosse M, Bach PM, Baity‐Jesi M, Bolliger J, Bollmann K, Brockerhoff EG, Donati G, Gebert F, Ghosh S, Ho H, Khaliq I, Lever JJ, Logar I, Moor H, Odermatt D, Pellissier L, de Queiroz LJ, Rixen C, Schuwirth N, Shipley JR, Twining CW, Vitasse Y, Vorburger C, Wong MKL, Zimmermann NE, Seehausen O, Gossner MM, Matthews B, Graham CH, Altermatt F, Narwani A. Linking human impacts to community processes in terrestrial and freshwater ecosystems. Ecol Lett 2023; 26:203-218. [PMID: 36560926 PMCID: PMC10107666 DOI: 10.1111/ele.14153] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 12/24/2022]
Abstract
Human impacts such as habitat loss, climate change and biological invasions are radically altering biodiversity, with greater effects projected into the future. Evidence suggests human impacts may differ substantially between terrestrial and freshwater ecosystems, but the reasons for these differences are poorly understood. We propose an integrative approach to explain these differences by linking impacts to four fundamental processes that structure communities: dispersal, speciation, species-level selection and ecological drift. Our goal is to provide process-based insights into why human impacts, and responses to impacts, may differ across ecosystem types using a mechanistic, eco-evolutionary comparative framework. To enable these insights, we review and synthesise (i) how the four processes influence diversity and dynamics in terrestrial versus freshwater communities, specifically whether the relative importance of each process differs among ecosystems, and (ii) the pathways by which human impacts can produce divergent responses across ecosystems, due to differences in the strength of processes among ecosystems we identify. Finally, we highlight research gaps and next steps, and discuss how this approach can provide new insights for conservation. By focusing on the processes that shape diversity in communities, we aim to mechanistically link human impacts to ongoing and future changes in ecosystems.
Collapse
Affiliation(s)
- Ian R. McFadden
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
- Institute of Terrestrial EcosystemsETH ZürichZurichSwitzerland
- Present address:
Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | - Agnieszka Sendek
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
| | - Morgane Brosse
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
| | - Peter M. Bach
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
| | - Marco Baity‐Jesi
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
| | - Janine Bolliger
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
| | - Kurt Bollmann
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
| | - Eckehard G. Brockerhoff
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
- School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
| | - Giulia Donati
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
| | - Friederike Gebert
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
| | - Shyamolina Ghosh
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
| | - Hsi‐Cheng Ho
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
| | - Imran Khaliq
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
| | - J. Jelle Lever
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
| | - Ivana Logar
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
| | - Helen Moor
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
| | - Daniel Odermatt
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
| | - Loïc Pellissier
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
- Institute of Terrestrial EcosystemsETH ZürichZurichSwitzerland
| | - Luiz Jardim de Queiroz
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)KastanienbaumSwitzerland
- Institute of Ecology & EvolutionUniversity of BernBernSwitzerland
| | - Christian Rixen
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)DavosSwitzerland
| | - Nele Schuwirth
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
| | - J. Ryan Shipley
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)KastanienbaumSwitzerland
| | - Cornelia W. Twining
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)KastanienbaumSwitzerland
| | - Yann Vitasse
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
| | - Christoph Vorburger
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
- Institute of Integrative Biology, Department of Environmental Systems ScienceETH ZürichZurichSwitzerland
| | - Mark K. L. Wong
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
- School of Biological SciencesThe University of Western AustraliaCrawleyWAAustralia
| | - Niklaus E. Zimmermann
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
| | - Ole Seehausen
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)KastanienbaumSwitzerland
- Institute of Ecology & EvolutionUniversity of BernBernSwitzerland
| | - Martin M. Gossner
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
- Institute of Terrestrial EcosystemsETH ZürichZurichSwitzerland
| | - Blake Matthews
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)KastanienbaumSwitzerland
| | - Catherine H. Graham
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
| | - Florian Altermatt
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZürichSwitzerland
| | - Anita Narwani
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
| |
Collapse
|
34
|
Frei D, Reichlin P, Seehausen O, Feulner PGD. Introgression from extinct species facilitates adaptation to its vacated niche. Mol Ecol 2023; 32:841-853. [PMID: 36458574 DOI: 10.1111/mec.16791] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/28/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
Anthropogenic disturbances of ecosystems are causing a loss of biodiversity at an unprecedented rate. Species extinctions often leave ecological niches underutilized, and their colonization by other species may require new adaptation. In Lake Constance, on the borders of Germany, Austria and Switzerland, an endemic profundal whitefish species went extinct during a period of anthropogenic eutrophication. In the process of extinction, the deep-water species hybridized with three surviving whitefish species of Lake Constance, resulting in introgression of genetic variation that is potentially adaptive in deep-water habitats. Here, we sampled a water depth gradient across a known spawning ground of one of these surviving species, Coregonus macrophthalmus, and caught spawning individuals at greater depths (down to 90 m) than historically recorded. We sequenced a total of 96 whole genomes, 11-17 for each of six different spawning depth populations (4, 12, 20, 40, 60 and 90 m), to document genomic intraspecific differentiation along a water depth gradient. We identified 52 genomic regions that are potentially under divergent selection between the deepest (90 m) and all shallower (4-60 m) spawning habitats. At 12 (23.1%) of these 52 loci, the allele frequency pattern across historical and contemporary populations suggests that introgression from the extinct species potentially facilitates ongoing adaptation to deep water. Our results are consistent with the syngameon hypothesis, proposing that hybridization between members of an adaptive radiation can promote further niche expansion and diversification. Furthermore, our findings demonstrate that introgression from extinct into extant species can be a source of evolvability, enabling rapid adaptation to environmental change, and may contribute to the ecological recovery of ecosystem functions after extinctions.
Collapse
Affiliation(s)
- David Frei
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland.,Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Pascal Reichlin
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Ole Seehausen
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland.,Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Philine G D Feulner
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland.,Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| |
Collapse
|
35
|
McFarlane SE, Mandeville EG. Diverse data sources and new statistical models offer prospects for improving the predictability of anthropogenic hybridization. GLOBAL CHANGE BIOLOGY 2023; 29:923-925. [PMID: 36409147 DOI: 10.1111/gcb.16527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Human disturbance can theoretically influence the rates of hybridization, but few studies have convincingly identified a causal link. Grabenstein et al. (2022) used a genomic and phenotypic study of chickadees to associate hybridization with human disturbance. Additionally, this is consistent with citizen science reports of chickadee hybrids across the range. We highlight the exciting aspects of this work and make suggestions about a role for broad geographic and genomic sampling, and new statistical methods to better connect hybridization outcomes to anthropogenic disturbance in diverse study systems.
Collapse
Affiliation(s)
- S Eryn McFarlane
- Department of Botany, University of Wyoming, Laramie, Wyoming, USA
| | | |
Collapse
|
36
|
Anderson SAS, López-Fernández H, Weir JT. Ecology and the origin of non-ephemeral species. Am Nat 2022; 201:619-638. [PMID: 37130236 DOI: 10.1086/723763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractResearch over the past three decades has shown that ecology-based extrinsic reproductive barriers can rapidly arise to generate incipient species-but such barriers can also rapidly dissolve when environments change, resulting in incipient species collapse. Understanding the evolution of unconditional, "intrinsic" reproductive barriers is therefore important for understanding the longer-term buildup of biodiversity. In this article, we consider ecology's role in the evolution of intrinsic reproductive isolation. We suggest that this topic has fallen into a gap between disciplines: while evolutionary ecologists have traditionally focused on the rapid evolution of extrinsic isolation between co-occurring ecotypes, speciation geneticists studying intrinsic isolation in other taxa have devoted little attention to the ecological context in which it evolves. We argue that for evolutionary ecology to close this gap, the field will have to expand its focus beyond rapid adaptation and its traditional model systems. Synthesizing data from several subfields, we present circumstantial evidence for and against different forms of ecological adaptation as promoters of intrinsic isolation and discuss alternative forces that may be significant. We conclude by outlining complementary approaches that can better address the role of ecology in the evolution of nonephemeral reproductive barriers and, by extension, less ephemeral species.
Collapse
|
37
|
Scott AD, King DM, Ordway SW, Bahar S. Phase transitions in evolutionary dynamics. CHAOS (WOODBURY, N.Y.) 2022; 32:122101. [PMID: 36587338 DOI: 10.1063/5.0124274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Sharp changes in state, such as transitions from survival to extinction, are hallmarks of evolutionary dynamics in biological systems. These transitions can be explored using the techniques of statistical physics and the physics of nonlinear and complex systems. For example, a survival-to-extinction transition can be characterized as a non-equilibrium phase transition to an absorbing state. Here, we review the literature on phase transitions in evolutionary dynamics. We discuss directed percolation transitions in cellular automata and evolutionary models, and models that diverge from the directed percolation universality class. We explore in detail an example of an absorbing phase transition in an agent-based model of evolutionary dynamics, including previously unpublished data demonstrating similarity to, but also divergence from, directed percolation, as well as evidence for phase transition behavior at multiple levels of the model system's evolutionary structure. We discuss phase transition models of the error catastrophe in RNA virus dynamics and phase transition models for transition from chemistry to biochemistry, i.e., the origin of life. We conclude with a review of phase transition dynamics in models of natural selection, discuss the possible role of phase transitions in unraveling fundamental unresolved questions regarding multilevel selection and the major evolutionary transitions, and assess the future outlook for phase transitions in the investigation of evolutionary dynamics.
Collapse
Affiliation(s)
- Adam D Scott
- Department of Physics and Astronomy and Center for Neurodynamics, University of Missouri at St. Louis, One University Blvd., St. Louis, Missouri 63121, USA
| | - Dawn M King
- Department of Physics and Astronomy and Center for Neurodynamics, University of Missouri at St. Louis, One University Blvd., St. Louis, Missouri 63121, USA
| | - Stephen W Ordway
- Department of Physics and Astronomy and Center for Neurodynamics, University of Missouri at St. Louis, One University Blvd., St. Louis, Missouri 63121, USA
| | - Sonya Bahar
- Department of Physics and Astronomy and Center for Neurodynamics, University of Missouri at St. Louis, One University Blvd., St. Louis, Missouri 63121, USA
| |
Collapse
|
38
|
Vogt R, Hartmann S, Kunze J, Jupke JF, Steinhoff B, Schönherr H, Kuhnert KD, Witte K, Lamatsch DK, Wanzenböck J. Silver nanoparticles adversely affect the swimming behavior of European Whitefish ( Coregonus lavaretus) larvae within the low µg/L range. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:867-880. [PMID: 35881030 DOI: 10.1080/15287394.2022.2102099] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The aim of this study was to determine the effects of silver nanoparticles (AgNPs; speciation: NM-300 K) in the lab on the behavior of larvae in European Whitefish (Coregonus lavaretus), a relevant model species for temperate aquatic environments during alternating light and darkness phases. The behavioral parameters measured included activity, turning rate, and distance moved. C. lavaretus were exposed to AgNP at nominal concentrations of 0, 5, 15, 45, 135, or 405 µg/L (n = 33, each) and behavior was recorded using a custom-built tracking system equipped with light sources that reliably simulate light and darkness. The observed behavior was analyzed using generalized linear mixed models, which enabled reliable detection of AgNP-related movement patterns at 10-fold higher sensitivity compared to recently reported standard toxicological studies. Exposure to 45 µg/L AgNPs significantly resulted in hyperactive response patterns for both activity and turning rates after an illumination change from light to darkness suggesting that exposure to this compound triggered escape mechanisms and disorientation-like behaviors in C. lavaretus fish larvae. Even at 5 µg/L AgNPs some behavioral effects were detected, but further tests are required to assess their ecological relevance. Further, the behavior of fish larvae exposed to 135 µg/L AgNPs was comparable to the control for all test parameters, suggesting a triphasic dose response pattern. Data demonstrated the potential of combining generalized linear mixed models with behavioral investigations to detect adverse effects on aquatic species that might be overlooked using standard toxicological tests.
Collapse
Affiliation(s)
- Roland Vogt
- Research Department for Limnology, Mondsee, University of Innsbruck, Mondsee, Austria
| | - Sarah Hartmann
- Institute of Biology, Department of Chemistry - Biology, University of Siegen, Siegen, Germany
| | - Jan Kunze
- Institute of Real-time Learning Systems, Department of Electrical Engineering and Computer Science, University of Siegen, Siegen, Germany
| | - Jonathan Frederik Jupke
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau in der Pfalz, Germany
| | - Benedikt Steinhoff
- Institute of Biology, Department of Chemistry - Biology, University of Siegen, Siegen, Germany
- Center of Micro- and Nanochemistry and Engineering (Cμ), University of Siegen, Siegen, Germany
| | - Holger Schönherr
- Institute of Biology, Department of Chemistry - Biology, University of Siegen, Siegen, Germany
- Center of Micro- and Nanochemistry and Engineering (Cμ), University of Siegen, Siegen, Germany
| | - Klaus-Dieter Kuhnert
- Institute of Real-time Learning Systems, Department of Electrical Engineering and Computer Science, University of Siegen, Siegen, Germany
| | - Klaudia Witte
- Institute of Biology, Department of Chemistry - Biology, University of Siegen, Siegen, Germany
| | | | - Josef Wanzenböck
- Research Department for Limnology, Mondsee, University of Innsbruck, Mondsee, Austria
| |
Collapse
|
39
|
Xiong T, Mallet J. On the impermanence of species: The collapse of genetic incompatibilities in hybridizing populations. Evolution 2022; 76:2498-2512. [PMID: 36097352 PMCID: PMC9827863 DOI: 10.1111/evo.14626] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/23/2022] [Indexed: 01/22/2023]
Abstract
Species pairs often become genetically incompatible during divergence, which is an important source of reproductive isolation. An idealized picture is often painted where incompatibility alleles accumulate and fix between diverging species. However, recent studies have shown both that incompatibilities can collapse with ongoing hybridization, and that incompatibility loci can be polymorphic within species. This paper suggests some general rules for the behavior of incompatibilities under hybridization. In particular, we argue that redundancy of genetic pathways can strongly affect the dynamics of intrinsic incompatibilities. Since fitness in genetically redundant systems is unaffected by introducing a few foreign alleles, higher redundancy decreases the stability of incompatibilities during hybridization, but also increases tolerance of incompatibility polymorphism within species. We use simulations and theories to show that this principle leads to two types of collapse: in redundant systems, exemplified by classical Dobzhansky-Muller incompatibilities, collapse is continuous and approaches a quasi-neutral polymorphism between broadly sympatric species, often as a result of isolation-by-distance. In nonredundant systems, exemplified by co-evolution among genetic elements, incompatibilities are often stable, but can collapse abruptly with spatial traveling waves. As both types are common, the proposed principle may be useful in understanding the abundance of genetic incompatibilities in natural populations.
Collapse
Affiliation(s)
- Tianzhu Xiong
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMA02138USA
| | - James Mallet
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMA02138USA
| |
Collapse
|
40
|
Wedekind C, Vonlanthen P, de Guttry C, Stadelmann R, Stadelmann N, Pirat A, Perroud G. Persistent high hatchery recruitment despite advanced reoligotrophication and significant natural spawning in a whitefish. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
41
|
Jardim de Queiroz L, Doenz CJ, Altermatt F, Alther R, Borko Š, Brodersen J, Gossner MM, Graham C, Matthews B, McFadden IR, Pellissier L, Schmitt T, Selz OM, Villalba S, Rüber L, Zimmermann NE, Seehausen O. Climate, immigration and speciation shape terrestrial and aquatic biodiversity in the European Alps. Proc Biol Sci 2022; 289:20221020. [PMID: 35946161 PMCID: PMC9363983 DOI: 10.1098/rspb.2022.1020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Quaternary climate fluctuations can affect speciation in regional biodiversity assembly in two non-mutually exclusive ways: a glacial species pump, where isolation in glacial refugia accelerates allopatric speciation, and adaptive radiation in underused adaptive zones during ice-free periods. We detected biogeographic and genetic signatures associated with both mechanisms in the assembly of the biota of the European Alps. Age distributions of endemic and widespread species within aquatic and terrestrial taxa (amphipods, fishes, amphibians, butterflies and flowering plants) revealed that endemic fish evolved only in lakes, are highly sympatric, and mainly of Holocene age, consistent with adaptive radiation. Endemic amphipods are ancient, suggesting preglacial radiation with limited range expansion and local Pleistocene survival, perhaps facilitated by a groundwater-dwelling lifestyle. Terrestrial endemics are mostly of Pleistocene age and are thus more consistent with the glacial species pump. The lack of evidence for Holocene adaptive radiation in the terrestrial biome is consistent with faster recolonization through range expansion of these taxa after glacial retreats. More stable and less seasonal ecological conditions in lakes during the Holocene may also have contributed to Holocene speciation in lakes. The high proportion of young, endemic species makes the Alpine biota vulnerable to climate change, but the mechanisms and consequences of species loss will likely differ between biomes because of their distinct evolutionary histories.
Collapse
Affiliation(s)
- Luiz Jardim de Queiroz
- Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum/8600 Dübendorf, Switzerland.,Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Carmela J Doenz
- Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum/8600 Dübendorf, Switzerland.,Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Florian Altermatt
- Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum/8600 Dübendorf, Switzerland.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8006 Zürich, Switzerland
| | - Roman Alther
- Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum/8600 Dübendorf, Switzerland.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8006 Zürich, Switzerland
| | - Špela Borko
- SubBio Lab, Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Jakob Brodersen
- Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum/8600 Dübendorf, Switzerland.,Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Martin M Gossner
- Swiss Federal Institute for Forest, Snow and Landscape Research, 8903 Birmensdorf, Switzerland.,Department of Environmental Systems Science, Swiss Federal Institute of Technology in Zürich, 8092 Zürich, Switzerland
| | - Catherine Graham
- Swiss Federal Institute for Forest, Snow and Landscape Research, 8903 Birmensdorf, Switzerland
| | - Blake Matthews
- Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum/8600 Dübendorf, Switzerland.,Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Ian R McFadden
- Swiss Federal Institute for Forest, Snow and Landscape Research, 8903 Birmensdorf, Switzerland.,Department of Environmental Systems Science, Swiss Federal Institute of Technology in Zürich, 8092 Zürich, Switzerland
| | - Loïc Pellissier
- Swiss Federal Institute for Forest, Snow and Landscape Research, 8903 Birmensdorf, Switzerland.,Department of Environmental Systems Science, Swiss Federal Institute of Technology in Zürich, 8092 Zürich, Switzerland
| | - Thomas Schmitt
- Senckenberg German Entomological Institute, 15374 Müncheberg, Germany.,Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
| | - Oliver M Selz
- Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum/8600 Dübendorf, Switzerland
| | - Soraya Villalba
- Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum/8600 Dübendorf, Switzerland
| | - Lukas Rüber
- Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland.,Naturhistorisches Museum Bern, 3005 Bern, Switzerland
| | - Niklaus E Zimmermann
- Swiss Federal Institute for Forest, Snow and Landscape Research, 8903 Birmensdorf, Switzerland.,Department of Environmental Systems Science, Swiss Federal Institute of Technology in Zürich, 8092 Zürich, Switzerland
| | - Ole Seehausen
- Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum/8600 Dübendorf, Switzerland.,Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
42
|
De-Kayne R, Selz OM, Marques DA, Frei D, Seehausen O, Feulner PGD. Genomic architecture of adaptive radiation and hybridization in Alpine whitefish. Nat Commun 2022; 13:4479. [PMID: 35918341 PMCID: PMC9345977 DOI: 10.1038/s41467-022-32181-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 07/20/2022] [Indexed: 11/18/2022] Open
Abstract
Adaptive radiations represent some of the most remarkable explosions of diversification across the tree of life. However, the constraints to rapid diversification and how they are sometimes overcome, particularly the relative roles of genetic architecture and hybridization, remain unclear. Here, we address these questions in the Alpine whitefish radiation, using a whole-genome dataset that includes multiple individuals of each of the 22 species belonging to six ecologically distinct ecomorph classes across several lake-systems. We reveal that repeated ecological and morphological diversification along a common environmental axis is associated with both genome-wide allele frequency shifts and a specific, larger effect, locus, associated with the gene edar. Additionally, we highlight the possible role of introgression between species from different lake-systems in facilitating the evolution and persistence of species with unique trait combinations and ecology. These results highlight the importance of both genome architecture and secondary contact with hybridization in fuelling adaptive radiation.
Collapse
Affiliation(s)
- Rishi De-Kayne
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
- Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Oliver M Selz
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - David A Marques
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
- Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Natural History Museum Basel, Basel, Switzerland
| | - David Frei
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
- Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Ole Seehausen
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
- Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Philine G D Feulner
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland.
- Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland.
| |
Collapse
|
43
|
Fang B, Momigliano P, Kahilainen KK, Merilä J. Allopatric origin of sympatric whitefish morphs with insights on the genetic basis of their reproductive isolation. Evolution 2022; 76:1905-1913. [PMID: 35797649 DOI: 10.1111/evo.14559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 06/13/2022] [Accepted: 06/22/2022] [Indexed: 01/22/2023]
Abstract
The European whitefish (Coregonus lavaretus) species complex is a classic example of recent adaptive radiation. Here, we examine a whitefish population introduced to northern Finnish Lake Tsahkal in the late 1960s, where three divergent morphs (viz. littoral, pelagic, and profundal feeders) were found 10 generations after. Using demographic modeling based on genomic data, we show that whitefish morphs evolved during a phase of strict isolation, refuting a rapid sympatric divergence scenario. The lake is now an artificial hybrid zone between morphs originated in allopatry. Despite their current syntopy, clear genetic differentiation remains between two of the three morphs. Using admixture mapping, we identify five SNPs associated with gonad weight variation, a proxy for sexual maturity and spawning time. We suggest that ecological adaptations in spawning time evolved in allopatry are currently maintaining partial reproductive isolation in the absence of other barriers to gene flow.
Collapse
Affiliation(s)
- Bohao Fang
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, 00014, Finland.,Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, 02138, USA
| | - Paolo Momigliano
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, 00014, Finland.,Department of Biochemistry, Genetics, and Immunology, Universidade de Vigo, Vigo, 36310, Spain
| | - Kimmo K Kahilainen
- Lammi Biological Station, University of Helsinki, Lammi, 16900, Finland.,Kilpisjärvi Biological Station, University of Helsinki, Kilpisjärvi, 99490, Finland
| | - Juha Merilä
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, 00014, Finland.,Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong
| |
Collapse
|
44
|
DeWeber JT, Baer J, Rösch R, Brinker A. Turning summer into winter: nutrient dynamics, temperature, density dependence and invasive species drive bioenergetic processes and growth of a keystone coldwater fish. OIKOS 2022. [DOI: 10.1111/oik.09316] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- J. Tyrell DeWeber
- Fisheries Research Station Baden‐Württemberg Langenargen Germany
- Inst. of Inland Fisheries in Potsdam‐Sacrow Potsdam Germany
| | - Jan Baer
- Fisheries Research Station Baden‐Württemberg Langenargen Germany
| | - Roland Rösch
- Fisheries Research Station Baden‐Württemberg Langenargen Germany
| | - Alexander Brinker
- Fisheries Research Station Baden‐Württemberg Langenargen Germany
- Inst. for Limnology, Univ. of Constance Konstanz Germany
| |
Collapse
|
45
|
Burbrink FT, Crother BI, Murray CM, Smith BT, Ruane S, Myers EA, Pyron RA. Empirical and philosophical problems with the subspecies rank. Ecol Evol 2022; 12:e9069. [PMID: 35845367 PMCID: PMC9271888 DOI: 10.1002/ece3.9069] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/01/2022] [Accepted: 06/10/2022] [Indexed: 11/12/2022] Open
Abstract
Species-level taxonomy derives from empirical sources (data and techniques) that assess the existence of spatiotemporal evolutionary lineages via various species "concepts." These concepts determine if observed lineages are independent given a particular methodology and ontology, which relates the metaphysical species concept to what "kind" of thing a species is in reality. Often, species concepts fail to link epistemology back to ontology. This lack of coherence is in part responsible for the persistence of the subspecies rank, which in modern usage often functions as a placeholder between the evolutionary events of divergence or collapse of incipient species. Thus, prospective events like lineages merging or diverging require information from unknowable future information. This is also conditioned on evidence that the lineage already has a detectably distinct evolutionary history. Ranking these lineages as subspecies can seem attractive given that many lineages do not exhibit intrinsic reproductive isolation. We argue that using subspecies is indefensible on philosophical and empirical grounds. Ontologically, the rank of subspecies is either identical to that of species or undefined in the context of evolutionary lineages representing spatiotemporally defined individuals. Some species concepts more inclined to consider subspecies, like the Biological Species Concept, are disconnected from evolutionary ontology and do not consider genealogy. Even if ontology is ignored, methods addressing reproductive isolation are often indirect and fail to capture the range of scenarios linking gene flow to species identity over space and time. The use of subspecies and reliance on reproductive isolation as a basis for an operational species concept can also conflict with ethical issues governing the protection of species. We provide a way forward for recognizing and naming species that links theoretical and operational species concepts regardless of the magnitude of reproductive isolation.
Collapse
Affiliation(s)
- Frank T. Burbrink
- Department of HerpetologyAmerican Museum of Natural HistoryNew YorkNew YorkUSA
| | - Brian I. Crother
- Department of Biological SciencesSoutheastern Louisiana UniversityHammondLouisianaUSA
| | - Christopher M. Murray
- Department of Biological SciencesSoutheastern Louisiana UniversityHammondLouisianaUSA
| | - Brian Tilston Smith
- Department of OrnithologyAmerican Museum of Natural HistoryNew YorkNew YorkUSA
| | - Sara Ruane
- Life Sciences Section, Negaunee Integrative Research CenterField Museum of Natural HistoryChicagoIllinoisUSA
| | - Edward A. Myers
- Department of HerpetologyAmerican Museum of Natural HistoryNew YorkNew YorkUSA
- Department of Biological SciencesClemson UniversityClemsonSouth CarolinaUSA
- Department of Vertebrate ZoologySmithsonian Institution, National Museum of Natural HistoryWashingtonDistrict of ColumbiaUSA
| | - Robert Alexander Pyron
- Department of Vertebrate ZoologySmithsonian Institution, National Museum of Natural HistoryWashingtonDistrict of ColumbiaUSA
- Department of Biological SciencesThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
| |
Collapse
|
46
|
Rosenthal WC, Fennell JM, Mandeville EG, Burckhardt JC, Walters AW, Wagner CE. Hybridization decreases native cutthroat trout reproductive fitness. Mol Ecol 2022; 31:4224-4241. [PMID: 35751487 DOI: 10.1111/mec.16578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 05/18/2022] [Accepted: 06/08/2022] [Indexed: 11/26/2022]
Abstract
Examining natural selection in wild populations is challenging, but crucial to understanding many ecological and evolutionary processes. Additionally, in hybridizing populations, natural selection may be an important determinant of the eventual outcome of hybridization. We characterized several components of relative fitness in hybridizing populations of Yellowstone cutthroat trout and rainbow trout in an effort to better understand the prolonged persistence of both parental species despite predictions of extirpation. Thousands of genomic loci enabled precise quantification of hybrid status in adult and subsequent juvenile generations; a subset of those data also identified parent-offspring relationships. We used linear models and simulations to assess the effects of ancestry on reproductive output and mate choice decisions. We found a relatively low number of late-stage (F3+) hybrids and an excess of F2 juveniles relative to the adult generation in one location, which suggests the presence of hybrid breakdown decreasing the fitness of F2+ hybrids later in life. Assessments of reproductive output showed that Yellowstone cutthroat trout are more likely to successfully reproduce and produce slightly more offspring than their rainbow trout and hybrid counterparts. Mate choice appeared to be largely random, though we did find statistical support for slight female preference for males of similar ancestry. Together, these results show that native Yellowstone cutthroat trout are able to outperform rainbow trout in terms of reproduction and suggests that management action to exclude rainbow trout from spawning locations may bolster the now-rare Yellowstone cutthroat trout.
Collapse
Affiliation(s)
- William C Rosenthal
- Department of Botany, University of Wyoming, USA.,Program in Ecology and Evolution, University of Wyoming, USA
| | - John M Fennell
- Department of Zoology and Physiology, University of Wyoming, USA.,Wyoming Cooperative Fish and Wildlife Research Unit, University of Wyoming, USA
| | - Elizabeth G Mandeville
- Department of Botany, University of Wyoming, USA.,Program in Ecology and Evolution, University of Wyoming, USA.,Wyoming Cooperative Fish and Wildlife Research Unit, University of Wyoming, USA.,Department of Integrative Biology, University of Guelph, Canada
| | | | - Annika W Walters
- Program in Ecology and Evolution, University of Wyoming, USA.,Department of Zoology and Physiology, University of Wyoming, USA.,Wyoming Cooperative Fish and Wildlife Research Unit, University of Wyoming, USA.,U.S. Geological Survey, USA
| | - Catherine E Wagner
- Department of Botany, University of Wyoming, USA.,Program in Ecology and Evolution, University of Wyoming, USA.,Biodiversity Institute, University of Wyoming, USA
| |
Collapse
|
47
|
Frei D, De-Kayne R, Selz OM, Seehausen O, Feulner PGD. Genomic variation from an extinct species is retained in the extant radiation following speciation reversal. Nat Ecol Evol 2022; 6:461-468. [PMID: 35210577 DOI: 10.1038/s41559-022-01665-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 01/10/2022] [Indexed: 11/09/2022]
Abstract
Ecosystem degradation and biodiversity loss are major global challenges. When reproductive isolation between species is contingent on the interaction of intrinsic lineage traits with features of the environment, environmental change can weaken reproductive isolation and result in extinction through hybridization. By this process called speciation reversal, extinct species can leave traces in genomes of extant species through introgressive hybridization. Using historical and contemporary samples, we sequenced all four species of an Alpine whitefish radiation before and after anthropogenic lake eutrophication and the associated loss of one species through speciation reversal. Despite the extinction of this taxon, substantial fractions of its genome, including regions shaped by positive selection before eutrophication, persist within surviving species as a consequence of introgressive hybridization during eutrophication. Given the prevalence of environmental change, studying speciation reversal and its genomic consequences provides fundamental insights into evolutionary processes and informs biodiversity conservation.
Collapse
Affiliation(s)
- David Frei
- Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Biogeochemistry, Eawag-Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland.,Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Rishi De-Kayne
- Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Biogeochemistry, Eawag-Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland.,Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Oliver M Selz
- Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Biogeochemistry, Eawag-Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland.,Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Ole Seehausen
- Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Biogeochemistry, Eawag-Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland.,Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Philine G D Feulner
- Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Biogeochemistry, Eawag-Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland. .,Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland.
| |
Collapse
|
48
|
Sauer HM, Hamilton TL, Anderson RE, Umbanhowar CE, Heathcote AJ. Diversity and distribution of sediment bacteria across an ecological and trophic gradient. PLoS One 2022; 17:e0258079. [PMID: 35312685 PMCID: PMC8936460 DOI: 10.1371/journal.pone.0258079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 03/04/2022] [Indexed: 11/18/2022] Open
Abstract
The microbial communities of lake sediments have the potential to serve as valuable bioindicators and integrators of watershed land-use and water quality; however, the relative sensitivity of these communities to physio-chemical and geographical parameters must be demonstrated at taxonomic resolutions that are feasible by current sequencing and bioinformatic approaches. The geologically diverse and lake-rich state of Minnesota (USA) is uniquely situated to address this potential because of its variability in ecological region, lake type, and watershed land-use. In this study, we selected twenty lakes with varying physio-chemical properties across four ecological regions of Minnesota. Our objectives were to (i) evaluate the diversity and composition of the bacterial community at the sediment-water interface and (ii) determine how lake location and watershed land-use impact aqueous chemistry and influence bacterial community structure. Our 16S rRNA amplicon data from lake sediment cores, at two depth intervals, data indicate that sediment communities are more likely to cluster by ecological region rather than any individual lake properties (e.g., trophic status, total phosphorous concentration, lake depth). However, composition is tied to a given lake, wherein samples from the same core were more alike than samples collected at similar depths across lakes. Our results illustrate the diversity within lake sediment microbial communities and provide insight into relationships between taxonomy, physicochemical, and geographic properties of north temperate lakes.
Collapse
Affiliation(s)
- Hailey M. Sauer
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, United States of America
- St. Croix Watershed Research Station, Science Museum of Minnesota, Marine on St. Croix, Minnesota, United States of America
| | - Trinity L. Hamilton
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, United States of America
- The Biotechnology Institute, University of Minnesota, St. Paul, Minnesota, United States of America
- * E-mail:
| | - Rika E. Anderson
- Biology Department, Carleton College, Northfield, Minnesota, United States of America
| | - Charles E. Umbanhowar
- Department of Biology and Environmental Studies, St. Olaf College, Northfield, Minnesota, United States of America
| | - Adam J. Heathcote
- St. Croix Watershed Research Station, Science Museum of Minnesota, Marine on St. Croix, Minnesota, United States of America
| |
Collapse
|
49
|
Cuenca-Cambronero M, Courtney-Mustaphi CJ, Greenway R, Heiri O, Hudson CM, King L, Lemmen KD, Moosmann M, Muschick M, Ngoepe N, Seehausen O, Matthews B. An integrative paleolimnological approach for studying evolutionary processes. Trends Ecol Evol 2022; 37:488-496. [DOI: 10.1016/j.tree.2022.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 10/19/2022]
|
50
|
Shen Z, Xie G, Tian W, Shao K, Yang G, Tang X. Effects of wind-wave disturbance and nutrient addition on aquatic bacterial diversity, community composition, and co-occurrence patterns: A mesocosm study. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100168. [DOI: 10.1016/j.crmicr.2022.100168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|