1
|
Říhová K, Lapčík P, Veselá B, Knopfová L, Potěšil D, Pokludová J, Šmarda J, Matalová E, Bouchal P, Beneš P. Caspase-9 Is a Positive Regulator of Osteoblastic Cell Migration Identified by diaPASEF Proteomics. J Proteome Res 2024; 23:2999-3011. [PMID: 38498986 PMCID: PMC11301665 DOI: 10.1021/acs.jproteome.3c00641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/21/2024] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
Caspase-9 is traditionally considered the initiator caspase of the intrinsic apoptotic pathway. In the past decade, however, other functions beyond initiation/execution of cell death have been described including cell type-dependent regulation of proliferation, differentiation/maturation, mitochondrial, and endosomal/lysosomal homeostasis. As previous studies revealed nonapoptotic functions of caspases in osteogenesis and bone homeostasis, this study was performed to identify proteins and pathways deregulated by knockout of caspase-9 in mouse MC3T3-E1 osteoblasts. Data-independent acquisition-parallel accumulation serial fragmentation (diaPASEF) proteomics was used to compare protein profiles of control and caspase-9 knockout cells. A total of 7669 protein groups were quantified, and 283 upregulated/141 downregulated protein groups were associated with the caspase-9 knockout phenotype. The deregulated proteins were mainly enriched for those associated with cell migration and motility and DNA replication/repair. Altered migration was confirmed in MC3T3-E1 cells with the genetic and pharmacological inhibition of caspase-9. ABHD2, an established regulator of cell migration, was identified as a possible substrate of caspase-9. We conclude that caspase-9 acts as a modulator of osteoblastic MC3T3-E1 cell migration and, therefore, may be involved in bone remodeling and fracture repair.
Collapse
Affiliation(s)
- Kamila Říhová
- Department
of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital, Brno 602 00, Czech Republic
| | - Petr Lapčík
- Department
of Biochemistry, Faculty of Science, Masaryk
University, Brno 625 00, Czech Republic
| | - Barbora Veselá
- Laboratory
of Odontogenesis and Osteogenesis, Institute of Animal Physiology
and Genetics, Czech Academy of Sciences, Brno 602 00, Czech Republic
| | - Lucia Knopfová
- Department
of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital, Brno 602 00, Czech Republic
| | - David Potěšil
- Proteomics
Core Facility, Central European Institute for Technology, Masaryk University, Brno 625 00, Czech Republic
| | - Jana Pokludová
- Department
of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital, Brno 602 00, Czech Republic
| | - Jan Šmarda
- Department
of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Eva Matalová
- Laboratory
of Odontogenesis and Osteogenesis, Institute of Animal Physiology
and Genetics, Czech Academy of Sciences, Brno 602 00, Czech Republic
- Department
of Physiology, Faculty of Veterinary Medicine, University of Veterinary Sciences, Brno 612 42, Czech Republic
| | - Pavel Bouchal
- Department
of Biochemistry, Faculty of Science, Masaryk
University, Brno 625 00, Czech Republic
| | - Petr Beneš
- Department
of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital, Brno 602 00, Czech Republic
| |
Collapse
|
2
|
Svandova E, Vesela B, Janeckova E, Chai Y, Matalova E. Exploring caspase functions in mouse models. Apoptosis 2024; 29:938-966. [PMID: 38824481 PMCID: PMC11263464 DOI: 10.1007/s10495-024-01976-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2024] [Indexed: 06/03/2024]
Abstract
Caspases are enzymes with protease activity. Despite being known for more than three decades, caspase investigation still yields surprising and fascinating information. Initially associated with cell death and inflammation, their functions have gradually been revealed to extend beyond, targeting pathways such as cell proliferation, migration, and differentiation. These processes are also associated with disease mechanisms, positioning caspases as potential targets for numerous pathologies including inflammatory, neurological, metabolic, or oncological conditions. While in vitro studies play a crucial role in elucidating molecular pathways, they lack the context of the body's complexity. Therefore, laboratory animals are an indispensable part of successfully understanding and applying caspase networks. This paper aims to summarize and discuss recent knowledge, understanding, and challenges in caspase knock-out mice.
Collapse
Affiliation(s)
- Eva Svandova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetic, Brno, Czech Republic.
| | - Barbora Vesela
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetic, Brno, Czech Republic
| | - Eva Janeckova
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, USA
| | - Eva Matalova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetic, Brno, Czech Republic
- Department of Physiology, University of Veterinary Sciences, Brno, Czech Republic
| |
Collapse
|
3
|
Mannherz HG, Budde H, Jarkas M, Hassoun R, Malek-Chudzik N, Mazur AJ, Skuljec J, Pul R, Napirei M, Hamdani N. Reorganization of the actin cytoskeleton during the formation of neutrophil extracellular traps (NETs). Eur J Cell Biol 2024; 103:151407. [PMID: 38555846 DOI: 10.1016/j.ejcb.2024.151407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/02/2024] Open
Abstract
We analyzed actin cytoskeleton alterations during NET extrusion by neutrophil-like dHL-60 cells and human neutrophils in the absence of DNase1 containing serum to avoid chromatin degradation and microfilament disassembly. NET-formation by dHL-60 cells and neutrophils was induced by Ionomycin or phorbol-12-myristat-13-acetate (PMA). Subsequent staining with anti-actin and TRITC-phalloidin showed depolymerization of the cortical F-actin at spatially confined areas, the NET extrusion sites, effected by transient activation of the monooxygenase MICAL-1 supported by the G-actin binding proteins cofilin, profilin, thymosin ß4 and probably the F-actin fragmenting activity of gelsolin and/or its fragments, which also decorated the formed NETs. MICAL-1 itself appeared to be proteolyzed by neutrophil elastase possibly to confine its activity to the NET-extrusion area. The F-actin oxidization activity of MICAL-1 is inhibited by Levosimendan leading to reduced NET-formation. Anti-gasdermin-D immunohistochemistry showed a cytoplasmic distribution in non-stimulated cells. After stimulation the NET-extrusion pore displayed reduced anti-gasdermin-D staining but accumulated underneath the plasma membrane of the remaining cell body. A similar distribution was observed for myosin that concentrated together with cortical F-actin along the periphery of the remaining cell body suggesting force production by acto-myosin interactions supporting NET expulsion as indicated by the inhibitory action of the myosin ATPase inhibitor blebbistatin. Isolated human neutrophils displayed differences in their content of certain cytoskeletal proteins. After stimulation neutrophils with high gelsolin content preferentially formed "cloud"-like NETs, whereas those with low or no gelsolin formed long "filamentous" NETs.
Collapse
Affiliation(s)
- Hans Georg Mannherz
- Department of Anatomy and Molecular Embryology, Medical Faculty, Ruhr-University Bochum, Germany; Department of Cellular and Translational Physiology, Institute of Physiology, Medical Faculty, Ruhr-University Bochum, and Molecular and Experimental Cardiology, Institute for Research and Education, St. Josef Hospital, Clinics of the Ruhr-University Bochum, Germany.
| | - Heidi Budde
- Department of Cellular and Translational Physiology, Institute of Physiology, Medical Faculty, Ruhr-University Bochum, and Molecular and Experimental Cardiology, Institute for Research and Education, St. Josef Hospital, Clinics of the Ruhr-University Bochum, Germany.
| | - Muhammad Jarkas
- Department of Cellular and Translational Physiology, Institute of Physiology, Medical Faculty, Ruhr-University Bochum, and Molecular and Experimental Cardiology, Institute for Research and Education, St. Josef Hospital, Clinics of the Ruhr-University Bochum, Germany.
| | - Roua Hassoun
- Department of Cellular and Translational Physiology, Institute of Physiology, Medical Faculty, Ruhr-University Bochum, and Molecular and Experimental Cardiology, Institute for Research and Education, St. Josef Hospital, Clinics of the Ruhr-University Bochum, Germany.
| | - Natalia Malek-Chudzik
- Department of Chemical Biology and Bioimaging, Faculty of Chemistry, University of Wroclaw, Poland.
| | - Antonina J Mazur
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Poland.
| | - Jelena Skuljec
- Department of Neurology, University Medicine Essen, Germany; Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, Germany.
| | - Refik Pul
- Department of Neurology, University Medicine Essen, Germany; Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, Germany.
| | - Markus Napirei
- Department of Anatomy and Molecular Embryology, Medical Faculty, Ruhr-University Bochum, Germany
| | - Nazha Hamdani
- Department of Cellular and Translational Physiology, Institute of Physiology, Medical Faculty, Ruhr-University Bochum, and Molecular and Experimental Cardiology, Institute for Research and Education, St. Josef Hospital, Clinics of the Ruhr-University Bochum, Germany; Department of Physiology, University Maastricht, Maastricht, the Netherlands; HCEMM-SU Cardiovascular Comorbidities Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest 1089, Hungary.
| |
Collapse
|
4
|
Sumida K, Doi T, Obayashi K, Chiba Y, Nagasaka S, Ogino N, Miyagawa K, Baba R, Morimoto H, Hara H, Terabayashi T, Ishizaki T, Harada M, Endo M. Caspase-4 has a role in cell division in epithelial cells through actin depolymerization. Biochem Biophys Res Commun 2024; 695:149394. [PMID: 38157629 DOI: 10.1016/j.bbrc.2023.149394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
In addition to its role in pyroptosis and inflammatory cytokine maturation, caspase-4 (CASP4) also contributes to the fusion of phagosomes with lysosomes and cell migration. However, its role in cell division remains elusive. In this study, we demonstrate that CASP4 is indispensable for proper cell division in epithelial cells. Knockout of CASP4 (CASP4 KO) in HepG2 cells led to delayed cell proliferation, increased cell size, and increased multinucleation. In mitosis, CASP4 KO cells showed multipolar spindles, asymmetric spindle positioning, and chromosome segregation errors, ultimately increasing DNA content and chromosome number. We also found that phalloidin, a marker of filamentous actin, increased in CASP4 KO cells owing to suppressed actin depolymerization. Moreover, the levels of actin polymerization-related proteins, including Rho-associated protein kinase1 (ROCK1), LIM kinase1 (LIMK1), and phosphorylated cofilin, significantly increased in CASP4 KO cells. These results suggest that CASP4 contributes to proper cell division through actin depolymerization.
Collapse
Affiliation(s)
- Kazuhiro Sumida
- Third Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan; Department of Molecular Biology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Tomomitsu Doi
- Department of Molecular Biology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kunie Obayashi
- Department of Molecular Biology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yosuke Chiba
- Department of Molecular Biology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Shohei Nagasaka
- Department of Molecular Biology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Noriyoshi Ogino
- Third Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Koichiro Miyagawa
- Third Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Ryoko Baba
- Department of Anatomy, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hiroyuki Morimoto
- Department of Anatomy, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hideki Hara
- Department of Infectious Diseases, Division of Microbiology and Immunochemistry, Asahikawa Medical University, Asahikawa, Japan
| | - Takeshi Terabayashi
- Department of Pharmacology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Toshimasa Ishizaki
- Department of Pharmacology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Masaru Harada
- Third Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Motoyoshi Endo
- Department of Molecular Biology, University of Occupational and Environmental Health, Kitakyushu, Japan.
| |
Collapse
|
5
|
Sahoo G, Samal D, Khandayataray P, Murthy MK. A Review on Caspases: Key Regulators of Biological Activities and Apoptosis. Mol Neurobiol 2023; 60:5805-5837. [PMID: 37349620 DOI: 10.1007/s12035-023-03433-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 06/06/2023] [Indexed: 06/24/2023]
Abstract
Caspases are proteolytic enzymes that belong to the cysteine protease family and play a crucial role in homeostasis and programmed cell death. Caspases have been broadly classified by their known roles in apoptosis (caspase-3, caspase-6, caspase-7, caspase-8, and caspase-9 in mammals) and in inflammation (caspase-1, caspase-4, caspase-5, and caspase-12 in humans, and caspase-1, caspase-11, and caspase-12 in mice). Caspases involved in apoptosis have been subclassified by their mechanism of action as either initiator caspases (caspase-8 and caspase-9) or executioner caspases (caspase-3, caspase-6, and caspase-7). Caspases that participate in apoptosis are inhibited by proteins known as inhibitors of apoptosis (IAPs). In addition to apoptosis, caspases play a role in necroptosis, pyroptosis, and autophagy, which are non-apoptotic cell death processes. Dysregulation of caspases features prominently in many human diseases, including cancer, autoimmunity, and neurodegenerative disorders, and increasing evidence shows that altering caspase activity can confer therapeutic benefits. This review covers the different types of caspases, their functions, and their physiological and biological activities and roles in different organisms.
Collapse
Affiliation(s)
- Gayatri Sahoo
- Department of Zoology, PSSJ College, Banarpal, 759128, Odisha, India
| | - Dibyaranjan Samal
- Department of Biotechnology, Academy of Management and Information Technology (AMIT, affiliated to Utkal University), Khurda, 752057, Odisha, India
| | | | - Meesala Krishna Murthy
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
6
|
Barnett KC, Li S, Liang K, Ting JPY. A 360° view of the inflammasome: Mechanisms of activation, cell death, and diseases. Cell 2023; 186:2288-2312. [PMID: 37236155 PMCID: PMC10228754 DOI: 10.1016/j.cell.2023.04.025] [Citation(s) in RCA: 106] [Impact Index Per Article: 106.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 05/28/2023]
Abstract
Inflammasomes are critical sentinels of the innate immune system that respond to threats to the host through recognition of distinct molecules, known as pathogen- or damage-associated molecular patterns (PAMPs/DAMPs), or disruptions of cellular homeostasis, referred to as homeostasis-altering molecular processes (HAMPs) or effector-triggered immunity (ETI). Several distinct proteins nucleate inflammasomes, including NLRP1, CARD8, NLRP3, NLRP6, NLRC4/NAIP, AIM2, pyrin, and caspases-4/-5/-11. This diverse array of sensors strengthens the inflammasome response through redundancy and plasticity. Here, we present an overview of these pathways, outlining the mechanisms of inflammasome formation, subcellular regulation, and pyroptosis, and discuss the wide-reaching effects of inflammasomes in human disease.
Collapse
Affiliation(s)
- Katherine C Barnett
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Sirui Li
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kaixin Liang
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Oral and Craniofacial Biomedicine Program, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jenny P-Y Ting
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Oral and Craniofacial Biomedicine Program, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
7
|
Ito M, Yajima S, Suzuki T, Oshima Y, Nanami T, Sumazaki M, Shiratori F, Wang H, Hu L, Takizawa H, Li SY, Iwadate Y, Hiwasa T, Shimada H. The combination of positive anti‑WDR1 antibodies with negative anti‑CFL1 antibodies in serum is a poor prognostic factor for patients with esophageal carcinoma. MEDICINE INTERNATIONAL 2023; 3:11. [PMID: 36875818 PMCID: PMC9983066 DOI: 10.3892/mi.2023.71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/23/2023] [Indexed: 02/02/2023]
Abstract
WD repeat-containing protein 1 (WDR1) regulates the cofilin 1 (CFL1) activity, promotes cytoskeleton remodeling, and thus, facilitates cell migration and invasion. A previous study reported that autoantibodies against CFL1 and β-actin were useful biomarkers for diagnosing and predicting the prognosis of patients with esophageal carcinoma. Therefore, the present study aimed to evaluate the serum levels of anti-WDR1 antibodies (s-WDR1-Abs) combined with serum levels of anti-CFL1 antibodies (s-CFL1-Abs) in patients with esophageal carcinoma. Serum samples obtained from 192 patients with esophageal carcinoma and other solid cancers. And s-WDR1-Ab and s-CFL1-Ab titers were analyzed using the amplified luminescent proximity homogeneous assay-linked immunosorbent assay. Compared with those of healthy donors, the s-WDR1-Ab levels were significantly higher in the 192 patients with esophageal, whereas these were not significantly higher in the samples from patients with gastric, colorectal, lung, or breast cancer. In 91 patients treated with surgery, sex, tumor depth, lymph node metastasis, stage and C-reactive protein levels were significantly associated with overall survival, as determined using the log-rank test, whereas the squamous cell carcinoma antigen, p53 antibody and s-WDR1-Ab levels tended to be associated with a worse prognosis. Although no significant difference was observed in the survival between the positive and negative groups of s-WDR1-Abs or s-CFL1-Abs alone in the Kaplan-Meier test, the patients in the s-WDR1-Ab-positive and s-CFL1-Ab-negative groups exhibited a significantly poorer prognosis in the overall survival analysis. On the whole, the present study demonstrates that the combination of positive anti-WDR1 antibodies with negative anti-CFL1 antibodies in serum may be a poor prognostic factor for patients with esophageal carcinoma.
Collapse
Affiliation(s)
- Masaaki Ito
- Department of Clinical Oncology, Toho University Graduate School of Medicine, Tokyo 143-8541, Japan
| | - Satoshi Yajima
- Department of Gastroenterological Surgery, Toho University School of Medicine, Tokyo 143-8541, Japan
| | - Takashi Suzuki
- Department of Gastroenterological Surgery, Toho University School of Medicine, Tokyo 143-8541, Japan
| | - Yoko Oshima
- Department of Gastroenterological Surgery, Toho University School of Medicine, Tokyo 143-8541, Japan
| | - Tatsuki Nanami
- Department of Gastroenterological Surgery, Toho University School of Medicine, Tokyo 143-8541, Japan
| | - Makoto Sumazaki
- Department of Gastroenterological Surgery, Toho University School of Medicine, Tokyo 143-8541, Japan
| | - Fumiaki Shiratori
- Department of Gastroenterological Surgery, Toho University School of Medicine, Tokyo 143-8541, Japan
| | - Hao Wang
- Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, P.R. China.,Department of Anesthesiology, Stroke Center, The First Affiliated Hospital and Health Science Center, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Liubing Hu
- Department of Anesthesiology, Stroke Center, The First Affiliated Hospital and Health Science Center, Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Hirotaka Takizawa
- Port Square Kashiwado Clinic, Kashiwado Memorial Foundation, Chiba 260-0025, Japan
| | - Shu-Yang Li
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Yasuo Iwadate
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Takaki Hiwasa
- Department of Clinical Oncology, Toho University Graduate School of Medicine, Tokyo 143-8541, Japan.,Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Hideaki Shimada
- Department of Clinical Oncology, Toho University Graduate School of Medicine, Tokyo 143-8541, Japan.,Department of Gastroenterological Surgery, Toho University School of Medicine, Tokyo 143-8541, Japan
| |
Collapse
|
8
|
Sun J, Zhong X, Fu X, Miller H, Lee P, Yu B, Liu C. The Actin Regulators Involved in the Function and Related Diseases of Lymphocytes. Front Immunol 2022; 13:799309. [PMID: 35371070 PMCID: PMC8965893 DOI: 10.3389/fimmu.2022.799309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/01/2022] [Indexed: 11/21/2022] Open
Abstract
Actin is an important cytoskeletal protein involved in signal transduction, cell structure and motility. Actin regulators include actin-monomer-binding proteins, Wiskott-Aldrich syndrome (WAS) family of proteins, nucleation proteins, actin filament polymerases and severing proteins. This group of proteins regulate the dynamic changes in actin assembly/disassembly, thus playing an important role in cell motility, intracellular transport, cell division and other basic cellular activities. Lymphocytes are important components of the human immune system, consisting of T-lymphocytes (T cells), B-lymphocytes (B cells) and natural killer cells (NK cells). Lymphocytes are indispensable for both innate and adaptive immunity and cannot function normally without various actin regulators. In this review, we first briefly introduce the structure and fundamental functions of a variety of well-known and newly discovered actin regulators, then we highlight the role of actin regulators in T cell, B cell and NK cell, and finally provide a landscape of various diseases associated with them. This review provides new directions in exploring actin regulators and promotes more precise and effective treatments for related diseases.
Collapse
Affiliation(s)
- Jianxuan Sun
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingyu Zhong
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyu Fu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heather Miller
- Cytek Biosciences, R&D Clinical Reagents, Fremont, CA, United States
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Bing Yu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Long MJC, Miranda Herrera PA, Aye Y. Hitting the Bullseye: Endogenous Electrophiles Show Remarkable Nuance in Signaling Regulation. Chem Res Toxicol 2022; 35:1636-1648. [PMID: 35394758 DOI: 10.1021/acs.chemrestox.2c00006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Our bodies produce a host of electrophilic species that can label specific endogenous proteins in cells. The signaling roles of these molecules are under active debate. However, in our opinion, it is becoming increasingly likely that electrophiles can rewire cellular signaling processes at endogenous levels. Attention is turning more to understanding how nuanced electrophile signaling in cells is. In this Perspective, we describe recent work from our laboratory that has started to inform on different levels of context-specific regulation of proteins by electrophiles. We discuss the relevance of these data to the field and to the broader application of electrophile signaling to precision medicine development, beyond the traditional views of their pleiotropic cytotoxic roles.
Collapse
Affiliation(s)
- Marcus J C Long
- National Centre of Competence in Research Chemical Biology, University of Geneva, 1211 Geneva, Switzerland.,Department of Biochemistry, Faculty of Biology and Medicine, University of Lausanne, 1066 Epalinges, Switzerland
| | - Pierre A Miranda Herrera
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Swiss Federal Institute of Technology Lausanne, 1015 Lausanne, Switzerland.,National Centre of Competence in Research Chemical Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Yimon Aye
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Swiss Federal Institute of Technology Lausanne, 1015 Lausanne, Switzerland.,National Centre of Competence in Research Chemical Biology, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
10
|
Focus on the Mechanisms and Functions of Pyroptosis, Inflammasomes, and Inflammatory Caspases in Infectious Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2501279. [PMID: 35132346 PMCID: PMC8817853 DOI: 10.1155/2022/2501279] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/28/2021] [Indexed: 12/17/2022]
Abstract
Eukaryotic cells can initiate several distinct self-destruction mechanisms to display essential roles for the homeostasis maintenance, development, and survival of an organism. Pyroptosis, a key response mode in innate immunity, also referred to as caspase-1-dependent proinflammatory programmed necrotic cell death activated by human caspase-1/4/5, or mouse caspase-1/11, plays indispensable roles in response to cytoplasmic insults and immune defense against infectious diseases. These inflammatory caspases are employed by the host to eliminate pathogen infections such as bacteria, viruses, protozoans, and fungi. Gasdermin D requires to be cleaved and activated by these inflammatory caspases to trigger the pyroptosis process. Physiological rupture of cells results in the release of proinflammatory cytokines, the alarmins IL-1β and IL-18, symbolizing the inflammatory potential of pyroptosis. Moreover, long noncoding RNAs play direct or indirect roles in the upstream of the pyroptosis trigger pathway. Here, we review in detail recently acquired insights into the central roles of inflammatory caspases, inflammasomes, and pyroptosis, as well as the crosstalk between pyroptosis and long noncoding RNAs in mediating infection immunity and pathogen clearance.
Collapse
|
11
|
Abu Khweek A, Joldrichsen MR, Kim E, Attia Z, Krause K, Daily K, Estfanous S, Hamilton K, Badr A, Anne MNK, Eltobgy M, Corps KN, Carafice C, Zhang X, Gavrilin MA, Boyaka PN, Amer AO. Caspase-11 regulates lung inflammation in response to house dust mites. Cell Immunol 2021; 370:104425. [PMID: 34800762 PMCID: PMC8714054 DOI: 10.1016/j.cellimm.2021.104425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022]
Abstract
Asthma is an inflammatory lung disorder characterized by mucus hypersecretion, cellular infiltration, and bronchial hyper-responsiveness. House dust mites (HDM) are the most prevalent cause of allergic sensitization. Canonical and noncanonical inflammasomes are multiprotein complexes that assemble in response to pathogen or danger-associated molecular patterns (PAMPs or DAMPs). Murine caspase-11 engages the noncanonical inflammasome. We addressed the role of caspase-11 in mediating host responses to HDM and subsequent allergic inflammation using caspase-11-/- mice, which lack caspase-11 while express caspase-1. We found that HDM induce caspase-11 expression in vitro. The presence of IL-4 and IL-13 promote caspase-11 expression. Additionally, caspase-11-/- macrophages show reduced release of IL-6, IL-12, and KC, and express lower levels of costimulatory molecules (e.g., CD40, CD86 and MHCII) in response to HDM stimulation. Notably, HDM sensitization of caspase-11-/- mice resulted in similar levels of IgE responses and hypothermia in response to nasal HDM challenge compared to WT. However, analysis of cell numbers and cytokines in bronchiolar alveolar lavage fluid (BALF) and histopathology of representative lung segments demonstrate altered inflammatory responses and reduced neutrophilia in the airways of the caspase-11-/- mice. These findings indicate that caspase-11 regulates airway inflammation in response to HDM exposure.
Collapse
Affiliation(s)
- Arwa Abu Khweek
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus OH 43210, USA; Department of Biology and Biochemistry, Birzeit University, West Bank, Palestine
| | - Marisa R Joldrichsen
- Department of Veterinary Biosciences, The Ohio State University, Columbus OH 43210, USA
| | - Eunsoo Kim
- Department of Veterinary Biosciences, The Ohio State University, Columbus OH 43210, USA
| | - Zayed Attia
- Department of Veterinary Biosciences, The Ohio State University, Columbus OH 43210, USA
| | - Kathrin Krause
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus OH 43210, USA
| | - Kylene Daily
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus OH 43210, USA
| | - Shady Estfanous
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus OH 43210, USA
| | - Kaitlin Hamilton
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus OH 43210, USA
| | - Asmaa Badr
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus OH 43210, USA
| | - Midhun N K Anne
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus OH 43210, USA
| | - Mostafa Eltobgy
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus OH 43210, USA
| | - Kara N Corps
- Department of Veterinary Biosciences, The Ohio State University, Columbus OH 43210, USA
| | - Cierra Carafice
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus OH 43210, USA
| | - Xiaoli Zhang
- Center for Biostatistics, The Ohio State University, Columbus OH 43210, USA
| | - Mikhail A Gavrilin
- Department of Internal Medicine, The Ohio State University, Columbus OH 43210, USA
| | - Prosper N Boyaka
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus OH 43210, USA; Department of Veterinary Biosciences, The Ohio State University, Columbus OH 43210, USA; Infectious Diseases Institute, The Ohio State University, Columbus OH 43210, USA.
| | - Amal O Amer
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus OH 43210, USA.
| |
Collapse
|
12
|
Poganik JR, Huang KT, Parvez S, Zhao Y, Raja S, Long MJC, Aye Y. Wdr1 and cofilin are necessary mediators of immune-cell-specific apoptosis triggered by Tecfidera. Nat Commun 2021; 12:5736. [PMID: 34593792 PMCID: PMC8484674 DOI: 10.1038/s41467-021-25466-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/11/2021] [Indexed: 01/10/2023] Open
Abstract
Despite the emerging importance of reactive electrophilic drugs, deconvolution of their principal targets remains difficult. The lack of genetic tractability/interventions and reliance on secondary validation using other non-specific compounds frequently complicate the earmarking of individual binders as functionally- or phenotypically-sufficient pathway regulators. Using a redox-targeting approach to interrogate how on-target binding of pleiotropic electrophiles translates to a phenotypic output in vivo, we here systematically track the molecular components attributable to innate immune cell toxicity of the electrophilic-drug dimethyl fumarate (Tecfidera®). In a process largely independent of canonical Keap1/Nrf2-signaling, Keap1-specific modification triggers mitochondrial-targeted neutrophil/macrophage apoptosis. On-target Keap1–ligand-engagement is accompanied by dissociation of Wdr1 from Keap1 and subsequent coordination with cofilin, intercepting Bax. This phagocytic-specific cell-killing program is recapitulated by whole-animal administration of dimethyl fumarate, where individual depletions of the players identified above robustly suppress apoptosis. The mechanism-of-action of many electrohilic drugs remains poorly understood. Here, the authors use a redox-targeting approach to elucidate the basis for the innate immune cell toxicity of dimethyl fumarate, showing that it modifies Keap1 to trigger mitochondrial-targeted neutrophil/macrophage apoptosis.
Collapse
Affiliation(s)
- Jesse R Poganik
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.,Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kuan-Ting Huang
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Saba Parvez
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Yi Zhao
- BayRay Innovation Center, Shenzhen Bay Laboratory (SZBL), Guangdong, China
| | - Sruthi Raja
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | | | - Yimon Aye
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
13
|
Galectin-3 promotes noncanonical inflammasome activation through intracellular binding to lipopolysaccharide glycans. Proc Natl Acad Sci U S A 2021; 118:2026246118. [PMID: 34301890 DOI: 10.1073/pnas.2026246118] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cytosolic lipopolysaccharides (LPSs) bind directly to caspase-4/5/11 through their lipid A moiety, inducing inflammatory caspase oligomerization and activation, which is identified as the noncanonical inflammasome pathway. Galectins, β-galactoside-binding proteins, bind to various gram-negative bacterial LPS, which display β-galactoside-containing polysaccharide chains. Galectins are mainly present intracellularly, but their interactions with cytosolic microbial glycans have not been investigated. We report that in cell-free systems, galectin-3 augments the LPS-induced assembly of caspase-4/11 oligomers, leading to increased caspase-4/11 activation. Its carboxyl-terminal carbohydrate-recognition domain is essential for this effect, and its N-terminal domain, which contributes to the self-association property of the protein, is also critical, suggesting that this promoting effect is dependent on the functional multivalency of galectin-3. Moreover, galectin-3 enhances intracellular LPS-induced caspase-4/11 oligomerization and activation, as well as gasdermin D cleavage in human embryonic kidney (HEK) 293T cells, and it additionally promotes interleukin-1β production and pyroptotic death in macrophages. Galectin-3 also promotes caspase-11 activation and gasdermin D cleavage in macrophages treated with outer membrane vesicles, which are known to be taken up by cells and release LPSs into the cytosol. Coimmunoprecipitation confirmed that galectin-3 associates with caspase-11 after intracellular delivery of LPSs. Immunofluorescence staining revealed colocalization of LPSs, galectin-3, and caspase-11 independent of host N-glycans. Thus, we conclude that galectin-3 amplifies caspase-4/11 oligomerization and activation through LPS glycan binding, resulting in more intense pyroptosis-a critical mechanism of host resistance against bacterial infection that may provide opportunities for new therapeutic interventions.
Collapse
|
14
|
Agnew A, Nulty C, Creagh EM. Regulation, Activation and Function of Caspase-11 during Health and Disease. Int J Mol Sci 2021; 22:ijms22041506. [PMID: 33546173 PMCID: PMC7913190 DOI: 10.3390/ijms22041506] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 02/04/2023] Open
Abstract
Caspase-11 is a pro-inflammatory enzyme that is stringently regulated during its expression and activation. As caspase-11 is not constitutively expressed in cells, it requires a priming step for its upregulation, which occurs following the stimulation of pathogen and cytokine receptors. Once expressed, caspase-11 activation is triggered by its interaction with lipopolysaccharide (LPS) from Gram-negative bacteria. Being an initiator caspase, activated caspase-11 functions primarily through its cleavage of key substrates. Gasdermin D (GSDMD) is the primary substrate of caspase-11, and the GSDMD cleavage fragment generated is responsible for the inflammatory form of cell death, pyroptosis, via its formation of pores in the plasma membrane. Thus, caspase-11 functions as an intracellular sensor for LPS and an immune effector. This review provides an overview of caspase-11—describing its structure and the transcriptional mechanisms that govern its expression, in addition to its activation, which is reported to be regulated by factors such as guanylate-binding proteins (GBPs), high mobility group box 1 (HMGB1) protein, and oxidized phospholipids. We also discuss the functional outcomes of caspase-11 activation, which include the non-canonical inflammasome, modulation of actin dynamics, and the initiation of blood coagulation, highlighting the importance of inflammatory caspase-11 during infection and disease.
Collapse
|
15
|
Strudwick XL, Cowin AJ. Multifunctional Roles of the Actin-Binding Protein Flightless I in Inflammation, Cancer and Wound Healing. Front Cell Dev Biol 2020; 8:603508. [PMID: 33330501 PMCID: PMC7732498 DOI: 10.3389/fcell.2020.603508] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/30/2020] [Indexed: 11/20/2022] Open
Abstract
Flightless I is an actin-binding member of the gelsolin family of actin-remodeling proteins that inhibits actin polymerization but does not possess actin severing ability. Flightless I functions as a regulator of many cellular processes including proliferation, differentiation, apoptosis, and migration all of which are important for many physiological processes including wound repair, cancer progression and inflammation. More than simply facilitating cytoskeletal rearrangements, Flightless I has other important roles in the regulation of gene transcription within the nucleus where it interacts with nuclear hormone receptors to modulate cellular activities. In conjunction with key binding partners Leucine rich repeat in the Flightless I interaction proteins (LRRFIP)1/2, Flightless I acts both synergistically and competitively to regulate a wide range of cellular signaling including interacting with two of the most important inflammatory pathways, the NLRP3 inflammasome and the MyD88-TLR4 pathways. In this review we outline the current knowledge about this important cytoskeletal protein and describe its many functions across a range of health conditions and pathologies. We provide perspectives for future development of Flightless I as a potential target for clinical translation and insights into potential therapeutic approaches to manipulate Flightless I functions.
Collapse
Affiliation(s)
- Xanthe L Strudwick
- Regenerative Medicine, Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia
| | - Allison J Cowin
- Regenerative Medicine, Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia
| |
Collapse
|
16
|
Malsy J, Alvarado AC, Lamontagne JO, Strittmatter K, Marneros AG. Distinct effects of complement and of NLRP3- and non-NLRP3 inflammasomes for choroidal neovascularization. eLife 2020; 9:60194. [PMID: 33305736 PMCID: PMC7732340 DOI: 10.7554/elife.60194] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/05/2020] [Indexed: 12/16/2022] Open
Abstract
NLRP3 inflammasome activation and complement-mediated inflammation have been implicated in promoting choroidal neovascularization (CNV) in age-related macular degeneration (AMD), but central questions regarding their contributions to AMD pathogenesis remain unanswered. Key open questions are (1) whether NLRP3 inflammasome activation mainly in retinal pigment epithelium (RPE) or rather in non-RPE cells promotes CNV, (2) whether inflammasome activation in CNV occurs via NLRP3 or also through NLRP3-independent mechanisms, and (3) whether complement activation induces inflammasome activation in CNV. Here we show in a neovascular AMD mouse model that NLRP3 inflammasome activation in non-RPE cells but not in RPE cells promotes CNV. We demonstrate that both NLRP3-dependent and NLRP3-independent inflammasome activation mechanisms induce CNV. Finally, we find that complement and inflammasomes promote CNV through independent mechanisms. Our findings uncover an unexpected role of non-NLRP3 inflammasomes for CNV and suggest that combination therapies targeting inflammasomes and complement may offer synergistic benefits to inhibit CNV.
Collapse
Affiliation(s)
- Jakob Malsy
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, United States.,Department of Ophthalmology, University of Halle, Halle, Germany
| | - Andrea C Alvarado
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, United States
| | - Joseph O Lamontagne
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, United States
| | - Karin Strittmatter
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, United States
| | - Alexander G Marneros
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, United States
| |
Collapse
|
17
|
Abu Khweek A, Kim E, Joldrichsen MR, Amer AO, Boyaka PN. Insights Into Mucosal Innate Immune Responses in House Dust Mite-Mediated Allergic Asthma. Front Immunol 2020; 11:534501. [PMID: 33424827 PMCID: PMC7793902 DOI: 10.3389/fimmu.2020.534501] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 09/01/2020] [Indexed: 01/09/2023] Open
Abstract
The prevalence of asthma has been rising steadily for several decades, and continues to be a major public health and global economic burden due to both direct and indirect costs. Asthma is defined as chronic heterogeneous inflammatory diseases characterized by airway obstruction, mucus production and bronchospasm. Different endotypes of asthma are being recognized based on the distinct pathophysiology, genetic predisposition, age, prognosis, and response to remedies. Mucosal innate response to environmental triggers such as pollen, cigarette smoke, fragrances, viral infection, and house dust mite (HDM) are now recognized to play an important role in allergic asthma. HDM are the most pervasive allergens that co-habitat with us, as they are ubiquitous in-house dusts, mattress and bedsheets, and feed on a diet of exfoliated human skin flakes. Dermatophagoides pteronyssinus, is one among several HDM identified up to date. During the last decade, extensive studies have been fundamental in elucidating the interactions between HDM allergens, the host immune systems and airways. Moreover, the paradigm in the field of HDM-mediated allergy has been shifted away from being solely a Th2-geared to a complex response orchestrated via extensive crosstalk between the epithelium, professional antigen presenting cells (APCs) and components of the adaptive immunity. In fact, HDM have several lessons to teach us about their allergenicity, the complex interactions that stimulate innate immunity in initiating and perpetuating the lung inflammation. Herein, we review main allergens of Dermatophagoides pteronyssinus and their interactions with immunological sentinels that promote allergic sensitization and activation of innate immunity, which is critical for the development of the Th2 biased adaptive immunity to HDM allergens and development of allergic asthma.
Collapse
Affiliation(s)
- Arwa Abu Khweek
- Department of Biology and Biochemistry, Birzeit University, Birzeit, Palestine.,Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States.,Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States
| | - Eunsoo Kim
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States
| | - Marisa R Joldrichsen
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States
| | - Amal O Amer
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States.,The Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Prosper N Boyaka
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States.,Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States.,The Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
18
|
Downs KP, Nguyen H, Dorfleutner A, Stehlik C. An overview of the non-canonical inflammasome. Mol Aspects Med 2020; 76:100924. [PMID: 33187725 PMCID: PMC7808250 DOI: 10.1016/j.mam.2020.100924] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 12/21/2022]
Abstract
Inflammasomes are large cytosolic multiprotein complexes assembled in response to infection and cellular stress, and are crucial for the activation of inflammatory caspases and the subsequent processing and release of pro-inflammatory mediators. While caspase-1 is activated within the canonical inflammasome, the related caspase-4 (also known as caspase-11 in mice) and caspase-5 are activated within the non-canonical inflammasome upon sensing of cytosolic lipopolysaccharide (LPS) from Gram-negative bacteria. However, the consequences of canonical and non-canonical inflammasome activation are similar. Caspase-1 promotes the processing and release of the pro-inflammatory cytokines interleukin (IL)-1β and IL-18 and the release of danger signals, as well as a lytic form of cell death called pyroptosis, whereas caspase-4, caspase-5 and caspase-11 directly promote pyroptosis through cleavage of the pore-forming protein gasdermin D (GSDMD), and trigger a secondary activation of the canonical NLRP3 inflammasome for cytokine release. Since the presence of the non-canonical inflammasome activator LPS leads to endotoxemia and sepsis, non-canonical inflammasome activation and regulation has important clinical ramifications. Here we discuss the mechanism of non-canonical inflammasome activation, mechanisms regulating its activity and its contribution to health and disease.
Collapse
Affiliation(s)
- Kevin P Downs
- Department of Pathology and Laboratory Medicine, Cedars Sinai, Los Angeles, CA, 90048, USA.
| | - Huyen Nguyen
- Department of Pathology and Laboratory Medicine, Cedars Sinai, Los Angeles, CA, 90048, USA.
| | - Andrea Dorfleutner
- Department of Pathology and Laboratory Medicine, Cedars Sinai, Los Angeles, CA, 90048, USA; Department of Biomedical Sciences, Cedars Sinai, Los Angeles, CA, 90048, USA.
| | - Christian Stehlik
- Department of Pathology and Laboratory Medicine, Cedars Sinai, Los Angeles, CA, 90048, USA; Department of Biomedical Sciences, Cedars Sinai, Los Angeles, CA, 90048, USA; Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai, Los Angeles, CA, 90048, USA.
| |
Collapse
|
19
|
Weghorst F, Mirzakhanyan Y, Samimi K, Dhillon M, Barzik M, Cunningham LL, Gershon PD, Cramer KS. Caspase-3 Cleaves Extracellular Vesicle Proteins During Auditory Brainstem Development. Front Cell Neurosci 2020; 14:573345. [PMID: 33281555 PMCID: PMC7689216 DOI: 10.3389/fncel.2020.573345] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/05/2020] [Indexed: 12/26/2022] Open
Abstract
Sound localization requires extremely precise development of auditory brainstem circuits, the molecular mechanisms of which are largely unknown. We previously demonstrated a novel requirement for non-apoptotic activity of the protease caspase-3 in chick auditory brainstem development. Here, we used mass spectrometry to identify proteolytic substrates of caspase-3 during chick auditory brainstem development. These auditory brainstem caspase-3 substrates were enriched for proteins previously shown to be cleaved by caspase-3, especially in non-apoptotic contexts. Functional annotation analysis revealed that our caspase-3 substrates were also enriched for proteins associated with several protein categories, including proteins found in extracellular vesicles (EVs), membrane-bound nanoparticles that function in intercellular communication. The proteome of EVs isolated from the auditory brainstem was highly enriched for our caspase-3 substrates. Additionally, we identified two caspase-3 substrates with known functions in axon guidance, namely Neural Cell Adhesion Molecule (NCAM) and Neuronal-glial Cell Adhesion Molecule (Ng-CAM), that were found in auditory brainstem EVs and expressed in the auditory pathway alongside cleaved caspase-3. Taken together, these data suggest a novel developmental mechanism whereby caspase-3 influences auditory brainstem circuit formation through the proteolytic cleavage of extracellular vesicle (EV) proteins.
Collapse
Affiliation(s)
- Forrest Weghorst
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Yeva Mirzakhanyan
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Kian Samimi
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Mehron Dhillon
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Melanie Barzik
- Section on Sensory Cell Biology, NIDCD, NIH, Bethesda, MD, United States
| | - Lisa L. Cunningham
- Section on Sensory Cell Biology, NIDCD, NIH, Bethesda, MD, United States
| | - Paul D. Gershon
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Karina S. Cramer
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
20
|
Abu Khweek A, Amer AO. Pyroptotic and non-pyroptotic effector functions of caspase-11. Immunol Rev 2020; 297:39-52. [PMID: 32737894 PMCID: PMC7496135 DOI: 10.1111/imr.12910] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/16/2022]
Abstract
Innate immune cells, epithelial cells, and many other cell types are capable of detecting infection or tissue injury, thus mounting regulated immune response. Inflammasomes are highly sophisticated and effective orchestrators of innate immunity. These oligomerized multiprotein complexes are at the center of various innate immune pathways, including modulation of the cytoskeleton, production and maturation of cytokines, and control of bacterial growth and cell death. Inflammasome assembly often results in caspase‐1 activation, which is an inflammatory caspase that is involved in pyroptotic cell death and release of inflammatory cytokines in response to pathogen patterns and endogenous danger stimuli. However, the nature of stimuli and inflammasome components are diverse. Caspase‐1 activation mediated release of mature IL‐1β and IL‐18 in response to canonical stimuli initiated by NOD‐like receptor (NLR), and apoptosis‐associated speck‐like protein containing a caspase recruitment domain (ASC). On the other hand, caspase‐11 delineates a non‐canonical inflammasome that promotes pyroptotic cell death and non‐pyroptotic functions in response to non‐canonical stimuli. Caspase‐11 in mice and its homologues in humans (caspase‐4/5) belong to caspase‐1 family of cysteine proteases, and play a role in inflammation. Knockout mice provided new genetic tools to study inflammatory caspases and revealed the role of caspase‐11 in mediating septic shock in response to lethal doses of lipopolysaccharide (LPS). Recognition of LPS mediates caspase‐11 activation, which promotes a myriad of downstream effects that include pyroptotic and non‐pyroptotic effector functions. Therefore, the physiological functions of caspase‐11 are much broader than its previously established roles in apoptosis and cytokine maturation. Inflammation induced by exogenous or endogenous agents can be detrimental and, if excessive, can result in organ and tissue damage. Consequently, the existence of sophisticated mechanisms that tightly regulate the specificity and sensitivity of inflammasome pathways provides a fine‐tuning balance between adequate immune response and minimal tissue damage. In this review, we summarize effector functions of caspase‐11.
Collapse
Affiliation(s)
- Arwa Abu Khweek
- Department of Biology and Biochemistry, Birzeit University, West Bank, Palestine
| | - Amal O Amer
- Department of Microbial Infection and Immunity, Infectious Disease Institute, College of Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
21
|
Jin ZL, Yao XR, Wen L, Hao G, Kwon JW, Hao J, Kim NH. AIP1 and Cofilin control the actin dynamics to modulate the asymmetric division and cytokinesis in mouse oocytes. FASEB J 2020; 34:11292-11306. [PMID: 32602619 DOI: 10.1096/fj.202000093r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/17/2020] [Accepted: 04/26/2020] [Indexed: 11/11/2022]
Abstract
Actin-interacting protein 1 (AIP1), also known as WD repeat-containing protein 1 (WDR1), is ubiquitous in eukaryotic organisms, and it plays critical roles in the dynamic reorganization of the actin cytoskeleton. However, the biological function and mechanism of AIP1 in mammalian oocyte maturation is still largely unclear. In this study, we demonstrated that AIP1 boosts ADF/Cofilin activity in mouse oocytes. AIP1 is primarily distributed around the spindle region during oocyte maturation, and its depletion impairs meiotic spindle migration and asymmetric division. The knockdown of AIP1 resulted in the gathering of a large number of actin-positive patches around the spindle region. This effect was reduced by human AIP1 (hAIP1) or Cofilin (S3A) expression. AIP1 knockdown also reduced the phosphorylation of Cofilin near the spindle, indicating that AIP1 interacts with ADF/Cofilin-decorated actin filaments and enhances filament disassembly. Moreover, the deletion of AIP1 disrupts Cofilin localization in metaphase I (MI) and induces cytokinesis defects in metaphase II (MII). Taken together, our results provide evidence that AIP1 promotes actin dynamics and cytokinesis via Cofilin in the gametes of female mice.
Collapse
Affiliation(s)
- Zhe-Long Jin
- School of Biotechnology and Healthcare, Wuyi University, Jiangmen, China.,Department of Animal Sciences, Chungbuk National University, Cheongju, Korea
| | - Xue-Rui Yao
- School of Biotechnology and Healthcare, Wuyi University, Jiangmen, China.,Department of Animal Sciences, Chungbuk National University, Cheongju, Korea
| | - Liu Wen
- School of Biotechnology and Healthcare, Wuyi University, Jiangmen, China
| | - Guo Hao
- School of Biotechnology and Healthcare, Wuyi University, Jiangmen, China.,Department of Animal Sciences, Chungbuk National University, Cheongju, Korea
| | - Jeong-Woo Kwon
- School of Biotechnology and Healthcare, Wuyi University, Jiangmen, China
| | - Jiang Hao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, China
| | - Nam-Hyung Kim
- School of Biotechnology and Healthcare, Wuyi University, Jiangmen, China.,Department of Animal Sciences, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
22
|
Goddard PJ, Sanchez-Garrido J, Slater SL, Kalyan M, Ruano-Gallego D, Marchès O, Fernández LÁ, Frankel G, Shenoy AR. Enteropathogenic Escherichia coli Stimulates Effector-Driven Rapid Caspase-4 Activation in Human Macrophages. Cell Rep 2020; 27:1008-1017.e6. [PMID: 31018119 PMCID: PMC6486487 DOI: 10.1016/j.celrep.2019.03.100] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 02/20/2019] [Accepted: 03/27/2019] [Indexed: 12/20/2022] Open
Abstract
Microbial infections can stimulate the assembly of inflammasomes, which activate caspase-1. The gastrointestinal pathogen enteropathogenic Escherichia coli (EPEC) causes localized actin polymerization in host cells. Actin polymerization requires the binding of the bacterial adhesin intimin to Tir, which is delivered to host cells via a type 3 secretion system (T3SS). We show that EPEC induces T3SS-dependent rapid non-canonical NLRP3 inflammasome activation in human macrophages. Notably, caspase-4 activation by EPEC triggers pyroptosis and cytokine processing through the NLRP3-caspase-1 inflammasome. Mechanistically, caspase-4 activation requires the detection of LPS and EPEC-induced actin polymerization, either via Tir tyrosine phosphorylation and the phosphotyrosine-binding adaptor NCK or Tir and the NCK-mimicking effector TccP. An engineered E. coli K12 could reconstitute Tir-intimin signaling, which is necessary and sufficient for inflammasome activation, ruling out the involvement of other virulence factors. Our studies reveal a crosstalk between caspase-4 and caspase-1 that is cooperatively stimulated by LPS and effector-driven actin polymerization. EPEC bacteria expressing virulence genes induce rapid human macrophage pyroptosis Bacterial LPS sensing by caspase-4 activates NLRP3-caspase-1 inflammasomes Actin polymerization driven by Tir-intimin signaling promotes pyroptosis Caspase-1 mediates cytokine processing and gasdermin D cleavage, leading to pyroptosis
Collapse
Affiliation(s)
- Philippa J Goddard
- Department of Life Sciences, Medical Research Council Centre for Molecular Bacteriology & Infection, Imperial College London, London, UK; Department of Medicine, Medical Research Council Centre for Molecular Bacteriology & Infection, Imperial College London, London, UK
| | - Julia Sanchez-Garrido
- Department of Medicine, Medical Research Council Centre for Molecular Bacteriology & Infection, Imperial College London, London, UK
| | - Sabrina L Slater
- Department of Life Sciences, Medical Research Council Centre for Molecular Bacteriology & Infection, Imperial College London, London, UK
| | - Mohini Kalyan
- Department of Medicine, Medical Research Council Centre for Molecular Bacteriology & Infection, Imperial College London, London, UK
| | - David Ruano-Gallego
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Olivier Marchès
- Department of Life Sciences, Medical Research Council Centre for Molecular Bacteriology & Infection, Imperial College London, London, UK
| | - Luis Ángel Fernández
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Gad Frankel
- Department of Life Sciences, Medical Research Council Centre for Molecular Bacteriology & Infection, Imperial College London, London, UK
| | - Avinash R Shenoy
- Department of Medicine, Medical Research Council Centre for Molecular Bacteriology & Infection, Imperial College London, London, UK.
| |
Collapse
|
23
|
Sanchez‐Garrido J, Slater SL, Clements A, Shenoy AR, Frankel G. Vying for the control of inflammasomes: The cytosolic frontier of enteric bacterial pathogen-host interactions. Cell Microbiol 2020; 22:e13184. [PMID: 32185892 PMCID: PMC7154749 DOI: 10.1111/cmi.13184] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/13/2020] [Accepted: 01/30/2020] [Indexed: 12/13/2022]
Abstract
Enteric pathogen-host interactions occur at multiple interfaces, including the intestinal epithelium and deeper organs of the immune system. Microbial ligands and activities are detected by host sensors that elicit a range of immune responses. Membrane-bound toll-like receptors and cytosolic inflammasome pathways are key signal transducers that trigger the production of pro-inflammatory molecules, such as cytokines and chemokines, and regulate cell death in response to infection. In recent years, the inflammasomes have emerged as a key frontier in the tussle between bacterial pathogens and the host. Inflammasomes are complexes that activate caspase-1 and are regulated by related caspases, such as caspase-11, -4, -5 and -8. Importantly, enteric bacterial pathogens can actively engage or evade inflammasome signalling systems. Extracellular, vacuolar and cytosolic bacteria have developed divergent strategies to subvert inflammasomes. While some pathogens take advantage of inflammasome activation (e.g. Listeria monocytogenes, Helicobacter pylori), others (e.g. E. coli, Salmonella, Shigella, Yersinia sp.) deploy a range of virulence factors, mainly type 3 secretion system effectors, that subvert or inhibit inflammasomes. In this review we focus on inflammasome pathways and their immune functions, and discuss how enteric bacterial pathogens interact with them. These studies have not only shed light on inflammasome-mediated immunity, but also the exciting area of mammalian cytosolic immune surveillance.
Collapse
Affiliation(s)
| | | | | | - Avinash R. Shenoy
- Department of Infectious Disease, MRC Centre for Molecular Bacteriology & InfectionImperial College LondonLondonUK
| | - Gad Frankel
- Department of Life SciencesImperial College LondonLondonUK
| |
Collapse
|
24
|
Krause K, Daily K, Estfanous S, Hamilton K, Badr A, Abu Khweek A, Hegazi R, Anne MNK, Klamer B, Zhang X, Gavrilin MA, Pancholi V, Amer AO. Caspase-11 counteracts mitochondrial ROS-mediated clearance of Staphylococcus aureus in macrophages. EMBO Rep 2019; 20:e48109. [PMID: 31637841 PMCID: PMC6893291 DOI: 10.15252/embr.201948109] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 09/16/2019] [Accepted: 09/25/2019] [Indexed: 02/05/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a growing health concern due to increasing resistance to antibiotics. As a facultative intracellular pathogen, MRSA is capable of persisting within professional phagocytes including macrophages. Here, we identify a role for CASP11 in facilitating MRSA survival within murine macrophages. We show that MRSA actively prevents the recruitment of mitochondria to the vicinity of the vacuoles they reside in to avoid intracellular demise. This process requires CASP11 since its deficiency allows increased association of MRSA-containing vacuoles with mitochondria. The induction of mitochondrial superoxide by antimycin A (Ant A) improves MRSA eradication in casp11-/- cells, where mitochondria remain in the vicinity of the bacterium. In WT macrophages, Ant A does not affect MRSA persistence. When mitochondrial dissociation is prevented by the actin depolymerizing agent cytochalasin D, Ant A effectively reduces MRSA numbers. Moreover, the absence of CASP11 leads to reduced cleavage of CASP1, IL-1β, and CASP7, as well as to reduced production of CXCL1/KC. Our study provides a new role for CASP11 in promoting the persistence of Gram-positive bacteria.
Collapse
Affiliation(s)
- Kathrin Krause
- Department of Microbial Infection and ImmunityInfectious Diseases InstituteOhio State UniversityColumbusOHUSA
| | - Kylene Daily
- Department of Microbial Infection and ImmunityInfectious Diseases InstituteOhio State UniversityColumbusOHUSA
| | - Shady Estfanous
- Department of Microbial Infection and ImmunityInfectious Diseases InstituteOhio State UniversityColumbusOHUSA
| | - Kaitlin Hamilton
- Department of Microbial Infection and ImmunityInfectious Diseases InstituteOhio State UniversityColumbusOHUSA
| | - Asmaa Badr
- Department of Microbial Infection and ImmunityInfectious Diseases InstituteOhio State UniversityColumbusOHUSA
| | - Arwa Abu Khweek
- Department of Microbial Infection and ImmunityInfectious Diseases InstituteOhio State UniversityColumbusOHUSA
- Department of Biology and BiochemistryBirzeit UniversityBirzeitWest BankPalestine
| | - Rana Hegazi
- Department of Microbial Infection and ImmunityInfectious Diseases InstituteOhio State UniversityColumbusOHUSA
| | - Midhun NK Anne
- Department of Microbial Infection and ImmunityInfectious Diseases InstituteOhio State UniversityColumbusOHUSA
| | - Brett Klamer
- Center for BiostatisticsOhio State UniversityColumbusOHUSA
| | - Xiaoli Zhang
- Center for BiostatisticsOhio State UniversityColumbusOHUSA
| | | | - Vijay Pancholi
- Department of PathologyOhio State UniversityColumbusOHUSA
| | - Amal O Amer
- Department of Microbial Infection and ImmunityInfectious Diseases InstituteOhio State UniversityColumbusOHUSA
| |
Collapse
|
25
|
Caution K, Young N, Robledo-Avila F, Krause K, Abu Khweek A, Hamilton K, Badr A, Vaidya A, Daily K, Gosu H, Anne MNK, Eltobgy M, Dakhlallah D, Argwal S, Estfanous S, Zhang X, Partida-Sanchez S, Gavrilin MA, Jarjour WN, Amer AO. Caspase-11 Mediates Neutrophil Chemotaxis and Extracellular Trap Formation During Acute Gouty Arthritis Through Alteration of Cofilin Phosphorylation. Front Immunol 2019; 10:2519. [PMID: 31803174 PMCID: PMC6874099 DOI: 10.3389/fimmu.2019.02519] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/09/2019] [Indexed: 12/21/2022] Open
Abstract
Gout is characterized by attacks of arthritis with hyperuricemia and monosodium urate (MSU) crystal-induced inflammation within joints. Innate immune responses are the primary drivers for tissue destruction and inflammation in gout. MSU crystals engage the Nlrp3 inflammasome, leading to the activation of caspase-1 and production of IL-1β and IL-18 within gout-affected joints, promoting the influx of neutrophils and monocytes. Here, we show that caspase-11−/− mice and their derived macrophages produce significantly reduced levels of gout-specific cytokines including IL-1β, TNFα, IL-6, and KC, while others like IFNγ and IL-12p70 are not altered. IL-1β induces the expression of caspase-11 in an IL-1 receptor-dependent manner in macrophages contributing to the priming of macrophages during sterile inflammation. The absence of caspase-11 reduced the ability of macrophages and neutrophils to migrate in response to exogenously injected KC in vivo. Notably, in vitro, caspase-11−/− neutrophils displayed random migration in response to a KC gradient when compared to their WT counterparts. This phenotype was associated with altered cofilin phosphorylation. Unlike their wild-type counterparts, caspase-11−/− neutrophils also failed to produce neutrophil extracellular traps (NETs) when treated with MSU. Together, this is the first report demonstrating that caspase-11 promotes neutrophil directional trafficking and function in an acute model of gout. Caspase-11 also governs the production of inflammasome-dependent and -independent cytokines from macrophages. Our results offer new, previously unrecognized functions for caspase-11 in macrophages and neutrophils that may apply to other neutrophil-mediated disease conditions besides gout.
Collapse
Affiliation(s)
- Kyle Caution
- Department of Microbial Infection and Immunity, The Ohio State University Medical Center, Columbus, OH, United States
| | - Nicholas Young
- Department of Rheumatology and Immunology, The Ohio State University Medical Center, Columbus, OH, United States
| | - Frank Robledo-Avila
- Center for Microbial Pathogenesis, Nationwide Children's Hospital, Columbus, OH, United States
| | - Kathrin Krause
- Department of Microbial Infection and Immunity, The Ohio State University Medical Center, Columbus, OH, United States
| | - Arwa Abu Khweek
- Department of Microbial Infection and Immunity, The Ohio State University Medical Center, Columbus, OH, United States.,Department of Biology and Biochemistry, Birzeit University, West Bank, Palestine
| | - Kaitlin Hamilton
- Department of Microbial Infection and Immunity, The Ohio State University Medical Center, Columbus, OH, United States
| | - Asmaa Badr
- Department of Microbial Infection and Immunity, The Ohio State University Medical Center, Columbus, OH, United States
| | - Anup Vaidya
- Department of Microbial Infection and Immunity, The Ohio State University Medical Center, Columbus, OH, United States
| | - Kylene Daily
- Department of Microbial Infection and Immunity, The Ohio State University Medical Center, Columbus, OH, United States
| | - Hawin Gosu
- Department of Microbial Infection and Immunity, The Ohio State University Medical Center, Columbus, OH, United States
| | - Midhun N K Anne
- Department of Microbial Infection and Immunity, The Ohio State University Medical Center, Columbus, OH, United States
| | - Mostafa Eltobgy
- Department of Microbial Infection and Immunity, The Ohio State University Medical Center, Columbus, OH, United States
| | - Duaa Dakhlallah
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV, United States
| | - Sudha Argwal
- Department of Rheumatology and Immunology, The Ohio State University Medical Center, Columbus, OH, United States
| | - Shady Estfanous
- Department of Microbial Infection and Immunity, The Ohio State University Medical Center, Columbus, OH, United States
| | - Xiaoli Zhang
- Center for Biostatistics, The Ohio State University Medical Center, Columbus, OH, United States
| | | | - Mikhail A Gavrilin
- Department of Internal Medicine, The Ohio State University Medical Center, Columbus, OH, United States
| | - Wael N Jarjour
- Department of Rheumatology and Immunology, The Ohio State University Medical Center, Columbus, OH, United States
| | - Amal O Amer
- Department of Microbial Infection and Immunity, The Ohio State University Medical Center, Columbus, OH, United States
| |
Collapse
|
26
|
Fujisawa Y, Kosakamoto H, Chihara T, Miura M. Non-apoptotic function of Drosophila caspase activation in epithelial thorax closure and wound healing. Development 2019; 146:146/4/dev169037. [DOI: 10.1242/dev.169037] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 01/21/2019] [Indexed: 12/28/2022]
Abstract
ABSTRACT
Non-apoptotic caspase activation involves multiple cellular events. However, the link between visible non-apoptotic caspase activation and its function in living organisms has not yet been revealed. Here, we visualized sub-lethal activation of apoptotic signaling with the combination of a sensitive indicator for caspase 3 activation and in vivo live-imaging analysis of Drosophila. During thorax closure in pupal development, caspase 3 activation was specifically observed at the leading edge cells, with no signs of apoptosis. Inhibition of caspase activation led to an increase in thorax closing speed, which suggests a role of non-apoptotic caspase activity in cell motility. Importantly, sub-lethal activation of caspase 3 was also observed during wound closure at the fusion sites at which thorax closure had previously taken place. Further genetic analysis revealed that the activation of the initiator caspase Dronc is coupled with the generation of reactive oxygen species. The activation of Dronc also regulates myosin levels and delays wound healing. Our findings suggest a possible function for non-apoptotic caspase activation in the fine-tuning of cell migratory behavior during epithelial closure.
Collapse
Affiliation(s)
- Yuya Fujisawa
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hina Kosakamoto
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takahiro Chihara
- Department of Biological Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
27
|
Papoff G, Presutti D, Lalli C, Bolasco G, Santini S, Manelfi C, Fustaino V, Alemà S, Ruberti G. CASP4 gene silencing in epithelial cancer cells leads to impairment of cell migration, cell-matrix adhesion and tissue invasion. Sci Rep 2018; 8:17705. [PMID: 30531914 PMCID: PMC6286322 DOI: 10.1038/s41598-018-35792-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 11/10/2018] [Indexed: 12/20/2022] Open
Abstract
Inflammatory caspases, including human caspase-4 (CASP4), play key roles in innate immune responses to promote fusion of phagosomes harboring pathogenic bacteria with lysosomes, halt intracellular replication of pathogens, maturation and secretion of pro-inflammatory cytokines. The role of inflammatory caspases in cancer cells remains poorly investigated. Here, we explored the consequences of modulating CASP4 expression levels on the migratory behavior of epithelial cancer cell lines. By a gene silencing approach and in vitro and in vivo studies we show that down-regulation of CASP4 leads to impaired cell migration and cell-matrix adhesion. This phenotype is accompanied by an increased actin cytoskeleton polymerization, changes in the overall organization of adherens junctions (AJs) and number and size of focal adhesions. Interestingly, the cell migration deficit could be reversed by epithelial growth factor treatment, and depletion of calcium ions unveiled a role of CASP4 in the novo assembly of AJs, suggesting that the role of CASP4 is not cell-autonomous. Finally, CASP4-silenced A431 cells exhibited a severe reduction in their ability to invade lung tissue, when injected into nude mice. Overall, our data support the emerging evidence that inflammatory caspases can regulate cell migration through actin remodeling and uncover a novel role of CASP4 in cancer cell behavior.
Collapse
Affiliation(s)
- Giuliana Papoff
- National Research Council, Institute of Cell Biology and Neurobiology - Campus Adriano Buzzati-Traverso Via E. Ramarini, 32 00015, Monterotondo (Rome), Italy.
| | - Dario Presutti
- National Research Council, Institute of Cell Biology and Neurobiology - Campus Adriano Buzzati-Traverso Via E. Ramarini, 32 00015, Monterotondo (Rome), Italy
| | - Cristiana Lalli
- National Research Council, Institute of Cell Biology and Neurobiology - Campus Adriano Buzzati-Traverso Via E. Ramarini, 32 00015, Monterotondo (Rome), Italy
| | - Giulia Bolasco
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Rome, Via E. Ramarini 32 Monterotondo (Rome), Italy
| | - Simonetta Santini
- National Research Council, Institute of Cell Biology and Neurobiology - Campus Adriano Buzzati-Traverso Via E. Ramarini, 32 00015, Monterotondo (Rome), Italy
| | - Candida Manelfi
- National Research Council, Institute of Cell Biology and Neurobiology - Campus Adriano Buzzati-Traverso Via E. Ramarini, 32 00015, Monterotondo (Rome), Italy
| | - Valentina Fustaino
- National Research Council, Institute of Cell Biology and Neurobiology - Campus Adriano Buzzati-Traverso Via E. Ramarini, 32 00015, Monterotondo (Rome), Italy
| | - Stefano Alemà
- National Research Council, Institute of Cell Biology and Neurobiology - Campus Adriano Buzzati-Traverso Via E. Ramarini, 32 00015, Monterotondo (Rome), Italy
| | - Giovina Ruberti
- National Research Council, Institute of Cell Biology and Neurobiology - Campus Adriano Buzzati-Traverso Via E. Ramarini, 32 00015, Monterotondo (Rome), Italy.
| |
Collapse
|
28
|
Pfajfer L, Mair NK, Jiménez-Heredia R, Genel F, Gulez N, Ardeniz Ö, Hoeger B, Bal SK, Madritsch C, Kalinichenko A, Chandra Ardy R, Gerçeker B, Rey-Barroso J, Ijspeert H, Tangye SG, Simonitsch-Klupp I, Huppa JB, van der Burg M, Dupré L, Boztug K. Mutations affecting the actin regulator WD repeat–containing protein 1 lead to aberrant lymphoid immunity. J Allergy Clin Immunol 2018; 142:1589-1604.e11. [DOI: 10.1016/j.jaci.2018.04.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 03/12/2018] [Accepted: 04/06/2018] [Indexed: 11/28/2022]
|
29
|
The Role of Apoptotic Signaling in Axon Guidance. J Dev Biol 2018; 6:jdb6040024. [PMID: 30340315 PMCID: PMC6316149 DOI: 10.3390/jdb6040024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/16/2018] [Accepted: 10/16/2018] [Indexed: 12/28/2022] Open
Abstract
Navigating growth cones are exposed to multiple signals simultaneously and have to integrate competing cues into a coherent navigational response. Integration of guidance cues is traditionally thought to occur at the level of cytoskeletal dynamics. Drosophila studies indicate that cells exhibit a low level of continuous caspase protease activation, and that axon guidance cues can activate or suppress caspase activity. We base a model for axon guidance on these observations. By analogy with other systems in which caspase signaling has non-apoptotic functions, we propose that caspase signaling can either reinforce repulsion or negate attraction in response to external guidance cues by cleaving cytoskeletal proteins. Over the course of an entire trajectory, incorrectly navigating axons may pass the threshold for apoptosis and be eliminated, whereas axons making correct decisions will survive. These observations would also explain why neurotrophic factors can act as axon guidance cues and why axon guidance systems such as Slit/Robo signaling may act as tumor suppressors in cancer.
Collapse
|
30
|
Krause K, Caution K, Badr A, Hamilton K, Saleh A, Patel K, Seveau S, Hall-Stoodley L, Hegazi R, Zhang X, Gavrilin MA, Amer AO. CASP4/caspase-11 promotes autophagosome formation in response to bacterial infection. Autophagy 2018; 14:1928-1942. [PMID: 30165781 PMCID: PMC6152495 DOI: 10.1080/15548627.2018.1491494] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
CASP4/caspase-11-dependent inflammasome activation is important for the clearance of various Gram-negative bacteria entering the host cytosol. Additionally, CASP4 modulates the actin cytoskeleton to promote the maturation of phagosomes harboring intracellular pathogens such as Legionella pneumophila but not those enclosing nonpathogenic bacteria. Nevertheless, this non-inflammatory role of CASP4 regarding the trafficking of vacuolar bacteria remains poorly understood. Macroautophagy/autophagy, a catabolic process within eukaryotic cells, is also implicated in the elimination of intracellular pathogens such as Burkholderia cenocepacia. Here we show that CASP4-deficient macrophages exhibit a defect in autophagosome formation in response to B. cenocepacia infection. The absence of CASP4 causes an accumulation of the small GTPase RAB7, reduced colocalization of B. cenocepacia with LC3 and acidic compartments accompanied by increased bacterial replication in vitro and in vivo. Together, our data reveal a novel role of CASP4 in regulating autophagy in response to B. cenocepacia infection.
Collapse
Affiliation(s)
- Kathrin Krause
- a Department of Microbial Infection and Immunity , Infectious Diseases Institute , Columbus , OH , USA
| | - Kyle Caution
- a Department of Microbial Infection and Immunity , Infectious Diseases Institute , Columbus , OH , USA
| | - Asmaa Badr
- a Department of Microbial Infection and Immunity , Infectious Diseases Institute , Columbus , OH , USA
| | - Kaitlin Hamilton
- a Department of Microbial Infection and Immunity , Infectious Diseases Institute , Columbus , OH , USA
| | - Abdulmuti Saleh
- a Department of Microbial Infection and Immunity , Infectious Diseases Institute , Columbus , OH , USA
| | - Khushbu Patel
- a Department of Microbial Infection and Immunity , Infectious Diseases Institute , Columbus , OH , USA
| | - Stephanie Seveau
- a Department of Microbial Infection and Immunity , Infectious Diseases Institute , Columbus , OH , USA
| | - Luanne Hall-Stoodley
- a Department of Microbial Infection and Immunity , Infectious Diseases Institute , Columbus , OH , USA
| | - Rana Hegazi
- a Department of Microbial Infection and Immunity , Infectious Diseases Institute , Columbus , OH , USA
| | - Xiaoli Zhang
- b Center for Biostatistics, The Ohio State University , Columbus , OH , USA
| | - Mikhail A Gavrilin
- c Department of Internal Medicine , The Ohio State University , Columbus , OH , USA
| | - Amal O Amer
- a Department of Microbial Infection and Immunity , Infectious Diseases Institute , Columbus , OH , USA
| |
Collapse
|
31
|
da Silva Antunes R, Babor M, Carpenter C, Khalil N, Cortese M, Mentzer AJ, Seumois G, Petro CD, Purcell LA, Vijayanand P, Crotty S, Pulendran B, Peters B, Sette A. Th1/Th17 polarization persists following whole-cell pertussis vaccination despite repeated acellular boosters. J Clin Invest 2018; 128:3853-3865. [PMID: 29920186 DOI: 10.1172/jci121309] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/12/2018] [Indexed: 01/17/2023] Open
Abstract
In the mid-1990s, whole-cell pertussis (wP) vaccines were associated with local and systemic adverse events that prompted their replacement with acellular pertussis (aP) vaccines in many high-income countries. In the past decade, rates of pertussis disease have increased in children receiving only aP vaccines. We compared the immune responses to aP boosters in individuals who received their initial doses with either wP or aP vaccines using activation-induced marker (AIM) assays. Specifically, we examined pertussis-specific memory CD4+ T cell responses ex vivo, highlighting a type 2/Th2 versus type 1/Th1 and Th17 differential polarization as a function of childhood vaccination. Remarkably, after a contemporary aP booster, cells from donors originally primed with aP were (a) associated with increased IL-4, IL-5, IL-13, IL-9, and TGF-β and decreased IFN-γ and IL-17 production, (b) defective in their ex vivo capacity to expand memory cells, and (c) less capable of proliferating in vitro. These differences appeared to be T cell specific, since equivalent increases of antibody titers and plasmablasts after aP boost were seen in both groups. In conclusion, our data suggest that there are long-lasting effects and differences in polarization and proliferation of T cell responses in adults originally vaccinated with aP compared with those that initially received wP, despite repeated acellular boosters.
Collapse
Affiliation(s)
- Ricardo da Silva Antunes
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Mariana Babor
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Chelsea Carpenter
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Natalie Khalil
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Mario Cortese
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Alexander J Mentzer
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Grégory Seumois
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | | | - Lisa A Purcell
- Regeneron Pharmaceuticals Inc., Tarrytown, New York, USA
| | - Pandurangan Vijayanand
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA.,UCSD School of Medicine, La Jolla, California, USA
| | - Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA.,UCSD School of Medicine, La Jolla, California, USA
| | - Bali Pulendran
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA.,UCSD School of Medicine, La Jolla, California, USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA.,UCSD School of Medicine, La Jolla, California, USA
| |
Collapse
|
32
|
Monteith AJ, Vincent HA, Kang S, Li P, Claiborne TM, Rajfur Z, Jacobson K, Moorman NJ, Vilen BJ. mTORC2 Activity Disrupts Lysosome Acidification in Systemic Lupus Erythematosus by Impairing Caspase-1 Cleavage of Rab39a. THE JOURNAL OF IMMUNOLOGY 2018; 201:371-382. [PMID: 29866702 DOI: 10.4049/jimmunol.1701712] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 05/08/2018] [Indexed: 12/16/2022]
Abstract
Lysosomes maintain immune homeostasis through the degradation of phagocytosed apoptotic debris; however, the signaling events regulating lysosomal maturation remain undefined. In this study, we show that lysosome acidification, key to the maturation process, relies on mTOR complex 2 (mTORC2), activation of caspase-1, and cleavage of Rab39a. Mechanistically, the localization of cofilin to the phagosome recruits caspase-11, which results in the localized activation of caspase-1. Caspase-1 subsequently cleaves Rab39a on the phagosomal membrane, promoting lysosome acidification. Although caspase-1 is critical for lysosome acidification, its activation is independent of inflammasomes and cell death mediated by apoptosis-associated speck-like protein containing a caspase recruitment domain, revealing a role beyond pyroptosis. In lupus-prone murine macrophages, chronic mTORC2 activity decouples the signaling pathway, leaving Rab39a intact. As a result, the lysosome does not acidify, and degradation is impaired, thereby heightening the burden of immune complexes that activate FcγRI and sustain mTORC2 activity. This feedforward loop promotes chronic immune activation, leading to multiple lupus-associated pathologies. In summary, these findings identify the key molecules in a previously unappreciated signaling pathway that promote lysosome acidification. It also shows that this pathway is disrupted in systemic lupus erythematosus.
Collapse
Affiliation(s)
- Andrew J Monteith
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Heather A Vincent
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - SunAh Kang
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Patrick Li
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Tauris M Claiborne
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Zenon Rajfur
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and.,Department of Physics, Astronomy, and Applied Computer Science, Institute of Physics, Jagiellonian University, 31-007 Krakow, Poland
| | - Ken Jacobson
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and
| | - Nathaniel J Moorman
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Barbara J Vilen
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599;
| |
Collapse
|
33
|
Xu DC, Arthurton L, Baena-Lopez LA. Learning on the Fly: The Interplay between Caspases and Cancer. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5473180. [PMID: 29854765 PMCID: PMC5949197 DOI: 10.1155/2018/5473180] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/14/2018] [Indexed: 02/07/2023]
Abstract
The ease of genetic manipulation, as well as the evolutionary conservation of gene function, has placed Drosophila melanogaster as one of the leading model organisms used to understand the implication of many proteins with disease development, including caspases and their relation to cancer. The family of proteases referred to as caspases have been studied over the years as the major regulators of apoptosis: the most common cellular mechanism involved in eliminating unwanted or defective cells, such as cancerous cells. Indeed, the evasion of the apoptotic programme resulting from caspase downregulation is considered one of the hallmarks of cancer. Recent investigations have also shown an instrumental role for caspases in non-lethal biological processes, such as cell proliferation, cell differentiation, intercellular communication, and cell migration. Importantly, malfunction of these essential biological tasks can deeply impact the initiation and progression of cancer. Here, we provide an extensive review of the literature surrounding caspase biology and its interplay with many aspects of cancer, emphasising some of the key findings obtained from Drosophila studies. We also briefly describe the therapeutic potential of caspase modulation in relation to cancer, highlighting shortcomings and hopeful promises.
Collapse
Affiliation(s)
- Derek Cui Xu
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX13RE, UK
- Cell Biology Section, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Lewis Arthurton
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX13RE, UK
| | | |
Collapse
|
34
|
Chu LH, Indramohan M, Ratsimandresy RA, Gangopadhyay A, Morris EP, Monack DM, Dorfleutner A, Stehlik C. The oxidized phospholipid oxPAPC protects from septic shock by targeting the non-canonical inflammasome in macrophages. Nat Commun 2018. [PMID: 29520027 PMCID: PMC5843631 DOI: 10.1038/s41467-018-03409-3] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Lipopolysaccharide (LPS) of Gram-negative bacteria can elicit a strong immune response. Although extracellular LPS is sensed by TLR4 at the cell surface and triggers a transcriptional response, cytosolic LPS binds and activates non-canonical inflammasome caspases, resulting in pyroptotic cell death, as well as canonical NLRP3 inflammasome-dependent cytokine release. Contrary to the highly regulated multiprotein platform required for caspase-1 activation in the canonical inflammasomes, the non-canonical mouse caspase-11 and the orthologous human caspase-4 function simultaneously as innate sensors and effectors, and their regulation is unclear. Here we show that the oxidized phospholipid 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (oxPAPC) inhibits the non-canonical inflammasome in macrophages, but not in dendritic cells. Aside from a TLR4 antagonistic role, oxPAPC binds directly to caspase-4 and caspase-11, competes with LPS binding, and consequently inhibits LPS-induced pyroptosis, IL-1β release and septic shock. Therefore, oxPAPC and its derivatives might provide a basis for therapies that target non-canonical inflammasomes during Gram-negative bacterial sepsis.
Collapse
Affiliation(s)
- Lan H Chu
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611, USA.,Driskill Graduate Program in Life Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611, USA
| | - Mohanalaxmi Indramohan
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611, USA
| | - Rojo A Ratsimandresy
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611, USA
| | - Anu Gangopadhyay
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611, USA.,Driskill Graduate Program in Life Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611, USA
| | - Emily P Morris
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611, USA
| | - Denise M Monack
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford University, Stanford, Stanford, California, 94305, USA
| | - Andrea Dorfleutner
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611, USA.
| | - Christian Stehlik
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611, USA. .,Robert H. Lurie Comprehensive Cancer Center, Interdepartmental Immunobiology Center and Skin Disease Research Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611, USA.
| |
Collapse
|
35
|
Sayeed MSB, Alhadidi Q, Shah ZA. Cofilin signaling in hemin-induced microglial activation and inflammation. J Neuroimmunol 2017; 313:46-55. [PMID: 29153608 DOI: 10.1016/j.jneuroim.2017.10.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/28/2017] [Accepted: 10/13/2017] [Indexed: 02/07/2023]
Abstract
Intracerebral hemorrhage (ICH) is the most severe form of stroke and is further exacerbated by the secondary injury involving inflammatory response due to the activation of microglia. This secondary injury is partly due to the toxic effects of hemin, an endogenous breakdown product of hemoglobin. Cofilin, an actin depolymerizing factor, controls actin dynamics and has been previously shown to be involved in mediating neuronal cell death in ischemic conditions and during bacterial lipopolysaccharide induced microglial activation. There are limited studies regarding the deleterious effects of extremely high concentrations of hemin released during ICH and its effects on microglia and subsequent cofilin response. Therefore, investigations were conducted to study the effects of hemin on microglial activation induced inflammation and the critical role of cofilin in mediating the response. We observed that hemin treated microglia had a concentration dependent increase in cofilin expression and NO production. There were increased levels of iNOS, TNF-α, HO1, Nrf2, Wfs-1, XBP-1 and spliced XBP-1 observed in response to hemin treatment and the signaling was found to be partly mediated by cofilin. Acute hemin treatment did not evoke Ca2+ signaling and long-term treatment of hemin also resulted in the failure of microglial response to acetylcholine-evoked Ca2+ signaling. Knockdown of cofilin by siRNA also reduced acetylcholine-evoked Ca2+ signaling. These studies demonstrate that cofilin signaling is important in hemin-induced inflammation, oxidative stress, ER stress, microglial migration, and the ability to evoke Ca2+ signaling. Therefore, cofilin inhibition could be a potential therapy in brain injuries triggered by hemin toxicity in conditions like ICH.
Collapse
Affiliation(s)
- Muhammad Shahdaat Bin Sayeed
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Qasim Alhadidi
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Zahoor A Shah
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA; Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA.
| |
Collapse
|
36
|
Functions of actin-interacting protein 1 (AIP1)/WD repeat protein 1 (WDR1) in actin filament dynamics and cytoskeletal regulation. Biochem Biophys Res Commun 2017; 506:315-322. [PMID: 29056508 DOI: 10.1016/j.bbrc.2017.10.096] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 10/18/2017] [Indexed: 02/04/2023]
Abstract
Actin-depolymerizing factor (ADF)/cofilin and actin-interacting protein 1 (AIP1), also known as WD-repeat protein 1 (WDR1), are conserved among eukaryotes and play critical roles in dynamic reorganization of the actin cytoskeleton. AIP1 preferentially promotes disassembly of ADF/cofilin-decorated actin filaments but exhibits minimal effects on bare actin filaments. Therefore, AIP1 has been often considered to be an ancillary co-factor of ADF/cofilin that merely boosts ADF/cofilin activity level. However, genetic and cell biological studies show that AIP1 deficiency often causes lethality or severe abnormalities in multiple tissues and organs including muscle, epithelia, and blood, suggesting that AIP1 is a major regulator of many biological processes that depend on actin dynamics. This review summarizes recent progress in studies on the biochemical mechanism of actin filament severing by AIP1 and in vivo functions of AIP1 in model organisms and human diseases.
Collapse
|
37
|
Tango7 regulates cortical activity of caspases during reaper-triggered changes in tissue elasticity. Nat Commun 2017; 8:603. [PMID: 28928435 PMCID: PMC5605750 DOI: 10.1038/s41467-017-00693-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 07/20/2017] [Indexed: 11/08/2022] Open
Abstract
Caspases perform critical functions in both living and dying cells; however, how caspases perform physiological functions without killing the cell remains unclear. Here we identify a novel physiological function of caspases at the cortex of Drosophila salivary glands. In living glands, activation of the initiator caspase dronc triggers cortical F-actin dismantling, enabling the glands to stretch as they accumulate secreted products in the lumen. We demonstrate that tango7, not the canonical Apaf-1-adaptor dark, regulates dronc activity at the cortex; in contrast, dark is required for cytoplasmic activity of dronc during salivary gland death. Therefore, tango7 and dark define distinct subcellular domains of caspase activity. Furthermore, tango7-dependent cortical dronc activity is initiated by a sublethal pulse of the inhibitor of apoptosis protein (IAP) antagonist reaper. Our results support a model in which biological outcomes of caspase activation are regulated by differential amplification of IAP antagonists, unique caspase adaptor proteins, and mutually exclusive subcellular domains of caspase activity. Caspases are known for their role in cell death, but they can also participate in other physiological functions without killing the cells. Here the authors show that unique caspase adaptor proteins can regulate caspase activity within mutually-exclusive and independently regulated subcellular domains.
Collapse
|
38
|
Rathkey JK, Benson BL, Chirieleison SM, Yang J, Xiao TS, Dubyak GR, Huang AY, Abbott DW. Live-cell visualization of gasdermin D-driven pyroptotic cell death. J Biol Chem 2017; 292:14649-14658. [PMID: 28726636 DOI: 10.1074/jbc.m117.797217] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/15/2017] [Indexed: 12/19/2022] Open
Abstract
Pyroptosis is a form of cell death important in defenses against pathogens that can also result in a potent and sometimes pathological inflammatory response. During pyroptosis, GSDMD (gasdermin D), the pore-forming effector protein, is cleaved, forms oligomers, and inserts into the membranes of the cell, resulting in rapid cell death. However, the potent cell death induction caused by GSDMD has complicated our ability to understand the biology of this protein. Studies aimed at visualizing GSDMD have relied on expression of GSDMD fragments in epithelial cell lines that naturally lack GSDMD expression and also lack the proteases necessary to cleave GSDMD. In this work, we performed mutagenesis and molecular modeling to strategically place tags and fluorescent proteins within GSDMD that support native pyroptosis and facilitate live-cell imaging of pyroptotic cell death. Here, we demonstrate that these fusion proteins are cleaved by caspases-1 and -11 at Asp-276. Mutations that disrupted the predicted p30-p20 autoinhibitory interface resulted in GSDMD aggregation, supporting the oligomerizing activity of these mutations. Furthermore, we show that these novel GSDMD fusions execute inflammasome-dependent pyroptotic cell death in response to multiple stimuli and allow for visualization of the morphological changes associated with pyroptotic cell death in real time. This work therefore provides new tools that not only expand the molecular understanding of pyroptosis but also enable its direct visualization.
Collapse
Affiliation(s)
| | - Bryan L Benson
- From the Department of Pathology.,the Division of Pediatric Hematology-Oncology, Department of Pediatrics, and
| | | | - Jie Yang
- From the Department of Pathology.,the Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | | | - George R Dubyak
- the Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Alex Y Huang
- From the Department of Pathology.,the Division of Pediatric Hematology-Oncology, Department of Pediatrics, and
| | | |
Collapse
|
39
|
Caspase-dependent non-apoptotic processes in development. Cell Death Differ 2017; 24:1422-1430. [PMID: 28524858 PMCID: PMC5520453 DOI: 10.1038/cdd.2017.36] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 12/16/2022] Open
Abstract
Caspases are at the core of executing apoptosis by orchestrating cellular destruction with proteolytic cascades. Caspase-mediated proteolysis also controls diverse nonlethal cellular activities such as proliferation, differentiation, cell fate decision, and cytoskeletal reorganization. During the last decade or so, genetic studies of Drosophila have contributed to our understanding of the in vivo mechanism of the non-apoptotic cellular responses in developmental contexts. Furthermore, recent studies using C. elegans suggest that apoptotic signaling may play unexpected roles, which influence ageing and normal development at the organism level. In this review, we describe how the caspase activity is elaborately controlled during vital cellular processes at the level of subcellular localization, the duration and timing to avoid full apoptotic consequences, and also discuss the novel roles of non-apoptotic caspase signaling in adult homeostasis and physiology.
Collapse
|
40
|
Yuan J, Najafov A, Py BF. Roles of Caspases in Necrotic Cell Death. Cell 2017; 167:1693-1704. [PMID: 27984721 DOI: 10.1016/j.cell.2016.11.047] [Citation(s) in RCA: 206] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/13/2016] [Accepted: 11/23/2016] [Indexed: 12/15/2022]
Abstract
Caspases were originally identified as important mediators of inflammatory response and apoptosis. Recent discoveries, however, have unveiled their roles in mediating and suppressing two regulated forms of necrotic cell death, termed pyroptosis and necroptosis, respectively. These recent advances have significantly expanded our understanding of the roles of caspases in regulating development, adult homeostasis, and host defense response.
Collapse
Affiliation(s)
- Junying Yuan
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA; Ludwig Cancer Center, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA.
| | - Ayaz Najafov
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA; Ludwig Cancer Center, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| | - Bénédicte F Py
- CIRI, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, École Normale Supérieure de Lyon, Université de Lyon, 69007 Lyon, France
| |
Collapse
|
41
|
Crowley SM, Vallance BA, Knodler LA. Noncanonical inflammasomes: Antimicrobial defense that does not play by the rules. Cell Microbiol 2017; 19. [PMID: 28117938 DOI: 10.1111/cmi.12730] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 01/19/2017] [Accepted: 01/23/2017] [Indexed: 12/18/2022]
Abstract
Although much research has focused on defining the actions of caspase-1 containing canonical inflammasomes in promoting host defense, noncanonical inflammasomes have received comparatively little attention. Exciting new concepts have recently emerged detailing their atypical mechanism of activation, importance in defending against cytosolic Gram-negative pathogens, and role in innate immune defenses of nonmyeloid cells, which has revamped interest in the study of noncanonical inflammmasomes. Here, we will discuss these latest findings about caspase-4, -5, and -11 containing inflammasomes in the context of their role in pathogen elimination in mice and humans.
Collapse
Affiliation(s)
- Shauna M Crowley
- Division of Gastroenterology, Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Bruce A Vallance
- Division of Gastroenterology, Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Leigh A Knodler
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| |
Collapse
|
42
|
Standing ASI, Malinova D, Hong Y, Record J, Moulding D, Blundell MP, Nowak K, Jones H, Omoyinmi E, Gilmour KC, Medlar A, Stanescu H, Kleta R, Anderson G, Nanthapisal S, Gomes SM, Klein N, Eleftheriou D, Thrasher AJ, Brogan PA. Autoinflammatory periodic fever, immunodeficiency, and thrombocytopenia (PFIT) caused by mutation in actin-regulatory gene WDR1. THE JOURNAL OF EXPERIMENTAL MEDICINE 2017. [PMID: 27994071 DOI: 10.1084/jem.20161228)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The importance of actin dynamics in the activation of the inflammasome is becoming increasingly apparent. IL-1β, which is activated by the inflammasome, is known to be central to the pathogenesis of many monogenic autoinflammatory diseases. However, evidence from an autoinflammatory murine model indicates that IL-18, the other cytokine triggered by inflammasome activity, is important in its own right. In this model, autoinflammation was caused by mutation in the actin regulatory gene WDR1 We report a homozygous missense mutation in WDR1 in two siblings causing periodic fevers with immunodeficiency and thrombocytopenia. We found impaired actin dynamics in patient immune cells. Patients had high serum levels of IL-18, without a corresponding increase in IL-18-binding protein or IL-1β, and their cells also secreted more IL-18 but not IL-1β in culture. We found increased caspase-1 cleavage within patient monocytes indicative of increased inflammasome activity. We transfected HEK293T cells with pyrin and wild-type and mutated WDR1 Mutant protein formed aggregates that appeared to accumulate pyrin; this could potentially precipitate inflammasome assembly. We have extended the findings from the mouse model to highlight the importance of WDR1 and actin regulation in the activation of the inflammasome, and in human autoinflammation.
Collapse
Affiliation(s)
- Ariane S I Standing
- University College London Institute of Child Health, London WC1E 6BT, England, UK .,Institute of Biomedical and Environmental Science and Technology, University of Bedfordshire, Luton LU2 8DL, England, UK
| | - Dessislava Malinova
- University College London Institute of Child Health, London WC1E 6BT, England, UK
| | - Ying Hong
- University College London Institute of Child Health, London WC1E 6BT, England, UK
| | - Julien Record
- University College London Institute of Child Health, London WC1E 6BT, England, UK
| | - Dale Moulding
- University College London Institute of Child Health, London WC1E 6BT, England, UK
| | - Michael P Blundell
- University College London Institute of Child Health, London WC1E 6BT, England, UK
| | - Karolin Nowak
- University College London Institute of Child Health, London WC1E 6BT, England, UK
| | - Hannah Jones
- University College London Institute of Child Health, London WC1E 6BT, England, UK
| | - Ebun Omoyinmi
- University College London Institute of Child Health, London WC1E 6BT, England, UK
| | - Kimberly C Gilmour
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, England, UK
| | - Alan Medlar
- University College London Division of Medicine, London WC1E 6BT, England, UK
| | - Horia Stanescu
- University College London Division of Medicine, London WC1E 6BT, England, UK
| | - Robert Kleta
- University College London Institute of Child Health, London WC1E 6BT, England, UK.,University College London Division of Medicine, London WC1E 6BT, England, UK.,Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, England, UK
| | - Glenn Anderson
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, England, UK
| | - Sira Nanthapisal
- University College London Institute of Child Health, London WC1E 6BT, England, UK
| | - Sonia Melo Gomes
- University College London Institute of Child Health, London WC1E 6BT, England, UK
| | - Nigel Klein
- University College London Institute of Child Health, London WC1E 6BT, England, UK
| | - Despina Eleftheriou
- University College London Institute of Child Health, London WC1E 6BT, England, UK
| | - Adrian J Thrasher
- University College London Institute of Child Health, London WC1E 6BT, England, UK
| | - Paul A Brogan
- University College London Institute of Child Health, London WC1E 6BT, England, UK
| |
Collapse
|
43
|
Standing ASI, Malinova D, Hong Y, Record J, Moulding D, Blundell MP, Nowak K, Jones H, Omoyinmi E, Gilmour KC, Medlar A, Stanescu H, Kleta R, Anderson G, Nanthapisal S, Gomes SM, Klein N, Eleftheriou D, Thrasher AJ, Brogan PA. Autoinflammatory periodic fever, immunodeficiency, and thrombocytopenia (PFIT) caused by mutation in actin-regulatory gene WDR1. J Exp Med 2016; 214:59-71. [PMID: 27994071 PMCID: PMC5206503 DOI: 10.1084/jem.20161228] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/11/2016] [Accepted: 11/29/2016] [Indexed: 11/04/2022] Open
Abstract
The importance of actin dynamics in the activation of the inflammasome is becoming increasingly apparent. IL-1β, which is activated by the inflammasome, is known to be central to the pathogenesis of many monogenic autoinflammatory diseases. However, evidence from an autoinflammatory murine model indicates that IL-18, the other cytokine triggered by inflammasome activity, is important in its own right. In this model, autoinflammation was caused by mutation in the actin regulatory gene WDR1 We report a homozygous missense mutation in WDR1 in two siblings causing periodic fevers with immunodeficiency and thrombocytopenia. We found impaired actin dynamics in patient immune cells. Patients had high serum levels of IL-18, without a corresponding increase in IL-18-binding protein or IL-1β, and their cells also secreted more IL-18 but not IL-1β in culture. We found increased caspase-1 cleavage within patient monocytes indicative of increased inflammasome activity. We transfected HEK293T cells with pyrin and wild-type and mutated WDR1 Mutant protein formed aggregates that appeared to accumulate pyrin; this could potentially precipitate inflammasome assembly. We have extended the findings from the mouse model to highlight the importance of WDR1 and actin regulation in the activation of the inflammasome, and in human autoinflammation.
Collapse
Affiliation(s)
- Ariane S I Standing
- University College London Institute of Child Health, London WC1E 6BT, England, UK .,Institute of Biomedical and Environmental Science and Technology, University of Bedfordshire, Luton LU2 8DL, England, UK
| | - Dessislava Malinova
- University College London Institute of Child Health, London WC1E 6BT, England, UK
| | - Ying Hong
- University College London Institute of Child Health, London WC1E 6BT, England, UK
| | - Julien Record
- University College London Institute of Child Health, London WC1E 6BT, England, UK
| | - Dale Moulding
- University College London Institute of Child Health, London WC1E 6BT, England, UK
| | - Michael P Blundell
- University College London Institute of Child Health, London WC1E 6BT, England, UK
| | - Karolin Nowak
- University College London Institute of Child Health, London WC1E 6BT, England, UK
| | - Hannah Jones
- University College London Institute of Child Health, London WC1E 6BT, England, UK
| | - Ebun Omoyinmi
- University College London Institute of Child Health, London WC1E 6BT, England, UK
| | - Kimberly C Gilmour
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, England, UK
| | - Alan Medlar
- University College London Division of Medicine, London WC1E 6BT, England, UK
| | - Horia Stanescu
- University College London Division of Medicine, London WC1E 6BT, England, UK
| | - Robert Kleta
- University College London Institute of Child Health, London WC1E 6BT, England, UK.,University College London Division of Medicine, London WC1E 6BT, England, UK.,Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, England, UK
| | - Glenn Anderson
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, England, UK
| | - Sira Nanthapisal
- University College London Institute of Child Health, London WC1E 6BT, England, UK
| | - Sonia Melo Gomes
- University College London Institute of Child Health, London WC1E 6BT, England, UK
| | - Nigel Klein
- University College London Institute of Child Health, London WC1E 6BT, England, UK
| | - Despina Eleftheriou
- University College London Institute of Child Health, London WC1E 6BT, England, UK
| | - Adrian J Thrasher
- University College London Institute of Child Health, London WC1E 6BT, England, UK
| | - Paul A Brogan
- University College London Institute of Child Health, London WC1E 6BT, England, UK
| |
Collapse
|
44
|
Marneros AG. Increased VEGF-A promotes multiple distinct aging diseases of the eye through shared pathomechanisms. EMBO Mol Med 2016; 8:208-31. [PMID: 26912740 PMCID: PMC4772957 DOI: 10.15252/emmm.201505613] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
While increased VEGF‐A has been associated with neovascular age‐related macular degeneration (AMD), it is not known whether VEGF‐A may also promote other age‐related eye diseases. Here, we show that an increase in VEGF‐A is sufficient to cause multiple distinct common aging diseases of the eye, including cataracts and both neovascular and non‐exudative AMD‐like pathologies. In the lens, increased VEGF‐A induces age‐related opacifications that are associated with ERK hyperactivation, increased oxidative damage, and higher expression of the NLRP3 inflammasome effector cytokine IL‐1β. Similarly, increased VEGF‐A induces oxidative stress and IL‐1β expression also in the retinal pigment epithelium (RPE). Targeting NLRP3 inflammasome components or Il1r1 strongly inhibited not only VEGF‐A‐induced cataract formation, but also both neovascular and non‐exudative AMD‐like pathologies. Moreover, increased VEGF‐A expression specifically in the RPE was sufficient to cause choroidal neovascularization (CNV) as in neovascular AMD, which could be inhibited by RPE‐specific inactivation of Flk1, while Tlr2 inactivation strongly reduced CNV. These findings suggest a shared pathogenic role of VEGF‐A‐induced and NLRP3 inflammasome‐mediated IL‐1β activation for multiple distinct ocular aging diseases.
Collapse
Affiliation(s)
- Alexander G Marneros
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, MA, USA Department of Dermatology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
45
|
Growth inhibition of cytosolic Salmonella by caspase-1 and caspase-11 precedes host cell death. Nat Commun 2016; 7:13292. [PMID: 27808091 PMCID: PMC5097160 DOI: 10.1038/ncomms13292] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 09/19/2016] [Indexed: 02/07/2023] Open
Abstract
Sensing bacterial products in the cytosol of mammalian cells by NOD-like receptors leads to the activation of caspase-1 inflammasomes, and the production of the pro-inflammatory cytokines interleukin (IL)-18 and IL-1β. In addition, mouse caspase-11 (represented in humans by its orthologs, caspase-4 and caspase-5) detects cytosolic bacterial LPS directly. Activation of caspase-1 and caspase-11 initiates pyroptotic host cell death that releases potentially harmful bacteria from the nutrient-rich host cell cytosol into the extracellular environment. Here we use single cell analysis and time-lapse microscopy to identify a subpopulation of host cells, in which growth of cytosolic Salmonella Typhimurium is inhibited independently or prior to the onset of cell death. The enzymatic activities of caspase-1 and caspase-11 are required for growth inhibition in different cell types. Our results reveal that these proteases have important functions beyond the direct induction of pyroptosis and proinflammatory cytokine secretion in the control of growth and elimination of cytosolic bacteria. Inflammatory caspases restrict microbial growth by inducing cytokine production and pyroptosis, but other caspase-induced mechanisms are thought to contribute. Here the authors use time-lapse microscopy of single cells to show that caspase1/11 has anti-Salmonella functions that occur in advance of cell death induction.
Collapse
|
46
|
Kajiwara Y, McKenzie A, Dorr N, Gama Sosa MA, Elder G, Schmeidler J, Dickstein DL, Bozdagi O, Zhang B, Buxbaum JD. The human-specific CASP4 gene product contributes to Alzheimer-related synaptic and behavioural deficits. Hum Mol Genet 2016; 25:4315-4327. [PMID: 27516385 DOI: 10.1093/hmg/ddw265] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 06/09/2016] [Accepted: 07/28/2016] [Indexed: 12/13/2022] Open
Abstract
Recent studies have indicated that innate immune signalling molecules are involved in late-onset Alzheimer's disease (LOAD) risk. Amyloid beta (Aβ) accumulates in AD brain, and has been proposed to act as a trigger of innate immune responses. Caspase-4 is an important part of the innate immune response. We recently characterized transgenic mice carrying human CASP4, and observed that the mice manifested profound innate immune responses to lipopolysaccharide (LPS). Since these inflammatory processes are important in the aetiology of AD, we have now analysed the correlation of expression of caspase-4 in human brain with AD risk genes, and studied caspase-4 effects on AD-related phenotypes in APPswe/PS1deltaE9 (APP/PS1) mice. We observed that the expression of caspase-4 was strongly correlated with AD risk genes including TYROBP, TREM2, CR1, PSEN1, MS4A4A and MS4A6A in LOAD brains. Caspase-4 expression was upregulated in CASP4/APP/PS1 mice in a region-specific manner, including hippocampus and prefrontal cortex. In APP/PS1 mice, caspase-4 expression led to impairments in the reversal phase of a Barnes maze task and in hippocampal synaptic plasticity, without affecting soluble or aggregated Aβ levels. Caspase-4 was expressed predominantly in microglial cells, and in the presence of CASP4, more microglia were clustered around amyloid plaques. Furthermore, our data indicated that caspase-4 modulates microglial cells in a manner that increases proinflammatory processes. We propose that microglial caspase-4 expression contributes to the cognitive impairments in AD, and that further study of caspase-4 will enhance our understanding of AD pathogenesis and may lead to novel therapeutic targets in AD.
Collapse
Affiliation(s)
| | - Andrew McKenzie
- Department of Genetics and Genomic Sciences.,Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, USA
| | | | | | - Gregory Elder
- Department of Psychiatry.,Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, USA.,Department of Neurology
| | | | - Dara L Dickstein
- Department of Neuroscience.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Bin Zhang
- Department of Genetics and Genomic Sciences.,Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Joseph D Buxbaum
- Department of Psychiatry .,Department of Genetics and Genomic Sciences.,Department of Neuroscience.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
47
|
Lee JH, Kim JE, Kim BG, Han HH, Kang S, Cho NH. STAT3-induced WDR1 overexpression promotes breast cancer cell migration. Cell Signal 2016; 28:1753-60. [PMID: 27521604 DOI: 10.1016/j.cellsig.2016.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/05/2016] [Accepted: 08/09/2016] [Indexed: 01/05/2023]
Abstract
WD repeat domain 1 (WDR1), a protein that assists cofilin-mediated actin filament disassembly, is overexpressed in the invading front of invasive ductal carcinoma (IDC), but its implication of overexpression and how to be regulated have not been studied. In our study, we demonstrated that STAT3 bound to the 5' upstream sequence (-1971 to -1964), a putative promoter region, of WDR1 gene, and its activation induced WDR1 overexpression in breast cancer cells. The exogenous overexpression of WDR1 increased the migration of MDA-MB-231, which was attenuated by WDR1 knockdown. In the analysis of breast cancer patients, WDR1 overexpression was associated with a shorter distant metastasis-free survival (DMFS), more specifically in basal-like tumors.
Collapse
Affiliation(s)
- Joo Hyun Lee
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Republic of Korea; Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji Eun Kim
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Republic of Korea; Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Baek Gil Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyun Ho Han
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Republic of Korea; Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Suki Kang
- The Severance Biomedical Science Institute, Seoul, Republic of Korea
| | - Nam Hoon Cho
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Republic of Korea; Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea; The Severance Biomedical Science Institute, Seoul, Republic of Korea.
| |
Collapse
|
48
|
Cell-cycle involvement in autophagy and apoptosis in yeast. Mech Ageing Dev 2016; 161:211-224. [PMID: 27450768 DOI: 10.1016/j.mad.2016.07.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/16/2016] [Accepted: 07/17/2016] [Indexed: 12/14/2022]
Abstract
Regulation of the cell cycle and apoptosis are two eukaryotic processes required to ensure maintenance of genomic integrity, especially in response to DNA damage. The ease with which yeast, amongst other eukaryotes, can switch from cellular proliferation to cell death may be the result of a common set of biochemical factors which play dual roles depending on the cell's physiological state. A wide variety of homologues are shared between different yeasts and metazoans and this conservation confirms their importance. This review gives an overview of key molecular players involved in yeast cell-cycle regulation, and those involved in mechanisms which are induced by cell-cycle dysregulation. One such mechanism is autophagy which, depending on the severity and type of DNA damage, may either contribute to the cell's survival or death. Cell-cycle dysregulation due to checkpoint deficiency leads to mitotic catastrophe which in turn leads to programmed cell death. Molecular players implicated in the yeast apoptotic pathway were shown to play important roles in the cell cycle. These include the metacaspase Yca1p, the caspase-like protein Esp1p, the cohesin subunit Mcd1p, as well as the inhibitor of apoptosis protein Bir1p. The roles of these molecular players are discussed.
Collapse
|
49
|
Krause K, Amer AO. Caspase Exploitation by Legionella pneumophila. Front Microbiol 2016; 7:515. [PMID: 27148204 PMCID: PMC4829591 DOI: 10.3389/fmicb.2016.00515] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/29/2016] [Indexed: 12/21/2022] Open
Abstract
Legionella pneumophila remains a major health concern, especially for hospitalized patients. L. pneumophila in the environment can survive extracellular or as protozoan parasite within amoeba. After human infection it efficiently replicates in alveolar macrophages without activating inflammasome assembly and cleavage of caspase-1. In contrast murine macrophages actively recognize intracellular L. pneumophila via inflammasome components which initiate pro-inflammatory cytokine secretion, phagosomal maturation and pyroptotic cell death thereby leading to bacterial restriction. During this process flagellin-dependent and -independent signaling pathways trigger the canonical as well as the non-canonical inflammasome. This review describes the current knowledge about L. pneumophila-induced inflammasome pathways in permissive and restrictive host cells.
Collapse
Affiliation(s)
- Kathrin Krause
- Department of Microbial Infection and Immunity, The Ohio State University Columbus, OH, USA
| | - Amal O Amer
- Department of Microbial Infection and Immunity, The Ohio State University Columbus, OH, USA
| |
Collapse
|
50
|
The Roles of RNase-L in Antimicrobial Immunity and the Cytoskeleton-Associated Innate Response. Int J Mol Sci 2016; 17:ijms17010074. [PMID: 26760998 PMCID: PMC4730318 DOI: 10.3390/ijms17010074] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/21/2015] [Accepted: 01/04/2016] [Indexed: 12/26/2022] Open
Abstract
The interferon (IFN)-regulated endoribonuclease RNase-L is involved in multiple aspects of the antimicrobial innate immune response. It is the terminal component of an RNA cleavage pathway in which dsRNA induces the production of RNase-L-activating 2-5A by the 2′-5′-oligoadenylate synthetase. The active nuclease then cleaves ssRNAs, both cellular and viral, leading to downregulation of their expression and the generation of small RNAs capable of activating retinoic acid-inducible gene-I (RIG-I)-like receptors or the nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) inflammasome. This leads to IFNβ expression and IL-1β activation respectively, in addition to broader effects on immune cell function. RNase-L is also one of a growing number of innate immune components that interact with the cell cytoskeleton. It can bind to several cytoskeletal proteins, including filamin A, an actin-binding protein that collaborates with RNase-L to maintain the cellular barrier to viral entry. This antiviral activity is independent of catalytic function, a unique mechanism for RNase-L. We also describe here the interaction of RNase-L with the E3 ubiquitin ligase and scaffolding protein, ligand of nump protein X (LNX), a regulator of tight junction proteins. In order to better understand the significance and context of these novel binding partners in the antimicrobial response, other innate immune protein interactions with the cytoskeleton are also discussed.
Collapse
|