1
|
Li X, Li C, Qu G, Yuan B, Sun Z. Engineering of a Baeyer-Villiger monooxygenase to Improve Substrate Scope, Stereoselectivity and Regioselectivity. Chembiochem 2024; 25:e202400328. [PMID: 38742991 DOI: 10.1002/cbic.202400328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
Baeyer-Villiger monooxygenases belong to a family of flavin-binding proteins that catalyze the Baeyer-Villiger (BV) oxidation of ketones to produce lactones or esters, which are important intermediates in pharmaceuticals or sustainable materials. Phenylacetone monooxygenase (PAMO) from Thermobifida fusca with moderate thermostability catalyzes the oxidation of aryl ketone substrates, but is limited by high specificity and narrow substrate scope. In the present study, we applied loop optimization by loop swapping followed by focused saturation mutagenesis in order to evolve PAMO mutants capable of catalyzing the regioselective BV oxidation of cyclohexanone and cyclobutanone derivatives with formation of either normal or abnormal esters or lactones. We further modulated PAMO to increase enantioselectivity. Crystal structure studies indicate that rotation occurs in the NADP-binding domain and that the high B-factor region is predominantly distributed in the catalytic pocket residues. Computational analyses further revealed dynamic character in the catalytic pocket and reshaped hydrogen bond interaction networks, which is more favorable for substrate binding. Our study provides useful insights for studying enzyme-substrate adaptations.
Collapse
Affiliation(s)
- Xu Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, PR China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, PR China
| | - Congcong Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, PR China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, PR China
| | - Ge Qu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, PR China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, PR China
| | - Bo Yuan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, PR China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, PR China
| | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, PR China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, PR China
| |
Collapse
|
2
|
Quiles KR, Shao FZ, Johnson WE, Chen F. EPITHELIAL REMODELING AND MICROBIAL DYSBIOSIS IN THE LOWER RESPIRATORY TRACT OF VITAMIN A-DEFICIENT MOUSE LUNGS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.600110. [PMID: 38948802 PMCID: PMC11212965 DOI: 10.1101/2024.06.21.600110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The World Health Organization identified vitamin A deficiency (VAD) as a major public health issue in low-income communities and developing countries, while additional studies have shown dietary VAD leads to various lung pathologies. Once believed to be sterile, research now shows that transient microbial communities exist within healthy lungs and are often dysregulated in patients suffering from malnourishment, respiratory infections, and disease. The inability to parse vitamin A-mediated mechanisms from other metabolic mechanisms in humans with pathogenic endotypes, as well as the lack of data investigating how VAD affects the lung microbiome, remains a significant gap in the field. To address this unmet need, we compared molecular, metatranscriptomic, and morphometric data to identify how dietary VAD affects the lung as well as the lung microbiome. Our research shows structural and functional alterations in host-microbe-diet interactions in VAD lungs compared to vitamin A-sufficient (VAS) lungs; these changes are associated with epithelial remodeling, a breakdown in mucociliary clearance, microbial imbalance, and altered microbial colonization patterns after 8 weeks of vitamin A deficient diet. These findings confirm vitamin A is critical for lung homeostasis and provide mechanistic insights that could be valuable for the prevention of respiratory infections and disease.
Collapse
Affiliation(s)
- Kiloni. R. Quiles
- Boston University Pulmonary Allergy, Sleep, and Critical Care Center
| | - Feng-Zhi Shao
- Boston University Pulmonary Allergy, Sleep, and Critical Care Center
| | - W. Evan Johnson
- Rutgers University, New Jersey Medical School, Division of Infectious Disease, Department of Medicine
- Rutgers University, New Jersey Medical School, Center for Data Science
| | - Felicia Chen
- Boston University Pulmonary Allergy, Sleep, and Critical Care Center
| |
Collapse
|
3
|
Wang C, Zhao Z, Zhao Y, Zhao J, Xia L, Xia Q. Macroscopic inhibition of DNA damage repair pathways by targeting AP-2α with LEI110 eradicates hepatocellular carcinoma. Commun Biol 2024; 7:342. [PMID: 38503825 PMCID: PMC10951303 DOI: 10.1038/s42003-024-05939-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/19/2024] [Indexed: 03/21/2024] Open
Abstract
DNA damage repair (DDR) genes are known to be closely associated with the progression of Hepatocellular carcinoma (HCC). Here we report a unique cluster of "deletion-up" genes in HCC, which are accordantly overexpressed in HCC patients and predict the unfavorable prognosis. Binding motif analysis and further validation with ChIP-qPCR unveil that the AP-2α directly modulate the transcription of critical DNA repair genes including TOP2A, NUDT1, POLD1, and PARP1, which facilitates the sanitation of oxidized DNA lesions. Structural analysis and the following validation identify LEI110 as a potent AP-2α inhibitor. Together, we demonstrate that LEI110 stabilizes AP-2α and sensitizes HCC cells toward DNA-damaging reagents. Altogether, we identify AP-2α as a crucial transcription modulator in HCC and propose small-molecule inhibitors targeting AP-2α are a promising novel class of anticancer agents. Our study provides insights into the concept of macroscopic inhibition of DNA damage repair-related genes in cancer treatment.
Collapse
Affiliation(s)
- Chenchen Wang
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China.
- Shanghai Institute of Transplantation, Shanghai, China.
| | - Zhenjun Zhao
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - Yudong Zhao
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - Jie Zhao
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - Lei Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| |
Collapse
|
4
|
Shi E, Nie M, Wang X, Jing H, Feng L, Xu Y, Zhang Z, Zhang G, Li D, Dai Z. Polysaccharides affect the utilization of β-carotene through gut microbiota investigated by in vitro and in vivo experiments. Food Res Int 2023; 174:113592. [PMID: 37986456 DOI: 10.1016/j.foodres.2023.113592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 11/22/2023]
Abstract
This study aimed to evaluate the effects of six polysaccharides on the utilization of β-carotene from the perspective of gut microbiota using both in vitro simulated anaerobic fermentation systems and in vivo animal experiments. In the in vitro experiments, the addition of arabinoxylan, arabinogalactan, mannan, inulin, chitosan, and glucan led to a 31.07-79.12% decrease in β-carotene retention and a significant increase in retinol content (0.21-0.99-fold) compared to β-carotene alone. Among them, the addition of chitosan produced the highest level of retinol. In the in vivo experiments, mice treated with the six polysaccharides exhibited a significant increase (2.51-5.78-fold) in serum β-carotene content compared to the group treated with β-carotene alone. The accumulation of retinoids in the serum, liver, and small intestine increased by 13.56-21.61%, 12.64-56.27%, and 7.9%-71.69%, respectively. The expression of β-carotene cleavage enzymes was increased in the liver. Genetic analysis of small intestinal tissue revealed no significant enhancement in the expression of genes related to β-carotene metabolism. In the gut microbiota environment, the addition of polysaccharides generated more SCFAs and altered the structure and composition of the gut microbiota. The correlation analysis revealed a strong association between gut microbes (Ruminococcaceae and Odoribacteraceae) and β-carotene metabolism and absorption. Collectively, our findings suggest that the addition of polysaccharides may improve β-carotene utilization by modulating the gut microbiota.
Collapse
Affiliation(s)
- Enjuan Shi
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Meimei Nie
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiaoqin Wang
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Huili Jing
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lei Feng
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yayuan Xu
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhongyuan Zhang
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Guodong Zhang
- Jiangsu Aland Nutrition Co., Ltd., Taizhou 214500, China
| | - Dajing Li
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhuqing Dai
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
5
|
Ozhelvaci F, Steczkiewicz K. Identification and Classification of Papain-like Cysteine Proteinases. J Biol Chem 2023:104801. [PMID: 37164157 DOI: 10.1016/j.jbc.2023.104801] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/11/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023] Open
Abstract
Papain-like cysteine peptidases form a big and highly diverse superfamily of proteins involved in many important biological functions, such as protein turnover, deubiquitination, tissue remodeling, blood clotting, virulence, defense, and cell wall remodeling. High sequence and structure diversity observed within these proteins hinders their comprehensive classification as well as the identification of new representatives. Moreover, in general protein databases, many families already classified as papain-like lack details regarding their mechanism of action or biological function. Here, we use transitive remote homology searches and 3D modeling to newly classify 21 families to the papain-like cysteine peptidase superfamily. We attempt to predict their biological function, and provide structural chacterization of 89 protein clusters defined based on sequence similarity altogether spanning 106 papain-like families. Moreover, we systematically discuss observed diversity in sequences, structures, and catalytic sites. Eventually, we expand the list of human papain-related proteins by seven representatives, including dopamine receptor-interacting protein (DRIP1) as potential deubiquitinase, and centriole duplication regulating CEP76 as retaining catalytically active peptidase-like domain. The presented results not only provide structure-based rationales to already existing peptidase databases but also may inspire further experimental research focused on peptidase-related biological processes.
Collapse
Affiliation(s)
- Fatih Ozhelvaci
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Kamil Steczkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
6
|
Zhao JY, Yuan XK, Luo RZ, Wang LX, Gu W, Yamane D, Feng H. Phospholipase A and acyltransferase 4/retinoic acid receptor responder 3 at the intersection of tumor suppression and pathogen restriction. Front Immunol 2023; 14:1107239. [PMID: 37063830 PMCID: PMC10102619 DOI: 10.3389/fimmu.2023.1107239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
Phospholipase A and acyltransferase (PLAAT) 4 is a class II tumor suppressor with phospholipid metabolizing abilities. It was characterized in late 2000s, and has since been referred to as 'tazarotene-induced gene 3' (TIG3) or 'retinoic acid receptor responder 3' (RARRES3) as a key downstream effector of retinoic acid signaling. Two decades of research have revealed the complexity of its function and regulatory roles in suppressing tumorigenesis. However, more recent findings have also identified PLAAT4 as a key anti-microbial effector enzyme acting downstream of interferon regulatory factor 1 (IRF1) and interferons (IFNs), favoring protection from virus and parasite infections. Unveiling the molecular mechanisms underlying its action may thus open new therapeutic avenues for the treatment of both cancer and infectious diseases. Herein, we aim to summarize a brief history of PLAAT4 discovery, its transcriptional regulation, and the potential mechanisms in tumor prevention and anti-pathogen defense, and discuss potential future directions of PLAAT4 research toward the development of therapeutic approaches targeting this enzyme with pleiotropic functions.
Collapse
Affiliation(s)
- Jian-Yong Zhao
- Hospital of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Cangzhou, Hebei, China
| | - Xiang-Kun Yuan
- Hospital of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Cangzhou, Hebei, China
| | - Rui-Zhen Luo
- Hospital of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Cangzhou, Hebei, China
| | - Li-Xin Wang
- Hospital of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Cangzhou, Hebei, China
| | - Wei Gu
- School of Medicine, Chongqing University, Chongqing, China
| | - Daisuke Yamane
- Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Hui Feng
- School of Medicine, Chongqing University, Chongqing, China
| |
Collapse
|
7
|
The phospholipase A 2 superfamily as a central hub of bioactive lipids and beyond. Pharmacol Ther 2023; 244:108382. [PMID: 36918102 DOI: 10.1016/j.pharmthera.2023.108382] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
In essence, "phospholipase A2" (PLA2) means a group of enzymes that release fatty acids and lysophospholipids by hydrolyzing the sn-2 position of glycerophospholipids. To date, more than 50 enzymes possessing PLA2 or related lipid-metabolizing activities have been identified in mammals, and these are subdivided into several families in terms of their structures, catalytic mechanisms, tissue/cellular localizations, and evolutionary relationships. From a general viewpoint, the PLA2 superfamily has mainly been implicated in signal transduction, driving the production of a wide variety of bioactive lipid mediators. However, a growing body of evidence indicates that PLA2s also contribute to phospholipid remodeling or recycling for membrane homeostasis, fatty acid β-oxidation for energy production, and barrier lipid formation on the body surface. Accordingly, PLA2 enzymes are considered one of the key regulators of a broad range of lipid metabolism, and perturbation of specific PLA2-driven lipid pathways often disrupts tissue and cellular homeostasis and may be associated with a variety of diseases. This review covers current understanding of the physiological functions of the PLA2 superfamily, focusing particularly on the two major intracellular PLA2 families (Ca2+-dependent cytosolic PLA2s and Ca2+-independent patatin-like PLA2s) as well as other PLA2 families, based on studies using gene-manipulated mice and human diseases in combination with comprehensive lipidomics.
Collapse
|
8
|
Palczewska G, Wojtkowski M, Palczewski K. From mouse to human: Accessing the biochemistry of vision in vivo by two-photon excitation. Prog Retin Eye Res 2023; 93:101170. [PMID: 36787681 PMCID: PMC10463242 DOI: 10.1016/j.preteyeres.2023.101170] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/13/2023]
Abstract
The eye is an ideal organ for imaging by a multi-photon excitation approach, because ocular tissues such as the sclera, cornea, lens and neurosensory retina, are highly transparent to infrared (IR) light. The interface between the retina and the retinal pigment epithelium (RPE) is especially informative, because it reflects the health of the visual (retinoid) cycle and its changes in response to external stress, genetic manipulations, and drug treatments. Vitamin A-derived retinoids, like retinyl esters, are natural fluorophores that respond to multi-photon excitation with near IR light, bypassing the filter-like properties of the cornea, lens, and macular pigments. Also, during natural aging some retinoids form bisretinoids, like diretinoid-pyridiniumethanolamine (A2E), that are highly fluorescent. These bisretinoids appear to be elevated concurrently with aging. Vitamin A-derived retinoids and bisretinoidss are detected by two-photon ophthalmoscopy (2PO), using a new class of light sources with adjustable spatial, temporal, and spectral properties. Furthermore, the two-photon (2P) absorption of IR light by the visual pigments in rod and cone photoreceptors can initiate visual transduction by cis-trans isomerization of retinal, enabling parallel functional studies. Recently we overcame concerns about safety, data interpretation and complexity of the 2P-based instrumentation, the major roadblocks toward advancing this modality to the clinic. These imaging and retina-function assessment advancements have enabled us to conduct the first 2P studies with humans.
Collapse
Affiliation(s)
- Grazyna Palczewska
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA; International Center for Translational Eye Research, Polish Academy of Sciences, Warsaw, Poland; Polgenix, Inc., Department of Medical Devices, Cleveland, OH, USA; Department of Physical Chemistry of Biological Systems, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland.
| | - Maciej Wojtkowski
- International Center for Translational Eye Research, Polish Academy of Sciences, Warsaw, Poland; Department of Physical Chemistry of Biological Systems, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland; Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Torun, Poland.
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA; Department of Physiology & Biophysics, School of Medicine, And Chemistry, Molecular Biology and Biochemistry, University of California, Irvine, CA, USA.
| |
Collapse
|
9
|
Uppal S, Poliakov E, Gentleman S, Redmond TM. The Amphipathic Helix in Visual Cycle Proteins: A Review. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1415:533-537. [PMID: 37440083 PMCID: PMC11299856 DOI: 10.1007/978-3-031-27681-1_78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
The visual cycle is a complex biological process that involves the sequential action of proteins in the retinal pigment epithelial (RPE) cells and photoreceptors to modify and shuttle visual retinoids. A majority of the visual cycle proteins are membrane proteins, either integral or peripheral membrane proteins. Despite significant progress in understanding their physiological function, very limited structural information is available for the visual cycle proteins. Moreover, the mechanism of membrane interaction is not yet clear in all cases. Here, we demonstrate the presence of an amphipathic helix in selected RPE visual cycle proteins, using in silico tools, and highlight their role in membrane association and function.
Collapse
Affiliation(s)
- Sheetal Uppal
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Eugenia Poliakov
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Susan Gentleman
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - T Michael Redmond
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
10
|
Defunctionalizing intracellular organelles such as mitochondria and peroxisomes with engineered phospholipase A/acyltransferases. Nat Commun 2022; 13:4413. [PMID: 35906209 PMCID: PMC9338259 DOI: 10.1038/s41467-022-31946-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 07/11/2022] [Indexed: 11/08/2022] Open
Abstract
Organelles vitally achieve multifaceted functions to maintain cellular homeostasis. Genetic and pharmacological approaches to manipulate individual organelles are powerful in probing their physiological roles. However, many of them are either slow in action, limited to certain organelles, or rely on toxic agents. Here, we design a generalizable molecular tool utilizing phospholipase A/acyltransferases (PLAATs) for rapid defunctionalization of organelles via remodeling of the membrane phospholipids. In particular, we identify catalytically active PLAAT truncates with minimal unfavorable characteristics. Chemically-induced translocation of the optimized PLAAT to the mitochondria surface results in their rapid deformation in a phospholipase activity dependent manner, followed by loss of luminal proteins as well as dissipated membrane potential, thus invalidating the functionality. To demonstrate wide applicability, we then adapt the molecular tool in peroxisomes, and observe leakage of matrix-resident functional proteins. The technique is compatible with optogenetic control, viral delivery and operation in primary neuronal cultures. Due to such versatility, the PLAAT strategy should prove useful in studying organelle biology of diverse contexts.
Collapse
|
11
|
Lewandowski D, Sander CL, Tworak A, Gao F, Xu Q, Skowronska-Krawczyk D. Dynamic lipid turnover in photoreceptors and retinal pigment epithelium throughout life. Prog Retin Eye Res 2022; 89:101037. [PMID: 34971765 PMCID: PMC10361839 DOI: 10.1016/j.preteyeres.2021.101037] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022]
Abstract
The retinal pigment epithelium-photoreceptor interphase is renewed each day in a stunning display of cellular interdependence. While photoreceptors use photosensitive pigments to convert light into electrical signals, the RPE supports photoreceptors in their function by phagocytizing shed photoreceptor tips, regulating the blood retina barrier, and modulating inflammatory responses, as well as regenerating the 11-cis-retinal chromophore via the classical visual cycle. These processes involve multiple protein complexes, tightly regulated ligand-receptors interactions, and a plethora of lipids and protein-lipids interactions. The role of lipids in maintaining a healthy interplay between the RPE and photoreceptors has not been fully delineated. In recent years, novel technologies have resulted in major advancements in understanding several facets of this interplay, including the involvement of lipids in phagocytosis and phagolysosome function, nutrient recycling, and the metabolic dependence between the two cell types. In this review, we aim to integrate the complex role of lipids in photoreceptor and RPE function, emphasizing the dynamic exchange between the cells as well as discuss how these processes are affected in aging and retinal diseases.
Collapse
Affiliation(s)
- Dominik Lewandowski
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Christopher L Sander
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA; Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Aleksander Tworak
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Fangyuan Gao
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Qianlan Xu
- Department of Physiology and Biophysics, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Dorota Skowronska-Krawczyk
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA; Department of Physiology and Biophysics, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA.
| |
Collapse
|
12
|
Widjaja-Adhi MAK, Kolesnikov AV, Vasudevan S, Park PSH, Kefalov VJ, Golczak M. Acyl-CoA:wax alcohol acyltransferase 2 modulates the cone visual cycle in mouse retina. FASEB J 2022; 36:e22390. [PMID: 35665537 DOI: 10.1096/fj.202101855rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 11/11/2022]
Abstract
The daylight and color vision of diurnal vertebrates depends on cone photoreceptors. The capability of cones to operate and respond to changes in light brightness even under high illumination is attributed to their fast rate of recovery to the ground photosensitive state. This process requires the rapid replenishing of photoisomerized visual chromophore (11-cis-retinal) to regenerate cone visual pigments. Recently, several gene candidates have been proposed to contribute to the cone-specific retinoid metabolism, including acyl-CoA wax alcohol acyltransferase 2 (AWAT2, aka MFAT). Here, we evaluated the role of AWAT2 in the regeneration of visual chromophore by the phenotypic characterization of Awat2-/- mice. The global absence of AWAT2 enzymatic activity did not affect gross retinal morphology or the rate of visual chromophore regeneration by the canonical RPE65-dependent visual cycle. Analysis of Awat2 expression indicated the presence of the enzyme throughout the murine retina, including the retinal pigment epithelium (RPE) and Müller cells. Electrophysiological recordings revealed reduced maximal rod and cone dark-adapted responses in AWAT2-deficient mice compared to control mice. While rod dark adaptation was not affected by the lack of AWAT2, M-cone dark adaptation both in isolated retina and in vivo was significantly suppressed. Altogether, these results indicate that while AWAT2 is not required for the normal operation of the canonical visual cycle, it is a functional component of the cone-specific visual chromophore regenerative pathway.
Collapse
Affiliation(s)
| | - Alexander V Kolesnikov
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, California, USA
| | - Sreelakshmi Vasudevan
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Paul S-H Park
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Vladimir J Kefalov
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, California, USA.,Department of Physiology and Biophysics, University of California, Irvine, California, USA
| | - Marcin Golczak
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA.,Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
13
|
Current Knowledge on Mammalian Phospholipase A1, Brief History, Structures, Biochemical and Pathophysiological Roles. Molecules 2022; 27:molecules27082487. [PMID: 35458682 PMCID: PMC9031518 DOI: 10.3390/molecules27082487] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/29/2022] Open
Abstract
Phospholipase A1 (PLA1) is an enzyme that cleaves an ester bond at the sn-1 position of glycerophospholipids, producing a free fatty acid and a lysophospholipid. PLA1 activities have been detected both extracellularly and intracellularly, which are well conserved in higher eukaryotes, including fish and mammals. All extracellular PLA1s belong to the lipase family. In addition to PLA1 activity, most mammalian extracellular PLA1s exhibit lipase activity to hydrolyze triacylglycerol, cleaving the fatty acid and contributing to its absorption into the intestinal tract and tissues. Some extracellular PLA1s exhibit PLA1 activities specific to phosphatidic acid (PA) or phosphatidylserine (PS) and serve to produce lysophospholipid mediators such as lysophosphatidic acid (LPA) and lysophosphatidylserine (LysoPS). A high level of PLA1 activity has been detected in the cytosol fractions, where PA-PLA1/DDHD1/iPLA1 was responsible for the activity. Many homologs of PA-PLA1 and PLA2 have been shown to exhibit PLA1 activity. Although much has been learned about the pathophysiological roles of PLA1 molecules through studies of knockout mice and human genetic diseases, many questions regarding their biochemical properties, including their genuine in vivo substrate, remain elusive.
Collapse
|
14
|
Müller H, Terholsen H, Godehard SP, Badenhorst CPS, Bornscheuer UT. Recent Insights and Future Perspectives on Promiscuous Hydrolases/Acyltransferases. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04543] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Henrik Müller
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487, Greifswald, Germany
- Competence Center for Biocatalysis, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, 8820, Wädenswil, Switzerland
| | - Henrik Terholsen
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487, Greifswald, Germany
| | - Simon P. Godehard
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487, Greifswald, Germany
| | - Christoffel P. S. Badenhorst
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487, Greifswald, Germany
| | - Uwe T. Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487, Greifswald, Germany
| |
Collapse
|
15
|
Molenaar MR, Yadav KK, Toulmay A, Wassenaar TA, Mari MC, Caillon L, Chorlay A, Lukmantara IE, Haaker MW, Wubbolts RW, Houweling M, Vaandrager AB, Prieur X, Reggiori F, Choudhary V, Yang H, Schneiter R, Thiam AR, Prinz WA, Helms JB. Retinyl esters form lipid droplets independently of triacylglycerol and seipin. J Cell Biol 2021; 220:212517. [PMID: 34323918 PMCID: PMC8327380 DOI: 10.1083/jcb.202011071] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 05/21/2021] [Accepted: 07/07/2021] [Indexed: 11/23/2022] Open
Abstract
Lipid droplets store neutral lipids, primarily triacylglycerol and steryl esters. Seipin plays a role in lipid droplet biogenesis and is thought to determine the site of lipid droplet biogenesis and the size of newly formed lipid droplets. Here we show a seipin-independent pathway of lipid droplet biogenesis. In silico and in vitro experiments reveal that retinyl esters have the intrinsic propensity to sequester and nucleate in lipid bilayers. Production of retinyl esters in mammalian and yeast cells that do not normally produce retinyl esters causes the formation of lipid droplets, even in a yeast strain that produces only retinyl esters and no other neutral lipids. Seipin does not determine the size or biogenesis site of lipid droplets composed of only retinyl esters or steryl esters. These findings indicate that the role of seipin in lipid droplet biogenesis depends on the type of neutral lipid stored in forming droplets.
Collapse
Affiliation(s)
- Martijn R Molenaar
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Kamlesh K Yadav
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Alexandre Toulmay
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Tsjerk A Wassenaar
- Groningen Biomolecular Sciences and Biotechnology Institute, Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands
| | - Muriel C Mari
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Lucie Caillon
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, Paris Sciences et Lettres Research University, Sorbonne Université, Université Pierre-et-Marie-Curie Université Paris 06, Université Paris Diderot, Centre national de la recherche scientifique, Paris, France
| | - Aymeric Chorlay
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, Paris Sciences et Lettres Research University, Sorbonne Université, Université Pierre-et-Marie-Curie Université Paris 06, Université Paris Diderot, Centre national de la recherche scientifique, Paris, France
| | - Ivan E Lukmantara
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Maya W Haaker
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Richard W Wubbolts
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Martin Houweling
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Arie Bas Vaandrager
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Xavier Prieur
- Université de Nantes, Centre national de la recherche scientifique, Institut national de la santé et de la recherche médicale, l'institut du thorax, Nantes, France
| | - Fulvio Reggiori
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Vineet Choudhary
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Roger Schneiter
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Abdou Rachid Thiam
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, Paris Sciences et Lettres Research University, Sorbonne Université, Université Pierre-et-Marie-Curie Université Paris 06, Université Paris Diderot, Centre national de la recherche scientifique, Paris, France
| | - William A Prinz
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - J Bernd Helms
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
16
|
Chatterjee S, Zhou J, Dasgupta R, Cramer-Blok A, Timmer M, van der Stelt M, Ubbink M. Protein Dynamics Influence the Enzymatic Activity of Phospholipase A/Acyltransferases 3 and 4. Biochemistry 2021; 60:1178-1190. [PMID: 33749246 PMCID: PMC8154263 DOI: 10.1021/acs.biochem.0c00974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/04/2021] [Indexed: 11/29/2022]
Abstract
Phospholipase A/acyltransferase 3 (PLAAT3) and PLAAT4 are enzymes involved in the synthesis of bioactive lipids. Despite sequential and structural similarities, the two enzymes differ in activity and specificity. The relation between the activity and dynamics of the N-terminal domains of PLAAT3 and PLAAT4 was studied. PLAAT3 has a much higher melting temperature and exhibits less nanosecond and millisecond dynamics in the active site, in particular in loop L2(B6), as shown by NMR spectroscopy and molecular dynamics calculations. Swapping the L2(B6) loops between the two PLAAT enzymes results in strongly increased phospholipase activity in PLAAT3 but no reduction in PLAAT4 activity, indicating that this loop contributes to the low activity of PLAAT3. The results show that, despite structural similarity, protein dynamics differ substantially between the PLAAT variants, which can help to explain the activity and specificity differences.
Collapse
Affiliation(s)
- Soumya
Deep Chatterjee
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Juan Zhou
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Rubin Dasgupta
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Anneloes Cramer-Blok
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Monika Timmer
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Mario van der Stelt
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Marcellus Ubbink
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| |
Collapse
|
17
|
Ramkumar S, Moon J, Golczak M, von Lintig J. LRAT coordinates the negative-feedback regulation of intestinal retinoid biosynthesis from β-carotene. J Lipid Res 2021; 62:100055. [PMID: 33631212 PMCID: PMC8010212 DOI: 10.1016/j.jlr.2021.100055] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/02/2021] [Accepted: 02/17/2021] [Indexed: 11/23/2022] Open
Abstract
There is increasing recognition that dietary lipids can affect the expression of genes encoding their metabolizing enzymes, transporters, and binding proteins. This mechanism plays a pivotal role in controlling tissue homeostasis of these compounds and avoiding diseases. The regulation of retinoid biosynthesis from β-carotene (BC) is a classic example for such an interaction. The intestine-specific homeodomain transcription factor (ISX) controls the activity of the vitamin A-forming enzyme β-carotene oxygenase-1 in intestinal enterocytes in response to increasing concentration of the vitamin A metabolite retinoic acid. However, it is unclear how cells control the concentration of the signaling molecule in this negative-feedback loop. We demonstrate in mice that the sequestration of retinyl esters by the enzyme lecithin:retinol acyltransferase (LRAT) is central for this process. Using genetic and pharmacological approaches in mice, we observed that in LRAT deficiency, the transcription factor ISX became hypersensitive to dietary vitamin A and suppressed retinoid biosynthesis. The dysregulation of the pathway resulted in BC accumulation and vitamin A deficiency of extrahepatic tissues. Pharmacological inhibition of retinoid signaling and genetic depletion of the Isx gene restored retinoid biosynthesis in enterocytes. We provide evidence that the catalytic activity of LRAT coordinates the negative-feedback regulation of intestinal retinoid biosynthesis and maintains optimal retinoid levels in the body.
Collapse
Affiliation(s)
- Srinivasagan Ramkumar
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Jean Moon
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Marcin Golczak
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
18
|
Liang X, Chen M, Wang D, Wen J, Chen J. Vitamin A deficiency indicating as low expression of LRAT may be a novel biomarker of primary hypertension. Clin Exp Hypertens 2021; 43:151-163. [PMID: 33052059 DOI: 10.1080/10641963.2020.1833023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AIMS Vitamin A (VA) deficiency triggers many diseases and is a worldwide nutrition problem. The Retinol acyltransferase (LRAT) is an indicator of VA storage function, and the relationship between LRAT and blood pressure level and the regulation mechanism will be elucidated. METHODS 160 children aged 6-12 years were included, and the serum VA and, the transcription levels of LRAT and RARs, were measured. Spontaneously hypertensive rats (SHRs) and WKY rats were treated with VA deficiency (VAD) or normal (VAN) fodder for 20 weeks. LRAT, retinoic acid, renin angiotensin system (RAS) biomarkers, and the structure and function of the heart for SHRs were measured. RESULTS The serum retinol and serum retinol/BMI levels were lower in children in the low LRAT group (LRAT<P50) compared with the high LRAT group (LRAT≥P50)(0.82 μmol/L vs. 0.94 μmol/L, 0.04 vs. 0.05, all P < .01). Moreover, SBP, DBP, and Ang Ⅱ were lower in the low LRAT group (all P < .01). Compared with VAN-treated SHRs, LRAT, retinoic acid receptor alpha (RARα), ACE2, and Ang (1-7) protein expression levels were decreased, while ACE and AT1R expression levels were increased in VAD SHRs. Notably, heart weight (HW), left ventricle weight, the HW-to-body weight ratio and the left ventricle weight-to-body weight ratio were significantly increased in VAD SHRs compared with those in VAN SHRs (P < .01). Cardiomyocyte hypertrophy and ventricular fibrosis were significantly increased in VAD SHRs compared with those in VAN SHRs (both P < .01). CONCLUSIONS LRAT may be an important biomarker of vitamin A deficiency in target organs and may regulate BP by affecting RAS biomarkers.
Collapse
Affiliation(s)
- Xiaohua Liang
- Clinical Epidemiology and Biostatistics Department, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Key Laboratory of Pediatrics in Chongqing, China International Science and Technology Cooperation Center of Child Development and Critical Disorders , Chongqing, China
| | - Min Chen
- Clinical Epidemiology and Biostatistics Department, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Key Laboratory of Pediatrics in Chongqing, China International Science and Technology Cooperation Center of Child Development and Critical Disorders , Chongqing, China
| | - Dong Wang
- Department of Ultrasound, First Affiliated Hospital of Chongqing Medical University , Chongqing, China
| | - Jin Wen
- Kidney Disease Department, Yongchuan Hospital of Chongqing Medical University , Chongqing, China
| | - Jie Chen
- Clinical Epidemiology and Biostatistics Department, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Key Laboratory of Pediatrics in Chongqing, China International Science and Technology Cooperation Center of Child Development and Critical Disorders , Chongqing, China
| |
Collapse
|
19
|
Müller H, Godehard SP, Palm GJ, Berndt L, Badenhorst CPS, Becker A, Lammers M, Bornscheuer UT. Entdeckung und Design promiskuitiver Acyltransferase‐Aktivität in Carboxylesterasen der Familie VIII. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Henrik Müller
- Abt. Biotechnologie und Enzymkatalyse Institut für Biochemie Universität Greifswald 17487 Greifswald Deutschland
| | - Simon P. Godehard
- Abt. Biotechnologie und Enzymkatalyse Institut für Biochemie Universität Greifswald 17487 Greifswald Deutschland
| | - Gottfried J. Palm
- Abt. Synthetische und strukturelle Biochemie Institut für Biochemie Universität Greifswald 17487 Greifswald Deutschland
| | - Leona Berndt
- Abt. Synthetische und strukturelle Biochemie Institut für Biochemie Universität Greifswald 17487 Greifswald Deutschland
| | - Christoffel P. S. Badenhorst
- Abt. Biotechnologie und Enzymkatalyse Institut für Biochemie Universität Greifswald 17487 Greifswald Deutschland
| | - Ann‐Kristin Becker
- Institut für Bioinformatik Universitätsmedizin Greifswald 17487 Greifswald Deutschland
| | - Michael Lammers
- Abt. Synthetische und strukturelle Biochemie Institut für Biochemie Universität Greifswald 17487 Greifswald Deutschland
| | - Uwe T. Bornscheuer
- Abt. Biotechnologie und Enzymkatalyse Institut für Biochemie Universität Greifswald 17487 Greifswald Deutschland
| |
Collapse
|
20
|
Müller H, Godehard SP, Palm GJ, Berndt L, Badenhorst CPS, Becker A, Lammers M, Bornscheuer UT. Discovery and Design of Family VIII Carboxylesterases as Highly Efficient Acyltransferases. Angew Chem Int Ed Engl 2021; 60:2013-2017. [PMID: 33140887 PMCID: PMC7894173 DOI: 10.1002/anie.202014169] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Indexed: 12/21/2022]
Abstract
Promiscuous acyltransferase activity is the ability of certain hydrolases to preferentially catalyze acyl transfer over hydrolysis, even in bulk water. However, poor enantioselectivity, low transfer efficiency, significant product hydrolysis, and limited substrate scope represent considerable drawbacks for their application. By activity-based screening of several hydrolases, we identified the family VIII carboxylesterase, EstCE1, as an unprecedentedly efficient acyltransferase. EstCE1 catalyzes the irreversible amidation and carbamoylation of amines in water, which enabled the synthesis of the drug moclobemide from methyl 4-chlorobenzoate and 4-(2-aminoethyl)morpholine (ca. 20 % conversion). We solved the crystal structure of EstCE1 and detailed structure-function analysis revealed a three-amino acid motif important for promiscuous acyltransferase activity. Introducing this motif into an esterase without acetyltransferase activity transformed a "hydrolase" into an "acyltransferase".
Collapse
Affiliation(s)
- Henrik Müller
- Department of Biotechnology & Enzyme CatalysisInstitute of BiochemistryUniversity of Greifswald17487GreifswaldGermany
| | - Simon P. Godehard
- Department of Biotechnology & Enzyme CatalysisInstitute of BiochemistryUniversity of Greifswald17487GreifswaldGermany
| | - Gottfried J. Palm
- Department of Synthetic and Structural BiochemistryInstitute of Biochemistry, University of Greifswald17487GreifswaldGermany
| | - Leona Berndt
- Department of Synthetic and Structural BiochemistryInstitute of Biochemistry, University of Greifswald17487GreifswaldGermany
| | - Christoffel P. S. Badenhorst
- Department of Biotechnology & Enzyme CatalysisInstitute of BiochemistryUniversity of Greifswald17487GreifswaldGermany
| | - Ann‐Kristin Becker
- Institute of BioinformaticsUniversity Medicine Greifswald17487GreifswaldGermany
| | - Michael Lammers
- Department of Synthetic and Structural BiochemistryInstitute of Biochemistry, University of Greifswald17487GreifswaldGermany
| | - Uwe T. Bornscheuer
- Department of Biotechnology & Enzyme CatalysisInstitute of BiochemistryUniversity of Greifswald17487GreifswaldGermany
| |
Collapse
|
21
|
Kiser PD, Palczewski K. Pathways and disease-causing alterations in visual chromophore production for vertebrate vision. J Biol Chem 2021; 296:100072. [PMID: 33187985 PMCID: PMC7948990 DOI: 10.1074/jbc.rev120.014405] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022] Open
Abstract
All that we view of the world begins with an ultrafast cis to trans photoisomerization of the retinylidene chromophore associated with the visual pigments of rod and cone photoreceptors. The continual responsiveness of these photoreceptors is then sustained by regeneration processes that convert the trans-retinoid back to an 11-cis configuration. Recent biochemical and electrophysiological analyses of the retinal G-protein-coupled receptor (RGR) suggest that it could sustain the responsiveness of photoreceptor cells, particularly cones, even under bright light conditions. Thus, two mechanisms have evolved to accomplish the reisomerization: one involving the well-studied retinoid isomerase (RPE65) and a second photoisomerase reaction mediated by the RGR. Impairments to the pathways that transform all-trans-retinal back to 11-cis-retinal are associated with mild to severe forms of retinal dystrophy. Moreover, with age there also is a decline in the rate of chromophore regeneration. Both pharmacological and genetic approaches are being used to bypass visual cycle defects and consequently mitigate blinding diseases. Rapid progress in the use of genome editing also is paving the way for the treatment of disparate retinal diseases. In this review, we provide an update on visual cycle biochemistry and then discuss visual-cycle-related diseases and emerging therapeutics for these disorders. There is hope that these advances will be helpful in treating more complex diseases of the eye, including age-related macular degeneration (AMD).
Collapse
Affiliation(s)
- Philip D Kiser
- The Department of Physiology & Biophysics, University of California, Irvine, California, USA; Research Service, The VA Long Beach Health Care System, Long Beach, California, USA; The Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, California, USA.
| | - Krzysztof Palczewski
- The Department of Physiology & Biophysics, University of California, Irvine, California, USA; The Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, California, USA; The Department of Chemistry, University of California, Irvine, California, USA.
| |
Collapse
|
22
|
Widjaja-Adhi MAK, Golczak M. The molecular aspects of absorption and metabolism of carotenoids and retinoids in vertebrates. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158571. [PMID: 31770587 PMCID: PMC7244374 DOI: 10.1016/j.bbalip.2019.158571] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 02/08/2023]
Abstract
Vitamin A is an essential nutrient necessary for numerous basic physiological functions, including reproduction and development, immune cell differentiation and communication, as well as the perception of light. To evade the dire consequences of vitamin A deficiency, vertebrates have evolved specialized metabolic pathways that enable the absorption, transport, and storage of vitamin A acquired from dietary sources as preformed retinoids or provitamin A carotenoids. This evolutionary advantage requires a complex interplay between numerous specialized retinoid-transport proteins, receptors, and enzymes. Recent advances in molecular and structural biology resulted in a rapid expansion of our understanding of these processes at the molecular level. This progress opened new avenues for the therapeutic manipulation of retinoid homeostasis. In this review, we summarize current research related to the biochemistry of carotenoid and retinoid-processing proteins with special emphasis on the structural aspects of their physiological actions. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- Made Airanthi K Widjaja-Adhi
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States of America
| | - Marcin Golczak
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States of America; Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States of America.
| |
Collapse
|
23
|
von Lintig J, Moon J, Lee J, Ramkumar S. Carotenoid metabolism at the intestinal barrier. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158580. [PMID: 31794861 PMCID: PMC7987234 DOI: 10.1016/j.bbalip.2019.158580] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/17/2022]
Abstract
Carotenoids exert a rich variety of physiological functions in mammals and are beneficial for human health. These lipids are acquired from the diet and metabolized to apocarotenoids, including retinoids (vitamin A and its metabolites). The small intestine is a major site for their absorption and bioconversion. From here, carotenoids and their metabolites are distributed within the body in triacylglycerol-rich lipoproteins to support retinoid signaling in peripheral tissues and photoreceptor function in the eyes. In recent years, much progress has been made in identifying carotenoid metabolizing enzymes, transporters, and binding proteins. A diet-responsive regulatory network controls the activity of these components and adapts carotenoid absorption and bioconversion to the bodily requirements of these lipids. Genetic variability in the genes encoding these components alters carotenoid homeostasis and is associated with pathologies. We here summarize the advanced state of knowledge about intestinal carotenoid metabolism and its impact on carotenoid and retinoid homeostasis of other organ systems, including the eyes, liver, and immune system. The implication of the findings for science-based intake recommendations for these essential dietary lipids is discussed. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America.
| | - Jean Moon
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America
| | - Joan Lee
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America
| | - Srinivasagan Ramkumar
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America
| |
Collapse
|
24
|
Murakami M, Sato H, Taketomi Y. Updating Phospholipase A 2 Biology. Biomolecules 2020; 10:E1457. [PMID: 33086624 PMCID: PMC7603386 DOI: 10.3390/biom10101457] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/09/2020] [Accepted: 10/15/2020] [Indexed: 12/30/2022] Open
Abstract
The phospholipase A2 (PLA2) superfamily contains more than 50 enzymes in mammals that are subdivided into several distinct families on a structural and biochemical basis. In principle, PLA2 has the capacity to hydrolyze the sn-2 position of glycerophospholipids to release fatty acids and lysophospholipids, yet several enzymes in this superfamily catalyze other reactions rather than or in addition to the PLA2 reaction. PLA2 enzymes play crucial roles in not only the production of lipid mediators, but also membrane remodeling, bioenergetics, and body surface barrier, thereby participating in a number of biological events. Accordingly, disturbance of PLA2-regulated lipid metabolism is often associated with various diseases. This review updates the current state of understanding of the classification, enzymatic properties, and biological functions of various enzymes belonging to the PLA2 superfamily, focusing particularly on the novel roles of PLA2s in vivo.
Collapse
Affiliation(s)
- Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan; (H.S.); (Y.T.)
| | | | | |
Collapse
|
25
|
Determination of allosteric and active sites responsible for catalytic activity of delta 12 fatty acid desaturase from Geotrichum candidum and Mortierella alpina by domain swapping. Enzyme Microb Technol 2020; 138:109563. [PMID: 32527532 DOI: 10.1016/j.enzmictec.2020.109563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 12/31/2022]
Abstract
Cheese lacks essential fatty acids (EFAs). Delta 12 fatty acid desaturase (FADS12) is a critical enzyme required for EFA biosynthesis in fermentation of the predominant strains of cheese. Previously, we identified the FADS12 gene and characterized its function for the first time in Geotrichum candidum, a dominant strain used to manufacture soft cheese with white rind. In this study, we analyzed the molecular mechanism of FADS12 function by swapping domains from Mortierella alpina and G. candidum that had, respectively, high and low oleic acid conversion rates. The results revealed three regions that are essential to this process, including regions from the end of the second transmembrane domain to the beginning of the third transmembrane domain, from the end of the third transmembrane domain to the beginning of the fourth transmembrane domain, and from the 30-amino acid from the end of the sixth transmembrane domain to the C-terminal end region. Based on our domain swapping analyses, nine pairs of amino acids including H112, S118, H156, Q161, K301, R306, E307, A309 and S323 in MaFADS12 (K123, A129, N167, M172, T302, D307, I308, E310 and D324 in GcFADS12) were identified as having a significantly effect on FADS12 catalytic efficiency, and linoleic acid and its analogues (12,13-cyclopropenoid fatty acid) were found to inhibit the catalytic activity of FADS12 and related recombinant enzymes. Furthermore, the molecular mechanism of FADS12 inhibition was analyzed. The results revealed two allosteric domains, including one domain from the N-terminal region to the beginning of the first transmembrane domain and another from the 31st amino acid from the end of the sixth transmembrane domain to the C terminus. Y4 and F398 amino acid residues from MaFADS12 and eight pairs of amino acids including G56, L60, L344, G10, Q13, S24, K326 and L344 in MaFADS12 (while Y66, F70, F345, F20, Y23, Y34, F327 and F345 in GcFADS12) played a pivotal role in FADS12 inhibition. Finally, we found that both allosteric and active sites were responsible for the catalytic activity of FADS12 at various temperatures, pH, and times. This study offers a solid theoretical basis to develop preconditioning methods to increase the rate at which GcFADS12 converts oleic and linoleic acids to produce higher levels of EFAs in cheese.
Collapse
|
26
|
Godehard SP, Badenhorst CPS, Müller H, Bornscheuer UT. Protein Engineering for Enhanced Acyltransferase Activity, Substrate Scope, and Selectivity of the Mycobacterium smegmatis Acyltransferase MsAcT. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01767] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Simon P. Godehard
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487 Greifswald, Germany
| | - Christoffel P. S. Badenhorst
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487 Greifswald, Germany
| | - Henrik Müller
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487 Greifswald, Germany
| | - Uwe T. Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487 Greifswald, Germany
| |
Collapse
|
27
|
von Lintig J, Moon J, Babino D. Molecular components affecting ocular carotenoid and retinoid homeostasis. Prog Retin Eye Res 2020; 80:100864. [PMID: 32339666 DOI: 10.1016/j.preteyeres.2020.100864] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/13/2020] [Accepted: 04/17/2020] [Indexed: 12/15/2022]
Abstract
The photochemistry of vision employs opsins and geometric isomerization of their covalently bound retinylidine chromophores. In different animal classes, these light receptors associate with distinct G proteins that either hyperpolarize or depolarize photoreceptor membranes. Vertebrates also use the acidic form of chromophore, retinoic acid, as the ligand of nuclear hormone receptors that orchestrate eye development. To establish and sustain these processes, animals must acquire carotenoids from the diet, transport them, and metabolize them to chromophore and retinoic acid. The understanding of carotenoid metabolism, however, lagged behind our knowledge about the biology of their receptor molecules. In the past decades, much progress has been made in identifying the genes encoding proteins that mediate the transport and enzymatic transformations of carotenoids and their retinoid metabolites. Comparative analysis in different animal classes revealed how evolutionary tinkering with a limited number of genes evolved different biochemical strategies to supply photoreceptors with chromophore. Mutations in these genes impair carotenoid metabolism and induce various ocular pathologies. This review summarizes this advancement and introduces the involved proteins, including the homeostatic regulation of their activities.
Collapse
Affiliation(s)
- Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| | - Jean Moon
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Darwin Babino
- Department of Ophthalmology, School of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
28
|
Nguyen YTK, Park JS, Jang JY, Kim KR, Vo TTL, Kim KW, Han BW. Structural and Functional Analyses of Human ChaC2 in Glutathione Metabolism. Biomolecules 2019; 10:biom10010031. [PMID: 31878259 PMCID: PMC7022552 DOI: 10.3390/biom10010031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/11/2019] [Accepted: 12/18/2019] [Indexed: 01/07/2023] Open
Abstract
Glutathione (GSH) degradation plays an essential role in GSH homeostasis, which regulates cell survival, especially in cancer cells. Among human GSH degradation enzymes, the ChaC2 enzyme acts on GSH to form 5-l-oxoproline and Cys-Gly specifically in the cytosol. Here, we report the crystal structures of ChaC2 in two different conformations and compare the structural features with other known γ-glutamylcyclotransferase enzymes. The unique flexible loop of ChaC2 seems to function as a gate to achieve specificity for GSH binding and regulate the constant GSH degradation rate. Structural and biochemical analyses of ChaC2 revealed that Glu74 and Glu83 play crucial roles in directing the conformation of the enzyme and in modulating the enzyme activity. Based on a docking study of GSH to ChaC2 and binding assays, we propose a substrate-binding mode and catalytic mechanism. We also found that overexpression of ChaC2, but not mutants that inhibit activity of ChaC2, significantly promoted breast cancer cell proliferation, suggesting that the GSH degradation by ChaC2 affects the growth of breast cancer cells. Our structural and functional analyses of ChaC2 will contribute to the development of inhibitors for the ChaC family, which could effectively regulate the progression of GSH degradation-related cancers.
Collapse
Affiliation(s)
- Yen T. K. Nguyen
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; (Y.T.K.N.); (J.S.P.); (J.Y.J.); (K.R.K.); (K.-W.K.)
| | - Joon Sung Park
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; (Y.T.K.N.); (J.S.P.); (J.Y.J.); (K.R.K.); (K.-W.K.)
| | - Jun Young Jang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; (Y.T.K.N.); (J.S.P.); (J.Y.J.); (K.R.K.); (K.-W.K.)
| | - Kyung Rok Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; (Y.T.K.N.); (J.S.P.); (J.Y.J.); (K.R.K.); (K.-W.K.)
| | - Tam T. L. Vo
- Department of Biochemistry, Keimyung University School of Medicine, Daegu 42601, Korea;
| | - Kyu-Won Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; (Y.T.K.N.); (J.S.P.); (J.Y.J.); (K.R.K.); (K.-W.K.)
| | - Byung Woo Han
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; (Y.T.K.N.); (J.S.P.); (J.Y.J.); (K.R.K.); (K.-W.K.)
- Correspondence: ; Tel.: +82-2-8807898
| |
Collapse
|
29
|
Wang S, Moise AR. Recent insights on the role and regulation of retinoic acid signaling during epicardial development. Genesis 2019; 57:e23303. [PMID: 31066193 PMCID: PMC6682438 DOI: 10.1002/dvg.23303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/18/2022]
Abstract
The vitamin A metabolite, retinoic acid, carries out essential and conserved roles in vertebrate heart development. Retinoic acid signals via retinoic acid receptors (RAR)/retinoid X receptors (RXRs) heterodimers to induce the expression of genes that control cell fate specification, proliferation, and differentiation. Alterations in retinoic acid levels are often associated with congenital heart defects. Therefore, embryonic levels of retinoic acid need to be carefully regulated through the activity of enzymes, binding proteins and transporters involved in vitamin A metabolism. Here, we review evidence of the complex mechanisms that control the fetal uptake and synthesis of retinoic acid from vitamin A precursors. Next, we highlight recent evidence of the role of retinoic acid in orchestrating myocardial compact zone growth and coronary vascular development.
Collapse
Affiliation(s)
- Suya Wang
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Alexander R. Moise
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada
- Departments of Chemistry and Biochemistry, and Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON, P3E 2C6 Canada
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, 66045, USA
| |
Collapse
|
30
|
Zhou J, Mock ED, Martella A, Kantae V, Di X, Burggraaff L, Baggelaar MP, Al-Ayed K, Bakker A, Florea BI, Grimm SH, den Dulk H, Li CT, Mulder L, Overkleeft HS, Hankemeier T, van Westen GJP, van der Stelt M. Activity-Based Protein Profiling Identifies α-Ketoamides as Inhibitors for Phospholipase A2 Group XVI. ACS Chem Biol 2019; 14:164-169. [PMID: 30620559 PMCID: PMC6379856 DOI: 10.1021/acschembio.8b00969] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/08/2019] [Indexed: 02/07/2023]
Abstract
Phospholipase A2, group XVI (PLA2G16) is a thiol hydrolase from the HRASLS family that regulates lipolysis in adipose tissue and has been identified as a host factor enabling the cellular entry of picornaviruses. Chemical tools are essential to visualize and control PLA2G16 activity, but they have not been reported to date. Here, we show that MB064, which is a fluorescent lipase probe, also labels recombinant and endogenously expressed PLA2G16. Competitive activity-based protein profiling (ABPP) using MB064 enabled the discovery of α-ketoamides as the first selective PLA2G16 inhibitors. LEI110 was identified as a potent PLA2G16 inhibitor ( Ki = 20 nM) that reduces cellular arachidonic acid levels and oleic acid-induced lipolysis in human HepG2 cells. Gel-based ABPP and chemical proteomics showed that LEI110 is a selective pan-inhibitor of the HRASLS family of thiol hydrolases (i.e., PLA2G16, HRASLS2, RARRES3 and iNAT). Molecular dynamic simulations of LEI110 in the reported crystal structure of PLA2G16 provided insight in the potential ligand-protein interactions to explain its binding mode. In conclusion, we have developed the first selective inhibitor that can be used to study the cellular role of PLA2G16.
Collapse
Affiliation(s)
- Juan Zhou
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Elliot D. Mock
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Andrea Martella
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Vasudev Kantae
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
- Department
of Analytical BioSciences and Metabolomics, Leiden Academic Centre
for Drug Research, Leiden University, Leiden, The Netherlands
| | - Xinyu Di
- Department
of Analytical BioSciences and Metabolomics, Leiden Academic Centre
for Drug Research, Leiden University, Leiden, The Netherlands
| | - Lindsey Burggraaff
- Department
of Computational Drug Discovery, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Marc P. Baggelaar
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Karol Al-Ayed
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Alexander Bakker
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Bogdan I. Florea
- Department
of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Sebastian H. Grimm
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Hans den Dulk
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Chun T. Li
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Laura Mulder
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Herman S. Overkleeft
- Department
of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Thomas Hankemeier
- Department
of Analytical BioSciences and Metabolomics, Leiden Academic Centre
for Drug Research, Leiden University, Leiden, The Netherlands
| | - Gerard J. P. van Westen
- Department
of Computational Drug Discovery, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Mario van der Stelt
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| |
Collapse
|
31
|
Structural biology of 11- cis-retinaldehyde production in the classical visual cycle. Biochem J 2018; 475:3171-3188. [PMID: 30352831 DOI: 10.1042/bcj20180193] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/20/2018] [Accepted: 09/26/2018] [Indexed: 12/21/2022]
Abstract
The vitamin A derivative 11-cis-retinaldehyde plays a pivotal role in vertebrate vision by serving as the chromophore of rod and cone visual pigments. In the initial step of vision, a photon is absorbed by this chromophore resulting in its isomerization to an all-trans state and consequent activation of the visual pigment and phototransduction cascade. Spent chromophore is released from the pigments through hydrolysis. Subsequent photon detection requires the delivery of regenerated 11-cis-retinaldehyde to the visual pigment. This trans-cis conversion is achieved through a process known as the visual cycle. In this review, we will discuss the enzymes, binding proteins and transporters that enable the visual pigment renewal process with a focus on advances made during the past decade in our understanding of their structural biology.
Collapse
|
32
|
Che R, Zhang J, Nepal M, Han B, Fei P. Multifaceted Fanconi Anemia Signaling. Trends Genet 2018; 34:171-183. [PMID: 29254745 PMCID: PMC5858900 DOI: 10.1016/j.tig.2017.11.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/28/2017] [Indexed: 01/26/2023]
Abstract
In 1927 Guido Fanconi described a hereditary condition presenting panmyelopathy accompanied by short stature and hyperpigmentation, now better known as Fanconi anemia (FA). With this discovery the genetic and molecular basis underlying FA has emerged as a field of great interest. FA signaling is crucial in the DNA damage response (DDR) to mediate the repair of damaged DNA. This has attracted a diverse range of investigators, especially those interested in aging and cancer. However, recent evidence suggests FA signaling also regulates functions outside the DDR, with implications for many other frontiers of research. We discuss here the characteristics of FA functions and expand upon current perspectives regarding the genetics of FA, indicating that FA plays a role in a myriad of molecular and cellular processes.
Collapse
Affiliation(s)
- Raymond Che
- University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI, USA; Graduate Program of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI, USA
| | - Jun Zhang
- Department of Laboratory Medicine and Pathology, Mayo Clinic Foundation, USA
| | - Manoj Nepal
- University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI, USA; Graduate Program of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI, USA
| | - Bing Han
- University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI, USA
| | - Peiwen Fei
- University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI, USA; Graduate Program of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI, USA.
| |
Collapse
|
33
|
Nepal M, Che R, Zhang J, Ma C, Fei P. Fanconi Anemia Signaling and Cancer. Trends Cancer 2017; 3:840-856. [PMID: 29198440 DOI: 10.1016/j.trecan.2017.10.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/16/2017] [Accepted: 10/19/2017] [Indexed: 12/19/2022]
Abstract
The extremely high cancer incidence associated with patients suffering from a rare human genetic disease, Fanconi anemia (FA), demonstrates the importance of FA genes. Over the course of human tumor development, FA genes perform critical tumor-suppression roles. In doing so, FA provides researchers with a unique genetic model system to study cancer etiology. Here, we review how aberrant function of the 22 FA genes and their signaling network contributes to malignancy. From this perspective, we will also discuss how the knowledge discovered from FA research serves basic and translational cancer research.
Collapse
Affiliation(s)
- Manoj Nepal
- University of Hawaii Cancer Center, Honolulu, HI, USA; Graduate Program of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI, USA; Equal contribution
| | - Raymond Che
- University of Hawaii Cancer Center, Honolulu, HI, USA; Graduate Program of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI, USA; Equal contribution
| | - Jun Zhang
- Department of Laboratory Medicine and Pathology, Mayo Clinic Foundation, USA
| | - Chi Ma
- University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Peiwen Fei
- University of Hawaii Cancer Center, Honolulu, HI, USA; Graduate Program of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI, USA.
| |
Collapse
|
34
|
Dapkūnas J, Olechnovič K, Venclovas Č. Modeling of protein complexes in CAPRI Round 37 using template-based approach combined with model selection. Proteins 2017; 86 Suppl 1:292-301. [DOI: 10.1002/prot.25378] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/25/2017] [Accepted: 09/10/2017] [Indexed: 01/14/2023]
Affiliation(s)
- Justas Dapkūnas
- Institute of Biotechnology, Vilnius University, Saulėtekio 7; Vilnius LT-10257 Lithuania
| | - Kliment Olechnovič
- Institute of Biotechnology, Vilnius University, Saulėtekio 7; Vilnius LT-10257 Lithuania
| | - Česlovas Venclovas
- Institute of Biotechnology, Vilnius University, Saulėtekio 7; Vilnius LT-10257 Lithuania
| |
Collapse
|
35
|
Chelstowska S, Widjaja-Adhi MAK, Silvaroli JA, Golczak M. Impact of LCA-Associated E14L LRAT Mutation on Protein Stability and Retinoid Homeostasis. Biochemistry 2017; 56:4489-4499. [PMID: 28758396 PMCID: PMC5682948 DOI: 10.1021/acs.biochem.7b00451] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Vitamin A (all-trans-retinol) is metabolized to the visual chromophore (11-cis-retinal) in the eyes and to all-trans-retinoic acid, a hormone like compound, in most tissues. A key enzyme in retinoid metabolism is lecithin:retinol acyltransferase (LRAT), which catalyzes the esterification of vitamin A. The importance of LRAT is indicated by pathogenic missense and nonsense mutations, which cause devastating blinding diseases. Retinoid-based chromophore replacement therapy has been proposed as treatment for these types of blindness based on studies in LRAT null mice. Here, we analyzed the structural and biochemical basis for retinal pathology caused by mutations in the human LRAT gene. Most LRAT missense mutations associated with retinal degeneration are localized within the catalytic domain, whereas E14L substitution is localized in an N-terminal α-helix, which has been implicated in interaction with the phospholipid bilayer. To elucidate the biochemical consequences of this mutation, we determined LRAT(E14L)'s enzymatic properties, protein stability, and impact on ocular retinoid metabolism. Bicistronic expression of LRAT(E14L) and enhanced green fluorescence protein revealed instability and accelerated proteosomal degradation of this mutant isoform. Surprisingly, instability of LRAT(E14L) did not abrogate the production of the visual chromophore in a cell-based assay. Instead, expression of LRAT(E14L) led to a rapid increase in cellular levels of retinoic acid upon retinoid supplementation. Thus, our study unveils the potential role of retinoic acid in the pathology of a degenerative retinal disease with important implications for the use of retinoid-based therapeutics in affected patients.
Collapse
Affiliation(s)
- Sylwia Chelstowska
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106, United States
- Laboratory of Hematology and Flow Cytometry, Department of Hematology, Military Institute of Medicine, Warsaw 04141, Poland
| | | | - Josie A. Silvaroli
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Marcin Golczak
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106, United States
- Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
36
|
Mammalian enzymes responsible for the biosynthesis of N-acylethanolamines. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1546-1561. [PMID: 28843504 DOI: 10.1016/j.bbalip.2017.08.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/31/2017] [Accepted: 08/19/2017] [Indexed: 12/15/2022]
Abstract
Bioactive N-acylethanolamines (NAEs) are ethanolamides of long-chain fatty acids, including palmitoylethanolamide, oleoylethanolamide and anandamide. In animal tissues, NAEs are biosynthesized from membrane phospholipids. The classical "transacylation-phosphodiesterase" pathway proceeds via N-acyl-phosphatidylethanolamine (NAPE), which involves the actions of two enzymes, NAPE-generating Ca2+-dependent N-acyltransferase (Ca-NAT) and NAPE-hydrolyzing phospholipase D (NAPE-PLD). Recent identification of Ca-NAT as Ɛ isoform of cytosolic phospholipase A2 enabled the further molecular biological approaches toward this enzyme. In addition, Ca2+-independent NAPE formation was shown to occur by N-acyltransferase activity of a group of proteins named phospholipase A/acyltransferases (PLAAT)-1-5. The analysis of NAPE-PLD-deficient mice confirmed that NAEs can be produced through multi-step pathways bypassing NAPE-PLD. The NAPE-PLD-independent pathways involved three members of the glycerophosphodiesterase (GDE) family (GDE1, GDE4 and GDE7) as well as α/β-hydrolase domain-containing protein (ABHD)4. In this review article, we will focus on recent progress made and latest insights in the enzymes involved in NAE synthesis and their further characterization.
Collapse
|
37
|
MURAKAMI M. Lipoquality control by phospholipase A 2 enzymes. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2017; 93:677-702. [PMID: 29129849 PMCID: PMC5743847 DOI: 10.2183/pjab.93.043] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The phospholipase A2 (PLA2) family comprises a group of lipolytic enzymes that typically hydrolyze the sn-2 position of glycerophospholipids to give rise to fatty acids and lysophospholipids. The mammalian genome encodes more than 50 PLA2s or related enzymes, which are classified into several subfamilies on the basis of their structures and functions. From a general viewpoint, the PLA2 family has mainly been implicated in signal transduction, producing bioactive lipid mediators derived from fatty acids and lysophospholipids. Recent evidence indicates that PLA2s also contribute to phospholipid remodeling for membrane homeostasis or energy production for fatty acid β-oxidation. Accordingly, PLA2 enzymes can be regarded as one of the key regulators of the quality of lipids, which I herein refer to as lipoquality. Disturbance of PLA2-regulated lipoquality hampers tissue and cellular homeostasis and can be linked to various diseases. Here I overview the current state of understanding of the classification, enzymatic properties, and physiological functions of the PLA2 family.
Collapse
Affiliation(s)
- Makoto MURAKAMI
- Laboratory of Environmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
- Correspondence should be addressed: M. Murakami, Laboratory of Environmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan (e-mail: )
| |
Collapse
|
38
|
Molecular Basis for Vitamin A Uptake and Storage in Vertebrates. Nutrients 2016; 8:nu8110676. [PMID: 27792183 PMCID: PMC5133064 DOI: 10.3390/nu8110676] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 09/30/2016] [Accepted: 10/18/2016] [Indexed: 01/27/2023] Open
Abstract
The ability to store and distribute vitamin A inside the body is the main evolutionary adaptation that allows vertebrates to maintain retinoid functions during nutritional deficiencies and to acquire new metabolic pathways enabling light-independent production of 11-cis retinoids. These processes greatly depend on enzymes that esterify vitamin A as well as associated retinoid binding proteins. Although the significance of retinyl esters for vitamin A homeostasis is well established, until recently, the molecular basis for the retinol esterification enzymatic activity was unknown. In this review, we will look at retinoid absorption through the prism of current biochemical and structural studies on vitamin A esterifying enzymes. We describe molecular adaptations that enable retinoid storage and delineate mechanisms in which mutations found in selective proteins might influence vitamin A homeostasis in affected patients.
Collapse
|
39
|
Abstract
Recent progress in molecular understanding of the retinoid cycle in mammalian retina stems from painstaking biochemical reconstitution studies supported by natural or engineered animal models with known genetic lesions and studies of humans with specific genetic blinding diseases. Structural and membrane biology have been used to detect critical retinal enzymes and proteins and their substrates and ligands, placing them in a cellular context. These studies have been supplemented by analytical chemistry methods that have identified small molecules by their spectral characteristics, often in conjunction with the evaluation of models of animal retinal disease. It is from this background that rational therapeutic interventions to correct genetic defects or environmental insults are identified. Thus, most presently accepted modulators of the retinoid cycle already have demonstrated promising results in animal models of retinal degeneration. These encouraging signs indicate that some human blinding diseases can be alleviated by pharmacological interventions.
Collapse
Affiliation(s)
- Philip D Kiser
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106 ; Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio 44106
| | - Krzysztof Palczewski
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|
40
|
Sears AE, Palczewski K. Lecithin:Retinol Acyltransferase: A Key Enzyme Involved in the Retinoid (visual) Cycle. Biochemistry 2016; 55:3082-91. [PMID: 27183166 DOI: 10.1021/acs.biochem.6b00319] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lecithin:retinol acyltransferase (LRAT) catalyzes the acyl transfer from the sn-1 position of phosphatidylcholine (PC) to all-trans-retinol, creating fatty acid retinyl esters (palmitoyl, stearoyl, and some unsaturated derivatives). In the eye, these retinyl esters are substrates for the 65 kDa retinoid isomerase (RPE65). LRAT is well characterized biochemically, and recent structural data from closely related family members of the NlpC/P60 superfamily and a chimeric protein have established its catalytic mechanism. Mutations in the LRAT gene are responsible for approximately 1% of reported cases of Leber congenital amaurosis (LCA). Lack of functional LRAT, expressed in the retinal pigmented epithelium (RPE), results in loss of the visual chromophore and photoreceptor degeneration. LCA is a rare hereditary retinal dystrophy with an early onset associated with mutations in one of 21 known genes. Protocols have been devised to identify therapeutics that compensate for mutations in RPE65, also associated with LCA. The same protocols can be adapted to combat dystrophies associated with LRAT. Improvement in the visual function of clinical recipients of therapy with recombinant adeno-associated virus (rAAV) vectors incorporating the RPE65 gene provides a proof of concept for LRAT, which functions in the same cell type and metabolic pathway as RPE65. In parallel, a clinical trial that employs oral 9-cis-retinyl acetate to replace the missing chromophore in RPE65 and LRAT causative disease has proven to be effective and free of adverse effects. This article summarizes the biochemistry of LRAT and examines chromophore replacement as a treatment for LCA caused by LRAT mutations.
Collapse
Affiliation(s)
- Avery E Sears
- Cleveland Center for Membrane and Structural Biology, Department of Pharmacology, School of Medicine, Case Western Reserve University , 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Krzysztof Palczewski
- Cleveland Center for Membrane and Structural Biology, Department of Pharmacology, School of Medicine, Case Western Reserve University , 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| |
Collapse
|
41
|
Silvaroli JA, Arne JM, Chelstowska S, Kiser PD, Banerjee S, Golczak M. Ligand Binding Induces Conformational Changes in Human Cellular Retinol-binding Protein 1 (CRBP1) Revealed by Atomic Resolution Crystal Structures. J Biol Chem 2016; 291:8528-40. [PMID: 26900151 DOI: 10.1074/jbc.m116.714535] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Indexed: 12/31/2022] Open
Abstract
Important in regulating the uptake, storage, and metabolism of retinoids, cellular retinol-binding protein 1 (CRBP1) is essential for trafficking vitamin A through the cytoplasm. However, the molecular details of ligand uptake and targeted release by CRBP1 remain unclear. Here we report the first structure of CRBP1 in a ligand-free form as well as ultra-high resolution structures of this protein bound to either all-trans-retinol or retinylamine, the latter a therapeutic retinoid that prevents light-induced retinal degeneration. Superpositioning of human apo- and holo-CRBP1 revealed major differences within segments surrounding the entrance to the retinoid-binding site. These included α-helix II and hairpin turns between β-strands βC-βD and βE-βF as well as several side chains, such as Phe-57, Tyr-60, and Ile-77, that change their orientations to accommodate the ligand. Additionally, we mapped hydrogen bond networks inside the retinoid-binding cavity and demonstrated their significance for the ligand affinity. Analyses of the crystallographic B-factors indicated several regions with higher backbone mobility in the apoprotein that became more rigid upon retinoid binding. This conformational flexibility of human apo-CRBP1 facilitates interaction with the ligands, whereas the more rigid holoprotein structure protects the labile retinoid moiety during vitamin A transport. These findings suggest a mechanism of induced fit upon ligand binding by mammalian cellular retinol-binding proteins.
Collapse
Affiliation(s)
| | | | - Sylwia Chelstowska
- From the Department of Pharmacology and the Laboratory of Hematology and Flow Cytometry, Department of Hematology, Military Institute of Medicine, Warsaw 04-141, Poland
| | - Philip D Kiser
- From the Department of Pharmacology and the Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106
| | - Surajit Banerjee
- the Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, and the Northeastern Collaborative Access Team, Argonne National Laboratory, Argonne, Illinois 60439
| | - Marcin Golczak
- From the Department of Pharmacology and the Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106,
| |
Collapse
|
42
|
Mezaki Y, Fujimi TJ, Senoo H, Matsuura T. The coordinated action of lecithin:retinol acyltransferase and cellular retinol-binding proteins for regulation of vitamin A esterification. Med Hypotheses 2016; 88:60-2. [PMID: 26880640 DOI: 10.1016/j.mehy.2016.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 01/20/2016] [Indexed: 11/25/2022]
Abstract
Vitamin A is a fat-soluble vitamin required for many physiological functions. The intracellular transport of vitamin A is assisted by proteins called cellular retinol-binding proteins (CRBP I/II). The absorption, storage and usage of vitamin A are regulated by a protein called lecithin:retinol acyltransferase (LRAT), a retinol-related enzyme that transfers an acyl group derived from an sn-1 position of phosphatidylcholine to retinol. LRAT is a member of the protein family which includes HRAS-like tumor suppressors (HRASLS). However, the HRASLS proteins never use retinol as an acyl acceptor. The mechanisms underlying the different substrate specificities between LRAT and HRASLS proteins are unknown. We propose in this report that LRAT physically interacts with CRBP and the LRAT-CRBP complex represents the binding pockets for both an acyl group and retinol, thus assuring the substrate specificity of LRAT.
Collapse
Affiliation(s)
- Yoshihiro Mezaki
- Department of Laboratory Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan.
| | - Takahiko J Fujimi
- Department of Laboratory Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan; Faculty of Health and Nutrition, Bunkyo University, 1100 Namegaya, Chigasaki, Kanagawa 253-8550, Japan
| | - Haruki Senoo
- Department of Cell Biology and Morphology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Tomokazu Matsuura
- Department of Laboratory Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
| |
Collapse
|
43
|
Zhang J, Dong Z, Mundla SR, Hu XE, Seibel W, Papoian R, Palczewski K, Golczak M. Expansion of first-in-class drug candidates that sequester toxic all-trans-retinal and prevent light-induced retinal degeneration. Mol Pharmacol 2014; 87:477-91. [PMID: 25538117 DOI: 10.1124/mol.114.096560] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
All-trans-retinal, a retinoid metabolite naturally produced upon photoreceptor light activation, is cytotoxic when present at elevated levels in the retina. To lower its toxicity, two experimentally validated methods have been developed involving inhibition of the retinoid cycle and sequestration of excess of all-trans-retinal by drugs containing a primary amine group. We identified the first-in-class drug candidates that transiently sequester this metabolite or slow down its production by inhibiting regeneration of the visual chromophore, 11-cis-retinal. Two enzymes are critical for retinoid recycling in the eye. Lecithin:retinol acyltransferase (LRAT) is the enzyme that traps vitamin A (all-trans-retinol) from the circulation and photoreceptor cells to produce the esterified substrate for retinoid isomerase (RPE65), which converts all-trans-retinyl ester into 11-cis-retinol. Here we investigated retinylamine and its derivatives to assess their inhibitor/substrate specificities for RPE65 and LRAT, mechanisms of action, potency, retention in the eye, and protection against acute light-induced retinal degeneration in mice. We correlated levels of visual cycle inhibition with retinal protective effects and outlined chemical boundaries for LRAT substrates and RPE65 inhibitors to obtain critical insights into therapeutic properties needed for retinal preservation.
Collapse
Affiliation(s)
- Jianye Zhang
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio (J.Z., Z.D., K.P., M.G.); Sreeni Laboratories Private Limited, Telangana, India (S.R.M.); Aroz Technologies LLC, Cincinnati, Ohio (X.E.H.); and Drug Discovery Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio (W.S., R.P.)
| | - Zhiqian Dong
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio (J.Z., Z.D., K.P., M.G.); Sreeni Laboratories Private Limited, Telangana, India (S.R.M.); Aroz Technologies LLC, Cincinnati, Ohio (X.E.H.); and Drug Discovery Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio (W.S., R.P.)
| | - Sreenivasa Reddy Mundla
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio (J.Z., Z.D., K.P., M.G.); Sreeni Laboratories Private Limited, Telangana, India (S.R.M.); Aroz Technologies LLC, Cincinnati, Ohio (X.E.H.); and Drug Discovery Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio (W.S., R.P.)
| | - X Eric Hu
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio (J.Z., Z.D., K.P., M.G.); Sreeni Laboratories Private Limited, Telangana, India (S.R.M.); Aroz Technologies LLC, Cincinnati, Ohio (X.E.H.); and Drug Discovery Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio (W.S., R.P.)
| | - William Seibel
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio (J.Z., Z.D., K.P., M.G.); Sreeni Laboratories Private Limited, Telangana, India (S.R.M.); Aroz Technologies LLC, Cincinnati, Ohio (X.E.H.); and Drug Discovery Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio (W.S., R.P.)
| | - Ruben Papoian
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio (J.Z., Z.D., K.P., M.G.); Sreeni Laboratories Private Limited, Telangana, India (S.R.M.); Aroz Technologies LLC, Cincinnati, Ohio (X.E.H.); and Drug Discovery Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio (W.S., R.P.)
| | - Krzysztof Palczewski
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio (J.Z., Z.D., K.P., M.G.); Sreeni Laboratories Private Limited, Telangana, India (S.R.M.); Aroz Technologies LLC, Cincinnati, Ohio (X.E.H.); and Drug Discovery Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio (W.S., R.P.)
| | - Marcin Golczak
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio (J.Z., Z.D., K.P., M.G.); Sreeni Laboratories Private Limited, Telangana, India (S.R.M.); Aroz Technologies LLC, Cincinnati, Ohio (X.E.H.); and Drug Discovery Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio (W.S., R.P.)
| |
Collapse
|