1
|
Fan J, Wei PL, Li Y, Zhang S, Ren Z, Li W, Yin WB. Developing filamentous fungal chassis for natural product production. BIORESOURCE TECHNOLOGY 2024; 415:131703. [PMID: 39477163 DOI: 10.1016/j.biortech.2024.131703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/09/2024] [Accepted: 10/23/2024] [Indexed: 11/07/2024]
Abstract
The growing demand for green and sustainable production of high-value chemicals has driven the interest in microbial chassis. Recent advances in synthetic biology and metabolic engineering have reinforced filamentous fungi as promising chassis cells to produce bioactive natural products. Compared to the most used model organisms, Escherichia coli and Saccharomyces cerevisiae, most filamentous fungi are natural producers of secondary metabolites and possess an inherent pre-mRNA splicing system and abundant biosynthetic precursors. In this review, we summarize recent advances in the application of filamentous fungi as chassis cells. Emphasis is placed on strategies for developing a filamentous fungal chassis, including the establishment of mature genetic manipulation and efficient genetic tools, the catalogue of regulatory elements, and the optimization of endogenous metabolism. Furthermore, we provide an outlook on the advanced techniques for further engineering and application of filamentous fungal chassis.
Collapse
Affiliation(s)
- Jie Fan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China.
| | - Peng-Lin Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; Medical School, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yuanyuan Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; Medical School, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shengquan Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Zedong Ren
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Wei Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Wen-Bing Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; Medical School, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
2
|
Fabian SJ, Steen CR, Damron FH, DeRiggi CA, Panaccione DG. A gene regulating ergot alkaloid biosynthesis in Metarhizium brunneum. Appl Environ Microbiol 2024; 90:e0105124. [PMID: 39329487 PMCID: PMC11497822 DOI: 10.1128/aem.01051-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
Ergot alkaloid synthesis (eas) gene clusters found in several fungi encode biosynthesis of agriculturally and pharmaceutically important ergot alkaloids. Although the biosynthetic genes of the ergot alkaloid pathway have been well characterized, regulation of those genes is unknown. We characterized a gene with sequence similarity to a putative transcription factor and that was found adjacent to the eas cluster of Metarhizium brunneum, a plant symbiont and insect pathogen. Function of the novel gene, easR, was explored by CRISPR-Cas9-derived gene knockouts. To maximize potential for ergot alkaloid accumulation, strains of M. brunneum were injected into larvae of the insect Galleria mellonella. Larvae infected with the wild type contained abundant ergot alkaloids, but those infected with easR knockouts lacked detectable ergot alkaloids. The easR knockout strains had significantly reduced or no detectable mRNA from eas cluster genes in RNAseq and qualitative RT-PCR analyses, whereas the wild-type strain contained abundant mRNA from all eas genes. These data demonstrate that the product of easR is required for ergot alkaloid accumulation and provide evidence that it has a role in the expression of ergot alkaloid biosynthesis genes. Larvae infected with an easR knockout survived significantly longer than those infected with the wild type (P < 0.0001), indicating a role for EasR, and indirectly confirming a role for ergot alkaloids, in the virulence of M. brunneum to insects. Homologs of easR were found associated with eas clusters of at least 15 other ergot alkaloid-producing fungi, indicating that EasR homologs may contribute to regulation of ergot alkaloid synthesis in additional fungi. IMPORTANCE Ergot alkaloids produced by several species of fungi are important as contaminants of food and feed in agriculture and also as the foundation of numerous pharmaceuticals prescribed for dementia, migraines, hyperprolactinemia, and several other disorders. Information on control of the ergot alkaloid pathway may contribute to strategies to limit their production in agricultural settings or increase their yield for pharmaceutical production. Our results demonstrate that a previously uncharacterized gene clustered with the ergot alkaloid synthesis genes is required for the sufficient transcription of the ergot alkaloid biosynthesis genes. This observation suggests the gene encodes a factor regulating transcription of those biosynthetic genes.
Collapse
Affiliation(s)
- Samantha J. Fabian
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, West Virginia, USA
| | - Chey R. Steen
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, West Virginia, USA
| | - F. Heath Damron
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Celeste A. DeRiggi
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, West Virginia, USA
| | - Daniel G. Panaccione
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
3
|
Katayama T, Jiang Y, Ozaki T, Oikawa H, Minami A, Maruyama JI. Subcellular compartmentalized localization of transmembrane proteins essential for production of fungal cyclic peptide cyclochlorotine. Biosci Biotechnol Biochem 2024; 88:1279-1288. [PMID: 39231809 DOI: 10.1093/bbb/zbae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
Fungal biosynthetic gene clusters often include genes encoding transmembrane proteins, which have been mostly thought to be transporters exporting the products. However, there is little knowledge about subcellular compartmentalization of transmembrane proteins essential for biosynthesis. Fungal mycotoxin cyclochlorotine is synthesized by non-ribosomal peptide synthetase, which is followed by modifications with three transmembrane UstYa-family proteins. Heterologous expression in Aspergillus oryzae revealed that total biosynthesis of cyclochlorotine requires additional two transporter proteins. Here, we investigated subcellular localizations of the five transmembrane proteins under heterologous expression in A. oryzae. Enhanced green fluorescent protein (EGFP) fusions to the transmembrane proteins, which were confirmed to normally function in cyclochlorotine production, were expressed together with organellar markers. All the transmembrane proteins exhibited localizations commonly in line of the trans-Golgi, endosomes, and vacuoles. This study suggests that subcellular compartmentalization of UstYa family proteins and transporters allows corporative functions of delivering intermediates and subsequent modifications, completing cyclochlorotine biosynthesis.
Collapse
Affiliation(s)
- Takuya Katayama
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yulu Jiang
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Taro Ozaki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Hideaki Oikawa
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
- Innovation Center of Marine Biotechnology and Pharmaceuticals, School of Biotechnology and Health Science, Wuyi University, Jiangmen, China
| | - Atsushi Minami
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
- Department of Chemistry, Tokyo Institute of Technology, Tokyo, Japan
| | - Jun-Ichi Maruyama
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
4
|
Su Z, Zhang Y, Yuan Z, Rao Y. Biosynthesis of Natural and Unnatural Perylenequinones for Drug Development. ChemMedChem 2024; 19:e202400295. [PMID: 38943237 DOI: 10.1002/cmdc.202400295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/01/2024]
Abstract
A wide range of perylenequinones (PQs) with diverse structures and versatile bioactivities have long been isolated, positioning them as highly promising agents for photodynamic therapy (PDT). However, the lack of an efficient and cost-effective method to obtain these compounds and to introduce structural diversity and complexity currently hinders their further research and application. In this concept, we present a comprehensive overview of the advancements in the biosynthetic pathways of natural PQs based on their structural classification, and also summarize recent progress in the biosynthesis of natural PQs and derivatives. These pioneering efforts may pave the way for structure modification and large-scale bioproduction of natural and unnatural PQs through synthetic biology strategies to promote their drug development.
Collapse
Affiliation(s)
- Zengping Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yan Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Zhenbo Yuan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China
| |
Collapse
|
5
|
Kortsinoglou AM, Wood MJ, Myridakis AI, Andrikopoulos M, Roussis A, Eastwood D, Butt T, Kouvelis VN. Comparative genomics of Metarhizium brunneum strains V275 and ARSEF 4556: unraveling intraspecies diversity. G3 (BETHESDA, MD.) 2024; 14:jkae190. [PMID: 39210673 PMCID: PMC11457142 DOI: 10.1093/g3journal/jkae190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
Entomopathogenic fungi belonging to the Order Hypocreales are renowned for their ability to infect and kill insect hosts, while their endophytic mode of life and the beneficial rhizosphere effects on plant hosts have only been recently recognized. Understanding the molecular mechanisms underlying their different lifestyles could optimize their potential as both biocontrol and biofertilizer agents, as well as the wider appreciation of niche plasticity in fungal ecology. This study describes the comprehensive whole genome sequencing and analysis of one of the most effective entomopathogenic and endophytic EPF strains, Metarhizium brunneum V275 (commercially known as Lalguard Met52), achieved through Nanopore and Illumina reads. Comparative genomics for exploring intraspecies variability and analyses of key gene sets were conducted with a second effective EPF strain, M. brunneum ARSEF 4556. The search for strain- or species-specific genes was extended to M. brunneum strain ARSEF 3297 and other species of genus Metarhizium, to identify molecular mechanisms and putative key genome adaptations associated with mode of life differences. Genome size differed significantly, with M. brunneum V275 having the largest genome amongst M. brunneum strains sequenced to date. Genome analyses revealed an abundance of plant-degrading enzymes, plant colonization-associated genes, and intriguing intraspecies variations regarding their predicted secondary metabolic compounds and the number and localization of Transposable Elements. The potential significance of the differences found between closely related endophytic and entomopathogenic fungi, regarding plant growth-promoting and entomopathogenic abilities, are discussed, enhancing our understanding of their diverse functionalities and putative applications in agriculture and ecology.
Collapse
Affiliation(s)
- Alexandra M Kortsinoglou
- Section of Genetics and Biotechnology, Department of Biology, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Martyn J Wood
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Singleton Park, SA2 8PP, Swansea, UK
| | - Antonis I Myridakis
- Section of Genetics and Biotechnology, Department of Biology, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Marios Andrikopoulos
- Section of Genetics and Biotechnology, Department of Biology, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Andreas Roussis
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Dan Eastwood
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Singleton Park, SA2 8PP, Swansea, UK
| | - Tariq Butt
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Singleton Park, SA2 8PP, Swansea, UK
| | - Vassili N Kouvelis
- Section of Genetics and Biotechnology, Department of Biology, National and Kapodistrian University of Athens, 15771 Athens, Greece
| |
Collapse
|
6
|
Surwase AJ, Thakur NL. Production of marine-derived bioactive peptide molecules for industrial applications: A reverse engineering approach. Biotechnol Adv 2024; 77:108449. [PMID: 39260778 DOI: 10.1016/j.biotechadv.2024.108449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 06/28/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
This review examines a wide range of marine microbial-derived bioactive peptide molecules, emphasizing the significance of reverse engineering in their production. The discussion encompasses the advancements in Marine Natural Products (MNPs) bio-manufacturing through the integration of omics-driven microbial engineering and bioinformatics. The distinctive features of non-ribosomally synthesised peptides (NRPs), and ribosomally synthesised precursor peptides (RiPP) biosynthesis is elucidated and presented. Additionally, the article delves into the origins of common peptide modifications. It highlights various genome mining approaches for the targeted identification of Biosynthetic Gene Clusters (BGCs) and novel RiPP and NRPs-derived peptides. The review aims to demonstrate the advancements, prospects, and obstacles in engineering both RiPP and NRP biosynthetic pathways.
Collapse
Affiliation(s)
- Akash J Surwase
- CSIR-National Institute of Oceanography, Dona Paula 403004, Goa, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Narsinh L Thakur
- CSIR-National Institute of Oceanography, Dona Paula 403004, Goa, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
7
|
Konkel Z, Kubatko L, Slot JC. CLOCI: unveiling cryptic fungal gene clusters with generalized detection. Nucleic Acids Res 2024; 52:e75. [PMID: 39016185 PMCID: PMC11381361 DOI: 10.1093/nar/gkae625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024] Open
Abstract
Gene clusters are genomic loci that contain multiple genes that are functionally and genetically linked. Gene clusters collectively encode diverse functions, including small molecule biosynthesis, nutrient assimilation, metabolite degradation, and production of proteins essential for growth and development. Identifying gene clusters is a powerful tool for small molecule discovery and provides insight into the ecology and evolution of organisms. Current detection algorithms focus on canonical 'core' biosynthetic functions many gene clusters encode, while overlooking uncommon or unknown cluster classes. These overlooked clusters are a potential source of novel natural products and comprise an untold portion of overall gene cluster repertoires. Unbiased, function-agnostic detection algorithms therefore provide an opportunity to reveal novel classes of gene clusters and more precisely define genome organization. We present CLOCI (Co-occurrence Locus and Orthologous Cluster Identifier), an algorithm that identifies gene clusters using multiple proxies of selection for coordinated gene evolution. Our approach generalizes gene cluster detection and gene cluster family circumscription, improves detection of multiple known functional classes, and unveils non-canonical gene clusters. CLOCI is suitable for genome-enabled small molecule mining, and presents an easily tunable approach for delineating gene cluster families and homologous loci.
Collapse
Affiliation(s)
- Zachary Konkel
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, USA
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Laura Kubatko
- Department of Ecology and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
- Department of Statistics, The Ohio State University, Columbus, OH 43210, USA
| | - Jason C Slot
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, USA
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
8
|
Rissi DV, Ijaz M, Baschien C. Comparative Genomics of Fungi in Nectriaceae Reveals Their Environmental Adaptation and Conservation Strategies. J Fungi (Basel) 2024; 10:632. [PMID: 39330392 PMCID: PMC11433043 DOI: 10.3390/jof10090632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
This study presents the first genome assembly of the freshwater saprobe fungus Neonectria lugdunensis and a comprehensive phylogenomics analysis of the Nectriaceae family, examining genomic traits according to fungal lifestyles. The Nectriaceae family, one of the largest in Hypocreales, includes fungi with significant ecological roles and economic importance as plant pathogens, endophytes, and saprobes. The phylogenomics analysis identified 2684 single-copy orthologs, providing a robust evolutionary framework for the Nectriaceae family. We analyzed the genomic characteristics of 17 Nectriaceae genomes, focusing on their carbohydrate-active enzymes (CAZymes), biosynthetic gene clusters (BGCs), and adaptations to environmental temperatures. Our results highlight the adaptation mechanisms of N. lugdunensis, emphasizing its capabilities for plant litter degradation and enzyme activity in varying temperatures. The comparative genomics of different Nectriaceae lifestyles revealed significant differences in genome size, gene content, repetitive elements, and secondary metabolite production. Endophytes exhibited larger genomes, more effector proteins, and BGCs, while plant pathogens had higher thermo-adapted protein counts, suggesting greater resilience to global warming. In contrast, the freshwater saprobe shows less adaptation to warmer temperatures and is important for conservation goals. This study underscores the importance of understanding fungal genomic adaptations to predict ecosystem impacts and conservation targets in the face of climate change.
Collapse
Affiliation(s)
- Daniel Vasconcelos Rissi
- Leibniz Institute-DSMZ, German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany
| | - Maham Ijaz
- Leibniz Institute-DSMZ, German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany
| | - Christiane Baschien
- Leibniz Institute-DSMZ, German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany
| |
Collapse
|
9
|
de Novaes MIC, Robertson C, Doyle VP, Burk D, Thomas-Sharma S. Distribution and Sequestration of Cercosporin by Cercospora cf. flagellaris. PHYTOPATHOLOGY 2024; 114:1822-1831. [PMID: 38700938 DOI: 10.1094/phyto-09-23-0310-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Plant-pathogenic fungi produce toxins as virulence factors in many plant diseases. In Cercospora leaf blight of soybean caused by Cercospora cf. flagellaris, symptoms are a consequence of the production of a perylenequinone toxin, cercosporin, which is light-activated to produce damaging reactive oxygen species. Cercosporin is universally toxic to cells, except to the cells of the producer. The current model of self-resistance to cercosporin is largely attributed to the maintenance of cercosporin in a chemically reduced state inside hyphae, unassociated with cellular organelles. However, in another perylenequinone-producing fungus, Phaeosphaeria sp., the toxin was specifically sequestered inside lipid droplets (LDs) to prevent reactive oxygen species production. This study hypothesized that LD-based sequestration of cercosporin occurred in C. cf. flagellaris and that lipid-inhibiting fungicides could inhibit toxin production. Confocal microscopy using light-cultured C. cf. flagellaris indicated that 3-day-old hyphae contained two forms of cercosporin distributed in two types of hyphae. Reduced cercosporin was uniformly distributed in the cytoplasm of thick, primary hyphae, and, contrary to previous studies, active cercosporin was observed specifically in the LDs of thin, secondary hyphae. The production of hyphae of two different thicknesses, a characteristic of hemibiotrophic plant pathogens, has not been documented in C. cf. flagellaris. No correlation was observed between cercosporin production and total lipid extracted, and two lipid-inhibiting fungicides had little effect on fungal growth in growth-inhibition assays. This study lays a foundation for exploring the importance of pathogen lifestyle, toxin production, and LD content in the pathogenicity and symptomology of Cercospora.
Collapse
Affiliation(s)
- Maria Izabel Costa de Novaes
- Department of Plant Pathology & Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803
| | - Clark Robertson
- Louisiana State University Agricultural Center, 20140 Iowa Street, Livingston, LA 70754
| | - Vinson P Doyle
- Department of Plant Pathology & Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803
| | - David Burk
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70803
| | - Sara Thomas-Sharma
- Department of Plant Pathology & Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803
| |
Collapse
|
10
|
Pawlowska TE. Symbioses between fungi and bacteria: from mechanisms to impacts on biodiversity. Curr Opin Microbiol 2024; 80:102496. [PMID: 38875733 PMCID: PMC11323152 DOI: 10.1016/j.mib.2024.102496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 05/20/2024] [Accepted: 05/31/2024] [Indexed: 06/16/2024]
Abstract
Symbiotic interactions between fungi and bacteria range from positive to negative. They are ubiquitous in free-living as well as host-associated microbial communities worldwide. Yet, the impact of fungal-bacterial symbioses on the organization and dynamics of microbial communities is uncertain. There are two reasons for this uncertainty: (1) knowledge gaps in the understanding of the genetic mechanisms underpinning fungal-bacterial symbioses and (2) prevailing interpretations of ecological theory that favor antagonistic interactions as drivers stabilizing biological communities despite the existence of models emphasizing contributions of positive interactions. This review synthesizes information on fungal-bacterial symbioses common in the free-living microbial communities of the soil as well as in host-associated polymicrobial biofilms. The interdomain partnerships are considered in the context of the relevant community ecology models, which are discussed critically.
Collapse
Affiliation(s)
- Teresa E Pawlowska
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
11
|
Boukouvala S, Kontomina E, Olbasalis I, Patriarcheas D, Tzimotoudis D, Arvaniti K, Manolias A, Tsatiri MA, Basdani D, Zekkas S. Insights into the genomic and functional divergence of NAT gene family to serve microbial secondary metabolism. Sci Rep 2024; 14:14905. [PMID: 38942826 PMCID: PMC11213898 DOI: 10.1038/s41598-024-65342-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/19/2024] [Indexed: 06/30/2024] Open
Abstract
Microbial NAT enzymes, which employ acyl-CoA to acylate aromatic amines and hydrazines, have been well-studied for their role in xenobiotic metabolism. Some homologues have also been linked to secondary metabolism, but this function of NAT enzymes is not as well-known. For this comparative study, we surveyed sequenced microbial genomes to update the list of formally annotated NAT genes, adding over 4000 new sequences (mainly bacterial, but also archaeal, fungal and protist) and portraying a broad but not universal distribution of NATs in the microbiocosmos. Localization of NAT sequences within microbial gene clusters was not a rare finding, and this association was evident across all main types of biosynthetic gene clusters (BGCs) implicated in secondary metabolism. Interrogation of the MIBiG database for experimentally characterized clusters with NAT genes further supports that secondary metabolism must be a major function for microbial NAT enzymes and should not be overlooked by researchers in the field. We also show that NAT sequences can be associated with bacterial plasmids potentially involved in horizontal gene transfer. Combined, our computational predictions and MIBiG literature findings reveal the extraordinary functional diversification of microbial NAT genes, prompting further research into their role in predicted BGCs with as yet uncharacterized function.
Collapse
Affiliation(s)
- Sotiria Boukouvala
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece.
| | - Evanthia Kontomina
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Ioannis Olbasalis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Dionysios Patriarcheas
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Dimosthenis Tzimotoudis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Konstantina Arvaniti
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Aggelos Manolias
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Maria-Aggeliki Tsatiri
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Dimitra Basdani
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Sokratis Zekkas
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| |
Collapse
|
12
|
Xiong F, Wei J, Zhou Y, Shao Y, Liu J, Chen F. Exploring the Subcellular Localization of Monascus Pigments Biosynthases: Preliminary Unraveling of the Compartmentalization Mechanism. J Fungi (Basel) 2024; 10:375. [PMID: 38921362 PMCID: PMC11205011 DOI: 10.3390/jof10060375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
Monascus pigments (MPs), a class of secondary metabolites produced by Monascus spp., can be classified into yellow, orange, and red MPs according to their differences in the wavelength of the maximum absorption. However, the biosynthetic sequence and cellular biosynthesis mechanism of different MPs components are still not yet completely clear in Monascus spp. In this study, the subcellular localization of five MPs synthases was investigated using fluorescent protein fusion expression. The results revealed that the proteins encoded by the MPs biosynthetic gene cluster were compartmentalized in various subcellular locations, including the mitochondrial polyketide synthase MrPigA, cytosolic enzymes consisting of the ketoreductase MrPigC, the oxidoreductase MrPigE, and the monooxygenase MrPigN, and the cell-wall-bound oxidoreductase MrPigF. Moreover, the correct localization of MrPigF to the cell wall was crucial for the synthesis of orange MPs. Lastly, we discussed the compartmentalized biosynthetic pathway of MPs. This study will not only be helpful in clarifying the biosynthetic sequence and biosynthesis mechanism of different MPs but also provides new insights into the cellular biosynthesis of secondary metabolites in filamentous fungi.
Collapse
Affiliation(s)
- Fei Xiong
- National Key Laboratory of Agricultural Microbiology, Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingyi Wei
- National Key Laboratory of Agricultural Microbiology, Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Youxiang Zhou
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-Products, Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Yanchun Shao
- National Key Laboratory of Agricultural Microbiology, Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiao Liu
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-Products, Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Fusheng Chen
- National Key Laboratory of Agricultural Microbiology, Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
13
|
Pham MT, Yang FL, Liu IC, Liang PH, Lin HC. Non-Heme Iron Enzymes Catalyze Heterobicyclic and Spirocyclic Isoquinolone Core Formation in Piperazine Alkaloid Biosynthesis. Angew Chem Int Ed Engl 2024; 63:e202401324. [PMID: 38499463 DOI: 10.1002/anie.202401324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 03/20/2024]
Abstract
We report the discovery and biosynthesis of new piperazine alkaloids-arizonamides, and their derived compounds-arizolidines, featuring heterobicyclic and spirocyclic isoquinolone skeletons, respectively. Their biosynthetic pathway involves two crucial non-heme iron enzymes, ParF and ParG, for core skeleton construction. ParF has a dual function facilitating 2,3-alkene formation of helvamide, as a substrate for ParG, and oxidative cleavage of piperazine. Notably, ParG exhibits catalytic versatility in multiple oxidative reactions, including cyclization and ring reconstruction. A key amino acid residue Phe67 was characterized to control the formation of the constrained arizonamide B backbone by ParG.
Collapse
Affiliation(s)
- Mai-Truc Pham
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan R.O.C
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan R.O.C
- Department of Chemistry, National Tsing Hua University, Hsinchu, 300, Taiwan R.O.C
| | - Feng-Ling Yang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan R.O.C
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan R.O.C
| | - I-Chen Liu
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan R.O.C
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan R.O.C
| | - Po-Huang Liang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan R.O.C
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan R.O.C
| | - Hsiao-Ching Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan R.O.C
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan R.O.C
| |
Collapse
|
14
|
Geris R, Teles de Jesus VE, Ferreira da Silva A, Malta M. Exploring Culture Media Diversity to Produce Fungal Secondary Metabolites and Cyborg Cells. Chem Biodivers 2024; 21:e202302066. [PMID: 38335028 DOI: 10.1002/cbdv.202302066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/12/2024]
Abstract
Fungi are microorganisms of significant biotechnological importance due to their ability to provide food and produce several value-added secondary metabolites and enzymes. Its products move billions of dollars in the pharmaceutical, cosmetics, and additives sectors. These microorganisms also play a notable role in bionanotechnology, leading to the production of hybrid biological-inorganic materials (such as cyborg cells) and the use of their enzyme complex in the biosynthesis of nanoparticles. In this sense, optimizing the fungal growth process is necessary, with selecting the cultivation medium as one of the essential factors for the microorganism to reach its maximum metabolic expression. The culture medium's composition can also impact the nanomaterial's stability and prevent the incorporation of nanoparticles into fungal cells. Therefore, our main objectives are the following: (1) compile and discuss the most commonly employed culture media for the production of fungal secondary metabolites and the formation of cyborg cells, accompanied by preparation methods; (2) provide a six-step guide to investigating the fungal metabolomic profile and (3) discuss the main procedures of microbial cultivation to produce fungal cyborg cells.
Collapse
Affiliation(s)
- Regina Geris
- Laboratório de Biotecnologia e Química de Microrganismos (LBQM), Departamento de Química Orgânica, Instituto de Química, Universidade Federal da Bahia, Rua Barão de Jeremoabo S/n, 40170-115, Salvador, Brasil
| | - Vitória Evelyn Teles de Jesus
- Laboratório de Biotecnologia e Química de Microrganismos (LBQM), Departamento de Química Orgânica, Instituto de Química, Universidade Federal da Bahia, Rua Barão de Jeremoabo S/n, 40170-115, Salvador, Brasil
| | - Antonio Ferreira da Silva
- Laboratório de Biotecnologia e Química de Microrganismos (LBQM), Departamento de Química Orgânica, Instituto de Química, Universidade Federal da Bahia, Rua Barão de Jeremoabo S/n, 40170-115, Salvador, Brasil
| | - Marcos Malta
- Laboratório de Biotecnologia e Química de Microrganismos (LBQM), Departamento de Química Orgânica, Instituto de Química, Universidade Federal da Bahia, Rua Barão de Jeremoabo S/n, 40170-115, Salvador, Brasil
| |
Collapse
|
15
|
Martín JF, Liras P. Targeting of Specialized Metabolites Biosynthetic Enzymes to Membranes and Vesicles by Posttranslational Palmitoylation: A Mechanism of Non-Conventional Traffic and Secretion of Fungal Metabolites. Int J Mol Sci 2024; 25:1224. [PMID: 38279221 PMCID: PMC10816013 DOI: 10.3390/ijms25021224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/30/2023] [Accepted: 01/09/2024] [Indexed: 01/28/2024] Open
Abstract
In nature, the formation of specialized (secondary) metabolites is associated with the late stages of fungal development. Enzymes involved in the biosynthesis of secondary metabolites in fungi are located in distinct subcellular compartments including the cytosol, peroxisomes, endosomes, endoplasmic reticulum, different types of vesicles, the plasma membrane and the cell wall space. The enzymes traffic between these subcellular compartments and the secretion through the plasma membrane are still unclear in the biosynthetic processes of most of these metabolites. Recent reports indicate that some of these enzymes initially located in the cytosol are later modified by posttranslational acylation and these modifications may target them to membrane vesicle systems. Many posttranslational modifications play key roles in the enzymatic function of different proteins in the cell. These modifications are very important in the modulation of regulatory proteins, in targeting of proteins, intracellular traffic and metabolites secretion. Particularly interesting are the protein modifications by palmitoylation, prenylation and miristoylation. Palmitoylation is a thiol group-acylation (S-acylation) of proteins by palmitic acid (C16) that is attached to the SH group of a conserved cysteine in proteins. Palmitoylation serves to target acylated proteins to the cytosolic surface of cell membranes, e.g., to the smooth endoplasmic reticulum, whereas the so-called toxisomes are formed in trichothecene biosynthesis. Palmitoylation of the initial enzymes involved in the biosynthesis of melanin serves to target them to endosomes and later to the conidia, whereas other non-palmitoylated laccases are secreted directly by the conventional secretory pathway to the cell wall space where they perform the last step(s) of melanin biosynthesis. Six other enzymes involved in the biosynthesis of endocrosin, gliotoxin and fumitremorgin believed to be cytosolic are also targeted to vesicles, although it is unclear if they are palmitoylated. Bioinformatic analysis suggests that palmitoylation may be frequent in the modification and targeting of polyketide synthetases and non-ribosomal peptide synthetases. The endosomes may integrate other small vesicles with different cargo proteins, forming multivesicular bodies that finally fuse with the plasma membrane during secretion. Another important effect of palmitoylation is that it regulates calcium metabolism by posttranslational modification of the phosphatase calcineurin. Mutants defective in the Akr1 palmitoyl transferase in several fungi are affected in calcium transport and homeostasis, thus impacting on the biosynthesis of calcium-regulated specialized metabolites. The palmitoylation of secondary metabolites biosynthetic enzymes and their temporal distribution respond to the conidiation signaling mechanism. In summary, this posttranslational modification drives the spatial traffic of the biosynthetic enzymes between the subcellular organelles and the plasma membrane. This article reviews the molecular mechanism of palmitoylation and the known fungal palmitoyl transferases. This novel information opens new ways to improve the biosynthesis of the bioactive metabolites and to increase its secretion in fungi.
Collapse
Affiliation(s)
- Juan F. Martín
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain;
| | | |
Collapse
|
16
|
Bradshaw AJ, Ramírez-Cruz V, Awan AR, Furci G, Guzmán-Dávalos L, Dentinger BTM. Phylogenomics of the psychoactive mushroom genus Psilocybe and evolution of the psilocybin biosynthetic gene cluster. Proc Natl Acad Sci U S A 2024; 121:e2311245121. [PMID: 38194448 PMCID: PMC10801892 DOI: 10.1073/pnas.2311245121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/28/2023] [Indexed: 01/11/2024] Open
Abstract
Psychoactive mushrooms in the genus Psilocybe have immense cultural value and have been used for centuries in Mesoamerica. Despite the recent surge of interest in these mushrooms due to the psychotherapeutic potential of their natural alkaloid psilocybin, their phylogeny and taxonomy remain substantially incomplete. Moreover, the recent elucidation of the psilocybin biosynthetic gene cluster is known for only five of ~165 species of Psilocybe, four of which belong to only one of two major clades. We set out to improve the phylogeny of Psilocybe using shotgun sequencing of fungarium specimens, from which we obtained 71 metagenomes including from 23 types, and conducting phylogenomic analysis of 2,983 single-copy gene families to generate a fully supported phylogeny. Molecular clock analysis suggests the stem lineage of Psilocybe arose ~67 mya and diversified ~56 mya. We also show that psilocybin biosynthesis first arose in Psilocybe, with 4 to 5 possible horizontal transfers to other mushrooms between 40 and 9 mya. Moreover, predicted orthologs of the psilocybin biosynthetic genes revealed two distinct gene orders within the biosynthetic gene cluster that corresponds to a deep split within the genus, possibly a signature of two independent acquisitions of the cluster within Psilocybe.
Collapse
Affiliation(s)
- Alexander J. Bradshaw
- School of Biological Sciences, University of Utah, Salt Lake City, UT84112
- Natural History Museum of Utah, Collections and Research, University of Utah, Salt Lake City, UT84108
| | - Virginia Ramírez-Cruz
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), Departamento de Botánica y Zoología, Universidad de Guadalajara, Zapopan45147, Mexico
| | - Ali R. Awan
- Genomics Innovation Unit, Guy’s and St.Thomas’ NHS Foundation Trust, St Thomas’ Hospital, LondonSE1 7EH, United Kingdom
| | | | - Laura Guzmán-Dávalos
- Departamento de Botánica y Zoología, Universidad de Guadalajara, Zapopan45147, Mexico
| | - Bryn T. M. Dentinger
- School of Biological Sciences, University of Utah, Salt Lake City, UT84112
- Natural History Museum of Utah, Collections and Research, University of Utah, Salt Lake City, UT84108
| |
Collapse
|
17
|
Fu R, Sun W, Liu B, Sun J, Wu Q, Liu X, Xiang M. Genome and transcriptome reveal lithophilic adaptation of Cladophialophora brunneola, a new rock-inhabiting fungus. Mycology 2024; 14:326-343. [PMID: 38187882 PMCID: PMC10769131 DOI: 10.1080/21501203.2023.2256764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/04/2023] [Indexed: 01/09/2024] Open
Abstract
Rock-inhabiting fungi (RIF) are slow-growing microorganisms that inhabit rocks and exhibit exceptional stress tolerance owing to their thick melanised cell walls. This study reports the identification of a novel rock-inhabiting fungus, Cladophialophora brunneola sp. nov. which was isolated from a karst landform in Guizhou, China, using a combination of morphological and phylogenetic analyses. The genome of C. brunneola was sequenced and assembled, with a total size of approximately 33.8 Mb, encoding 14,168 proteins and yielding an N50 length of 1.88 Mb. C. brunneola possessed a larger proportion of species-specific genes, and phylogenomic analysis positioned it in an early diverged lineage within Chaetothyriales. In comparison to non-RIF, C. brunneola displayed reduction in carbohydrate-active enzyme families (CAZymes) and secondary metabolite biosynthetic gene clusters (BGCs). Transcriptome analysis conducted under PEG-induced drought stress revealed elevated expression levels of genes associated with melanin synthesis pathways, cell wall biosynthesis, and lipid metabolism. This study contributes to our understanding of the genomic evolution and polyextremotolerance exhibited by rock-inhabiting fungi.
Collapse
Affiliation(s)
- Rong Fu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Sun
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Bingjie Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jingzu Sun
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Qi Wu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xingzhong Liu
- Department of Microbiology, College of Life Science, Nankai University, Tianjin, China
| | - Meichun Xiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Alves de Castro P, Figueiredo Pinzan C, Dos Reis TF, Valero C, Van Rhijn N, Menegatti C, de Freitas Migliorini IL, Bromley M, Fleming AB, Traynor AM, Sarikaya-Bayram Ö, Bayram Ö, Malavazi I, Ebel F, Barbosa JCJ, Fill T, Pupo MT, Goldman GH. Aspergillus fumigatus mitogen-activated protein kinase MpkA is involved in gliotoxin production and self-protection. Nat Commun 2024; 15:33. [PMID: 38167253 PMCID: PMC10762094 DOI: 10.1038/s41467-023-44329-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
Aspergillus fumigatus is a saprophytic fungus that can cause a variety of human diseases known as aspergillosis. Mycotoxin gliotoxin (GT) production is important for its virulence and must be tightly regulated to avoid excess production and toxicity to the fungus. GT self-protection by GliT oxidoreductase and GtmA methyltransferase activities is related to the subcellular localization of these enzymes and how GT can be sequestered from the cytoplasm to avoid increased cell damage. Here, we show that GliT:GFP and GtmA:GFP are localized in the cytoplasm and in vacuoles during GT production. The Mitogen-Activated Protein kinase MpkA is essential for GT production and self-protection, interacts physically with GliT and GtmA and it is necessary for their regulation and subsequent presence in the vacuoles. The sensor histidine kinase SlnASln1 is important for modulation of MpkA phosphorylation. Our work emphasizes the importance of MpkA and compartmentalization of cellular events for GT production and self-defense.
Collapse
Affiliation(s)
- Patrícia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Camila Figueiredo Pinzan
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Thaila Fernanda Dos Reis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Clara Valero
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Manchester Fungal Infection Group, Division of Evolution, Infection and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Norman Van Rhijn
- Manchester Fungal Infection Group, Division of Evolution, Infection and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Carla Menegatti
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | - Michael Bromley
- Manchester Fungal Infection Group, Division of Evolution, Infection and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Alastair B Fleming
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Aimee M Traynor
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | | | - Özgür Bayram
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.
| | - Iran Malavazi
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Frank Ebel
- Institut für Infektionsmedizin und Zoonosen, Medizinische Fakultät, LMU, 80539, München, Germany
| | | | - Taícia Fill
- Instituto de Química, Universidade Estadual de Campinas, Campinas, Brazil
| | - Monica Tallarico Pupo
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
19
|
Xue M, Hou X, Gu G, Dong J, Yang Y, Pan X, Zhang X, Xu D, Lai D, Zhou L. Activation of Ustilaginoidin Biosynthesis Gene uvpks1 in Villosiclava virens Albino Strain LN02 Influences Development, Stress Responses, and Inhibition of Rice Seed Germination. J Fungi (Basel) 2023; 10:31. [PMID: 38248941 PMCID: PMC10817433 DOI: 10.3390/jof10010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Villosiclava virens (anamorph: Ustilaginoidea virens) is the pathogen of rice false smut (RFS), which is a destructive rice fungal disease. The albino strain LN02 is a natural white-phenotype mutant of V. virens due to its incapability to produce toxic ustilaginoidins. In this study, three strains including the normal strain P1, albino strain LN02, and complemented strain uvpks1C-1 of the LN02 strain were employed to investigate the activation of the ustilaginoidin biosynthesis gene uvpks1 in the albino strain LN02 to influence sporulation, conidia germination, pigment production, stress responses, and the inhibition of rice seed germination. The activation of the ustilaginoidin biosynthesis gene uvpks1 increased fungal tolerances to NaCl-induced osmotic stress, Congo-red-induced cell wall stress, SDS-induced cell membrane stress, and H2O2-induced oxidative stress. The activation of uvpks1 also increased sporulation, conidia germination, pigment production, and the inhibition of rice seed germination. In addition, the activation of uvpks1 was able to increase the mycelial growth of the V. virens albino strain LN02 at 23 °C and a pH from 5.5 to 7.5. The findings help in understanding the effects of the activation of uvpks1 in albino strain LN02 on development, pigment production, stress responses, and the inhibition of rice seed germination by controlling ustilaginoidin biosynthesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ligang Zhou
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (M.X.); (X.H.); (G.G.); (J.D.); (Y.Y.); (X.P.); (X.Z.); (D.X.); (D.L.)
| |
Collapse
|
20
|
Dunbar KL, Perlatti B, Liu N, Cornelius A, Mummau D, Chiang YM, Hon L, Nimavat M, Pallas J, Kordes S, Ng HL, Harvey CJB. Resistance gene-guided genome mining reveals the roseopurpurins as inhibitors of cyclin-dependent kinases. Proc Natl Acad Sci U S A 2023; 120:e2310522120. [PMID: 37983497 PMCID: PMC10691236 DOI: 10.1073/pnas.2310522120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/09/2023] [Indexed: 11/22/2023] Open
Abstract
With the significant increase in the availability of microbial genome sequences in recent years, resistance gene-guided genome mining has emerged as a powerful approach for identifying natural products with specific bioactivities. Here, we present the use of this approach to reveal the roseopurpurins as potent inhibitors of cyclin-dependent kinases (CDKs), a class of cell cycle regulators implicated in multiple cancers. We identified a biosynthetic gene cluster (BGC) with a putative resistance gene with homology to human CDK2. Using targeted gene disruption and transcription factor overexpression in Aspergillus uvarum, and heterologous expression of the BGC in Aspergillus nidulans, we demonstrated that roseopurpurin C (1) is produced by this cluster and characterized its biosynthesis. We determined the potency, specificity, and mechanism of action of 1 as well as multiple intermediates and shunt products produced from the BGC. We show that 1 inhibits human CDK2 with a Kiapp of 44 nM, demonstrates selectivity for clinically relevant members of the CDK family, and induces G1 cell cycle arrest in HCT116 cells. Structural analysis of 1 complexed with CDK2 revealed the molecular basis of ATP-competitive inhibition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Sina Kordes
- Proteros Biostructures GmbH, PlaneggD-82152, Germany
| | | | | |
Collapse
|
21
|
Nguyen TP, Fang M, Kim J, Wang B, Lin E, Khivansara V, Barrows N, Rivera-Cancel G, Goralski M, Cervantes CL, Xie S, Peterson JM, Povedano JM, Antczak MI, Posner BA, Harvey CJB, Naughton BT, McFadden DG, Ready JM, De Brabander JK, Nijhawan D. Inducible mismatch repair streamlines forward genetic approaches to target identification of cytotoxic small molecules. Cell Chem Biol 2023; 30:1453-1467.e8. [PMID: 37607550 PMCID: PMC10841267 DOI: 10.1016/j.chembiol.2023.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/24/2023] [Accepted: 07/30/2023] [Indexed: 08/24/2023]
Abstract
Orphan cytotoxins are small molecules for which the mechanism of action (MoA) is either unknown or ambiguous. Unveiling the mechanism of these compounds may lead to useful tools for biological investigation and new therapeutic leads. In selected cases, the DNA mismatch repair-deficient colorectal cancer cell line, HCT116, has been used as a tool in forward genetic screens to identify compound-resistant mutations, which have ultimately led to target identification. To expand the utility of this approach, we engineered cancer cell lines with inducible mismatch repair deficits, thus providing temporal control over mutagenesis. By screening for compound resistance phenotypes in cells with low or high rates of mutagenesis, we increased both the specificity and sensitivity of identifying resistance mutations. Using this inducible mutagenesis system, we implicate targets for multiple orphan cytotoxins, including a natural product and compounds emerging from a high-throughput screen, thus providing a robust tool for future MoA studies.
Collapse
Affiliation(s)
- Thu P Nguyen
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, Program in Molecular Medicine and Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Min Fang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jiwoong Kim
- Quantitative Biomedical Research Center, Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Baiyun Wang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, Program in Molecular Medicine and Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Elisa Lin
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, Program in Molecular Medicine and Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vishal Khivansara
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, Program in Molecular Medicine and Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Neha Barrows
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, Program in Molecular Medicine and Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Giomar Rivera-Cancel
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, Program in Molecular Medicine and Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Maria Goralski
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, Program in Molecular Medicine and Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Christopher L Cervantes
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, Program in Molecular Medicine and Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shanhai Xie
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, Program in Molecular Medicine and Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Johann M Peterson
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, Program in Molecular Medicine and Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Juan Manuel Povedano
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, Program in Molecular Medicine and Division of Endocrinology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Monika I Antczak
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bruce A Posner
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | - David G McFadden
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, Program in Molecular Medicine and Division of Endocrinology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joseph M Ready
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jef K De Brabander
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Deepak Nijhawan
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, Program in Molecular Medicine and Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
22
|
Zhang S, Yang W, Chen J, Zhang C, Zhang S, Gao L. Whole genome sequencing and annotation of Scleroderma yunnanense, the only edible Scleroderma species. Genomics 2023; 115:110727. [PMID: 37839651 DOI: 10.1016/j.ygeno.2023.110727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/18/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Scleroderma yunnanense, an ectomycorrhizal fungus, is a popular edible mushroom within the Yunnan Province of Southwest China that holds great ecological and economic implications. However, despite its significance, there remains limited information about this species. Therefore, we sequenced S. yunnanense genome to identify the functional genes of S. yunnanense involved in secondary metabolite and carbohydrate production pathways. First, we present the 40.43 Mb high-quality reference genome for S. yunnanense, distributed across 35 contigs; moreover, the N50 contig size was found to reach 3.31 Mb and contained 8877 functional genes. Finally, genome annotation was conducted to compare the functional genes of S. yunnanense with protein sequences from different publicly available databases. Taken together, we identified 12 biosynthetic gene clusters across 10 contigs; among these were 13 key mevalonate (MVA) pathway enzymes, a key tyrosinase enzyme in the 3,4-dihydroxyphenylalanine (DOPA) pathway that is responsible for producing DOPA melanins, and 16 enzymes involved in uridine diphosphate glucose biosynthesis. Overall, this study presents the first genome assembly and annotation of S. yunnanense; ultimately, this information will be important in the elucidation of the biological activities and artificial domestication of this fungus.
Collapse
Affiliation(s)
- Shanshan Zhang
- Key Laboratory of Rare and Endangered Forest Plants of State Forestry and Grassland Administration, Yunnan Academy of Forestry and Grassland, Kunming 650201, China.
| | - Wenzhong Yang
- Key Laboratory of Rare and Endangered Forest Plants of State Forestry and Grassland Administration, Yunnan Academy of Forestry and Grassland, Kunming 650201, China
| | - Jian Chen
- Key Laboratory of Rare and Endangered Forest Plants of State Forestry and Grassland Administration, Yunnan Academy of Forestry and Grassland, Kunming 650201, China.
| | - Chuanguang Zhang
- Key Laboratory of Rare and Endangered Forest Plants of State Forestry and Grassland Administration, Yunnan Academy of Forestry and Grassland, Kunming 650201, China.
| | - Siqi Zhang
- Wenshan Prefecture Central Blood Station, Yunnan 663099, China
| | - Lanjing Gao
- College of Forestry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
23
|
Jesmin R, Cary JW, Lebar MD, Majumdar R, Gummadidala PM, Dias T, Chandler S, Basu P, Decho AW, Keller NP, Chanda A. Vibrio gazogenes-dependent disruption of aflatoxin biosynthesis in Aspergillus flavus: the connection with endosomal uptake and hyphal morphogenesis. Front Microbiol 2023; 14:1208961. [PMID: 37744918 PMCID: PMC10516221 DOI: 10.3389/fmicb.2023.1208961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/07/2023] [Indexed: 09/26/2023] Open
Abstract
Aflatoxins, a family of fungal secondary metabolites, are toxic and carcinogenic compounds that pose an enormous threat to global food safety and agricultural sustainability. Specifically agricultural products in African, Southeast Asian and hot and humid regions of American countries suffer most damage from aflatoxin producing molds due to the ideal climate conditions promoting their growth. Our recent studies suggest that Vibrio gazogenes (Vg), an estuarine bacterium non-pathogenic to plants and humans, can significantly inhibit aflatoxin biosynthesis in the producers. In this study, we investigated the mechanism underlying Vg-dependent aflatoxin inhibition using the prominent aflatoxin producer, Aspergillus flavus. We show that aflatoxin inhibition upon Vg treatment was associated with fungal uptake of Vg-prodigiosin, a red pigment, which was consistently visible inside fungal hyphae during treatment. The association of prodigiosin with aflatoxin inhibition was further evident as Serratia marcescens, another prodigiosin producer, significantly inhibited aflatoxin, while non-producers like Escherichia coli, Staphylococcus aureus, Vibrio harveyi, and Vibrio fischeri did not. Also, pure prodigiosin significantly inhibited aflatoxin biosynthesis. Endocytosis inhibitors, filipin and natamycin, reduced the Vg-prodigiosin uptake by the fungus leading to a significant increase in aflatoxin production, suggesting that uptake is endocytosis-dependent. The Vg treatment also reduced hyphal fusion (>98% inhibition) and branching, which are both endosome-dependent processes. Our results, therefore, collectively support our theory that Vg-associated aflatoxin inhibition is mediated by an endocytosis-dependent uptake of Vg-prodigiosin, which possibly leads to a disruption of normal endosomal functions.
Collapse
Affiliation(s)
| | - Jeffrey W. Cary
- Food and Feed Safety Research Unit, USDA/ARS, Southern Regional Research Center, New Orleans, LA, United States
| | - Matthew D. Lebar
- Food and Feed Safety Research Unit, USDA/ARS, Southern Regional Research Center, New Orleans, LA, United States
| | - Rajtilak Majumdar
- Northwest Irrigation and Soils Research, United States Department of Agriculture, Kimberly, ID, United States
| | - Phani M. Gummadidala
- University of North Carolina School of Medicine, Chapell Hill, NC, United States
| | - Travis Dias
- University of South Carolina School of Medicine, Greenville, NC, United States
| | - Savannah Chandler
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, United States
| | - Paramita Basu
- New York College of Podiatric Medicine, New York, NY, United States
| | - Alan W. Decho
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, United States
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, United States
| | | |
Collapse
|
24
|
Boruta T. Computation-aided studies related to the induction of specialized metabolite biosynthesis in microbial co-cultures: An introductory overview. Comput Struct Biotechnol J 2023; 21:4021-4029. [PMID: 37649711 PMCID: PMC10462793 DOI: 10.1016/j.csbj.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 09/01/2023] Open
Abstract
Co-cultivation is an effective method of inducing the production of specialized metabolites (SMs) in microbial strains. By mimicking the ecological interactions that take place in natural environment, this approach enables to trigger the biosynthesis of molecules which are not formed under monoculture conditions. Importantly, microbial co-cultivation may lead to the discovery of novel chemical entities of pharmaceutical interest. The experimental efforts aimed at the induction of SMs are greatly facilitated by computational techniques. The aim of this overview is to highlight the relevance of computational methods for the investigation of SM induction via microbial co-cultivation. The concepts related to the induction of SMs in microbial co-cultures are briefly introduced by addressing four areas associated with the SM induction workflows, namely the detection of SMs formed exclusively under co-culture conditions, the annotation of induced SMs, the identification of SM producer strains, and the optimization of fermentation conditions. The computational infrastructure associated with these areas, including the tools of multivariate data analysis, molecular networking, genome mining and mathematical optimization, is discussed in relation to the experimental results described in recent literature. The perspective on the future developments in the field, mainly in relation to the microbiome-related research, is also provided.
Collapse
Affiliation(s)
- Tomasz Boruta
- Lodz University of Technology, Faculty of Process and Environmental Engineering, Department of Bioprocess Engineering, ul. Wólczańska 213, 93-005 Łódź, Poland
| |
Collapse
|
25
|
Zhuo R, Chen Y, Xing M, Zhang Z, Tian S, Li B. Ena Proteins Respond to PacC-Mediated pH Signaling Pathway and Play a Crucial Role in Patulin Biosynthesis. J Fungi (Basel) 2023; 9:806. [PMID: 37623577 PMCID: PMC10455529 DOI: 10.3390/jof9080806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023] Open
Abstract
Penicillium expansum is a main producer of patulin that causes severe postharvest decay and food safety issues in the fruit industry. Development, pathogenicity, and patulin production of P. expansum are strongly influenced by the PacC-pH signaling pathway. Global transcription factor PacC regulates various fungal biological processes through a complicated molecular network. In the present study, three Ena family genes (PeEnas), PeEnaA, PeEnaB, and PeEnaC, as important downstream targets of PePacC, were identified in P. expansum. Deletion of PeEnaA, PeEnaB, and PeEnaC showed little effect on mycelial growth under alkaline or high salinity conditions, but double and triple deletion of these genes impaired the virulence of P. expansum on apple fruit. Notably, patulin biosynthesis of P. expansum was distinctly inhibited in the deletion mutants of PeEnas. PeEnas regulated expressions of the patulin gene cluster, AP1, CreA, Sge1, and Hog1 at the transcriptional level and played roles in maintaining membrane potential. Overexpression of PeEnaC in ΔPePacC restored the patulin production defect of ΔPePacC. Our results indicated that, as downstream targets of PePacC, the PeEna family proteins play a crucial role in patulin biosynthesis in P. expansum.
Collapse
Affiliation(s)
- Ruiling Zhuo
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Mengyang Xing
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanquan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, Beijing 100093, China
| |
Collapse
|
26
|
Zhgun AA. Fungal BGCs for Production of Secondary Metabolites: Main Types, Central Roles in Strain Improvement, and Regulation According to the Piano Principle. Int J Mol Sci 2023; 24:11184. [PMID: 37446362 PMCID: PMC10342363 DOI: 10.3390/ijms241311184] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Filamentous fungi are one of the most important producers of secondary metabolites. Some of them can have a toxic effect on the human body, leading to diseases. On the other hand, they are widely used as pharmaceutically significant drugs, such as antibiotics, statins, and immunosuppressants. A single fungus species in response to various signals can produce 100 or more secondary metabolites. Such signaling is possible due to the coordinated regulation of several dozen biosynthetic gene clusters (BGCs), which are mosaically localized in different regions of fungal chromosomes. Their regulation includes several levels, from pathway-specific regulators, whose genes are localized inside BGCs, to global regulators of the cell (taking into account changes in pH, carbon consumption, etc.) and global regulators of secondary metabolism (affecting epigenetic changes driven by velvet family proteins, LaeA, etc.). In addition, various low-molecular-weight substances can have a mediating effect on such regulatory processes. This review is devoted to a critical analysis of the available data on the "turning on" and "off" of the biosynthesis of secondary metabolites in response to signals in filamentous fungi. To describe the ongoing processes, the model of "piano regulation" is proposed, whereby pressing a certain key (signal) leads to the extraction of a certain sound from the "musical instrument of the fungus cell", which is expressed in the production of a specific secondary metabolite.
Collapse
Affiliation(s)
- Alexander A Zhgun
- Group of Fungal Genetic Engineering, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Leninsky Prosp. 33-2, 119071 Moscow, Russia
| |
Collapse
|
27
|
Trentin G, Bitencourt TA, Guedes A, Pessoni AM, Brauer VS, Pereira AK, Costa JH, Fill TP, Almeida F. Mass Spectrometry Analysis Reveals Lipids Induced by Oxidative Stress in Candida albicans Extracellular Vesicles. Microorganisms 2023; 11:1669. [PMID: 37512842 PMCID: PMC10383470 DOI: 10.3390/microorganisms11071669] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 07/30/2023] Open
Abstract
Candida albicans is a commensal fungus in healthy humans that causes infection in immunocompromised individuals through the secretion of several virulence factors. The successful establishment of infection is owing to elaborate strategies to cope with defensive molecules secreted by the host, including responses toward oxidative stress. Extracellular vesicle (EV) release is considered an alternative to the biomolecule secretory mechanism that favors fungal interactions with the host cells. During candidiasis establishment, the host environment becomes oxidative, and it impacts EV release and cargo. To simulate the host oxidative environment, we added menadione (an oxidative stress inducer) to the culture medium, and we explored C. albicans EV metabolites by metabolomics analysis. This study characterized lipidic molecules transported to an extracellular milieu by C. albicans after menadione exposure. Through Liquid Chromatography coupled with Mass Spectrometry (LC-MS) analyses, we identified biomolecules transported by EVs and supernatant. The identified molecules are related to several biological processes, such as glycerophospholipid and sphingolipid pathways, which may act at different levels by tuning compound production in accordance with cell requirements that favor a myriad of adaptive responses. Taken together, our results provide new insights into the role of EVs in fungal biology and host-pathogen interactions.
Collapse
Affiliation(s)
- Gabriel Trentin
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Tamires A Bitencourt
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Arthur Guedes
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| | - André M Pessoni
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Veronica S Brauer
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Alana Kelyene Pereira
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, Campinas 13083-970, Brazil
| | - Jonas Henrique Costa
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, Campinas 13083-970, Brazil
| | - Taicia Pacheco Fill
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, Campinas 13083-970, Brazil
| | - Fausto Almeida
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| |
Collapse
|
28
|
Jenkinson CB, Podgorny AR, Zhong C, Oakley BR. Computer-aided, resistance gene-guided genome mining for proteasome and HMG-CoA reductase inhibitors. J Ind Microbiol Biotechnol 2023; 50:kuad045. [PMID: 38061800 PMCID: PMC10734572 DOI: 10.1093/jimb/kuad045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 12/06/2023] [Indexed: 12/22/2023]
Abstract
Secondary metabolites (SMs) are biologically active small molecules, many of which are medically valuable. Fungal genomes contain vast numbers of SM biosynthetic gene clusters (BGCs) with unknown products, suggesting that huge numbers of valuable SMs remain to be discovered. It is challenging, however, to identify SM BGCs, among the millions present in fungi, that produce useful compounds. One solution is resistance gene-guided genome mining, which takes advantage of the fact that some BGCs contain a gene encoding a resistant version of the protein targeted by the compound produced by the BGC. The bioinformatic signature of such BGCs is that they contain an allele of an essential gene with no SM biosynthetic function, and there is a second allele elsewhere in the genome. We have developed a computer-assisted approach to resistance gene-guided genome mining that allows users to query large databases for BGCs that putatively make compounds that have targets of therapeutic interest. Working with the MycoCosm genome database, we have applied this approach to look for SM BGCs that target the proteasome β6 subunit, the target of the proteasome inhibitor fellutamide B, or HMG-CoA reductase, the target of cholesterol reducing therapeutics such as lovastatin. Our approach proved effective, finding known fellutamide and lovastatin BGCs as well as fellutamide- and lovastatin-related BGCs with variations in the SM genes that suggest they may produce structural variants of fellutamides and lovastatin. Gratifyingly, we also found BGCs that are not closely related to lovastatin BGCs but putatively produce novel HMG-CoA reductase inhibitors. ONE-SENTENCE SUMMARY A new computer-assisted approach to resistance gene-directed genome mining is reported along with its use to identify fungal biosynthetic gene clusters that putatively produce proteasome and HMG-CoA reductase inhibitors.
Collapse
Affiliation(s)
- Cory B Jenkinson
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045,USA
| | - Adam R Podgorny
- Department of Electrical Engineering and Computer Science, University of Kansas, Lawrence, KS 66045,USA
| | - Cuncong Zhong
- Department of Electrical Engineering and Computer Science, University of Kansas, Lawrence, KS 66045,USA
| | - Berl R Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045,USA
| |
Collapse
|
29
|
Bundela R, Cameron RC, Singh AJ, McLellan RM, Richardson AT, Berry D, Nicholson MJ, Parker EJ. Generation of Alternate Indole Diterpene Architectures in Two Species of Aspergilli. J Am Chem Soc 2023; 145:2754-2758. [PMID: 36710518 PMCID: PMC9913125 DOI: 10.1021/jacs.2c11170] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Indexed: 01/31/2023]
Abstract
The significant structural diversity and potent bioactivity of the fungal indole diterpenes (IDTs) has attracted considerable interest in their biosynthesis. Although substantial skeletal diversity is generated by the action of noncanonical terpene cyclases, comparatively little is known about these enzymes, particularly those involved in the generation of the subgroup containing emindole SA and DA, which show alternate terpenoid skeletons. Here, we describe the IDT biosynthetic machinery generating these unusual IDT architectures from Aspergillus striatus and Aspergillus desertorum. The function of four putative cyclases was interrogated via heterologous expression. Two specific cyclases were identified that catalyze the formation of epimers emindole SA and DA from A. striatus and A. desertorum, respectively. These cyclases are both clustered along with all the elements required for basic IDT biosynthesis yet catalyze an unusual Markovnikov-like cyclization cascade with alternate stereochemical control. Their identification reveals that these alternate architectures are not generated by mechanistically sloppy or promiscuous enzymes, but by cyclases capable of delivering precise regio- and stereospecificities.
Collapse
Affiliation(s)
- Rudranuj Bundela
- Ferrier
Research Institute, Victoria University
of Wellington, PO Box 600, Wellington 6140, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| | - Rosannah C. Cameron
- Ferrier
Research Institute, Victoria University
of Wellington, PO Box 600, Wellington 6140, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| | - A. Jonathan Singh
- Ferrier
Research Institute, Victoria University
of Wellington, PO Box 600, Wellington 6140, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| | - Rose M. McLellan
- Ferrier
Research Institute, Victoria University
of Wellington, PO Box 600, Wellington 6140, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| | - Alistair T. Richardson
- Ferrier
Research Institute, Victoria University
of Wellington, PO Box 600, Wellington 6140, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| | - Daniel Berry
- Ferrier
Research Institute, Victoria University
of Wellington, PO Box 600, Wellington 6140, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| | - Matthew J. Nicholson
- Ferrier
Research Institute, Victoria University
of Wellington, PO Box 600, Wellington 6140, New Zealand
| | - Emily J. Parker
- Ferrier
Research Institute, Victoria University
of Wellington, PO Box 600, Wellington 6140, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| |
Collapse
|
30
|
Yu L, Wen D, Yang Y, Qiu X, Xiong D, Tian C. Comparative Transcriptomic Analysis of MAPK-Mediated Regulation of Pathogenicity, Stress Responses, and Development in Cytospora chrysosperma. PHYTOPATHOLOGY 2023; 113:239-251. [PMID: 36191174 DOI: 10.1094/phyto-04-22-0126-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades are highly conserved signal transduction pathways that mediate cellular responses to various biotic and abiotic signals in plant-pathogenic fungi. Generally, there are three MAPKs in filamentous pathogenic fungi: Pmk1/Fus3/Kss1, Hog1, and Stl2. Our previous studies have shown that CcPmk1 is a core regulator of fungal pathogenicity in Cytospora chrysosperma, the causal agent of canker disease in a wide range of woody plants. Here, we identified and functionally characterized the other two MAPK genes (CcHog1 and CcSlt2) and then compared the transcriptional differences among these three MAPKs in C. chrysosperma. We found that the MAPKs shared convergent and distinct roles in fungal development, stress responses, and virulence. For example, CcHog1, CcSlt2, and CcPmk1 were all involved in conidiation and response to stresses, including hyperosmotic pressure, cell wall inhibition agents, and H2O2, but only CcPmk1 and CcSlt2 were required for hyphal growth and fungal pathogenicity. Transcriptomic analysis showed that numerous hyperosmosis- and cell wall-related genes significantly reduced their expression levels in ΔCcHog1 and ΔCcSlt2, respectively. Interestingly, RNA- and ribosome-related processes were significantly enriched in the upregulated genes of ΔCcSlt2, whereas they were significantly enriched in the downregulated genes of ΔCcPmk1. Moreover, two secondary metabolite gene clusters were significantly downregulated in ΔCcPmk1, ΔCcSlt2, and/or ΔCcHog1. Importantly, some virulence-associated genes were significantly downregulated in ΔCcPmk1 and/or ΔCcSlt2, such as candidate effector genes. Collectively, these results suggest that the similar and distinct phenotypes of each MAPK deletion mutant may result from the transcriptional regulation of a series of common or specific downstream genes, which provides a better understanding of the regulation network of MAPKs in C. chrysosperma.
Collapse
Affiliation(s)
- Lu Yu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Dasen Wen
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Yuchen Yang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Xiaolin Qiu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Dianguang Xiong
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Chengming Tian
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
31
|
Cao F, Ma LF, Hu LS, Xu CX, Chen X, Zhan ZJ, Zhao QW, Mao XM. Coordination of Polyketide Release and Multiple Detoxification Pathways for Tolerable Production of Fungal Mycotoxins. Angew Chem Int Ed Engl 2023; 62:e202214814. [PMID: 36461785 DOI: 10.1002/anie.202214814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/04/2022]
Abstract
Efficient biosynthesis of microbial bioactive natural products (NPs) is beneficial for the survival of producers, while self-protection is necessary to avoid self-harm resulting from over-accumulation of NPs. The underlying mechanisms for the effective but tolerable production of bioactive NPs are not well understood. Herein, in the biosynthesis of two fungal polyketide mycotoxins aurovertin E (1) and asteltoxin, we show that the cyclases in the gene clusters promote the release of the polyketide backbone, and reveal that a signal peptide is crucial for their subcellular localization and full activity. Meanwhile, the fungus adopts enzymatic acetylation as the major detoxification pathway of 1. If intermediates are over-produced, the non-enzymatic shunt pathways work as salvage pathways to avoid excessive accumulation of the toxic metabolites for self-protection. These findings provided new insight into the interplay of efficient backbone release and multiple detoxification strategies for the production of fungal bioactive NPs.
Collapse
Affiliation(s)
- Fei Cao
- Research Center for Clinical Pharmacy, The First Affiliated Hospital & Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Lie-Feng Ma
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Long-Shuang Hu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Chu-Xuan Xu
- Research Center for Clinical Pharmacy, The First Affiliated Hospital & Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Xuepeng Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Zha-Jun Zhan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qing-Wei Zhao
- Research Center for Clinical Pharmacy, The First Affiliated Hospital & Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Xu-Ming Mao
- Research Center for Clinical Pharmacy, The First Affiliated Hospital & Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
32
|
Zhang L, Wang C, Chen K, Zhong W, Xu Y, Molnár I. Engineering the biosynthesis of fungal nonribosomal peptides. Nat Prod Rep 2023; 40:62-88. [PMID: 35796260 DOI: 10.1039/d2np00036a] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Covering: 2011 up to the end of 2021.Fungal nonribosomal peptides (NRPs) and the related polyketide-nonribosomal peptide hybrid products (PK-NRPs) are a prolific source of bioactive compounds, some of which have been developed into essential drugs. The synthesis of these complex natural products (NPs) utilizes nonribosomal peptide synthetases (NRPSs), multidomain megaenzymes that assemble specific peptide products by sequential condensation of amino acids and amino acid-like substances, independent of the ribosome. NRPSs, collaborating polyketide synthase modules, and their associated tailoring enzymes involved in product maturation represent promising targets for NP structure diversification and the generation of small molecule unnatural products (uNPs) with improved or novel bioactivities. Indeed, reprogramming of NRPSs and recruiting of novel tailoring enzymes is the strategy by which nature evolves NRP products. The recent years have witnessed a rapid development in the discovery and identification of novel NRPs and PK-NRPs, and significant advances have also been made towards the engineering of fungal NRP assembly lines to generate uNP peptides. However, the intrinsic complexities of fungal NRP and PK-NRP biosynthesis, and the large size of the NRPSs still present formidable conceptual and technical challenges for the rational and efficient reprogramming of these pathways. This review examines key examples for the successful (and for some less-successful) re-engineering of fungal NRPS assembly lines to inform future efforts towards generating novel, biologically active peptides and PK-NRPs.
Collapse
Affiliation(s)
- Liwen Zhang
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China.
| | - Chen Wang
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China.
| | - Kang Chen
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China.
| | - Weimao Zhong
- Southwest Center for Natural Products Research, University of Arizona, 250 E. Valencia Rd., Tucson, AZ 85706, USA
| | - Yuquan Xu
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P. R. China.
| | - István Molnár
- Southwest Center for Natural Products Research, University of Arizona, 250 E. Valencia Rd., Tucson, AZ 85706, USA.,VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT, Espoo, Finland.
| |
Collapse
|
33
|
Llewellyn T, Nowell RW, Aptroot A, Temina M, Prescott TAK, Barraclough TG, Gaya E. Metagenomics Shines Light on the Evolution of "Sunscreen" Pigment Metabolism in the Teloschistales (Lichen-Forming Ascomycota). Genome Biol Evol 2023; 15:6986375. [PMID: 36634008 PMCID: PMC9907504 DOI: 10.1093/gbe/evad002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/25/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Fungi produce a vast number of secondary metabolites that shape their interactions with other organisms and the environment. Characterizing the genes underpinning metabolite synthesis is therefore key to understanding fungal evolution and adaptation. Lichenized fungi represent almost one-third of Ascomycota diversity and boast impressive secondary metabolites repertoires. However, most lichen biosynthetic genes have not been linked to their metabolite products. Here we used metagenomic sequencing to survey gene families associated with production of anthraquinones, UV-protectant secondary metabolites present in various fungi, but especially abundant in a diverse order of lichens, the Teloschistales (class Lecanoromycetes, phylum Ascomycota). We successfully assembled 24 new, high-quality lichenized-fungal genomes de novo and combined them with publicly available Lecanoromycetes genomes from taxa with diverse secondary chemistry to produce a whole-genome tree. Secondary metabolite biosynthetic gene cluster (BGC) analysis showed that whilst lichen BGCs are numerous and highly dissimilar, core enzyme genes are generally conserved across taxa. This suggests metabolite diversification occurs via re-shuffling existing enzyme genes with novel accessory genes rather than BGC gains/losses or de novo gene evolution. We identified putative anthraquinone BGCs in our lichen dataset that appear homologous to anthraquinone clusters from non-lichenized fungi, suggesting these genes were present in the common ancestor of the subphylum Pezizomycotina. Finally, we identified unique transporter genes in Teloschistales anthraquinone BGCs that may explain why these metabolites are so abundant and ubiquitous in these lichens. Our results support the importance of metagenomics for understanding the secondary metabolism of non-model fungi such as lichens.
Collapse
Affiliation(s)
| | - Reuben W Nowell
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, SL5 7PY, UK,Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Andre Aptroot
- Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Avenida Costa e Silva s/n Bairro Universitário, Campo Grande, Mato Grosso do Sul CEP 79070-900, Brazil
| | - Marina Temina
- Institute of Evolution, University of Haifa, 199 Aba Khoushy Ave, Mount Carmel, Haifa, 3498838, Israel
| | - Thomas A K Prescott
- Comparative Fungal Biology, Royal Botanic Gardens, Kew, Jodrell Laboratory, Richmond, TW9 3DS, UK
| | - Timothy G Barraclough
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, SL5 7PY, UK,Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Ester Gaya
- Comparative Fungal Biology, Royal Botanic Gardens, Kew, Jodrell Laboratory, Richmond, TW9 3DS, UK
| |
Collapse
|
34
|
Loi M, Logrieco AF, Pusztahelyi T, Leiter É, Hornok L, Pócsi I. Advanced mycotoxin control and decontamination techniques in view of an increased aflatoxin risk in Europe due to climate change. Front Microbiol 2023; 13:1085891. [PMID: 36762096 PMCID: PMC9907446 DOI: 10.3389/fmicb.2022.1085891] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
Aflatoxins are toxic secondary metabolites produced by Aspergillus spp. found in staple food and feed commodities worldwide. Aflatoxins are carcinogenic, teratogenic, and mutagenic, and pose a serious threat to the health of both humans and animals. The global economy and trade are significantly affected as well. Various models and datasets related to aflatoxins in maize have been developed and used but have not yet been linked. The prevention of crop loss due to aflatoxin contamination is complex and challenging. Hence, the set-up of advanced decontamination is crucial to cope with the challenge of climate change, growing population, unstable political scenarios, and food security problems also in European countries. After harvest, decontamination methods can be applied during transport, storage, or processing, but their application for aflatoxin reduction is still limited. Therefore, this review aims to investigate the effects of environmental factors on aflatoxin production because of climate change and to critically discuss the present-day and novel decontamination techniques to unravel gaps and limitations to propose them as a tool to tackle an increased aflatoxin risk in Europe.
Collapse
Affiliation(s)
- Martina Loi
- Institute of Sciences of Food Production, National Research Council, Bari, Italy,*Correspondence: Martina Loi, ✉
| | - Antonio F. Logrieco
- Institute of Sciences of Food Production, National Research Council, Bari, Italy
| | - Tünde Pusztahelyi
- Central Laboratory of Agricultural and Food Products, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Éva Leiter
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, Institute of Biotechnology, University of Debrecen, Debrecen, Hungary,ELRN-UD Fungal Stress Biology Research Group, University of Debrecen, Debrecen, Hungary
| | - László Hornok
- Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, Institute of Biotechnology, University of Debrecen, Debrecen, Hungary,ELRN-UD Fungal Stress Biology Research Group, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
35
|
Depsipeptides Targeting Tumor Cells: Milestones from In Vitro to Clinical Trials. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020670. [PMID: 36677728 PMCID: PMC9864405 DOI: 10.3390/molecules28020670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023]
Abstract
Cancer is currently considered one of the most threatening diseases worldwide. Diet could be one of the factors that can be enhanced to comprehensively address a cancer patient's condition. Unfortunately, most molecules capable of targeting cancer cells are found in uncommon food sources. Among them, depsipeptides have emerged as one of the most reliable choices for cancer treatment. These cyclic amino acid oligomers, with one or more subunits replaced by a hydroxylated carboxylic acid resulting in one lactone bond in a core ring, have broadly proven their cancer-targeting efficacy, some even reaching clinical trials and being commercialized as "anticancer" drugs. This review aimed to describe these depsipeptides, their reported amino acid sequences, determined structure, and the specific mechanism by which they target tumor cells including apoptosis, oncosis, and elastase inhibition, among others. Furthermore, we have delved into state-of-the-art in vivo and clinical trials, current methods for purification and synthesis, and the recognized disadvantages of these molecules. The information collated in this review can help researchers decide whether these molecules should be incorporated into functional foods in the near future.
Collapse
|
36
|
Deng H, Liang X, Liu J, Zheng X, Fan TP, Cai Y. Advances and perspectives on perylenequinone biosynthesis. Front Microbiol 2022; 13:1070110. [PMID: 36605511 PMCID: PMC9808054 DOI: 10.3389/fmicb.2022.1070110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022] Open
Abstract
Under illumination, the fungal secondary metabolites, perylenequinones (PQs) react with molecular oxygen to generate reactive oxygen species (ROS), which, in excess can damage cellular macromolecules and trigger apoptosis. Based on this property, PQs have been widely used as photosensitizers and applied in pharmaceuticals, which has stimulated research into the discovery of new PQs and the elucidation of their biosynthetic pathways. The PQs-associated literature covering from April 1967 to September 2022 is reviewed in three sections: (1) the sources, structural diversity, and biological activities of microbial PQs; (2) elucidation of PQ biosynthetic pathways, associated genes, and mechanisms of regulation; and (3) advances in pathway engineering and future potential strategies to modify cellular metabolism and improve PQ production.
Collapse
Affiliation(s)
- Huaxiang Deng
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China,*Correspondence: Huaxiang Deng,
| | - Xinxin Liang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jinbin Liu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, Jiangsu, China
| | - Xiaohui Zheng
- College of Life Sciences, Northwest University, Xi’an, Shanxi, China
| | - Tai-Ping Fan
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China,Yujie Cai,
| |
Collapse
|
37
|
Gotting K, May DS, Sosa-Calvo J, Khadempour L, Francoeur CB, Berasategui A, Thairu MW, Sandstrom S, Carlson CM, Chevrette MG, Pupo MT, Bugni TS, Schultz TR, Johnston JS, Gerardo NM, Currie CR. Genomic diversification of the specialized parasite of the fungus-growing ant symbiosis. Proc Natl Acad Sci U S A 2022; 119:e2213096119. [PMID: 36508678 PMCID: PMC9907069 DOI: 10.1073/pnas.2213096119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/20/2022] [Indexed: 12/15/2022] Open
Abstract
Fungi shape the diversity of life. Characterizing the evolution of fungi is critical to understanding symbiotic associations across kingdoms. In this study, we investigate the genomic and metabolomic diversity of the genus Escovopsis, a specialized parasite of fungus-growing ant gardens. Based on 25 high-quality draft genomes, we show that Escovopsis forms a monophyletic group arising from a mycoparasitic fungal ancestor 61.82 million years ago (Mya). Across the evolutionary history of fungus-growing ants, the dates of origin of most clades of Escovopsis correspond to the dates of origin of the fungus-growing ants whose gardens they parasitize. We reveal that genome reduction, determined by both genomic sequencing and flow cytometry, is a consistent feature across the genus Escovopsis, largely occurring in coding regions, specifically in the form of gene loss and reductions in copy numbers of genes. All functional gene categories have reduced copy numbers, but resistance and virulence genes maintain functional diversity. Biosynthetic gene clusters (BGCs) contribute to phylogenetic differences among Escovopsis spp., and sister taxa in the Hypocreaceae. The phylogenetic patterns of co-diversification among BGCs are similarly exhibited across mass spectrometry analyses of the metabolomes of Escovopsis and their sister taxa. Taken together, our results indicate that Escovopsis spp. evolved unique genomic repertoires to specialize on the fungus-growing ant-microbe symbiosis.
Collapse
Affiliation(s)
- Kirsten Gotting
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI53706
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI53706
| | - Daniel S. May
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI53706
| | - Jeffrey Sosa-Calvo
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC20560
| | - Lily Khadempour
- Department of Earth and Environmental Sciences, Rutgers University, Newark, NJ07102
| | | | | | - Margaret W. Thairu
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI53706
| | - Shelby Sandstrom
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI53706
| | - Caitlin M. Carlson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI53706
| | - Marc G. Chevrette
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI53705
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI53705
| | - Mônica T. Pupo
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP14040-903, Brazil
| | - Tim S. Bugni
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI53705
| | - Ted R. Schultz
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC20560
| | | | | | - Cameron R. Currie
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI53706
- David Braley Centre for Antibiotic Discovery, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
38
|
The Multifaceted Gene 275 Embedded in the PKS-PTS Gene Cluster Was Involved in the Regulation of Arthrobotrisin Biosynthesis, TCA Cycle, and Septa Formation in Nematode-Trapping Fungus Arthrobotrys oligospora. J Fungi (Basel) 2022; 8:jof8121261. [PMID: 36547594 PMCID: PMC9780802 DOI: 10.3390/jof8121261] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
The predominant nematode-trapping fungus Arthrobotrys oligospora harbors a unique polyketide synthase-prenyltransferase (PKS-PTS) gene cluster AOL_s00215g responsible for the biosynthesis of sesquiterpenyl epoxy-cyclohexenoids (SECs) that are involved in the regulation of fungal growth, adhesive trap formation, antibacterial activity, and soil colonization. However, the function of one rare gene (AOL_s00215g275 (275)) embedded in the cluster has remained cryptic. Here, we constructed two mutants with the disruption of 275 and the overexpression of 275, respectively, and compared their fungal growth, morphology, resistance to chemical stress, nematicidal activity, transcriptomic and metabolic profiles, and infrastructures, together with binding affinity analysis. Both mutants displayed distinct differences in their TCA cycles, SEC biosynthesis, and endocytosis, combined with abnormal mitochondria, vacuoles, septa formation, and decreased nematicidal activity. Our results suggest that gene 275 might function as a separator and as an integrated gene with multiple potential functions related to three distinct genes encoding the retinoic acid induced-1, cortactin, and vacuolar iron transporter 1 proteins in this nematode-trapping fungus. Our unexpected findings provide insight into the intriguing organization and functions of a rare non-biosynthetic gene in a biosynthetic gene cluster.
Collapse
|
39
|
Quantitative characterization of filamentous fungal promoters on a single-cell resolution to discover cryptic natural products. SCIENCE CHINA LIFE SCIENCES 2022; 66:848-860. [PMID: 36287342 DOI: 10.1007/s11427-022-2175-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 08/15/2022] [Indexed: 11/05/2022]
Abstract
Characterization of filamentous fungal regulatory elements remains challenging because of time-consuming transformation technologies and limited quantitative methods. Here we established a method for quantitative assessment of filamentous fungal promoters based on flow cytometry detection of the superfolder green fluorescent protein at single-cell resolution. Using this quantitative method, we acquired a library of 93 native promoter elements from Aspergillus nidulans in a high-throughput format. The strengths of identified promoters covered a 37-fold range by flow cytometry. PzipA and PsltA were identified as the strongest promoters, which were 2.9- and 1.5-fold higher than that of the commonly used constitutive promoter PgpdA. Thus, we applied PzipA and PsltA to activate the silent nonribosomal peptide synthetase gene Afpes1 from Aspergillus fumigatus in its native host and the heterologous host A. nidulans. The metabolic products of Afpes1 were identified as new cyclic tetrapeptide derivatives, namely, fumiganins A and B. Our method provides an innovative strategy for natural product discovery in fungi.
Collapse
|
40
|
Genome-wide association mapping reveals genes underlying population-level metabolome diversity in a fungal crop pathogen. BMC Biol 2022; 20:224. [PMID: 36209159 PMCID: PMC9548119 DOI: 10.1186/s12915-022-01422-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/27/2022] [Indexed: 11/12/2022] Open
Abstract
Background Fungi produce a wide range of specialized metabolites (SMs) involved in biotic interactions. Pathways for the production of SMs are often encoded in clusters of tightly arranged genes identified as biosynthetic gene clusters. Such gene clusters can undergo horizontal gene transfers between species and rapid evolutionary change within species. The acquisition, rearrangement, and deletion of gene clusters can generate significant metabolome diversity. However, the genetic basis underlying variation in SM production remains poorly understood. Results Here, we analyzed the metabolite production of a large population of the fungal pathogen of wheat, Zymoseptoria tritici. The pathogen causes major yield losses and shows variation in gene clusters. We performed untargeted ultra-high performance liquid chromatography-high resolution mass spectrometry to profile the metabolite diversity among 102 isolates of the same species. We found substantial variation in the abundance of the detected metabolites among isolates. Integrating whole-genome sequencing data, we performed metabolite genome-wide association mapping to identify loci underlying variation in metabolite production (i.e., metabolite-GWAS). We found that significantly associated SNPs reside mostly in coding and gene regulatory regions. Associated genes encode mainly transport and catalytic activities. The metabolite-GWAS identified also a polymorphism in the 3′UTR region of a virulence gene related to metabolite production and showing expression variation. Conclusions Taken together, our study provides a significant resource to unravel polymorphism underlying metabolome diversity within a species. Integrating metabolome screens should be feasible for a range of different plant pathogens and help prioritize molecular studies. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01422-z.
Collapse
|
41
|
Zhang X, Xu D, Hou X, Wei P, Fu J, Zhao Z, Jing M, Lai D, Yin W, Zhou L. UvSorA and UvSorB Involved in Sorbicillinoid Biosynthesis Contribute to Fungal Development, Stress Response and Phytotoxicity in Ustilaginoidea virens. Int J Mol Sci 2022; 23:ijms231911056. [PMID: 36232357 PMCID: PMC9570055 DOI: 10.3390/ijms231911056] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/18/2022] Open
Abstract
Ustilaginoidea virens (teleomorph: Villosiclava virens) is an important fungal pathogen that causes a devastating rice disease. It can produce mycotoxins including sorbicillinoids. The biosynthesis and biological functions of sorbicillinoids have not been reported in U. virens. In this study, we identified a sorbicillinoid biosynthetic gene cluster in which two polyketide synthase genes UvSorA and UvSorB were responsible for sorbicillinoid biosynthesis in U. virens. In ∆UvSorA and ∆UvSorB mutants, the mycelial growth, sporulation and hyphal hydrophobicity were increased dramatically, while the resistances to osmotic pressure, metal cations, and fungicides were reduced. Both phytotoxic activity of rice germinated seeds and cell wall integrity were also reduced. Furthermore, mycelia and cell walls of ∆UvSorA and ∆UvSorB mutants showed alterations of microscopic and submicroscopic structures. In addition, feeding experiment showed that sorbicillinoids could restore mycelial growth, sporulation, and cell wall integrity in ∆UvSorA and ∆UvSorB mutants. The results demonstrated that both UvSorA and UvSorB were responsible for sorbicillinoid biosynthesis in U. virens, and contributed to development (mycelial growth, sporulation, and cell wall integrity), stress responses, and phytotoxicity through sorbicillinoid mediation. It provides an insight into further investigation of biological functions and biosynthesis of sorbicillinoids.
Collapse
Affiliation(s)
- Xuping Zhang
- State Key Laboratory of Agrobiotechnology, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Dan Xu
- State Key Laboratory of Agrobiotechnology, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xuwen Hou
- State Key Laboratory of Agrobiotechnology, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Penglin Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiajin Fu
- State Key Laboratory of Agrobiotechnology, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhitong Zhao
- State Key Laboratory of Agrobiotechnology, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Mingpeng Jing
- State Key Laboratory of Agrobiotechnology, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Daowan Lai
- State Key Laboratory of Agrobiotechnology, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Wenbing Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Correspondence: (W.Y.); (L.Z.)
| | - Ligang Zhou
- State Key Laboratory of Agrobiotechnology, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
- Correspondence: (W.Y.); (L.Z.)
| |
Collapse
|
42
|
Schüller A, Studt-Reinhold L, Strauss J. How to Completely Squeeze a Fungus-Advanced Genome Mining Tools for Novel Bioactive Substances. Pharmaceutics 2022; 14:1837. [PMID: 36145585 PMCID: PMC9505985 DOI: 10.3390/pharmaceutics14091837] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Fungal species have the capability of producing an overwhelming diversity of bioactive substances that can have beneficial but also detrimental effects on human health. These so-called secondary metabolites naturally serve as antimicrobial "weapon systems", signaling molecules or developmental effectors for fungi and hence are produced only under very specific environmental conditions or stages in their life cycle. However, as these complex conditions are difficult or even impossible to mimic in laboratory settings, only a small fraction of the true chemical diversity of fungi is known so far. This also implies that a large space for potentially new pharmaceuticals remains unexplored. We here present an overview on current developments in advanced methods that can be used to explore this chemical space. We focus on genetic and genomic methods, how to detect genes that harbor the blueprints for the production of these compounds (i.e., biosynthetic gene clusters, BGCs), and ways to activate these silent chromosomal regions. We provide an in-depth view of the chromatin-level regulation of BGCs and of the potential to use the CRISPR/Cas technology as an activation tool.
Collapse
Affiliation(s)
| | | | - Joseph Strauss
- Institute of Microbial Genetics, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna, A-3430 Tulln/Donau, Austria
| |
Collapse
|
43
|
Sayari M, Dolatabadian A, El-Shetehy M, Rehal PK, Daayf F. Genome-Based Analysis of Verticillium Polyketide Synthase Gene Clusters. BIOLOGY 2022; 11:biology11091252. [PMID: 36138731 PMCID: PMC9495618 DOI: 10.3390/biology11091252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Fungi can produce many types of secondary metabolites, including mycotoxins. Poisonous mushrooms and mycotoxins that cause food spoilage have been known for a very long time. For example, Aspergillus flavus, which can grow on grains and nuts, produces highly toxic substances called Aflatoxins. Despite their menace to other living organisms, mycotoxins can be used for medicinal purposes, i.e., as antibiotics, growth-promoting compounds, and other kinds of drugs. These and other secondary metabolites produced by plant-pathogenic fungi may cause host plants to display disease symptoms and may play a substantial role in disease progression. Therefore, the identification and characterization of the genes involved in their biosynthesis are essential for understanding the molecular mechanism involved in their biosynthetic pathways and further promoting sustainable knowledge-based crop production. Abstract Polyketides are structurally diverse and physiologically active secondary metabolites produced by many organisms, including fungi. The biosynthesis of polyketides from acyl-CoA thioesters is catalyzed by polyketide synthases, PKSs. Polyketides play roles including in cell protection against oxidative stress, non-constitutive (toxic) roles in cell membranes, and promoting the survival of the host organisms. The genus Verticillium comprises many species that affect a wide range of organisms including plants, insects, and other fungi. Many are known as causal agents of Verticillium wilt diseases in plants. In this study, a comparative genomics approach involving several Verticillium species led us to evaluate the potential of Verticillium species for producing polyketides and to identify putative polyketide biosynthesis gene clusters. The next step was to characterize them and predict the types of polyketide compounds they might produce. We used publicly available sequences from ten species of Verticillium including V. dahliae, V. longisporum, V. nonalfalfae, V. alfalfae, V. nubilum, V. zaregamsianum, V. klebahnii, V. tricorpus, V. isaacii, and V. albo-atrum to identify and characterize PKS gene clusters by utilizing a range of bioinformatic and phylogenetic approaches. We found 32 putative PKS genes and possible clusters in the genomes of Verticillium species. All the clusters appear to be complete and functional. In addition, at least five clusters including putative DHN-melanin-, cytochalasin-, fusarielien-, fujikurin-, and lijiquinone-like compounds may belong to the active PKS repertoire of Verticillium. These results will pave the way for further functional studies to understand the role of these clusters.
Collapse
Affiliation(s)
- Mohammad Sayari
- Department of Plant Science, Faculty of Agricultural and Food Sciences, University of Manitoba, 222 Agriculture Building, Winnipeg, MB R3T 2N2, Canada
| | - Aria Dolatabadian
- Department of Plant Science, Faculty of Agricultural and Food Sciences, University of Manitoba, 222 Agriculture Building, Winnipeg, MB R3T 2N2, Canada
| | - Mohamed El-Shetehy
- Department of Plant Science, Faculty of Agricultural and Food Sciences, University of Manitoba, 222 Agriculture Building, Winnipeg, MB R3T 2N2, Canada
- Department of Botany, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Pawanpuneet Kaur Rehal
- Department of Plant Science, Faculty of Agricultural and Food Sciences, University of Manitoba, 222 Agriculture Building, Winnipeg, MB R3T 2N2, Canada
| | - Fouad Daayf
- Department of Plant Science, Faculty of Agricultural and Food Sciences, University of Manitoba, 222 Agriculture Building, Winnipeg, MB R3T 2N2, Canada
- Correspondence:
| |
Collapse
|
44
|
Ren H, Li X, Li Y, Li M, Sun J, Wang F, Zeng J, Chen Y, Wang L, Yan X, Fan Y, Jin D, Pei Y. Loss of function of VdDrs2, a P4-ATPase, impairs the toxin secretion and microsclerotia formation, and decreases the pathogenicity of Verticillium dahliae. FRONTIERS IN PLANT SCIENCE 2022; 13:944364. [PMID: 36072318 PMCID: PMC9443849 DOI: 10.3389/fpls.2022.944364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Four P4-ATPase flippase genes, VdDrs2, VdNeo1, VdP4-4, and VdDnf1 were identified in Verticillium dahliae, one of the most devastating phytopathogenic fungi in the world. Knock out of VdDrs2, VdNeo1, and VdP4-4, or knock down of VdDnf1 significantly decreased the pathogenicity of the mutants in cotton. Among the mutants, the greatest decrease in pathogenicity was observed in ΔVdDrs2. VdDrs2 was localized to plasma membrane, vacuoles, and trans-Golgi network (TGN). In vivo observation showed that the infection of the cotton by ΔVdDrs2 was significantly delayed. The amount of two known Verticillium toxins, sulfacetamide, and fumonisin B1 in the fermentation broth produced by the ΔVdDrs2 strain was significantly reduced, and the toxicity of the crude Verticillium wilt toxins to cotton cells was attenuated. In addition, the defect of VdDrs2 impaired the synthesis of melanin and the formation of microsclerotia, and decreased the sporulation of V. dahliae. Our data indicate a key role of P4 ATPases-associated vesicle transport in toxin secretion of disease fungi and support the importance of mycotoxins in the pathogenicity of V. dahliae.
Collapse
|
45
|
Knowles SL, Raja HA, Roberts CD, Oberlies NH. Fungal-fungal co-culture: a primer for generating chemical diversity. Nat Prod Rep 2022; 39:1557-1573. [PMID: 35137758 PMCID: PMC9384855 DOI: 10.1039/d1np00070e] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Indexed: 01/25/2023]
Abstract
Covering: 2002 to 2020In their natural environment, fungi must compete for resources. It has been hypothesized that this competition likely induces the biosynthesis of secondary metabolites for defence. In a quest to discover new chemical diversity from fungal cultures, a growing trend has been to recapitulate this competitive environment in the laboratory, essentially growing fungi in co-culture. This review covers fungal-fungal co-culture studies beginning with the first literature report in 2002. Since then, there has been a growing number of new secondary metabolites reported as a result of fungal co-culture studies. Specifically, this review discusses and provides insights into (1) rationale for pairing fungal strains, (2) ways to grow fungi for co-culture, (3) different approaches to screening fungal co-cultures for chemical diversity, (4) determining the secondary metabolite-producing strain, and (5) final thoughts regarding the fungal-fungal co-culture approach. Our goal is to provide a set of practical strategies for fungal co-culture studies to generate unique chemical diversity that the natural products research community can utilize.
Collapse
Affiliation(s)
- Sonja L Knowles
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA.
| | - Huzefa A Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA.
| | - Christopher D Roberts
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA.
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA.
| |
Collapse
|
46
|
Toopaang W, Bunnak W, Srisuksam C, Wattananukit W, Tanticharoen M, Yang YL, Amnuaykanjanasin A. Microbial polyketides and their roles in insect virulence: from genomics to biological functions. Nat Prod Rep 2022; 39:2008-2029. [PMID: 35822627 DOI: 10.1039/d1np00058f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: May 1966 up to January 2022Entomopathogenic microorganisms have potential for biological control of insect pests. Their main secondary metabolites include polyketides, nonribosomal peptides, and polyketide-nonribosomal peptide (PK-NRP) hybrids. Among these secondary metabolites, polyketides have mainly been studied for structural identification, pathway engineering, and for their contributions to medicine. However, little is known about the function of polyketides in insect virulence. This review focuses on the role of bacterial and fungal polyketides, as well as PK-NRP hybrids in insect infection and killing. We also discuss gene distribution and evolutional relationships among different microbial species. Further, the role of microbial polyketides and the hybrids in modulating insect-microbial symbiosis is also explored. Understanding the mechanisms of polyketides in insect pathogenesis, how compounds moderate the host-fungus interaction, and the distribution of PKS genes across different fungi and bacteria will facilitate the discovery and development of novel polyketide-derived bio-insecticides.
Collapse
Affiliation(s)
- Wachiraporn Toopaang
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120, Thailand. .,Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taiwan.,Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan.
| | - Warapon Bunnak
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120, Thailand.
| | - Chettida Srisuksam
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120, Thailand.
| | - Wilawan Wattananukit
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120, Thailand.
| | - Morakot Tanticharoen
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Yu-Liang Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan. .,Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711010, Taiwan
| | - Alongkorn Amnuaykanjanasin
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120, Thailand.
| |
Collapse
|
47
|
Almeida H, Tsang A, Diallo AB. Improving candidate Biosynthetic Gene Clusters in fungi through reinforcement learning. Bioinformatics 2022; 38:3984-3991. [PMID: 35762945 PMCID: PMC9364373 DOI: 10.1093/bioinformatics/btac420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 05/17/2022] [Accepted: 06/23/2022] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION Precise identification of Biosynthetic Gene Clusters (BGCs) is a challenging task. Performance of BGC discovery tools is limited by their capacity to accurately predict components belonging to candidate BGCs, often overestimating cluster boundaries. To support optimizing the composition and boundaries of candidate BGCs, we propose reinforcement learning approach relying on protein domains and functional annotations from expert curated BGCs. RESULTS The proposed reinforcement learning method aims to improve candidate BGCs obtained with state-of-the-art tools. It was evaluated on candidate BGCs obtained for two fungal genomes, Aspergillus niger and Aspergillus nidulans. The results highlight an improvement of the gene precision by above 15% for TOUCAN, fungiSMASH and DeepBGC; and cluster precision by above 25% for fungiSMASH and DeepBCG, allowing these tools to obtain almost perfect precision in cluster prediction. This can pave the way of optimizing current prediction of candidate BGCs in fungi, while minimizing the curation effort required by domain experts. AVAILABILITY AND IMPLEMENTATION https://github.com/bioinfoUQAM/RL-bgc-components. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Hayda Almeida
- Departement d’Informatique, UQAM, Montréal, QC H2X 3Y7, Canada,Centre for Structural and Functional Genomics, Concordia University, Montréal, QC H4B 1R6, Canada,Laboratoire d’Algèbre, de Combinatoire, et d’Informatique Mathématique (LACIM), UQAM, Montréal, QC H2X 3Y, Canada
| | - Adrian Tsang
- Departement d’Informatique, UQAM, Montréal, QC H2X 3Y7, Canada,Centre for Structural and Functional Genomics, Concordia University, Montréal, QC H4B 1R6, Canada
| | | |
Collapse
|
48
|
Dey P, Malik A, Singh DK, Haange SB, von Bergen M, Jehmlich N. Insight Into the Molecular Mechanisms Underpinning the Mycoremediation of Multiple Metals by Proteomic Technique. Front Microbiol 2022; 13:872576. [PMID: 35756008 PMCID: PMC9221998 DOI: 10.3389/fmicb.2022.872576] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
We investigated the fungus Aspergillus fumigatus PD-18 responses when subjected to the multimetal combination (Total Cr, Cd2+, Cu2+, Ni2+, Pb2+, and Zn2+) in synthetic composite media. To understand how multimetal stress impacts fungal cells at the molecular level, the cellular response of A. fumigatus PD-18 to 30 mg/L multimetal stress (5 mg/L of each heavy metal) was determined by proteomics. The comparative fungal proteomics displayed the remarkable inherent intracellular and extracellular mechanism of metal resistance and tolerance potential of A. fumigatus PD-18. This study reported 2,238 proteins of which 434 proteins were exclusively expressed in multimetal extracts. The most predominant functional class expressed was for cellular processing and signaling. The type of proteins and the number of proteins that were upregulated due to various stress tolerance mechanisms were post-translational modification, protein turnover, and chaperones (42); translation, ribosomal structure, and biogenesis (60); and intracellular trafficking, secretion, and vesicular transport (18). In addition, free radical scavenging antioxidant proteins, such as superoxide dismutase, were upregulated upto 3.45-fold and transporter systems, such as protein transport (SEC31), upto 3.31-fold to combat the oxidative stress caused by the multiple metals. Also, protein–protein interaction network analysis revealed that cytochrome c oxidase and 60S ribosomal protein played key roles to detoxify the multimetal. To the best of our knowledge, this study of A. fumigatus PD-18 provides valuable insights toward the growing research in comprehending the metal microbe interactions in the presence of multimetal. This will facilitate in development of novel molecular markers for contaminant bioremediation.
Collapse
Affiliation(s)
- Priyadarshini Dey
- Applied Microbiology Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research, Helmholtz Association of German Research Centres (HZ), Leipzig, Germany
- Department of Biotechnology, MS Ramaiah Institute of Technology, Bengaluru, India
| | - Anushree Malik
- Applied Microbiology Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
| | - Dileep Kumar Singh
- Department of Zoology, Faculty of Science, University of Delhi, New Delhi, India
| | - Sven-Bastiaan Haange
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research, Helmholtz Association of German Research Centres (HZ), Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research, Helmholtz Association of German Research Centres (HZ), Leipzig, Germany
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany
- German Centre for Integrative Biodiversity, Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Nico Jehmlich
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research, Helmholtz Association of German Research Centres (HZ), Leipzig, Germany
- *Correspondence: Nico Jehmlich,
| |
Collapse
|
49
|
Skellam E. Subcellular localization of fungal specialized metabolites. Fungal Biol Biotechnol 2022; 9:11. [PMID: 35614515 PMCID: PMC9134587 DOI: 10.1186/s40694-022-00140-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/10/2022] [Indexed: 01/07/2023] Open
Abstract
Fungal specialized metabolites play an important role in the environment and have impacted human health and survival significantly. These specialized metabolites are often the end product of a series of sequential and collaborating biosynthetic enzymes that reside within different subcellular compartments. A wide variety of methods have been developed to understand fungal specialized metabolite biosynthesis in terms of the chemical conversions and the biosynthetic enzymes required, however there are far fewer studies elucidating the compartmentalization of the same enzymes. This review illustrates the biosynthesis of specialized metabolites where the localization of all, or some, of the biosynthetic enzymes have been determined and describes the methods used to identify the sub-cellular localization.
Collapse
Affiliation(s)
- Elizabeth Skellam
- Department of Chemistry and BioDiscovery Institute, University of North Texas, 1155 Union Circle, Denton, TX, 76201, USA.
| |
Collapse
|
50
|
Gaspar ML, Pawlowska TE. Innate immunity in fungi: Is regulated cell death involved? PLoS Pathog 2022; 18:e1010460. [PMID: 35587923 PMCID: PMC9119436 DOI: 10.1371/journal.ppat.1010460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Maria Laura Gaspar
- School of Integrative Plant Science, Cornell University, Ithaca, New York, United States of America
| | - Teresa E. Pawlowska
- School of Integrative Plant Science, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|