1
|
Freppel W, Silva LA, Stapleford KA, Herrero LJ. Pathogenicity and virulence of chikungunya virus. Virulence 2024; 15:2396484. [PMID: 39193780 PMCID: PMC11370967 DOI: 10.1080/21505594.2024.2396484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted, RNA virus that causes an often-severe musculoskeletal illness characterized by fever, joint pain, and a range of debilitating symptoms. The virus has re-emerged as a global health threat in recent decades, spreading from its origin in Africa across Asia and the Americas, leading to widespread outbreaks impacting millions of people. Despite more than 50 years of research into the pathogenesis of CHIKV, there is still no curative treatment available. Current management of CHIKV infections primarily involves providing supportive care to alleviate symptoms and improve the patient's quality of life. Given the ongoing threat of CHIKV, there is an urgent need to better understand its pathogenesis. This understanding is crucial for deciphering the mechanisms underlying the disease and for developing effective strategies for both prevention and management. This review aims to provide a comprehensive overview of CHIKV and its pathogenesis, shedding light on the complex interactions of viral genetics, host factors, immune responses, and vector-related factors. By exploring these intricate connections, the review seeks to contribute to the knowledge base surrounding CHIKV, offering insights that may ultimately lead to more effective prevention and management strategies for this re-emerging global health threat.
Collapse
Affiliation(s)
- Wesley Freppel
- Institute for Biomedicine and Glycomics, Gold Coast Campus, Griffith University, Southport, Australia
| | - Laurie A. Silva
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kenneth A. Stapleford
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Lara J. Herrero
- Institute for Biomedicine and Glycomics, Gold Coast Campus, Griffith University, Southport, Australia
| |
Collapse
|
2
|
Rabelo V, Sanchez-Nuñez ML, Corrêa-Amorim LS, Kuhn RJ, Abreu PA, Paixão ICNP. In Silico Drug Repurposing Uncovered the Antiviral Potential of the Antiparasitic Drug Oxibendazole Against the Chikungunya Virus. ACS OMEGA 2024; 9:27632-27642. [PMID: 38947813 PMCID: PMC11209700 DOI: 10.1021/acsomega.4c03417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/23/2024] [Accepted: 05/31/2024] [Indexed: 07/02/2024]
Abstract
Chikungunya virus (CHIKV) has been reported in over 120 countries and is the causative agent of Chikungunya fever. The debilitating nature of this disease, which can persist months to years after acute infection, drastically impacts the quality of life of patients. Yet, specific antivirals are lacking for the treatment of this disease, which makes the search for new drugs necessary. In this context, the nsP2 protease emerges as an attractive therapeutic target, and drug repurposing strategies have proven to be valuable. Therefore, we combined in silico and in vitro methods to identify known drugs as potential CHIKV nsP2 protease inhibitors with antiviral properties within DrugBank. Herein, we developed a hybrid virtual screening pipeline comprising pharmacophore- and target-based screening, drug-like, and pharmaceutical filtering steps. Six virtual hits were obtained, and two of them, capecitabine (CPB) and oxibendazole (OBZ), were evaluated against CHIKV replication in Vero cells. CPB did not present antiviral activity, whereas OBZ inhibited the replication of two different strains of CHIKV, namely, 181-25 (Asian genotype) and BRA/RJ/18 (clinical isolate from ECSA genotype). OBZ showed potent antiviral activity against the CHIKV BRA/RJ/18 (EC50 = 11.4 μM) with a high selectivity index (>44). Analogs of OBZ (albendazole, fenbendazole, and mebendazole) were also evaluated, but none exhibited anti-CHIKV activity, and further, their stereoelectronic features were analyzed. Additionally, we observed that OBZ acts mainly at post-entry steps. Hence, our results support further in vivo studies to investigate the antiviral potential of OBZ, which offers a new alternative to fight CHIKV infections.
Collapse
Affiliation(s)
- Vitor
W. Rabelo
- Programa
de Pós-graduação em Ciências e Biotecnologia,
Instituto de Biologia, Universidade Federal
Fluminense, Niterói, Rio de Janeiro CEP 24210-201, Brazil
| | - Maria Leonisa Sanchez-Nuñez
- Programa
de Pós-graduação em Ciências e Biotecnologia,
Instituto de Biologia, Universidade Federal
Fluminense, Niterói, Rio de Janeiro CEP 24210-201, Brazil
| | - Leonardo S. Corrêa-Amorim
- Programa
de Pós-graduação em Ciências e Biotecnologia,
Instituto de Biologia, Universidade Federal
Fluminense, Niterói, Rio de Janeiro CEP 24210-201, Brazil
- Gerência
de Desenvolvimento Tecnológico, Instituto
Vital Brazil, Niterói, Rio de Janeiro 24230-410, Brazil
| | - Richard J. Kuhn
- Department
of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue
Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, United States
| | - Paula A. Abreu
- Instituto
de Biodiversidade e Sustentabilidade (NUPEM), Campus Macaé, Universidade Federal do Rio de Janeiro, Rio de Janeiro CEP 27965-045, Brazil
| | - Izabel C. N. P. Paixão
- Programa
de Pós-graduação em Ciências e Biotecnologia,
Instituto de Biologia, Universidade Federal
Fluminense, Niterói, Rio de Janeiro CEP 24210-201, Brazil
- Departamento
de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro CEP 24210-201, Brazil
| |
Collapse
|
3
|
Liao HH, Ding W, Zhang N, Zhou ZY, Ling Z, Li WJ, Chen S, Tang QZ. Activation of AMPKα2 attenuated doxorubicin-induced cardiotoxicity via inhibiting lipid peroxidation associated ferroptosis. Free Radic Biol Med 2023; 205:275-290. [PMID: 37331642 DOI: 10.1016/j.freeradbiomed.2023.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/20/2023]
Abstract
Ferroptosis has been suggested to involve in doxorubicin (DOX)-induced cardiotoxicity. However, the underlying mechanisms and regulatory targets of cardiomyocyte ferroptosis remains to be understood. This study demonstrated that the up-regulation of ferroptosis associated proteins genes were accompanied with the down-regulation of AMPKα2 phosphorylation in DOX treated mouse heart or neonatal rat cardiomyocytes (NRCMs). AMPKα2 knockout (AMPKα2-/-) significantly exacerbated mouse cardiac dysfunction, increased mortality, promoting ferroptosis associated mitochondrial injuries, enhanced ferroptosis associated proteins and genes expression, and lead to accumulation of lactate dehydrogenase (LDH) and malondialdehyde (MDA) in mouse serum and hearts respectively. Ferrostatin-1 administration markedly improved cardiac function, decreased mortality, inhibited mitochondrial injuries and ferroptosis associated proteins and genes expression, and depressed accumulation of LDH and MDA in DOX treated AMPKα2-/- mouse. Moreover, Adeno-associated virus serotype 9 AMPKα2 (AAV9-AMPKα2) or AICAR treatment mediated AMPKα2 activation could significantly improve cardiac function and depress ferroptosis in mouse. AMPKα2 activation or silence could also inhibit or promote ferroptosis associated injuries in DOX treated NRCMs respecitively. Mechanistically, AMPKα2/ACC mediated lipid metabolism has been suggested to involve in regulating DOX-treatment induced ferroptosis other than mTORC1 or autophagy dependent pathway. The metabolomics analysis exhibited that AMPKα2-/- significantly enhanced accumulation of polyunsaturated fatty acids (PFAs), oxidized lipid, and phosphatidylethanolamine (PE). Finally, this study also demonstrated that metformin (MET) treatment could inhibit ferroptosis and improve cardiac function via activating AMPKα2 phosphorylation. The metabolomics analysis exhibited that MET treatment significantly depressed PFAs accumulation in DOX treated mouse hearts. Collectively, this study suggested that AMPKα2 activation might protect against anthracycline chemotherapeutic drugs mediated cardiotoxicity via inhibiting ferroptosis.
Collapse
Affiliation(s)
- Hai-Han Liao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, Hubei, 430060, China
| | - Wen Ding
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, Hubei, 430060, China
| | - Nan Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, Hubei, 430060, China
| | - Zi-Ying Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, Hubei, 430060, China
| | - Zheng Ling
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, Hubei, 430060, China
| | - Wen-Jing Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, Hubei, 430060, China
| | - Si Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, Hubei, 430060, China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, Hubei, 430060, China.
| |
Collapse
|
4
|
Song M, Pang L, Zhang M, Qu Y, Laster KV, Dong Z. Cdc2-like kinases: structure, biological function, and therapeutic targets for diseases. Signal Transduct Target Ther 2023; 8:148. [PMID: 37029108 PMCID: PMC10082069 DOI: 10.1038/s41392-023-01409-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 04/09/2023] Open
Abstract
The CLKs (Cdc2-like kinases) belong to the dual-specificity protein kinase family and play crucial roles in regulating transcript splicing via the phosphorylation of SR proteins (SRSF1-12), catalyzing spliceosome molecular machinery, and modulating the activities or expression of non-splicing proteins. The dysregulation of these processes is linked with various diseases, including neurodegenerative diseases, Duchenne muscular dystrophy, inflammatory diseases, viral replication, and cancer. Thus, CLKs have been considered as potential therapeutic targets, and significant efforts have been exerted to discover potent CLKs inhibitors. In particular, clinical trials aiming to assess the activities of the small molecules Lorecivivint on knee Osteoarthritis patients, and Cirtuvivint and Silmitasertib in different advanced tumors have been investigated for therapeutic usage. In this review, we comprehensively documented the structure and biological functions of CLKs in various human diseases and summarized the significance of related inhibitors in therapeutics. Our discussion highlights the most recent CLKs research, paving the way for the clinical treatment of various human diseases.
Collapse
Affiliation(s)
- Mengqiu Song
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan, 450008, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China
| | - Luping Pang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China
- Research Center of Basic Medicine, Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Mengmeng Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China
- Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yingzi Qu
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China
- Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Kyle Vaughn Laster
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan, 450008, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China.
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan, 450008, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China.
- Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
5
|
Henderson Sousa F, Ghaisani Komarudin A, Findlay-Greene F, Bowolaksono A, Sasmono RT, Stevens C, Barlow PG. Evolution and immunopathology of chikungunya virus informs therapeutic development. Dis Model Mech 2023; 16:dmm049804. [PMID: 37014125 PMCID: PMC10110403 DOI: 10.1242/dmm.049804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Chikungunya virus (CHIKV), a mosquito-borne alphavirus, is an emerging global threat identified in more than 60 countries across continents. The risk of CHIKV transmission is rising due to increased global interactions, year-round presence of mosquito vectors, and the ability of CHIKV to produce high host viral loads and undergo mutation. Although CHIKV disease is rarely fatal, it can progress to a chronic stage, during which patients experience severe debilitating arthritis that can last from several weeks to months or years. At present, there are no licensed vaccines or antiviral drugs for CHIKV disease, and treatment is primarily symptomatic. This Review provides an overview of CHIKV pathogenesis and explores the available therapeutic options and the most recent advances in novel therapeutic strategies against CHIKV infections.
Collapse
Affiliation(s)
- Filipa Henderson Sousa
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh EH11 4BN, UK
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Amalina Ghaisani Komarudin
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Cibinong Science Center, Cibinong, Kabupaten Bogor 16911, Indonesia
| | - Fern Findlay-Greene
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh EH11 4BN, UK
| | - Anom Bowolaksono
- Cellular and Molecular Mechanisms in Biological System (CEMBIOS) Research Group, Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
| | - R. Tedjo Sasmono
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Cibinong Science Center, Cibinong, Kabupaten Bogor 16911, Indonesia
| | - Craig Stevens
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh EH11 4BN, UK
| | - Peter G. Barlow
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh EH11 4BN, UK
| |
Collapse
|
6
|
Puhl AC, Fernandes RS, Godoy AS, Gil LHVG, Oliva G, Ekins S. The protein disulfide isomerase inhibitor 3-methyltoxoflavin inhibits Chikungunya virus. Bioorg Med Chem 2023; 83:117239. [PMID: 36940609 PMCID: PMC10150329 DOI: 10.1016/j.bmc.2023.117239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
Chikungunya virus (CHIKV) is the etiological agent of chikungunya fever, a (re)emerging arbovirus infection, that causes severe and often persistent arthritis, as well as representing a serious health concern worldwide for which no antivirals are currently available. Despite efforts over the last decade to identify and optimize new inhibitors or to reposition existing drugs, no compound has progressed to clinical trials for CHIKV and current prophylaxis is based on vector control, which has shown limited success in containing the virus. Our efforts to rectify this situation were initiated by screening 36 compounds using a replicon system and ultimately identified the natural product derivative 3-methyltoxoflavin with activity against CHIKV using a cell-based assay (EC50 200 nM, SI = 17 in Huh-7 cells). We have additionally screened 3-methyltoxoflavin against a panel of 17 viruses and showed that it only additionally demonstrated inhibition of the yellow fever virus (EC50 370 nM, SI = 3.2 in Huh-7 cells). We have also showed that 3-methyltoxoflavin has excellent in vitro human and mouse microsomal metabolic stability, good solubility and high Caco-2 permeability and it is not likely to be a P-glycoprotein substrate. In summary, we demonstrate that 3-methyltoxoflavin has activity against CHIKV, good in vitro absorption, distribution, metabolism and excretion (ADME) properties as well as good calculated physicochemical properties and may represent a valuable starting point for future optimization to develop inhibitors for this and other related viruses.
Collapse
Affiliation(s)
- Ana C. Puhl
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC 27606, USA
| | - Rafaela S. Fernandes
- Sao Carlos Institute of Physics, University of Sao Paulo, Av. Joao Dagnone, 1100 - Jardim Santa Angelina, Sao Carlos, SP, 13563-120, Brazil
| | - Andre S. Godoy
- Sao Carlos Institute of Physics, University of Sao Paulo, Av. Joao Dagnone, 1100 - Jardim Santa Angelina, Sao Carlos, SP, 13563-120, Brazil
| | - Laura H. V. G. Gil
- Department of Virology, Oswaldo Cruz Foundation, Aggeu Magalhães Institute, Av. Prof. Moraes Rego, s/n - Cidade Universitaria, Recife, PE, 50670-420, Brazil
| | - Glaucius Oliva
- Sao Carlos Institute of Physics, University of Sao Paulo, Av. Joao Dagnone, 1100 - Jardim Santa Angelina, Sao Carlos, SP, 13563-120, Brazil
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC 27606, USA
| |
Collapse
|
7
|
ElHady AK, El-Gamil DS, Abadi AH, Abdel-Halim M, Engel M. An overview of cdc2-like kinase 1 (Clk1) inhibitors and their therapeutic indications. Med Res Rev 2023; 43:343-398. [PMID: 36262046 DOI: 10.1002/med.21928] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 06/07/2022] [Accepted: 09/11/2022] [Indexed: 02/05/2023]
Abstract
Over the past decade, Clk1 has been identified as a promising target for the treatment of various diseases, in which deregulated alternative splicing plays a role. First small molecules targeting Clk1 are in clinical trials for the treatment of solid cancer, where variants of oncogenic proteins derived from alternative splicing promote tumor progression. Since many infectious pathogens hi-jack the host cell's splicing machinery to ensure efficient replication, further indications in this area are under investigation, such as Influenza A, HIV-1 virus, and Trypanosoma infections, and more will likely be discovered in the future. In addition, Clk1 was found to contribute to the progression of Alzheimer's disease through causing an imbalance of tau splicing products. Interestingly, homozygous Clk1 knockout mice showed a rather mild phenotype, opposed to what might be expected in view of the profound role of Clk1 in alternative splicing. A major drawback of most Clk1 inhibitors is their insufficient selectivity; in particular, Dyrk kinases and haspin were frequently identified as off-targets, besides the other Clk isoforms. Only few inhibitors were shown to be selective over Dyrk1A and haspin, whereas no Clk1 inhibitor so far achieved selectivity over the Clk4 isoform. In this review, we carefully compiled all Clk1 inhibitors from the scientific literature and summarized their structure-activity relationships (SAR). In addition, we critically discuss the available selectivity data and describe the inhibitor's efficacy in cellular models, if reported. Thus, we provide a comprehensive overview on the current state of Clk1 drug discovery and highlight the most promising chemotypes.
Collapse
Affiliation(s)
- Ahmed K ElHady
- Department of Organic and Pharmaceutical Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Dalia S El-Gamil
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt.,Department of Chemistry, Faculty of Pharmacy, Ahram Canadian University, Cairo, Egypt
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Matthias Engel
- Department of Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
| |
Collapse
|
8
|
Chikungunya Virus and Its Envelope Protein E2 Induce Hyperalgesia in Mice: Inhibition by Anti-E2 Monoclonal Antibodies and by Targeting TRPV1. Cells 2023; 12:cells12040556. [PMID: 36831223 PMCID: PMC9954636 DOI: 10.3390/cells12040556] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/20/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Chikungunya virus is an arthropod-borne infectious agent that causes Chikungunya fever disease. About 90% of the infected patients experience intense polyarthralgia, affecting mainly the extremities but also the large joints such as the knees. Chronic disease symptoms persist for months, even after clearance of the virus from the blood. Envelope proteins stimulate the immune response against the Chikungunya virus, becoming an important therapeutic target. We inactivated the Chikungunya virus (iCHIKV) and produced recombinant E2 (rE2) protein and three different types of anti-rE2 monoclonal antibodies. Using these tools, we observed that iCHIKV and rE2 protein induced mechanical hyperalgesia (electronic aesthesiometer test) and thermal hyperalgesia (Hargreaves test) in mice. These behavioral results were accompanied by the activation of dorsal root ganglia (DRG) neurons in mice, as observed by calcium influx. Treatment with three different types of anti-rE2 monoclonal antibodies and absence or blockade (AMG-9810 treatment) of transient receptor potential vanilloid 1 (TRPV1) channel diminished mechanical and thermal hyperalgesia in mice. iCHIKV and rE2 activated TRPV1+ mouse DRG neurons in vitro, demonstrating their ability to activate nociceptor sensory neurons directly. Therefore, our mouse data demonstrate that targeting E2 CHIKV protein with monoclonal antibodies and inhibiting TRPV1 channels are reasonable strategies to control CHIKV pain.
Collapse
|
9
|
Discovery of novel 5-methoxybenzothiophene hydrazides as metabolically stable Clk1 inhibitors with high potency and unprecedented Clk1 isoenzyme selectivity. Eur J Med Chem 2023; 247:115019. [PMID: 36580731 DOI: 10.1016/j.ejmech.2022.115019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/10/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Clk1 kinase is a key modulator of the pre-mRNA alternative splicing machinery which has been proposed as a promising target for treatment of various tumour types, Duchenne's muscular dystrophy and viral infections such as HIV-1 and influenza. Most reported Clk1 inhibitors showed significant co-inhibition of Clk2 and Clk4 in particular, which limits their usefulness for deciphering the individual roles of the Clk1 isoform in physiology and disease. Herein, we present a new 5-methoxybenzothiophene scaffold, enabling for the first time selective inhibition of Clk1 even among the isoenzymes. The 3,5-difluorophenyl and 3,5-dichlorophenyl derivatives 26a and 27a (Clk1 IC50 = 1.4 and 1.7 nM, respectively) showed unprecedented selectivity factors of 15 and 8 over Clk4, and selectivity factors of 535 and 84 over Clk2. Furthermore, 26a and 27a exhibited good growth inhibitory activity in T24 cancer cells and long metabolic half-lives of almost 1 and 6.4 h, respectively. The overall favorable profile of our new Clk1 inhibitors suggests that they may be used in in vivo disease models or as probes to unravel the physiological or pathogenic roles of the Clk1 isoenzyme.
Collapse
|
10
|
Tanaka A, Suzuki Y. Genome-Wide Approaches to Unravel the Host Factors Involved in Chikungunya Virus Replication. Front Microbiol 2022; 13:866271. [PMID: 35401487 PMCID: PMC8988064 DOI: 10.3389/fmicb.2022.866271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/26/2022] [Indexed: 01/05/2023] Open
Abstract
Chikungunya virus (CHIKV), the causative agent of Chikungunya fever (CHIKVF) that is often characterized by fever, headache, rash, and arthralgia, is transmitted to humans by Aedes mosquito bites. Although the mortality rate associated with CHIKV infection is not very high, CHIKVF has been confirmed in more than 40 countries, not only in tropical but also in temperate areas. Therefore, CHIKV is a growing major threat to the public health of the world. However, a specific drug is not available for CHIKV infection. As demonstrated by many studies, the processes completing the replication of CHIKV are assisted by many host factors, whereas it has become clear that the host cell possesses some factors limiting the virus replication. This evidence will provide us with an important clue for the development of pharmacological treatment against CHIKVF. In this review, we briefly summarize cellular molecules participating in the CHIKV infection, particularly focusing on introducing recent genome-wide screen studies that enabled illuminating the virus-host interactions.
Collapse
Affiliation(s)
- Atsushi Tanaka
- Division of Research Animal Laboratory and Translational Medicine, Research and Development Center, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
- *Correspondence: Atsushi Tanaka,
| | - Youichi Suzuki
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
- Youichi Suzuki,
| |
Collapse
|
11
|
Fierro NA, Rivera-Toledo E, Ávila-Horta F, Anaya-Covarrubias JY, Mendlovic F. Scavenger Receptors in the Pathogenesis of Viral Infections. Viral Immunol 2022; 35:175-191. [PMID: 35319302 DOI: 10.1089/vim.2021.0167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Scavenger receptors (SR) are not only pattern recognition receptors involved in the immune response against pathogens but are also important receptors exploited by different virus to enter host cells, and thus represent targets for antiviral therapy. The high mutation rates of viruses, as well as their small genomes are partly responsible for the high rates of virus resistance and effective treatments remain a challenge. Most currently approved formulations target viral-encoded factors. Nevertheless, host proteins may function as additional targets. Thus, there is a need to explore and develop new strategies aiming at cellular factors involved in virus replication and host cell entry. SR-virus interactions have implications in the pathogenesis of several viral diseases and in adenovirus-based vaccination and gene transfer technologies, and may function as markers of severe progression. Inhibition of SR could reduce adenoviral uptake and improve gene therapy and vaccination, as well as reduce pathogenesis. In this review, we will examine the crucial role of SR play in cell entry of different types of human virus, which will allow us to further understand their role in protection and pathogenesis and its potential as antiviral molecules. The recent discovery of SR-B1 as co-factor of SARS-Cov-2 (severe acute respiratory syndrome coronavirus 2) entry is also discussed. Further fundamental research is essential to understand molecular interactions in the dynamic virus-host cell interplay through SR for rational design of therapeutic strategies.
Collapse
Affiliation(s)
- Nora A Fierro
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Evelyn Rivera-Toledo
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Fernanda Ávila-Horta
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Fela Mendlovic
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Facultad de Ciencias de la Salud, Universidad Anáhuac México Norte, Huixquilucan, Estado de México, Mexico
| |
Collapse
|
12
|
Fares M, Canfield P, Alsherbiny MA, Lewis W, Willis AC, Guang Li C, Neyts J, Jochmans D, Gale PA, Keller PA. Synthesis, X-ray crystallographic analysis, DFT studies and biological evaluation of triazolopyrimidines and 2-anilinopyrimidines. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Mahajan S, Choudhary S, Kumar P, Tomar S. Antiviral strategies targeting host factors and mechanisms obliging +ssRNA viral pathogens. Bioorg Med Chem 2021; 46:116356. [PMID: 34416512 PMCID: PMC8349405 DOI: 10.1016/j.bmc.2021.116356] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 12/21/2022]
Abstract
The ongoing COVID-19 pandemic, periodic recurrence of viral infections, and the emergence of challenging variants has created an urgent need of alternative therapeutic approaches to combat the spread of viral infections, failing to which may pose a greater risk to mankind in future. Resilience against antiviral drugs or fast evolutionary rate of viruses is stressing the scientific community to identify new therapeutic approaches for timely control of disease. Host metabolic pathways are exquisite reservoir of energy to viruses and contribute a diverse array of functions for successful replication and pathogenesis of virus. Targeting the host factors rather than viral enzymes to cease viral infection, has emerged as an alternative antiviral strategy. This approach offers advantage in terms of increased threshold to viral resistance and can provide broad-spectrum antiviral action against different viruses. The article here provides substantial review of literature illuminating the host factors and molecular mechanisms involved in innate/adaptive responses to viral infection, hijacking of signalling pathways by viruses and the intracellular metabolic pathways required for viral replication. Host-targeted drugs acting on the pathways usurped by viruses are also addressed in this study. Host-directed antiviral therapeutics might prove to be a rewarding approach in controlling the unprecedented spread of viral infection, however the probability of cellular side effects or cytotoxicity on host cell should not be ignored at the time of clinical investigations.
Collapse
Affiliation(s)
- Supreeti Mahajan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Shweta Choudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India.
| |
Collapse
|
14
|
Neault N, O’Reilly S, Baig AT, Plaza-Diaz J, Azimi M, Farooq F, Baird SD, MacKenzie A. High-throughput kinome-RNAi screen identifies protein kinase R activator (PACT) as a novel genetic modifier of CUG foci integrity in myotonic dystrophy type 1 (DM1). PLoS One 2021; 16:e0256276. [PMID: 34520479 PMCID: PMC8439471 DOI: 10.1371/journal.pone.0256276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 08/03/2021] [Indexed: 11/24/2022] Open
Abstract
Myotonic Dystrophy Type 1 (DM1) is the most common form of adult muscular dystrophy (~1:8000). In DM1, expansion of CTG trinucleotide repeats in the 3' untranslated region of the dystrophia myotonica protein kinase (DMPK) gene results in DMPK mRNA hairpin structures which aggregate as insoluble ribonuclear foci and sequester several RNA-binding proteins. The resulting sequestration and misregulation of important splicing factors, such as muscleblind-like 1 (MBNL1), causes the aberrant expression of fetal transcripts for several genes that contribute to the disease phenotype. Previous work has shown that antisense oligonucleotide-mediated disaggregation of the intranuclear foci has the potential to reverse downstream anomalies. To explore whether the nuclear foci are, to some extent, controlled by cell signalling pathways, we have performed a screen using a small interfering RNA (siRNA) library targeting 518 protein kinases to look at kinomic modulation of foci integrity. RNA foci were visualized by in situ hybridization of a fluorescent-tagged (CAG)10 probe directed towards the expanded DMPK mRNA and the cross-sectional area and number of foci per nuclei were recorded. From our screen, we have identified PACT (protein kinase R (PKR) activator) as a novel modulator of foci integrity and have shown that PACT knockdown can both increase MBNL1 protein levels; however, these changes are not suffcient for significant correction of downstream spliceopathies.
Collapse
Affiliation(s)
- Nafisa Neault
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Sean O’Reilly
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Aiman Tariq Baig
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Julio Plaza-Diaz
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Mehrdad Azimi
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Faraz Farooq
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Stephen D. Baird
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Alex MacKenzie
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| |
Collapse
|
15
|
Golden SR, Rosenstein DL, Belhorn T, Blatt J. Repurposing Psychotropic Agents for Viral Disorders: Beyond Covid. Assay Drug Dev Technol 2021; 19:373-385. [PMID: 34375133 DOI: 10.1089/adt.2021.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recent reports have highlighted the possible role of the antipsychotic chlorpromazine and the antidepressant fluvoxamine as anti-coronavirus disease 2019 (COVID-19) agents. The objective of this narrative review is to explore what is known about the activity of psychotropic medications against viruses in addition to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). PubMed was queried for "drug repurposing, antiviral activity," and for "antiviral activity" with "psychotropic drugs" and individual agents, through November 2020. Of more than 100 psychotropic agents, 37 drugs, including 27 with a history of pediatric use were identified, which had been studied in the preclinical setting and found to have activity against viruses which are human pathogens. Effects were evaluated by type of virus and by category of psychotropic agent. Activity was identified both against viruses known to cause epidemics such as SARS-CoV-2 and Ebola and against those that are the cause of rare disorders such as Human Papillomatosis Virus-related respiratory papillomatosis. Individual drugs and classes of psychotropics often had activity against multiple viruses, with promiscuity explained by shared viral or cellular targets. Safety profiles of psychotropics may be more tolerable in this context than when they are used long-term in the setting of psychiatric illness. Nonetheless, translation of in vitro results to the clinical arena has been slow. Psychotropic medications as a class deserve further study, including in clinical trials for repurposing as antiviral drugs for children and adults.
Collapse
Affiliation(s)
- Shea R Golden
- Department of Neuroscience, Middlebury College, the University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Donald L Rosenstein
- Department of Psychiatry, the University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Tom Belhorn
- Department of Pediatric Infectious Diseases, and the University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Julie Blatt
- Department of Pediatric Hematology Oncology, the University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
16
|
Battisti V, Urban E, Langer T. Antivirals against the Chikungunya Virus. Viruses 2021; 13:1307. [PMID: 34372513 PMCID: PMC8310245 DOI: 10.3390/v13071307] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 01/20/2023] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that has re-emerged in recent decades, causing large-scale epidemics in many parts of the world. CHIKV infection leads to a febrile disease known as chikungunya fever (CHIKF), which is characterised by severe joint pain and myalgia. As many patients develop a painful chronic stage and neither antiviral drugs nor vaccines are available, the development of a potent CHIKV inhibiting drug is crucial for CHIKF treatment. A comprehensive summary of current antiviral research and development of small-molecule inhibitor against CHIKV is presented in this review. We highlight different approaches used for the identification of such compounds and further discuss the identification and application of promising viral and host targets.
Collapse
Affiliation(s)
| | | | - Thierry Langer
- Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Division, University of Vienna, A-1090 Vienna, Austria; (V.B.); (E.U.)
| |
Collapse
|
17
|
Abstract
Chikungunya fever (CHIKF) is an arbovirus disease caused by chikungunya virus (CHIKV), an alphavirus of Togaviridae family. Transmission follows a human-mosquito-human cycle starting with a mosquito bite. Subsequently, symptoms develop after 2-6 days of incubation, including high fever and severe arthralgia. The disease is self-limiting and usually resolve within 2 weeks. However, chronic disease can last up to several years with persistent polyarthralgia. Overlapping symptoms and common vector with dengue and malaria present many challenges for diagnosis and treatment of this disease. CHIKF was reported in India in 1963 for the first time. After a period of quiescence lasting up to 32 years, CHIKV re-emerged in India in 2005. Currently, every part of the country has become endemic for the disease with outbreaks resulting in huge economic and productivity losses. Several mutations have been identified in circulating strains of the virus resulting in better adaptations or increased fitness in the vector(s), effective transmission, and disease severity. CHIKV evolution has been a significant driver of epidemics in India, hence, the need to focus on proper surveillance, and implementation of prevention and control measure in the country. Presently, there are no licensed vaccines or antivirals available; however, India has initiated several efforts in this direction including traditional medicines. In this review, we present the current status of CHIKF in India.
Collapse
|
18
|
Phosphorylation Sites in the Hypervariable Domain in Chikungunya Virus nsP3 Are Crucial for Viral Replication. J Virol 2021; 95:JVI.02276-20. [PMID: 33568506 DOI: 10.1128/jvi.02276-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/30/2021] [Indexed: 01/26/2023] Open
Abstract
Chikungunya virus (CHIKV, family Togaviridae) is a mosquito-transmitted alphavirus. The positive-sense RNA genome of CHIKV encodes four nonstructural proteins (nsP1 to nsP4) that are virus-specific subunits of the RNA replicase. Among nsP functions, those of nsP3 are the least understood. The C-terminal hypervariable domain (HVD) in nsP3 is disordered and serves as a platform for interactions with multiple host proteins. For Sindbis virus (SINV) and Semliki Forest virus (SFV), the nsP3 HVD has been shown to be phosphorylated. Deletion of phosphorylated regions has a mild effect on the growth of SFV and SINV in vertebrate cells. Using radiolabeling, we demonstrated that nsP3 in CHIKV and o'nyong-nyong virus is also phosphorylated. We showed that the phosphorylated residues in CHIKV nsP3 are not clustered at the beginning of the HVD. The substitution of 20 Ser/Thr residues located in the N-terminal half of the HVD or 26 Ser/Thr residues located in its C-terminal half with Ala residues reduced the activity of the CHIKV replicase and the infectivity of CHIKV in mammalian cells. Furthermore, the substitution of all 46 potentially phosphorylated residues resulted in the complete loss of viral RNA synthesis and infectivity. The mutations did not affect the interaction of the HVD in nsP3 with the host G3BP1 protein; interactions with CD2AP, BIN1, and FHL1 proteins were significantly reduced but not abolished. Thus, CHIKV differs from SFV and SINV both in the location of the phosphorylated residues in the HVD in nsP3 and, significantly, in their effect on replicase activity and virus infectivity.IMPORTANCE CHIKV outbreaks have affected millions of people, creating a need for the development of antiviral approaches. nsP3 is a component of the CHIKV RNA replicase and is involved in interactions with host proteins and signaling cascades. Phosphorylation of the HVD in nsP3 is important for the virulent alphavirus phenotype. Here, we demonstrate that nsP3 in CHIKV is phosphorylated and that the phosphorylation sites in the HVD are distributed in a unique pattern. Furthermore, the abrogation of some of the phosphorylation sites results in the attenuation of CHIKV, while abolishing all the phosphorylation sites completely blocked its replicase activity. Thus, the phosphorylation of nsP3 and/or the phosphorylation sites in nsP3 have a major impact on CHIKV infectivity. Therefore, they represent promising targets for antiviral compounds and CHIKV attenuation. In addition, this new information offers valuable insight into the vast network of virus-host interactions.
Collapse
|
19
|
Kumar S, Singh B, Kumari P, Kumar PV, Agnihotri G, Khan S, Kant Beuria T, Syed GH, Dixit A. Identification of multipotent drugs for COVID-19 therapeutics with the evaluation of their SARS-CoV2 inhibitory activity. Comput Struct Biotechnol J 2021; 19:1998-2017. [PMID: 33841751 PMCID: PMC8025584 DOI: 10.1016/j.csbj.2021.04.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/04/2021] [Accepted: 04/04/2021] [Indexed: 12/12/2022] Open
Abstract
The SARS-CoV2 is a highly contagious pathogen that causes COVID-19 disease. It has affected millions of people globally with an average lethality of ~3%. There is an urgent need of drugs for the treatment of COVID-19. In the current studies, we have used bioinformatics techniques to screen the FDA approved drugs against nine SARS-CoV2 proteins to identify drugs for repurposing. Additionally, we analyzed if the identified molecules can also affect the human proteins whose expression in lung changed during SARS-CoV2 infection. Targeting such genes may also be a beneficial strategy to curb disease manifestation. We have identified 74 molecules that can bind to various SARS-CoV2 and human host proteins. We experimentally validated our in-silico predictions using vero E6 cells infected with SARS-CoV2 virus. Interestingly, many of our predicted molecules viz. capreomycin, celecoxib, mefloquine, montelukast, and nebivolol showed good activity (IC50) against SARS-CoV2. We hope that these studies may help in the development of new therapeutic options for the treatment of COVID-19.
Collapse
Affiliation(s)
- Sugandh Kumar
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha 751023, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) University, Bhubaneswar, Odisha 751024, India
| | - Bharati Singh
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha 751023, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) University, Bhubaneswar, Odisha 751024, India
| | - Pratima Kumari
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha 751023, India
- Regional Centre for Biotechnology (RCB), 3rd Milestone, Faridabad-Gurgaon, Haryana 121001, India
| | - Preethy V. Kumar
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha 751023, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) University, Bhubaneswar, Odisha 751024, India
| | - Geetanjali Agnihotri
- School of Chemical Technology, Kalinga Institute of Industrial Technology (KIIT) University, Bhubaneswar, Odisha 751024, India
| | - Shaheerah Khan
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha 751023, India
- Regional Centre for Biotechnology (RCB), 3rd Milestone, Faridabad-Gurgaon, Haryana 121001, India
| | - Tushar Kant Beuria
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha 751023, India
| | - Gulam Hussain Syed
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha 751023, India
| | - Anshuman Dixit
- Institute of Life Science, Nalco Square, Bhubaneswar, Odisha 751023, India
| |
Collapse
|
20
|
Kumar D, Kumari K, Chandra R, Jain P, Vodwal L, Gambhir G, Singh P. A review targeting the infection by CHIKV using computational and experimental approaches. J Biomol Struct Dyn 2021; 40:8127-8141. [PMID: 33783313 DOI: 10.1080/07391102.2021.1904004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The rise of normal body temperature of 98.6 °F beyond 100.4 °F in humans indicates fever due to some illness or infection. Viral infections caused by different viruses are one of the major causes of fever. One of such viruses is, Chikungunya virus (CHIKV) is known to cause Chikungunya fever (CHIKF) which is transmitted to humans through the mosquitoes, which actually become the primary source of transmission of the virus. The genomic structure of the CHIKV consists of the two open reading frames (ORFs). The first one is a 5' end ORF and it encodes the nonstructural protein (nsP1-nsP4). The second is a 3' end ORF and it encodes the structural proteins, which is consisted of capsid, envelope (E), accessory peptides, E3 and 6 K. Till date, there is no effective vaccine or medicine available for early detection of the CHIKV infection and appropriate diagnosis to cure the patients from the infection. NSP3 of CHIKV is the prime target of the researchers as it is responsible for the catalytic activity. This review has updates of literature on CHIKV; pathogenesis of CHIKV; inhibition of CHIKV using theoretical and experimental approaches.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Durgesh Kumar
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India.,Department of Chemistry, University of Delhi, Delhi, India
| | - Kamlesh Kumari
- Department of Zoology, Deen Dayal Upadhyaya College, University of Delhi, New Delhi, India
| | - Ramesh Chandra
- Department of Chemistry, University of Delhi, Delhi, India
| | - Pallavi Jain
- Faculty of Engineering and Technology, Department of Chemistry, SRM Institute of Science and Technology, Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh, India
| | - Lata Vodwal
- Department of Chemistry, Maitreyi College, University of Delhi, New Delhi, India
| | - Geetu Gambhir
- Department of Chemistry, Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India
| |
Collapse
|
21
|
Liu Y, Li K, Zhu WB, Zhang H, Huang WT, Liu XC, Lin Y, Cai J, Yan GM, Qiu JG, Peng L, Liang JK, Hu C. Suppression of CCDC6 sensitizes tumor to oncolytic virus M1. Neoplasia 2020; 23:158-168. [PMID: 33338804 PMCID: PMC7749300 DOI: 10.1016/j.neo.2020.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 11/16/2022] Open
Abstract
Oncolytic virus is an effective therapeutic strategy for cancer treatment, which exploits natural or manipulated viruses to selectively target and kill cancer cells. However, the innate antiviral system of cancer cells may resistant to the treatment of oncolytic virus. M1 virus is a newly identified oncolytic virus belonging to alphavirus species, but the molecular mechanisms underlying its anticancer activity are largely unknown. Cell viability was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assays. RNA seq analysis was used to analyze the gene alternation after M1 virus infection. Small interfering RNAs transfection for gene knockdown was used for gene functional tests. Caspase-3/7 activity was detected by Caspase-Glo Assay Systems. A mice model of orthotopic bladder tumor was established to determine the oncolytic effectiveness of the M1 virus. The expression of cleaved-Caspase 3 as well as Ki-67 in tumor cells were detected by immunohistochemical analysis. To further define the molecular factors involved in M1 virus-mediated biological function, we knocked down genes related to alphavirus’ activity and found that CCDC6 plays an important role in the oncolytic activity of M1 virus. Moreover, knocked down of CCDC6 augments the reproduction of M1 virus and resulted in endoplasmic reticulum (ER) stress-induced cell apoptosis in vitro as well as in vivo orthotopic bladder cancer model. Our research provides a rational new target for developing new compounds to promote the efficacy of oncolytic virus therapy.
Collapse
Affiliation(s)
- Ying Liu
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Guangzhou, China
| | - Ke Li
- Department of Urology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wen-Bo Zhu
- Department of Pharmacology, Sun Yat-sen University, Guangzhou, China
| | - Hao Zhang
- Department of Urology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wen-Tao Huang
- Department of Urology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xin-Cheng Liu
- Department of Pharmacology, Sun Yat-sen University, Guangzhou, China
| | - Yuan Lin
- Department of Pharmacology, Sun Yat-sen University, Guangzhou, China
| | - Jing Cai
- Department of Pharmacology, Sun Yat-sen University, Guangzhou, China
| | - Guang-Mei Yan
- Department of Pharmacology, Sun Yat-sen University, Guangzhou, China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jian-Guang Qiu
- Department of Urology, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liang Peng
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jian-Kai Liang
- Department of Pharmacology, Sun Yat-sen University, Guangzhou, China.
| | - Cheng Hu
- Department of Urology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
22
|
Elrefaey AME, Abdelnabi R, Rosales Rosas AL, Wang L, Basu S, Delang L. Understanding the Mechanisms Underlying Host Restriction of Insect-Specific Viruses. Viruses 2020; 12:E964. [PMID: 32878245 PMCID: PMC7552076 DOI: 10.3390/v12090964] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022] Open
Abstract
Arthropod-borne viruses contribute significantly to global mortality and morbidity in humans and animals. These viruses are mainly transmitted between susceptible vertebrate hosts by hematophagous arthropod vectors, especially mosquitoes. Recently, there has been substantial attention for a novel group of viruses, referred to as insect-specific viruses (ISVs) which are exclusively maintained in mosquito populations. Recent discoveries of novel insect-specific viruses over the past years generated a great interest not only in their potential use as vaccine and diagnostic platforms but also as novel biological control agents due to their ability to modulate arbovirus transmission. While arboviruses infect both vertebrate and invertebrate hosts, the replication of insect-specific viruses is restricted in vertebrates at multiple stages of virus replication. The vertebrate restriction factors include the genetic elements of ISVs (structural and non-structural genes and the untranslated terminal regions), vertebrate host factors (agonists and antagonists), and the temperature-dependent microenvironment. A better understanding of these bottlenecks is thus warranted. In this review, we explore these factors and the complex interplay between ISVs and their hosts contributing to this host restriction phenomenon.
Collapse
Affiliation(s)
| | - Rana Abdelnabi
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, 3000 Leuven, Belgium; (R.A.); (A.L.R.R.); (L.W.)
| | - Ana Lucia Rosales Rosas
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, 3000 Leuven, Belgium; (R.A.); (A.L.R.R.); (L.W.)
| | - Lanjiao Wang
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, 3000 Leuven, Belgium; (R.A.); (A.L.R.R.); (L.W.)
| | - Sanjay Basu
- The Pirbright Institute, Pirbright, Woking GU24 0NF, UK;
| | - Leen Delang
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, 3000 Leuven, Belgium; (R.A.); (A.L.R.R.); (L.W.)
| |
Collapse
|
23
|
Dekel N, Eisenberg-Domovich Y, Karlas A, Meyer TF, Bracher F, Lebendiker M, Danieli T, Livnah O. Expression, purification and crystallization of CLK1 kinase - A potential target for antiviral therapy. Protein Expr Purif 2020; 176:105742. [PMID: 32866611 DOI: 10.1016/j.pep.2020.105742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/03/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022]
Abstract
Cdc-like kinase 1 (CLK1) is a dual-specificity kinase capable of autophosphorylation on tyrosine residues and Ser/Thr phosphorylation of its substrates. CLK1 belongs to the CLK kinase family that regulates alternative splicing through phosphorylation of serine-arginine rich (SR) proteins. Recent studies have demonstrated that CLK1 has an important role in the replication of influenza A and chikungunya viruses. Furthermore, CLK1 was found to be relevant for the replication of HIV-1 and the West Nile virus, making CLK1 an interesting cellular candidate for the development of a host-directed antiviral therapy that might be efficient for treatment of newly emerging viruses. We describe here our attempts and detailed procedures to obtain the recombinant kinase domain of CLK1 in suitable amounts for crystallization in complex with specific inhibitors. The key solution for the reproducibility of crystals resides in devising and refining expression and purification protocols leading to homogeneous protein. Co-expression of CLK1 with λ-phosphatase and careful purification has yielded crystals of CLK1 complexed with the KH-CB19 inhibitor that diffracted to 1.65 Å. These results paved the path to the screening of more structures of CLK1 complexed compounds, leading to further optimization of their inhibitory activity. Moreover, since kinases are desired targets in numerous pathologies, the approach we report here, the co-expression of kinases with λ-phosphatase, previously used in other kinases, can be adopted as a general protocol in numerous kinase targets for obtaining reproducible and homogenic non-phosphorylated (inactive) forms suitable for biochemical and structural studies thus facilitating the development of novel inhibitors.
Collapse
Affiliation(s)
- Noa Dekel
- The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yael Eisenberg-Domovich
- The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | - Thomas F Meyer
- Max Planck Institute for Infection Biology, Department of Molecular Biology, Charitéplatz 1, 10117, Berlin, Germany
| | - Franz Bracher
- Ludwig-Maximilians University, Department of Pharmacy-Center for Drug Research, Butenandstrasse 5-13, 81377, Munich, Germany
| | - Mario Lebendiker
- The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Tsafi Danieli
- The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Oded Livnah
- The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; Department of Biological Chemistry, Alexander Silverman Institute of Life Sciences, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
24
|
Bouma EM, van de Pol DPI, Sanders ID, Rodenhuis-Zybert IA, Smit JM. Serotonergic Drugs Inhibit Chikungunya Virus Infection at Different Stages of the Cell Entry Pathway. J Virol 2020; 94:e00274-20. [PMID: 32321803 PMCID: PMC7307168 DOI: 10.1128/jvi.00274-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/12/2020] [Indexed: 12/15/2022] Open
Abstract
Chikungunya virus (CHIKV) is an important reemerging human pathogen transmitted by mosquitoes. The virus causes an acute febrile illness, chikungunya fever, which is characterized by headache, rash, and debilitating (poly)arthralgia that can reside for months to years after infection. Currently, effective antiviral therapies and vaccines are lacking. Due to the high morbidity and economic burden in the countries affected by CHIKV, there is a strong need for new strategies to inhibit CHIKV replication. The serotonergic drug 5-nonyloxytryptamine (5-NT) was previously identified as a potential host-directed inhibitor for CHIKV infection. In this study, we determined the mechanism of action by which the serotonin receptor agonist 5-NT controls CHIKV infection. Using time-of-addition and entry bypass assays, we found that 5-NT predominantly inhibits CHIKV in the early phases of the replication cycle, at a step prior to RNA translation and genome replication. Intriguingly, however, no effect was seen during virus-cell binding, internalization, membrane fusion and genomic RNA (gRNA) release into the cell cytosol. In addition, we show that the serotonin receptor antagonist methiothepin mesylate (MM) also has antiviral properties toward CHIKV and specifically interferes with the cell entry process and/or membrane fusion. Taken together, pharmacological targeting of 5-HT receptors may represent a potent way to limit viral spread and disease severity.IMPORTANCE The rapid spread of mosquito-borne viral diseases in humans puts a huge economic burden on developing countries. For many of these infections, including those caused by chikungunya virus (CHIKV), there are no specific treatment possibilities to alleviate disease symptoms. Understanding the virus-host interactions that are involved in the viral replication cycle is imperative for the rational design of therapeutic strategies. In this study, we discovered an antiviral compound, elucidated its mechanism of action, and propose serotonergic drugs as potential host-directed antivirals for CHIKV.
Collapse
Affiliation(s)
- Ellen M Bouma
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Denise P I van de Pol
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ilson D Sanders
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Izabela A Rodenhuis-Zybert
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jolanda M Smit
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
25
|
Torii S, Orba Y, Sasaki M, Tabata K, Wada Y, Carr M, Hobson-Peters J, Hall RA, Takada A, Fukuhara T, Matsuura Y, Hall WW, Sawa H. Host ESCRT factors are recruited during chikungunya virus infection and are required for the intracellular viral replication cycle. J Biol Chem 2020; 295:7941-7957. [PMID: 32341071 PMCID: PMC7278350 DOI: 10.1074/jbc.ra119.012303] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/23/2020] [Indexed: 11/06/2022] Open
Abstract
Chikungunya fever is a re-emerging zoonotic disease caused by chikungunya virus (CHIKV), a member of the Alphavirus genus in the Togaviridae family. Only a few studies have reported on the host factors required for intracellular CHIKV trafficking. Here, we conducted an imaging-based siRNA screen to identify human host factors for intracellular trafficking that are involved in CHIKV infection, examined their interactions with CHIKV proteins, and investigated the contributions of these proteins to CHIKV infection. The results of the siRNA screen revealed that host endosomal sorting complexes required for transport (ESCRT) proteins are recruited during CHIKV infection. Co-immunoprecipitation analyses revealed that both structural and nonstructural CHIKV proteins interact with hepatocyte growth factor-regulated tyrosine kinase substrate (HGS), a component of the ESCRT-0 complex. We also observed that HGS co-localizes with the E2 protein of CHIKV and with dsRNA, a marker of the replicated CHIKV genome. Results from gene knockdown analyses indicated that, along with other ESCRT factors, HGS facilitates both genome replication and post-translational steps during CHIKV infection. Moreover, we show that ESCRT factors are also required for infections with other alphaviruses. We conclude that during CHIKV infection, several ESCRT factors are recruited via HGS and are involved in viral genome replication and post-translational processing of viral proteins.
Collapse
Affiliation(s)
- Shiho Torii
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yasuko Orba
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Michihito Sasaki
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Koshiro Tabata
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yuji Wada
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Japan
| | - Michael Carr
- National Virus Reference Laboratory, School of Medicine, University College Dublin, Dublin, Ireland
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Ayato Takada
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Takasuke Fukuhara
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Yoshiharu Matsuura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - William W Hall
- National Virus Reference Laboratory, School of Medicine, University College Dublin, Dublin, Ireland
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
- Centre for Research in Infectious Diseases, School of Medicine, University College Dublin, Dublin, Ireland
- Global Virus Network, Baltimore, Maryland, USA
| | - Hirofumi Sawa
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
- Global Virus Network, Baltimore, Maryland, USA
| |
Collapse
|
26
|
Kim B, Arcos S, Rothamel K, Jian J, Rose KL, McDonald WH, Bian Y, Reasoner S, Barrows NJ, Bradrick S, Garcia-Blanco MA, Ascano M. Discovery of Widespread Host Protein Interactions with the Pre-replicated Genome of CHIKV Using VIR-CLASP. Mol Cell 2020; 78:624-640.e7. [PMID: 32380061 PMCID: PMC7263428 DOI: 10.1016/j.molcel.2020.04.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/19/2020] [Accepted: 04/09/2020] [Indexed: 12/20/2022]
Abstract
The primary interactions between incoming viral RNA genomes and host proteins are crucial to infection and immunity. Until now, the ability to study these events was lacking. We developed viral cross-linking and solid-phase purification (VIR-CLASP) to characterize the earliest interactions between viral RNA and cellular proteins. We investigated the infection of human cells using Chikungunya virus (CHIKV) and influenza A virus and identified hundreds of direct RNA-protein interactions. Here, we explore the biological impact of three protein classes that bind CHIKV RNA within minutes of infection. We find CHIKV RNA binds and hijacks the lipid-modifying enzyme fatty acid synthase (FASN) for pro-viral activity. We show that CHIKV genomes are N6-methyladenosine modified, and YTHDF1 binds and suppresses CHIKV replication. Finally, we find that the innate immune DNA sensor IFI16 associates with CHIKV RNA, reducing viral replication and maturation. Our findings have direct applicability to the investigation of potentially all RNA viruses.
Collapse
Affiliation(s)
- Byungil Kim
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Sarah Arcos
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Katherine Rothamel
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jeffrey Jian
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kristie L Rose
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37232, USA
| | - W Hayes McDonald
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Yuqi Bian
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Seth Reasoner
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Nicholas J Barrows
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Shelton Bradrick
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Mariano A Garcia-Blanco
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77555, USA; Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Manuel Ascano
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
27
|
Abstract
Antiviral drugs have traditionally been developed by directly targeting essential viral components. However, this strategy often fails due to the rapid generation of drug-resistant viruses. Recent genome-wide approaches, such as those employing small interfering RNA (siRNA) or clustered regularly interspaced short palindromic repeats (CRISPR) or those using small molecule chemical inhibitors targeting the cellular "kinome," have been used successfully to identify cellular factors that can support virus replication. Since some of these cellular factors are critical for virus replication, but are dispensable for the host, they can serve as novel targets for antiviral drug development. In addition, potentiation of immune responses, regulation of cytokine storms, and modulation of epigenetic changes upon virus infections are also feasible approaches to control infections. Because it is less likely that viruses will mutate to replace missing cellular functions, the chance of generating drug-resistant mutants with host-targeted inhibitor approaches is minimized. However, drug resistance against some host-directed agents can, in fact, occur under certain circumstances, such as long-term selection pressure of a host-directed antiviral agent that can allow the virus the opportunity to adapt to use an alternate host factor or to alter its affinity toward the target that confers resistance. This review describes novel approaches for antiviral drug development with a focus on host-directed therapies and the potential mechanisms that may account for the acquisition of antiviral drug resistance against host-directed agents.
Collapse
|
28
|
Kamlah A, Bracher F. A Novel Approach to Highly Substituted β‐Carbolines via Reductive Ring Transformation of 2‐Acyl‐3‐isoxazolylindoles. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Alexandra Kamlah
- Department of Pharmacy Center for Drug Research Ludwig‐Maximilians University Butenandtstr. 5‐13 81377 Munich Germany
| | - Franz Bracher
- Department of Pharmacy Center for Drug Research Ludwig‐Maximilians University Butenandtstr. 5‐13 81377 Munich Germany
| |
Collapse
|
29
|
Target Identification Using Homopharma and Network-Based Methods for Predicting Compounds Against Dengue Virus-Infected Cells. Molecules 2020; 25:molecules25081883. [PMID: 32325755 PMCID: PMC7221756 DOI: 10.3390/molecules25081883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 12/28/2022] Open
Abstract
Drug target prediction is an important method for drug discovery and design, can disclose the potential inhibitory effect of active compounds, and is particularly relevant to many diseases that have the potential to kill, such as dengue, but lack any healing agent. An antiviral drug is urgently required for dengue treatment. Some potential antiviral agents are still in the process of drug discovery, but the development of more effective active molecules is in critical demand. Herein, we aimed to provide an efficient technique for target prediction using homopharma and network-based methods, which is reliable and expeditious to hunt for the possible human targets of three phenolic lipids (anarcardic acid, cardol, and cardanol) related to dengue viral (DENV) infection as a case study. Using several databases, the similarity search and network-based analyses were applied on the three phenolic lipids resulting in the identification of seven possible targets as follows. Based on protein annotation, three phenolic lipids may interrupt or disturb the human proteins, namely KAT5, GAPDH, ACTB, and HSP90AA1, whose biological functions have been previously reported to be involved with viruses in the family Flaviviridae. In addition, these phenolic lipids might inhibit the mechanism of the viral proteins: NS3, NS5, and E proteins. The DENV and human proteins obtained from this study could be potential targets for further molecular optimization on compounds with a phenolic lipid core structure in anti-dengue drug discovery. As such, this pipeline could be a valuable tool to identify possible targets of active compounds.
Collapse
|
30
|
Abstract
Introduction: Chikungunya virus (CHIKV), a reemerging human arthropod borne virus, can causes global epidemic outbreaks and has become a serious health concern due to the unavailability of any antiviral therapy/vaccine. Extensive research has been conducted to target different proteins from CHIKV to curtail the spread of virus.Areas covered: This review provides an overview of the granted patents including the current status of antiviral strategies targeting CHIKV.Expert opinion: Under the current scenario, potential molecules and different approaches have been utilized to suppress CHIKV infection. MV-CHIKV and VRC-CHKVLP059-00-VP vaccine candidates have successfully completed phase I clinical trials and ribavirin (inhibitor) has shown significant inhibition of CHIKV replication and could be the most promising candidates. The drug resistance and toxicity can be modulated by using the inhibitors/drugs in combination. Moreover, nanoparticle formulations can improve the efficacy and bioavailability of drugs.
Collapse
Affiliation(s)
- Ritu Ghildiyal
- Center for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, U P, India
| | - Reema Gabrani
- Center for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, U P, India
| |
Collapse
|
31
|
Ding M, Tyrchan C, Bäck E, Östling J, Schubert S, McCrae C. Combined siRNA and Small-Molecule Phenotypic Screening Identifies Targets Regulating Rhinovirus Replication in Primary Human Bronchial Epithelial Cells. SLAS DISCOVERY 2020; 25:634-645. [PMID: 32189556 DOI: 10.1177/2472555220909726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Human rhinovirus (RV) is the most common cause of acute upper respiratory tract infections and has recently been shown to play a significant role in exacerbations of asthma and chronic obstructive pulmonary disease (COPD). There is a significant unmet medical need for agents for the prevention and/or treatment of exacerbations triggered by human RV infection. Phenotypic drug discovery programs using different perturbation modalities, for example, siRNA, small-molecule compounds, and CRISPR, hold significant value for identifying novel drug targets. We have previously reported the identification of lanosterol synthase as a novel regulator of RV2 replication through a phenotypic screen of a library of siRNAs against druggable genes in normal human bronchial epithelial (NHBE) cells. Here, we describe a follow-up phenotypic screen of small-molecule compounds that are annotated to be pharmacological regulators of target genes that were identified to significantly affect RV2 replication in the siRNA primary screen of 10,500 druggable genes. Two hundred seventy small-molecule compounds selected for interacting with 122 target gene hits were screened in the primary RV2 assay in NHBE cells by quantifying viral replication via in situ hybridization followed by secondary quantitative PCR-based assays for RV2, RV14, and RV16. The described follow-up phenotypic screening allowed us to identify Fms-related tyrosine kinase 4 (FLT4) as a novel target regulating RV replication. We demonstrate that a combination of siRNA and small-molecule compound screening models is a useful phenotypic drug discovery approach for the identification of novel drug targets.
Collapse
Affiliation(s)
- Mei Ding
- Discovery Sciences, Research and Early Development, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Christian Tyrchan
- Medicinal Chemistry, Research and Early Development, Respiratory, Inflammation and Autoimmune (RIA), R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Elisabeth Bäck
- Discovery Sciences, Research and Early Development, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Jörgen Östling
- Bioscience, Research and Early Development, Respiratory, Inflammation and Autoimmune (RIA), R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | | | - Christopher McCrae
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory, Inflammation and Autoimmune (RIA), R&D BioPharmaceuticals, AstraZeneca, Gaithersburg, MD, USA
| |
Collapse
|
32
|
Untergehrer M, Bracher F. A short divergent approach to highly substituted carbazoles and β-carbolines via in situ-generated diketoindoles. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Dirmeier S, Dächert C, van Hemert M, Tas A, Ogando NS, van Kuppeveld F, Bartenschlager R, Kaderali L, Binder M, Beerenwinkel N. Host factor prioritization for pan-viral genetic perturbation screens using random intercept models and network propagation. PLoS Comput Biol 2020; 16:e1007587. [PMID: 32040506 PMCID: PMC7034926 DOI: 10.1371/journal.pcbi.1007587] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 02/21/2020] [Accepted: 12/05/2019] [Indexed: 12/16/2022] Open
Abstract
Genetic perturbation screens using RNA interference (RNAi) have been conducted successfully to identify host factors that are essential for the life cycle of bacteria or viruses. So far, most published studies identified host factors primarily for single pathogens. Furthermore, often only a small subset of genes, e.g., genes encoding kinases, have been targeted. Identification of host factors on a pan-pathogen level, i.e., genes that are crucial for the replication of a diverse group of pathogens has received relatively little attention, despite the fact that such common host factors would be highly relevant, for instance, for devising broad-spectrum anti-pathogenic drugs. Here, we present a novel two-stage procedure for the identification of host factors involved in the replication of different viruses using a combination of random effects models and Markov random walks on a functional interaction network. We first infer candidate genes by jointly analyzing multiple perturbations screens while at the same time adjusting for high variance inherent in these screens. Subsequently the inferred estimates are spread across a network of functional interactions thereby allowing for the analysis of missing genes in the biological studies, smoothing the effect sizes of previously found host factors, and considering a priori pathway information defined over edges of the network. We applied the procedure to RNAi screening data of four different positive-sense single-stranded RNA viruses, Hepatitis C virus, Chikungunya virus, Dengue virus and Severe acute respiratory syndrome coronavirus, and detected novel host factors, including UBC, PLCG1, and DYRK1B, which are predicted to significantly impact the replication cycles of these viruses. We validated the detected host factors experimentally using pharmacological inhibition and an additional siRNA screen and found that some of the predicted host factors indeed influence the replication of these pathogens.
Collapse
Affiliation(s)
- Simon Dirmeier
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Christopher Dächert
- Research Group “Dynamics of Early Viral Infection and the Innate Antiviral Response” (division F170), German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Martijn van Hemert
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ali Tas
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Natacha S. Ogando
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Frank van Kuppeveld
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Ralf Bartenschlager
- Department for Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
- Division Virus-Associated Carcinogenesis, German Cancer Research Center, Heidelberg, Germany
| | - Lars Kaderali
- University Medicine Greifswald, Institute of Bioinformatics, Greifswald, Germany
| | - Marco Binder
- Research Group “Dynamics of Early Viral Infection and the Innate Antiviral Response” (division F170), German Cancer Research Center, Heidelberg, Germany
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
- * E-mail:
| |
Collapse
|
34
|
|
35
|
Fares M, McCosker PM, Alsherbiny MA, Willis AC, Clark T, Neyts J, Jochmans D, Keller PA. Regioselective convergent synthesis of 2-arylidene thiazolo[3,2- a]pyrimidines as potential anti-chikungunya agents. RSC Adv 2020; 10:5191-5195. [PMID: 35498334 PMCID: PMC9049071 DOI: 10.1039/d0ra00257g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 01/17/2020] [Indexed: 11/21/2022] Open
Abstract
Convergent and convenient regioselective synthesis of novel thiazolo[2,3-a]pyrimidine derivatives was accomplished using the one-pot reaction of 6-ethylthiouracil, bromoacetic acid, anhydrous sodium acetate, acetic anhydride, acetic acid and suitable aldehyde. X-ray crystallographic study reveals the presence of the Z configuration of only one regioisomer confirmed by computational studies as being the most likely isomer present. Convergent and convenient regioselective synthesis of novel thiazolo[2,3-a]pyrimidines was accomplished using the one-pot reaction of 6-ethylthiouracil, bromoacetic acid, anhydrous sodium acetate, acetic anhydride, acetic acid and suitable aldehyde.![]()
Collapse
Affiliation(s)
- Mohamed Fares
- School of Chemistry & Molecular Bioscience
- Molecular Horizons
- University of Wollongong
- Illawarra Health & Medical Research Institute
- Wollongong
| | - Patrick M. McCosker
- School of Chemistry & Molecular Bioscience
- Molecular Horizons
- University of Wollongong
- Illawarra Health & Medical Research Institute
- Wollongong
| | | | - Anthony C. Willis
- Research School of Chemistry
- The Australian National University
- Canberra
- Australia
| | - Timothy Clark
- Department of Chemistry and Pharmacy
- Computer-Chemistry-Center (CCC)
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
- 91052 Erlangen
- Germany
| | - Johan Neyts
- KU Leuven (University of Leuven)
- Department of Microbiology and Immunology
- Rega Institute for Medical Research
- Laboratory of Virology and Chemotherapy
- Leuven
| | - Dirk Jochmans
- KU Leuven (University of Leuven)
- Department of Microbiology and Immunology
- Rega Institute for Medical Research
- Laboratory of Virology and Chemotherapy
- Leuven
| | - Paul A. Keller
- School of Chemistry & Molecular Bioscience
- Molecular Horizons
- University of Wollongong
- Illawarra Health & Medical Research Institute
- Wollongong
| |
Collapse
|
36
|
Hassan MZ, Ahmed MS, Khan MM, Uddin MA, Chowdhury F, Kamruzzaman M. Genomic profiling of Nipah virus using NGS driven RNA-Seq expression data. Bioinformation 2019; 15:853-862. [PMID: 32256005 PMCID: PMC7088422 DOI: 10.6026/97320630015853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 12/31/2019] [Accepted: 12/31/2019] [Indexed: 01/20/2023] Open
Abstract
Nipah virus (NiV) is an ssRNA, enveloped paramyxovirus in the genus Henipaveridae with a case fatality rate >70%. We analyzed the NGS RNA-Seq gene expression data of NiV to detect differentially expressed genes (DEGs) using the statistical R package limma. We used the Cytoscape, Ensembl, and STRING tools to construct the gene-gene interaction tree, phylogenetic gene tree and protein-protein interaction networks towards functional annotation. We identified 2707 DEGs (p-value <0.05) among 54359 NiV genes. The top-up and down-regulated DEGs were EPST1, MX1, IFIT3, RSAD2, OAS1, OASL, CMPK2 and SLFN13, SPAC977.17 using log2FC criteria with optimum threshold 1.0. The top 20 up-regulated gene-gene interaction trees showed no significant association between Nipah and Tularemia virus. Similarly, the top 20 down-regulated genes of neither Ebola nor Tularemia virus showed an association with the Nipah virus. Hence, we document the top-up and down-regulated DEGs for further consideration as biomarkers and candidates for vaccine or drug design against Nipah virus to combat infection.
Collapse
Affiliation(s)
- Md. Zakiul Hassan
- Infectious Diseases Division, International Centre for Diarrheal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Md. Shakil Ahmed
- Infectious Diseases Division, International Centre for Diarrheal Disease Research, Bangladesh, Dhaka, Bangladesh
| | | | | | - Fahmida Chowdhury
- Infectious Diseases Division, International Centre for Diarrheal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Md Kamruzzaman
- Institute of Bangladesh Studies, University of Rajshahi, Rajshahi, Bangladesh
| |
Collapse
|
37
|
Fatty acid synthase and stearoyl-CoA desaturase-1 are conserved druggable cofactors of Old World Alphavirus genome replication. Antiviral Res 2019; 172:104642. [PMID: 31678479 DOI: 10.1016/j.antiviral.2019.104642] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/14/2019] [Accepted: 10/28/2019] [Indexed: 01/12/2023]
Abstract
Chikungunya virus (CHIKV) is a rapidly emerging mosquito-borne RNA virus that causes epidemics of debilitating disease in tropical and sub-tropical regions with autochtonous transmission in regions with temperate climate. Currently, there is no licensed vaccine or specific antiviral drug available against CHIKV infection. In this study, we examine the role, in the CHIKV viral cycle, of fatty acid synthase (FASN) and stearoyl-CoA desaturase (SCD1), two key lipogenic enzymes required for fatty acid production and early desaturation. We show that both enzymes and their upstream regulator PI3K are required for optimal CHIKV infection. We demonstrate that pharmacologic manipulation of FASN or SCD1 enzymatic activity by non-toxic concentrations of cerulenin or CAY10566 decreases CHIKV genome replication. Interestingly, a similar inhibitory effect was also obtained with Orlistat, an FDA-approved anti-obesity drug that targets FASN activity. These drugs were also effective against Mayaro virus (MAYV), an under-studied arthritogenic Old world Alphavirus endemic in South American countries with potential risk of emergence, urbanization and dispersion to other regions. Altogether, our results identify FASN and SCD1 as conserved druggable cofactors of Alphavirus genome replication and support the broad-spectrum activity of drugs targeting the host fatty acids metabolism.
Collapse
|
38
|
Mellini M, Di Muzio E, D’Angelo F, Baldelli V, Ferrillo S, Visca P, Leoni L, Polticelli F, Rampioni G. In silico Selection and Experimental Validation of FDA-Approved Drugs as Anti-quorum Sensing Agents. Front Microbiol 2019; 10:2355. [PMID: 31649658 PMCID: PMC6796623 DOI: 10.3389/fmicb.2019.02355] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/27/2019] [Indexed: 12/13/2022] Open
Abstract
The emergence of antibiotic resistant bacterial pathogens is increasing at an unprecedented pace, calling for the development of new therapeutic options. Small molecules interfering with virulence processes rather than growth hold promise as an alternative to conventional antibiotics. Anti-virulence agents are expected to decrease bacterial virulence and to pose reduced selective pressure for the emergence of resistance. In the opportunistic pathogen Pseudomonas aeruginosa the expression of key virulence traits is controlled by quorum sensing (QS), an intercellular communication process that coordinates gene expression at the population level. Hence, QS inhibitors represent promising anti-virulence agents against P. aeruginosa. Virtual screenings allow fast and cost-effective selection of target ligands among vast libraries of molecules, thus accelerating the time and limiting the cost of conventional drug-discovery processes, while the drug-repurposing approach is based on the identification of off-target activity of FDA-approved drugs, likely endowed with low cytotoxicity and favorable pharmacological properties. This study aims at combining the advantages of virtual screening and drug-repurposing approaches to identify new QS inhibitors targeting the pqs QS system of P. aeruginosa. An in silico library of 1,467 FDA-approved drugs has been screened by molecular docking, and 5 hits showing the highest predicted binding affinity for the pqs QS receptor PqsR (also known as MvfR) have been selected. In vitro experiments have been performed by engineering ad hoc biosensor strains, which were used to verify the ability of hit compounds to decrease PqsR activity in P. aeruginosa. Phenotypic analyses confirmed the impact of the most promising hit, the antipsychotic drug pimozide, on the expression of P. aeruginosa PqsR-controlled virulence traits. Overall, this study highlights the potential of virtual screening campaigns of FDA-approved drugs to rapidly select new inhibitors of important bacterial functions.
Collapse
Affiliation(s)
- Marta Mellini
- Department of Science, University Roma Tre, Rome, Italy
| | | | | | | | | | - Paolo Visca
- Department of Science, University Roma Tre, Rome, Italy
| | - Livia Leoni
- Department of Science, University Roma Tre, Rome, Italy
| | - Fabio Polticelli
- Department of Science, University Roma Tre, Rome, Italy
- National Institute of Nuclear Physics, Roma Tre Section, Rome, Italy
| | | |
Collapse
|
39
|
FHL1 is a major host factor for chikungunya virus infection. Nature 2019; 574:259-263. [PMID: 31554973 DOI: 10.1038/s41586-019-1578-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 08/19/2019] [Indexed: 11/08/2022]
Abstract
Chikungunya virus (CHIKV) is a re-emerging alphavirus that is transmitted to humans by mosquito bites and causes musculoskeletal and joint pain1,2. Despite intensive investigations, the human cellular factors that are critical for CHIKV infection remain unknown, hampering the understanding of viral pathogenesis and the development of anti-CHIKV therapies. Here we identified the four-and-a-half LIM domain protein 1 (FHL1)3 as a host factor that is required for CHIKV permissiveness and pathogenesis in humans and mice. Ablation of FHL1 expression results in the inhibition of infection by several CHIKV strains and o'nyong-nyong virus, but not by other alphaviruses and flaviviruses. Conversely, expression of FHL1 promotes CHIKV infection in cells that do not normally express it. FHL1 interacts directly with the hypervariable domain of the nsP3 protein of CHIKV and is essential for the replication of viral RNA. FHL1 is highly expressed in CHIKV-target cells and is particularly abundant in muscles3,4. Dermal fibroblasts and muscle cells derived from patients with Emery-Dreifuss muscular dystrophy that lack functional FHL15 are resistant to CHIKV infection. Furthermore, CHIKV infection is undetectable in Fhl1-knockout mice. Overall, this study shows that FHL1 is a key factor expressed by the host that enables CHIKV infection and identifies the interaction between nsP3 and FHL1 as a promising target for the development of anti-CHIKV therapies.
Collapse
|
40
|
Müller M, Slivinski N, Todd EJAA, Khalid H, Li R, Karwatka M, Merits A, Mankouri J, Tuplin A. Chikungunya virus requires cellular chloride channels for efficient genome replication. PLoS Negl Trop Dis 2019; 13:e0007703. [PMID: 31483794 PMCID: PMC6746389 DOI: 10.1371/journal.pntd.0007703] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 09/16/2019] [Accepted: 08/13/2019] [Indexed: 02/05/2023] Open
Abstract
Chikungunya virus (CHIKV) is a re-emerging, pathogenic alphavirus that is transmitted to humans by Aedes spp. mosquitoes-causing fever and debilitating joint pain, with frequent long-term health implications and high morbidity. The CHIKV lifecycle is poorly understood and specific antiviral therapeutics or vaccines are lacking. In this study, we investigated the role of host-cell chloride (Cl-) channels on CHIKV replication.We demonstrate that specific pharmacological Cl- channel inhibitors significantly inhibit CHIKV replication in a dose-dependent manner, suggesting that Cl-channels are pro-viral factors in human cells. Further analysis of the effect of the inhibitors on CHIKV attachment, entry, viral protein expression and replicon replication demonstrated that Cl- channels are specifically required for efficient CHIKV genome replication. This was conserved in mosquito cells, where CHIKV replication and genome copy number was significantly reduced following Cl- channel inhibition. siRNA silencing identified chloride intracellular channels 1 and 4 (CLIC1 and CLIC4, respectively) as required for efficient CHIKV replication and protein affinity chromatography showed low levels of CLIC1 in complex with CHIKV nsP3, an essential component of the viral replication machinery. In summary, for the first time we demonstrate that efficient replication of the CHIKV genome depends on cellular Cl- channels, in both human and mosquito cells and identifies CLIC1 and CLIC4 as agonists of CHIKV replication in human cells. We observe a modest interaction, either direct or indirect, between CLIC1 and nsP3 and hypothesize that CLIC1 may play a role in the formation/maintenance of CHIKV replication complexes. These findings advance our molecular understanding of CHIKV replication and identify potential druggable targets for the treatment and prevention of CHIKV mediated disease.
Collapse
Affiliation(s)
- Marietta Müller
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Natalie Slivinski
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Eleanor J. A. A. Todd
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Henna Khalid
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Raymond Li
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Magdalena Karwatka
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Andres Merits
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Jamel Mankouri
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Andrew Tuplin
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- * E-mail:
| |
Collapse
|
41
|
Pérez-Pérez MJ, Delang L, Ng LFP, Priego EM. Chikungunya virus drug discovery: still a long way to go? Expert Opin Drug Discov 2019; 14:855-866. [DOI: 10.1080/17460441.2019.1629413] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
| | - Leen Delang
- KU Leuven Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Lisa F. P. Ng
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | | |
Collapse
|
42
|
Artarini A, Meyer M, Shin YJ, Huber K, Hilz N, Bracher F, Eros D, Orfi L, Keri G, Goedert S, Neuenschwander M, von Kries J, Domovich-Eisenberg Y, Dekel N, Szabadkai I, Lebendiker M, Horváth Z, Danieli T, Livnah O, Moncorgé O, Frise R, Barclay W, Meyer TF, Karlas A. Regulation of influenza A virus mRNA splicing by CLK1. Antiviral Res 2019; 168:187-196. [PMID: 31176694 DOI: 10.1016/j.antiviral.2019.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 06/04/2019] [Accepted: 06/06/2019] [Indexed: 10/26/2022]
Abstract
Influenza A virus carries eight negative single-stranded RNAs and uses spliced mRNAs to increase the number of proteins produced from them. Several genome-wide screens for essential host factors for influenza A virus replication revealed a necessity for splicing and splicing-related factors, including Cdc-like kinase 1 (CLK1). This CLK family kinase plays a role in alternative splicing regulation through phosphorylation of serine-arginine rich (SR) proteins. To examine the influence that modulation of splicing regulation has on influenza infection, we analyzed the effect of CLK1 knockdown and inhibition. CLK1 knockdown in A549 cells reduced influenza A/WSN/33 virus replication and increased the level of splicing of segment 7, which encodes the viral M1 and M2 proteins. CLK1-/- mice infected with influenza A/England/195/2009 (H1N1pdm09) virus supported lower levels of virus replication than wild-type mice. Screening of newly developed CLK inhibitors revealed several compounds that have an effect on the level of splicing of influenza A gene segment M in different models and decrease influenza A/WSN/33 virus replication in A549 cells. The promising inhibitor KH-CB19, an indole-based enaminonitrile with unique binding mode for CLK1, and its even more selective analogue NIH39 showed high specificity towards CLK1 and had a similar effect on influenza mRNA splicing regulation. Taken together, our findings indicate that targeting host factors that regulate splicing of influenza mRNAs may represent a novel therapeutic approach.
Collapse
Affiliation(s)
- Anita Artarini
- Max Planck Institute for Infection Biology, Department of Molecular Biology, Charitéplatz 1, 10117, Berlin, Germany
| | - Michael Meyer
- Steinbeis Innovation, Center for Systems Biomedicine, 14612, Falkensee, Germany
| | - Yu Jin Shin
- Max Planck Institute for Infection Biology, Department of Molecular Biology, Charitéplatz 1, 10117, Berlin, Germany
| | - Kilian Huber
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Nikolaus Hilz
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Franz Bracher
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Daniel Eros
- Vichem Chemie Research Ltd., Herman Ottó 15, H-1022, Budapest, Hungary
| | - Laszlo Orfi
- Vichem Chemie Research Ltd., Herman Ottó 15, H-1022, Budapest, Hungary; Department of Pharmaceutical Chemistry, Semmelweis University, Budapest, 1092, Hungary
| | - Gyorgy Keri
- Vichem Chemie Research Ltd., Herman Ottó 15, H-1022, Budapest, Hungary
| | - Sigrid Goedert
- Max Planck Institute for Infection Biology, Department of Molecular Biology, Charitéplatz 1, 10117, Berlin, Germany
| | - Martin Neuenschwander
- Leibniz Institute for Molecular Pharmacology, Robert-Roessle Str. 10, D-13125, Berlin, Germany
| | - Jens von Kries
- Leibniz Institute for Molecular Pharmacology, Robert-Roessle Str. 10, D-13125, Berlin, Germany
| | - Yael Domovich-Eisenberg
- The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, 91904, Jerusalem, Israel
| | - Noa Dekel
- The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, 91904, Jerusalem, Israel
| | - István Szabadkai
- Vichem Chemie Research Ltd., Herman Ottó 15, H-1022, Budapest, Hungary
| | - Mario Lebendiker
- The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, 91904, Jerusalem, Israel
| | - Zoltán Horváth
- Vichem Chemie Research Ltd., Herman Ottó 15, H-1022, Budapest, Hungary
| | - Tsafi Danieli
- The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, 91904, Jerusalem, Israel
| | - Oded Livnah
- The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, 91904, Jerusalem, Israel
| | - Olivier Moncorgé
- Imperial College London, Section of Virology, Faculty of Medicine, St. Mary's Campus, Norfolk Place, London, W2 1PG, UK
| | - Rebecca Frise
- Imperial College London, Section of Virology, Faculty of Medicine, St. Mary's Campus, Norfolk Place, London, W2 1PG, UK
| | - Wendy Barclay
- Imperial College London, Section of Virology, Faculty of Medicine, St. Mary's Campus, Norfolk Place, London, W2 1PG, UK
| | - Thomas F Meyer
- Max Planck Institute for Infection Biology, Department of Molecular Biology, Charitéplatz 1, 10117, Berlin, Germany.
| | - Alexander Karlas
- Max Planck Institute for Infection Biology, Department of Molecular Biology, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
43
|
Rother M, Teixeira da Costa AR, Zietlow R, Meyer TF, Rudel T. Modulation of Host Cell Metabolism by Chlamydia trachomatis. Microbiol Spectr 2019; 7:10.1128/microbiolspec.bai-0012-2019. [PMID: 31111817 PMCID: PMC11026074 DOI: 10.1128/microbiolspec.bai-0012-2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Indexed: 11/20/2022] Open
Abstract
Propagation of the intracellular bacterial pathogen Chlamydia trachomatis is strictly bound to its host cells. The bacterium has evolved by minimizing its genome size at the cost of being completely dependent on its host. Many of the vital nutrients are synthesized only by the host, and this has complex implications. Recent advances in loss-of-function analyses and the metabolomics of human infected versus noninfected cells have provided comprehensive insight into the molecular changes that host cells undergo during the stage of infection. Strikingly, infected cells acquire a stage of high metabolic activity, featuring distinct aspects of the Warburg effect, a condition originally assigned to cancer cells. This condition is characterized by aerobic glycolysis and an accumulation of certain metabolites, altogether promoting the synthesis of crucial cellular building blocks, such as nucleotides required for DNA and RNA synthesis. The altered metabolic program enables tumor cells to rapidly proliferate as well as C. trachomatis-infected cells to feed their occupants and still survive. This program is largely orchestrated by a central control board, the tumor suppressor protein p53. Its downregulation in C. trachomatis-infected cells or mutation in cancer cells not only alters the metabolic state of cells but also conveys the prevention of programmed cell death involving mitochondrial pathways. While this points toward common features in the metabolic reprogramming of infected and rapidly proliferating cells, it also forwards novel treatment options against chronic intracellular infections involving well-characterized host cell targets and established drugs.
Collapse
Affiliation(s)
- Marion Rother
- Steinbeis Innovation Center for Systems Biomedicine, 14612 Berlin-Falkensee, Germany
- Institute of Experimental Internal Medicine, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany
- Max Planck Institute for Infection Biology, Department of Molecular Biology, 10117 Berlin, Germany
| | | | - Rike Zietlow
- Max Planck Institute for Infection Biology, Department of Molecular Biology, 10117 Berlin, Germany
| | - Thomas F Meyer
- Max Planck Institute for Infection Biology, Department of Molecular Biology, 10117 Berlin, Germany
| | - Thomas Rudel
- Department of Microbiology, Biocenter, University of Wuerzburg, 97074 Wuerzburg, Germany
| |
Collapse
|
44
|
Fatty Acid Synthase Promotes the Palmitoylation of Chikungunya Virus nsP1. J Virol 2019; 93:JVI.01747-18. [PMID: 30404808 DOI: 10.1128/jvi.01747-18] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 10/26/2018] [Indexed: 12/20/2022] Open
Abstract
Chikungunya virus (CHIKV) is transmitted to people by mosquitoes, and CHIKV infection causes fever and joint pain. Fatty acid synthase (FASN) has been identified as a proviral factor for CHIKV. How FASN participates in CHIKV replication remains to be elucidated. In this study, we demonstrated that palmitic acid (PA) can restore the suppression of CHIKV replication by FASN inhibitors. The palmitoylation and plasma membrane localization of CHIKV nsP1 were reduced by FASN inhibitors. Triple mutation of Cys417, Cys418, and Cys419 in nsP1 blocked its palmitoylation and severely disrupted CHIKV replication. Furthermore, two zinc finger DHHC domain-containing palmitoyltransferases (ZDHHCs), ZDHHC2 and ZDHHC19, promoted nsP1 palmitoylation and CHIKV replication. Our results not only identified the key enzymes for the palmitoylation of nsP1 but also provided mechanistic insights into the roles of FASN in CHIKV replication.IMPORTANCE S-palmitoylation is an important form of lipid posttranslational modification, which affects the function of proteins by regulating their transport, stability, and localization. Previous studies have shown that FASN is critical for CHIKV replication; however, the mechanism for this function of FASN remains unknown. The key zinc finger DHHC domain-containing palmitoyltransferases involved in the palmitoylation of nsP1 are not clear. We demonstrated that FASN promoted CHIKV replication through nsP1 palmitoylation. ZDHHC2 and ZDHHC19 were identified as the major enzymes for nsP1 palmitoylation. Since nsP1 proteins are conserved in alphaviruses, our results highlight the mechanisms by which alphavirus nsP1 is palmitoylated.
Collapse
|
45
|
Carissimo G, Ng LFP. Understanding Molecular Pathogenesis with Chikungunya Virus Research Tools. Curr Top Microbiol Immunol 2019; 435:33-53. [PMID: 30888547 DOI: 10.1007/82_2019_158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Since its re-emergence in 2006, Chikungunya has been a major health concern in endemic areas. Transmitted by Aedes mosquitoes to mammalian hosts, Chikungunya leads to persistent debilitating symptoms in a high proportion of symptomatic human cases. In this review, we present several tools on the mosquito vector side as well as on the mammalian side that have been used to advance research on Chikungunya transmission and immunopathogenesis. These tools lead to key understandings of viral replication in both hosts, and innate and adaptive responses mediating virus clearance and pathology in mammals. This comprehension of viral mechanisms has allowed the development of promising treatment avenues in animal models that will need to be further explored. However, research efforts need to continue in order to develop better and unbiased tools to assess antiviral and treatment strategies as well as further understand immune mechanisms at play in human pathologies.
Collapse
Affiliation(s)
- Guillaume Carissimo
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Singapore
| | - Lisa F P Ng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Singapore. .,Institute of Infection and Global Health, University of Liverpool, Liverpool, UK. .,Laboratory of Microbial Immunity, Singapore Immunology Network, 8A Biomedical Grove, #04-06, Immunos, Biopolis, 138648, Singapore.
| |
Collapse
|
46
|
Hernandez HW, Soeung M, Zorn KM, Ashoura N, Mottin M, Andrade CH, Caffrey CR, de Siqueira-Neto JL, Ekins S. High Throughput and Computational Repurposing for Neglected Diseases. Pharm Res 2018; 36:27. [PMID: 30560386 PMCID: PMC6792295 DOI: 10.1007/s11095-018-2558-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 12/09/2018] [Indexed: 12/21/2022]
Abstract
Purpose Neglected tropical diseases (NTDs) represent are a heterogeneous group of communicable diseases that are found within the poorest populations of the world. There are 23 NTDs that have been prioritized by the World Health Organization, which are endemic in 149 countries and affect more than 1.4 billion people, costing these developing economies billions of dollars annually. The NTDs result from four different causative pathogens: protozoa, bacteria, helminth and virus. The majority of the diseases lack effective treatments. Therefore, new therapeutics for NTDs are desperately needed. Methods We describe various high throughput screening and computational approaches that have been performed in recent years. We have collated the molecules identified in these studies and calculated molecular properties. Results Numerous global repurposing efforts have yielded some promising compounds for various neglected tropical diseases. These compounds when analyzed as one would expect appear drug-like. Several large datasets are also now in the public domain and this enables machine learning models to be constructed that then facilitate the discovery of new molecules for these pathogens. Conclusions In the space of a few years many groups have either performed experimental or computational repurposing high throughput screens against neglected diseases. These have identified compounds which in many cases are already approved drugs. Such approaches perhaps offer a more efficient way to develop treatments which are generally not a focus for global pharmaceutical companies because of the economics or the lack of a viable market. Other diseases could perhaps benefit from these repurposing approaches. Electronic supplementary material The online version of this article (10.1007/s11095-018-2558-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Melinda Soeung
- MD Anderson Cancer Center, University of Texas, Houston, Texas, USA
| | - Kimberley M Zorn
- Collaborations Pharmaceuticals Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina, 27606, USA
| | | | - Melina Mottin
- LabMol - Laboratory for Molecular Modeling and Drug Design Faculdade de Farmacia, Universidade Federal de Goias - UFG, Goiânia, GO, 74605-170, Brazil
| | - Carolina Horta Andrade
- LabMol - Laboratory for Molecular Modeling and Drug Design Faculdade de Farmacia, Universidade Federal de Goias - UFG, Goiânia, GO, 74605-170, Brazil
| | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, California, 92093, USA
| | - Jair Lage de Siqueira-Neto
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, California, 92093, USA
| | - Sean Ekins
- Collaborations Pharmaceuticals Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina, 27606, USA.
| |
Collapse
|
47
|
Abstract
Alphaviruses, members of the positive-sense, single-stranded RNA virus family Togaviridae, represent a re-emerging public health concern worldwide as mosquito vectors expand into new geographic ranges. Members of the alphavirus genus tend to induce clinical disease characterized by rash, arthralgia, and arthritis (chikungunya virus, Ross River virus, and Semliki Forest virus) or encephalomyelitis (eastern equine encephalitis virus, western equine encephalitis virus, and Venezuelan equine encephalitis virus), though some patients who recover from the initial acute illness may develop long-term sequelae, regardless of the specific infecting virus. Studies examining the natural disease course in humans and experimental infection in cell culture and animal models reveal that host genetics play a major role in influencing susceptibility to infection and severity of clinical disease. Genome-wide genetic screens, including loss of function screens, microarrays, RNA-sequencing, and candidate gene studies, have further elucidated the role host genetics play in the response to virus infection, with the immune response being found in particular to majorly influence the outcome. This review describes the current knowledge of the mechanisms by which host genetic factors influence alphavirus pathogenesis and discusses emerging technologies that are poised to increase our understanding of the complex interplay between viral and host genetics on disease susceptibility and clinical outcome.
Collapse
|
48
|
The TRPV4 channel links calcium influx to DDX3X activity and viral infectivity. Nat Commun 2018; 9:2307. [PMID: 29899501 PMCID: PMC5998047 DOI: 10.1038/s41467-018-04776-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 05/22/2018] [Indexed: 12/11/2022] Open
Abstract
Ion channels are well placed to transduce environmental cues into signals used by cells to generate a wide range of responses, but little is known about their role in the regulation of RNA metabolism. Here we show that the TRPV4 cation channel binds the DEAD-box RNA helicase DDX3X and regulates its function. TRPV4-mediated Ca2+ influx releases DDX3X from the channel and drives DDX3X nuclear translocation, a process that involves calmodulin (CaM) and the CaM-dependent kinase II. Genetic depletion or pharmacological inhibition of TRPV4 diminishes DDX3X-dependent functions, including nuclear viral export and translation. Furthermore, TRPV4 mediates Ca2+ influx and nuclear accumulation of DDX3X in cells exposed to the Zika virus or the purified viral envelope protein. Consequently, targeting of TRPV4 reduces infectivity of dengue, hepatitis C and Zika viruses. Together, our results highlight the role of TRPV4 in the regulation of DDX3X-dependent control of RNA metabolism and viral infectivity. The ion channel TRPV4 senses many environmental cues, but its role in virus infection is not known. Here, Doñate-Macián et al. show that Zika virus induces TRPV4-mediated Ca2+ influx into cells, resulting in the nuclear accumulation of the DDX3X RNA helicase, which increases virus replication.
Collapse
|
49
|
Palmer WH, Medd NC, Beard PM, Obbard DJ. Isolation of a natural DNA virus of Drosophila melanogaster, and characterisation of host resistance and immune responses. PLoS Pathog 2018; 14:e1007050. [PMID: 29864164 PMCID: PMC6002114 DOI: 10.1371/journal.ppat.1007050] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 06/14/2018] [Accepted: 04/20/2018] [Indexed: 12/15/2022] Open
Abstract
Drosophila melanogaster has played a key role in our understanding of invertebrate immunity. However, both functional and evolutionary studies of host-virus interaction in Drosophila have been limited by a dearth of native virus isolates. In particular, despite a long history of virus research, DNA viruses of D. melanogaster have only recently been described, and none have been available for experimental study. Here we report the isolation and comprehensive characterisation of Kallithea virus, a large double-stranded DNA virus, and the first DNA virus to have been reported from wild populations of D. melanogaster. We find that Kallithea virus infection is costly for adult flies, reaching high titres in both sexes and disproportionately reducing survival in males, and movement and late fecundity in females. Using the Drosophila Genetic Reference Panel, we quantify host genetic variance for virus-induced mortality and viral titre and identify candidate host genes that may underlie this variation, including Cdc42-interacting protein 4. Using full transcriptome sequencing of infected males and females, we examine the transcriptional response of flies to Kallithea virus infection and describe differential regulation of virus-responsive genes. This work establishes Kallithea virus as a new tractable model to study the natural interaction between D. melanogaster and DNA viruses, and we hope it will serve as a basis for future studies of immune responses to DNA viruses in insects.
Collapse
Affiliation(s)
- William H Palmer
- Institute of Evolutionary Biology University of Edinburgh, Charlotte Auerbach Road, Edinburgh, United Kingdom
| | - Nathan C Medd
- Institute of Evolutionary Biology University of Edinburgh, Charlotte Auerbach Road, Edinburgh, United Kingdom
| | - Philippa M Beard
- The Roslin Institute and The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - Darren J Obbard
- Institute of Evolutionary Biology University of Edinburgh, Charlotte Auerbach Road, Edinburgh, United Kingdom
- Centre for Infection, Evolution and Immunity, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
50
|
Wong KZ, Chu JJH. The Interplay of Viral and Host Factors in Chikungunya Virus Infection: Targets for Antiviral Strategies. Viruses 2018; 10:E294. [PMID: 29849008 PMCID: PMC6024654 DOI: 10.3390/v10060294] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/13/2018] [Accepted: 05/28/2018] [Indexed: 12/14/2022] Open
Abstract
Chikungunya virus (CHIKV) has re-emerged as one of the many medically important arboviruses that have spread rampantly across the world in the past decade. Infected patients come down with acute fever and rashes, and a portion of them suffer from both acute and chronic arthralgia. Currently, there are no targeted therapeutics against this debilitating virus. One approach to develop potential therapeutics is by understanding the viral-host interactions. However, to date, there has been limited research undertaken in this area. In this review, we attempt to briefly describe and update the functions of the different CHIKV proteins and their respective interacting host partners. In addition, we also survey the literature for other reported host factors and pathways involved during CHIKV infection. There is a pressing need for an in-depth understanding of the interaction between the host environment and CHIKV in order to generate potential therapeutics.
Collapse
Affiliation(s)
- Kai Zhi Wong
- Laboratory of Molecular RNA Virology & Antiviral Strategies, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University Health System, 5 Science Drive 2, National University of Singapore, Singapore 117597, Singapore.
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology & Antiviral Strategies, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University Health System, 5 Science Drive 2, National University of Singapore, Singapore 117597, Singapore.
- Institute of Molecular & Cell Biology, Agency for Science, Technology & Research (A*STAR), 61 Biopolis Drive, Proteos #06-05, Singapore 138673, Singapore.
| |
Collapse
|