1
|
Wang Y, Qiu L, Wang B, Guan Z, Dong Z, Zhang J, Cao S, Yang L, Wang B, Gong Z, Zhang L, Ma W, Liu Z, Zhang D, Wang G, Yin P. Structural basis for odorant recognition of the insect odorant receptor OR-Orco heterocomplex. Science 2024; 384:1453-1460. [PMID: 38870272 DOI: 10.1126/science.adn6881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/29/2024] [Indexed: 06/15/2024]
Abstract
Insects detect and discriminate a diverse array of chemicals using odorant receptors (ORs), which are ligand-gated ion channels comprising a divergent odorant-sensing OR and a conserved odorant receptor co-receptor (Orco). In this work, we report structures of the ApOR5-Orco heterocomplex from the pea aphid Acyrthosiphon pisum alone and bound to its known activating ligand, geranyl acetate. In these structures, three ApOrco subunits serve as scaffold components that cannot bind the ligand and remain relatively unchanged. Upon ligand binding, the pore-forming helix S7b of ApOR5 shifts outward from the central pore axis, causing an asymmetrical pore opening for ion influx. Our study provides insights into odorant recognition and channel gating of the OR-Orco heterocomplex and offers structural resources to support development of innovative insecticides and repellents for pest control.
Collapse
Affiliation(s)
- Yidong Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Liang Qiu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Bing Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zeyuan Guan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi Dong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Song Cao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lulu Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bo Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhou Gong
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Liwei Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Weihua Ma
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhu Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Delin Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Guirong Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
2
|
Pliushcheuskaya P, Kesh S, Kaufmann E, Wucherpfennig S, Schwede F, Künze G, Nache V. Similar Binding Modes of cGMP Analogues Limit Selectivity in Modulating Retinal CNG Channels via the Cyclic Nucleotide-Binding Domain. ACS Chem Neurosci 2024; 15:1652-1668. [PMID: 38579109 PMCID: PMC11027099 DOI: 10.1021/acschemneuro.3c00665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/28/2024] [Accepted: 03/19/2024] [Indexed: 04/07/2024] Open
Abstract
In treating retinitis pigmentosa, a genetic disorder causing progressive vision loss, selective inhibition of rod cyclic nucleotide-gated (CNG) channels holds promise. Blocking the increased Ca2+-influx in rod photoreceptors through CNG channels can potentially delay disease progression and improve the quality of life for patients. To find inhibitors for rod CNG channels, we investigated the impact of 16 cGMP analogues on both rod and cone CNG channels using the patch-clamp technique. Although modifications at the C8 position of the guanine ring did not change the ligand efficacy, modifications at the N1 and N2 positions rendered cGMP largely ineffective in activating retinal CNG channels. Notably, PET-cGMP displayed selective potential, favoring rod over cone, whereas Rp-cGMPS showed greater efficiency in activating cone over rod CNG channels. Ligand docking and molecular dynamics simulations on cyclic nucleotide-binding domains showed comparable binding energies and binding modes for cGMP and its analogues in both rod and cone CNG channels (CNGA1 vs CNGA3 subunits). Computational experiments on CNGB1a vs CNGB3 subunits showed similar binding modes albeit with fewer amino acid interactions with cGMP due to an inactivated conformation of their C-helix. In addition, no clear correlation could be observed between the computational scores and the CNG channel efficacy values, suggesting additional factors beyond binding strength determining ligand selectivity and potency. This study highlights the importance of looking beyond the cyclic nucleotide-binding domain and toward the gating mechanism when searching for selective modulators. Future efforts in developing selective modulators for CNG channels should prioritize targeting alternative channel domains.
Collapse
Affiliation(s)
- Palina Pliushcheuskaya
- Institute
for Drug Discovery, Medical Faculty, University
of Leipzig, Leipzig 04103, Germany
| | - Sandeep Kesh
- Institute
of Physiology II, University Hospital Jena, Friedrich Schiller University
Jena, Jena 07743, Germany
| | - Emma Kaufmann
- Institute
of Physiology II, University Hospital Jena, Friedrich Schiller University
Jena, Jena 07743, Germany
| | - Sophie Wucherpfennig
- Institute
of Physiology II, University Hospital Jena, Friedrich Schiller University
Jena, Jena 07743, Germany
| | - Frank Schwede
- BIOLOG
Life Science Institute GmbH & Co KG, Bremen 28199, Germany
| | - Georg Künze
- Institute
for Drug Discovery, Medical Faculty, University
of Leipzig, Leipzig 04103, Germany
- Interdisciplinary
Center for Bioinformatics, University of
Leipzig, Leipzig 04107, Germany
- Center
for Scalable Data Analytics and Artificial Intelligence, University of Leipzig, Leipzig 04105, Germany
| | - Vasilica Nache
- Institute
of Physiology II, University Hospital Jena, Friedrich Schiller University
Jena, Jena 07743, Germany
| |
Collapse
|
3
|
Dutta TK, Akhil VS, Dash M, Kundu A, Phani V, Sirohi A. Molecular and functional characterization of chemosensory genes from the root-knot nematode Meloidogyne graminicola. BMC Genomics 2023; 24:745. [PMID: 38057766 DOI: 10.1186/s12864-023-09864-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Root-knot nematode Meloidogyne graminicola has emerged as a major threat in rice agroecosystems owing to climate change-induced changes in cultivation practices. Synthetic nematicides are continually being withdrawn from the nematode management toolbox because of their ill effects on the environment. A sustainable strategy would be to develop novel nematicides or resistant plants that would target nematode sensory perception, which is a key step in the host finding biology of plant-parasitic nematodes (PPNs). However, compared to the extensive literature on the free-living nematode Caenorhabditis elegans, negligible research has been performed on PPN chemosensory biology. RESULTS The present study characterizes the five chemosensory genes (Mg-odr-7, Mg-tax-4, Mg-tax-4.1, Mg-osm-9, and Mg-ocr-2) from M. graminicola that are putatively associated with nematode host-finding biology. All the genes were highly transcribed in the early life stages, and RNA interference (RNAi)-induced downregulation of each candidate gene perturbed the normal behavioural phenotypes of M. graminicola, as determined by examining the tracking pattern of juveniles on Pluronic gel medium, attraction to and penetration in rice root tip, and developmental progression in rice root. In addition, a detrimental effect on nematode chemotaxis towards different volatile and nonvolatile organic compounds and host root exudates was documented. CONCLUSION Our findings enrich the existing literature on PPN chemosensory biology and can supplement future research aimed at identifying a comprehensive chemosensory signal transduction pathway in PPNs.
Collapse
Affiliation(s)
- Tushar K Dutta
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Voodikala S Akhil
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Manoranjan Dash
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Artha Kundu
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Victor Phani
- Department of Agricultural Entomology, College of Agriculture, Uttar Banga Krishi Viswavidyalaya, Balurghat, Dakshin Dinajpur, West Bengal, India
| | - Anil Sirohi
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
4
|
Hu Z, Yang J. Structural basis of properties, mechanisms, and channelopathy of cyclic nucleotide-gated channels. Channels (Austin) 2023; 17:2273165. [PMID: 37905307 PMCID: PMC10761061 DOI: 10.1080/19336950.2023.2273165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/07/2023] [Indexed: 11/02/2023] Open
Abstract
Recent years have seen an outpouring of atomic or near atomic resolution structures of cyclic nucleotide-gated (CNG) channels, captured in closed, transition, pre-open, partially open, and fully open states. These structures provide unprecedented molecular insights into the activation, assembly, architecture, regulation, and channelopathy of CNG channels, as well as mechanistic explanations for CNG channel biophysical and pharmacological properties. This article summarizes recent advances in CNG channel structural biology, describes key structural features and elements, and illuminates a detailed conformational landscape of activation by cyclic nucleotides. The review also correlates structures with findings and properties delineated in functional studies, including nonselective monovalent cation selectivity, Ca2+ permeation and block, block by L-cis-diltiazem, location of the activation gate, lack of voltage-dependent gating, and modulation by lipids and calmodulin. A perspective on future research is also offered.
Collapse
Affiliation(s)
- Zhengshan Hu
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Jian Yang
- Department of Biological Sciences, Columbia University, New York, NY, USA
| |
Collapse
|
5
|
Solaki M, Wissinger B, Kohl S, Reuter P. Functional evaluation allows ACMG/AMP-based re-classification of CNGA3 variants associated with achromatopsia. Genet Med 2023; 25:100979. [PMID: 37689994 DOI: 10.1016/j.gim.2023.100979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023] Open
Abstract
PURPOSE CNGA3 encoding the main subunit of the cyclic nucleotide-gated ion channel in cone photoreceptors is one of the major disease-associated genes for achromatopsia. Most CNGA3 variants are missense variants with the majority being functionally uncharacterized and therefore hampering genetic diagnosis. In light of potential gene therapy, objective variant pathogenicity assessment is essential. METHODS We established a medium-throughput aequorin-based luminescence bioassay allowing mutant CNGA3 channel function assessment via quantification of CNGA3 channel-mediated calcium influx in a cell culture system, thereby enabling American College of Medical Genetics and Genomics/Association for Molecular Pathology-based variant re-classification. RESULTS We provide functional read-out obtained for 150 yet uncharacterized CNGA3 missense substitutions of which 55 were previously categorized as variants of uncertain significance (VUS) identifying 25 as functionally normal and 125 as functionally abnormal. These data enabled the American College of Medical Genetics and Genomics/ Association for Molecular Pathology-based variant re-classification of 52/55 VUS as either benign, likely benign, or likely pathogenic reaching a VUS re-classification rate of 94.5%. CONCLUSION Our aequorin-based bioassay allows functionally ensured clinical variant interpretation for 150 CNGA3 missense variants enabling and supporting VUS re-classification and assuring molecular diagnosis to patients affected by CNGA3-associated achromatopsia, hereby identifying patients eligible for future gene therapy trials on this disease.
Collapse
Affiliation(s)
- Maria Solaki
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Bernd Wissinger
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Susanne Kohl
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany.
| | - Peggy Reuter
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
6
|
Muangkram Y, Himeno Y, Amano A. Clarifying the composition of the ATP consumption factors required for maintaining ion homeostasis in mouse rod photoreceptors. Sci Rep 2023; 13:14161. [PMID: 37644037 PMCID: PMC10465610 DOI: 10.1038/s41598-023-40663-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023] Open
Abstract
To date, no effective treatment has been established for photoreceptor loss due to energy imbalances, but numerous therapeutic approaches have reported some success in slowing photoreceptor degeneration by downregulating energy demand. However, the detailed mechanisms remain unclear. This study aimed to clarify the composition of ATP consumption factors in photoreceptors in darkness and in light. We introduced mathematical formulas for ionic current activities combined with a phototransduction model to form a new mathematical model for estimating the energy expenditure of each ionic current. The proposed model included various ionic currents identified in mouse rods using a gene expression database incorporating an available electrophysiological recording of each specific gene. ATP was mainly consumed by Na+/K+-ATPase and plasma membrane Ca2+-ATPase pumps to remove excess Na+ and Ca2+. The rod consumed 7 [Formula: see text] 107 molecules of ATP s-1, where 65% was used to remove ions from the cyclic nucleotide-gated channel and 20% from the hyperpolarization-activated current in darkness. Increased light intensity raised the energy requirements of the complex phototransduction cascade mechanisms. Nevertheless, the overall energy consumption was less than that in darkness due to the significant reduction in ATPase activities, where the hyperpolarization-activated current proportion increased to 83%. A better understanding of energy demand/supply may provide an effective tool for investigating retinal pathophysiological changes and analyzing novel therapeutic treatments related to the energy consumption of photoreceptors.
Collapse
Affiliation(s)
- Yuttamol Muangkram
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Shiga, Japan.
| | - Yukiko Himeno
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Shiga, Japan
| | - Akira Amano
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Shiga, Japan
| |
Collapse
|
7
|
Ma Y, Garrido K, Ali R, Berkowitz GA. Phenotypes of cyclic nucleotide-gated cation channel mutants: probing the nature of native channels. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:1223-1236. [PMID: 36633062 DOI: 10.1111/tpj.16106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Plant cyclic nucleotide gated channels (CNGCs) facilitate cytosolic Ca2+ influx as an early step in numerous signaling cascades. CNGC-mediated Ca2+ elevations are essential for plant immune defense and high temperature thermosensing. In the present study, we evaluated phenotypes of CNGC2, CNGC4, CNGC6, and CNGC12 null mutants in these two pathways. It is shown CNGC2, CNGC4, and CNGC6 physically interact in vivo, whereas CNGC12 does not. CNGC involvement in immune signaling was evaluated by monitoring mutant response to elicitor peptide Pep3. Pep3 response cascades involving CNGCs included mitogen-activated kinase activation mediated by Ca2+ -dependent protein kinase phosphorylation. Pep3-induced reactive oxygen species generation was impaired in cngc2, cngc4, and cngc6, but not in cngc12, suggesting that CNGC2, CNGC4, and CNGC6 (which physically interact) may be components of a multimeric CNGC channel complex for immune signaling. However, unlike cngc2 and cngc4, cngc6 is not sensitive to high Ca2+ and displays no pleiotropic dwarfism. All four cngc mutants showed thermotolerance compared to wild-type, although CNGC12 does not interact with the other three CNGCs. These results imply that physically interacting CNGCs may, in some cases, function in a signaling cascade as components of a heteromeric channel complex, although this may not be the case in other signaling pathways.
Collapse
Affiliation(s)
- Yi Ma
- Department of Plant Science and Landscape Architecture, Agricultural Biotechnology Laboratory, University of Connecticut, Storrs, CT, 06269, USA
| | | | | | - Gerald A Berkowitz
- Department of Plant Science and Landscape Architecture, Agricultural Biotechnology Laboratory, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
8
|
Biology, Pathobiology and Gene Therapy of CNG Channel-Related Retinopathies. Biomedicines 2023; 11:biomedicines11020269. [PMID: 36830806 PMCID: PMC9953513 DOI: 10.3390/biomedicines11020269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
The visual process begins with the absorption of photons by photopigments of cone and rod photoreceptors in the retina. In this process, the signal is first amplified by a cyclic guanosine monophosphate (cGMP)-based signaling cascade and then converted into an electrical signal by cyclic nucleotide-gated (CNG) channels. CNG channels are purely ligand-gated channels whose activity can be controlled by cGMP, which induces a depolarizing Na+/Ca2+ current upon binding to the channel. Structurally, CNG channels belong to the superfamily of pore-loop cation channels and share structural similarities with hyperpolarization-activated cyclic nucleotide (HCN) and voltage-gated potassium (KCN) channels. Cone and rod photoreceptors express distinct CNG channels encoded by homologous genes. Mutations in the genes encoding the rod CNG channel (CNGA1 and CNGB1) result in retinitis-pigmentosa-type blindness. Mutations in the genes encoding the cone CNG channel (CNGA3 and CNGB3) lead to achromatopsia. Here, we review the molecular properties of CNG channels and describe their physiological and pathophysiological roles in the retina. Moreover, we summarize recent activities in the field of gene therapy aimed at developing the first gene therapies for CNG channelopathies.
Collapse
|
9
|
Retinal Cyclic Nucleotide-Gated Channel Regulation by Calmodulin. Int J Mol Sci 2022; 23:ijms232214143. [PMID: 36430626 PMCID: PMC9694239 DOI: 10.3390/ijms232214143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/19/2022] Open
Abstract
Retinal cyclic nucleotide-gated (CNG) ion channels bind to intracellular cGMP and mediate visual phototransduction in photoreceptor rod and cone cells. Retinal rod CNG channels form hetero-tetramers comprised of three CNGA1 and one CNGB1 protein subunits. Cone CNG channels are similar tetramers consisting of three CNGA3 and one CNGB3 subunits. Calmodulin (CaM) binds to two distinct sites (CaM1: residues 565-587 and CaM2: residues 1120-1147) within the cytosolic domains of rod CNGB1. The binding of Ca2+-bound CaM to CNGB1 promotes the Ca2+-induced desensitization of CNG channels in retinal rods that may be important for photoreceptor light adaptation. Mutations that affect Ca2+-dependent CNG channel function are responsible for inherited forms of blindness. In this review, we propose structural models of the rod CNG channel bound to CaM that suggest how CaM might cause channel desensitization and how dysregulation of the channel may lead to retinal disease.
Collapse
|
10
|
Characterising ion channel structure and dynamics using fluorescence spectroscopy techniques. Biochem Soc Trans 2022; 50:1427-1445. [DOI: 10.1042/bst20220605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/21/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022]
Abstract
Ion channels undergo major conformational changes that lead to channel opening and ion conductance. Deciphering these structure-function relationships is paramount to understanding channel physiology and pathophysiology. Cryo-electron microscopy, crystallography and computer modelling provide atomic-scale snapshots of channel conformations in non-cellular environments but lack dynamic information that can be linked to functional results. Biophysical techniques such as electrophysiology, on the other hand, provide functional data with no structural information of the processes involved. Fluorescence spectroscopy techniques help bridge this gap in simultaneously obtaining structure-function correlates. These include voltage-clamp fluorometry, Förster resonance energy transfer, ligand binding assays, single molecule fluorescence and their variations. These techniques can be employed to unearth several features of ion channel behaviour. For instance, they provide real time information on local and global rearrangements that are inherent to channel properties. They also lend insights in trafficking, expression, and assembly of ion channels on the membrane surface. These methods have the advantage that they can be carried out in either native or heterologous systems. In this review, we briefly explain the principles of fluorescence and how these have been translated to study ion channel function. We also report several recent advances in fluorescence spectroscopy that has helped address and improve our understanding of the biophysical behaviours of different ion channel families.
Collapse
|
11
|
cGMP Analogues with Opposing Actions on CNG Channels Selectively Modulate Rod or Cone Photoreceptor Function. Pharmaceutics 2022; 14:pharmaceutics14102102. [PMID: 36297537 PMCID: PMC9612005 DOI: 10.3390/pharmaceutics14102102] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022] Open
Abstract
The vertebrate retina harbors rod and cone photoreceptors. Human vision critically depends on cone photoreceptor function. In the phototransduction cascade, cGMP activates distinct rod and cone isoforms of the cyclic nucleotide-gated (CNG) channel. Excessive cGMP levels initiate a pathophysiological rollercoaster, which starts with CNG channel over-activation, typically in rod photoreceptors. This triggers cell death of rods first, and then cones, and is the root cause of many blinding retinal diseases, including Retinitis pigmentosa. While targeting of CNG channels has been proposed for therapeutic purposes, thus far, it has not been possible to inhibit rod CNG channels without compromising cone function. Here, we present a novel strategy, based on cGMP analogues with opposing actions on CNG channels, which enables the selective modulation of either rod or cone photoreceptor activity. The combined treatment with the weak rod-selective CNG-channel inhibitor (Rp-8-Br-PET-cGMPS) and the cone-selective CNG-channel activator (8-pCPT-cGMP) essentially normalized rod CNG-channel function while preserving cone functionality at physiological and pathological cGMP levels. Hence, combinations of cGMP analogues with desired properties may elegantly address the isoform-specificity problem in future pharmacological therapies. Moreover, this strategy may allow for improvements in visual performance in certain light environments.
Collapse
|
12
|
Bej A, Ames JB. Chemical shift assignments of calmodulin bound to a C-terminal site (residues 1120-1147) in the β-subunit of a retinal cyclic nucleotide-gated channel (CNGB1). BIOMOLECULAR NMR ASSIGNMENTS 2022; 16:337-341. [PMID: 35986879 PMCID: PMC9510104 DOI: 10.1007/s12104-022-10101-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Retinal cyclic nucleotide-gated (CNG) channels consist of two protein subunits (CNGA1 and CNGB1). Calmodulin (CaM) binds to two separate sites within the cytosolic region of CNGB1: CaM binding to an N-terminal site (human CNGB1 residues 565-587, called CaM1) decreases the open probability of CNG channels at elevated Ca2+ levels in dark-adapted photoreceptors, whereas CaM binding to a separate C-terminal site (CNGB1 residues 1120-1147, called CaM2) may increase channel open probability in light activated photoreceptors. We recently reported NMR chemical shift assignments of Ca2+-saturated CaM bound to the CaM1 site of CNGB1 (BMRB no. 51222). Here, we report complete NMR chemical shift assignments of Ca2+-saturated CaM bound to the C-terminal CaM2 site of CNGB1 (BMRB no. 51447).
Collapse
Affiliation(s)
- Aritra Bej
- Department of Chemistry, University of California, Davis, CA, 95616, USA
| | - James B Ames
- Department of Chemistry, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
13
|
Bej A, Ames JB. NMR Structures of Calmodulin Bound to Two Separate Regulatory Sites in the Retinal Cyclic Nucleotide-Gated Channel. Biochemistry 2022; 61:1955-1965. [PMID: 36070238 PMCID: PMC9810080 DOI: 10.1021/acs.biochem.2c00378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Retinal cyclic nucleotide-gated (CNG) channels (composed of three CNGA1 and one CNGB1 subunits) exhibit a Ca2+-induced reduction in channel open probability mediated by calmodulin (CaM). Defects in the Ca2+-dependent regulation of CNG channels may be linked to autosomal recessive retinitis pigmentosa and other inherited forms of blindness. Here, we report the NMR structure and binding analysis of CaM bound to two separate sites within CNGB1 (CaM1: residues 565-589 and CaM2: residues 1120-1147). Our binding studies reveal that CaM1 binds to the Ca2+-bound CaM N-lobe with at least fivefold higher affinity than it binds to the CaM C-lobe. By contrast, the CaM2 site binds to the Ca2+-bound CaM C-lobe with higher affinity than it binds to the N-lobe. CaM1 and CaM2 both exhibited very weak binding to Ca2+-free CaM. We present separate NMR structures of Ca2+-saturated CaM bound to CaM1 and CaM2 that define key intermolecular contacts: CaM1 residue F575 interacts with the CaM N-lobe while CaM2 residues L1129, L1132, and L1136 each make close contact with the CaM C-lobe. The CNGB1 mutation F575E abolishes CaM1 binding to the CaM N-lobe while L1132E and L1136E each abolish CaM2 binding to the CaM C-lobe. Thus, a single CaM can bind to both sites in CNGB1 in which the CaM N-lobe binds to CaM1 and the CaM C-lobe binds to CaM2. We propose a Ca2+-dependent conformational switch in the CNG channel caused by CaM binding, which may serve to attenuate cGMP binding to CNG channels at high cytosolic Ca2+ levels in dark-adapted photoreceptors.
Collapse
|
14
|
Barret DC, Kaupp UB, Marino J. The structure of cyclic nucleotide-gated channels in rod and cone photoreceptors. Trends Neurosci 2022; 45:763-776. [DOI: 10.1016/j.tins.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/06/2022] [Accepted: 07/19/2022] [Indexed: 10/16/2022]
|
15
|
Solaki M, Baumann B, Reuter P, Andreasson S, Audo I, Ayuso C, Balousha G, Benedicenti F, Birch D, Bitoun P, Blain D, Bocquet B, Branham K, Català-Mora J, De Baere E, Dollfus H, Falana M, Giorda R, Golovleva I, Gottlob I, Heckenlively JR, Jacobson SG, Jones K, Jägle H, Janecke AR, Kellner U, Liskova P, Lorenz B, Martorell-Sampol L, Messias A, Meunier I, Belga Ottoni Porto F, Papageorgiou E, Plomp AS, de Ravel TJL, Reiff CM, Renner AB, Rosenberg T, Rudolph G, Salati R, Sener EC, Sieving PA, Stanzial F, Traboulsi EI, Tsang SH, Varsanyi B, Weleber RG, Zobor D, Stingl K, Wissinger B, Kohl S. Comprehensive variant spectrum of the CNGA3 gene in patients affected by achromatopsia. Hum Mutat 2022; 43:832-858. [PMID: 35332618 DOI: 10.1002/humu.24371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 02/23/2022] [Accepted: 03/22/2022] [Indexed: 11/06/2022]
Abstract
Achromatopsia (ACHM) is a congenital cone photoreceptor disorder characterized by impaired color discrimination, low visual acuity, photosensitivity, and nystagmus. To date, six genes have been associated with ACHM (CNGA3, CNGB3, GNAT2, PDE6C, PDE6H, and ATF6), the majority of these being implicated in the cone phototransduction cascade. CNGA3 encodes the CNGA3 subunit of the cyclic nucleotide-gated ion channel in cone photoreceptors and is one of the major disease-associated genes for ACHM. Herein, we provide a comprehensive overview of the CNGA3 variant spectrum in a cohort of 1060 genetically confirmed ACHM patients, 385 (36.3%) of these carrying "likely disease-causing" variants in CNGA3. Compiling our own genetic data with those reported in the literature and in public databases, we further extend the CNGA3 variant spectrum to a total of 316 variants, 244 of which we interpreted as "likely disease-causing" according to ACMG/AMP criteria. We report 48 novel "likely disease-causing" variants, 24 of which are missense substitutions underlining the predominant role of this mutation class in the CNGA3 variant spectrum. In addition, we provide extensive in silico analyses and summarize reported functional data of previously analyzed missense, nonsense and splicing variants to further advance the pathogenicity assessment of the identified variants.
Collapse
Affiliation(s)
- Maria Solaki
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Britta Baumann
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Peggy Reuter
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Sten Andreasson
- Department of Ophthalmology, University Hospital Lund, Lund, Sweden
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- CHNO des Quinze-Vingts, Centre de Référence Maladies Rares REFERET, and INSERM-DGOS CIC1423, Paris, France
| | - Carmen Ayuso
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria - Fundación Jiménez Díaz University Hospital - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Ghassan Balousha
- Department of Pathology and Histology, Faculty of Medicine, Al-Quds University, Eastern Jerusalem, Palestine
| | - Francesco Benedicenti
- Clinical Genetics Service and South Tyrol Coordination Center for Rare Diseases, Department of Pediatrics, Regional Hospital of Bolzano, Bolzano, Italy
| | - David Birch
- Retina Foundation of the Southwest, Dallas, Texas, USA
| | - Pierre Bitoun
- Genetique Medicale, CHU Paris Nord, Hopital Jean Verdier, Bondy Cedex, France
| | | | - Beatrice Bocquet
- National Reference Centre for Inherited Sensory Diseases, Institute for Neurosciences of Montpellier (INM), University of Montpellier, INSERM, Montpellier, France
| | - Kari Branham
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Jaume Català-Mora
- Unitat de Distròfies Hereditàries de Retina Hospital Sant Joan de Déu, Barcelona, Esplugues de Llobregat, Spain
| | - Elfride De Baere
- Department of Biomolecular Medicine, Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Helene Dollfus
- CARGO, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- U-1112, Inserm, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Mohammed Falana
- Department of Pathology and Histology, Faculty of Medicine, Al-Quds University, Eastern Jerusalem, Palestine
| | - Roberto Giorda
- Molecular Biology Laboratory, Scientific Institute IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Irina Golovleva
- Department of Medical Biosciences/Medical and Clinical Genetics, University of Umea, Umea, Sweden
| | - Irene Gottlob
- The University of Leicester Ulverscroft Eye Unit, Leicester Royal Infirmary, Leicester, UK
| | - John R Heckenlively
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Samuel G Jacobson
- Department of Ophthalmology, Perelman School of Medicine, Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kaylie Jones
- Retina Foundation of the Southwest, Dallas, Texas, USA
| | - Herbert Jägle
- Department of Ophthalmology, University of Regensburg, Regensburg, Germany
| | - Andreas R Janecke
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Ulrich Kellner
- Zentrum für Seltene Netzhauterkrankungen, AugenZentrum Siegburg, MVZ Augenärztliches Diagnostik- und Therapiecentrum Siegburg GmbH, Siegburg, Germany
- RetinaScience, Bonn, 53192, Germany
| | - Petra Liskova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Birgit Lorenz
- Department of Ophthalmology, Justus-Liebig University Giessen, Giessen, Germany
- Department of Ophthalmology, Universitaetsklinikum Bonn, Bonn, Germany
| | | | - André Messias
- Department of Ophthalmology, Otorhinolaryngology, and Head and Neck Surgery, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Isabelle Meunier
- National Reference Centre for Inherited Sensory Diseases, Montpellier University Hospital, University of Montpellier, Montpellier, France
- Sensgene Care Network, France
| | | | - Eleni Papageorgiou
- Department of Ophthalmology, University Hospital of Larissa, Mezourlo, Larissa, Greece
| | - Astrid S Plomp
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Thomy J L de Ravel
- Centre for Medical Genetics, University Hospital Brussels, Brussels, Belgium
| | | | | | - Thomas Rosenberg
- Department of Ophthalmology, National Eye Clinic, Glostrup Hospital, Glostrup, Denmark
| | - Günther Rudolph
- University Eye Hospital, Ludwig Maximilians University, Munich, Germany
| | - Roberto Salati
- Scientific Institute, IRCCS Eugenio Medea, Pediatric Ophthalmology Unit, Bosisio Parini, Lecco, Italy
| | - E Cumhur Sener
- Strabismus and Pediatric Ophthalmology, Private Practice, Ankara, Turkey
| | - Paul A Sieving
- Center for Ocular Regenerative Therapy, School of Medicine, University of California Davis, Sacramento, USA
| | - Franco Stanzial
- Clinical Genetics Service and South Tyrol Coordination Center for Rare Diseases, Department of Pediatrics, Regional Hospital of Bolzano, Bolzano, Italy
| | - Elias I Traboulsi
- Center for Genetic Eye Diseases, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Stephen H Tsang
- Department of Ophthalmology, Pathology and Cell Biology, College of Physicians and Surgeons, Columbia Stem Cell Initiative, Columbia University, New York City, New York, USA
| | - Balázs Varsanyi
- Department of Ophthalmology, Medical School, University of Pécs and Ganglion Medical Center, Pécs, Pécs, Hungary
| | - Richard G Weleber
- Oregon Health & Science University, Ophthalmic Genetics Service of the Casey Eye Institute, 515 SW Campus Drive, 97239, Portland, Oregon, USA
| | - Ditta Zobor
- Centre for Ophthalmology, Institute for Ophthalmic Research, University Hospital Tübingen, Tübingen, Germany
- Department of Ophthalmology, Semmelweis University Budapest, Budapest, Hungary
| | - Katarina Stingl
- Center for Ophthalmology, University Eye Hospital, University of Tübingen, Tübingen, Germany
- Center for Rare Eye Diseases, University of Tübingen, Tübingen, Germany
| | - Bernd Wissinger
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Susanne Kohl
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
16
|
The Natural History of CNGB1-Related Retinopathy: A Longitudinal Phenotypic Analysis. Int J Mol Sci 2022; 23:ijms23126785. [PMID: 35743231 PMCID: PMC9245601 DOI: 10.3390/ijms23126785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 02/01/2023] Open
Abstract
Cyclic nucleotide-gated channel β 1 (CNGB1) encodes a subunit of the rod cyclic nucleotide-gated channel. Pathogenic variants in CNGB1 are responsible for 4% of autosomal recessive retinitis pigmentosa (RP). Several treatment strategies show promise for treating inherited retinal degenerations, however relevant metrics of progression and sensitive clinical trial endpoints are needed to assess therapeutic efficacy. This study reports the natural history of CNGB1-related RP with a longitudinal phenotypic analysis of 33 molecularly-confirmed patients with a mean follow-up period of 4.5 ± 3.9 years (range 0-17). The mean best corrected visual acuity (BCVA) of the right eye was 0.31 ± 0.43 logMAR at baseline and 0.47 ± 0.63 logMAR at the final visit over the study period. The ellipsoid zone (EZ) length was measurable in at least one eye of 23 patients and had a mean rate of constriction of 178 ± 161 µm per year (range 1.0-661 µm), with 57% of patients having a decrease in EZ length of greater than 250 µm in a simulated two-year trial period. Hyperautofluorescent outer ring (hyperAF) area was measurable in 17 patients, with 10 patients not displaying a ring phenotype. The results support previous findings of CNGB1-related RP being a slowly progressive disease with patients maintaining visual acuity. Prospective deep phenotyping studies assessing multimodal retinal imaging and functional measures are now required to determine clinical endpoints to be used in a trial.
Collapse
|
17
|
Marques DA, Jones FC, Di Palma F, Kingsley DM, Reimchen TE. Genomic changes underlying repeated niche shifts in an adaptive radiation. Evolution 2022; 76:1301-1319. [PMID: 35398888 PMCID: PMC9320971 DOI: 10.1111/evo.14490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/28/2022] [Accepted: 03/09/2022] [Indexed: 01/21/2023]
Abstract
In adaptive radiations, single lineages rapidly diversify by adapting to many new niches. Little is known yet about the genomic mechanisms involved, that is, the source of genetic variation or genomic architecture facilitating or constraining adaptive radiation. Here, we investigate genomic changes associated with repeated invasion of many different freshwater niches by threespine stickleback in the Haida Gwaii archipelago, Canada, by resequencing single genomes from one marine and 28 freshwater populations. We find 89 likely targets of parallel selection in the genome that are enriched for old standing genetic variation. In contrast to theoretical expectations, their genomic architecture is highly dispersed with little clustering. Candidate genes and genotype-environment correlations match the three major environmental axes predation regime, light environment, and ecosystem size. In a niche space with these three dimensions, we find that the more divergent a new niche from the ancestral marine habitat, the more loci show signatures of parallel selection. Our findings suggest that the genomic architecture of parallel adaptation in adaptive radiation depends on the steepness of ecological gradients and the dimensionality of the niche space.
Collapse
Affiliation(s)
- David A. Marques
- Department of BiologyUniversity of VictoriaVictoriaBCV8W 3N5Canada
- Aquatic Ecology and Evolution, Institute of Ecology and EvolutionUniversity of BernBernCH‐3012Switzerland
- Department of Fish Ecology and Evolution, Centre for Ecology, Evolution, and BiogeochemistrySwiss Federal Institute of Aquatic Science and Technology (EAWAG), Eawag ‐ Swiss Federal Institute of Aquatic Science and TechnologyKastanienbaumCH‐6047Switzerland
- Natural History Museum BaselBaselCH‐4051Switzerland
| | - Felicity C. Jones
- Howard Hughes Medical Institute, Stanford University School of MedicineStanfordCalifornia94305USA
- Department of Developmental BiologyStanford University School of MedicineStanfordCalifornia94305USA
- Friedrich Miescher Laboratory of the Max Planck SocietyTübingen72076Germany
| | - Federica Di Palma
- Earlham InstituteNorwichNR4 7UZUnited Kingdom
- Department of Biological SciencesUniversity of East AngliaNorwichNR4 7TJUnited Kingdom
| | - David M. Kingsley
- Howard Hughes Medical Institute, Stanford University School of MedicineStanfordCalifornia94305USA
- Department of Developmental BiologyStanford University School of MedicineStanfordCalifornia94305USA
| | | |
Collapse
|
18
|
Bej A, Ames JB. Chemical shift assignments of calmodulin bound to the β-subunit of a retinal cyclic nucleotide-gated channel (CNGB1). BIOMOLECULAR NMR ASSIGNMENTS 2022; 16:147-151. [PMID: 35107779 PMCID: PMC9068646 DOI: 10.1007/s12104-022-10072-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/24/2022] [Indexed: 05/25/2023]
Abstract
Rod cyclic nucleotide-gated (CNG) channels are formed by two protein subunits (CNGA1 and CNGB1). Calmodulin (CaM) binds to the cytosolic regulatory domain of CNGB1 and decreases the open probability of CNGA1/CNGB1 channels. The CaM binding site within bovine CNGB1 (residues 679-702) binds tightly to Ca2+-bound CaM, which promotes Ca2+-induced inactivation of CNGA1/CNGB1 channels in retinal rods. We report complete NMR chemical shift assignments of Ca2+-saturated CaM bound to the CaM-binding domain of CNGB1 (BMRB no. 51222).
Collapse
Affiliation(s)
- Aritra Bej
- Department of Chemistry, University of California, Davis, CA, 95616, USA
| | - James B Ames
- Department of Chemistry, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
19
|
Delineating the Molecular and Phenotypic Spectrum of the CNGA3-Related Cone Photoreceptor Disorder in Pakistani Families. Genes (Basel) 2022; 13:genes13040617. [PMID: 35456423 PMCID: PMC9031457 DOI: 10.3390/genes13040617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/10/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022] Open
Abstract
Cone photoreceptor dysfunction represents a clinically heterogenous group of disorders characterized by nystagmus, photophobia, reduced central or color vision, and macular dystrophy. Here, we described the molecular findings and clinical manifestations of achromatopsia, a partial or total absence of color vision, co-segregating with three known missense variants of CNGA3 in three large consanguineous Pakistani families. Fundus examination and optical coherence tomography (OCT) imaging revealed myopia, thin retina, retinal pigment epithelial cells loss at fovea/perifovea, and macular atrophy. Combination of Sanger and whole exome sequencing revealed three known homozygous missense variants (c.827A>G, p.(Asn276Ser); c.847C>T, p.(Arg283Trp); c.1279C>T, p.(Arg427Cys)) in CNGA3, the α-subunit of the cyclic nucleotide-gated cation channel in cone photoreceptor cells. All three variants are predicted to replace evolutionary conserved amino acids, and to be pathogenic by specific in silico programs, consistent with the observed altered membrane targeting of CNGA3 in heterologous cells. Insights from our study will facilitate counseling regarding the molecular and phenotypic landscape of CNGA3-related cone dystrophies.
Collapse
|
20
|
Affiliation(s)
- Gucan Dai
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
21
|
Das S, Popp V, Power M, Groeneveld K, Yan J, Melle C, Rogerson L, Achury M, Schwede F, Strasser T, Euler T, Paquet-Durand F, Nache V. Redefining the role of Ca 2+-permeable channels in photoreceptor degeneration using diltiazem. Cell Death Dis 2022; 13:47. [PMID: 35013127 PMCID: PMC8748460 DOI: 10.1038/s41419-021-04482-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 10/07/2021] [Accepted: 11/23/2021] [Indexed: 12/18/2022]
Abstract
Hereditary degeneration of photoreceptors has been linked to over-activation of Ca2+-permeable channels, excessive Ca2+-influx, and downstream activation of Ca2+-dependent calpain-type proteases. Unfortunately, after more than 20 years of pertinent research, unequivocal evidence proving significant and reproducible photoreceptor protection with Ca2+-channel blockers is still lacking. Here, we show that both D- and L-cis enantiomers of the anti-hypertensive drug diltiazem were very effective at blocking photoreceptor Ca2+-influx, most probably by blocking the pore of Ca2+-permeable channels. Yet, unexpectedly, this block neither reduced the activity of calpain-type proteases, nor did it result in photoreceptor protection. Remarkably, application of the L-cis enantiomer of diltiazem even led to a strong increase in photoreceptor cell death. These findings shed doubt on the previously proposed links between Ca2+ and retinal degeneration and are highly relevant for future therapy development as they may serve to refocus research efforts towards alternative, Ca2+-independent degenerative mechanisms.
Collapse
Affiliation(s)
- Soumyaparna Das
- Institute for Ophthalmic Research, University of Tübingen, 72076, Tübingen, Germany
| | - Valerie Popp
- Institute of Physiology II, University Hospital Jena, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Michael Power
- Institute for Ophthalmic Research, University of Tübingen, 72076, Tübingen, Germany.,Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen, 72076, Tübingen, Germany
| | - Kathrin Groeneveld
- Institute of Physiology II, University Hospital Jena, Friedrich Schiller University Jena, 07743, Jena, Germany.,Biomolecular Photonics Group, University Hospital Jena, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Jie Yan
- Institute for Ophthalmic Research, University of Tübingen, 72076, Tübingen, Germany
| | - Christian Melle
- Biomolecular Photonics Group, University Hospital Jena, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Luke Rogerson
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen, 72076, Tübingen, Germany
| | - Marlly Achury
- Institute for Ophthalmic Research, University of Tübingen, 72076, Tübingen, Germany
| | - Frank Schwede
- BIOLOG Life Science Institute GmbH & Co KG, 28199, Bremen, Germany
| | - Torsten Strasser
- Institute for Ophthalmic Research, University of Tübingen, 72076, Tübingen, Germany
| | - Thomas Euler
- Institute for Ophthalmic Research, University of Tübingen, 72076, Tübingen, Germany.,Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen, 72076, Tübingen, Germany
| | | | - Vasilica Nache
- Institute of Physiology II, University Hospital Jena, Friedrich Schiller University Jena, 07743, Jena, Germany.
| |
Collapse
|
22
|
Xue J, Han Y, Zeng W, Jiang Y. Structural mechanisms of assembly, permeation, gating, and pharmacology of native human rod CNG channel. Neuron 2022; 110:86-95.e5. [PMID: 34699778 PMCID: PMC8738139 DOI: 10.1016/j.neuron.2021.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/15/2021] [Accepted: 10/01/2021] [Indexed: 01/07/2023]
Abstract
Mammalian cyclic nucleotide-gated (CNG) channels are nonselective cation channels activated by cGMP or cAMP and play essential roles in the signal transduction of the visual and olfactory sensory systems. CNGA1, the principal component of the CNG channel from rod photoreceptors, can by itself form a functional homotetrameric channel and has been used as the model system in the majority of rod CNG studies. However, the native rod CNG functions as a heterotetramer consisting of three A1 and one B1 subunits and exhibits different functional properties than the CNGA1 homomer. Here we present the functional analysis of human rod CNGA1/B1 heterotetramer and its cryo-EM structures in apo, cGMP-bound, cAMP-bound, and L-cis-Diltiazem-blocked states. These structures, with resolution ranging from 2.6 to 3.3 Å, elucidate the structural mechanisms underlying the 3:1 subunit stoichiometry, the asymmetrical gating upon cGMP activation, and the unique pharmacological property of the native rod CNG channel.
Collapse
Affiliation(s)
- Jing Xue
- Howard Hughes Medical Institute and Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yan Han
- Howard Hughes Medical Institute and Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Weizhong Zeng
- Howard Hughes Medical Institute and Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Youxing Jiang
- Howard Hughes Medical Institute and Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA,Lead Contact: Youxing Jiang, Ph.D., Department of Physiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390-9040, Tel. 214 645-6027; Fax. 214 645-6042;
| |
Collapse
|
23
|
Barret DCA, Schertler GFX, Kaupp UB, Marino J. The structure of the native CNGA1/CNGB1 CNG channel from bovine retinal rods. Nat Struct Mol Biol 2022; 29:32-39. [PMID: 34969975 DOI: 10.1038/s41594-021-00700-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 11/09/2021] [Indexed: 11/09/2022]
Abstract
In rod photoreceptors of the retina, the cyclic nucleotide-gated (CNG) channel is composed of three CNGA and one CNGB subunits, and it closes in response to light activation to generate an electrical signal that is conveyed to the brain. Here we report the cryo-EM structure of the closed state of the native rod CNG channel isolated from bovine retina. The structure reveals differences between CNGA1 and CNGB1 subunits. Three CNGA1 subunits are tethered at their C terminus by a coiled-coil region. The C-helix in the cyclic nucleotide-binding domain of CNGB1 features a different orientation from that in the three CNGA1 subunits. The arginine residue R994 of CNGB1 reaches into the ionic pathway and blocks the pore, thus introducing an additional gate, which is different from the central hydrophobic gate known from homomeric CNGA channels. These results address the long-standing question of how CNGB1 subunits contribute to the function of CNG channels in visual and olfactory neurons.
Collapse
Affiliation(s)
- Diane C A Barret
- Laboratory of Biomolecular Research, Paul Scherrer Institut, Villigen, Switzerland
| | - Gebhard F X Schertler
- Laboratory of Biomolecular Research, Paul Scherrer Institut, Villigen, Switzerland.,Department of Biology, ETH-Zurich, Zurich, Switzerland
| | - U Benjamin Kaupp
- Center for Advanced European Studies and Research (CAESAR), Bonn, Germany.,Life and Medical Sciences Institute LIMES, University of Bonn, Bonn, Germany
| | - Jacopo Marino
- Laboratory of Biomolecular Research, Paul Scherrer Institut, Villigen, Switzerland.
| |
Collapse
|
24
|
Structure of the human cone photoreceptor cyclic nucleotide-gated channel. Nat Struct Mol Biol 2022; 29:40-46. [PMID: 34969976 PMCID: PMC8776609 DOI: 10.1038/s41594-021-00699-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/09/2021] [Indexed: 11/08/2022]
Abstract
Cyclic nucleotide-gated (CNG) channels transduce light-induced chemical signals into electrical signals in retinal cone and rod photoreceptors. Structures of native CNG channels, which are heterotetramers formed by CNGA and CNGB subunits, have not been obtained. In the present study, we report a high-resolution cryo-electron microscopy structure of the human cone CNG channel in the apo closed state. The channel contains three CNGA3 and one CNGB3 subunits. Arg403 in the pore helix of CNGB3 projects into an asymmetric selectivity filter and forms hydrogen bonds with two pore-lining backbone carbonyl oxygens. Arg442 in S6 of CNGB3 protrudes into and occludes the pore below the hydrophobic cavity gate previously observed in homotetrameric CNGA channels. It is interesting that Arg403Gln is a disease mutation, and Arg442 is replaced by glutamine in some animal species with dichromatic or monochromatic vision. These and other unique structural features and the disease link conferred by CNGB3 indicate a critical role of CNGB3 in shaping cone photoresponses.
Collapse
|
25
|
Kawamura S, Tachibanaki S. Molecular basis of rod and cone differences. Prog Retin Eye Res 2021; 90:101040. [PMID: 34974196 DOI: 10.1016/j.preteyeres.2021.101040] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 12/15/2022]
Abstract
In the vertebrate retina, rods and cones both detect light, but they are different in functional aspects such as light sensitivity and time resolution, for example, and in some of cell biological aspects. For functional aspects, both photoreceptors are known to share a common mechanism, phototransduction cascade, consisting of a series of enzyme reactions to convert a photon-capture signal to an electrical signal. To understand the mechanisms of the functional differences between rods and cones at the molecular level, we compared biochemically each of the reactions in the phototransduction cascade between rods and cones using the cells isolated and purified from carp retina. Although proteins in the cascade are functionally similar between rods and cones, their activities together with their expression levels are mostly different between these photoreceptors. In general, reactions to generate a response are slightly less effective, as a total, in cones than in rods, but each of the reactions for termination and recovery of a response are much more effective in cones. These findings explain lower light sensitivity and briefer light responses in cones than in rods. In addition, our considerations suggest that a Ca2+-binding protein, S-modulin or recoverin, has a currently unnoticed role in shaping light responses. With comparison of the expression levels of proteins and/or mRNAs using purified cells, several proteins were found to be specifically or predominantly expressed in cones. These proteins would be of interest for future studies on the difference between rods and cones.
Collapse
Affiliation(s)
- Satoru Kawamura
- Graduate School of Frontier Biosciences, Osaka University, Yamada-oka 1-3, Suita, Osaka, 565-0871, Japan; Department of Biological Sciences, Graduate School of Science, Osaka University, Yamada-oka 1-3, Suita, Osaka, 565-0871, Japan.
| | - Shuji Tachibanaki
- Graduate School of Frontier Biosciences, Osaka University, Yamada-oka 1-3, Suita, Osaka, 565-0871, Japan; Department of Biological Sciences, Graduate School of Science, Osaka University, Yamada-oka 1-3, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
26
|
Ottolia M, John S, Hazan A, Goldhaber JI. The Cardiac Na + -Ca 2+ Exchanger: From Structure to Function. Compr Physiol 2021; 12:2681-2717. [PMID: 34964124 DOI: 10.1002/cphy.c200031] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Ca2+ homeostasis is essential for cell function and survival. As such, the cytosolic Ca2+ concentration is tightly controlled by a wide number of specialized Ca2+ handling proteins. One among them is the Na+ -Ca2+ exchanger (NCX), a ubiquitous plasma membrane transporter that exploits the electrochemical gradient of Na+ to drive Ca2+ out of the cell, against its concentration gradient. In this critical role, this secondary transporter guides vital physiological processes such as Ca2+ homeostasis, muscle contraction, bone formation, and memory to name a few. Herein, we review the progress made in recent years about the structure of the mammalian NCX and how it relates to function. Particular emphasis will be given to the mammalian cardiac isoform, NCX1.1, due to the extensive studies conducted on this protein. Given the degree of conservation among the eukaryotic exchangers, the information highlighted herein will provide a foundation for our understanding of this transporter family. We will discuss gene structure, alternative splicing, topology, regulatory mechanisms, and NCX's functional role on cardiac physiology. Throughout this article, we will attempt to highlight important milestones in the field and controversial topics where future studies are required. © 2021 American Physiological Society. Compr Physiol 12:1-37, 2021.
Collapse
Affiliation(s)
- Michela Ottolia
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Scott John
- Department of Medicine (Cardiology), UCLA, Los Angeles, California, USA
| | - Adina Hazan
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - Joshua I Goldhaber
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
27
|
Barret DCA, Schertler GFX, Kaupp UB, Marino J. Structural basis of the partially open central gate in the human CNGA1/CNGB1 channel explained by additional density for calmodulin in cryo-EM map. J Struct Biol 2021; 214:107828. [PMID: 34971760 DOI: 10.1016/j.jsb.2021.107828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/09/2021] [Accepted: 12/23/2021] [Indexed: 11/19/2022]
Abstract
The recently reported structure of the human CNGA1/CNGB1 CNG channel in the open state (Xue et al., 2021a) shows that one CNGA1 and one CNGB1 subunit do not open the central hydrophobic gate completely upon cGMP binding. This is different from what has been reported for CNGA homomeric channels (Xue et al., 2021b; Zheng et al., 2020). In seeking to understand how this difference is due to the presence of the CNGB1 subunit, we find that the deposited density map (Xue et al., 2021a) (EMDB 24465) contains an additional density not reported in the images of the original publication. This additional density fits well the structure of calmodulin (CaM), and it unambiguously connects the newly identified D-helix of CNGB1 to one of the CNGA1 helices (A1R) participating in the coiled-coil region. Interestingly, the CNGA1 subunit that engages in the interaction with this additional density is the one that, together with CNGB1, does not open completely the central gate. The sequence of the D-helix of CNGB1 contains a known CaM-binding site of exquisitely high affinity - named CaM2 (Weitz et al., 1998) -, and thus the presence of CaM in that region is not surprising. The mechanism through which CaM reduces currents across the membrane by acting on the native channel (Bauer, 1996; Hsu and Molday, 1993; Weitz et al., 1998) remains unclear. We suggest that the presence of CaM may explain the partially open central gate reported by Xue et al. (2021a). The structure of the open and closed states of the CNGA1/CNGB1 channel may be different with and without CaM present.
Collapse
Affiliation(s)
- Diane C A Barret
- Laboratory of Biomolecular Research, Paul Scherrer Institut, Switzerland
| | - Gebhard F X Schertler
- Laboratory of Biomolecular Research, Paul Scherrer Institut, Switzerland; Department of Biology, ETH-Zurich, Switzerland
| | - U Benjamin Kaupp
- Center for Advanced European Studies and Research (CAESAR), Bonn, Germany; Life and Medical Sciences Institute LIMES, University of Bonn, Germany
| | - Jacopo Marino
- Laboratory of Biomolecular Research, Paul Scherrer Institut, Switzerland.
| |
Collapse
|
28
|
Thermodynamic profile of mutual subunit control in a heteromeric receptor. Proc Natl Acad Sci U S A 2021; 118:2100469118. [PMID: 34301910 PMCID: PMC8325370 DOI: 10.1073/pnas.2100469118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cyclic nucleotide-gated (CNG) ion channels of olfactory neurons are tetrameric membrane receptors that are composed of two A2 subunits, one A4 subunit, and one B1b subunit. Each subunit carries a cyclic nucleotide-binding domain in the carboxyl terminus, and the channels are activated by the binding of cyclic nucleotides. The mechanism of cooperative channel activation is still elusive. Using a complete set of engineered concatenated olfactory CNG channels, with all combinations of disabled binding sites and fit analyses with systems of allosteric models, the thermodynamics of microscopic cooperativity for ligand binding was subunit- and state-specifically quantified. We show, for the closed channel, that preoccupation of each of the single subunits increases the affinity of each other subunit with a Gibbs free energy (ΔΔG) of ∼-3.5 to ∼-5.5 kJ ⋅ mol-1, depending on the subunit type, with the only exception that a preoccupied opposite A2 subunit has no effect on the other A2 subunit. Preoccupation of two neighbor subunits of a given subunit causes the maximum affinity increase with ΔΔG of ∼-9.6 to ∼-9.9 kJ ⋅ mol-1 Surprisingly, triple preoccupation leads to fewer negative ΔΔG values for a given subunit as compared to double preoccupation. Channel opening increases the affinity of all subunits. The equilibrium constants of closed-open isomerizations systematically increase with progressive liganding. This work demonstrates, on the example of the heterotetrameric olfactory CNG channel, a strategy to derive detailed insights into the specific mutual control of the individual subunits in a multisubunit membrane receptor.
Collapse
|
29
|
Nassisi M, Smirnov VM, Solis Hernandez C, Mohand‐Saïd S, Condroyer C, Antonio A, Kühlewein L, Kempf M, Kohl S, Wissinger B, Nasser F, Ragi SD, Wang N, Sparrow JR, Greenstein VC, Michalakis S, Mahroo OA, Ba‐Abbad R, Michaelides M, Webster AR, Degli Esposti S, Saffren B, Capasso J, Levin A, Hauswirth WW, Dhaenens C, Defoort‐Dhellemmes S, Tsang SH, Zrenner E, Sahel J, Petersen‐Jones SM, Zeitz C, Audo I. CNGB1-related rod-cone dystrophy: A mutation review and update. Hum Mutat 2021; 42:641-666. [PMID: 33847019 PMCID: PMC8218941 DOI: 10.1002/humu.24205] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/26/2021] [Accepted: 04/08/2021] [Indexed: 12/29/2022]
Abstract
Cyclic nucleotide-gated channel β1 (CNGB1) encodes the 240-kDa β subunit of the rod photoreceptor cyclic nucleotide-gated ion channel. Disease-causing sequence variants in CNGB1 lead to autosomal recessive rod-cone dystrophy/retinitis pigmentosa (RP). We herein present a comprehensive review and analysis of all previously reported CNGB1 sequence variants, and add 22 novel variants, thereby enlarging the spectrum to 84 variants in total, including 24 missense variants (two of which may also affect splicing), 21 nonsense, 19 splicing defects (7 at noncanonical positions), 10 small deletions, 1 small insertion, 1 small insertion-deletion, 7 small duplications, and 1 gross deletion. According to the American College of Medical Genetics and Genomics classification criteria, 59 variants were considered pathogenic or likely pathogenic and 25 were variants of uncertain significance. In addition, we provide further phenotypic data from 34 CNGB1-related RP cases, which, overall, are in line with previous findings suggesting that this form of RP has long-term retention of useful central vision despite the early onset of night blindness, which is valuable for patient counseling, but also has implications for it being considered a priority target for gene therapy trials.
Collapse
Affiliation(s)
- Marco Nassisi
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche ScientifiqueInstitut de la VisionParisFrance
- Centre Hospitalier National d'Ophtalmologie des Quinze‐Vingts, INSERM‐DGOS CIC1423ParisFrance
- Department of Clinical Sciences and Community HealthUniversity of MilanMilanItaly
- Ophthalmological Unit, Fondazione IRCCS Ca' GrandaOspedale Maggiore PoliclinicoMilanItaly
| | - Vasily M. Smirnov
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche ScientifiqueInstitut de la VisionParisFrance
- Exploration de la vision et Neuro‐Ophthalmologie, CHU de LilleLilleFrance
- Faculté de MédecineUniversité de LilleLilleFrance
| | - Cyntia Solis Hernandez
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche ScientifiqueInstitut de la VisionParisFrance
| | - Saddek Mohand‐Saïd
- Centre Hospitalier National d'Ophtalmologie des Quinze‐Vingts, INSERM‐DGOS CIC1423ParisFrance
| | - Christel Condroyer
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche ScientifiqueInstitut de la VisionParisFrance
| | - Aline Antonio
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche ScientifiqueInstitut de la VisionParisFrance
| | - Laura Kühlewein
- University Eye Hospital, Centre for OphthalmologyUniversity of TübingenTübingenGermany
- Institute for Ophthalmic Research, Centre for OphthalmologyUniversity of TübingenTübingenGermany
| | - Melanie Kempf
- University Eye Hospital, Centre for OphthalmologyUniversity of TübingenTübingenGermany
| | - Susanne Kohl
- Institute for Ophthalmic Research, Centre for OphthalmologyUniversity of TübingenTübingenGermany
| | - Bernd Wissinger
- Institute for Ophthalmic Research, Centre for OphthalmologyUniversity of TübingenTübingenGermany
| | - Fadi Nasser
- University Eye Hospital, Centre for OphthalmologyUniversity of TübingenTübingenGermany
| | - Sara D. Ragi
- Department of OphthalmologyColumbia University, New YorkNew YorkUSA
| | - Nan‐Kai Wang
- Department of OphthalmologyColumbia University, New YorkNew YorkUSA
- College of MedicineChang Gung UniversityTaoyuanTaiwan
- Department of Ophthalmology, Chang Gung Memorial HospitalLinkou Medical CenterTaoyuanTaiwan
| | - Janet R. Sparrow
- Department of OphthalmologyColumbia University, New YorkNew YorkUSA
| | | | | | - Omar A. Mahroo
- Moorfields Eye HospitalLondonUK
- UCL Institute of Ophthalmology, University College LondonLondonUK
| | - Rola Ba‐Abbad
- Moorfields Eye HospitalLondonUK
- UCL Institute of Ophthalmology, University College LondonLondonUK
| | - Michel Michaelides
- Moorfields Eye HospitalLondonUK
- UCL Institute of Ophthalmology, University College LondonLondonUK
| | - Andrew R. Webster
- Moorfields Eye HospitalLondonUK
- UCL Institute of Ophthalmology, University College LondonLondonUK
| | - Simona Degli Esposti
- Moorfields Eye HospitalLondonUK
- UCL Institute of Ophthalmology, University College LondonLondonUK
| | - Brooke Saffren
- Philadelphia College of Osteopathic MedicinePhiladelphiaPennsylvaniaUSA
| | | | - Alex Levin
- Pediatric Ophthalmology and Ocular Genetics, Flaum Eye Institute, Pediatric Genetics, Golisano Children's HospitalUniversity of RochesterRochesterNew YorkUSA
| | | | - Claire‐Marie Dhaenens
- Univ. Lille, Inserm, CHU Lille, U1172‐LilNCog‐Lille Neuroscience & CognitionLilleFrance
| | | | - Stephen H. Tsang
- Department of OphthalmologyColumbia University, New YorkNew YorkUSA
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma LaboratoryNew YorkNew YorkUSA
- Department of Pathology and Cell BiologyColumbia UniversityNew YorkNew YorkUSA
- Stem Cell Initiative (CSCI), Institute of Human Nutrition, Vagelos College of Physicians and SurgeonsNew YorkNew YorkUSA
| | - Eberhart Zrenner
- University Eye Hospital, Centre for OphthalmologyUniversity of TübingenTübingenGermany
| | - Jose‐Alain Sahel
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche ScientifiqueInstitut de la VisionParisFrance
- Department of OphthalmologyThe University of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Fondation Ophtalmologique Adolphe de RothschildParisFrance
| | - Simon M. Petersen‐Jones
- Department of Small Animal Clinical SciencesMichigan State UniversityEast LansingMichiganUSA
| | - Christina Zeitz
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche ScientifiqueInstitut de la VisionParisFrance
| | - Isabelle Audo
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche ScientifiqueInstitut de la VisionParisFrance
- Centre Hospitalier National d'Ophtalmologie des Quinze‐Vingts, INSERM‐DGOS CIC1423ParisFrance
- University College London Institute of OphthalmologyLondonUK
| |
Collapse
|
30
|
Täger J, Wissinger B, Kohl S, Reuter P. Identification of Chemical and Pharmacological Chaperones for Correction of Trafficking-Deficient Mutant Cyclic Nucleotide-Gated A3 Channels. Mol Pharmacol 2021; 99:460-468. [PMID: 33827965 DOI: 10.1124/molpharm.120.000180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 03/30/2021] [Indexed: 12/19/2022] Open
Abstract
Trafficking deficiency caused by missense mutations is a well known phenomenon that occurs for mutant, misfolded proteins. Typically, the misfolded protein is retained by the protein quality-control system and degraded by the endoplasmic reticulum-associated protein degradation pathway and thus does not reach its destination, although residual function of the protein may be preserved. Chemical and pharmacological chaperones can improve the targeting of trafficking-deficient proteins and thus may be promising candidates for therapeutic applications. Here, we report the application of a cellular bioassay based on the bioluminescent calcium reporter aequorin to quantify surface expression of mutant CNGA3 channels associated with the autosomal recessively inherited retinal disease achromatopsia. A screening of 77 compounds enabled the identification of effective chemical and pharmacological chaperones that result in a 1.5- to 4.8-fold increase of surface expression of mutant CNGA3. Using selected compounds, we confirmed that the rescue of the defective trafficking is not limited to a single mutation in CNGA3. Active compounds and our structure-activity correlated data for the dihydropyridine compound class may provide valuable information for developing a treatment of the trafficking defect in achromatopsia. SIGNIFICANCE STATEMENT: This study describes a novel luminescence-based assay to detect the surface expression of mutant trafficking-deficient CNGA3 channels based on the calcium-sensitive photoprotein aequorin. Using this assay for a compound screening, this study identifies novel chemical and pharmacological chaperones that restore the surface localization of mutant trafficking-deficient CNGA3 channels. The results from this work may serve as starting point for the development of potent compounds that rescue trafficking deficiencies in the autosomal recessively inherited retinal disease achromatopsia.
Collapse
Affiliation(s)
- Joachim Täger
- Molecular Genetics Laboratory, Institute for Ophthalmic Research (J.T., B.W., S.K., P.R.), and Graduate School of Cellular and Molecular Neuroscience (J.T.), University of Tübingen, Tübingen, Germany
| | - Bernd Wissinger
- Molecular Genetics Laboratory, Institute for Ophthalmic Research (J.T., B.W., S.K., P.R.), and Graduate School of Cellular and Molecular Neuroscience (J.T.), University of Tübingen, Tübingen, Germany
| | - Susanne Kohl
- Molecular Genetics Laboratory, Institute for Ophthalmic Research (J.T., B.W., S.K., P.R.), and Graduate School of Cellular and Molecular Neuroscience (J.T.), University of Tübingen, Tübingen, Germany
| | - Peggy Reuter
- Molecular Genetics Laboratory, Institute for Ophthalmic Research (J.T., B.W., S.K., P.R.), and Graduate School of Cellular and Molecular Neuroscience (J.T.), University of Tübingen, Tübingen, Germany
| |
Collapse
|
31
|
Ferkey DM, Sengupta P, L’Etoile ND. Chemosensory signal transduction in Caenorhabditis elegans. Genetics 2021; 217:iyab004. [PMID: 33693646 PMCID: PMC8045692 DOI: 10.1093/genetics/iyab004] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/05/2021] [Indexed: 12/16/2022] Open
Abstract
Chemosensory neurons translate perception of external chemical cues, including odorants, tastants, and pheromones, into information that drives attraction or avoidance motor programs. In the laboratory, robust behavioral assays, coupled with powerful genetic, molecular and optical tools, have made Caenorhabditis elegans an ideal experimental system in which to dissect the contributions of individual genes and neurons to ethologically relevant chemosensory behaviors. Here, we review current knowledge of the neurons, signal transduction molecules and regulatory mechanisms that underlie the response of C. elegans to chemicals, including pheromones. The majority of identified molecules and pathways share remarkable homology with sensory mechanisms in other organisms. With the development of new tools and technologies, we anticipate that continued study of chemosensory signal transduction and processing in C. elegans will yield additional new insights into the mechanisms by which this animal is able to detect and discriminate among thousands of chemical cues with a limited sensory neuron repertoire.
Collapse
Affiliation(s)
- Denise M Ferkey
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Piali Sengupta
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Noelle D L’Etoile
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
32
|
Jarratt-Barnham E, Wang L, Ning Y, Davies JM. The Complex Story of Plant Cyclic Nucleotide-Gated Channels. Int J Mol Sci 2021; 22:ijms22020874. [PMID: 33467208 PMCID: PMC7830781 DOI: 10.3390/ijms22020874] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/25/2022] Open
Abstract
Plant cyclic nucleotide-gated channels (CNGCs) are tetrameric cation channels which may be activated by the cyclic nucleotides (cNMPs) adenosine 3',5'-cyclic monophosphate (cAMP) and guanosine 3',5'-cyclic monophosphate (cGMP). The genome of Arabidopsis thaliana encodes 20 CNGC subunits associated with aspects of development, stress response and immunity. Recently, it has been demonstrated that CNGC subunits form heterotetrameric complexes which behave differently from the homotetramers produced by their constituent subunits. These findings have widespread implications for future signalling research and may help explain how specificity can be achieved by CNGCs that are known to act in disparate pathways. Regulation of complex formation may involve cyclic nucleotide-gated channel-like proteins.
Collapse
|
33
|
Sensing through Non-Sensing Ocular Ion Channels. Int J Mol Sci 2020; 21:ijms21186925. [PMID: 32967234 PMCID: PMC7554890 DOI: 10.3390/ijms21186925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022] Open
Abstract
Ion channels are membrane-spanning integral proteins expressed in multiple organs, including the eye. In the eye, ion channels are involved in various physiological processes, like signal transmission and visual processing. A wide range of mutations have been reported in the corresponding genes and their interacting subunit coding genes, which contribute significantly to an array of blindness, termed ocular channelopathies. These mutations result in either a loss- or gain-of channel functions affecting the structure, assembly, trafficking, and localization of channel proteins. A dominant-negative effect is caused in a few channels formed by the assembly of several subunits that exist as homo- or heteromeric proteins. Here, we review the role of different mutations in switching a “sensing” ion channel to “non-sensing,” leading to ocular channelopathies like Leber’s congenital amaurosis 16 (LCA16), cone dystrophy, congenital stationary night blindness (CSNB), achromatopsia, bestrophinopathies, retinitis pigmentosa, etc. We also discuss the various in vitro and in vivo disease models available to investigate the impact of mutations on channel properties, to dissect the disease mechanism, and understand the pathophysiology. Innovating the potential pharmacological and therapeutic approaches and their efficient delivery to the eye for reversing a “non-sensing” channel to “sensing” would be life-changing.
Collapse
|
34
|
Jinda W, Tuekprakhon A, Thongnoppakhun W, Limwongse C, Trinavarat A, Atchaneeyasakul LO. Molecular and clinical characterization of Thai patients with achromatopsia: identification of three novel disease-associated variants in the CNGA3 and CNGB3 genes. Int Ophthalmol 2020; 41:121-134. [PMID: 32869108 DOI: 10.1007/s10792-020-01559-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/17/2020] [Indexed: 11/24/2022]
Abstract
PURPOSE Achromatopsia (ACHM) is an autosomal recessive cone disorder characterized by pendular nystagmus, photophobia, reduced visual acuity, and partial or total absence of color vision. Mutations in six genes (CNGA3, CNGB3, GNAT2, PDE6C, PDE6H, and ATF6) have been reported in ACHM. There is no information on these disease-associated genes in Thai population. This study aimed to investigate the molecular and clinical characteristics in Thai patients with ACHM. METHODS Seven unrelated Thai patients with ACHM were recruited. Detailed ophthalmologic examination was performed. Polymerase chain reaction (PCR)-coupled single-strand conformation polymorphism (SSCP) screening followed by Sanger sequencing was used to identify sequence variants in all exons and splice junctions of three genes (CNGA3, CNGB3, and GNAT2). The pathogenicity of the detected variants was interpreted. Segregation analysis was performed to determine variant sharing in available family members. RESULTS Four patients displayed different SSCP migration patterns. Sequence analysis revealed a reported pathogenic and a novel disease-associated variant in the CNGA3 gene. For the CNGB3 gene, we found two novel disease-associated variants and a reported variant of uncertain significance (VUS). Segregation analysis confirmed that the variants identified in each patient were present in the heterozygous state in their corresponding family members, which was consistent with an autosomal recessive mode of inheritance. CONCLUSIONS This study demonstrated the first molecular and clinical characterization of ACHM in Thai patients. The identification of disease-associated genes in a specific population leads to a personalized gene therapy benefiting those affected patients.
Collapse
Affiliation(s)
- Worapoj Jinda
- Division of Medical Genetics Research and Laboratory, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Aekkachai Tuekprakhon
- Clinical Molecular Pathology Laboratory, Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wanna Thongnoppakhun
- Division of Medical Genetics Research and Laboratory, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chanin Limwongse
- Division of Medical Genetics Research and Laboratory, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Division of Medical Genetics, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Adisak Trinavarat
- Department of Ophthalmology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - La-Ongsri Atchaneeyasakul
- Department of Ophthalmology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
35
|
Wang L, Zou T, Lin Y, Li L, Zhang P, Gong B, Hao J, Zhang H. Identification of a novel homozygous variant in the CNGA1 gene in a Chinese family with autosomal recessive retinitis pigmentosa. Mol Med Rep 2020; 22:2516-2520. [PMID: 32705276 PMCID: PMC7411332 DOI: 10.3892/mmr.2020.11331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 06/12/2020] [Indexed: 11/30/2022] Open
Abstract
Retinitis pigmentosa (RP) is a complex group of hereditary retinal dystrophies. Although >60 genes have been identified to be associated with non-syndromic RP, the exact genetic variant remains elusive in numerous cases of RP. In the present study, a Chinese pedigree affected by RP with autosomal recessive inheritance, including a total of seven members with one affected patient and six unaffected individuals, was recruited. Comprehensive ophthalmic examinations were performed on the proband and the proband's unaffected daughter. Genomic DNA was extracted from peripheral blood. Whole-exome sequencing (WES) was performed for the affected individual. The candidate pathogenic variant was verified by direct Sanger sequencing. The affected individual presented with classical clinical symptoms of RP. A novel homozygous variant, c.265delC (p.L89Ffs*3) in the cyclic nucleotide-gated channel subunit α 1 gene was identified in the affected patient. This homozygous variant was absent in other unaffected family members and 600 ethnicity-matched healthy controls. The variant was co-segregated with the disease phenotype in an autosomal recessive manner.
Collapse
Affiliation(s)
- Le Wang
- Department of Ophthalmology, The First Hospital of Jilin University, Changchun, Jilin 130103, P.R. China
| | - Tongdan Zou
- Key Laboratory for Human Disease Gene Study of Sichuan Province and Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
| | - Yongqiong Lin
- Key Laboratory for Human Disease Gene Study of Sichuan Province and Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
| | - Ling Li
- Key Laboratory for Human Disease Gene Study of Sichuan Province and Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
| | - Peng Zhang
- Diagnosis Center, The First Hospital of Jilin University, Changchun, Jilin 130103, P.R. China
| | - Bo Gong
- Key Laboratory for Human Disease Gene Study of Sichuan Province and Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
| | - Jilong Hao
- Department of Ophthalmology, The First Hospital of Jilin University, Changchun, Jilin 130103, P.R. China
| | - Houbin Zhang
- Key Laboratory for Human Disease Gene Study of Sichuan Province and Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, P.R. China
| |
Collapse
|
36
|
Zhang Y, Wang S, Xu M, Pang J, Yuan Z, Zhao C. AAV-mediated human CNGB3 restores cone function in an all-cone mouse model of CNGB3 achromatopsia. J Biomed Res 2020; 34:114-121. [PMID: 32305965 DOI: 10.7555/jbr.33.20190056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Complete congenital achromatopsia is a devastating hereditary visual disorder. Mutations in the CNGB3 gene account for more than 50% of all known cases of achromatopsia. This work investigated the efficiency of subretinal (SR) delivered AAV8 (Y447, 733F) vector containing a human PR2.1 promoter and a human CNGB3 cDNA in Cngb3 -/-/ Nrl -/- mice. The Cngb3 -/-/ Nrl -/- mouse was a cone-dominant model with Cngb3 channel deficiency, which partially mimicked the all-cone foveal structure of human achromatopsia with CNGB3 mutations. Following SR delivery of the vector, AAV-mediated CNGB3 expression restored cone function which was assessed by the restoration of the cone-mediated electroretinogram (ERG) and immunohistochemistry. This therapeutic rescue resulted in long-term improvement of retinal function with the restoration of cone ERG amplitude. This study demonstrated an AAV-mediated gene therapy in a cone-dominant mouse model using a human gene construct and provided the potential to be utilized in clinical trials.
Collapse
Affiliation(s)
- Yuxin Zhang
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Shanshan Wang
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Miao Xu
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jijing Pang
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China;Department of Ophthalmology, University of Florida, Gainesville, FL 32610, USA
| | - Zhilan Yuan
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Chen Zhao
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
37
|
Charbel Issa P, Reuter P, Kühlewein L, Birtel J, Gliem M, Tropitzsch A, Whitcroft KL, Bolz HJ, Ishihara K, MacLaren RE, Downes SM, Oishi A, Zrenner E, Kohl S, Hummel T. Olfactory Dysfunction in Patients With CNGB1-Associated Retinitis Pigmentosa. JAMA Ophthalmol 2019; 136:761-769. [PMID: 29800053 DOI: 10.1001/jamaophthalmol.2018.1621] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Importance Co-occurrence of retinitis pigmentosa (RP) and olfactory dysfunction may have a common genetic cause. Objective To report olfactory function and the retinal phenotype in patients with biallelic mutations in CNGB1, a gene coding for a signal transduction channel subunit expressed in rod photoreceptors and olfactory sensory neurons. Design, Setting, and Participants This case series was conducted from August 2015 through July 2017. The setting was a multicenter study involving 4 tertiary referral centers for inherited retinal dystrophies. Participants were 9 patients with CNGB1-associated RP. Main Outcomes and Measures Results of olfactory testing, ocular phenotyping, and molecular genetic testing using targeted next-generation sequencing. Results Nine patients were included in the study, 3 of whom were female. Their ages ranged between 34 and 79 years. All patients had an early onset of night blindness but were usually not diagnosed as having RP before the fourth decade because of slow retinal degeneration. Retinal features were characteristic of a rod-cone dystrophy. Olfactory testing revealed reduced or absent olfactory function, with all except one patient scoring in the lowest quartile in relation to age-related norms. Brain magnetic resonance imaging and electroencephalography measurements in response to olfactory stimulation were available for 1 patient and revealed no visible olfactory bulbs and reduced responses to odor, respectively. Molecular genetic testing identified 5 novel (c.1312C>T, c.2210G>A, c.2492+1G>A, c.2763C>G, and c.3044_3050delGGAAATC) and 5 previously reported mutations in CNGB1. Conclusions and Relevance Mutations in CNGB1 may cause an autosomal recessive RP-olfactory dysfunction syndrome characterized by a slow progression of retinal degeneration and variable anosmia or hyposmia.
Collapse
Affiliation(s)
- Peter Charbel Issa
- Oxford Eye Hospital, Oxford University Hospitals National Health Service (NHS) Foundation Trust, Oxford, United Kingdom.,Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.,Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Peggy Reuter
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Laura Kühlewein
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Johannes Birtel
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Martin Gliem
- Oxford Eye Hospital, Oxford University Hospitals National Health Service (NHS) Foundation Trust, Oxford, United Kingdom.,Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Anke Tropitzsch
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| | - Katherine L Whitcroft
- University College London (UCL) Ear Institute and Royal National Throat, Nose and Ear Hospital, London, United Kingdom.,Centre for the Study of the Senses, Institute of Philosophy, School of Advanced Study, University of London, London, United Kingdom.,Smell and Taste Clinic, Department of Otorhinolaryngology-Head and Neck Surgery, Technische Universität Dresden, Dresden, Germany
| | - Hanno J Bolz
- Bioscientia Center for Human Genetics, Ingelheim, Germany.,Institute of Human Genetics, University Hospital of Cologne, Cologne, Germany
| | - Kenji Ishihara
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Robert E MacLaren
- Oxford Eye Hospital, Oxford University Hospitals National Health Service (NHS) Foundation Trust, Oxford, United Kingdom.,Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Susan M Downes
- Oxford Eye Hospital, Oxford University Hospitals National Health Service (NHS) Foundation Trust, Oxford, United Kingdom.,Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Akio Oishi
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Eberhart Zrenner
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Susanne Kohl
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Thomas Hummel
- Smell and Taste Clinic, Department of Otorhinolaryngology-Head and Neck Surgery, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
38
|
Identification of a CNGB1 Frameshift Mutation in a Han Chinese Family with Retinitis Pigmentosa. Optom Vis Sci 2019; 95:1155-1161. [PMID: 30451805 DOI: 10.1097/opx.0000000000001305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
SIGNIFICANCE Retinitis pigmentosa (RP) is a severe hereditary retinal disorder characterized by progressive degeneration of rod and cone photoreceptors. This study identified a novel frameshift mutation, c.385delC, p.(L129WfsTer148), in the cyclic nucleotide-gated channel beta 1 (CNGB1) gene of a consanguineous Han Chinese family with autosomal recessive RP (arRP). This expands the spectrum of CNGB1 gene variants in RP cases and possibly refines future genetic counseling. PURPOSE The present study sought to identify potential pathogenetic gene mutations in a five-generation consanguineous Han Chinese family with RP. METHODS Two members of a five-generation consanguineous Han Chinese pedigree with arRP and 100 normal individuals were enrolled in this study. Exome sequencing was performed on the 70-year-old male proband from a consanguineous family to screen potential pathogenic mutations according to the American College of Medical Genetics and Genomics for the interpretation of sequence variants. Sanger sequencing was performed on the proband, the proband's unaffected son, and 100 normal individuals to verify the disease-causing mutation. RESULTS A novel frameshift mutation, c.385delC, p.(L129WfsTer148), with homozygous status in the CNGB1 gene was identified in the proband of the family with arRP, and the mutation with heterozygous status was carried by the asymptomatic son. CONCLUSIONS The c.385delC (p.(L129WfsTer148)) mutation in the CNGB1 gene screened by exome sequencing is probably responsible for the RP phenotype in this family. The result expands the spectrum of CNGB1 gene variants in RP cases and possibly refines future genetic counseling.
Collapse
|
39
|
Ba-Abbad R, Holder GE, Robson AG, Neveu MM, Waseem N, Arno G, Webster AR. Isolated rod dysfunction associated with a novel genotype of CNGB1. Am J Ophthalmol Case Rep 2019; 14:83-86. [PMID: 30976726 PMCID: PMC6438912 DOI: 10.1016/j.ajoc.2019.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/06/2018] [Accepted: 03/12/2019] [Indexed: 01/09/2023] Open
Abstract
Purpose To describe the clinical and electrophysiological features of an unusual retinopathy in a patient with a novel genotype of CNGB1, mutations in which are implicated in autosomal recessive retinitis pigmentosa (rod-cone dystrophy). Observations A 61-year old asymptomatic woman was referred to the inherited retinal disorders clinic because of peripheral retinal pigmentary changes. She had normal visual acuity and color vision. Clinical examination and detailed imaging of the macula were normal, but there was atrophy of the outer retina in the periphery with sparse intra-retinal pigmentation. Electroretinography (ERG) revealed undetectable rod responses, with normal cone-mediated responses. The pattern ERG was normal. Genetic analysis identified two previously unreported variants in CNGB1: (c.2258T > A, p.[Leu753*] and c.807G > C, p.[Gln269His]), shown to be in trans. Conclusions and importance This report describes a functionally cone-isolated retina in an adult, apparently hemizygous for a novel missense mutation in CNGB1, a novel phenotype for this gene. The p.[Gln269His] allele is the first missense change, within the glutamic acid-rich protein (GARP) domain of CNGB1, to be associated with retinal disease in humans.
Collapse
Affiliation(s)
- Rola Ba-Abbad
- UCL Institute of Ophthalmology, University College London, London, UK.,Moorfields Eye Hospital, London, UK
| | - Graham E Holder
- UCL Institute of Ophthalmology, University College London, London, UK.,Moorfields Eye Hospital, London, UK.,Department of Ophthalmology, National University of Singapore, Singapore
| | - Anthony G Robson
- UCL Institute of Ophthalmology, University College London, London, UK.,Moorfields Eye Hospital, London, UK
| | - Magella M Neveu
- UCL Institute of Ophthalmology, University College London, London, UK.,Moorfields Eye Hospital, London, UK
| | - Naushin Waseem
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Gavin Arno
- UCL Institute of Ophthalmology, University College London, London, UK.,Moorfields Eye Hospital, London, UK
| | - Andrew R Webster
- UCL Institute of Ophthalmology, University College London, London, UK.,Moorfields Eye Hospital, London, UK
| |
Collapse
|
40
|
Lelle M, Otte M, Thon S, Bertinetti D, Herberg FW, Benndorf K. Chemical synthesis and biological activity of novel brominated 7-deazaadenosine-3',5'-cyclic monophosphate derivatives. Bioorg Med Chem 2019; 27:1704-1713. [PMID: 30879860 DOI: 10.1016/j.bmc.2019.03.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/09/2019] [Accepted: 03/11/2019] [Indexed: 11/19/2022]
Abstract
Synthetic derivatives of cyclic adenosine monophosphate, such as halogenated or other more hydrophobic analogs, are widely used compounds, to investigate diverse signal transduction pathways of eukaryotic cells. This inspired us to develop cyclic nucleotides, which exhibit chemical structures composed of brominated 7-deazaadenines and the phosphorylated ribosugar. The synthesized 8-bromo- and 7-bromo-7-deazaadenosine-3',5'-cyclic monophosphates rank among the most potent activators of cyclic nucleotide-regulated ion channels as well as cAMP-dependent protein kinase. Moreover, these substances bind tightly to exchange proteins directly activated by cAMP.
Collapse
Affiliation(s)
- Marco Lelle
- Institute of Physiology II, University Hospital Jena, Kollegiengasse 9, 07743 Jena, Germany
| | - Maik Otte
- Institute of Physiology II, University Hospital Jena, Kollegiengasse 9, 07743 Jena, Germany
| | - Susanne Thon
- Institute of Physiology II, University Hospital Jena, Kollegiengasse 9, 07743 Jena, Germany
| | - Daniela Bertinetti
- Department of Biochemistry, University of Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Friedrich W Herberg
- Department of Biochemistry, University of Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Klaus Benndorf
- Institute of Physiology II, University Hospital Jena, Kollegiengasse 9, 07743 Jena, Germany.
| |
Collapse
|
41
|
Conotoxin κM-RIIIJ, a tool targeting asymmetric heteromeric K v1 channels. Proc Natl Acad Sci U S A 2018; 116:1059-1064. [PMID: 30593566 DOI: 10.1073/pnas.1813161116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The vast complexity of native heteromeric K+ channels is largely unexplored. Defining the composition and subunit arrangement of individual subunits in native heteromeric K+ channels and establishing their physiological roles is experimentally challenging. Here we systematically explored this "zone of ignorance" in molecular neuroscience. Venom components, such as peptide toxins, appear to have evolved to modulate physiologically relevant targets by discriminating among closely related native ion channel complexes. We provide proof-of-principle for this assertion by demonstrating that κM-conotoxin RIIIJ (κM-RIIIJ) from Conus radiatus precisely targets "asymmetric" Kv channels composed of three Kv1.2 subunits and one Kv1.1 or Kv1.6 subunit with 100-fold higher apparent affinity compared with homomeric Kv1.2 channels. Our study shows that dorsal root ganglion (DRG) neurons contain at least two major functional Kv1.2 channel complexes: a heteromer, for which κM-RIIIJ has high affinity, and a putative Kv1.2 homomer, toward which κM-RIIIJ is less potent. This conclusion was reached by (i) covalent linkage of members of the mammalian Shaker-related Kv1 family to Kv1.2 and systematic assessment of the potency of κM-RIIIJ block of heteromeric K+ channel-mediated currents in heterologous expression systems; (ii) molecular dynamics simulations of asymmetric Kv1 channels providing insights into the molecular basis of κM-RIIIJ selectivity and potency toward its targets; and (iii) evaluation of calcium responses of a defined population of DRG neurons to κM-RIIIJ. Our study demonstrates that bioactive molecules present in venoms provide essential pharmacological tools that systematically target specific heteromeric Kv channel complexes that operate in native tissues.
Collapse
|
42
|
Burkard M, Kohl S, Krätzig T, Tanimoto N, Brennenstuhl C, Bausch AE, Junger K, Reuter P, Sothilingam V, Beck SC, Huber G, Ding XQ, Mayer AK, Baumann B, Weisschuh N, Zobor D, Hahn GA, Kellner U, Venturelli S, Becirovic E, Charbel Issa P, Koenekoop RK, Rudolph G, Heckenlively J, Sieving P, Weleber RG, Hamel C, Zong X, Biel M, Lukowski R, Seeliger MW, Michalakis S, Wissinger B, Ruth P. Accessory heterozygous mutations in cone photoreceptor CNGA3 exacerbate CNG channel-associated retinopathy. J Clin Invest 2018; 128:5663-5675. [PMID: 30418171 PMCID: PMC6264655 DOI: 10.1172/jci96098] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/02/2018] [Indexed: 01/01/2023] Open
Abstract
Mutations in CNGA3 and CNGB3, the genes encoding the subunits of the tetrameric cone photoreceptor cyclic nucleotide-gated ion channel, cause achromatopsia, a congenital retinal disorder characterized by loss of cone function. However, a small number of patients carrying the CNGB3/c.1208G>A;p.R403Q mutation present with a variable retinal phenotype ranging from complete and incomplete achromatopsia to moderate cone dysfunction or progressive cone dystrophy. By exploring a large patient cohort and published cases, we identified 16 unrelated individuals who were homozygous or (compound-)heterozygous for the CNGB3/c.1208G>A;p.R403Q mutation. In-depth genetic and clinical analysis revealed a co-occurrence of a mutant CNGA3 allele in a high proportion of these patients (10 of 16), likely contributing to the disease phenotype. To verify these findings, we generated a Cngb3R403Q/R403Q mouse model, which was crossbred with Cnga3-deficient (Cnga3-/-) mice to obtain triallelic Cnga3+/- Cngb3R403Q/R403Q mutants. As in human subjects, there was a striking genotype-phenotype correlation, since the presence of 1 Cnga3-null allele exacerbated the cone dystrophy phenotype in Cngb3R403Q/R403Q mice. These findings strongly suggest a digenic and triallelic inheritance pattern in a subset of patients with achromatopsia/severe cone dystrophy linked to the CNGB3/p.R403Q mutation, with important implications for diagnosis, prognosis, and genetic counseling.
Collapse
Affiliation(s)
- Markus Burkard
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy
- Department of Vegetative and Clinical Physiology
| | - Susanne Kohl
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, and
| | - Timm Krätzig
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy
| | - Naoyuki Tanimoto
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | | | - Anne E. Bausch
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy
| | - Katrin Junger
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy
| | - Peggy Reuter
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, and
| | - Vithiyanjali Sothilingam
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Susanne C. Beck
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Gesine Huber
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Xi-Qin Ding
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Anja K. Mayer
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, and
| | - Britta Baumann
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, and
| | - Nicole Weisschuh
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, and
| | - Ditta Zobor
- Institute of Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Gesa-Astrid Hahn
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, and
| | - Ulrich Kellner
- Rare Retinal Disease Center, Augenzentrum Siegburg, MVZ ADTC Siegburg GmbH, Siegburg, Germany
| | | | - Elvir Becirovic
- Center for Integrated Protein Science Munich CiPSM and Department of Pharmacy–Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Peter Charbel Issa
- Oxford Eye Hospital, OUH NHS Foundation Trust and the Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Robert K. Koenekoop
- McGill Ocular Genetics Centre, McGill University Health Centre, Montreal, Quebec, Canada
| | | | | | - Paul Sieving
- The National Eye Institute, Bethesda, Maryland, USA
| | - Richard G. Weleber
- Casey Eye Institute, Department of Ophthalmogenetics, Portland, Oregon, USA
| | - Christian Hamel
- INSERM U583, Institut des Neurosciences, Montpellier, France
| | - Xiangang Zong
- Center for Integrated Protein Science Munich CiPSM and Department of Pharmacy–Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Martin Biel
- Center for Integrated Protein Science Munich CiPSM and Department of Pharmacy–Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Robert Lukowski
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy
| | - Matthias W. Seeliger
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Stylianos Michalakis
- Center for Integrated Protein Science Munich CiPSM and Department of Pharmacy–Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Bernd Wissinger
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, and
| | - Peter Ruth
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy
| |
Collapse
|
43
|
Sun W, Zhang Q. Diseases associated with mutations in CNGA3: Genotype-phenotype correlation and diagnostic guideline. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 161:1-27. [PMID: 30711023 DOI: 10.1016/bs.pmbts.2018.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Along with the molecular and functional characterization of CNGA3, knowledge about diseases associated with CNGA3 mutations has made great progress. So far, CNGA3 mutations are not only one of the most common causes of achromatopsia and cone dystrophy or cone-rod dystrophy but also one of the most commonly mutated genes among various forms of retinopathy. Understanding the clinical characteristics of CNGA3-associated retinal diseases may help clinical practice of infants or children with related diseases. Recognizing the importance of CNGA3 in inherited retinal diseases may enhance related research in searching for functional restoration or repair of CNGA3 defects.
Collapse
Affiliation(s)
- Wenmin Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
44
|
Abstract
The first step in vision is the absorption of photons by the photopigments in cone and rod photoreceptors. After initial amplification within the phototransduction cascade the signal is translated into an electrical signal by the action of cyclic nucleotide-gated (CNG) channels. CNG channels are ligand-gated ion channels that are activated by the binding of cyclic guanosine monophosphate (cGMP) or cyclic adenosine monophosphate (cAMP). Retinal CNG channels transduce changes in intracellular concentrations of cGMP into changes of the membrane potential and the Ca2+ concentration. Structurally, the CNG channels belong to the superfamily of pore-loop cation channels and share a common gross structure with hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and voltage-gated potassium channels (KCN). In this review, we provide an overview on the molecular properties of CNG channels and describe their physiological role in the phototransduction pathways. We also discuss insights into the pathophysiological role of CNG channel proteins that have emerged from the analysis of CNG channel-deficient animal models and human CNG channelopathies. Finally, we summarize recent gene therapy activities and provide an outlook for future clinical application.
Collapse
Affiliation(s)
- Stylianos Michalakis
- Center for Integrated Protein Science Munich (CIPSM), Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr, 5-13, 81377 Munich, Germany.
| | - Elvir Becirovic
- Center for Integrated Protein Science Munich (CIPSM), Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr, 5-13, 81377 Munich, Germany.
| | - Martin Biel
- Center for Integrated Protein Science Munich (CIPSM), Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr, 5-13, 81377 Munich, Germany.
| |
Collapse
|
45
|
Täger J, Kohl S, Birch DG, Wheaton DKH, Wissinger B, Reuter P. An early nonsense mutation facilitates the expression of a short isoform of CNGA3 by alternative translation initiation. Exp Eye Res 2018; 171:48-53. [PMID: 29499183 DOI: 10.1016/j.exer.2018.02.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 02/26/2018] [Accepted: 02/26/2018] [Indexed: 11/24/2022]
Abstract
The cyclic nucleotide-gated (CNG) channel - composed of CNGA3 and CNGB3 subunits - mediates the influx of cations in cone photoreceptors after light stimulation and thus is a key element in cone phototransduction. Mutations in CNGA3 and CNGB3 are associated with achromatopsia, a rare autosomal recessive retinal disorder. Here, we demonstrate that the presence of an early nonsense mutation in CNGA3 induces the usage of a downstream alternative translation initiation site giving rise to a short CNGA3 isoform. The expression of this short isoform was verified by Western blot analysis and DAB staining of HEK293 cells and cone photoreceptor-like 661W cells expressing CNGA3-GST fusion constructs. Functionality of the short isoform was confirmed by a cellular calcium influx assay. Furthermore, patients carrying an early nonsense mutation were analyzed for residual cone photoreceptor function in order to identify a potential role of the short isoform to modify the clinical outcome in achromatopsia patients. Yet the results suggest that the short isoform is not able to compensate for the loss of the long isoform leaving the biological role of this variant unclear.
Collapse
Affiliation(s)
- Joachim Täger
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany; Graduate School of Cellular and Molecular Neuroscience, University of Tübingen, Tübingen, Germany
| | - Susanne Kohl
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | | | | | - Bernd Wissinger
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.
| | - Peggy Reuter
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
46
|
Michalakis S, Schön C, Becirovic E, Biel M. Gene therapy for achromatopsia. J Gene Med 2018; 19. [PMID: 28095637 DOI: 10.1002/jgm.2944] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 01/13/2017] [Accepted: 01/13/2017] [Indexed: 02/02/2023] Open
Abstract
The present review summarizes the current status of achromatopsia (ACHM) gene therapy-related research activities and provides an outlook for their clinical application. ACHM is an inherited eye disease characterized by a congenital absence of cone photoreceptor function. As a consequence, ACHM is associated with strongly impaired daylight vision, photophobia, nystagmus and a lack of color discrimination. Currently, six genes have been linked to ACHM. Up to 80% of the patients carry mutations in the genes CNGA3 and CNGB3 encoding the two subunits of the cone cyclic nucleotide-gated channel. Various animal models of the disease have been established and their characterization has helped to increase our understanding of the pathophysiology associated with ACHM. With the advent of adeno-associated virus vectors as valuable gene delivery tools for retinal photoreceptors, a number of promising gene supplementation therapy programs have been initiated. In recent years, huge progress has been made towards bringing a curative treatment for ACHM into clinics. The first clinical trials are ongoing or will be launched soon and are expected to contribute important data on the safety and efficacy of ACHM gene supplementation therapy.
Collapse
Affiliation(s)
- Stylianos Michalakis
- Center for Integrated Protein Science Munich CiPSM and Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christian Schön
- Center for Integrated Protein Science Munich CiPSM and Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Elvir Becirovic
- Center for Integrated Protein Science Munich CiPSM and Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Martin Biel
- Center for Integrated Protein Science Munich CiPSM and Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
47
|
James ZM, Zagotta WN. Structural insights into the mechanisms of CNBD channel function. J Gen Physiol 2017; 150:225-244. [PMID: 29233886 PMCID: PMC5806680 DOI: 10.1085/jgp.201711898] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/28/2017] [Indexed: 12/28/2022] Open
Abstract
James and Zagotta discuss how recent cryoEM structures inform our understanding of cyclic nucleotide–binding domain channels. Cyclic nucleotide-binding domain (CNBD) channels are a family of ion channels in the voltage-gated K+ channel superfamily that play crucial roles in many physiological processes. CNBD channels are structurally similar but functionally very diverse. This family includes three subfamilies: (1) the cyclic nucleotide-gated (CNG) channels, which are cation-nonselective, voltage-independent, and cyclic nucleotide-gated; (2) the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, which are weakly K+ selective, hyperpolarization-activated, and cyclic nucleotide-gated; and (3) the ether-à-go-go-type (KCNH) channels, which are strongly K+ selective, depolarization-activated, and cyclic nucleotide-independent. Recently, several high-resolution structures have been reported for intact CNBD channels, providing a structural framework to better understand their diverse function. In this review, we compare and contrast the recent structures and discuss how they inform our understanding of ion selectivity, voltage-dependent gating, and cyclic nucleotide–dependent gating within this channel family.
Collapse
Affiliation(s)
- Zachary M James
- Department of Physiology and Biophysics, University of Washington, Seattle, WA
| | - William N Zagotta
- Department of Physiology and Biophysics, University of Washington, Seattle, WA
| |
Collapse
|
48
|
Petersen-Jones SM, Occelli LM, Winkler PA, Lee W, Sparrow JR, Tsukikawa M, Boye SL, Chiodo V, Capasso JE, Becirovic E, Schön C, Seeliger MW, Levin AV, Michalakis S, Hauswirth WW, Tsang SH. Patients and animal models of CNGβ1-deficient retinitis pigmentosa support gene augmentation approach. J Clin Invest 2017; 128:190-206. [PMID: 29202463 PMCID: PMC5749539 DOI: 10.1172/jci95161] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 10/10/2017] [Indexed: 01/07/2023] Open
Abstract
Retinitis pigmentosa (RP) is a major cause of blindness that affects 1.5 million people worldwide. Mutations in cyclic nucleotide-gated channel β 1 (CNGB1) cause approximately 4% of autosomal recessive RP. Gene augmentation therapy shows promise for treating inherited retinal degenerations; however, relevant animal models and biomarkers of progression in patients with RP are needed to assess therapeutic outcomes. Here, we evaluated RP patients with CNGB1 mutations for potential biomarkers of progression and compared human phenotypes with those of mouse and dog models of the disease. Additionally, we used gene augmentation therapy in a CNGβ1-deficient dog model to evaluate potential translation to patients. CNGB1-deficient RP patients and mouse and dog models had a similar phenotype characterized by early loss of rod function and slow rod photoreceptor loss with a secondary decline in cone function. Advanced imaging showed promise for evaluating RP progression in human patients, and gene augmentation using adeno-associated virus vectors robustly sustained the rescue of rod function and preserved retinal structure in the dog model. Together, our results reveal an early loss of rod function in CNGB1-deficient patients and a wide window for therapeutic intervention. Moreover, the identification of potential biomarkers of outcome measures, availability of relevant animal models, and robust functional rescue from gene augmentation therapy support future work to move CNGB1-RP therapies toward clinical trials.
Collapse
Affiliation(s)
- Simon M Petersen-Jones
- Department of Small Animal Clinical Sciences, Michigan State University, East Lansing, Michigan, USA
| | - Laurence M Occelli
- Department of Small Animal Clinical Sciences, Michigan State University, East Lansing, Michigan, USA
| | - Paige A Winkler
- Department of Small Animal Clinical Sciences, Michigan State University, East Lansing, Michigan, USA
| | - Winston Lee
- Department of Ophthalmology Pathology & Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Janet R Sparrow
- Department of Ophthalmology Pathology & Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Mai Tsukikawa
- Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Sanford L Boye
- Department of Ophthalmology, University of Florida, Gainesville, Florida, USA
| | - Vince Chiodo
- Department of Ophthalmology, University of Florida, Gainesville, Florida, USA
| | - Jenina E Capasso
- Ocular Genetics, Wills Eye Hospital (WEH), Philadelphia, Pennsylvania, USA
| | - Elvir Becirovic
- Center for Integrated Protein Science Munich (CIPSM), Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christian Schön
- Center for Integrated Protein Science Munich (CIPSM), Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Mathias W Seeliger
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Alex V Levin
- Thomas Jefferson University, Philadelphia, Pennsylvania, USA.,Ocular Genetics, Wills Eye Hospital (WEH), Philadelphia, Pennsylvania, USA
| | - Stylianos Michalakis
- Center for Integrated Protein Science Munich (CIPSM), Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - William W Hauswirth
- Department of Ophthalmology, University of Florida, Gainesville, Florida, USA
| | - Stephen H Tsang
- Department of Ophthalmology Pathology & Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York, USA.,Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, New York, USA.,Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University Medical Center (CUMC), Edward S. Harkness Eye Institute, New York, New York, USA
| |
Collapse
|
49
|
Edri I, Goldenberg M, Lisnyansky M, Strulovich R, Newman H, Loewenstein A, Khananshvili D, Giladi M, Haitin Y. Overexpression and Purification of Human Cis-prenyltransferase in Escherichia coli. J Vis Exp 2017. [PMID: 28809830 DOI: 10.3791/56430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Prenyltransferases (PT) are a group of enzymes that catalyze chain elongation of allylic diphosphate using isopentenyl diphosphate (IPP) via multiple condensation reactions. DHDDS (dehydrodolichyl diphosphate synthase) is a eukaryotic long-chain cis-PT (forming cis double bonds from the condensation reaction) that catalyzes chain elongation of farnesyl diphosphate (FPP, an allylic diphosphate) via multiple condensations with isopentenyl diphosphate (IPP). DHDDS is of biomedical importance, as a non-conservative mutation (K42E) in the enzyme results in retinitis pigmentosa, ultimately leading to blindness. Therefore, the present protocol was developed in order to acquire large quantities of purified DHDDS, suitable for mechanistic studies. Here, the usage of protein fusion, optimized culture conditions and codon-optimization were used to allow the overexpression and purification of functionally active human DHDDS in E. coli. The described protocol is simple, cost-effective and time sparing. The homology of cis-PT among different species suggests that this protocol may be applied for other eukaryotic cis-PT as well, such as those involved in natural rubber synthesis.
Collapse
Affiliation(s)
- Ilan Edri
- Sackler Faculty of Medicine, Tel Aviv University
| | | | - Michal Lisnyansky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University
| | - Roi Strulovich
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University
| | - Hadas Newman
- Sackler Faculty of Medicine, Tel Aviv University; Department of Ophthalmology, Tel Aviv Sourasky Medical Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University
| | - Anat Loewenstein
- Sackler Faculty of Medicine, Tel Aviv University; Department of Ophthalmology, Tel Aviv Sourasky Medical Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University
| | - Daniel Khananshvili
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University
| | - Moshe Giladi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University; Tel Aviv Sourasky Medical Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University;
| | - Yoni Haitin
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University;
| |
Collapse
|
50
|
Mühlfriedel R, Tanimoto N, Schön C, Sothilingam V, Garcia Garrido M, Beck SC, Huber G, Biel M, Seeliger MW, Michalakis S. AAV-Mediated Gene Supplementation Therapy in Achromatopsia Type 2: Preclinical Data on Therapeutic Time Window and Long-Term Effects. Front Neurosci 2017; 11:292. [PMID: 28596720 PMCID: PMC5442229 DOI: 10.3389/fnins.2017.00292] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/08/2017] [Indexed: 11/13/2022] Open
Abstract
Achromatopsia type 2 (ACHM2) is a severe, inherited eye disease caused by mutations in the CNGA3 gene encoding the α subunit of the cone photoreceptor cyclic nucleotide-gated (CNG) channel. Patients suffer from strongly impaired daylight vision, photophobia, nystagmus, and lack of color discrimination. We have previously shown in the Cnga3 knockout (KO) mouse model of ACHM2 that gene supplementation therapy is effective in rescuing cone function and morphology and delaying cone degeneration. In our preclinical approach, we use recombinant adeno-associated virus (AAV) vector-mediated gene transfer to express the murine Cnga3 gene under control of the mouse blue opsin promoter. Here, we provide novel data on the efficiency and permanence of such gene supplementation therapy in Cnga3 KO mice. Specifically, we compare the influence of two different AAV vector capsids, AAV2/5 (Y719F) and AAV2/8 (Y733F), on restoration of cone function, and assess the effect of age at time of treatment on the long-term outcome. The evaluation included in vivo analysis of retinal function using electroretinography (ERG) and immunohistochemical analysis of vector-driven Cnga3 transgene expression. We found that both vector capsid serotypes led to a comparable rescue of cone function over the observation period between 4 weeks and 3 months post treatment. In addition, a clear therapeutic effect was present in mice treated at 2 weeks of age as well as in mice treated at 3 months of age at the first assessment at 4 weeks after treatment. Importantly, the effect extended in both cases over the entire observation period of 12 months post treatment. However, the average ERG amplitude levels differed between the two groups, suggesting a role of the absolute age, or possibly, the associated state of the degeneration, on the achievable outcome. In summary, we found that the therapeutic time window of opportunity for AAV-mediated Cnga3 gene supplementation therapy in the Cnga3 KO mouse model extends at least to an age of 3 months, but is presumably limited by the condition, number and topographical distribution of remaining cones at the time of treatment. No impact of the choice of capsid on the therapeutic success was detected.
Collapse
Affiliation(s)
- Regine Mühlfriedel
- Division of Ocular Neurodegeneration, Centre for Ophthalmology, Institute for Ophthalmic Research, Eberhard Karls-Universität TübingenTuebingen, Germany
| | - Naoyuki Tanimoto
- Division of Ocular Neurodegeneration, Centre for Ophthalmology, Institute for Ophthalmic Research, Eberhard Karls-Universität TübingenTuebingen, Germany
| | - Christian Schön
- Department of Pharmacy, Center for Drug Research, Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität MünchenMunich, Germany
| | - Vithiyanjali Sothilingam
- Division of Ocular Neurodegeneration, Centre for Ophthalmology, Institute for Ophthalmic Research, Eberhard Karls-Universität TübingenTuebingen, Germany
| | - Marina Garcia Garrido
- Division of Ocular Neurodegeneration, Centre for Ophthalmology, Institute for Ophthalmic Research, Eberhard Karls-Universität TübingenTuebingen, Germany
| | - Susanne C Beck
- Division of Ocular Neurodegeneration, Centre for Ophthalmology, Institute for Ophthalmic Research, Eberhard Karls-Universität TübingenTuebingen, Germany
| | - Gesine Huber
- Division of Ocular Neurodegeneration, Centre for Ophthalmology, Institute for Ophthalmic Research, Eberhard Karls-Universität TübingenTuebingen, Germany
| | - Martin Biel
- Department of Pharmacy, Center for Drug Research, Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität MünchenMunich, Germany
| | - Mathias W Seeliger
- Division of Ocular Neurodegeneration, Centre for Ophthalmology, Institute for Ophthalmic Research, Eberhard Karls-Universität TübingenTuebingen, Germany
| | - Stylianos Michalakis
- Department of Pharmacy, Center for Drug Research, Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität MünchenMunich, Germany
| |
Collapse
|