1
|
Jaramillo V, Hebron H, Wong S, Atzori G, Bartsch U, Dijk DJ, Violante IR. Closed-loop auditory stimulation targeting alpha and theta oscillations during rapid eye movement sleep induces phase-dependent power and frequency changes. Sleep 2024; 47:zsae193. [PMID: 39208441 DOI: 10.1093/sleep/zsae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
STUDY OBJECTIVES Alpha and theta oscillations characterize the waking human electroencephalogram (EEG) and can be modulated by closed-loop auditory stimulation (CLAS). These oscillations also occur during rapid eye movement (REM) sleep, but their function here remains elusive. CLAS represents a promising tool to pinpoint how these brain oscillations contribute to brain function in humans. Here we investigate whether CLAS can modulate alpha and theta oscillations during REM sleep in a phase-dependent manner. METHODS We recorded high-density EEG during an extended overnight sleep period in 18 healthy young adults. Auditory stimulation was delivered during both phasic and tonic REM sleep in alternating 6-second ON and 6-second OFF windows. During the ON windows, stimuli were phase-locked to four orthogonal phases of ongoing alpha or theta oscillations detected in a frontal electrode. RESULTS The phases of ongoing alpha and theta oscillations were targeted with high accuracy during REM sleep. Alpha and theta CLAS induced phase-dependent changes in power and frequency at the target location. Frequency-specific effects were observed for alpha trough (speeding up) and rising (slowing down) and theta trough (speeding up) conditions. CLAS-induced phase-dependent changes were observed during both REM sleep substages, even though auditory evoked potentials were very much reduced in phasic compared to tonic REM sleep. CONCLUSIONS This study provides evidence that faster REM sleep rhythms can be modulated by CLAS in a phase-dependent manner. This offers a new approach to investigating how modulation of REM sleep oscillations affects the contribution of this vigilance state to brain function.
Collapse
Affiliation(s)
- Valeria Jaramillo
- School of Psychology, University of Surrey, Guildford, UK
- Surrey Sleep Research Centre, University of Surrey, Guildford, UK
- UK Dementia Research Institute Centre for Care Research & Technology, Imperial College London, London and University of Surrey, Guildford, UK
| | - Henry Hebron
- School of Psychology, University of Surrey, Guildford, UK
- UK Dementia Research Institute Centre for Care Research & Technology, Imperial College London, London and University of Surrey, Guildford, UK
| | - Sara Wong
- UK Dementia Research Institute Centre for Care Research & Technology, Imperial College London, London and University of Surrey, Guildford, UK
- UK Dementia Research Institute at Imperial College London, London, UK
| | - Giuseppe Atzori
- Surrey Sleep Research Centre, University of Surrey, Guildford, UK
- UK Dementia Research Institute Centre for Care Research & Technology, Imperial College London, London and University of Surrey, Guildford, UK
| | - Ullrich Bartsch
- Surrey Sleep Research Centre, University of Surrey, Guildford, UK
- UK Dementia Research Institute Centre for Care Research & Technology, Imperial College London, London and University of Surrey, Guildford, UK
| | - Derk-Jan Dijk
- Surrey Sleep Research Centre, University of Surrey, Guildford, UK
- UK Dementia Research Institute Centre for Care Research & Technology, Imperial College London, London and University of Surrey, Guildford, UK
| | - Ines R Violante
- School of Psychology, University of Surrey, Guildford, UK
- UK Dementia Research Institute Centre for Care Research & Technology, Imperial College London, London and University of Surrey, Guildford, UK
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| |
Collapse
|
2
|
Carro-Domínguez M, Huwiler S, Stich FM, Sala R, Aziri F, Trippel A, Heimhofer C, Huber R, Meissner SN, Wenderoth N, Lustenberger C. Overnight changes in performance fatigability and their relationship to modulated deep sleep oscillations via auditory stimulation. J Sleep Res 2024:e14371. [PMID: 39420437 DOI: 10.1111/jsr.14371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024]
Abstract
Deep sleep oscillations are proposed to be central in restoring brain function and to affect different aspects of motor performance such as facilitating the consolidation of motor sequences resulting in faster and more accurate sequence tapping. Yet, whether deep sleep modulates performance fatigability during fatiguing tasks remains unexplored. We investigated overnight changes in tapping speed and resistance against performance fatigability via a finger tapping task. During fast tapping, fatigability manifests as a reduction in speed (or "motor slowing") which affects all tapping tasks, including motor sequences used to study motor memory formation. We further tested whether overnight changes in performance fatigability are influenced by enhancing deep sleep oscillations using auditory stimulation. We found an overnight increase in tapping speed alongside a reduction in performance fatigability and perceived workload. Auditory stimulation led to a global enhancement of slow waves and both slow and fast spindles during the stimulation window and a local increase in slow spindles in motor areas across the night. However, overnight performance improvements were not significantly modulated by auditory stimulation and changes in tapping speed or performance fatigability were not predicted by individual changes in deep sleep oscillations. Our findings demonstrate overnight changes in fatigability but revealed no evidence suggesting that this effect is causally linked to temporary augmentation of slow waves or sleep spindles. Our results are important for future studies using tapping tasks to test the relationship between sleep and motor memory consolidation, as overnight changes in objectively measured and subjectively perceived fatigue likely impact behavioural outcomes.
Collapse
Affiliation(s)
- Manuel Carro-Domínguez
- Neural Control of Movement Laboratory, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Stephanie Huwiler
- Neural Control of Movement Laboratory, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Fabia M Stich
- Neural Control of Movement Laboratory, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Rossella Sala
- Neural Control of Movement Laboratory, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Florent Aziri
- Neural Control of Movement Laboratory, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Anna Trippel
- Neural Control of Movement Laboratory, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Caroline Heimhofer
- Neural Control of Movement Laboratory, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Reto Huber
- Centre of Competence Sleep & Health Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Centre Zurich (ZNZ), University of Zurich, ETH Zurich, Zurich, Switzerland
- Child Development Centre, University Children's Hospital, University of Zurich, Zurich, Switzerland
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Sarah Nadine Meissner
- Neural Control of Movement Laboratory, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Nicole Wenderoth
- Neural Control of Movement Laboratory, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Centre Zurich (ZNZ), University of Zurich, ETH Zurich, Zurich, Switzerland
- Future Health Technologies, Singapore-ETH Center, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
| | - Caroline Lustenberger
- Neural Control of Movement Laboratory, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Centre of Competence Sleep & Health Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Centre Zurich (ZNZ), University of Zurich, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Mayeli A, Sanguineti C, Ferrarelli F. Recent Evidence of Non-Rapid Eye Movement Sleep Oscillation Abnormalities in Psychiatric Disorders. Curr Psychiatry Rep 2024:10.1007/s11920-024-01544-x. [PMID: 39400693 DOI: 10.1007/s11920-024-01544-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/20/2024] [Indexed: 10/15/2024]
Abstract
PURPOSE OF REVIEW We review recent studies published from 2019 to 2024 examining slow waves and sleep spindles abnormalities across neurodevelopmental, mood, trauma-related, and psychotic disorders using polysomnography and Electroencephalogram (EEG). RECENT FINDINGS Individuals with attention-deficit/hyperactivity disorder (ADHD) showed higher slow-spindle activity, while findings on slow-wave activity were mixed. Individuals with autism spectrum disorder (ASD) showed inconsistent results with some evidence of lower spindle chirp and slow-wave amplitude. Individuals with depression displayed lower slow-wave and spindle parameters mostly in medicated patients. Individuals with post-traumatic stress disorder (PTSD) showed higher spindle frequency and activity, which were associated with their clinical symptoms. Psychotic disorders demonstrated the most consistent alterations, with lower spindle density, amplitude, and duration across illness stages that correlated with patients' symptom severity and cognitive deficits, whereas lower slow-wave measures were present in the early phases of the disorders. Sleep spindle and slow-wave abnormalities are present across psychiatric populations, with the most consistent alterations observed in psychotic disorders. Larger studies with standardized methodologies and longitudinal assessments are needed to establish the potential of these oscillations as neurophysiological biomarkers and/or treatment targets.
Collapse
Affiliation(s)
- Ahmad Mayeli
- Department of Psychiatry, University of Pittsburgh, 3501 Forbes Ave, Suite 456, Pittsburgh, PA, 15213, USA
| | - Claudio Sanguineti
- Department of Psychiatry, University of Pittsburgh, 3501 Forbes Ave, Suite 456, Pittsburgh, PA, 15213, USA
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Fabio Ferrarelli
- Department of Psychiatry, University of Pittsburgh, 3501 Forbes Ave, Suite 456, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
4
|
Dias I, Kollarik S, Siegel M, Baumann CR, Moreira CG, Noain D. Novel murine closed-loop auditory stimulation paradigm elicits macrostructural sleep benefits in neurodegeneration. J Sleep Res 2024:e14316. [PMID: 39223830 DOI: 10.1111/jsr.14316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/05/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Boosting slow-wave activity (SWA) by modulating slow waves through closed-loop auditory stimulation (CLAS) might provide a powerful non-pharmacological tool to investigate the link between sleep and neurodegeneration. Here, we established mouse CLAS (mCLAS)-mediated SWA enhancement and explored its effects on sleep deficits in neurodegeneration, by targeting the up-phase of slow waves in mouse models of Alzheimer's disease (AD, Tg2576) and Parkinson's disease (PD, M83). We found that tracking a 2 Hz component of slow waves leads to highest precision of non-rapid eye movement (NREM) sleep detection in mice, and that its combination with a 30° up-phase target produces a significant 15-30% SWA increase from baseline in wild-type (WTAD) and transgenic (TGAD) mice versus a mock stimulation group. Conversely, combining 2 Hz with a 40° phase target yields a significant increase ranging 30-35% in WTPD and TGPD mice. Interestingly, these phase-target-triggered SWA increases are not genotype dependent but strain specific. Sleep alterations that may contribute to disease progression and burden were described in AD and PD lines. Notably, pathological sleep traits were rescued by mCLAS, which elicited a 14% decrease of pathologically heightened NREM sleep fragmentation in TGAD mice, accompanied by a steep decrease in microarousal events during both light and dark periods. Overall, our results indicate that model-tailored phase targeting is key to modulate SWA through mCLAS, prompting the acute alleviation of key neurodegeneration-associated sleep phenotypes and potentiating sleep regulation and consolidation. Further experiments assessing the long-term effect of mCLAS in neurodegeneration may majorly impact the establishment of sleep-based therapies.
Collapse
Affiliation(s)
- Inês Dias
- Department of Neurology, University Hospital Zurich (USZ), Schlieren, Switzerland
- Department of Health Sciences and Technology (D-HEST), ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich (UZH), Zurich, Switzerland
| | - Sedef Kollarik
- Department of Neurology, University Hospital Zurich (USZ), Schlieren, Switzerland
| | - Michelle Siegel
- Department of Neurology, University Hospital Zurich (USZ), Schlieren, Switzerland
| | - Christian R Baumann
- Department of Neurology, University Hospital Zurich (USZ), Schlieren, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich (UZH), Zurich, Switzerland
- Center of Competence Sleep and Health, University of Zurich (UZH), Zurich, Switzerland
| | - Carlos G Moreira
- Department of Neurology, University Hospital Zurich (USZ), Schlieren, Switzerland
| | - Daniela Noain
- Department of Neurology, University Hospital Zurich (USZ), Schlieren, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich (UZH), Zurich, Switzerland
- Center of Competence Sleep and Health, University of Zurich (UZH), Zurich, Switzerland
| |
Collapse
|
5
|
Swift KM, Gary NC, Urbanczyk PJ. On the basis of sex and sleep: the influence of the estrous cycle and sex on sleep-wake behavior. Front Neurosci 2024; 18:1426189. [PMID: 39268035 PMCID: PMC11390649 DOI: 10.3389/fnins.2024.1426189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
The recurrent hormonal fluctuations within reproductive cycles impact sleep-wake behavior in women and in rats and mice used in preclinical models of sleep research. Strides have been made in sleep-related clinical trials to include equal numbers of women; however, the inclusion of female rodents in neuroscience and sleep research is lacking. Female animals are commonly omitted from studies over concerns of the effect of estrus cycle hormones on measured outcomes. This review highlights the estrous cycle's broad effects on sleep-wake behavior: from changes in sleep macroarchitecture to regionally specific alterations in neural oscillations. These changes are largely driven by cycle-dependent ovarian hormonal fluctuations occurring during proestrus and estrus that modulate neural circuits regulating sleep-wake behavior. Removal of estrous cycle influence by ovariectomy ablates characteristic sleep changes. Further, sex differences in sleep are present between gonadally intact females and males. Removal of reproductive hormones via gonadectomy in both sexes mitigates some, but not all sex differences. We examine the extent to which reproductive hormones and sex chromosomes contribute to sex differences in sleep-wake behavior. Finally, this review addresses the limitations in our understanding of the estrous cycle's impact on sleep-wake behavior, gaps in female sleep research that are well studied in males, and the implications that ignoring the estrous cycle has on studies of sleep-related processes.
Collapse
Affiliation(s)
- Kevin M Swift
- Medical Readiness Systems Biology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Nicholas C Gary
- Medical Readiness Systems Biology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Phillip J Urbanczyk
- Medical Readiness Systems Biology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| |
Collapse
|
6
|
Leach S, Krugliakova E, Sousouri G, Snipes S, Skorucak J, Schühle S, Müller M, Ferster ML, Da Poian G, Karlen W, Huber R. Acoustically evoked K-complexes together with sleep spindles boost verbal declarative memory consolidation in healthy adults. Sci Rep 2024; 14:19184. [PMID: 39160150 PMCID: PMC11333484 DOI: 10.1038/s41598-024-67701-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 07/15/2024] [Indexed: 08/21/2024] Open
Abstract
Over the past decade, phase-targeted auditory stimulation (PTAS), a neuromodulation approach which presents auditory stimuli locked to the ongoing phase of slow waves during sleep, has shown potential to enhance specific aspects of sleep functions. However, the complexity of PTAS responses complicates the establishment of causality between specific electroencephalographic events and observed benefits. Here, we used down-PTAS during sleep to specifically evoke the early, K-complex (KC)-like response following PTAS without leading to a sustained increase in slow-wave activity throughout the stimulation window. Over the course of two nights, one with down-PTAS, the other without, high-density electroencephalography (hd-EEG) was recorded from 14 young healthy adults. The early response exhibited striking similarities to evoked KCs and was associated with improved verbal memory consolidation via stimulus-evoked spindle events nested into the up-phase of ongoing 1 Hz waves in a central region. These findings suggest that the early, KC-like response is sufficient to boost memory, potentially by orchestrating aspects of the hippocampal-neocortical dialogue.
Collapse
Affiliation(s)
- Sven Leach
- Child Development Centre and Children's Research Centre, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Elena Krugliakova
- Child Development Centre and Children's Research Centre, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Georgia Sousouri
- Child Development Centre and Children's Research Centre, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
- Mobile Health Systems Lab, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
- Institute of Pharmacology & Toxicology, University of Zurich, Zurich, Switzerland
| | - Sophia Snipes
- Child Development Centre and Children's Research Centre, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jelena Skorucak
- Child Development Centre and Children's Research Centre, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Selina Schühle
- Child Development Centre and Children's Research Centre, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Manuel Müller
- Child Development Centre and Children's Research Centre, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Maria Laura Ferster
- Mobile Health Systems Lab, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
| | - Giulia Da Poian
- Sensory-Motor Systems Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Walter Karlen
- Mobile Health Systems Lab, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
- Institute of Biomedical Engineering, Faculty of Engineering, Computer Science and Psychology, Ulm University, Ulm, Germany
| | - Reto Huber
- Child Development Centre and Children's Research Centre, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland.
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
7
|
Vaussenat F, Bhattacharya A, Boudreau P, Boivin DB, Gagnon G, Cloutier SG. Derivative Method to Detect Sleep and Awake States through Heart Rate Variability Analysis Using Machine Learning Algorithms. SENSORS (BASEL, SWITZERLAND) 2024; 24:4317. [PMID: 39001096 PMCID: PMC11243930 DOI: 10.3390/s24134317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024]
Abstract
Sleep disorders can have harmful consequences in both the short and long term. They can lead to attention deficits, as well as cardiac, neurological and behavioral repercussions. One of the most widely used methods for assessing sleep disorders is polysomnography (PSG). A major challenge associated with this method is all the cables needed to connect the recording devices, making the examination more intrusive and usually requiring a clinical environment. This can have potential consequences on the test results and their accuracy. One simple way to assess the state of the central nervous system (CNS), a well-known indicator of sleep disorder, could be the use of a portable medical device. With this in mind, we implemented a simple model using both the RR interval (RRI) and its second derivative to accurately predict the awake and napping states of a subject using a feature classification model. For training and validation, we used a database providing measurements from nine healthy young adults (six men and three women), in which heart rate variability (HRV) associated with light-on, light-off, sleep onset and sleep offset events. Results show that using a 30 min RRI time series window suffices for this lightweight model to accurately predict whether the patient was awake or napping.
Collapse
Affiliation(s)
- Fabrice Vaussenat
- Department of Electrical Engineering, École de Technologie Supérieure, Université du Québec, Montréal, QC H3C 1K3, Canada; (F.V.); (A.B.); (G.G.)
| | - Abhiroop Bhattacharya
- Department of Electrical Engineering, École de Technologie Supérieure, Université du Québec, Montréal, QC H3C 1K3, Canada; (F.V.); (A.B.); (G.G.)
| | - Philippe Boudreau
- Centre for Study and Treatment of Circadian Rhythms, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, QC H4H 1R3, Canada; (P.B.); (D.B.B.)
| | - Diane B. Boivin
- Centre for Study and Treatment of Circadian Rhythms, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, QC H4H 1R3, Canada; (P.B.); (D.B.B.)
| | - Ghyslain Gagnon
- Department of Electrical Engineering, École de Technologie Supérieure, Université du Québec, Montréal, QC H3C 1K3, Canada; (F.V.); (A.B.); (G.G.)
| | - Sylvain G. Cloutier
- Department of Electrical Engineering, École de Technologie Supérieure, Université du Québec, Montréal, QC H3C 1K3, Canada; (F.V.); (A.B.); (G.G.)
| |
Collapse
|
8
|
Pinto MJ, Bizien L, Fabre JM, Ðukanović N, Lepetz V, Henderson F, Pujol M, Sala RW, Tarpin T, Popa D, Triller A, Léna C, Fabre V, Bessis A. Microglial TNFα controls daily changes in synaptic GABAARs and sleep slow waves. J Cell Biol 2024; 223:e202401041. [PMID: 38695719 PMCID: PMC11070559 DOI: 10.1083/jcb.202401041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/18/2024] [Accepted: 03/28/2024] [Indexed: 05/08/2024] Open
Abstract
Microglia sense the changes in their environment. How microglia actively translate these changes into suitable cues to adapt brain physiology is unknown. We reveal an activity-dependent regulation of cortical inhibitory synapses by microglia, driven by purinergic signaling acting on P2RX7 and mediated by microglia-derived TNFα. We demonstrate that sleep induces microglia-dependent synaptic enrichment of GABAARs in a manner dependent on microglial TNFα and P2RX7. We further show that microglia-specific depletion of TNFα alters slow waves during NREM sleep and blunt memory consolidation in sleep-dependent learning tasks. Together, our results reveal that microglia orchestrate sleep-intrinsic plasticity of synaptic GABAARs, sculpt sleep slow waves, and support memory consolidation.
Collapse
Affiliation(s)
- Maria Joana Pinto
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Lucy Bizien
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Julie M.J. Fabre
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Nina Ðukanović
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Valentin Lepetz
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Fiona Henderson
- Neurosciences Paris Seine—Institut de Biologie Paris Seine (NPS—IBPS), CNRS, INSERM, Sorbonne Universités, Paris, France
| | - Marine Pujol
- Neurosciences Paris Seine—Institut de Biologie Paris Seine (NPS—IBPS), CNRS, INSERM, Sorbonne Universités, Paris, France
| | - Romain W. Sala
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Thibault Tarpin
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Daniela Popa
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Antoine Triller
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Clément Léna
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Véronique Fabre
- Neurosciences Paris Seine—Institut de Biologie Paris Seine (NPS—IBPS), CNRS, INSERM, Sorbonne Universités, Paris, France
| | - Alain Bessis
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
9
|
Krugliakova E, Karpovich A, Stieglitz L, Huwiler S, Lustenberger C, Imbach L, Bujan B, Jedrysiak P, Jacomet M, Baumann CR, Fattinger S. Exploring the local field potential signal from the subthalamic nucleus for phase-targeted auditory stimulation in Parkinson's disease. Brain Stimul 2024; 17:769-779. [PMID: 38906529 DOI: 10.1016/j.brs.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/26/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Enhancing slow waves, the electrophysiological (EEG) manifestation of non-rapid eye movement (NREM) sleep, could potentially benefit patients with Parkinson's disease (PD) by improving sleep quality and slowing disease progression. Phase-targeted auditory stimulation (PTAS) is an approach to enhance slow waves, which are detected in real-time in the surface EEG signal. OBJECTIVE We aimed to test whether the local-field potential of the subthalamic nucleus (STN-LFP) can be used to detect frontal slow waves and assess the electrophysiological changes related to PTAS. METHODS We recruited patients diagnosed with PD and undergoing Percept™ PC neurostimulator (Medtronic) implantation for deep brain stimulation of STN (STN-DBS) in a two-step surgery. Patients underwent three full-night recordings, including one between-surgeries recording and two during rehabilitation, one with DBS+ (on) and one with DBS- (off). Surface EEG and STN-LFP signals from Percept PC were recorded simultaneously, and PTAS was applied during sleep in all three recording sessions. RESULTS Our results show that during NREM sleep, slow waves of the cortex and STN are time-locked. PTAS application resulted in power and coherence changes, which can be detected in STN-LFP. CONCLUSION Our findings suggest the feasibility of implementing PTAS using solely STN-LFP signal for slow wave detection, thus without a need for an external EEG device alongside the implanted neurostimulator. Moreover, we propose options for more efficient STN-LFP signal preprocessing, including different referencing and filtering to enhance the reliability of cortical slow wave detection in STN-LFP recordings.
Collapse
Affiliation(s)
- Elena Krugliakova
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Artyom Karpovich
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Lennart Stieglitz
- Department of Neurosurgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Stephanie Huwiler
- Neural Control of Movement Lab, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Caroline Lustenberger
- Neural Control of Movement Lab, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Lukas Imbach
- Swiss Epilepsy Center, Clinic Lengg, Zurich, Switzerland
| | - Bartosz Bujan
- Neurorehabilitation, Clinic Lengg, Zurich, Switzerland
| | | | - Maria Jacomet
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Christian R Baumann
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Sara Fattinger
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
10
|
Park DH, Choi H, Nam K, Lee SH, Seo MY. Prognostic Factors Related to Sleep Quality in Patients With Obstructive Sleep Apnea After Positive Airway Pressure Therapy. JOURNAL OF RHINOLOGY 2024; 31:86-92. [PMID: 39664408 PMCID: PMC11566537 DOI: 10.18787/jr.2024.00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/14/2024] [Accepted: 06/24/2024] [Indexed: 12/13/2024] Open
Abstract
Background and Objectives This study aimed to evaluate the factors that influence deep sleep restoration in patients with obstructive sleep apnea (OSA) following positive airway pressure (PAP) therapy. Methods In total, 363 patients diagnosed with OSA who received PAP therapy over at least 3 months were enrolled in the study. Polysomnographic parameters, anatomical characteristics, and subjective sleep-related parameters were evaluated according to the presence of daytime sleepiness and morning headache before and after 3 months of PAP treatment. Results Age was significantly different according to whether excessive daytime sleepiness (EDS) was alleviated (average: 49.35 years) or persisted (average: 52.82 years) (p=0.001). Age was also significantly associated with morning headache (p=0.037). Body mass index (BMI) was higher in the alleviated EDS group (28.70 kg/m2) than in the persistent EDS group (27.13 kg/m2; p=0.002). The apnea-hypopnea index (AHI) was correlated with the EDS outcome (p=0.011). The group with alleviated EDS had a longer mandibular plane to hyoid distance (MPH) than the group with persistent EDS (17.95 mm vs. 15.38 mm; p<0.001). However, BMI, AHI, and MPH showed no significant associations with morning headache. Epworth Sleepiness Scale scores were higher in the alleviated EDS and alleviated morning headache groups (EDS: p<0.001, morning headache: p=0.001). Self-Efficacy Measure for Sleep Apnea (SEMSA) values differed significantly between the EDS groups (p<0.001), but not between the morning headache groups (p=0.122). After 3 months of PAP therapy, the MPH was negatively correlated with EDS in univariate (odds ratio [OR]=0.921, p<0.001) and multivariate analyses (OR=0.937, p=0.028). The SEMSA score was also negatively correlated with EDS in univariate (OR=0.961, p<0.001) and multivariate (OR=0.973, p=0.019) analyses. Conclusion Age, polysomnographic metrics, and anatomical considerations were important for sleep quality-associated daytime symptoms. In addition, anatomical characteristics and the patient's self-efficacy were significantly associated with the effect of PAP treatment on sleep quality.
Collapse
Affiliation(s)
- Dong Heun Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea
| | - Hangseok Choi
- Medical Science Research Center, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Kukjin Nam
- Department of Otorhinolaryngology-Head and Neck Surgery, Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea
| | - Seung Hoon Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea
| | - Min Young Seo
- Department of Otorhinolaryngology-Head and Neck Surgery, Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea
| |
Collapse
|
11
|
Sharon O, Ben Simon E, Shah VD, Desel T, Walker MP. The new science of sleep: From cells to large-scale societies. PLoS Biol 2024; 22:e3002684. [PMID: 38976664 PMCID: PMC11230563 DOI: 10.1371/journal.pbio.3002684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
In the past 20 years, more remarkable revelations about sleep and its varied functions have arguably been made than in the previous 200. Building on this swell of recent findings, this essay provides a broad sampling of selected research highlights across genetic, molecular, cellular, and physiological systems within the body, networks within the brain, and large-scale social dynamics. Based on this raft of exciting new discoveries, we have come to realize that sleep, in this moment of its evolution, is very much polyfunctional (rather than monofunctional), yet polyfunctional for reasons we had never previously considered. Moreover, these new polyfunctional insights powerfully reaffirm sleep as a critical biological, and thus health-sustaining, requisite. Indeed, perhaps the only thing more impressive than the unanticipated nature of these newly emerging sleep functions is their striking divergence, from operations of molecular mechanisms inside cells to entire group societal dynamics.
Collapse
Affiliation(s)
- Omer Sharon
- Department of Psychology, University of California, Berkeley, California, United States of America
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
| | - Eti Ben Simon
- Department of Psychology, University of California, Berkeley, California, United States of America
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
| | - Vyoma D. Shah
- Department of Psychology, University of California, Berkeley, California, United States of America
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
| | - Tenzin Desel
- Department of Psychology, University of California, Berkeley, California, United States of America
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
| | - Matthew P. Walker
- Department of Psychology, University of California, Berkeley, California, United States of America
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
| |
Collapse
|
12
|
Bugnon T, Mayner WGP, Cirelli C, Tononi G. Sleep and wake in a model of the thalamocortical system with Martinotti cells. Eur J Neurosci 2024; 59:703-736. [PMID: 36215116 PMCID: PMC10083195 DOI: 10.1111/ejn.15836] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 08/26/2022] [Accepted: 10/05/2022] [Indexed: 12/14/2022]
Abstract
The mechanisms leading to the alternation between active (UP) and silent (DOWN) states during sleep slow waves (SWs) remain poorly understood. Previous models have explained the transition to the DOWN state by a progressive failure of excitation because of the build-up of adaptation currents or synaptic depression. However, these models are at odds with recent studies suggesting a role for presynaptic inhibition by Martinotti cells (MaCs) in generating SWs. Here, we update a classical large-scale model of sleep SWs to include MaCs and propose a different mechanism for the generation of SWs. In the wake mode, the network exhibits irregular and selective activity with low firing rates (FRs). Following an increase in the strength of background inputs and a modulation of synaptic strength and potassium leak potential mimicking the reduced effect of acetylcholine during sleep, the network enters a sleep-like regime in which local increases of network activity trigger bursts of MaC activity, resulting in strong disfacilitation of the local network via presynaptic GABAB1a -type inhibition. This model replicates findings on slow wave activity (SWA) during sleep that challenge previous models, including low and skewed FRs that are comparable between the wake and sleep modes, higher synchrony of transitions to DOWN states than to UP states, the possibility of triggering SWs by optogenetic stimulation of MaCs, and the local dependence of SWA on synaptic strength. Overall, this work points to a role for presynaptic inhibition by MaCs in the generation of DOWN states during sleep.
Collapse
Affiliation(s)
- Tom Bugnon
- Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Blvd, Madison, WI 53719 USA
- Neuroscience Training Program, University of Wisconsin, Madison
| | - William G. P. Mayner
- Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Blvd, Madison, WI 53719 USA
- Neuroscience Training Program, University of Wisconsin, Madison
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Blvd, Madison, WI 53719 USA
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Blvd, Madison, WI 53719 USA
| |
Collapse
|
13
|
Krone LB, Fehér KD, Rivero T, Omlin X. Brain stimulation techniques as novel treatment options for insomnia: A systematic review. J Sleep Res 2023; 32:e13927. [PMID: 37202368 PMCID: PMC10909439 DOI: 10.1111/jsr.13927] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/20/2023]
Abstract
Despite the success of cognitive behavioural therapy for insomnia and recent advances in pharmacotherapy, many patients with insomnia do not sufficiently respond to available treatments. This systematic review aims to present the state of science regarding the use of brain stimulation approaches in treating insomnia. To this end, we searched MEDLINE, Embase and PsycINFO from inception to 24 March 2023. We evaluated studies that compared conditions of active stimulation with a control condition or group. Outcome measures included standardized insomnia questionnaires and/or polysomnography in adults with a clinical diagnosis of insomnia. Our search identified 17 controlled trials that met inclusion criteria, and assessed a total of 967 participants using repetitive transcranial magnetic stimulation, transcranial electric stimulation, transcutaneous auricular vagus nerve stimulation or forehead cooling. No trials using other techniques such as deep brain stimulation, vestibular stimulation or auditory stimulation met the inclusion criteria. While several studies report improvements of subjective and objective sleep parameters for different repetitive transcranial magnetic stimulation and transcranial electric stimulation protocols, important methodological limitations and risk of bias limit their interpretability. A forehead cooling study found no significant group differences in the primary endpoints, but better sleep initiation in the active condition. Two transcutaneous auricular vagus nerve stimulation trials found no superiority of active stimulation for most outcome measures. Although modulating sleep through brain stimulation appears feasible, gaps in the prevailing models of sleep physiology and insomnia pathophysiology remain to be filled. Optimized stimulation protocols and proof of superiority over reliable sham conditions are indispensable before brain stimulation becomes a viable treatment option for insomnia.
Collapse
Affiliation(s)
- Lukas B. Krone
- University Hospital of Psychiatry and PsychotherapyUniversity of BernBernSwitzerland
- Centre for Experimental NeurologyUniversity of BernBernSwitzerland
- Department of Physiology Anatomy and Genetics, Sir Jules Thorn Sleep and Circadian Neuroscience InstituteUniversity of OxfordOxfordUK
- The Kavli Institute for Nanoscience DiscoveryUniversity of OxfordOxfordUK
| | - Kristoffer D. Fehér
- University Hospital of Psychiatry and PsychotherapyUniversity of BernBernSwitzerland
- Geneva University Hospitals (HUG), Division of Psychiatric SpecialtiesUniversity of GenevaGenevaSwitzerland
| | - Tania Rivero
- Medical LibraryUniversity Library of Bern, University of BernBernSwitzerland
| | - Ximena Omlin
- University Hospital of Psychiatry and PsychotherapyUniversity of BernBernSwitzerland
- Geneva University Hospitals (HUG), Division of Psychiatric SpecialtiesUniversity of GenevaGenevaSwitzerland
| |
Collapse
|
14
|
Ayotte B, Cristini J, Lotlikar M, Parwanta Z, Cossette P, Gasparovic L, Yee-Wong M, He QY, Doyon J, Dal Maso F, Carrier J, Steib S, Robertson EM, Roig M. Does Cardiorespiratory Fitness Protect Memory from Sleep Deprivation? Med Sci Sports Exerc 2023; 55:1632-1640. [PMID: 37379255 DOI: 10.1249/mss.0000000000003200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
INTRODUCTION Animal studies have demonstrated that physical exercise can protect memory from the effects of sleep deprivation (SD). We examined whether having a high cardiorespiratory fitness (V̇O 2peak ) is associated with an enhanced capacity to encode episodic memory after one night of SD. METHODS Twenty-nine healthy young participants were allocated into either an SD group ( n = 19) that underwent 30 h of uninterrupted wakefulness, or a sleep control (SC) group ( n = 10) that followed a regular sleep routine. Following either the SD or SC period, participants were asked to view 150 images as the encoding part of the episodic memory task. Ninety-six hours after viewing the images, participants returned to the laboratory to perform the recognition part of the episodic memory task, which required the visual discrimination of the 150 images previously presented from 75 new images introduced as distractors. Cardiorespiratory fitness (V̇O 2peak ) was assessed with a bike ergometer graded exercise test. Group differences in memory performance were assessed with independent t tests and associations between V̇O 2peak and memory with multiple linear regression. RESULTS The SD group showed a significant increase in subjective fatigue (mean difference [MD] [standard error {SE}] = 38.94 [8.82]; P = 0.0001) and a worse capacity to identify the original 150 images (MD [SE] = -0.18 [0.06]; P = 0.005) and discriminate them from distractors (MD [SE] = -0.78 [0.21] P = 0.001). When adjusted for fatigue, higher V̇O 2peak was significantly associated with better memory scores in the SD (R 2 = 0.41; β [SE] = 0.03 [0.01]; P = 0.015) but not in the SC group ( R2 = 0.23; β [SE] = 0.02 [0.03]; P = 0.408). CONCLUSIONS These results confirm that SD before encoding impairs the capacity to create robust episodic memories and provide preliminary support to the hypothesis that maintaining high levels of cardiorespiratory fitness could have a protective effect against the disruptive effects of sleep loss on memory.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Julien Doyon
- Montreal Neurological Institute, McConnell Brain Imaging Centre, Department of Neurology & Neurosurgery, McGill University, Montreal, Quebec, CANADA
| | | | - Julie Carrier
- Department of Psychology, Université de Montréal, Montréal, Québec, CANADA
| | - Simon Steib
- Human Movement, Training and Active Aging Department, Institute of Sports and Sports Science, Heidelberg University, Heidelberg, GERMANY
| | - Edwin M Robertson
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UNITED KINGDOM
| | | |
Collapse
|
15
|
Skorucak J, Bölsterli BK, Storz S, Leach S, Schmitt B, Ramantani G, Huber R. Automated analysis of a large-scale paediatric dataset illustrates the interdependent relationship between epilepsy and sleep. Sci Rep 2023; 13:12882. [PMID: 37553387 PMCID: PMC10409812 DOI: 10.1038/s41598-023-39984-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/03/2023] [Indexed: 08/10/2023] Open
Abstract
Slow waves are an electrophysiological characteristic of non-rapid eye movement sleep and a marker of the restorative function of sleep. In certain pathological conditions, such as different types of epilepsy, slow-wave sleep is affected by epileptiform discharges forming so-called "spike-waves". Previous evidence shows that the overnight change in slope of slow waves during sleep is impaired under these conditions. However, these past studies were performed in a small number of patients, considering only short segments of the recording night. Here, we screened a clinical data set of 39'179 pediatric EEG recordings acquired in the past 25 years (1994-2019) at the University Children's Hospital Zurich and identified 413 recordings of interest. We applied an automated approach based on machine learning to investigate the relationship between sleep and epileptic spikes in this large-scale data set. Our findings show that the overnight change in the slope of slow waves was correlated with the spike-wave index, indicating that the impairment of the net reduction in synaptic strength during sleep is spike dependent.
Collapse
Affiliation(s)
- Jelena Skorucak
- Child Development Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Bigna K Bölsterli
- Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Pediatric Neurology, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Pediatric Neurology, Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
| | - Sarah Storz
- Child Development Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Pediatric Neurology, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Sven Leach
- Child Development Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Bernhard Schmitt
- Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Pediatric Neurology, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Georgia Ramantani
- Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Pediatric Neurology, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Reto Huber
- Child Development Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland.
- Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland.
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
16
|
Das D, Choy E. Non-inflammatory pain in inflammatory arthritis. Rheumatology (Oxford) 2023; 62:2360-2365. [PMID: 36478185 PMCID: PMC10321089 DOI: 10.1093/rheumatology/keac671] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/19/2022] [Indexed: 07/20/2023] Open
Abstract
'Non-inflammatory' pain, pain that is not associated with measures of inflammation, is common in patients with inflammatory arthritis including RA. One important cause of non-inflammatory pain is concomitant fibromyalgia. Systematic review has shown that fibromyalgia is common in inflammatory arthritis including RA affecting 1 in 5 patients and is associated with higher disease activity scores due to inflated tender joint count and patient global assessment. Consequently, many patients with RA and concomitant fibromyalgia may fail to reach treatment target and switch to alternate disease modifying drugs frequently. European Alliance of Association for Rheumatology has highlighted that concomitant fibromyalgia is an important consideration in assessing difficult-to-treat RA. The incidence and prevalence of fibromyalgia are higher in RA than the general population, raising the possibility that fibromyalgia may be 'secondary' to RA rather than a concomitant disease. The precise mechanisms whereby patients with RA develop fibromyalgia are unknown. In this review, we discussed fibromyalgia in RA, its clinical impact and epidemiology as well as data suggesting fibromyalgia might be 'secondary'. Lastly, we reviewed potential pathogenic mechanisms which included inflammatory cytokines sensitizing nociceptive neurones, temporal summation, also known as windup, from chronic pain and impaired coping from poor quality sleep and mental well-being. Deciphering the exact mechanisms may lead to treatment strategies that prevent development of secondary fibromyalgia and will address a common factor associated with difficult-to-treat RA.
Collapse
Affiliation(s)
- Dhivya Das
- Consultant Rheumatologist, Northern Care Alliance NHS Foundation Trust, University School of Medicine (Formerly with Cardiff), Cardiff, UK
| | - Ernest Choy
- CREATE Centre, Section of Rheumatology, Division of Infection and Immunity, Cardiff University, Cardiff, UK
| |
Collapse
|
17
|
Maciel FV, Wendt AT, Demenech LM, Dumith SC. Factors associated with sleep quality in university students. CIENCIA & SAUDE COLETIVA 2023; 28:1187-1198. [PMID: 37042899 DOI: 10.1590/1413-81232023284.14132022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/30/2022] [Indexed: 04/13/2023] Open
Abstract
To investigate factors associated with poor sleep quality. A cross-sectional study was conducted in 2019 with random sampling. Information on sleep was obtained using the Mini Sleep Questionnaire (MSQ). Independent variables included sociodemographic, behavioural, academic and psychological health characteristics. Adjusted analyzes were performed using Poisson regression. A total of 996 undergraduate students participated in the study. The poor sleep quality affected 23.1% of the sample (95%CI 20.5-25.9), ranging from 13.4% for those with little concern about violence in the neighbourhood to 36.5% for those with less social support. In the adjusted analysis, female sex [PR] 1.81; (95%CI 1.33-2.45), concern about violence in the neighbourhood [PR] 2.21; (95%CI 1.48-3.28), discrimination at university [PR] 1.42; (95%CI 1.08-1.86) and food insecurity [PR] 1.45; (95%CI 1.11-1.89) were associated with the presence of poor sleep quality, as well as having less social support and income and suffering psychological distress. The results highlight socioeconomic and mental health factors that affect sleep quality and demonstrate the need for reflection and interventions capable of minimizing this problem.
Collapse
Affiliation(s)
- Francine Villela Maciel
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande. R. Visconde de Paranaguá 102, Centro. 96200-190 Rio Grande RS Brasil.
| | - Andrea Tuchtenhagen Wendt
- Programa de Pós-Graduação em Tecnologia em Saúde, Pontifícia Universidade Católica do Paraná. Curitiba PR Brasil
| | - Lauro Miranda Demenech
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande. R. Visconde de Paranaguá 102, Centro. 96200-190 Rio Grande RS Brasil.
| | - Samuel Carvalho Dumith
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande. R. Visconde de Paranaguá 102, Centro. 96200-190 Rio Grande RS Brasil.
| |
Collapse
|
18
|
Bacaro V, Carpentier L, Crocetti E. Sleep Well, Study Well: A Systematic Review of Longitudinal Studies on the Interplay between Sleep and School Experience in Adolescence. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4829. [PMID: 36981738 PMCID: PMC10049641 DOI: 10.3390/ijerph20064829] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Adolescents spend most of their daily time in school and performing school-related activities. Different aspects of their school experiences, such as school performance, psychological factors related to school, and structural factors, consistently impact adolescents' health and are likely to be intertwined with their sleep (i.e., quantity and quality, sleep disturbances). This systematic review aimed to comprehensively summarize the reciprocal and longitudinal associations between adolescents' sleep and multiple aspects of their school experience. Using multiple search strategies and applying a two-step selection process, 25 journal articles matched the eligibility criteria and were thus included in the review. The results highlighted the contribution of poor sleep quality and sleep disturbances in predicting longitudinal school experiences-related outcomes (i.e., decreasing school engagement and performance, and increasing school-related burnout, absenteeism, and bullying). At the same time, the results showed how experiences related to the school's psychological factors (e.g., high levels of school burnout and stressful environment) and structural characteristics (e.g., early school entrance time) affect youth sleep over time (i.e., decreasing sleep quality and quantity). These main findings provided novel insights into the bidirectional relationship between school experience and sleep health, highlighting the importance of more longitudinal research investigating all aspects of healthy sleep, including the size and direction of the association.
Collapse
Affiliation(s)
- Valeria Bacaro
- Department of Psychology “Renzo Canestrari”, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
| | - Liesbeth Carpentier
- Faculty of Psychology and Educational Sciences, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Elisabetta Crocetti
- Department of Psychology “Renzo Canestrari”, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
| |
Collapse
|
19
|
Creswell JD, Tumminia MJ, Price S, Sefidgar Y, Cohen S, Ren Y, Brown J, Dey AK, Dutcher JM, Villalba D, Mankoff J, Xu X, Creswell K, Doryab A, Mattingly S, Striegel A, Hachen D, Martinez G, Lovett MC. Nightly sleep duration predicts grade point average in the first year of college. Proc Natl Acad Sci U S A 2023; 120:e2209123120. [PMID: 36780521 PMCID: PMC9974458 DOI: 10.1073/pnas.2209123120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 01/09/2023] [Indexed: 02/15/2023] Open
Abstract
Academic achievement in the first year of college is critical for setting students on a pathway toward long-term academic and life success, yet little is known about the factors that shape early college academic achievement. Given the important role sleep plays in learning and memory, here we extend this work to evaluate whether nightly sleep duration predicts change in end-of-semester grade point average (GPA). First-year college students from three independent universities provided sleep actigraphy for a month early in their winter/spring academic term across five studies. Findings showed that greater early-term total nightly sleep duration predicted higher end-of-term GPA, an effect that persisted even after controlling for previous-term GPA and daytime sleep. Specifically, every additional hour of average nightly sleep duration early in the semester was associated with an 0.07 increase in end-of-term GPA. Sensitivity analyses using sleep thresholds also indicated that sleeping less than 6 h each night was a period where sleep shifted from helpful to harmful for end-of-term GPA, relative to previous-term GPA. Notably, predictive relationships with GPA were specific to total nightly sleep duration, and not other markers of sleep, such as the midpoint of a student's nightly sleep window or bedtime timing variability. These findings across five studies establish nightly sleep duration as an important factor in academic success and highlight the potential value of testing early academic term total sleep time interventions during the formative first year of college.
Collapse
Affiliation(s)
- J. David Creswell
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA15213
| | | | - Stephen Price
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA15213
| | - Yasaman Sefidgar
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA98195
| | - Sheldon Cohen
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA15213
| | - Yiyi Ren
- The Information School, University of Washington, Seattle, WA98105
| | - Jennifer Brown
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA98195
| | - Anind K. Dey
- The Information School, University of Washington, Seattle, WA98105
| | - Janine M. Dutcher
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA15213
| | - Daniella Villalba
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA15213
| | - Jennifer Mankoff
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA98195
| | - Xuhai Xu
- The Information School, University of Washington, Seattle, WA98105
| | - Kasey Creswell
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA15213
| | - Afsaneh Doryab
- School of Engineering and Applied Science, University of Virginia, Charlottesville, VA22904
| | - Stephen Mattingly
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN46556
| | - Aaron Striegel
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN46556
| | - David Hachen
- Department of Sociology, University of Notre Dame, Notre Dame, IN46556
| | - Gonzalo Martinez
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN46556
| | - Marsha C. Lovett
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA15213
| |
Collapse
|
20
|
Tan Z, de Rojas J, Martins S, Lopeandia A, Quintana A, Cialone M, Herrero-Martín J, Meersschaut J, Vantomme A, Costa-Krämer JL, Sort J, Menéndez E. Frequency-dependent stimulated and post-stimulated voltage control of magnetism in transition metal nitrides: towards brain-inspired magneto-ionics. MATERIALS HORIZONS 2023; 10:88-96. [PMID: 36305823 PMCID: PMC9810105 DOI: 10.1039/d2mh01087a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Magneto-ionics, which deals with the change of magnetic properties through voltage-driven ion migration, is expected to be one of the emerging technologies to develop energy-efficient spintronics. While a precise modulation of magnetism is achieved when voltage is applied, much more uncontrolled is the spontaneous evolution of magneto-ionic systems upon removing the electric stimuli (i.e., post-stimulated behavior). Here, we demonstrate a voltage-controllable N ion accumulation effect at the outer surface of CoN films adjacent to a liquid electrolyte, which allows for the control of magneto-ionic properties both during and after voltage pulse actuation (i.e., stimulated and post-stimulated behavior, respectively). This effect, which takes place when the CoN film thickness is below 50 nm and the voltage pulse frequency is at least 100 Hz, is based on the trade-off between generation (voltage ON) and partial depletion (voltage OFF) of ferromagnetism in CoN by magneto-ionics. This novel effect may open opportunities for new neuromorphic computing functions, such as post-stimulated neural learning under deep sleep.
Collapse
Affiliation(s)
- Zhengwei Tan
- Departament de Física, Universitat Autònoma de Barcelona, E-08193 Cerdanyola del Vallès, Spain.
| | - Julius de Rojas
- Departament de Física, Universitat Autònoma de Barcelona, E-08193 Cerdanyola del Vallès, Spain.
| | - Sofia Martins
- Departament de Física, Universitat Autònoma de Barcelona, E-08193 Cerdanyola del Vallès, Spain.
| | - Aitor Lopeandia
- Departament de Física, Universitat Autònoma de Barcelona, E-08193 Cerdanyola del Vallès, Spain.
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Cerdanyola del Vallès, E-08193 Barcelona, Spain
| | - Alberto Quintana
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra, E-08193 Barcelona, Spain
| | - Matteo Cialone
- CNR-SPIN Genova, Corso F. M. Perrone 24, 16152 Genova, Italy
| | | | | | - André Vantomme
- Quantum Solid State Physics, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| | - José L Costa-Krämer
- IMN-Instituto de Micro y Nanotecnología (CNM-CSIC), Isaac Newton 8, PTM, 28760 Tres Cantos, Madrid, Spain
| | - Jordi Sort
- Departament de Física, Universitat Autònoma de Barcelona, E-08193 Cerdanyola del Vallès, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, E-08010 Barcelona, Spain
| | - Enric Menéndez
- Departament de Física, Universitat Autònoma de Barcelona, E-08193 Cerdanyola del Vallès, Spain.
| |
Collapse
|
21
|
Wang Y, Minami Y, Ode KL, Ueda HR. The role of calcium and CaMKII in sleep. Front Syst Neurosci 2022; 16:1059421. [PMID: 36618010 PMCID: PMC9815122 DOI: 10.3389/fnsys.2022.1059421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Sleep is an evolutionarily conserved phenotype shared by most of the animals on the planet. Prolonged wakefulness will result in increased sleep need or sleep pressure. However, its mechanisms remain elusive. Recent findings indicate that Ca2+ signaling, known to control diverse physiological functions, also regulates sleep. This review intends to summarize research advances in Ca2+ and Ca2+/calmodulin-dependent protein kinase II (CaMKII) in sleep regulation. Significant changes in sleep phenotype have been observed through calcium-related channels, receptors, and pumps. Mathematical modeling for neuronal firing patterns during NREM sleep suggests that these molecules compose a Ca2+-dependent hyperpolarization mechanism. The intracellular Ca2+ may then trigger sleep induction and maintenance through the activation of CaMKII, one of the sleep-promoting kinases. CaMKII and its multisite phosphorylation status may provide a link between transient calcium dynamics typically observed in neurons and sleep-wake dynamics observed on the long-time scale.
Collapse
Affiliation(s)
- Yuyang Wang
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoichi Minami
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Koji L. Ode
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroki R. Ueda
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan,Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Suita, Japan,*Correspondence: Hiroki R. Ueda,
| |
Collapse
|
22
|
Enhancement of motor skill acquisition by intermittent theta burst stimulation: a pilot study. Acta Neurol Belg 2022:10.1007/s13760-022-02155-0. [DOI: 10.1007/s13760-022-02155-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022]
|
23
|
Ruch S, Schmidig FJ, Knüsel L, Henke K. Closed-loop modulation of local slow oscillations in human NREM sleep. Neuroimage 2022; 264:119682. [PMID: 36240988 DOI: 10.1016/j.neuroimage.2022.119682] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022] Open
Abstract
Slow-wave sleep is the deep non-rapid eye-movement (NREM) sleep stage that is most relevant for the recuperative function of sleep. Its defining property is the presence of slow oscillations (<2 Hz) in the scalp electroencephalogram (EEG). Slow oscillations are generated by a synchronous back and forth between highly active UP-states and silent DOWN-states in neocortical neurons. Growing evidence suggests that closed-loop sensory stimulation targeted at UP-states of EEG-defined slow oscillations can enhance the slow oscillatory activity, increase sleep depth, and boost sleep's recuperative functions. However, several studies failed to replicate such findings. Failed replications might be due to the use of conventional closed-loop stimulation algorithms that analyze the signal from one single electrode and thereby neglect the fact that slow oscillations vary with respect to their origins, distributions, and trajectories on the scalp. In particular, conventional algorithms nonspecifically target functionally heterogeneous UP-states of distinct origins. After all, slow oscillations at distinct sites of the scalp have been associated with distinct functions. Here we present a novel EEG-based closed-loop stimulation algorithm that allows targeting UP- and DOWN-states of distinct cerebral origins based on topographic analyses of the EEG: the topographic targeting of slow oscillations (TOPOSO) algorithm. We present evidence that the TOPOSO algorithm can detect and target local slow oscillations with specific, predefined voltage maps on the scalp in real-time. When compared to a more conventional, single-channel-based approach, TOPOSO leads to fewer but locally more specific stimulations in a simulation study. In a validation study with napping participants, TOPOSO targets auditory stimulation reliably at local UP-states over frontal, sensorimotor, and centro-parietal regions. Importantly, auditory stimulation temporarily enhanced the targeted local state. However, stimulation then elicited a standard frontal slow oscillation rather than local slow oscillations. The TOPOSO algorithm is suitable for the modulation and the study of the functions of local slow oscillations.
Collapse
Affiliation(s)
- Simon Ruch
- Institute for Neuromodulation and Neurotechnology, Department of Neurosurgery and Neurotechnology, University Hospital and University of Tuebingen, Otfried-Müller-Str. 45, Tübingen 72076, Germany; Cognitive Neuroscience of Memory and Consciousness, Institute of Psychology, University of Bern, Fabrikstrasse 8, 3012 Bern, Switzerland.
| | - Flavio Jean Schmidig
- Cognitive Neuroscience of Memory and Consciousness, Institute of Psychology, University of Bern, Fabrikstrasse 8, 3012 Bern, Switzerland
| | - Leona Knüsel
- Cognitive Neuroscience of Memory and Consciousness, Institute of Psychology, University of Bern, Fabrikstrasse 8, 3012 Bern, Switzerland
| | - Katharina Henke
- Cognitive Neuroscience of Memory and Consciousness, Institute of Psychology, University of Bern, Fabrikstrasse 8, 3012 Bern, Switzerland
| |
Collapse
|
24
|
Moreira CG, Hofmann P, Müllner A, Baumann CR, Ginde VR, Kollarik S, Morawska MM, Noain D. Down-phase auditory stimulation is not able to counteract pharmacologically or physiologically increased sleep depth in traumatic brain injury rats. J Sleep Res 2022; 31:e13615. [PMID: 35474362 PMCID: PMC9786351 DOI: 10.1111/jsr.13615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 12/30/2022]
Abstract
Modulation of slow-wave activity, either via pharmacological sleep induction by administering sodium oxybate or sleep restriction followed by a strong dissipation of sleep pressure, has been associated with preserved posttraumatic cognition and reduced diffuse axonal injury in traumatic brain injury rats. Although these classical strategies provided promising preclinical results, they lacked the specificity and/or translatability needed to move forward into clinical applications. Therefore, we recently developed and implemented a rodent auditory stimulation method that is a scalable, less invasive and clinically meaningful approach to modulate slow-wave activity by targeting a particular phase of slow waves. Here, we assessed the feasibility of down-phase targeted auditory stimulation of slow waves and evaluated its comparative modulatory strength in relation to the previously employed slow-wave activity modulators in our rat model of traumatic brain injury. Our results indicate that, in spite of effectively reducing slow-wave activity in both healthy and traumatic brain injury rats via down-phase targeted stimulation, this method was not sufficiently strong to counteract the boost in slow-wave activity associated with classical modulators, nor to alter concomitant posttraumatic outcomes. Therefore, the usefulness and effectiveness of auditory stimulation as potential standalone therapeutic strategy in the context of traumatic brain injury warrants further exploration.
Collapse
Affiliation(s)
- Carlos G. Moreira
- Department of NeurologyUniversity Hospital Zurich, University of ZurichZurichSwitzerland
| | - Pascal Hofmann
- Department of NeurologyUniversity Hospital Zurich, University of ZurichZurichSwitzerland
| | - Adrian Müllner
- Department of NeurologyUniversity Hospital Zurich, University of ZurichZurichSwitzerland
| | - Christian R. Baumann
- Department of NeurologyUniversity Hospital Zurich, University of ZurichZurichSwitzerland,University Center of Competence Sleep & Health Zurich (CRPP)University of ZurichZurichSwitzerland,Neuroscience Center Zurich (ZNZ)ZurichSwitzerland
| | - Varun R. Ginde
- Department of NeurologyUniversity Hospital Zurich, University of ZurichZurichSwitzerland
| | - Sedef Kollarik
- Department of NeurologyUniversity Hospital Zurich, University of ZurichZurichSwitzerland
| | - Marta M. Morawska
- Department of NeurologyUniversity Hospital Zurich, University of ZurichZurichSwitzerland
| | - Daniela Noain
- Department of NeurologyUniversity Hospital Zurich, University of ZurichZurichSwitzerland,University Center of Competence Sleep & Health Zurich (CRPP)University of ZurichZurichSwitzerland,Neuroscience Center Zurich (ZNZ)ZurichSwitzerland
| |
Collapse
|
25
|
Slow-oscillatory tACS does not modulate human motor cortical response to repeated plasticity paradigms. Exp Brain Res 2022; 240:2965-2979. [PMID: 36173425 PMCID: PMC9587974 DOI: 10.1007/s00221-022-06462-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/05/2022] [Indexed: 11/10/2022]
Abstract
Previous history of activity and learning modulates synaptic plasticity and can lead to saturation of synaptic connections. According to the synaptic homeostasis hypothesis, neural oscillations during slow-wave sleep play an important role in restoring plasticity within a functional range. However, it is not known whether slow-wave oscillations—without the concomitant requirement of sleep—play a causal role in human synaptic homeostasis. Here, we aimed to answer this question using transcranial alternating current stimulation (tACS) to induce slow-oscillatory activity in awake human participants. tACS was interleaved between two plasticity-inducing interventions: motor learning, and paired associative stimulation (PAS). The hypothesis tested was that slow-oscillatory tACS would prevent homeostatic interference between motor learning and PAS, and facilitate plasticity from these successive interventions. Thirty-six participants received sham and active fronto-motor tACS in two separate sessions, along with electroencephalography (EEG) recordings, while a further 38 participants received tACS through a control montage. Motor evoked potentials (MEPs) were recorded throughout the session to quantify plasticity changes after the different interventions, and the data were analysed with Bayesian statistics. As expected, there was converging evidence that motor training led to excitatory plasticity. Importantly, we found moderate evidence against an effect of active tACS in restoring PAS plasticity, and no evidence of lasting entrainment of slow oscillations in the EEG. This suggests that, under the conditions tested here, slow-oscillatory tACS does not modulate synaptic homeostasis in the motor system of awake humans.
Collapse
|
26
|
Smart Memory Storage Solution and Elderly Oriented Smart Equipment Design under Deep Learning. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:6448302. [PMID: 35586089 PMCID: PMC9110148 DOI: 10.1155/2022/6448302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/26/2022] [Indexed: 11/18/2022]
Abstract
This study explores the memory characteristics of elderly individuals to design effective smart devices based on smart memory storage solutions under deep learning to improve the learning efficiency of elderly individuals. The different memory formation stages in the existing human brain are analysed. A smart memory storage solution based on memory-enhanced embedded learning is constructed based on meta-learning under deep learning, which reduces the cost of learning new tasks to the greatest extent. Finally, the performance of the proposed solution is verified using different datasets. The results reveal that the solution based on deep learning has obvious effects on different datasets, with an average accuracy rate of 99.7%. By synthesizing a large number of target sample features, this solution can lower the learning difficulty and improve the learning effect. The proposed elderly oriented smart device effectively reduces the shortcomings in the current market and lowers the learning difficulty, which provides an important reference for further enriching devices in the ageing market.
Collapse
|
27
|
Cha K. A Longitudinal Approach to the Relationships Among Sleep, Behavioral Adjustment, and Maternal Depression in Preschoolers. Front Psychol 2022; 13:819657. [PMID: 35496247 PMCID: PMC9043319 DOI: 10.3389/fpsyg.2022.819657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/15/2022] [Indexed: 12/04/2022] Open
Abstract
This study aimed to investigate the longitudinal associations between children’s sleep duration (SD) and problems (SPs), behavioral adjustment [externalizing behaviors (EB) and internalizing behaviors (IB)], and maternal depressive symptoms (MDS) in preschoolers over a period of 3 years (4–6 years of age). For this purpose, latent growth modeling (LGM) was conducted using 2012(W5) to 2014(W7) data from the National Panel Study on Korean Children (PSKC), while controlling for family contextual factors (i.e., responsive parenting, developmental stimulations, and marital conflict) and child temperament (children’s negative emotionality). First, children who slept longer at four were concurrently associated with lower levels of EB, while more SPs were associated with higher levels of EB and IB, concurrently. Second, greater decreases in SPs were associated with greater decline in EB and IB. Higher levels of MDS at four were associated with higher levels of child EB, IB, and SPs, concurrently. However, no longitudinal associations were found between the rates of change in MDS and children’s sleep and adjustment (EB and IB). Finally, the magnitude of the associations among the variables was greater overall in the SPs models than in the SD models. These findings suggest that addressing sleep problems, rather than sleep duration, seem to be more important in predicting and preventing young children’s adjustment problems and also that more attention should be paid to MDS during preschool years as much as during the postpartum period for better child adjustment outcomes.
Collapse
Affiliation(s)
- Kijoo Cha
- Department of Early Childhood Education, Gachon University, Seongnam, South Korea
| |
Collapse
|
28
|
Trudel SM, Winter EL, Fitzmaurice B, Norman G, Bray CR. Integration of physical health and sensory processing assessment for children with autism spectrum disorder in schools. PSYCHOLOGY IN THE SCHOOLS 2022. [DOI: 10.1002/pits.22704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Sierra M. Trudel
- Department of School Psychology University of Connecticut Storrs Connecticut USA
| | - Emily L. Winter
- Department of School Psychology University of Connecticut Storrs Connecticut USA
| | - Brenna Fitzmaurice
- Department of School Psychology University of Connecticut Storrs Connecticut USA
| | - Gina Norman
- Department of School Psychology University of Connecticut Storrs Connecticut USA
| | - Clark R. Bray
- Department of Mechanical Engineering University of Connecticut Storrs Connecticut USA
| |
Collapse
|
29
|
Cui J, Huang Z, Wu J. Automatic Detection of the Cyclic Alternating Pattern of Sleep and Diagnosis of Sleep-Related Pathologies Based on Cardiopulmonary Resonance Indices. SENSORS (BASEL, SWITZERLAND) 2022; 22:2225. [PMID: 35336396 PMCID: PMC8952285 DOI: 10.3390/s22062225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 05/23/2023]
Abstract
The cyclic alternating pattern is the periodic electroencephalogram activity occurring during non-rapid eye movement sleep. It is a marker of sleep instability and is correlated with several sleep-related pathologies. Considering the connection between the human heart and brain, our study explores the feasibility of using cardiopulmonary features to automatically detect the cyclic alternating pattern of sleep and hence diagnose sleep-related pathologies. By statistically analyzing and comparing the cardiopulmonary characteristics of a healthy group and groups with sleep-related diseases, an automatic recognition scheme of the cyclic alternating pattern is proposed based on the cardiopulmonary resonance indices. Using the Hidden Markov and Random Forest, the scheme combines the variation and stability of measurements of the coupling state of the cardiopulmonary system during sleep. In this research, the F1 score of the sleep-wake classification reaches 92.0%. In terms of the cyclic alternating pattern, the average recognition rate of A-phase reaches 84.7% on the CAP Sleep Database of 108 cases of people. The F1 score of disease diagnosis is 87.8% for insomnia and 90.0% for narcolepsy.
Collapse
Affiliation(s)
- Jiajia Cui
- University of Chinese Academy of Sciences, Beijing 101408, China;
| | - Zhipei Huang
- University of Chinese Academy of Sciences, Beijing 101408, China;
| | - Jiankang Wu
- CAS Institute of Healthcare Technologies, Nanjing 210046, China;
| |
Collapse
|
30
|
Ferster ML, Da Poian G, Menachery K, Schreiner SJ, Lustenberger C, Maric A, Huber R, Baumann CR, Karlen W. Benchmarking real-time algorithms for in-phase auditory stimulation of low amplitude slow waves with wearable EEG devices during sleep. IEEE Trans Biomed Eng 2022; 69:2916-2925. [PMID: 35259094 DOI: 10.1109/tbme.2022.3157468] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Auditory stimulation of EEG slow waves (SW) during non-rapid eye movement (NREM) sleep has shown to improve cognitive function when it is delivered at the up-phase of SW. SW enhancement is particularly desirable in subjects with low-amplitude SW such as older adults or patients suffering from neurodegeneration such as Parkinson disease (PD). However, existing algorithms to estimate the up-phase suffer from a poor phase accuracy at low EEG amplitudes and when SW frequencies are not constant. We introduce two novel algorithms for real-time EEG phase estimation on autonomous wearable devices. The algorithms were based on a phase-locked loop (PLL) and, for the first time, a phase vocoder (PV). We compared these phase tracking algorithms with a simple amplitude threshold approach. The optimized algorithms were benchmarked for phase accuracy, the capacity to estimate phase at SW amplitudes between 20 and 60 V, and SW frequencies above 1 Hz on 324 recordings from healthy older adults and PD patients. Furthermore, the algorithms were implemented on a wearable device and the computational efficiency and the performance was evaluated on simulated sleep EEG, as well as prospectively during a recording with a PD patient. All three algorithms delivered more than 70% of the stimulation triggers during the SW up-phase. The PV showed the highest capacity on targeting low-amplitude SW and SW with frequencies above 1 Hz. The testing on real-time hardware revealed that both PV and PLL have marginal impact on microcontroller load, while the efficiency of the PV was 4% lower than the PLL. Active auditory stimulation did not influence the phase tracking. This work demonstrated that phase-accurate auditory stimulation can be delivered during home-based sleep interventions with a wearable device also in populations with low-amplitude SW.
Collapse
|
31
|
DiNuzzo M, Mangia S, Giove F. Manipulations of sleep‐like slow‐wave activity by noninvasive brain stimulation. J Neurosci Res 2022; 100:1218-1225. [DOI: 10.1002/jnr.25029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 01/18/2022] [Accepted: 01/29/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Mauro DiNuzzo
- Magnetic Resonance for Brain Investigation Laboratory Museo Storico della Fisica e Centro di Studi e Ricerche Enrico Fermi Rome Italy
| | - Silvia Mangia
- Center for Magnetic Resonance Research, Department of Radiology University of Minnesota Minneapolis Minnesota USA
| | - Federico Giove
- Magnetic Resonance for Brain Investigation Laboratory Museo Storico della Fisica e Centro di Studi e Ricerche Enrico Fermi Rome Italy
- Laboratory of Neurophysics and Neuroimaging Fondazione Santa Lucia IRCCS Rome Italy
| |
Collapse
|
32
|
Ma R, Xia X, Zhang W, Lu Z, Wu Q, Cui J, Song H, Fan C, Chen X, Zha R, Wei J, Ji GJ, Wang X, Qiu B, Zhang X. High Gamma and Beta Temporal Interference Stimulation in the Human Motor Cortex Improves Motor Functions. Front Neurosci 2022; 15:800436. [PMID: 35046771 PMCID: PMC8761631 DOI: 10.3389/fnins.2021.800436] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Temporal interference (TI) stimulation is a new technique of non-invasive brain stimulation. Envelope-modulated waveforms with two high-frequency carriers can activate neurons in target brain regions without stimulating the overlying cortex, which has been validated in mouse brains. However, whether TI stimulation can work on the human brain has not been elucidated. Objective: To assess the effectiveness of the envelope-modulated waveform of TI stimulation on the human primary motor cortex (M1). Methods: Participants attended three sessions of 30-min TI stimulation during a random reaction time task (RRTT) or a serial reaction time task (SRTT). Motor cortex excitability was measured before and after TI stimulation. Results: In the RRTT experiment, only 70 Hz TI stimulation had a promoting effect on the reaction time (RT) performance and excitability of the motor cortex compared to sham stimulation. Meanwhile, compared with the sham condition, only 20 Hz TI stimulation significantly facilitated motor learning in the SRTT experiment, which was significantly positively correlated with the increase in motor evoked potential. Conclusion: These results indicate that the envelope-modulated waveform of TI stimulation has a significant promoting effect on human motor functions, experimentally suggesting the effectiveness of TI stimulation in humans for the first time and paving the way for further explorations.
Collapse
Affiliation(s)
- Ru Ma
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Science and Medicine, Department of Radiology, The First Affiliated Hospital of USTC, School of Life Science, University of Science and Technology of China, Hefei, China
| | - Xinzhao Xia
- Centers for Biomedical Engineering, School of Information Science and Technology, University of Science and Technology of China, Hefei, China
| | - Wei Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Science and Medicine, Department of Radiology, The First Affiliated Hospital of USTC, School of Life Science, University of Science and Technology of China, Hefei, China
| | - Zhuo Lu
- Centers for Biomedical Engineering, School of Information Science and Technology, University of Science and Technology of China, Hefei, China
| | - Qianying Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Science and Medicine, Department of Radiology, The First Affiliated Hospital of USTC, School of Life Science, University of Science and Technology of China, Hefei, China.,Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, United States
| | - Jiangtian Cui
- Centers for Biomedical Engineering, School of Information Science and Technology, University of Science and Technology of China, Hefei, China.,School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | - Hongwen Song
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Science and Medicine, Department of Radiology, The First Affiliated Hospital of USTC, School of Life Science, University of Science and Technology of China, Hefei, China
| | - Chuan Fan
- Centers for Biomedical Engineering, School of Information Science and Technology, University of Science and Technology of China, Hefei, China
| | - Xueli Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Science and Medicine, Department of Radiology, The First Affiliated Hospital of USTC, School of Life Science, University of Science and Technology of China, Hefei, China
| | - Rujing Zha
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Science and Medicine, Department of Radiology, The First Affiliated Hospital of USTC, School of Life Science, University of Science and Technology of China, Hefei, China
| | - Junjie Wei
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Gong-Jun Ji
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaoxiao Wang
- Centers for Biomedical Engineering, School of Information Science and Technology, University of Science and Technology of China, Hefei, China
| | - Bensheng Qiu
- Centers for Biomedical Engineering, School of Information Science and Technology, University of Science and Technology of China, Hefei, China
| | - Xiaochu Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Science and Medicine, Department of Radiology, The First Affiliated Hospital of USTC, School of Life Science, University of Science and Technology of China, Hefei, China.,Centers for Biomedical Engineering, School of Information Science and Technology, University of Science and Technology of China, Hefei, China.,Department of Psychology, School of Humanities and Social Science, University of Science and Technology of China, Hefei, China.,Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| |
Collapse
|
33
|
Avvenuti G, Bernardi G. Local sleep: A new concept in brain plasticity. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:35-52. [PMID: 35034748 DOI: 10.1016/b978-0-12-819410-2.00003-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Traditionally, sleep and wakefulness have been considered as two global, mutually exclusive states. However, this view has been challenged by the discovery that sleep and wakefulness are actually locally regulated and that islands of these two states may often coexist in the same individual. Importantly, such a local regulation seems to be the key for many essential functions of sleep, including the maintenance of cognitive efficiency and the consolidation of new skills and memories. Indeed, local changes in sleep-related oscillations occur in brain areas that are used and involved in learning during wakefulness. In turn, these changes directly modulate experience-dependent brain adaptations and the consolidation of newly acquired memories. In line with these observations, alterations in the regional balance between wake- and sleep-like activity have been shown to accompany many pathologic conditions, including psychiatric and neurologic disorders. In the last decade, experimental research has started to shed light on the mechanisms involved in the local regulation of sleep and wakefulness. The results of this research have opened new avenues of investigation regarding the function of sleep and have revealed novel potential targets for the treatment of several pathologic conditions.
Collapse
Affiliation(s)
- Giulia Avvenuti
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Giulio Bernardi
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Lucca, Italy.
| |
Collapse
|
34
|
Schoch SF, Castro-Mejía JL, Krych L, Leng B, Kot W, Kohler M, Huber R, Rogler G, Biedermann L, Walser JC, Nielsen DS, Kurth S. From Alpha Diversity to Zzz: Interactions among sleep, the brain, and gut microbiota in the first year of life. Prog Neurobiol 2021; 209:102208. [PMID: 34923049 DOI: 10.1016/j.pneurobio.2021.102208] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/04/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022]
Abstract
Sleep disorders have been linked to alterations of gut microbiota composition in adult humans and animal models, but it is unclear how this link develops. With longitudinal assessments in 162 healthy infants, we present a so far unrecognized sleep-brain-gut interrelationship. First, we report a link between sleep habits and gut microbiota: daytime sleep is associated with bacterial diversity, and nighttime sleep fragmentation and variability link with bacterial maturity and enterotype. Second, we demonstrate a sleep-brain-gut link: bacterial diversity and enterotype are associated with sleep neurophysiology. Third, we show that the sleep-brain-gut link is relevant in development: sleep habits and bacterial markers predict behavioral-developmental outcomes. Our results demonstrate the dynamic interplay between sleep, gut microbiota, and the maturation of brain and behavior during infancy, which aligns with the lately emerging concept of a sleep-brain-gut axis. Importantly, sleep and gut microbiota represent promising health targets since both can be modified non-invasively. As many adult diseases root in early childhood, leveraging protective factors of adequate sleep and age-appropriate gut microbiota in infancy could constitute a health promoting factor across the entire human lifespan.
Collapse
Affiliation(s)
- S F Schoch
- Department of PulmonOlogy, University Hospital Zurich, Zurich, Switzerland; Center of Competence Sleep & Health Zurich, University of Zurich, Zurich, Switzerland
| | | | - L Krych
- Department of Food Science, University of Copenhagen, Denmark
| | - B Leng
- Department of Food Science, University of Copenhagen, Denmark
| | - W Kot
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
| | - M Kohler
- Department of PulmonOlogy, University Hospital Zurich, Zurich, Switzerland; Center of Competence Sleep & Health Zurich, University of Zurich, Zurich, Switzerland
| | - R Huber
- Center of Competence Sleep & Health Zurich, University of Zurich, Zurich, Switzerland; Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland; Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Switzerland
| | - G Rogler
- Department for Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - L Biedermann
- Department for Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - J C Walser
- Genetic Diversity Center, ETH Zurich, Zurich, Switzerland
| | - D S Nielsen
- Department of Food Science, University of Copenhagen, Denmark
| | - S Kurth
- Department of PulmonOlogy, University Hospital Zurich, Zurich, Switzerland; Center of Competence Sleep & Health Zurich, University of Zurich, Zurich, Switzerland; Department of Psychology, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
35
|
Li L, Hu L, Liu K, Chang KC, Zhang R, Lin X, Zhang S, Huang P, Liu HJ, Kuo TP. Bifunctional homologous alkali-metal artificial synapse with regenerative ability and mechanism imitation of voltage-gated ion channels. MATERIALS HORIZONS 2021; 8:3072-3081. [PMID: 34724525 DOI: 10.1039/d1mh01012c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As a key component responsible for information processing in the brain, the development of a bionic synapse possessing digital and analog bifunctionality is vital for the hardware implementation of a neuro-system. Here, inspired by the key role of sodium and potassium in synaptic transmission, the alkali metal element lithium (Li) belonging to the same family is adopted in designing a bifunctional artificial synapse. The incorporation of Li endows the electronic devices with versatile synaptic functions. An artificial neural network based on experimental data exhibits a high performance approaching near-ideal accuracy. In addition, the regenerative ability allows synaptic functional recovery through low-frequency stimuli to be emulated, facilitating the prevention of permanent damage due to intensive neural activities and ensuring the long-term stability of the entire neural system. What is more striking for an Li-based bionic synapse is that it can not only emulate a biological synapse at a behavioral level but realize mechanism emulation based on artificial voltage-gated "ion channels". Concurrent digital and analog features lead to versatile synaptic functions in Li-doped artificial synapses, which operate in a mode similar to the human brain with its two hemispheres excelling at processing imaginative and analytical information, respectively.
Collapse
Affiliation(s)
- Lei Li
- School of Electronic and Computer Engineering, Peking University, Shenzhen Graduate School, Shenzhen 518055, China.
| | - Luodan Hu
- School of Electronic and Computer Engineering, Peking University, Shenzhen Graduate School, Shenzhen 518055, China.
| | - Kai Liu
- School of Electronic and Computer Engineering, Peking University, Shenzhen Graduate School, Shenzhen 518055, China.
| | - Kuan-Chang Chang
- School of Electronic and Computer Engineering, Peking University, Shenzhen Graduate School, Shenzhen 518055, China.
| | - Rui Zhang
- School of Electronic and Computer Engineering, Peking University, Shenzhen Graduate School, Shenzhen 518055, China.
| | - Xinnan Lin
- School of Electronic and Computer Engineering, Peking University, Shenzhen Graduate School, Shenzhen 518055, China.
| | - Shengdong Zhang
- School of Electronic and Computer Engineering, Peking University, Shenzhen Graduate School, Shenzhen 518055, China.
| | - Pei Huang
- School of Electronic and Computer Engineering, Peking University, Shenzhen Graduate School, Shenzhen 518055, China.
| | - Heng-Jui Liu
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung 40227, Taiwan
| | - Tzu-Peng Kuo
- Department of Physics, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Institute of Materials and Optoelectronics, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| |
Collapse
|
36
|
Roig M, Cristini J, Parwanta Z, Ayotte B, Rodrigues L, de Las Heras B, Nepveu JF, Huber R, Carrier J, Steib S, Youngstedt SD, Wright DL. Exercising the Sleepy-ing Brain: Exercise, Sleep, and Sleep Loss on Memory. Exerc Sport Sci Rev 2021; 50:38-48. [PMID: 34669627 DOI: 10.1249/jes.0000000000000273] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT We examine the novel hypothesis that physical exercise and sleep have synergistic effects on memory. Exercise can trigger mechanisms that can create an optimal brain state during sleep to facilitate memory processing. The possibility that exercise could counteract the deleterious effects of sleep deprivation on memory by protecting neuroplasticity is also discussed.
Collapse
Affiliation(s)
- Marc Roig
- Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Montreal Center for Interdisciplinary Research in Rehabilitation, Laval, Canada. School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montréal, Canada. Integrative Program of Neuroscience, McGill University, Montréal, Canada. Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland. Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland. Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland. Department of Psychology, Université de Montréal, Montréal, Québec, Canada. Human Movement, Training and Active Aging Department, Institute of Sports and Sports Science, Heidelberg University, Germany. College of Nursing and Health Innovation and College of Health Solutions, Arizona State University, Phoenix, USA. Non-Invasive Brain Stimulation Laboratory, Department of Kinesiology, Texas A&M University, College Station, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Moreira CG, Baumann CR, Scandella M, Nemirovsky SI, Leach S, Huber R, Noain D. Closed-loop auditory stimulation method to modulate sleep slow waves and motor learning performance in rats. eLife 2021; 10:e68043. [PMID: 34612204 PMCID: PMC8530509 DOI: 10.7554/elife.68043] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 09/29/2021] [Indexed: 12/26/2022] Open
Abstract
Slow waves and cognitive output have been modulated in humans by phase-targeted auditory stimulation. However, to advance its technical development and further our understanding, implementation of the method in animal models is indispensable. Here, we report the successful employment of slow waves' phase-targeted closed-loop auditory stimulation (CLAS) in rats. To validate this new tool both conceptually and functionally, we tested the effects of up- and down-phase CLAS on proportions and spectral characteristics of sleep, and on learning performance in the single-pellet reaching task, respectively. Without affecting 24 hr sleep-wake behavior, CLAS specifically altered delta (slow waves) and sigma (sleep spindles) power persistently over chronic periods of stimulation. While up-phase CLAS does not elicit a significant change in behavioral performance, down-phase CLAS exerted a detrimental effect on overall engagement and success rate in the behavioral test. Overall CLAS-dependent spectral changes were positively correlated with learning performance. Altogether, our results provide proof-of-principle evidence that phase-targeted CLAS of slow waves in rodents is efficient, safe, and stable over chronic experimental periods, enabling the use of this high-specificity tool for basic and preclinical translational sleep research.
Collapse
Affiliation(s)
- Carlos G Moreira
- Department of Neurology, University Hospital Zurich, University of ZurichZurichSwitzerland
| | - Christian R Baumann
- Department of Neurology, University Hospital Zurich, University of ZurichZurichSwitzerland
- University Center of Competence Sleep & Health Zurich (CRPP), University of ZurichZurichSwitzerland
- Neuroscience Center Zurich (ZNZ)ZurichSwitzerland
| | - Maurizio Scandella
- Department of Neurology, University Hospital Zurich, University of ZurichZurichSwitzerland
| | - Sergio I Nemirovsky
- Institute of Biological Chemistry, School of Exact and Natural Sciences (IQUIBICEN). CONICET – University of Buenos AiresBuenos AiresArgentina
| | - Sven Leach
- Child Development Center, University Children’s Hospital Zurich, University of ZurichZurichSwitzerland
| | - Reto Huber
- University Center of Competence Sleep & Health Zurich (CRPP), University of ZurichZurichSwitzerland
- Neuroscience Center Zurich (ZNZ)ZurichSwitzerland
- Child Development Center, University Children’s Hospital Zurich, University of ZurichZurichSwitzerland
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of ZurichZurichSwitzerland
| | - Daniela Noain
- Department of Neurology, University Hospital Zurich, University of ZurichZurichSwitzerland
- University Center of Competence Sleep & Health Zurich (CRPP), University of ZurichZurichSwitzerland
- Neuroscience Center Zurich (ZNZ)ZurichSwitzerland
| |
Collapse
|
38
|
Sousouri G, Krugliakova E, Skorucak J, Leach S, Snipes S, Ferster ML, Da Poian G, Karlen W, Huber R. Neuromodulation by means of phase-locked auditory stimulation affects key marker of excitability and connectivity during sleep. Sleep 2021; 45:6347149. [PMID: 34373925 DOI: 10.1093/sleep/zsab204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/15/2021] [Indexed: 11/12/2022] Open
Abstract
The propagating pattern of sleep slow waves (high-amplitude oscillations < 4.5 Hz) serves as a blueprint of cortical excitability and brain connectivity. Phase-locked auditory stimulation is a promising tool for the modulation of ongoing brain activity during sleep; however, its underlying mechanisms remain unknown. Here, eighteen healthy young adults were measured with high-density electroencephalography (hd-EEG) in three experimental conditions; one with no stimulation, one with up- and one with down-phase stimulation; ten participants were included in the analysis. We show that up-phase auditory stimulation on a right prefrontal area locally enhances cortical involvement and promotes traveling by increasing the propagating distance and duration of targeted small-amplitude waves. On the contrary, down-phase stimulation proves more efficient at perturbing large-amplitude waves and interferes with ongoing traveling by disengaging cortical regions and interrupting high synchronicity in the target area as indicated by increased traveling speed. These results point out to different underlying mechanisms mediating the effects of up- and down-phase stimulation and highlight the strength of traveling analysis as a sensitive and informative method for the study of connectivity and cortical excitability alterations.
Collapse
Affiliation(s)
- Georgia Sousouri
- Child Development Centre and Children's Research Centre, University Children's Hospital Zürich, University of Zurich, Zurich, Switzerland
- Mobile Health Systems Lab, Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Elena Krugliakova
- Child Development Centre and Children's Research Centre, University Children's Hospital Zürich, University of Zurich, Zurich, Switzerland
| | - Jelena Skorucak
- Child Development Centre and Children's Research Centre, University Children's Hospital Zürich, University of Zurich, Zurich, Switzerland
| | - Sven Leach
- Child Development Centre and Children's Research Centre, University Children's Hospital Zürich, University of Zurich, Zurich, Switzerland
| | - Sophia Snipes
- Child Development Centre and Children's Research Centre, University Children's Hospital Zürich, University of Zurich, Zurich, Switzerland
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Maria Laura Ferster
- Mobile Health Systems Lab, Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Giulia Da Poian
- Mobile Health Systems Lab, Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Walter Karlen
- Mobile Health Systems Lab, Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Reto Huber
- Child Development Centre and Children's Research Centre, University Children's Hospital Zürich, University of Zurich, Zurich, Switzerland
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zürich, Zurich, Switzerland
| |
Collapse
|
39
|
Torres FA, Orio P, Escobar MJ. Selection of stimulus parameters for enhancing slow wave sleep events with a neural-field theory thalamocortical model. PLoS Comput Biol 2021; 17:e1008758. [PMID: 34329289 PMCID: PMC8357165 DOI: 10.1371/journal.pcbi.1008758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 08/11/2021] [Accepted: 05/28/2021] [Indexed: 11/30/2022] Open
Abstract
Slow-wave sleep cortical brain activity, conformed by slow-oscillations and sleep spindles, plays a key role in memory consolidation. The increase of the power of the slow-wave events, obtained by auditory sensory stimulation, positively correlates with memory consolidation performance. However, little is known about the experimental protocol maximizing this effect, which could be induced by the power of slow-oscillation, the number of sleep spindles, or the timing of both events' co-occurrence. Using a mean-field model of thalamocortical activity, we studied the effect of several stimulation protocols, varying the pulse shape, duration, amplitude, and frequency, as well as a target-phase using a closed-loop approach. We evaluated the effect of these parameters on slow-oscillations (SO) and sleep-spindles (SP), considering: (i) the power at the frequency bands of interest, (ii) the number of SO and SP, (iii) co-occurrences between SO and SP, and (iv) synchronization of SP with the up-peak of the SO. The first three targets are maximized using a decreasing ramp pulse with a pulse duration of 50 ms. Also, we observed a reduction in the number of SO when increasing the stimulus energy by rising its amplitude. To assess the target-phase parameter, we applied closed-loop stimulation at 0°, 45°, and 90° of the phase of the narrow-band filtered ongoing activity, at 0.85 Hz as central frequency. The 0° stimulation produces better results in the power and number of SO and SP than the rhythmic or random stimulation. On the other hand, stimulating at 45° or 90° change the timing distribution of spindles centers but with fewer co-occurrences than rhythmic and 0° phase. Finally, we propose the application of closed-loop stimulation at the rising zero-cross point using pulses with a decreasing ramp shape and 50 ms of duration for future experimental work.
Collapse
Affiliation(s)
- Felipe A. Torres
- Department of Electronic Engineering, Universidad Técnica Federico Santa María, Valparaíso, Chile
- Advanced Center for Electrical and Electronic Engineering (AC3E), Valparaíso, Chile
| | - Patricio Orio
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Advanced Center for Electrical and Electronic Engineering (AC3E), Valparaíso, Chile
| | - María-José Escobar
- Department of Electronic Engineering, Universidad Técnica Federico Santa María, Valparaíso, Chile
| |
Collapse
|
40
|
Nelson AB, Ricci S, Tatti E, Panday P, Girau E, Lin J, Thomson BO, Chen H, Marshall W, Tononi G, Cirelli C, Ghilardi MF. Neural fatigue due to intensive learning is reversed by a nap but not by quiet waking. Sleep 2021; 44:5880034. [PMID: 32745192 DOI: 10.1093/sleep/zsaa143] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/01/2020] [Indexed: 11/13/2022] Open
Abstract
Do brain circuits become fatigued due to intensive neural activity or plasticity? Is sleep necessary for recovery? Well-rested subjects trained extensively in a visuo-motor rotation learning task (ROT) or a visuo-motor task without rotation learning (MOT), followed by sleep or quiet wake. High-density electroencephalography showed that ROT training led to broad increases in EEG power over a frontal cluster of electrodes, with peaks in the theta (mean ± SE: 24% ± 6%, p = 0.0013) and beta ranges (10% ± 3%, p = 0.01). These traces persisted in the spontaneous EEG (sEEG) between sessions (theta: 42% ± 8%, p = 0.0001; beta: 35% ± 7%, p = 0.002) and were accompanied by increased errors in a motor test with kinematic characteristics and neural substrates similar to ROT (81.8% ± 0.8% vs. 68.2% ± 2.3%; two-tailed paired t-test: p = 0.00001; Cohen's d = 1.58), as well as by score increases of subjective task-specific fatigue (4.00 ± 0.39 vs. 5.36 ± 0.39; p = 0.0007; Cohen's d = 0.60). Intensive practice with MOT did not affect theta sEEG or the motor test. A nap, but not quiet wake, induced a local sEEG decrease of theta power by 33% (SE: 8%, p = 0.02), renormalized test performance (70.9% ± 2.9% vs 79.1% ± 2.7%, p = 0.018, Cohen's d = 0.85), and improved learning ability in ROT (adaptation rate: 71.2 ± 1.2 vs. 73.4 ± 0.9, p = 0.024; Cohen's d = 0.60). Thus, sleep is necessary to restore plasticity-induced fatigue and performance.
Collapse
Affiliation(s)
- Aaron B Nelson
- CUNY School of Medicine, Department of Physiology, Pharmacology & Neuroscience, New York, New York
| | - Serena Ricci
- CUNY School of Medicine, Department of Physiology, Pharmacology & Neuroscience, New York, New York.,DIBRIS, Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi, University of Genova, Genova, Italy
| | - Elisa Tatti
- CUNY School of Medicine, Department of Physiology, Pharmacology & Neuroscience, New York, New York
| | - Priya Panday
- CUNY School of Medicine, Department of Physiology, Pharmacology & Neuroscience, New York, New York
| | - Elisa Girau
- CUNY School of Medicine, Department of Physiology, Pharmacology & Neuroscience, New York, New York
| | - Jing Lin
- CUNY School of Medicine, Department of Physiology, Pharmacology & Neuroscience, New York, New York
| | - Brittany O Thomson
- CUNY School of Medicine, Department of Physiology, Pharmacology & Neuroscience, New York, New York
| | - Henry Chen
- CUNY School of Medicine, Department of Physiology, Pharmacology & Neuroscience, New York, New York
| | - William Marshall
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Mathematics and Statistics, Brock University, St. Catharines, ON, Canada
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin
| | - M Felice Ghilardi
- CUNY School of Medicine, Department of Physiology, Pharmacology & Neuroscience, New York, New York
| |
Collapse
|
41
|
El-Khatib H, Sanchez E, Arbour C, Van Der Maren S, Duclos C, Blais H, Carrier J, Simonelli G, Hendryckx C, Paquet J, Gosselin N. Slow wave activity moderates the association between new learning and traumatic brain injury severity. Sleep 2021; 44:zsaa242. [PMID: 33211874 PMCID: PMC8033458 DOI: 10.1093/sleep/zsaa242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/16/2020] [Indexed: 11/13/2022] Open
Abstract
STUDY OBJECTIVES Sleep-wake complaints and difficulties in making new learning are among the most persistent and challenging long-term sequelea following moderate to severe traumatic brain injury (TBI). Yet, it is unclear whether, and to what extent, sleep characteristics during the chronic stage of TBI contribute to sleep-wake and cognitive complaints. We aimed to characterize sleep architecture in chronic moderate to severe TBI adults and assess whether non-rapid eye movement slow wave activity (SWA) is associated to next day performance in episodic memory tasks according to TBI severity. METHODS Forty-two moderate to severe TBI participants, 12-47 months post-injury, and 38 healthy controls were tested with one night of in-laboratory polysomnography, followed the next morning by questionnaires (sleep quality, fatigue, and sleepiness) and neuropsychological assessment. We used multiple regression analyses to assess the moderator effect of SWA power on TBI severity and next-day memory performance. RESULTS We found that TBI participants reported worse sleep quality and fatigue, and had worse cognitive performance than controls. No between group differences were found on macro- and micro-architecture of sleep. However, SWA significantly interacted with TBI severity to explain next-day memory performance: higher SWA was more strongly associated to better memory performance in more severe TBI compared to milder TBI. CONCLUSIONS This study provides evidence that the injured brain is able to produce macro- and micro-architecture of sleep comparable to what is seen in healthy controls. However, with increasing TBI severity, lower non-rapid eye movement SWA power is associated with reduced ability to learn and memorise new information the following day.
Collapse
Affiliation(s)
- Héjar El-Khatib
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre de Recherche du CIUSSS NIM, Montreal, Quebec, Canada
- Department of Psychology, Université de Montréal, Montreal, Quebec, Canada
| | - Erlan Sanchez
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre de Recherche du CIUSSS NIM, Montreal, Quebec, Canada
- Department of Neurosciences, Université de Montréal, Montreal, Quebec, Canada
| | - Caroline Arbour
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre de Recherche du CIUSSS NIM, Montreal, Quebec, Canada
- Faculty of Nursing, Université de Montréal, Montreal, Quebec, Canada
| | - Solenne Van Der Maren
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre de Recherche du CIUSSS NIM, Montreal, Quebec, Canada
- Department of Psychology, Université de Montréal, Montreal, Quebec, Canada
| | - Catherine Duclos
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre de Recherche du CIUSSS NIM, Montreal, Quebec, Canada
- Department of Psychiatry, Université de Montréal, Montreal, Quebec, Canada
| | - Hélène Blais
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre de Recherche du CIUSSS NIM, Montreal, Quebec, Canada
| | - Julie Carrier
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre de Recherche du CIUSSS NIM, Montreal, Quebec, Canada
- Department of Psychology, Université de Montréal, Montreal, Quebec, Canada
| | - Guido Simonelli
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre de Recherche du CIUSSS NIM, Montreal, Quebec, Canada
- Department of Psychology, Université de Montréal, Montreal, Quebec, Canada
| | - Charlotte Hendryckx
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre de Recherche du CIUSSS NIM, Montreal, Quebec, Canada
- Department of Psychology, Université de Montréal, Montreal, Quebec, Canada
| | - Jean Paquet
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre de Recherche du CIUSSS NIM, Montreal, Quebec, Canada
| | - Nadia Gosselin
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre de Recherche du CIUSSS NIM, Montreal, Quebec, Canada
- Department of Psychology, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
42
|
Veldman MP, Dolfen N, Gann MA, Carrier J, King BR, Albouy G. Somatosensory Targeted Memory Reactivation Modulates Oscillatory Brain Activity but not Motor Memory Consolidation. Neuroscience 2021; 465:203-218. [PMID: 33823218 DOI: 10.1016/j.neuroscience.2021.03.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 11/25/2022]
Abstract
Previous research has shown that targeted memory reactivation (TMR) protocols using acoustic or olfactory stimuli can boost motor memory consolidation. While somatosensory information is crucial for motor control and learning, the effects of somatosensory TMR on motor memory consolidation remain elusive. Here, healthy young adults (n = 28) were trained on a sequential serial reaction time task and received, during the offline consolidation period that followed, sequential electrical stimulation of the fingers involved in the task. This somatosensory TMR procedure was applied during either a 90-minute diurnal sleep (NAP) or wake (NONAP) interval that was monitored with electroencephalography. Consolidation was assessed with a retest following the NAP/NONAP episode. Behavioral results revealed no effect of TMR on motor performance in either of the groups. At the brain level, somatosensory stimulation elicited changes in oscillatory activity in both groups. Specifically, TMR induced an increase in power in the mu band in the NONAP group and in the beta band in both the NAP and NONAP groups. Additionally, TMR elicited an increase in sigma power and a decrease in delta oscillations in the NAP group. None of these TMR-induced modulations of oscillatory activity, however, were correlated with measures of motor memory consolidation. The present results collectively suggest that while somatosensory TMR modulates oscillatory brain activity during post-learning sleep and wakefulness, it does not influence motor performance in an immediate retest.
Collapse
Affiliation(s)
- Menno P Veldman
- KU Leuven, Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, Leuven, Belgium; KU Leuven Brain Institute (LBI), Leuven, Belgium.
| | - Nina Dolfen
- KU Leuven, Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, Leuven, Belgium; KU Leuven Brain Institute (LBI), Leuven, Belgium
| | - Mareike A Gann
- KU Leuven, Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, Leuven, Belgium; KU Leuven Brain Institute (LBI), Leuven, Belgium
| | - Julie Carrier
- Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l'Ile de Montréal, Montreal, QC, Canada; Department of Psychology, Université de Montréal, Montreal, QC, Canada
| | - Bradley R King
- KU Leuven, Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, Leuven, Belgium; KU Leuven Brain Institute (LBI), Leuven, Belgium
| | - Geneviève Albouy
- KU Leuven, Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, Leuven, Belgium; KU Leuven Brain Institute (LBI), Leuven, Belgium
| |
Collapse
|
43
|
Fehér KD, Wunderlin M, Maier JG, Hertenstein E, Schneider CL, Mikutta C, Züst MA, Klöppel S, Nissen C. Shaping the slow waves of sleep: A systematic and integrative review of sleep slow wave modulation in humans using non-invasive brain stimulation. Sleep Med Rev 2021; 58:101438. [PMID: 33582581 DOI: 10.1016/j.smrv.2021.101438] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 10/14/2020] [Accepted: 11/10/2020] [Indexed: 01/19/2023]
Abstract
The experimental study of electroencephalographic slow wave sleep (SWS) stretches over more than half a century and has corroborated its importance for basic physiological processes, such as brain plasticity, metabolism and immune system functioning. Alterations of SWS in aging or pathological conditions suggest that modulating SWS might constitute a window for clinically relevant interventions. This work provides a systematic and integrative review of SWS modulation through non-invasive brain stimulation in humans. A literature search using PubMed, conducted in May 2020, identified 3220 studies, of which 82 fulfilled inclusion criteria. Three approaches have been adopted to modulate the macro- and microstructure of SWS, namely auditory, transcranial electrical and transcranial magnetic stimulation. Our current knowledge about the modulatory mechanisms, the space of stimulation parameters and the physiological and behavioral effects are reported and evaluated. The integration of findings suggests that sleep slow wave modulation bears the potential to promote our understanding of the functions of SWS and to develop new treatments for conditions of disrupted SWS.
Collapse
Affiliation(s)
- Kristoffer D Fehér
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Marina Wunderlin
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Jonathan G Maier
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Elisabeth Hertenstein
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Carlotta L Schneider
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Christian Mikutta
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland; Privatklinik Meiringen, Meiringen, Switzerland
| | - Marc A Züst
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Stefan Klöppel
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Christoph Nissen
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland.
| |
Collapse
|
44
|
2019 Annual Meeting of the Swiss Society for Sleep Research, Sleep Medicine, and Chronobiology (SSSSC). Clocks Sleep 2020; 1:414-434. [PMID: 33089178 PMCID: PMC7445843 DOI: 10.3390/clockssleep1040033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 11/16/2022] Open
Abstract
We are pleased to present you with this Special Issue of Clocks & Sleep, the abstracts of the 2019 annual meeting of the Swiss Society for Sleep Research, Sleep Medicine, and Chronobiology (SSSSC), which took place in Fribourg, 27 and 28 June [...]
Collapse
|
45
|
Jaramillo V, Volk C, Maric A, Furrer M, Fattinger S, Kurth S, Lustenberger C, Huber R. Characterization of overnight slow-wave slope changes across development in an age-, amplitude-, and region-dependent manner. Sleep 2020; 43:5802398. [PMID: 32154557 DOI: 10.1093/sleep/zsaa038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/21/2020] [Indexed: 12/16/2022] Open
Abstract
STUDY OBJECTIVES The restorative function of sleep has been linked to a net reduction in synaptic strength. The slope of slow-waves, a major characteristic of non-rapid eye movement (NREM) sleep, has been shown to directly reflect synaptic strength, when accounting for amplitude changes across the night. In this study, we aimed to investigate overnight slope changes in the course of development in an age-, amplitude-, and region-dependent manner. METHODS All-night high-density electroencephalography data were analyzed in a cross-sectional population of 60 healthy participants in the age range of 8-29 years. To control for amplitude changes across the night, we matched slow-waves from the first and the last hour of NREM sleep according to their amplitude. RESULTS We found a reduction of slow-wave slopes from the first to the last hour of NREM sleep across all investigated ages, amplitudes, and most brain regions. The overnight slope change was largest in children and decreased toward early adulthood. A topographical analysis revealed regional differences in slope change. Specifically, for small amplitude waves the decrease was smallest in an occipital area, whereas for large amplitude waves, the decrease was smallest in a central area. CONCLUSIONS The larger slope decrease in children might be indicative of a boosted renormalization of synapses during sleep in childhood, which, in turn, might be related to increased plasticity during brain maturation. Regional differences in the extent of slow-wave slope reduction may reflect a "smart" down-selection process or, alternatively, indicate amplitude-dependent differences in the generation of slow-waves.
Collapse
Affiliation(s)
- Valeria Jaramillo
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.,Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Carina Volk
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.,Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland.,Center for MR Research, University Children's Hospital Zurich, Zurich, Switzerland
| | - Angelina Maric
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Melanie Furrer
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.,Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Sara Fattinger
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.,Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Salome Kurth
- Pulmonary Clinic, University Hospital Zurich, Zurich, Switzerland
| | | | - Reto Huber
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.,Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland.,Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
46
|
Heinrich B, Schmitt B, Bölsterli BK, Critelli H, Huber R, Fattinger S. Disparate effects of hormones and vigabatrin on sleep slow waves in patients with West syndrome - An indication of their mode of action? J Sleep Res 2020; 30:e13137. [PMID: 32657499 DOI: 10.1111/jsr.13137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/17/2020] [Accepted: 06/08/2020] [Indexed: 01/22/2023]
Abstract
Synaptic downscaling during sleep, a physiological process to restore synaptic homeostasis and maintain learning efficiency and healthy brain development, has been related to a reduction of the slope of sleep slow waves (SSW). However, such synaptic downscaling seems not to be reflected in high-amplitude SSW. Recently we have shown reduced SSW slopes during hormonal treatment (adrenocorticotrophic hormone, prednisolone) in patients with West syndrome (WS). Yet, whether this reduction was related to successful treatment or reflects a specific effect of hormone therapy is unknown. Thus, we retrospectively analysed nap electroencephalograms of 61 patients with WS successfully treated with hormones, vigabatrin (VGB), or both. The slope of SSW during treatment (T1) and 2-7 months later (T2) when hormonal treatment was tapered off were compared between the treatment groups and healthy, age-matched controls. At T1 hormone treatment reduced the slope of low-amplitude SSW, whereas VGB increased the slope of high-amplitude SSW (linear mixed effect model: FGroup = 7.04, p < 0.001; FAmplitude = 1,646.68, p < 0.001; FGroup*Amplitude = 3.38, p < 0.001). At T2, untreated patients did not differ anymore from healthy controls, whereas those still under VGB showed the same alterations as those with VGB at T1. This result indicates a disparate effect of VGB and hormone on the SSW slope. In particular, hormones seem to reduce the slope of cortical generated low-amplitude SSW, similar to the physiological synaptic downscaling during sleep. Thus, a loss of functional neuronal connectivity might be an alternative explanation of the antiepileptic effect of hormonal treatment.
Collapse
Affiliation(s)
- Bianka Heinrich
- Department of Neuropediatrics, University Children's Hospital Zurich, Zürich, Switzerland
| | - Bernhard Schmitt
- Department of Neuropediatrics, University Children's Hospital Zurich, Zürich, Switzerland.,Pediatric Sleep Disorders Center, University Children's Hospital Zurich, Zürich, Switzerland.,Children's Research Center, University Children's Hospital Zurich, Zürich, Switzerland
| | - Bigna K Bölsterli
- Department of Neuropediatrics, University Children's Hospital Zurich, Zürich, Switzerland.,Pediatric Sleep Disorders Center, University Children's Hospital Zurich, Zürich, Switzerland.,Children's Research Center, University Children's Hospital Zurich, Zürich, Switzerland
| | - Hanne Critelli
- Department of Neuropediatrics, University Children's Hospital Zurich, Zürich, Switzerland.,Pediatric Sleep Disorders Center, University Children's Hospital Zurich, Zürich, Switzerland
| | - Reto Huber
- Pediatric Sleep Disorders Center, University Children's Hospital Zurich, Zürich, Switzerland.,Children's Research Center, University Children's Hospital Zurich, Zürich, Switzerland.,Child Development Center, University Children's Hospital Zurich, Zürich, Switzerland.,Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zürich, Switzerland
| | - Sara Fattinger
- Pediatric Sleep Disorders Center, University Children's Hospital Zurich, Zürich, Switzerland.,Children's Research Center, University Children's Hospital Zurich, Zürich, Switzerland.,Child Development Center, University Children's Hospital Zurich, Zürich, Switzerland
| |
Collapse
|
47
|
Fröhlich F, Lustenberger C. Neuromodulation of sleep rhythms in schizophrenia: Towards the rational design of non-invasive brain stimulation. Schizophr Res 2020; 221:71-80. [PMID: 32354662 PMCID: PMC7316586 DOI: 10.1016/j.schres.2020.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 02/01/2023]
Abstract
Brain function critically depends on oscillatory synchronization of neuronal populations both during wake and sleep. Originally, neural oscillations have been discounted as an epiphenomenon. More recently, specific deficits in the structure of brain oscillations have been linked to psychiatric diseases. For example, schizophrenia is hallmarked by abnormalities in different brain oscillations. Key sleep rhythms during NEM sleep such as sleep spindles, which are implicated in memory consolidation and are related to cognitive functions, are strongly diminished in these patients compared to healthy controls. To date, it remains unclear whether these reductions in sleep oscillations are causal for the functional impairments observed in schizophrenia. The application of non-invasive brain stimulation permits the causal examination of brain network dynamics and will help to establish the causal association of sleep oscillations and symptoms of schizophrenia. To accomplish this, stimulation paradigms that selectively engage specific network targets such as sleep spindles or slow waves are needed. We propose that the successful development and application of these non-invasive brain stimulation approaches will require rational design that takes network dynamics and neuroanatomical information into account. The purpose of this article is to prepare the grounds for the next steps towards such rational design of non-invasive stimulation, with a special focus on electrical and auditory stimulation. First, we briefly summarize the deficits in network dynamics during sleep in schizophrenia. Then, we discuss today's and tomorrow's non-invasive brain stimulation modalities to engage these network targets.
Collapse
Affiliation(s)
- Flavio Fröhlich
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Caroline Lustenberger
- Neural Control of Movement Lab, Institute of Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland.
| |
Collapse
|
48
|
Changes in cross-frequency coupling following closed-loop auditory stimulation in non-rapid eye movement sleep. Sci Rep 2020; 10:10628. [PMID: 32606321 PMCID: PMC7326971 DOI: 10.1038/s41598-020-67392-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/03/2020] [Indexed: 01/03/2023] Open
Abstract
Regional changes of non-rapid eye movement (NREM) sleep delta and sigma activity, and their temporal coupling have been related to experience-dependent plastic changes during previous wakefulness. These sleep-specific rhythms seem to be important for brain recovery and memory consolidation. Recently, it was demonstrated that by targeting slow waves in a particular region at a specific phase with closed-loop auditory stimulation, it is possible to locally manipulate slow-wave activity and interact with training-induced neuroplastic changes. In our study, we tested whether closed-loop auditory stimulation targeting the up-phase of slow waves might not only interact with the main sleep rhythms but also with their coupling within the circumscribed region. We demonstrate that while closed-loop auditory stimulation globally enhances delta, theta and sigma power, changes in cross-frequency coupling of these oscillations were more spatially restricted. Importantly, a significant increase in delta-sigma coupling was observed over the right parietal area, located directly posterior to the target electrode. These findings suggest that closed-loop auditory stimulation locally modulates coupling between delta phase and sigma power in a targeted region, which could be used to manipulate sleep-dependent neuroplasticity within the brain network of interest.
Collapse
|
49
|
|
50
|
Salfi F, D'Atri A, Tempesta D, De Gennaro L, Ferrara M. Boosting Slow Oscillations during Sleep to Improve Memory Function in Elderly People: A Review of the Literature. Brain Sci 2020; 10:E300. [PMID: 32429181 PMCID: PMC7287854 DOI: 10.3390/brainsci10050300] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 02/05/2023] Open
Abstract
Sleep represents a crucial time window for the consolidation of memory traces. In this view, some brain rhythms play a pivotal role, first of all the sleep slow waves. In particular, the neocortical slow oscillations (SOs), in coordination with the hippocampal ripples and the thalamocortical spindles, support the long-term storage of the declarative memories. The aging brain is characterized by a disruption of this complex system with outcomes on the related cognitive functions. In recent years, the advancement of the comprehension of the sleep-dependent memory consolidation mechanisms has encouraged the development of techniques of SO enhancement during sleep to induce cognitive benefits. In this review, we focused on the studies reporting on the application of acoustic or electric stimulation procedures in order to improve sleep-dependent memory consolidation in older subjects. Although the current literature is limited and presents inconsistencies, there is promising evidence supporting the perspective to non-invasively manipulate the sleeping brain electrophysiology to improve cognition in the elderly, also shedding light on the mechanisms underlying the sleep-memory relations during healthy and pathological aging.
Collapse
Affiliation(s)
- Federico Salfi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Aurora D'Atri
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy
| | - Daniela Tempesta
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Luigi De Gennaro
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy
| | - Michele Ferrara
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| |
Collapse
|