1
|
Bentley-DeSousa A, Roczniak-Ferguson A, Ferguson SM. A STING-CASM-GABARAP pathway activates LRRK2 at lysosomes. J Cell Biol 2025; 224:e202310150. [PMID: 39812709 PMCID: PMC11734622 DOI: 10.1083/jcb.202310150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 09/28/2024] [Accepted: 11/14/2024] [Indexed: 01/16/2025] Open
Abstract
Mutations that increase LRRK2 kinase activity have been linked to Parkinson's disease and Crohn's disease. LRRK2 is also activated by lysosome damage. However, the endogenous cellular mechanisms that control LRRK2 kinase activity are not well understood. In this study, we identify signaling through stimulator of interferon genes (STING) as an activator of LRRK2 via the conjugation of ATG8 to single membranes (CASM) pathway. We furthermore establish that multiple chemical stimuli that perturb lysosomal homeostasis also converge on CASM to activate LRRK2. Although CASM results in the lipidation of multiple ATG8 protein family members, we establish that LRRK2 lysosome recruitment and kinase activation are highly dependent on interactions with the GABARAP member of this family. Collectively, these results define a pathway that integrates multiple stimuli at lysosomes to control the kinase activity of LRRK2. Aberrant activation of LRRK2 via this pathway may be of relevance in both Parkinson's and Crohn's diseases.
Collapse
Affiliation(s)
- Amanda Bentley-DeSousa
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, USA
- Wu Tsai Institute, Yale University School of Medicine, New Haven, CT, USA
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD, USA
| | - Agnes Roczniak-Ferguson
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, USA
- Wu Tsai Institute, Yale University School of Medicine, New Haven, CT, USA
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD, USA
| | - Shawn M. Ferguson
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, USA
- Wu Tsai Institute, Yale University School of Medicine, New Haven, CT, USA
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD, USA
| |
Collapse
|
2
|
Kraus F, He Y, Swarup S, Overmyer KA, Jiang Y, Brenner J, Capitanio C, Bieber A, Jen A, Nightingale NM, Anderson BJ, Lee C, Paulo JA, Smith IR, Plitzko JM, Gygi SP, Schulman BA, Wilfling F, Coon JJ, Harper JW. Global cellular proteo-lipidomic profiling of diverse lysosomal storage disease mutants using nMOST. SCIENCE ADVANCES 2025; 11:eadu5787. [PMID: 39841834 PMCID: PMC11753374 DOI: 10.1126/sciadv.adu5787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025]
Abstract
Lysosomal storage diseases (LSDs) comprise ~50 monogenic disorders marked by the buildup of cellular material in lysosomes, yet systematic global molecular phenotyping of proteins and lipids is lacking. We present a nanoflow-based multiomic single-shot technology (nMOST) workflow that quantifies HeLa cell proteomes and lipidomes from over two dozen LSD mutants. Global cross-correlation analysis between lipids and proteins identified autophagy defects, notably the accumulation of ferritinophagy substrates and receptors, especially in NPC1-/- and NPC2-/- mutants, where lysosomes accumulate cholesterol. Autophagic and endocytic cargo delivery failures correlated with elevated lysophosphatidylcholine species and multilamellar structures visualized by cryo-electron tomography. Loss of mitochondrial cristae, MICOS complex components, and OXPHOS components rich in iron-sulfur cluster proteins in NPC2-/- cells was largely alleviated when iron was provided through the transferrin system. This study reveals how lysosomal dysfunction affects mitochondrial homeostasis and underscores nMOST as a valuable discovery tool for identifying molecular phenotypes across LSDs.
Collapse
Affiliation(s)
- Felix Kraus
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Yuchen He
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Sharan Swarup
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Katherine A. Overmyer
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Yizhi Jiang
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Johann Brenner
- Mechanisms of Cellular Quality Control, Max Planck Institute of Biophysics, Frankfurt, Germany
- CryoEM Technology, Max Planck Institute of Biochemistry, Munich, Germany
| | - Cristina Capitanio
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Anna Bieber
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Annie Jen
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Nicole M. Nightingale
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Benton J. Anderson
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Chan Lee
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Joao A. Paulo
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Ian R. Smith
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jürgen M. Plitzko
- CryoEM Technology, Max Planck Institute of Biochemistry, Munich, Germany
| | - Steven P. Gygi
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Brenda A. Schulman
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Florian Wilfling
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Mechanisms of Cellular Quality Control, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Joshua J. Coon
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - J. Wade Harper
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
3
|
Feng X, Cai W, Li Q, Zhao L, Meng Y, Xu H. Activation of lysosomal Ca2+ channels mitigates mitochondrial damage and oxidative stress. J Cell Biol 2025; 224:e202403104. [PMID: 39500490 PMCID: PMC11540856 DOI: 10.1083/jcb.202403104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 09/06/2024] [Accepted: 10/15/2024] [Indexed: 11/09/2024] Open
Abstract
Elevated levels of plasma-free fatty acids and oxidative stress have been identified as putative primary pathogenic factors in endothelial dysfunction etiology, though their roles are unclear. In human endothelial cells, we found that saturated fatty acids (SFAs)-including the plasma-predominant palmitic acid (PA)-cause mitochondrial fragmentation and elevation of intracellular reactive oxygen species (ROS) levels. TRPML1 is a lysosomal ROS-sensitive Ca2+ channel that regulates lysosomal trafficking and biogenesis. Small-molecule agonists of TRPML1 prevented PA-induced mitochondrial damage and ROS elevation through activation of transcriptional factor EB (TFEB), which boosts lysosome biogenesis and mitophagy. Whereas genetically silencing TRPML1 abolished the protective effects of TRPML1 agonism, TRPML1 overexpression conferred a full resistance to PA-induced oxidative damage. Pharmacologically activating the TRPML1-TFEB pathway was sufficient to restore mitochondrial and redox homeostasis in SFA-damaged endothelial cells. The present results suggest that lysosome activation represents a viable strategy for alleviating oxidative damage, a common pathogenic mechanism of metabolic and age-related diseases.
Collapse
Affiliation(s)
- Xinghua Feng
- New Cornerstone Science Laboratory and Liangzhu Laboratory, The Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Weijie Cai
- New Cornerstone Science Laboratory and Liangzhu Laboratory, The Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Qian Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Liding Zhao
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yaping Meng
- New Cornerstone Science Laboratory and Liangzhu Laboratory, The Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Haoxing Xu
- New Cornerstone Science Laboratory and Liangzhu Laboratory, The Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Hossain MK, Chae HJ. Calcium balance through mutual orchestrated inter-organelle communication: A pleiotropic target for combating Alzheimer's disease. Neurochem Int 2025; 182:105905. [PMID: 39566580 DOI: 10.1016/j.neuint.2024.105905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/15/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
Dysfunctional intraneuronal organelles in Alzheimer's Disease (AD) propel aberrant calcium handling, triggering molecular miscommunication within organelles such as mitochondria, endoplasmic reticulum, and lysosomes. This disruption in organelle function not only impairs cellular homeostasis but also exacerbates neurodegenerative processes involving the accumulation of amyloid-β (Aβ) and hyperphosphorylated tau, amplifying the disease's vicious cycle. In this review, the concept of Mutual Orchestrated Inter-organelle Communication (MOIC) proposes potential therapeutic avenues for restoring Ca2+ homeostasis in AD, offering a theoretical framework for developing disease-modifying treatments. The intricate nature of AD necessitates a shift towards combination therapies targeting MOIC-associated pathways, presenting a more effective approach than monotherapy.
Collapse
Affiliation(s)
| | - Han Jung Chae
- Non-Clinical Evaluation Center, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Republic of Korea.
| |
Collapse
|
5
|
Ludlaim AM, Waddington SN, McKay TR. Unifying biology of neurodegeneration in lysosomal storage diseases. J Inherit Metab Dis 2025; 48:e12833. [PMID: 39822020 PMCID: PMC11739831 DOI: 10.1002/jimd.12833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 12/01/2024] [Accepted: 12/04/2024] [Indexed: 01/19/2025]
Abstract
There are currently at least 70 characterised lysosomal storage diseases (LSD) resultant from inherited single-gene defects. Of these, at least 30 present with central nervous system (CNS) neurodegeneration and overlapping aetiology. Substrate accumulation and dysfunctional neuronal lysosomes are common denominator, but how variants in 30 different genes converge on this central cellular phenotype is unclear. Equally unresolved is how the accumulation of a diverse spectrum of substrates in the neuronal lysosomes results in remarkably similar neurodegenerative outcomes. Conversely, how is it that many other monogenic LSDs cause only visceral disease? Lysosomal substance accumulation in LSDs with CNS neurodegeneration (nLSD) includes lipofuscinoses, mucopolysaccharidoses, sphingolipidoses and glycoproteinoses. Here, we review the latest discoveries in the fundamental biology of four classes of nLSDs, comparing and contrasting new insights into disease mechanism with emerging evidence of unifying convergence.
Collapse
Affiliation(s)
- Anna M Ludlaim
- Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| | - Simon N Waddington
- Gene Transfer Technology Group, EGA-Institute for Women's Health, University College London, London, UK
- Faculty of Health Sciences, Wits/SAMRC Antiviral Gene Therapy Research Unit, Johannesburg, South Africa
| | - Tristan R McKay
- Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
6
|
Zhang H, Wang Y, Wang R, Zhang X, Chen H. TRPML1 agonist ML-SA5 mitigates uranium-induced nephrotoxicity via promoting lysosomal exocytosis. Biomed Pharmacother 2024; 181:117728. [PMID: 39647321 DOI: 10.1016/j.biopha.2024.117728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/24/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024] Open
Abstract
Uranium (U) released from U mining and spent nuclear fuel reprocessing in the nuclear industry, nuclear accidents and military activities as a primary environmental pollutant (e.g., drinking water pollution) is a threat to human health. Kidney is one of the main target organs for U accumulation, leading to nephrotoxicity mainly associated with the injuries in proximal tubular epithelial cells (PTECs). Transient receptor potential mucolipin 1 (TRPML1) is a novel therapeutic target for nephrotoxicity caused by acute or chronic U poisoning. We herein investigate the therapeutic efficacy of ML-SA5, a small molecule agonist of TRPML1, in U-induced nephrotoxicity in acute U intoxicated mice. We demonstrate that delayed treatment with ML-SA5 enhances U clearance from the kidneys via urine excretion by activating lysosomal exocytosis, and thereby attenuates U-induced kidney dysfunction and cell death/apoptosis of renal PTECs in acute U intoxicated mice. In addition, ML-SA5 promotes the nuclear translocation of transcription factor EB (TFEB) in renal PTECs in acute U intoxicated mice. Mechanistically, ML-SA5 triggers the TRPML1-mediated lysosomal calcium release and consequently induces TFEB activation in U-loaded renal PTECs-derived HK-2 cells. Moreover, knockdown of TRPML1 or TFEB abolishes the effects of ML-SA5 on the removal of intracellular U and reduction of the cellular injury/death in U-loaded HK-2 cells. Our findings indicate that pharmacological activation of TRPML1 is a promising therapeutic approach for the delayed treatment of U-induced nephrotoxicity via the activation of the positive feedback loop of TRPML1 and TFEB and consequent the induction of lysosomal exocytosis.
Collapse
Affiliation(s)
- Hongjing Zhang
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, No. 2094, Xie-Tu Road, Shanghai 200032, PR China
| | - Yifei Wang
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, No. 2094, Xie-Tu Road, Shanghai 200032, PR China
| | - Ruiyun Wang
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, No. 2094, Xie-Tu Road, Shanghai 200032, PR China
| | - Xuxia Zhang
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, No. 2094, Xie-Tu Road, Shanghai 200032, PR China
| | - Honghong Chen
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, No. 2094, Xie-Tu Road, Shanghai 200032, PR China.
| |
Collapse
|
7
|
Peng T, Xie Y, Zhao S, Wang X, Zhang W, Xie Y, Wang C, Xie N. TRPML1 ameliorates seizures-related neuronal injury by regulating autophagy and lysosomal biogenesis via Ca 2+/TFEB signaling pathway. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167477. [PMID: 39173889 DOI: 10.1016/j.bbadis.2024.167477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
Alterations in autophagy have been observed in epilepsy, although their exact etiopathogenesis remains elusive. Transient Receptor Potential Mucolipin Protein 1 (TRPML1) is an ion channel protein that regulates autophagy and lysosome biogenesis. To explore the role of TRPML1 in seizures-induced neuronal injury and the potential mechanisms involved, an hyperexcitable neuronal model induced by Mg2+-free solution was used for the study. Our results revealed that TRPML1 expression was upregulated after seizures, which was accompanied by intracellular ROS accumulation, mitochondrial damage, and neuronal apoptosis. Activation of TRPML1 by ML-SA1 diminished intracellular ROS, restored mitochondrial function, and subsequently alleviated neuronal apoptosis. Conversely, inhibition of TRPML1 had the opposite effect. Further examination revealed that the accumulation of ROS and damaged mitochondria was associated with interrupted mitophagy flux and enlarged defective lysosomes, which were attenuated by TRPML1 activation. Mechanistically, TRPML1 activation allows more Ca2+ to permeate from the lysosome into the cytoplasm, resulting in the dephosphorylation of TFEB and its nuclear translocation. This process further enhances autophagy initiation and lysosomal biogenesis. Additionally, the expression of TRPML1 is positively regulated by WTAP-mediated m6A modification. Our findings highlighted crucial roles of TRPML1 and autophagy in seizures-induced neuronal injury, which provides a new target for epilepsy treatment.
Collapse
Affiliation(s)
- Tingting Peng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou 450052, Henan Province, PR China; Academy of Medical Sciences of Zhengzhou University, Zhengzhou 450052, Henan Province, PR China
| | - Yinyin Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou 450052, Henan Province, PR China; Academy of Medical Sciences of Zhengzhou University, Zhengzhou 450052, Henan Province, PR China
| | - Senfeng Zhao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou 450052, Henan Province, PR China; Academy of Medical Sciences of Zhengzhou University, Zhengzhou 450052, Henan Province, PR China
| | - Xiaoyi Wang
- Institutes of Biological and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, Jiangsu Province, PR China
| | - Wanwan Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou 450052, Henan Province, PR China
| | - Yi Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou 450052, Henan Province, PR China
| | - Cui Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Key Clinical Laboratory of Henan Province, 1 East Jianshe Road, Zhengzhou 450052, Henan Province, PR China.
| | - Nanchang Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou 450052, Henan Province, PR China.
| |
Collapse
|
8
|
Cunha MR, Do Amaral BS, Takarada JE, Valderrama GV, Batista ANL, Batista JM, Cass QB, Couñago RM, Massirer KB. (S)-ML-SA1 Activates Autophagy via TRPML1-TFEB Pathway. Chembiochem 2024; 25:e202400506. [PMID: 38923811 DOI: 10.1002/cbic.202400506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Autophagic flux plays a crucial role in various diseases. Recently, the lysosomal ion channel TRPML1 has emerged as a promising target in lysosomal storage diseases, such as mucolipidosis. The discovery of mucolipin synthetic agonist-1 (ML-SA1) has expanded our understanding of TRPML1's function and its potential therapeutic uses. However, ML-SA1 is a racemate with limited cellular potency and poor water solubility. In this study, we synthetized rac-ML-SA1, separated the enantiomers by chiral liquid chromatography and determined their absolute configuration by vibrational circular dichroism (VCD). In addition, we focused on investigating the impact of each enantiomer of ML-SA1 on the TRPML1-TFEB axis. Our findings revealed that (S)-ML-SA1 acts as an agonist for TRPML1 at the lysosomal membrane. This activation prompts transcription factor EB (TFEB) to translocate from the cytosol to the nucleus in a dose-dependent manner within live cells. Consequently, this signaling pathway enhances the expression of coordinated lysosomal expression and regulation (CLEAR) genes and activates autophagic flux. Our study presents evidence for the potential use of (S)-ML-SA1 in the development of new therapies for lysosomal storage diseases that target TRPML1.
Collapse
Affiliation(s)
- Micael R Cunha
- Center of Medicinal Chemistry, Center for Molecular Biology and Genetic Engineering, Universidade Estadual de Campinas, Av. Dr. André Tosello 550, Campinas, 13083-886, Brazil
| | - Bruno S Do Amaral
- Center of Medicinal Chemistry, Center for Molecular Biology and Genetic Engineering, Universidade Estadual de Campinas, Av. Dr. André Tosello 550, Campinas, 13083-886, Brazil
- Federal Institute of Education, Science and Technology of São Paulo, Av. Mutinga 951, São Paulo, 05110-000, Brazil
| | - Jéssica E Takarada
- Center of Medicinal Chemistry, Center for Molecular Biology and Genetic Engineering, Universidade Estadual de Campinas, Av. Dr. André Tosello 550, Campinas, 13083-886, Brazil
| | - Gabriel V Valderrama
- Center of Medicinal Chemistry, Center for Molecular Biology and Genetic Engineering, Universidade Estadual de Campinas, Av. Dr. André Tosello 550, Campinas, 13083-886, Brazil
| | - Andrea N L Batista
- Chemistry Institute, Fluminense Federal University, Outeiro de São João Batista s/n, Niterói, 24020-141, Brazil
| | - João M Batista
- Institute of Science and Technology, Federal University of São Paulo, Talim Street 330, São José dos Campos, 12231-280, Brazil
| | - Quezia B Cass
- SEPARARE-Chromatography Research Center, Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luiz, s/n Km 235, São Carlos, 13565-095, Brazil
| | - Rafael M Couñago
- Center of Medicinal Chemistry, Center for Molecular Biology and Genetic Engineering, Universidade Estadual de Campinas, Av. Dr. André Tosello 550, Campinas, 13083-886, Brazil
- Structural Genomics Consortium, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina, Pharmacy Lane 301, North Carolina, 27599, United States
| | - Katlin B Massirer
- Center of Medicinal Chemistry, Center for Molecular Biology and Genetic Engineering, Universidade Estadual de Campinas, Av. Dr. André Tosello 550, Campinas, 13083-886, Brazil
| |
Collapse
|
9
|
Nixon RA, Rubinsztein DC. Mechanisms of autophagy-lysosome dysfunction in neurodegenerative diseases. Nat Rev Mol Cell Biol 2024; 25:926-946. [PMID: 39107446 DOI: 10.1038/s41580-024-00757-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2024] [Indexed: 08/15/2024]
Abstract
Autophagy is a lysosome-based degradative process used to recycle obsolete cellular constituents and eliminate damaged organelles and aggregate-prone proteins. Their postmitotic nature and extremely polarized morphologies make neurons particularly vulnerable to disruptions caused by autophagy-lysosomal defects, especially as the brain ages. Consequently, mutations in genes regulating autophagy and lysosomal functions cause a wide range of neurodegenerative diseases. Here, we review the role of autophagy and lysosomes in neurodegenerative diseases such as Alzheimer disease, Parkinson disease and frontotemporal dementia. We also consider the strong impact of cellular ageing on lysosomes and autophagy as a tipping point for the late-age emergence of related neurodegenerative disorders. Many of these diseases have primary defects in autophagy, for example affecting autophagosome formation, and in lysosomal functions, especially pH regulation and calcium homeostasis. We have aimed to provide an integrative framework for understanding the central importance of autophagic-lysosomal function in neuronal health and disease.
Collapse
Affiliation(s)
- Ralph A Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York, NY, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA.
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| |
Collapse
|
10
|
Mo J, Kong P, Ding L, Fan J, Ren J, Lu C, Guo F, Chen L, Mo R, Zhong Q, Wen Y, Gu T, Wang Q, Li S, Guo T, Gao T, Cao X. Lysosomal TFEB-TRPML1 Axis in Astrocytes Modulates Depressive-like Behaviors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403389. [PMID: 39264289 PMCID: PMC11538709 DOI: 10.1002/advs.202403389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/09/2024] [Indexed: 09/13/2024]
Abstract
Lysosomes are important cellular structures for human health as centers for recycling, signaling, metabolism and stress adaptation. However, the potential role of lysosomes in stress-related emotions has long been overlooked. Here, it is found that lysosomal morphology in astrocytes is altered in the medial prefrontal cortex (mPFC) of susceptible mice after chronic social defeat stress. A screen of lysosome-related genes revealed that the expression of the mucolipin 1 gene (Mcoln1; protein: mucolipin TRP channel 1) is decreased in susceptible mice and depressed patients. Astrocyte-specific knockout of mucolipin TRP channel 1 (TRPML1) induced depressive-like behaviors by inhibiting lysosomal exocytosis-mediated adenosine 5'-triphosphate (ATP) release. Furthermore, this stress response of astrocytic lysosomes is mediated by the transcription factor EB (TFEB), and overexpression of TRPML1 rescued depressive-like behaviors induced by astrocyte-specific knockout of TFEB. Collectively, these findings reveal a lysosomal stress-sensing signaling pathway contributing to the development of depression and identify the lysosome as a potential target organelle for antidepressants.
Collapse
Affiliation(s)
- Jia‐Wen Mo
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong Joint Laboratory for Psychiatric DisordersGuangdong Province Key Laboratory of Psychiatric DisordersGuangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Peng‐Li Kong
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong Joint Laboratory for Psychiatric DisordersGuangdong Province Key Laboratory of Psychiatric DisordersGuangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Li Ding
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong Joint Laboratory for Psychiatric DisordersGuangdong Province Key Laboratory of Psychiatric DisordersGuangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Jun Fan
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong Joint Laboratory for Psychiatric DisordersGuangdong Province Key Laboratory of Psychiatric DisordersGuangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Jing Ren
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong Joint Laboratory for Psychiatric DisordersGuangdong Province Key Laboratory of Psychiatric DisordersGuangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Cheng‐Lin Lu
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong Joint Laboratory for Psychiatric DisordersGuangdong Province Key Laboratory of Psychiatric DisordersGuangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
- Microbiome Medicine CenterDepartment of Laboratory MedicineZhujiang HospitalSouthern Medical UniversityGuangzhou510260China
| | - Fang Guo
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong Joint Laboratory for Psychiatric DisordersGuangdong Province Key Laboratory of Psychiatric DisordersGuangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Liang‐Yu Chen
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong Joint Laboratory for Psychiatric DisordersGuangdong Province Key Laboratory of Psychiatric DisordersGuangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Ran Mo
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong Joint Laboratory for Psychiatric DisordersGuangdong Province Key Laboratory of Psychiatric DisordersGuangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Qiu‐Ling Zhong
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong Joint Laboratory for Psychiatric DisordersGuangdong Province Key Laboratory of Psychiatric DisordersGuangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - You‐Lu Wen
- Department of Psychology and BehaviorGuangdong 999 Brain HospitalInstitute for Brain Research and RehabilitationSouth China Normal UniversityGuangzhou510515China
| | - Ting‐Ting Gu
- Department of Psychology and BehaviorGuangdong 999 Brain HospitalInstitute for Brain Research and RehabilitationSouth China Normal UniversityGuangzhou510515China
| | - Qian‐Wen Wang
- Department of BioinformaticsSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Shu‐Ji Li
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong Joint Laboratory for Psychiatric DisordersGuangdong Province Key Laboratory of Psychiatric DisordersGuangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Ting Guo
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong Joint Laboratory for Psychiatric DisordersGuangdong Province Key Laboratory of Psychiatric DisordersGuangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Tian‐Ming Gao
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong Joint Laboratory for Psychiatric DisordersGuangdong Province Key Laboratory of Psychiatric DisordersGuangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Xiong Cao
- Key Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong Joint Laboratory for Psychiatric DisordersGuangdong Province Key Laboratory of Psychiatric DisordersGuangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi DiseasesDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
- Microbiome Medicine CenterDepartment of Laboratory MedicineZhujiang HospitalSouthern Medical UniversityGuangzhou510260China
- Department of OncologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| |
Collapse
|
11
|
Zou GY, Bi F, Yu YL, Liu MX, Chen S. Tetrahedral DNA-Based Ternary Recognition Ratiometric Fluorescent Probes for Real-Time In Situ Resolving Lysosome Subpopulations in Living Cells via Cl -, Ca 2+, and pH. Anal Chem 2024; 96:16639-16648. [PMID: 39382097 DOI: 10.1021/acs.analchem.4c02723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Lysosomes are multifunctional organelles vital for cellular homeostasis with distinct subpopulations characterized by varying levels of Cl-, Ca2+, and H+. In situ visualization of these parameters is crucial for lysosomal research, yet developing probes that can simultaneously detect multiple ions remains challenging. Herein, we developed a lysosome-targeting ternary recognition ratiometric fluorescent probe based on tetrahedral DNA nanostructures (TDNs) to analyze lysosome subpopulations by Cl-, Ca2+, and pH. The TDN probe is assembled from four single-stranded DNAs, each end-modified with responsive fluorophores (Pr-Cl for Cl-, Pr-Ca for Ca2+, and Pr-pH for pH) or a reference fluorophore (Cy5). The fluorophores are integrated at the vertices of the rigid TDN to minimize mutual interference, and their fixed stoichiometry establishes a robust ternary recognition ratiometric fluorescence sensor for in situ resolution of lysosome subpopulations in living cells. Accordingly, a rise in lysosome subpopulations 2/6 characterized by low [Cl-], medium/high [Ca2+], and high pH was observed in the Niemann-Pick disease model cells but seldom observed in the control group. Conversely, there was a marked decline in the fraction of subpopulations 1/4/5 characterized by high [Cl-], medium to low [Ca2+], and pH. These changes were substantially reversed upon treatment. The probe holds great promise for studying lysosome subpopulations and the diagnosis and treatment of related diseases.
Collapse
Affiliation(s)
- Guang-Yue Zou
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, P.O. Box 332, Shenyang 110819, China
| | - Fan Bi
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, P.O. Box 332, Shenyang 110819, China
| | - Yong-Liang Yu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, P.O. Box 332, Shenyang 110819, China
| | - Meng-Xian Liu
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Miyagi, Japan
| | - Shuai Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, P.O. Box 332, Shenyang 110819, China
- Foshan Graduate School of Innovation, Northeastern University, Foshan City, Guangdong 528311, China
| |
Collapse
|
12
|
Lei Q, Chen X, Xiong Y, Li S, Wang J, He H, Deng Y. Lysosomal Ca 2+ release-facilitated TFEB nuclear translocation alleviates ischemic brain injury by attenuating autophagic/lysosomal dysfunction in neurons. Sci Rep 2024; 14:24836. [PMID: 39438678 PMCID: PMC11496619 DOI: 10.1038/s41598-024-75802-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
Neuronal death was frequently driven by autophagic/lysosomal dysfunction after ischemic stroke, whereas how to restore the impaired autophagic flux remained elusive. Autophagic/lysosomal signaling could be augmented after transcription factor EB (TFEB) nuclear translocation, which was facilitated by its dephosphorylation. A key TFEB dephosphorylase was calcineurin (CaN), whose activity was drastically regulated by cytosolic calcium ion concentration ([Ca2+]) controlled by lysosomal Ca2+ channel-like protein of TRPML1. Our research shows that ML-SA1, an agonist of the TRPML1 channel, significantly enhanced the lysosomal Ca2+ release and the CaN expression in penumbric neurons, subsequently promoted TFEB nuclear translocation, and greatly reversed autophagy/lysosome dysfunction. Moreover, ML-SA1 treatment significantly reduced neuronal loss, infarct size, and neurological deficits. By contrast, ML-SI3, an inhibitor of TRPML1, inhibited the lysosomal Ca2+ release conversely, aggravated the impairment of autophagic flux and consequentially exacerbated brain stroke lesion. These studies suggest that TRPML1 elevation alleviates ischemic brain injury by restoring autophagic/lysosomal dysfunction via Lysosomal Ca2+ release-facilitated TFEB nuclear translocation in neurons.
Collapse
Affiliation(s)
- Qian Lei
- School of Basic Medical Sciences, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xuemei Chen
- School of Basic Medical Sciences, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yajie Xiong
- School of Basic Medical Sciences, Kunming University of Science and Technology, Kunming, 650500, China
| | - Shangdan Li
- School of Basic Medical Sciences, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jiaqian Wang
- School of Basic Medical Sciences, Kunming University of Science and Technology, Kunming, 650500, China
| | - Hongyun He
- School of Basic Medical Sciences, Kunming University of Science and Technology, Kunming, 650500, China.
- Anning First People's Hospital, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Yihao Deng
- School of Basic Medical Sciences, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
13
|
Lv B, Dion WA, Yang H, Xun J, Kim DH, Zhu B, Tan JX. A TBK1-independent primordial function of STING in lysosomal biogenesis. Mol Cell 2024; 84:3979-3996.e9. [PMID: 39423796 PMCID: PMC11490688 DOI: 10.1016/j.molcel.2024.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/18/2024] [Accepted: 08/22/2024] [Indexed: 10/21/2024]
Abstract
Stimulator of interferon genes (STING) is activated in many pathophysiological conditions, leading to TBK1-dependent interferon production in higher organisms. However, primordial functions of STING independent of TBK1 are poorly understood. Here, through proteomics and bioinformatics approaches, we identify lysosomal biogenesis as an unexpected function of STING. Transcription factor EB (TFEB), an evolutionarily conserved regulator of lysosomal biogenesis and host defense, is activated by STING from multiple species, including humans, mice, and frogs. STING-mediated TFEB activation is independent of TBK1, but it requires STING trafficking and its conserved proton channel. GABARAP lipidation, stimulated by the channel of STING, is key for STING-dependent TFEB activation. STING stimulates global upregulation of TFEB-target genes, mediating lysosomal biogenesis and autophagy. TFEB supports cell survival during chronic sterile STING activation, a common condition in aging and age-related diseases. These results reveal a primordial function of STING in the biogenesis of lysosomes, essential organelles in immunity and cellular stress resistance.
Collapse
Affiliation(s)
- Bo Lv
- Aging Institute, University of Pittsburgh School of Medicine/University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA; Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - William A Dion
- Aging Institute, University of Pittsburgh School of Medicine/University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA
| | - Haoxiang Yang
- Aging Institute, University of Pittsburgh School of Medicine/University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA; Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Jinrui Xun
- Aging Institute, University of Pittsburgh School of Medicine/University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA; Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Do-Hyung Kim
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bokai Zhu
- Aging Institute, University of Pittsburgh School of Medicine/University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA; Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Jay Xiaojun Tan
- Aging Institute, University of Pittsburgh School of Medicine/University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA; Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
| |
Collapse
|
14
|
Gan N, Han Y, Zeng W, Jiang Y. TRPML1 gating modulation by allosteric mutations and lipids. eLife 2024; 13:RP100987. [PMID: 39400550 PMCID: PMC11473102 DOI: 10.7554/elife.100987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
Transient Receptor Potential Mucolipin 1 (TRPML1) is a lysosomal cation channel whose loss-of-function mutations directly cause the lysosomal storage disorder mucolipidosis type IV (MLIV). TRPML1 can be allosterically regulated by various ligands including natural lipids and small synthetic molecules and the channel undergoes a global movement propagated from ligand-induced local conformational changes upon activation. In this study, we identified a functionally critical residue, Tyr404, at the C-terminus of the S4 helix, whose mutations to tryptophan and alanine yield gain- and loss-of-function channels, respectively. These allosteric mutations mimic the ligand activation or inhibition of the TRPML1 channel without interfering with ligand binding and both mutant channels are susceptible to agonist or antagonist modulation, making them better targets for screening potent TRPML1 activators and inhibitors. We also determined the high-resolution structure of TRPML1 in complex with the PI(4,5)P2 inhibitor, revealing the structural basis underlying this lipid inhibition. In addition, an endogenous phospholipid likely from sphingomyelin is identified in the PI(4,5)P2-bound TRPML1 structure at the same hotspot for agonists and antagonists, providing a plausible structural explanation for the inhibitory effect of sphingomyelin on agonist activation.
Collapse
Affiliation(s)
- Ninghai Gan
- Howard Hughes Medical Institute and Department of Physiology, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Biophysics, University of Texas Southwestern Medical CenterDallasUnited States
| | - Yan Han
- Department of Biophysics, University of Texas Southwestern Medical CenterDallasUnited States
| | - Weizhong Zeng
- Howard Hughes Medical Institute and Department of Physiology, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Biophysics, University of Texas Southwestern Medical CenterDallasUnited States
| | - Youxing Jiang
- Howard Hughes Medical Institute and Department of Physiology, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Biophysics, University of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
15
|
Bonacina F, Zhang X, Manel N, Yvan-Charvet L, Razani B, Norata GD. Lysosomes in the immunometabolic reprogramming of immune cells in atherosclerosis. Nat Rev Cardiol 2024:10.1038/s41569-024-01072-4. [PMID: 39304748 DOI: 10.1038/s41569-024-01072-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/08/2024] [Indexed: 09/22/2024]
Abstract
Lysosomes have a central role in the disposal of extracellular and intracellular cargo and also function as metabolic sensors and signalling platforms in the immunometabolic reprogramming of macrophages and other immune cells in atherosclerosis. Lysosomes can rapidly sense the presence of nutrients within immune cells, thereby switching from catabolism of extracellular material to the recycling of intracellular cargo. Such a fine-tuned degradative response supports the generation of metabolic building blocks through effectors such as mTORC1 or TFEB. By coupling nutrients to downstream signalling and metabolism, lysosomes serve as a crucial hub for cellular function in innate and adaptive immune cells. Lysosomal dysfunction is now recognized to be a hallmark of atherogenesis. Perturbations in nutrient-sensing and signalling have profound effects on the capacity of immune cells to handle cholesterol, perform phagocytosis and efferocytosis, and limit the activation of the inflammasome and other inflammatory pathways. Strategies to improve lysosomal function hold promise as novel modulators of the immunoinflammatory response associated with atherosclerosis. In this Review, we describe the crosstalk between lysosomal biology and immune cell function and polarization, with a particular focus on cellular immunometabolic reprogramming in the context of atherosclerosis.
Collapse
Affiliation(s)
- Fabrizia Bonacina
- Department of Excellence of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy
| | - Xiangyu Zhang
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
- Pittsburgh VA Medical Center, Pittsburgh, PA, USA
| | - Nicolas Manel
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Fédération Hospitalo-Universitaire (FHU), Oncoage, Nice, France
| | - Babak Razani
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
- Pittsburgh VA Medical Center, Pittsburgh, PA, USA
| | - Giuseppe D Norata
- Department of Excellence of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
16
|
Gan N, Han Y, Zeng W, Jiang Y. TRPML1 gating modulation by allosteric mutations and lipids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.04.602033. [PMID: 39005349 PMCID: PMC11245044 DOI: 10.1101/2024.07.04.602033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Transient Receptor Potential Mucolipin 1 (TRPML1) is a lysosomal cation channel whose loss-of-function mutations directly cause the lysosomal storage disorder mucolipidosis type IV (MLIV). TRPML1 can be allosterically regulated by various ligands including natural lipids and small synthetic molecules and the channel undergoes a global movement propagated from ligand-induced local conformational changes upon activation. In this study, we identified a functionally critical residue, Tyr404, at the C-terminus of the S4 helix, whose mutations to tryptophan and alanine yield gain- and loss-of-function channels, respectively. These allosteric mutations mimic the ligand activation or inhibition of the TRPML1 channel without interfering with ligand binding and both mutant channels are susceptible to agonist or antagonist modulation, making them better targets for screening potent TRPML1 activators and inhibitors. We also determined the high-resolution structure of TRPML1 in complex with the PI(4,5)P2 inhibitor, revealing the structural basis underlying this lipid inhibition. In addition, an endogenous phospholipid likely from sphingomyelin is identified in the PI(4,5)P2-bound TRPML1 structure at the same hotspot for agonists and antagonists, providing a plausible structural explanation for the inhibitory effect of sphingomyelin on agonist activation.
Collapse
Affiliation(s)
- Ninghai Gan
- Howard Hughes Medical Institute and Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yan Han
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Weizhong Zeng
- Howard Hughes Medical Institute and Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Youxing Jiang
- Howard Hughes Medical Institute and Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
17
|
Qi J, Li Q, Xin T, Lu Q, Lin J, Zhang Y, Luo H, Zhang F, Xing Y, Wang W, Cui D, Wang M. MCOLN1/TRPML1 in the lysosome: a promising target for autophagy modulation in diverse diseases. Autophagy 2024; 20:1712-1722. [PMID: 38522082 PMCID: PMC11262240 DOI: 10.1080/15548627.2024.2333715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/18/2024] [Indexed: 03/26/2024] Open
Abstract
MCOLN1/TRPML1 is a nonselective cationic channel specifically localized to the late endosome and lysosome. With its property of mediating the release of several divalent cations such as Ca2+, Zn2+ and Fe2+ from the lysosome to the cytosol, MCOLN1 plays a pivotal role in regulating a variety of cellular events including endocytosis, exocytosis, lysosomal biogenesis, lysosome reformation, and especially in Macroautophagy/autophagy. Autophagy is a highly conserved catabolic process that maintains cytoplasmic integrity by removing superfluous proteins and damaged organelles. Acting as the terminal compartments, lysosomes are crucial for the completion of the autophagy process. This review delves into the emerging role of MCOLN1 in controlling the autophagic process by regulating lysosomal ionic homeostasis, thereby governing the fundamental functions of lysosomes. Furthermore, this review summarizes the physiological relevance as well as molecular mechanisms through which MCOLN1 orchestrates autophagy, consequently influencing mitochondria turnover, cell apoptosis and migration. In addition, we have illustrated the implications of MCOLN1-regulated autophagy in the pathological process of cancer and myocardial ischemia-reperfusion (I/R) injury. In summary, given the involvement of MCOLN1-mediated autophagy in the pathogenesis of cancer and myocardial I/R injury, targeting MCOLN1 May provide clues for developing new therapeutic strategies for the treatment of these diseases. Exploring the regulation of MCOLN1-mediated autophagy in diverse diseases contexts will surely broaden our understanding of this pathway and offer its potential as a promising drug target.Abbreviation: CCCP:carbonyl cyanide3-chlorophenylhydrazone; CQ:chloroquine; HCQ: hydroxychloroquine;I/R: ischemia-reperfusion; MAP1LC3/LC3:microtubule associated protein 1 light chain 3; MCOLN1/TRPML1:mucolipin TRP cation channel 1; MLIV: mucolipidosis type IV; MTORC1:MTOR complex 1; ROS: reactive oxygenspecies; SQSTM1/p62: sequestosome 1.
Collapse
Affiliation(s)
- Jiansong Qi
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Qingqing Li
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tianli Xin
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qixia Lu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jinyi Lin
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yang Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Haiting Luo
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Feifei Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yanhong Xing
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wuyang Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Derong Cui
- Department of Anesthesiology, The Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengmeng Wang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital, China of Medical University, Shenyang, LiaoningChina
| |
Collapse
|
18
|
Schwickert KK, Glitscher M, Bender D, Benz NI, Murra R, Schwickert K, Pfalzgraf S, Schirmeister T, Hellmich UA, Hildt E. Zika virus replication is impaired by a selective agonist of the TRPML2 ion channel. Antiviral Res 2024; 228:105940. [PMID: 38901736 DOI: 10.1016/j.antiviral.2024.105940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/21/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
The flavivirus genus includes human pathogenic viruses such as Dengue (DENV), West Nile (WNV) and Zika virus (ZIKV) posing a global health threat due to limited treatment options. Host ion channels are crucial for various viral life cycle stages, but their potential as targets for antivirals is often not fully realized due to the lack of selective modulators. Here, we observe that treatment with ML2-SA1, an agonist for the human endolysosomal cation channel TRPML2, impairs ZIKV replication. Upon ML2-SA1 treatment, levels of intracellular genomes and number of released virus particles of two different ZIKV isolates were significantly reduced and cells displayed enlarged vesicular structures and multivesicular bodies with ZIKV envelope protein accumulation. However, no increased ZIKV degradation in lysosomal compartments was observed. Rather, the antiviral effect of ML2-SA1 seemed to manifest by the compound's negative impact on genome replication. Moreover, ML2-SA1 treatment also led to intracellular cholesterol accumulation. ZIKV and many other viruses including the Orthohepevirus Hepatitis E virus (HEV) rely on the endolysosomal system and are affected by intracellular cholesterol levels to complete their life cycle. Since we observed that ML2-SA1 also negatively impacted HEV infections in vitro, this compound may harbor a broader antiviral potential through perturbing the intracellular cholesterol distribution. Besides indicating that TRPML2 may be a promising target for combatting viral infections, we uncover a tentative connection between this protein and cholesterol distribution within the context of infectious diseases.
Collapse
Affiliation(s)
- Kerstin K Schwickert
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University, Jena, Germany; Department of Virology, Paul-Ehrlich-Institut, 63225, Langen, Germany; Department of Chemistry, Johannes Gutenberg-University, 55122, Mainz, Germany
| | - Mirco Glitscher
- Department of Virology, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Daniela Bender
- Department of Virology, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Nuka Ivalu Benz
- Department of Virology, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Robin Murra
- Department of Virology, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Kevin Schwickert
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, 55122, Mainz, Germany
| | - Steffen Pfalzgraf
- Department of Virology, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, 55122, Mainz, Germany
| | - Ute A Hellmich
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University, Jena, Germany; Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe University, Frankfurt, Germany; Cluster of Excellence "Balance of the Microverse", Friedrich Schiller University, Jena, Germany.
| | - Eberhard Hildt
- Department of Virology, Paul-Ehrlich-Institut, 63225, Langen, Germany.
| |
Collapse
|
19
|
Wünkhaus D, Tang R, Nyame K, Laqtom NN, Schweizer M, Scotto Rosato A, Krogsæter EK, Wollnik C, Abu-Remaileh M, Grimm C, Hermey G, Kuhn R, Gruber-Schoffnegger D, Markmann S. TRPML1 activation ameliorates lysosomal phenotypes in CLN3 deficient retinal pigment epithelial cells. Sci Rep 2024; 14:17469. [PMID: 39080379 PMCID: PMC11289453 DOI: 10.1038/s41598-024-67479-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/11/2024] [Indexed: 08/02/2024] Open
Abstract
Mutations in the lysosomal membrane protein CLN3 cause Juvenile Neuronal Ceroid Lipofuscinosis (JNCL). Activation of the lysosomal ion channel TRPML1 has previously been shown to be beneficial in several neurodegenerative disease models. Here, we tested whether TRPML1 activation rescues disease-associated phenotypes in CLN3-deficient retinal pigment epithelial (ARPE-19 CLN3-KO) cells. ARPE-19 CLN3-KO cells accumulate LAMP1 positive organelles and show lysosomal storage of mitochondrial ATPase subunit C (SubC), globotriaosylceramide (Gb3), and glycerophosphodiesters (GPDs), whereas lysosomal bis(monoacylglycero)phosphate (BMP/LBPA) lipid levels were significantly decreased. Activation of TRPML1 reduced lysosomal storage of Gb3 and SubC but failed to restore BMP levels in CLN3-KO cells. TRPML1-mediated decrease of storage was TFEB-independent, and we identified TRPML1-mediated enhanced lysosomal exocytosis as a likely mechanism for clearing storage including GPDs. Therefore, ARPE-19 CLN3-KO cells represent a human cell model for CLN3 disease showing many of the described core lysosomal deficits, some of which can be improved using TRPML1 agonists.
Collapse
Affiliation(s)
| | - R Tang
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Munich, Germany
- Charles River Laboratory, Chesterford Research Park, Saffron Walden, UK
| | - K Nyame
- Department of Chemical Engineering and of Genetics and Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - N N Laqtom
- Department of Chemical Engineering and of Genetics and Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Biological and Environmental Science & Engineering Division, King Abdullah University Of Science And Technology, Thuwal, Saudi Arabia
| | - M Schweizer
- Core Facility Morphology and Electronmicroscopy, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - A Scotto Rosato
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Munich, Germany
| | - E K Krogsæter
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Munich, Germany
- Gladstone Institutes, San Francisco, CA, USA
| | | | - M Abu-Remaileh
- Department of Chemical Engineering and of Genetics and Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - C Grimm
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Munich, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology, Infection and Pandemic Research IIP, Munich/Frankfurt, Germany
| | - G Hermey
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - R Kuhn
- Evotec SE, Hamburg, Germany
| | | | | |
Collapse
|
20
|
Calvo B, Torres-Vidal P, Delrio-Lorenzo A, Rodriguez C, Aulestia FJ, Rojo-Ruiz J, McVeigh BM, Moiseenkova-Bell V, Yule DI, Garcia-Sancho J, Patel S, Alonso MT. Direct measurements of luminal Ca 2+ with endo-lysosomal GFP-aequorin reveal functional IP 3 receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.11.547422. [PMID: 39211134 PMCID: PMC11360962 DOI: 10.1101/2023.07.11.547422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Endo-lysosomes are considered acidic Ca 2+ stores but direct measurements of luminal Ca 2+ within them are limited. Here we report that the Ca 2+ -sensitive luminescent protein aequorin does not reconstitute with its cofactor at highly acidic pH but that a significant fraction of the probe is functional within a mildly acidic compartment when targeted to the endo-lysosomal system. We leveraged this probe (ELGA) to report Ca 2+ dynamics in this compartment. We show that Ca 2+ uptake is ATP-dependent and sensitive to blockers of endoplasmic reticulum Ca 2+ pumps. We find that the Ca 2+ mobilizing messenger IP 3 which typically targets the endoplasmic reticulum evokes robust luminal responses in wild type cells, but not in IP 3 receptor knock-out cells. Responses were comparable to those evoked by activation of the endo-lysosomal ion channel TRPML1. Stimulation with IP 3 -forming agonists also mobilized the store in intact cells. Super-resolution microscopy analysis confirmed the presence of IP 3 receptors within the endo-lysosomal system, both in live and fixed cells. Our data reveal a physiologically-relevant, IP 3 -sensitive store of Ca 2+ within the endo-lysosomal system.
Collapse
|
21
|
Kang H, Choi SW, Kim JY, Oh SJ, Kim SJ, Lee MS. ER-to-lysosome Ca 2+ refilling followed by K + efflux-coupled store-operated Ca 2+ entry in inflammasome activation and metabolic inflammation. eLife 2024; 12:RP87561. [PMID: 38953285 PMCID: PMC11219040 DOI: 10.7554/elife.87561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024] Open
Abstract
We studied lysosomal Ca2+ in inflammasome. Lipopolysaccharide (LPS) + palmitic acid (PA) decreased lysosomal Ca2+ ([Ca2+]Lys) and increased [Ca2+]i through mitochondrial ROS, which was suppressed in Trpm2-KO macrophages. Inflammasome activation and metabolic inflammation in adipose tissue of high-fat diet (HFD)-fed mice were ameliorated by Trpm2 KO. ER→lysosome Ca2+ refilling occurred after lysosomal Ca2+ release whose blockade attenuated LPS + PA-induced inflammasome. Subsequently, store-operated Ca2+entry (SOCE) was activated whose inhibition suppressed inflammasome. SOCE was coupled with K+ efflux whose inhibition reduced ER Ca2+ content ([Ca2+]ER) and impaired [Ca2+]Lys recovery. LPS + PA activated KCa3.1 channel, a Ca2+-activated K+ channel. Inhibitors of KCa3.1 channel or Kcnn4 KO reduced [Ca2+]ER, attenuated increase of [Ca2+]i or inflammasome activation by LPS + PA, and ameliorated HFD-induced inflammasome or metabolic inflammation. Lysosomal Ca2+ release induced delayed JNK and ASC phosphorylation through CAMKII-ASK1. These results suggest a novel role of lysosomal Ca2+ release sustained by ER→lysosome Ca2+ refilling and K+ efflux through KCa3.1 channel in inflammasome activation and metabolic inflammation.
Collapse
Affiliation(s)
- Hyereen Kang
- Severance Biomedical Science Institute, Yonsei University College of MedicineSeoulRepublic of Korea
| | - Seong Woo Choi
- Department of Physiology and Ion Channel Disease Research Center, Dongguk University College of MedicineGyeongjuRepublic of Korea
| | - Joo Young Kim
- Department of Pharmacology and Brain Korea 21 Project for Medical Sciences, Yonsei University College of MedicineSeoulRepublic of Korea
| | - Soo-Jin Oh
- Soonchunhyang Institute of Medi-bio Science and Division of Endocrinology, Department of Internal Medicine, Soonchunhyang University College of MedicineCheonanRepublic of Korea
| | - Sung Joon Kim
- Department of Physiology, Ischemic/Hypoxic Disease Institute, Seoul National University College of MedicineSeoulRepublic of Korea
| | - Myung-Shik Lee
- Severance Biomedical Science Institute, Yonsei University College of MedicineSeoulRepublic of Korea
- Soonchunhyang Institute of Medi-bio Science and Division of Endocrinology, Department of Internal Medicine, Soonchunhyang University College of MedicineCheonanRepublic of Korea
| |
Collapse
|
22
|
Hu M, Feng X, Liu Q, Liu S, Huang F, Xu H. The ion channels of endomembranes. Physiol Rev 2024; 104:1335-1385. [PMID: 38451235 PMCID: PMC11381013 DOI: 10.1152/physrev.00025.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 03/08/2024] Open
Abstract
The endomembrane system consists of organellar membranes in the biosynthetic pathway [endoplasmic reticulum (ER), Golgi apparatus, and secretory vesicles] as well as those in the degradative pathway (early endosomes, macropinosomes, phagosomes, autophagosomes, late endosomes, and lysosomes). These endomembrane organelles/vesicles work together to synthesize, modify, package, transport, and degrade proteins, carbohydrates, and lipids, regulating the balance between cellular anabolism and catabolism. Large ion concentration gradients exist across endomembranes: Ca2+ gradients for most endomembrane organelles and H+ gradients for the acidic compartments. Ion (Na+, K+, H+, Ca2+, and Cl-) channels on the organellar membranes control ion flux in response to cellular cues, allowing rapid informational exchange between the cytosol and organelle lumen. Recent advances in organelle proteomics, organellar electrophysiology, and luminal and juxtaorganellar ion imaging have led to molecular identification and functional characterization of about two dozen endomembrane ion channels. For example, whereas IP3R1-3 channels mediate Ca2+ release from the ER in response to neurotransmitter and hormone stimulation, TRPML1-3 and TMEM175 channels mediate lysosomal Ca2+ and H+ release, respectively, in response to nutritional and trafficking cues. This review aims to summarize the current understanding of these endomembrane channels, with a focus on their subcellular localizations, ion permeation properties, gating mechanisms, cell biological functions, and disease relevance.
Collapse
Affiliation(s)
- Meiqin Hu
- Department of Neurology and Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Xinghua Feng
- Department of Neurology and Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Qiang Liu
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Siyu Liu
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Fangqian Huang
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Haoxing Xu
- Department of Neurology and Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- New Cornerstone Science Laboratory, Liangzhu Laboratory and School of Basic Medical Sciences, Zhejiang University, Hangzhou, People's Republic of China
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
23
|
Bretou M, Sannerud R, Escamilla-Ayala A, Leroy T, Vrancx C, Van Acker ZP, Perdok A, Vermeire W, Vorsters I, Van Keymolen S, Maxson M, Pavie B, Wierda K, Eskelinen EL, Annaert W. Accumulation of APP C-terminal fragments causes endolysosomal dysfunction through the dysregulation of late endosome to lysosome-ER contact sites. Dev Cell 2024; 59:1571-1592.e9. [PMID: 38626765 DOI: 10.1016/j.devcel.2024.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/02/2023] [Accepted: 03/20/2024] [Indexed: 04/18/2024]
Abstract
Neuronal endosomal and lysosomal abnormalities are among the early changes observed in Alzheimer's disease (AD) before plaques appear. However, it is unclear whether distinct endolysosomal defects are temporally organized and how altered γ-secretase function or amyloid precursor protein (APP) metabolism contribute to these changes. Inhibiting γ-secretase chronically, in mouse embryonic fibroblast and hippocampal neurons, led to a gradual endolysosomal collapse initiated by decreased lysosomal calcium and increased cholesterol, causing downstream defects in endosomal recycling and maturation. This endolysosomal demise is γ-secretase dependent, requires membrane-tethered APP cytoplasmic domains, and is rescued by APP depletion. APP C-terminal fragments (CTFs) localized to late endosome/lysosome-endoplasmic reticulum contacts; an excess of APP-CTFs herein reduced lysosomal Ca2+ refilling from the endoplasmic reticulum, promoting cholesterol accretion. Tonic regulation by APP-CTFs provides a mechanistic explanation for their cellular toxicity: failure to timely degrade APP-CTFs sustains downstream signaling, instigating lysosomal dyshomeostasis, as observed in prodromal AD. This is the opposite of substrates such as Notch, which require intramembrane proteolysis to initiate signaling.
Collapse
Affiliation(s)
- Marine Bretou
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Ragna Sannerud
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | | | - Tom Leroy
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Céline Vrancx
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Zoë P Van Acker
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Anika Perdok
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Wendy Vermeire
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Inge Vorsters
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Sophie Van Keymolen
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Michelle Maxson
- Cell Biology Program, The Hospital for Sick Children, Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Benjamin Pavie
- VIB-BioImaging Core, VIB-Center for Brain and Disease Research, Leuven, Belgium
| | - Keimpe Wierda
- Electrophysiology Expertise Unit, VIB-Center for Brain and Disease Research, Leuven, Belgium
| | | | - Wim Annaert
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
24
|
Cen J, Hu N, Shen J, Gao Y, Lu H. Pathological Functions of Lysosomal Ion Channels in the Central Nervous System. Int J Mol Sci 2024; 25:6565. [PMID: 38928271 PMCID: PMC11203704 DOI: 10.3390/ijms25126565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Lysosomes are highly dynamic organelles that maintain cellular homeostasis and regulate fundamental cellular processes by integrating multiple metabolic pathways. Lysosomal ion channels such as TRPML1-3, TPC1/2, ClC6/7, CLN7, and TMEM175 mediate the flux of Ca2+, Cl-, Na+, H+, and K+ across lysosomal membranes in response to osmotic stimulus, nutrient-dependent signals, and cellular stresses. These ion channels serve as the crucial transducers of cell signals and are essential for the regulation of lysosomal biogenesis, motility, membrane contact site formation, and lysosomal homeostasis. In terms of pathophysiology, genetic variations in these channel genes have been associated with the development of lysosomal storage diseases, neurodegenerative diseases, inflammation, and cancer. This review aims to discuss the current understanding of the role of these ion channels in the central nervous system and to assess their potential as drug targets.
Collapse
Affiliation(s)
| | | | | | - Yongjing Gao
- Institute of Pain Medicine and Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China; (J.C.); (N.H.); (J.S.)
| | - Huanjun Lu
- Institute of Pain Medicine and Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China; (J.C.); (N.H.); (J.S.)
| |
Collapse
|
25
|
Chen W, Motsinger MM, Li J, Bohannon KP, Hanson PI. Ca 2+-sensor ALG-2 engages ESCRTs to enhance lysosomal membrane resilience to osmotic stress. Proc Natl Acad Sci U S A 2024; 121:e2318412121. [PMID: 38781205 PMCID: PMC11145288 DOI: 10.1073/pnas.2318412121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/10/2024] [Indexed: 05/25/2024] Open
Abstract
Lysosomes are central players in cellular catabolism, signaling, and metabolic regulation. Cellular and environmental stresses that damage lysosomal membranes can compromise their function and release toxic content into the cytoplasm. Here, we examine how cells respond to osmotic stress within lysosomes. Using sensitive assays of lysosomal leakage and rupture, we examine acute effects of the osmotic disruptant glycyl-L-phenylalanine 2-naphthylamide (GPN). Our findings reveal that low concentrations of GPN rupture a small fraction of lysosomes, but surprisingly trigger Ca2+ release from nearly all. Chelating cytoplasmic Ca2+ makes lysosomes more sensitive to GPN-induced rupture, suggesting a role for Ca2+ in lysosomal membrane resilience. GPN-elicited Ca2+ release causes the Ca2+-sensor Apoptosis Linked Gene-2 (ALG-2), along with Endosomal Sorting Complex Required for Transport (ESCRT) proteins it interacts with, to redistribute onto lysosomes. Functionally, ALG-2, but not its ESCRT binding-disabled ΔGF122 splice variant, increases lysosomal resilience to osmotic stress. Importantly, elevating juxta-lysosomal Ca2+ without membrane damage by activating TRPML1 also recruits ALG-2 and ESCRTs, protecting lysosomes from subsequent osmotic rupture. These findings reveal that Ca2+, through ALG-2, helps bring ESCRTs to lysosomes to enhance their resilience and maintain organelle integrity in the face of osmotic stress.
Collapse
Affiliation(s)
- Wei Chen
- Department of Biological Chemistry, University of Michigan School of Medicine, Ann Arbor, MI48109
| | - Madeline M. Motsinger
- Department of Biological Chemistry, University of Michigan School of Medicine, Ann Arbor, MI48109
| | - Jiaqian Li
- Department of Biological Chemistry, University of Michigan School of Medicine, Ann Arbor, MI48109
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI48109
| | - Kevin P. Bohannon
- Department of Biological Chemistry, University of Michigan School of Medicine, Ann Arbor, MI48109
| | - Phyllis I. Hanson
- Department of Biological Chemistry, University of Michigan School of Medicine, Ann Arbor, MI48109
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI48109
| |
Collapse
|
26
|
Ouologuem L, Bartel K. Endolysosomal transient receptor potential mucolipins and two-pore channels: implications for cancer immunity. Front Immunol 2024; 15:1389194. [PMID: 38840905 PMCID: PMC11150529 DOI: 10.3389/fimmu.2024.1389194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/09/2024] [Indexed: 06/07/2024] Open
Abstract
Past research has identified that cancer cells sustain several cancer hallmarks by impairing function of the endolysosomal system (ES). Thus, maintaining the functional integrity of endolysosomes is crucial, which heavily relies on two key protein families: soluble hydrolases and endolysosomal membrane proteins. Particularly members of the TPC (two-pore channel) and TRPML (transient receptor potential mucolipins) families have emerged as essential regulators of ES function as a potential target in cancer therapy. Targeting TPCs and TRPMLs has demonstrated significant impact on multiple cancer hallmarks, including proliferation, growth, migration, and angiogenesis both in vitro and in vivo. Notably, endosomes and lysosomes also actively participate in various immune regulatory mechanisms, such as phagocytosis, antigen presentation, and the release of proinflammatory mediators. Yet, knowledge about the role of TPCs and TRPMLs in immunity is scarce. This prompts a discussion regarding the potential role of endolysosomal ion channels in aiding cancers to evade immune surveillance and destruction. Specifically, understanding the interplay between endolysosomal ion channels and cancer immunity becomes crucial. Our review aims to comprehensively explore the current knowledge surrounding the roles of TPCs and TRPMLs in immunity, whilst emphasizing the critical need to elucidate their specific contributions to cancer immunity by pointing out current research gaps that should be addressed.
Collapse
Affiliation(s)
| | - Karin Bartel
- Department of Pharmacy, Drug Delivery, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
27
|
Klein AD, Petruzzi KL, Lee C, Overholtzer M. Stress-induced microautophagy is coordinated with lysosome biogenesis and regulated by PIKfyve. Mol Biol Cell 2024; 35:ar70. [PMID: 38536415 PMCID: PMC11151102 DOI: 10.1091/mbc.e23-08-0332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 04/18/2024] Open
Abstract
Lysosome turnover and biogenesis are induced in response to treatment of cells with agents that cause membrane rupture, but whether other stress conditions engage similar homeostatic mechanisms is not well understood. Recently we described a form of selective turnover of lysosomes that is induced by metabolic stress or by treatment of cells with ionophores or lysosomotropic agents, involving the formation of intraluminal vesicles within intact organelles through microautophagy. Selective turnover involves noncanonical autophagy and the lipidation of LC3 onto lysosomal membranes, as well as the autophagy gene-dependent formation of intraluminal vesicles. Here, we find a form of microautophagy induction that requires activity of the lipid kinase PIKfyve and is associated with the nuclear translocation of TFEB, a known mediator of lysosome biogenesis. We show that LC3 undergoes turnover during this process, and that PIKfyve is required for the formation of intraluminal vesicles and LC3 turnover, but not for LC3 lipidation onto lysosomal membranes, demonstrating that microautophagy is regulated by PIKfyve downstream of noncanonical autophagy. We further show that TFEB activation requires noncanonical autophagy but not PIKfyve, distinguishing the regulation of biogenesis from microautophagy occurring in response to agents that induce lysosomal stress.
Collapse
Affiliation(s)
- Alison D. Klein
- BCMB Graduate Program, Weill Cornell Medical College, New York, NY 10065
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Kayla L. Petruzzi
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Chan Lee
- BCMB Graduate Program, Weill Cornell Medical College, New York, NY 10065
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Michael Overholtzer
- BCMB Graduate Program, Weill Cornell Medical College, New York, NY 10065
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| |
Collapse
|
28
|
Yuan Y, Jaślan D, Rahman T, Bracher F, Grimm C, Patel S. Coordinating activation of endo-lysosomal two-pore channels and TRP mucolipins. J Physiol 2024; 602:1623-1636. [PMID: 38598430 DOI: 10.1113/jp283829] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/12/2024] [Indexed: 04/12/2024] Open
Abstract
Two-pore channels and TRP mucolipins are ubiquitous endo-lysosomal cation channels of pathophysiological relevance. Both are Ca2+-permeable and regulated by phosphoinositides, principally PI(3,5)P2. Accumulating evidence has uncovered synergistic channel activation by PI(3,5)P2 and endogenous metabolites such as the Ca2+ mobilizing messenger NAADP, synthetic agonists including approved drugs and physical cues such as voltage and osmotic pressure. Here, we provide an overview of this coordination.
Collapse
Affiliation(s)
- Yu Yuan
- Department of Cell and Developmental Biology, UCL, London, UK
| | - Dawid Jaślan
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilian University, Munich, Germany
| | - Taufiq Rahman
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Franz Bracher
- Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians University, Munich, Germany
| | - Christian Grimm
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilian University, Munich, Germany
- Immunology, Infection and Pandemic Research IIP, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
| | - Sandip Patel
- Department of Cell and Developmental Biology, UCL, London, UK
| |
Collapse
|
29
|
Castillo-Velasquez C, Matamala E, Becerra D, Orio P, Brauchi SE. Optical recordings of organellar membrane potentials and the components of membrane conductance in lysosomes. J Physiol 2024; 602:1637-1654. [PMID: 38625711 DOI: 10.1113/jp283825] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 03/20/2024] [Indexed: 04/17/2024] Open
Abstract
The eukaryotic cell is highly compartmentalized with organelles. Owing to their function in transporting metabolites, metabolic intermediates and byproducts of metabolic activity, organelles are important players in the orchestration of cellular function. Recent advances in optical methods for interrogating the different aspects of organellar activity promise to revolutionize our ability to dissect cellular processes with unprecedented detail. The transport activity of organelles is usually coupled to the transport of charged species; therefore, it is not only associated with the metabolic landscape but also entangled with membrane potentials. In this context, the targeted expression of fluorescent probes for interrogating organellar membrane potential (Ψorg) emerges as a powerful approach, offering less-invasive conditions and technical simplicity to interrogate cellular signalling and metabolism. Different research groups have made remarkable progress in adapting a variety of optical methods for measuring and monitoring Ψorg. These approaches include using potentiometric dyes, genetically encoded voltage indicators, hybrid fluorescence resonance energy transfer sensors and photoinduced electron transfer systems. These studies have provided consistent values for the resting potential of single-membrane organelles, such as lysosomes, the Golgi and the endoplasmic reticulum. We can foresee the use of dynamic measurements of Ψorg to study fundamental problems in organellar physiology that are linked to serious cellular disorders. Here, we present an overview of the available techniques, a survey of the resting membrane potential of internal membranes and, finally, an open-source mathematical model useful to interpret and interrogate membrane-bound structures of small volume by using the lysosome as an example.
Collapse
Affiliation(s)
- Cristian Castillo-Velasquez
- Department of Physiology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Valdivia, Chile
| | - Ella Matamala
- Department of Physiology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Valdivia, Chile
| | - Diego Becerra
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Patricio Orio
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Instituto de Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Sebastian E Brauchi
- Department of Physiology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Valdivia, Chile
| |
Collapse
|
30
|
Servín Muñoz IV, Ortuño-Sahagún D, Griñán-Ferré C, Pallàs M, González-Castillo C. Alterations in Proteostasis Mechanisms in Niemann-Pick Type C Disease. Int J Mol Sci 2024; 25:3806. [PMID: 38612616 PMCID: PMC11011983 DOI: 10.3390/ijms25073806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 04/14/2024] Open
Abstract
Niemann-Pick Type C (NPC) represents an autosomal recessive disorder with an incidence rate of 1 in 150,000 live births, classified within lysosomal storage diseases (LSDs). The abnormal accumulation of unesterified cholesterol characterizes the pathophysiology of NPC. This phenomenon is not unique to NPC, as analogous accumulations have also been observed in Alzheimer's disease, Parkinson's disease, and other neurodegenerative disorders. Interestingly, disturbances in the folding of the mutant protein NPC1 I1061T are accompanied by the aggregation of proteins such as hyperphosphorylated tau, α-synuclein, TDP-43, and β-amyloid peptide. These accumulations suggest potential disruptions in proteostasis, a regulatory process encompassing four principal mechanisms: synthesis, folding, maintenance of folding, and protein degradation. The dysregulation of these processes leads to excessive accumulation of abnormal proteins that impair cell function and trigger cytotoxicity. This comprehensive review delineates reported alterations across proteostasis mechanisms in NPC, encompassing changes in processes from synthesis to degradation. Additionally, it discusses therapeutic interventions targeting pharmacological facets of proteostasis in NPC. Noteworthy among these interventions is valproic acid, a histone deacetylase inhibitor (HDACi) that modulates acetylation during NPC1 synthesis. In addition, various therapeutic options addressing protein folding modulation, such as abiraterone acetate, DHBP, calnexin, and arimoclomol, are examined. Additionally, treatments impeding NPC1 degradation, exemplified by bortezomib and MG132, are explored as potential strategies. This review consolidates current knowledge on proteostasis dysregulation in NPC and underscores the therapeutic landscape targeting diverse facets of this intricate process.
Collapse
Affiliation(s)
- Iris Valeria Servín Muñoz
- Laboratorio de Neuroinmunobiología Molecular, Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Daniel Ortuño-Sahagún
- Laboratorio de Neuroinmunobiología Molecular, Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Christian Griñán-Ferré
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, Universitat de Barcelona, 08028 Barcelona, Spain; (C.G.-F.); (M.P.)
- Centro de Investigación Biomédica en Red (CiberNed), Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, 28220 Madrid, Spain
| | - Mercè Pallàs
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, Universitat de Barcelona, 08028 Barcelona, Spain; (C.G.-F.); (M.P.)
- Centro de Investigación Biomédica en Red (CiberNed), Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, 28220 Madrid, Spain
| | - Celia González-Castillo
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, Zapopan 45201, Mexico
| |
Collapse
|
31
|
Li X, Xiang C, Zhu S, Guo J, Liu C, Wang A, Cao J, Lu Y, Neculai D, Xu P, Feng XH. SNX8 enables lysosome reformation and reverses lysosomal storage disorder. Nat Commun 2024; 15:2553. [PMID: 38519472 PMCID: PMC10959956 DOI: 10.1038/s41467-024-46705-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/06/2024] [Indexed: 03/25/2024] Open
Abstract
Lysosomal Storage Disorders (LSDs), which share common phenotypes, including enlarged lysosomes and defective lysosomal storage, are caused by mutations in lysosome-related genes. Although gene therapies and enzyme replacement therapies have been explored, there are currently no effective routine therapies against LSDs. During lysosome reformation, which occurs when the functional lysosome pool is reduced, lysosomal lipids and proteins are recycled to restore lysosome functions. Here we report that the sorting nexin protein SNX8 promotes lysosome tubulation, a process that is required for lysosome reformation, and that loss of SNX8 leads to phenotypes characteristic of LSDs in human cells. SNX8 overexpression rescued features of LSDs in cells, and AAV-based delivery of SNX8 to the brain rescued LSD phenotypes in mice. Importantly, by screening a natural compound library, we identified three small molecules that enhanced SNX8-lysosome binding and reversed LSD phenotypes in human cells and in mice. Altogether, our results provide a potential solution for the treatment of LSDs.
Collapse
Affiliation(s)
- Xinran Li
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, 321000, Shaoxing, Zhejiang, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, 311200, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Cong Xiang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, 321000, Shaoxing, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Shilei Zhu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, 321000, Shaoxing, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Jiansheng Guo
- Center of Cryo-Electron Microscopy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chang Liu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, 321000, Shaoxing, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Ailian Wang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, 321000, Shaoxing, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Jin Cao
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, 321000, Shaoxing, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Yan Lu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
- Department of Cell Biology, and Department of General Surgery of Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dante Neculai
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
- Department of Cell Biology, and Department of General Surgery of Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pinglong Xu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, 321000, Shaoxing, Zhejiang, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, 311200, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Xin-Hua Feng
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, Zhejiang, China.
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, 321000, Shaoxing, Zhejiang, China.
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China.
- The Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
32
|
Wang Z, Chen M, Su Q, Morais TDC, Wang Y, Nazginov E, Pillai AR, Qian F, Shi Y, Yu Y. Molecular and structural basis of the dual regulation of the polycystin-2 ion channel by small-molecule ligands. Proc Natl Acad Sci U S A 2024; 121:e2316230121. [PMID: 38483987 PMCID: PMC10962963 DOI: 10.1073/pnas.2316230121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/12/2024] [Indexed: 03/19/2024] Open
Abstract
Mutations in the PKD2 gene, which encodes the polycystin-2 (PC2, also called TRPP2) protein, lead to autosomal dominant polycystic kidney disease (ADPKD). As a member of the transient receptor potential (TRP) channel superfamily, PC2 functions as a non-selective cation channel. The activation and regulation of the PC2 channel are largely unknown, and direct binding of small-molecule ligands to this channel has not been reported. In this work, we found that most known small-molecule agonists of the mucolipin TRP (TRPML) channels inhibit the activity of the PC2_F604P, a gain-of-function mutant of the PC2 channel. However, two of them, ML-SA1 and SF-51, have dual regulatory effects, with low concentration further activating PC2_F604P, and high concentration leading to inactivation of the channel. With two cryo-electron microscopy (cryo-EM) structures, a molecular docking model, and mutagenesis results, we identified two distinct binding sites of ML-SA1 in PC2_F604P that are responsible for activation and inactivation, respectively. These results provide structural and functional insights into how ligands regulate PC2 channel function through unusual mechanisms and may help design compounds that are more efficient and specific in regulating the PC2 channel and potentially also for ADPKD treatment.
Collapse
Affiliation(s)
- Zhifei Wang
- Department of Biological Sciences, St. John’s University, Queens, NY11375
| | - Mengying Chen
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang province310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang province310024, China
- Beijing Frontier Research Center for Biological Structures, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Qiang Su
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang province310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang province310024, China
| | - Tiago D. C. Morais
- Department of Biological Sciences, St. John’s University, Queens, NY11375
| | - Yan Wang
- Department of Biological Sciences, St. John’s University, Queens, NY11375
| | - Elianna Nazginov
- Department of Biological Sciences, St. John’s University, Queens, NY11375
| | - Akhilraj R. Pillai
- Department of Biological Sciences, St. John’s University, Queens, NY11375
| | - Feng Qian
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD21201
| | - Yigong Shi
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang province310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang province310024, China
- Beijing Frontier Research Center for Biological Structures, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Yong Yu
- Department of Biological Sciences, St. John’s University, Queens, NY11375
| |
Collapse
|
33
|
Ha HT, Liu S, Nguyen XT, Vo LK, Leong NC, Nguyen DT, Balamurugan S, Lim PY, Wu Y, Seong E, Nguyen TQ, Oh J, Wenk MR, Cazenave-Gassiot A, Yapici Z, Ong WY, Burmeister M, Nguyen LN. Lack of SPNS1 results in accumulation of lysolipids and lysosomal storage disease in mouse models. JCI Insight 2024; 9:e175462. [PMID: 38451736 PMCID: PMC11141868 DOI: 10.1172/jci.insight.175462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 03/05/2024] [Indexed: 03/09/2024] Open
Abstract
Accumulation of sphingolipids, especially sphingosines, in the lysosomes is a key driver of several lysosomal storage diseases. The transport mechanism for sphingolipids from the lysosome remains unclear. Here, we identified SPNS1, which shares the highest homology to SPNS2, a sphingosine-1-phosphate (S1P) transporter, functions as a transporter for lysolipids from the lysosome. We generated Spns1-KO cells and mice and employed lipidomic and metabolomic approaches to reveal SPNS1 ligand identity. Global KO of Spns1 caused embryonic lethality between E12.5 and E13.5 and an accumulation of sphingosine, lysophosphatidylcholines (LPC), and lysophosphatidylethanolamines (LPE) in the fetal livers. Similarly, metabolomic analysis of livers from postnatal Spns1-KO mice presented an accumulation of sphingosines and lysoglycerophospholipids including LPC and LPE. Subsequently, biochemical assays showed that SPNS1 is required for LPC and sphingosine release from lysosomes. The accumulation of these lysolipids in the lysosomes of Spns1-KO mice affected liver functions and altered the PI3K/AKT signaling pathway. Furthermore, we identified 3 human siblings with a homozygous variant in the SPNS1 gene. These patients suffer from developmental delay, neurological impairment, intellectual disability, and cerebellar hypoplasia. These results reveal a critical role of SPNS1 as a promiscuous lysolipid transporter in the lysosomes and link its physiological functions with lysosomal storage diseases.
Collapse
Affiliation(s)
- Hoa T.T. Ha
- Department of Biochemistry, Yong Loo Lin School of Medicine
| | - SiYi Liu
- Department of Biochemistry, Yong Loo Lin School of Medicine
| | | | - Linh K. Vo
- Department of Biochemistry, Yong Loo Lin School of Medicine
| | | | - Dat T. Nguyen
- Department of Biochemistry, Yong Loo Lin School of Medicine
| | | | - Pei Yen Lim
- Department of Biochemistry, Yong Loo Lin School of Medicine
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, and
| | - YaJun Wu
- Department of Anatomy, Yong Loo-Lin School of Medicine, National University of Singapore, Singapore
| | - Eunju Seong
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, USA
| | - Toan Q. Nguyen
- Department of Biochemistry, Yong Loo Lin School of Medicine
| | - Jeongah Oh
- Department of Biochemistry, Yong Loo Lin School of Medicine
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, and
| | - Markus R. Wenk
- Department of Biochemistry, Yong Loo Lin School of Medicine
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, and
| | - Amaury Cazenave-Gassiot
- Department of Biochemistry, Yong Loo Lin School of Medicine
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, and
| | - Zuhal Yapici
- Department of Neurology, Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Wei-Yi Ong
- Department of Anatomy, Yong Loo-Lin School of Medicine, National University of Singapore, Singapore
| | - Margit Burmeister
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, USA
- Departments of Computational Medicine and Biochemistry, Psychiatry, and Human Genetics, University of Michigan, Ann Arbor, USA
| | - Long N. Nguyen
- Department of Biochemistry, Yong Loo Lin School of Medicine
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, and
- Cardiovascular Disease Research (CVD) Programme, Yong Loo Lin School of Medicine
- Immunology Program, Life Sciences Institute, and
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
34
|
Xia Z, Long D, Hong X, Lan Y, Xie L. Tissue expression of porcine transient receptor potential mucolipin protein channels and their differential responses to porcine reproductive and respiratory syndrome virus infection in vitro. J Vet Res 2024; 68:45-53. [PMID: 38525220 PMCID: PMC10960329 DOI: 10.2478/jvetres-2024-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 03/06/2024] [Indexed: 03/26/2024] Open
Abstract
Introduction Porcine reproductive and respiratory syndrome virus (PRRSV) infection results in a serious disease, posing a huge economic threat to the global swine industry. The transient receptor potential mucolipin proteins (TRPMLs) have been shown to be strongly associated with virus infection and other physiological processes in humans, but their tissue distribution and responses to PRRSV in pigs remain unknown. Material and Methods Quantitative reverse-transcription PCR analysis was undertaken to determine the optimal primer for TRPML expression detection and for quantifying that expression individually in different pig tissue samples. Meat Animal Research Center 145 (MARC-145) monkey kidney cells and the TRPML-specific activator mucolipin synthetic agonist 1 (ML-SA1) were used to reveal the relationship between TRPML and PRRSV-2 infection. Results The best primers for each TRPML gene used in a fluorescence-based quantitative method were identified and TRPML1 was found to be highly expressed in the kidneys and liver of pigs, while TRPML2 and TRPML3 were observed to be primarily expressed in the kidney and spleen tissues. The expression of TRPML2 was upregulated with the rise in PRRSV-2 infection titre but not the expression of TRPML1 or TRPML3, and ML-SA1 inhibited PRRSV-2 in a dose-dependent manner. Conclusion Our research revealed the gene expression of TRPMLs in pigs and identified that TRPML channels may act as key host factors against PRRSV infection, which could lead to new targets for the prevention and treatment of pig infectious diseases.
Collapse
Affiliation(s)
- Zhiqiang Xia
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian463000, China
- Zhumadian Huazhong Chia Tai Co., Ltd., Zhumadian463000, China
- Henan Topfond Pharmaceutical Company Limited, Zhumadian463000, China
| | - Denggao Long
- Sixteenth Middle School of Yiyang City, Yiyang413064, Hunan Province, China
| | - Xinyi Hong
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian463000, China
| | - Ying Lan
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian463000, China
| | - Lixia Xie
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian463000, China
| |
Collapse
|
35
|
Shariq M, Khan MF, Raj R, Ahsan N, Kumar P. PRKAA2, MTOR, and TFEB in the regulation of lysosomal damage response and autophagy. J Mol Med (Berl) 2024; 102:287-311. [PMID: 38183492 DOI: 10.1007/s00109-023-02411-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 01/08/2024]
Abstract
Lysosomes function as critical signaling hubs that govern essential enzyme complexes. LGALS proteins (LGALS3, LGALS8, and LGALS9) are integral to the endomembrane damage response. If ESCRT fails to rectify damage, LGALS-mediated ubiquitination occurs, recruiting autophagy receptors (CALCOCO2, TRIM16, and SQSTM1) and VCP/p97 complex containing UBXN6, PLAA, and YOD1, initiating selective autophagy. Lysosome replenishment through biogenesis is regulated by TFEB. LGALS3 interacts with TFRC and TRIM16, aiding ESCRT-mediated repair and autophagy-mediated removal of damaged lysosomes. LGALS8 inhibits MTOR and activates TFEB for ATG and lysosomal gene transcription. LGALS9 inhibits USP9X, activates PRKAA2, MAP3K7, ubiquitination, and autophagy. Conjugation of ATG8 to single membranes (CASM) initiates damage repair mediated by ATP6V1A, ATG16L1, ATG12, ATG5, ATG3, and TECPR1. ATG8ylation or CASM activates the MERIT system (ESCRT-mediated repair, autophagy-mediated clearance, MCOLN1 activation, Ca2+ release, RRAG-GTPase regulation, MTOR modulation, TFEB activation, and activation of GTPase IRGM). Annexins ANAX1 and ANAX2 aid damage repair. Stress granules stabilize damaged membranes, recruiting FLCN-FNIP1/2, G3BP1, and NUFIP1 to inhibit MTOR and activate TFEB. Lysosomes coordinate the synergistic response to endomembrane damage and are vital for innate and adaptive immunity. Future research should unveil the collaborative actions of ATG proteins, LGALSs, TRIMs, autophagy receptors, and lysosomal proteins in lysosomal damage response.
Collapse
Affiliation(s)
- Mohd Shariq
- Quantlase Imaging Laboratory, Quantlase Lab LLC, Unit 1-8, Masdar City, Abu Dhabi, UAE.
| | - Mohammad Firoz Khan
- Quantlase Imaging Laboratory, Quantlase Lab LLC, Unit 1-8, Masdar City, Abu Dhabi, UAE.
| | - Reshmi Raj
- Quantlase Imaging Laboratory, Quantlase Lab LLC, Unit 1-8, Masdar City, Abu Dhabi, UAE
| | - Nuzhat Ahsan
- Quantlase Imaging Laboratory, Quantlase Lab LLC, Unit 1-8, Masdar City, Abu Dhabi, UAE
| | - Pramod Kumar
- Quantlase Imaging Laboratory, Quantlase Lab LLC, Unit 1-8, Masdar City, Abu Dhabi, UAE
| |
Collapse
|
36
|
Lee D, Lee PCW, Hong JH. UBA6 Inhibition Accelerates Lysosomal TRPML1 Depletion and Exosomal Secretion in Lung Cancer Cells. Int J Mol Sci 2024; 25:2843. [PMID: 38474091 PMCID: PMC10932338 DOI: 10.3390/ijms25052843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/25/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Ubiquitin-like modifier-activating enzyme 6 (UBA6) is a member of the E1 enzyme family, which initiates the ubiquitin-proteasome system (UPS). The UPS plays critical roles not only in protein degradation but also in various cellular functions, including neuronal signaling, myocardial remodeling, immune cell differentiation, and cancer development. However, the specific role of UBA6 in cellular functions is not fully elucidated in comparison with the roles of the UPS. It has been known that the E1 enzyme is associated with the motility of cancer cells. In this study, we verified the physiological roles of UBA6 in lung cancer cells through gene-silencing siRNA targeting UBA6 (siUBA6). The siUBA6 treatment attenuated the migration of H1975 cells, along with a decrease in lysosomal Ca2+ release. While autophagosomal proteins remained unchanged, lysosomal proteins, including TRPML1 and TPC2, were decreased in siUBA6-transfected cells. Moreover, siUBA6 induced the production of multivesicular bodies (MVBs), accompanied by an increase in MVB markers in siUBA6-transfected H1975 cells. Additionally, the expression of the exosomal marker CD63 and extracellular vesicles was increased by siUBA6 treatment. Our findings suggest that knock-down of UBA6 induces lysosomal TRPML1 depletion and inhibits endosomal trafficking to lysosome, and subsequently, leads to the accumulation of MVBs and enhanced exosomal secretion in lung cancer cells.
Collapse
Affiliation(s)
- Dongun Lee
- Department of Health Sciences and Technology, Lee Gil Ya Cancer and Diabetes Institute, GAIHST, Gachon University, 155 Getbeolro, Yeonsu-gu, Incheon 21999, Republic of Korea;
| | - Peter Chang-Whan Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea;
| | - Jeong Hee Hong
- Department of Health Sciences and Technology, Lee Gil Ya Cancer and Diabetes Institute, GAIHST, Gachon University, 155 Getbeolro, Yeonsu-gu, Incheon 21999, Republic of Korea;
| |
Collapse
|
37
|
Giamogante F, Barazzuol L, Maiorca F, Poggio E, Esposito A, Masato A, Napolitano G, Vagnoni A, Calì T, Brini M. A SPLICS reporter reveals [Formula: see text]-synuclein regulation of lysosome-mitochondria contacts which affects TFEB nuclear translocation. Nat Commun 2024; 15:1516. [PMID: 38374070 PMCID: PMC10876553 DOI: 10.1038/s41467-024-46007-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 02/07/2024] [Indexed: 02/21/2024] Open
Abstract
Mitochondrial and lysosomal activities are crucial to maintain cellular homeostasis: optimal coordination is achieved at their membrane contact sites where distinct protein machineries regulate organelle network dynamics, ions and metabolites exchange. Here we describe a genetically encoded SPLICS reporter for short- and long- juxtapositions between mitochondria and lysosomes. We report the existence of narrow and wide lysosome-mitochondria contacts differently modulated by mitophagy, autophagy and genetic manipulation of tethering factors. The overexpression of α-synuclein (α-syn) reduces the apposition of mitochondria/lysosomes membranes and affects their privileged Ca2+ transfer, impinging on TFEB nuclear translocation. We observe enhanced TFEB nuclear translocation in α-syn-overexpressing cells. We propose that α-syn, by interfering with mitochondria/lysosomes tethering impacts on local Ca2+ regulated pathways, among which TFEB mediated signaling, and in turn mitochondrial and lysosomal function. Defects in mitochondria and lysosome represent a common hallmark of neurodegenerative diseases: targeting their communication could open therapeutic avenues.
Collapse
Affiliation(s)
- Flavia Giamogante
- Department of Biomedical Sciences (DSB), University of Padova, Padova, Italy
| | - Lucia Barazzuol
- Department of Biomedical Sciences (DSB), University of Padova, Padova, Italy
| | | | - Elena Poggio
- Department of Biology (DIBIO), University of Padova, Padova, Italy
| | - Alessandra Esposito
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Department of Medical and Translational Science, Federico II University, Naples, Italy
| | - Anna Masato
- Department of Biology (DIBIO), University of Padova, Padova, Italy
- UK-Dementia Research Institute at UCL, University College London, London, UK
| | - Gennaro Napolitano
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Department of Medical and Translational Science, Federico II University, Naples, Italy
| | - Alessio Vagnoni
- Department of Basic and Clinical Neurosciences, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Tito Calì
- Department of Biomedical Sciences (DSB), University of Padova, Padova, Italy.
- Padova Neuroscience Center (PNC), University of Padova, Padova, Italy.
- Study Center for Neurodegeneration (CESNE), University of Padova, Padova, Italy.
| | - Marisa Brini
- Department of Biology (DIBIO), University of Padova, Padova, Italy.
- Study Center for Neurodegeneration (CESNE), University of Padova, Padova, Italy.
- Department of Pharmaceutical and Pharmacological Sciences (DSF), University of Padova, Padova, Italy.
| |
Collapse
|
38
|
Chen W, Motsinger MM, Li J, Bohannon KP, Hanson PI. Ca 2+ -sensor ALG-2 engages ESCRTs to enhance lysosomal membrane resilience to osmotic stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.04.578682. [PMID: 38352356 PMCID: PMC10862787 DOI: 10.1101/2024.02.04.578682] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Lysosomes are central players in cellular catabolism, signaling, and metabolic regulation. Cellular and environmental stresses that damage lysosomal membranes can compromise their function and release toxic content into the cytoplasm. Here, we examine how cells respond to osmotic stress within lysosomes. Using sensitive assays of lysosomal leakage and rupture, we examine acute effects of the cathepsin C-metabolized osmotic disruptant glycyl-L-phenylalanine 2-naphthylamide (GPN). Our findings reveal that widely used concentrations of GPN rupture only a small fraction of lysosomes, but surprisingly trigger Ca 2+ release from nearly all. Chelating cytoplasmic Ca 2+ using BAPTA makes lysosomes more likely to rupture under GPN-induced stress, suggesting that Ca 2+ plays a role in protecting or rapidly repairing lysosomal membranes. Mechanistically, we establish that GPN causes the Ca 2+ -sensitive protein Apoptosis Linked Gene-2 (ALG-2) and interacting ESCRT proteins to redistribute onto lysosomes, improving their resistance to membrane stress created by GPN as well as the lysosomotropic drug chlorpromazine. Furthermore, we show that activating the cation channel TRPML1, with or without blocking the endoplasmic reticulum Ca 2+ pump, creates local Ca 2+ signals that protect lysosomes from rupture by recruiting ALG-2 and ESCRTs without any membrane damage. These findings reveal that Ca 2+ , through ALG-2, helps bring ESCRTs to lysosomes to enhance their resilience and maintain organelle integrity in the face of osmotic stress. SIGNIFICANCE As the degradative hub of the cell, lysosomes are full of toxic content that can spill into the cytoplasm. There has been much recent interest in how cells sense and repair lysosomal membrane damage using ESCRTs and cholesterol to rapidly fix "nanoscale damage". Here, we extend understanding of how ESCRTs contribute by uncovering a preventative role of the ESCRT machinery. We show that ESCRTs, when recruited by the Ca 2+ -sensor ALG-2, play a critical role in stabilizing the lysosomal membrane against osmotically-induced rupture. This finding suggests that cells have mechanisms not just for repairing but also for actively protecting lysosomes from stress-induced membrane damage.
Collapse
|
39
|
Casas M, Dickson EJ. Channels, Transporters, and Receptors at Membrane Contact Sites. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2024; 7:25152564241305593. [PMID: 39742107 PMCID: PMC11686659 DOI: 10.1177/25152564241305593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 11/21/2024] [Indexed: 01/03/2025]
Abstract
Membrane contact sites (MCSs) are specialized regions where two or more organelle membranes come into close apposition, typically separated by only 10-30 nm, while remaining distinct and unfused. These sites play crucial roles in cellular homeostasis, signaling, and metabolism. This review focuses on ion channels, transporters, and receptors localized to MCSs, with particular emphasis on those associated with the plasma membrane and endoplasmic reticulum (ER). We discuss the molecular composition and functional significance of these proteins in shaping both organelle and cellular functions, highlighting their importance in excitable cells and their influence on intracellular calcium signaling. Key MCSs examined include ER-plasma membrane, ER-mitochondria, and ER-lysosome contacts. This review addresses our current knowledge of the ion channels found within these contacts, the dynamic regulation of MCSs, their importance in various physiological processes, and their potential implications in pathological conditions.
Collapse
Affiliation(s)
- Maria Casas
- Department of Physiology and Membrane Biology, University of California, Davis, CA, USA
| | - Eamonn James Dickson
- Department of Physiology and Membrane Biology, University of California, Davis, CA, USA
| |
Collapse
|
40
|
Tan JX, Finkel T. Lysosomes in senescence and aging. EMBO Rep 2023; 24:e57265. [PMID: 37811693 PMCID: PMC10626421 DOI: 10.15252/embr.202357265] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/08/2023] [Accepted: 09/21/2023] [Indexed: 10/10/2023] Open
Abstract
Dysfunction of lysosomes, the primary hydrolytic organelles in animal cells, is frequently associated with aging and age-related diseases. At the cellular level, lysosomal dysfunction is strongly linked to cellular senescence or the induction of cell death pathways. However, the precise mechanisms by which lysosomal dysfunction participates in these various cellular or organismal phenotypes have remained elusive. The ability of lysosomes to degrade diverse macromolecules including damaged proteins and organelles puts lysosomes at the center of multiple cellular stress responses. Lysosomal activity is tightly regulated by many coordinated cellular processes including pathways that function inside and outside of the organelle. Here, we collectively classify these coordinated pathways as the lysosomal processing and adaptation system (LYPAS). We review evidence that the LYPAS is upregulated by diverse cellular stresses, its adaptability regulates senescence and cell death decisions, and it can form the basis for therapeutic manipulation for a wide range of age-related diseases and potentially for aging itself.
Collapse
Affiliation(s)
- Jay Xiaojun Tan
- Aging InstituteUniversity of Pittsburgh School of Medicine/University of Pittsburgh Medical CenterPittsburghPAUSA
- Department of Cell BiologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Toren Finkel
- Aging InstituteUniversity of Pittsburgh School of Medicine/University of Pittsburgh Medical CenterPittsburghPAUSA
- Department of MedicineUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| |
Collapse
|
41
|
Rühl P, Bracher F. Aza Analogs of the TRPML1 Inhibitor Estradiol Methyl Ether (EDME). Molecules 2023; 28:7428. [PMID: 37959848 PMCID: PMC10647736 DOI: 10.3390/molecules28217428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Estradiol methyl ether (EDME) has recently been described by us as a very potent and subtype-specific inhibitor of the lysosomal cation channel TRPML1. Following the principle of bioisosteres, we worked out efficient synthetic approaches to ring-A aza-analogs of EDME, namely a methoxypyridine and a methoxypyrimidine analog. Both target compounds were obtained in good overall yields in six and eight steps starting from 19-nortestosterone via the oxidative cleavage of ring A followed over several intermediates and with the use of well-selected protective groups by re-cyclization to provide the desired hetero-analogs. The methoxypyridine analog largely retained its TRPML1-inhibitory activity, whereas the methoxypyrimidine analog significantly lost activity.
Collapse
Affiliation(s)
| | - Franz Bracher
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians University, 80539 Munich, Germany;
| |
Collapse
|
42
|
Zhang K, Huang L, Cai Y, Zhong Y, Chen N, Gao F, Zhang L, Li Q, Liu Z, Zhang R, Zhang L, Yue J. Identification of a small chemical as a lysosomal calcium mobilizer and characterization of its ability to inhibit autophagy and viral infection. FEBS J 2023; 290:5353-5372. [PMID: 37528513 DOI: 10.1111/febs.16920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 05/10/2023] [Accepted: 07/31/2023] [Indexed: 08/03/2023]
Abstract
We previously identified glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as one of the cyclic adenosine diphosphoribose (cADPR)'s binding proteins and found that GAPDH participates in cADPR-mediated Ca2+ release from endoplasmic reticulum via ryanodine receptors (RyRs). Here, we aimed to chemically synthesise and pharmacologically characterise novel cADPR analogues. Based on the simulated cADPR-GAPDH complex structure, we performed the structure-based drug screening, identified several small chemicals with high docking scores to cADPR's binding pocket in GAPDH and showed that two of these compounds, C244 and C346, are potential cADPR antagonists. We further synthesised several analogues of C346 and found that its analogue, G42, also mobilised Ca2+ release from lysosomes. G42 alkalised lysosomal pH and inhibited autophagosome-lysosome fusion. Moreover, G42 markedly inhibited Zika virus (ZIKV, a flavivirus) or murine hepatitis virus (MHV, a β-coronavirus) infections of host cells. These results suggest that G42 inhibits virus infection, likely by triggering lysosomal Ca2+ mobilisation and inhibiting autophagy.
Collapse
Affiliation(s)
- Kehui Zhang
- State Key Laboratory of Bioactive Substance and Function of Natual Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lihong Huang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Yang Cai
- Department of Biomedical Sciences, City University of Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, China
| | - Yi Zhong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Nanjun Chen
- Department of Computer Science, City University of Hong Kong, China
| | - Fei Gao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Liang Zhang
- Department of Biomedical Sciences, City University of Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, China
| | - Qi Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Rongxin Zhang
- Laboratory of Immunology and Inflammation, Institute of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jianbo Yue
- City University of Hong Kong Shenzhen Research Institute, China
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, China
| |
Collapse
|
43
|
Yang C, Tian F, Hu M, Kang C, Ping M, Liu Y, Hu M, Xu H, Yu Y, Gao Z, Li P. Characterization of the role of TMEM175 in an in vitro lysosomal H + fluxes model. FEBS J 2023; 290:4641-4659. [PMID: 37165739 DOI: 10.1111/febs.16814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/06/2023] [Accepted: 05/09/2023] [Indexed: 05/12/2023]
Abstract
Lysosome acidification is a dynamic equilibrium of H+ influx and efflux across the membrane, which is crucial for cell physiology. The vacuolar H+ ATPase (V-ATPase) is responsible for the H+ influx or refilling of lysosomes. TMEM175 was identified as a novel H+ permeable channel on lysosomal membranes, and it plays a critical role in lysosome acidification. However, how TMEM175 participates in lysosomal acidification remains unknown. Here, we present evidence that TMEM175 regulates lysosomal H+ influx and efflux in enlarged lysosomes isolated from COS1 treated with vacuolin-1. By utilizing the whole-endolysosome patch-clamp recording technique, a series of integrated lysosomal H+ influx and efflux signals in a ten-of-second time scale under the physiological pH gradient (luminal pH 4.60, and cytosolic pH 7.20) was recorded from this in vitro system. Lysosomal H+ fluxes constitute both the lysosomal H+ refilling and releasing, and they are asymmetrical processes with distinct featured kinetics for each of the H+ fluxes. Lysosomal H+ fluxes are entirely abolished when TMEM175 losses of function in the F39V mutant and is blocked by the antagonist (2-GBI). Meanwhile, lysosomal H+ fluxes are modulated by the pH-buffering capacity of the lumen and the lysosomal glycosylated membrane proteins, lysosome-associated membrane protein 1 (LAMP1). We propose that the TMEM175-mediated lysosomal H+ fluxes model would provide novel thoughts for studying the pathology of Parkinson's disease and lysosome storage disorders.
Collapse
Affiliation(s)
- Chuanyan Yang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Fuyun Tian
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
| | - Mei Hu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
- Pharmacology Laboratory, Zhongshan Hospital, Guangzhou University of Chinese Medicine, China
| | - Chunlan Kang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Meixuan Ping
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yiyao Liu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
| | - Meiqin Hu
- Department of Molecular, Cellular, and Developmental Biology, The University of Michigan, Ann Arbor, Michigan, USA
| | - Haoxing Xu
- Department of Molecular, Cellular, and Developmental Biology, The University of Michigan, Ann Arbor, Michigan, USA
| | - Ye Yu
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhaobing Gao
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ping Li
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
44
|
Pastore N, Annunziata F, Colonna R, Maffia V, Giuliano T, Custode BM, Lombardi B, Polishchuk E, Cacace V, De Stefano L, Nusco E, Sorrentino NC, Piccolo P, Brunetti-Pierri N. Increased expression or activation of TRPML1 reduces hepatic storage of toxic Z alpha-1 antitrypsin. Mol Ther 2023; 31:2651-2661. [PMID: 37394797 PMCID: PMC10492024 DOI: 10.1016/j.ymthe.2023.06.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/06/2023] [Accepted: 06/28/2023] [Indexed: 07/04/2023] Open
Abstract
Mutant Z alpha-1 antitrypsin (ATZ) accumulates in globules in the liver and is the prototype of proteotoxic hepatic disease. Therapeutic strategies aiming at clearance of polymeric ATZ are needed. Transient receptor potential mucolipin-1 (TRPML1) is a lysosomal Ca2+ channel that maintains lysosomal homeostasis. In this study, we show that by increasing lysosomal exocytosis, TRPML1 gene transfer or small-molecule-mediated activation of TRPML1 reduces hepatic ATZ globules and fibrosis in PiZ transgenic mice that express the human ATZ. ATZ globule clearance induced by TRPML1 occurred without increase in autophagy or nuclear translocation of TFEB. Our results show that targeting TRPML1 and lysosomal exocytosis is a novel approach for treatment of the liver disease due to ATZ and potentially other diseases due to proteotoxic liver storage.
Collapse
Affiliation(s)
- Nunzia Pastore
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy; Department of Translational Medicine, Medical Genetics, University of Naples Federico II, Naples, Italy.
| | | | - Rita Colonna
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - Veronica Maffia
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - Teresa Giuliano
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - Bruno Maria Custode
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - Bernadette Lombardi
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - Elena Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - Vincenzo Cacace
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - Lucia De Stefano
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - Edoardo Nusco
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - Nicolina Cristina Sorrentino
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy; Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Pasquale Piccolo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy; Department of Translational Medicine, Medical Genetics, University of Naples Federico II, Naples, Italy; Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine Program, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
45
|
Xu M, Zhong XZ, Huang P, Jaślan D, Wang P, Sun X, Weiden EM, EL Hiani Y, Grimm C, Dong XP. TRPML3/BK complex promotes autophagy and bacterial clearance by providing a positive feedback regulation of mTOR via PI3P. Proc Natl Acad Sci U S A 2023; 120:e2215777120. [PMID: 37585464 PMCID: PMC10450854 DOI: 10.1073/pnas.2215777120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 06/22/2023] [Indexed: 08/18/2023] Open
Abstract
TRPML3 is a Ca2+/Na+ release channel residing in both phagophores and endolysosomal membranes. It is activated by PI3P and PI3,5P2. Its activity can be enhanced by high luminal pH and by replacing luminal Na+ with K+. Here, we report that big-conductance Ca2+-activated potassium (BK) channels form a positive feedback loop with TRPML3. Ca2+ release via TRPML3 activates BK, which in turn facilitates TRPML3-mediated Ca2+ release, potentially through removing luminal Na+ inhibition. We further show that TRPML3/BK and mammalian target of rapamycin (mTOR) form another positive feedback loop to facilitate autophagy induction in response to nutrient starvation, i.e., mTOR inhibition upon nutrient starvation activates TRPML3/BK, and this further reduces mTOR activity, thereby increasing autophagy induction. Mechanistically, the feedback regulation between TRPML3/BK and mTOR is mediated by PI3P, an endogenous TRPML3 activator that is enriched in phagophores and is up-regulated by mTOR reduction. Importantly, bacterial infection activates TRPML3 in a BK-dependent manner, and both TRPML3 and BK are required for mTOR suppression and autophagy induction responding to bacterial infection. Suppressing either TRPML3 or BK helps bacteria survival whereas increasing either TRPML3 or BK favors bacterial clearance. Considering that TRPML3/BK is inhibited by low luminal pH but activated by high luminal pH and PI3P in phagophores, we suggest that TRPML3/BK and mTOR form a positive feedback loop via PI3P to ensure efficient autophagy induction in response to nutrient deprivation and bacterial infection. Our study reveals a role of TRPML3-BK coupling in controlling cellular homeostasis and intracellular bacterial clearance via regulating mTOR signaling.
Collapse
Affiliation(s)
- Mengnan Xu
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NSB3H 4R2, Canada
| | - Xi Zoë Zhong
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NSB3H 4R2, Canada
| | - Peng Huang
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NSB3H 4R2, Canada
- Chongming Hospital, Shanghai University of Medicine and Health Sciences, Shanghai202150, China
| | - Dawid Jaślan
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität, Munich80336, Germany
| | - Pingping Wang
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NSB3H 4R2, Canada
| | - Xue Sun
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NSB3H 4R2, Canada
- Department of Developmental Cell Biology, China Medical University, Shenbei New District, Shenyang110122, China
| | - Eva-Maria Weiden
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität, Munich80336, Germany
| | - Yassine EL Hiani
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NSB3H 4R2, Canada
| | - Christian Grimm
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität, Munich80336, Germany
- Immunology, Infection and Pandemic Research, Fraunhofer Institute for Translational Medicine and Pharmacology, Munich80799, Germany
| | - Xian-Ping Dong
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NSB3H 4R2, Canada
| |
Collapse
|
46
|
Gutay-Tóth Z, Gellen G, Doan M, Eliason JF, Vincze J, Szente L, Fenyvesi F, Goda K, Vecsernyés M, Szabó G, Bacso Z. Cholesterol-Depletion-Induced Membrane Repair Carries a Raft Conformer of P-Glycoprotein to the Cell Surface, Indicating Enhanced Cholesterol Trafficking in MDR Cells, Which Makes Them Resistant to Cholesterol Modifications. Int J Mol Sci 2023; 24:12335. [PMID: 37569709 PMCID: PMC10419235 DOI: 10.3390/ijms241512335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
The human P-glycoprotein (P-gp), a transporter responsible for multidrug resistance, is present in the plasma membrane's raft and non-raft domains. One specific conformation of P-gp that binds to the monoclonal antibody UIC2 is primarily associated with raft domains and displays heightened internalization in cells overexpressing P-gp, such as in NIH-3T3 MDR1 cells. Our primary objective was to investigate whether the trafficking of this particular P-gp conformer is dependent on cholesterol levels. Surprisingly, depleting cholesterol using cyclodextrin resulted in an unexpected increase in the proportion of raft-associated P-gp within the cell membrane, as determined by UIC2-reactive P-gp. This increase appears to be a compensatory response to cholesterol loss from the plasma membrane, whereby cholesterol-rich raft micro-domains are delivered to the cell surface through an augmented exocytosis process. Furthermore, this exocytotic event is found to be part of a complex trafficking mechanism involving lysosomal exocytosis, which contributes to membrane repair after cholesterol reduction induced by cyclodextrin treatment. Notably, cells overexpressing P-gp demonstrated higher total cellular cholesterol levels, an increased abundance of stable lysosomes, and more effective membrane repair following cholesterol modifications. These modifications encompassed exocytotic events that involved the transport of P-gp-carrying rafts. Importantly, the enhanced membrane repair capability resulted in a durable phenotype for MDR1 expressing cells, as evidenced by significantly improved viabilities of multidrug-resistant Pgp-overexpressing immortal NIH-3T3 MDR1 and MDCK-MDR1 cells compared to their parents when subjected to cholesterol alterations.
Collapse
Affiliation(s)
- Zsuzsanna Gutay-Tóth
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.G.-T.); (G.G.); (M.D.); (K.G.); (G.S.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - Gabriella Gellen
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.G.-T.); (G.G.); (M.D.); (K.G.); (G.S.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Department of Analytical Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, 1053 Budapest, Hungary
| | - Minh Doan
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.G.-T.); (G.G.); (M.D.); (K.G.); (G.S.)
| | - James F. Eliason
- Great Lakes Stem Cell Innovation Center, Detroit, MI 48202, USA;
| | - János Vincze
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Lajos Szente
- CycloLab Cyclodextrin Research & Development Laboratory, Ltd., 1097 Budapest, Hungary;
| | - Ferenc Fenyvesi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (F.F.); (M.V.)
| | - Katalin Goda
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.G.-T.); (G.G.); (M.D.); (K.G.); (G.S.)
| | - Miklós Vecsernyés
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (F.F.); (M.V.)
| | - Gábor Szabó
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.G.-T.); (G.G.); (M.D.); (K.G.); (G.S.)
| | - Zsolt Bacso
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.G.-T.); (G.G.); (M.D.); (K.G.); (G.S.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (F.F.); (M.V.)
| |
Collapse
|
47
|
Zhang J, Zeng W, Han Y, Lee WR, Liou J, Jiang Y. Lysosomal LAMP proteins regulate lysosomal pH by direct inhibition of the TMEM175 channel. Mol Cell 2023; 83:2524-2539.e7. [PMID: 37390818 PMCID: PMC10528928 DOI: 10.1016/j.molcel.2023.06.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/03/2023] [Accepted: 06/02/2023] [Indexed: 07/02/2023]
Abstract
Maintaining a highly acidic lysosomal pH is central to cellular physiology. Here, we use functional proteomics, single-particle cryo-EM, electrophysiology, and in vivo imaging to unravel a key biological function of human lysosome-associated membrane proteins (LAMP-1 and LAMP-2) in regulating lysosomal pH homeostasis. Despite being widely used as a lysosomal marker, the physiological functions of the LAMP proteins have long been overlooked. We show that LAMP-1 and LAMP-2 directly interact with and inhibit the activity of the lysosomal cation channel TMEM175, a key player in lysosomal pH homeostasis implicated in Parkinson's disease. This LAMP inhibition mitigates the proton conduction of TMEM175 and facilitates lysosomal acidification to a lower pH environment crucial for optimal hydrolase activity. Disrupting the LAMP-TMEM175 interaction alkalinizes the lysosomal pH and compromises the lysosomal hydrolytic function. In light of the ever-increasing importance of lysosomes to cellular physiology and diseases, our data have widespread implications for lysosomal biology.
Collapse
Affiliation(s)
- Jiyuan Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Weizhong Zeng
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Howard Hughes Medical Institute at University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yan Han
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wan-Ru Lee
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jen Liou
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Youxing Jiang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Howard Hughes Medical Institute at University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
48
|
Minami Y, Hoshino A, Higuchi Y, Hamaguchi M, Kaneko Y, Kirita Y, Taminishi S, Nishiji T, Taruno A, Fukui M, Arany Z, Matoba S. Liver lipophagy ameliorates nonalcoholic steatohepatitis through extracellular lipid secretion. Nat Commun 2023; 14:4084. [PMID: 37443159 PMCID: PMC10344867 DOI: 10.1038/s41467-023-39404-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a progressive disorder with aberrant lipid accumulation and subsequent inflammatory and profibrotic response. Therapeutic efforts at lipid reduction via increasing cytoplasmic lipolysis unfortunately worsens hepatitis due to toxicity of liberated fatty acid. An alternative approach could be lipid reduction through autophagic disposal, i.e., lipophagy. We engineered a synthetic adaptor protein to induce lipophagy, combining a lipid droplet-targeting signal with optimized LC3-interacting domain. Activating hepatocyte lipophagy in vivo strongly mitigated both steatosis and hepatitis in a diet-induced mouse NASH model. Mechanistically, activated lipophagy promoted the excretion of lipid from hepatocytes, thereby suppressing harmful intracellular accumulation of nonesterified fatty acid. A high-content compound screen identified alpelisib and digoxin, clinically-approved compounds, as effective activators of lipophagy. Administration of alpelisib or digoxin in vivo strongly inhibited the transition to steatohepatitis. These data thus identify lipophagy as a promising therapeutic approach to prevent NASH progression.
Collapse
Affiliation(s)
- Yoshito Minami
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Atsushi Hoshino
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan.
| | - Yusuke Higuchi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yusaku Kaneko
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yuhei Kirita
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Shunta Taminishi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Toshiyuki Nishiji
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Akiyuki Taruno
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
- Japan Science and Technology Agency, PRESTO, Kawaguchi, Saitama, 332-0012, Japan
- Japan Science and Technology Agency, CREST, Kawaguchi, Saitama, 332-0012, Japan
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Zoltan Arany
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| |
Collapse
|
49
|
Lee D, Hong JH. Modulation of Lysosomal Cl - Mediates Migration and Apoptosis through the TRPML1 as a Lysosomal Cl - Sensor. Cells 2023; 12:1835. [PMID: 37508500 PMCID: PMC10378694 DOI: 10.3390/cells12141835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Lysosomes are responsible for protein degradation and clearance in cellular recycling centers. It has been known that the lysosomal chloride level is enriched and involved in the intrinsic lysosomal function. However, the mechanism by which chloride levels can be sensed and that of the chloride-mediated lysosomal function is unknown. In this study, we verified that reduced chloride levels acutely induced lysosomal calcium release through TRPML1 and lysosomal repositioning toward the juxtanuclear region. Functionally, low chloride-induced lysosomal calcium release attenuated cellular migration. In addition, spontaneous exposure to low chloride levels dysregulated lysosomal biogenesis and subsequently induced delayed migration and promoted apoptosis. Two chloride-sensing GXXXP motifs in the TRPML1 were identified. Mutations in the GXXXP motif of TRPML1 did not affect chloride levels, and there were no changes in migratory ability. In this study, we demonstrated that the depletion of chloride induces reformation of the lysosomal calcium pool and subsequently dysregulated cancer progression, which will assist in improving therapeutic strategies for lysosomal accumulation-associated diseases or cancer cell apoptosis.
Collapse
Affiliation(s)
- Dongun Lee
- Department of Health Sciences & Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, 155 Gaetbeol-ro, Yeonsu-gu, Incheon 21999, Republic of Korea
| | - Jeong Hee Hong
- Department of Health Sciences & Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, 155 Gaetbeol-ro, Yeonsu-gu, Incheon 21999, Republic of Korea
| |
Collapse
|
50
|
Zhong D, Wang R, Zhang H, Wang M, Zhang X, Chen H. Induction of lysosomal exocytosis and biogenesis via TRPML1 activation for the treatment of uranium-induced nephrotoxicity. Nat Commun 2023; 14:3997. [PMID: 37414766 PMCID: PMC10326073 DOI: 10.1038/s41467-023-39716-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/27/2023] [Indexed: 07/08/2023] Open
Abstract
Uranium (U) is a well-known nephrotoxicant which forms precipitates in the lysosomes of renal proximal tubular epithelial cells (PTECs) after U-exposure at a cytotoxic dose. However, the roles of lysosomes in U decorporation and detoxification remain to be elucidated. Mucolipin transient receptor potential channel 1 (TRPML1) is a major lysosomal Ca2+ channel regulating lysosomal exocytosis. We herein demonstrate that the delayed administration of the specific TRPML1 agonist ML-SA1 significantly decreases U accumulation in the kidney, mitigates renal proximal tubular injury, increases apical exocytosis of lysosomes and reduces lysosomal membrane permeabilization (LMP) in renal PTECs of male mice with single-dose U poisoning or multiple-dose U exposure. Mechanistic studies reveal that ML-SA1 stimulates intracellular U removal and reduces U-induced LMP and cell death through activating the positive TRPML1-TFEB feedback loop and consequent lysosomal exocytosis and biogenesis in U-loaded PTECs in vitro. Together, our studies demonstrate that TRPML1 activation is an attractive therapeutic strategy for the treatment of U-induced nephrotoxicity.
Collapse
Affiliation(s)
- Dengqin Zhong
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Ruiyun Wang
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Hongjing Zhang
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Mengmeng Wang
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Xuxia Zhang
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Honghong Chen
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, PR China.
| |
Collapse
|