1
|
Huang Y, Liu Y, Pu M, Zhang Y, Cao Q, Li S, Wei Y, Hou L. SOX2 interacts with hnRNPK to modulate alternative splicing in mouse embryonic stem cells. Cell Biosci 2024; 14:102. [PMID: 39160617 PMCID: PMC11331657 DOI: 10.1186/s13578-024-01284-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 08/07/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND SOX2 is a determinant transcription factor that governs the balance between stemness and differentiation by influencing transcription and splicing programs. The role of SOX2 is intricately shaped by its interactions with specific partners. In the interactome of SOX2 in mouse embryonic stem cells (mESCs), there is a cohort of heterogeneous nuclear ribonucleoproteins (hnRNPs) that contributes to multiple facets of gene expression regulation. However, the cross-talk between hnRNPs and SOX2 in gene expression regulation remains unclear. RESULTS Here we demonstrate the indispensable role of the co-existence of SOX2 and heterogeneous nuclear ribonucleoprotein K (hnRNPK) in the maintenance of pluripotency in mESCs. While hnRNPK directly interacts with the SOX2-HMG DNA-binding domain and induces the collapse of the transcriptional repressor 7SK small nuclear ribonucleoprotein (7SK snRNP), hnRNPK does not influence SOX2-mediated transcription, either by modulating the interaction between SOX2 and its target cis-regulatory elements or by facilitating transcription elongation as indicated by the RNA-seq analysis. Notably, hnRNPK enhances the interaction of SOX2 with target pre-mRNAs and collaborates with SOX2 in regulating the alternative splicing of a subset of pluripotency genes. CONCLUSIONS These data reveal that SOX2 and hnRNPK have a direct protein-protein interaction, and shed light on the molecular mechanisms by which hnRNPK collaborates with SOX2 in alternative splicing in mESCs.
Collapse
Affiliation(s)
- Yanlan Huang
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China
| | - Yuxuan Liu
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China
| | - Mingyi Pu
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China
| | - Yuli Zhang
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China
| | - Qiang Cao
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China
| | - Senru Li
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China
| | - Yuanjie Wei
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for RNA-Based Infection Research (HIRI), Würzburg, Germany.
| | - Linlin Hou
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China.
| |
Collapse
|
2
|
Zhang YE, Stuelten CH. Alternative splicing in EMT and TGF-β signaling during cancer progression. Semin Cancer Biol 2024; 101:1-11. [PMID: 38614376 PMCID: PMC11180579 DOI: 10.1016/j.semcancer.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/20/2023] [Accepted: 04/04/2024] [Indexed: 04/15/2024]
Abstract
Epithelial to mesenchymal transition (EMT) is a physiological process during development where epithelial cells transform to acquire mesenchymal characteristics, which allows them to migrate and colonize secondary tissues. Many cellular signaling pathways and master transcriptional factors exert a myriad of controls to fine tune this vital process to meet various developmental and physiological needs. Adding to the complexity of this network are post-transcriptional and post-translational regulations. Among them, alternative splicing has been shown to play important roles to drive EMT-associated phenotypic changes, including actin cytoskeleton remodeling, cell-cell junction changes, cell motility and invasiveness. In advanced cancers, transforming growth factor-β (TGF-β) is a major inducer of EMT and is associated with tumor cell metastasis, cancer stem cell self-renewal, and drug resistance. This review aims to provide an overview of recent discoveries regarding alternative splicing events and the involvement of splicing factors in the EMT and TGF-β signaling. It will emphasize the importance of various splicing factors involved in EMT and explore their regulatory mechanisms.
Collapse
Affiliation(s)
- Ying E Zhang
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| | - Christina H Stuelten
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Wan X, Shi W, Ma L, Wang L, Zheng R, He J, Wang Y, Li X, Zha X, Wang J, Xu L. A 3'-pre-tRNA-derived small RNA tRF-1-Ser regulated by 25(OH)D promotes proliferation and stemness by inhibiting the function of MBNL1 in breast cancer. Clin Transl Med 2024; 14:e1681. [PMID: 38725048 PMCID: PMC11082093 DOI: 10.1002/ctm2.1681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/28/2024] [Accepted: 04/19/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND We explored the potential novel anticancer mechanisms of 25-hydroxyvitamin D (25(OH)D), a vitamin D metabolite with antitumour effects in breast cancer. It is stable in serum and is used to assess vitamin D levels in clinical practice. Transfer RNA-derived small RNAs are small noncoding RNAs that generate various distinct biological functions, but more research is needed on their role in breast cancer. METHODS Small RNA microarrays were used to explore the novel regulatory mechanism of 25(OH)D. High-throughput RNA-sequencing technology was used to detect transcriptome changes after 25(OH)D treatment and tRF-1-Ser knockdown. RNA pull-down and high-performance liquid chromatography-mass spectrometry/mass spectrometry were used to explore the proteins bound to tRF-1-Ser. In vitro and in vivo functional experiments were conducted to assess the influence of 25(OH)D and tRF-1-Ser on breast cancer. Semi-quantitative PCR was performed to detect alternative splicing events. Western blot assay and qPCR were used to assess protein and mRNA expression. RESULTS The expression of tRF-1-Ser is negatively regulated by 25(OH)D. In our breast cancer (BRCA) clinical samples, we found that the expression of tRF-1-Ser was higher in cancer tissues than in paired normal tissues, and was significantly associated with tumour invasion. Moreover, tRF-1-Ser inhibits the function of MBNL1 by hindering its nuclear translocation. Functional experiments and transcriptome data revealed that the downregulation of tRF-1-Ser plays a vital role in the anticancer effect of 25(OH)D. CONCLUSIONS In brief, our research revealed a novel anticancer mechanism of 25(OH)D, unveiled the vital function of tRF-1-Ser in BRCA progression, and suggested that tRF-1-Ser could emerge as a new therapeutic target for BRCA.
Collapse
Affiliation(s)
- Xinyu Wan
- Department of Breast DiseaseThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Wenjie Shi
- Department of Breast DiseaseThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Lingjun Ma
- Department of Breast DiseaseThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Lexin Wang
- Department of Breast DiseaseThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Ran Zheng
- Department of Breast DiseaseThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Jinzhi He
- Department of Breast DiseaseThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Ye Wang
- Department of Breast DiseaseThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Xuan Li
- Department of Breast DiseaseThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Xiaoming Zha
- Department of Breast DiseaseThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Jue Wang
- Department of Breast DiseaseThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Lu Xu
- Department of NutritionThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
4
|
Cui L, Zheng Y, Xu R, Lin Y, Zheng J, Lin P, Guo B, Sun S, Zhao X. Alternative pre-mRNA splicing in stem cell function and therapeutic potential: A critical review of current evidence. Int J Biol Macromol 2024; 268:131781. [PMID: 38657924 DOI: 10.1016/j.ijbiomac.2024.131781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/23/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
Alternative splicing is a crucial regulator in stem cell biology, intricately influencing the functions of various biological macromolecules, particularly pre-mRNAs and the resultant protein isoforms. This regulatory mechanism is vital in determining stem cell pluripotency, differentiation, and proliferation. Alternative splicing's role in allowing single genes to produce multiple protein isoforms facilitates the proteomic diversity that is essential for stem cells' functional complexity. This review delves into the critical impact of alternative splicing on cellular functions, focusing on its interaction with key macromolecules and how this affects cellular behavior. We critically examine how alternative splicing modulates the function and stability of pre-mRNAs, leading to diverse protein expressions that govern stem cell characteristics, including pluripotency, self-renewal, survival, proliferation, differentiation, aging, migration, somatic reprogramming, and genomic stability. Furthermore, the review discusses the therapeutic potential of targeting alternative splicing-related pathways in disease treatment, particularly focusing on the modulation of RNA and protein interactions. We address the challenges and future prospects in this field, underscoring the need for further exploration to unravel the complex interplay between alternative splicing, RNA, proteins, and stem cell behaviors, which is crucial for advancing our understanding and therapeutic approaches in regenerative medicine and disease treatment.
Collapse
Affiliation(s)
- Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| | - Yucheng Zheng
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Rongwei Xu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China; Hospital of Stomatology, Zunyi Medical University, Zunyi 563000, China
| | - Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Jiarong Zheng
- Department of Dentistry, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Pei Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Bing Guo
- Department of Dentistry, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Shuyu Sun
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| |
Collapse
|
5
|
Carvalho S, Zea-Redondo L, Tang TCC, Stachel-Braum P, Miller D, Caldas P, Kukalev A, Diecke S, Grosswendt S, Grosso AR, Pombo A. SRRM2 splicing factor modulates cell fate in early development. Biol Open 2024; 13:bio060415. [PMID: 38656788 PMCID: PMC11070786 DOI: 10.1242/bio.060415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/26/2024] Open
Abstract
Embryo development is an orchestrated process that relies on tight regulation of gene expression to guide cell differentiation and fate decisions. The Srrm2 splicing factor has recently been implicated in developmental disorders and diseases, but its role in early mammalian development remains unexplored. Here, we show that Srrm2 dosage is critical for maintaining embryonic stem cell pluripotency and cell identity. Srrm2 heterozygosity promotes loss of stemness, characterised by the coexistence of cells expressing naive and formative pluripotency markers, together with extensive changes in gene expression, including genes regulated by serum-response transcription factor (SRF) and differentiation-related genes. Depletion of Srrm2 by RNA interference in embryonic stem cells shows that the earliest effects of Srrm2 heterozygosity are specific alternative splicing events on a small number of genes, followed by expression changes in metabolism and differentiation-related genes. Our findings unveil molecular and cellular roles of Srrm2 in stemness and lineage commitment, shedding light on the roles of splicing regulators in early embryogenesis, developmental diseases and tumorigenesis.
Collapse
Affiliation(s)
- Silvia Carvalho
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Structure Group, 10115 Berlin, Germany
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal
- Graduate Program in Areas of Basic and Applied Biology (GABBA), ICBAS, University of Porto, 4050-313 Porto, Portugal
| | - Luna Zea-Redondo
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Structure Group, 10115 Berlin, Germany
- Humboldt-Universität zu Berlin, Institute of Biology, 10115 Berlin, Germany
| | - Tsz Ching Chloe Tang
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Structure Group, 10115 Berlin, Germany
| | - Philipp Stachel-Braum
- Humboldt-Universität zu Berlin, Institute of Biology, 10115 Berlin, Germany
- Berlin Institute of Health (BIH) at Charité – Universitätsmedizin Berlin, Exploratory Diagnostic Sciences (EDS) 10178 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), From Cell State to Function Group, 10115 Berlin, Germany
| | - Duncan Miller
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Pluripotent Stem Cells Platform, 13125 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, 10785 Berlin, Germany
| | - Paulo Caldas
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Alexander Kukalev
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Structure Group, 10115 Berlin, Germany
| | - Sebastian Diecke
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Pluripotent Stem Cells Platform, 13125 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, 10785 Berlin, Germany
| | - Stefanie Grosswendt
- Berlin Institute of Health (BIH) at Charité – Universitätsmedizin Berlin, Exploratory Diagnostic Sciences (EDS) 10178 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), From Cell State to Function Group, 10115 Berlin, Germany
| | - Ana Rita Grosso
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Ana Pombo
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Structure Group, 10115 Berlin, Germany
- Humboldt-Universität zu Berlin, Institute of Biology, 10115 Berlin, Germany
| |
Collapse
|
6
|
Luo B, Jiang Q. Effect of RNA-binding proteins on osteogenic differentiation of bone marrow mesenchymal stem cells. Mol Cell Biochem 2024; 479:383-392. [PMID: 37072640 DOI: 10.1007/s11010-023-04742-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/12/2023] [Indexed: 04/20/2023]
Abstract
Tissue regeneration mediated by mesenchymal stem cells (MSCs) is an ideal way to repair bone defects. RNA-binding proteins (RBPs) can affect cell function through post-transcriptional regulation. Exploring the role of RBPs in the process of osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) is helpful to find a key method to promote the osteogenic efficiency of BMSCs. By reviewing the literature, we obtained a differentially expressed mRNA dataset during the osteogenic differentiation of BMSCs and a human RBP dataset. A total of 82 differentially expressed RBPs in the osteogenic differentiation of BMSCs were screened by intersection of the two datasets. Functional analysis showed that the differentially expressed RBPs were mainly involved in RNA transcription, translation and degradation through the formation of spliceosomes and ribonucleoprotein complexes. The top 15 RBPs determined by degree score were FBL, NOP58, DDX10, RPL9, SNRPD3, NCL, IFIH1, RPL18A, NAT10, EXOSC5, ALYREF, PA2G4, EIF5B, SNRPD1 and EIF6. The results of this study demonstrate that the expression of many RBPs changed during osteogenic differentiation of BMSCs.
Collapse
Affiliation(s)
- Bin Luo
- Department of Prosthodontics, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, No. 4 Tiantan Xili, Beijing, 100050, China
| | - Qingsong Jiang
- Department of Prosthodontics, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, No. 4 Tiantan Xili, Beijing, 100050, China.
| |
Collapse
|
7
|
Nowzari ZR, Hale M, Ellis J, Biaesch S, Vangaveti S, Reddy K, Chen AA, Berglund JA. Mutation of two intronic nucleotides alters RNA structure and dynamics inhibiting MBNL1 and RBFOX1 regulated splicing of the Insulin Receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.08.574689. [PMID: 38260517 PMCID: PMC10802415 DOI: 10.1101/2024.01.08.574689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Alternative splicing (AS) of Exon 11 of the Insulin Receptor ( INSR ) is highly regulated and disrupted in several human disorders. To better understand INSR exon 11 AS regulation, splicing activity of an INSR exon 11 minigene reporter was measured across a gradient of the AS regulator muscleblind-like 1 protein (MBNL1). The RNA-binding protein Fox-1 (RBFOX1) was added to determine its impact on MBNL1-regulated splicing. The role of the RBFOX1 UGCAUG binding site within intron 11 was assessed across the MBNL1 gradient. Mutating the UGCAUG motif inhibited RBFOX1 regulation of exon 11 and had the unexpected effect of reducing MBNL1 regulation of this exon. Molecular dynamics simulations showed that exon 11 and the adjacent RNA adopts a dynamically stable conformation. Mutation of the RBFOX1 binding site altered RNA structure and dynamics, while a mutation that created an optimal MBNL1 binding site at the RBFOX1 site shifted the RNA back to wild type. An antisense oligonucleotide (ASO) was used to confirm the structure in this region of the pre-mRNA. This example of intronic mutations shifting pre-mRNA structure and dynamics to modulate splicing suggests RNA structure and dynamics should be taken into consideration for AS regulation and therapeutic interventions targeting pre-mRNA.
Collapse
|
8
|
Maurin M, Ranjouri M, Megino-Luque C, Newberg JY, Du D, Martin K, Miner RE, Prater MS, Wee DKB, Centeno B, Pruett-Miller SM, Stewart P, Fleming JB, Yu X, Bravo-Cordero JJ, Guccione E, Black MA, Mann KM. RBFOX2 deregulation promotes pancreatic cancer progression and metastasis through alternative splicing. Nat Commun 2023; 14:8444. [PMID: 38114498 PMCID: PMC10730836 DOI: 10.1038/s41467-023-44126-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/30/2023] [Indexed: 12/21/2023] Open
Abstract
RNA splicing is an important biological process associated with cancer initiation and progression. However, the contribution of alternative splicing to pancreatic cancer (PDAC) development is not well understood. Here, we identify an enrichment of RNA binding proteins (RBPs) involved in splicing regulation linked to PDAC progression from a forward genetic screen using Sleeping Beauty insertional mutagenesis in a mouse model of pancreatic cancer. We demonstrate downregulation of RBFOX2, an RBP of the FOX family, promotes pancreatic cancer progression and liver metastasis. Specifically, we show RBFOX2 regulates exon splicing events in transcripts encoding proteins involved in cytoskeletal remodeling programs. These exons are differentially spliced in PDAC patients, with enhanced exon skipping in the classical subtype for several RBFOX2 targets. RBFOX2 mediated splicing of ABI1, encoding the Abelson-interactor 1 adapter protein, controls the abundance and localization of ABI1 protein isoforms in pancreatic cancer cells and promotes the relocalization of ABI1 from the cytoplasm to the periphery of migrating cells. Using splice-switching antisense oligonucleotides (AONs) we demonstrate the ABI1 ∆Ex9 isoform enhances cell migration. Together, our data identify a role for RBFOX2 in promoting PDAC progression through alternative splicing regulation.
Collapse
Affiliation(s)
- Michelle Maurin
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | | | - Cristina Megino-Luque
- Division of Hematology and Oncology, Department of Medicine, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Justin Y Newberg
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Dongliang Du
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Katelyn Martin
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Robert E Miner
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Mollie S Prater
- Department of Cell and Molecular Biology and Center for Advanced Genome Engineering (CAGE), St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Dave Keng Boon Wee
- Institute for Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Republic of Singapore
| | - Barbara Centeno
- Department of Anatomic Pathology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Shondra M Pruett-Miller
- Department of Cell and Molecular Biology and Center for Advanced Genome Engineering (CAGE), St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Paul Stewart
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Jason B Fleming
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Xiaoqing Yu
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Jose Javier Bravo-Cordero
- Division of Hematology and Oncology, Department of Medicine, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ernesto Guccione
- Center for OncoGenomics and Innovative Therapeutics (COGIT), Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Therapeutics Discovery, Department of Oncological Sciences and Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Michael A Black
- Department of Biochemistry, University of Otago, Dunedin, 9054, New Zealand
| | - Karen M Mann
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL, 33612, USA.
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, FL, 33612, USA.
| |
Collapse
|
9
|
Verbeeren J, Teixeira J, Garcia SMDA. The Muscleblind-like protein MBL-1 regulates microRNA expression in Caenorhabditis elegans through an evolutionarily conserved autoregulatory mechanism. PLoS Genet 2023; 19:e1011109. [PMID: 38134228 PMCID: PMC10773944 DOI: 10.1371/journal.pgen.1011109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 01/08/2024] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
The Muscleblind-like (MBNL) family is a highly conserved set of RNA-binding proteins (RBPs) that regulate RNA metabolism during the differentiation of various animal tissues. Functional insufficiency of MBNL affects muscle and central nervous system development, and contributes to the myotonic dystrophies (DM), a set of incurable multisystemic disorders. Studies on the regulation of MBNL genes are essential to provide insight into the gene regulatory networks controlled by MBNL proteins and to understand how dysregulation within these networks causes disease. In this study, we demonstrate the evolutionary conservation of an autoregulatory mechanism that governs the function of MBNL proteins by generating two distinct protein isoform types through alternative splicing. Our aim was to further our understanding of the regulatory principles that underlie this conserved feedback loop in a whole-organismal context, and to address the biological significance of the respective isoforms. Using an alternative splicing reporter, our studies show that, during development of the Caenorhabditis elegans central nervous system, the orthologous mbl-1 gene shifts production from long protein isoforms that localize to the nucleus to short isoforms that also localize to the cytoplasm. Using isoform-specific CRISPR/Cas9-generated strains, we showed that expression of short MBL-1 protein isoforms is required for healthy neuromuscular function and neurodevelopment, while expression of long MBL-1 protein isoforms is dispensable, emphasizing a key role for cytoplasmic functionalities of the MBL-1 protein. Furthermore, RNA-seq and lifespan analyses indicated that short MBL-1 isoforms are crucial regulators of miRNA expression and, in consequence, required for normal lifespan. In conclusion, this study provides support for the disruption of cytoplasmic RNA metabolism as a contributor in myotonic dystrophy and paves the way for further exploration of miRNA regulation through MBNL proteins during development and in disease models.
Collapse
Affiliation(s)
- Jens Verbeeren
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Joana Teixeira
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
10
|
Moss ND, Wells KL, Theis A, Kim YK, Spigelman AF, Liu X, MacDonald PE, Sussel L. Modulation of insulin secretion by RBFOX2-mediated alternative splicing. Nat Commun 2023; 14:7732. [PMID: 38007492 PMCID: PMC10676425 DOI: 10.1038/s41467-023-43605-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 11/15/2023] [Indexed: 11/27/2023] Open
Abstract
Insulin secretion is a tightly regulated process that is vital for maintaining blood glucose homeostasis. Although the molecular components of insulin granule trafficking and secretion are well established, how they are regulated to rapidly fine-tune secretion in response to changing environmental conditions is not well characterized. Recent studies have determined that dysregulation of RNA-binding proteins (RBPs) and aberrant mRNA splicing occurs at the onset of diabetes. We demonstrate that the RBP, RBFOX2, is a critical regulator of insulin secretion through the alternative splicing of genes required for insulin granule docking and exocytosis. Conditional mutation of Rbfox2 in the mouse pancreas results in decreased insulin secretion and impaired blood glucose homeostasis. Consistent with defects in secretion, we observe reduced insulin granule docking and corresponding splicing defects in the SNARE complex components. These findings identify an additional mechanism for modulating insulin secretion in both healthy and dysfunctional pancreatic β cells.
Collapse
Affiliation(s)
- Nicole D Moss
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kristen L Wells
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alexandra Theis
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yong-Kyung Kim
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Aliya F Spigelman
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Xiong Liu
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Patrick E MacDonald
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Lori Sussel
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
11
|
Aich M, Ansari AH, Ding L, Iesmantavicius V, Paul D, Choudhary C, Maiti S, Buchholz F, Chakraborty D. TOBF1 modulates mouse embryonic stem cell fate through regulating alternative splicing of pluripotency genes. Cell Rep 2023; 42:113177. [PMID: 37751355 DOI: 10.1016/j.celrep.2023.113177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/28/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
Embryonic stem cells (ESCs) can undergo lineage-specific differentiation, giving rise to different cell types that constitute an organism. Although roles of transcription factors and chromatin modifiers in these cells have been described, how the alternative splicing (AS) machinery regulates their expression has not been sufficiently explored. Here, we show that the long non-coding RNA (lncRNA)-associated protein TOBF1 modulates the AS of transcripts necessary for maintaining stem cell identity in mouse ESCs. Among the genes affected is serine/arginine splicing factor 1 (SRSF1), whose AS leads to global changes in splicing and expression of a large number of downstream genes involved in the maintenance of ESC pluripotency. By overlaying information derived from TOBF1 chromatin occupancy, the distribution of its pluripotency-associated OCT-SOX binding motifs, and transcripts undergoing differential expression and AS upon its knockout, we describe local nuclear territories where these distinct events converge. Collectively, these contribute to the maintenance of mouse ESC identity.
Collapse
Affiliation(s)
- Meghali Aich
- CSIR- Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Asgar Hussain Ansari
- CSIR- Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Li Ding
- Medical Systems Biology, UCC, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Vytautas Iesmantavicius
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Deepanjan Paul
- CSIR- Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Chunaram Choudhary
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Souvik Maiti
- CSIR- Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Frank Buchholz
- Medical Systems Biology, UCC, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Debojyoti Chakraborty
- CSIR- Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
12
|
Marzullo M, Coni S, De Simone A, Canettieri G, Ciapponi L. Modeling Myotonic Dystrophy Type 2 Using Drosophila melanogaster. Int J Mol Sci 2023; 24:14182. [PMID: 37762484 PMCID: PMC10532015 DOI: 10.3390/ijms241814182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/04/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Myotonic dystrophy 2 (DM2) is a genetic multi-systemic disease primarily affecting skeletal muscle. It is caused by CCTGn expansion in intron 1 of the CNBP gene, which encodes a zinc finger protein. DM2 disease has been successfully modeled in Drosophila melanogaster, allowing the identification and validation of new pathogenic mechanisms and potential therapeutic strategies. Here, we describe the principal tools used in Drosophila to study and dissect molecular pathways related to muscular dystrophies and summarize the main findings in DM2 pathogenesis based on DM2 Drosophila models. We also illustrate how Drosophila may be successfully used to generate a tractable animal model to identify novel genes able to affect and/or modify the pathogenic pathway and to discover new potential drugs.
Collapse
Affiliation(s)
- Marta Marzullo
- Department of Biology and Biotechnologies “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (M.M.)
| | - Sonia Coni
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Assia De Simone
- Department of Biology and Biotechnologies “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (M.M.)
| | - Gianluca Canettieri
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
- Istituto Pasteur Italia, Fondazione Cenci Bolognetti, 00161 Rome, Italy
| | - Laura Ciapponi
- Department of Biology and Biotechnologies “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (M.M.)
| |
Collapse
|
13
|
Hildebrandt RP, Moss KR, Janusz-Kaminska A, Knudson LA, Denes LT, Saxena T, Boggupalli DP, Li Z, Lin K, Bassell GJ, Wang ET. Muscleblind-like proteins use modular domains to localize RNAs by riding kinesins and docking to membranes. Nat Commun 2023; 14:3427. [PMID: 37296096 PMCID: PMC10256740 DOI: 10.1038/s41467-023-38923-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
RNA binding proteins (RBPs) act as critical facilitators of spatially regulated gene expression. Muscleblind-like (MBNL) proteins, implicated in myotonic dystrophy and cancer, localize RNAs to myoblast membranes and neurites through unknown mechanisms. We find that MBNL forms motile and anchored granules in neurons and myoblasts, and selectively associates with kinesins Kif1bα and Kif1c through its zinc finger (ZnF) domains. Other RBPs with similar ZnFs associate with these kinesins, implicating a motor-RBP specificity code. MBNL and kinesin perturbation leads to widespread mRNA mis-localization, including depletion of Nucleolin transcripts from neurites. Live cell imaging and fractionation reveal that the unstructured carboxy-terminal tail of MBNL1 allows for anchoring at membranes. An approach, termed RBP Module Recruitment and Imaging (RBP-MRI), reconstitutes kinesin- and membrane-recruitment functions using MBNL-MS2 coat protein fusions. Our findings decouple kinesin association, RNA binding, and membrane anchoring functions of MBNL while establishing general strategies for studying multi-functional, modular domains of RBPs.
Collapse
Affiliation(s)
- Ryan P Hildebrandt
- Department of Molecular Genetics & Microbiology, Center for Neurogenetics, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Kathryn R Moss
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Luke A Knudson
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Lance T Denes
- Department of Molecular Genetics & Microbiology, Center for Neurogenetics, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Tanvi Saxena
- Department of Molecular Genetics & Microbiology, Center for Neurogenetics, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Devi Prasad Boggupalli
- Department of Molecular Genetics & Microbiology, Center for Neurogenetics, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Zhuangyue Li
- Department of Molecular Genetics & Microbiology, Center for Neurogenetics, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Kun Lin
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA.
| | - Eric T Wang
- Department of Molecular Genetics & Microbiology, Center for Neurogenetics, Genetics Institute, University of Florida, Gainesville, FL, USA.
- Myology Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
14
|
Mehlferber MM, Kuyumcu-Martinez M, Miller CL, Sheynkman GM. Transcription factors and splice factors - interconnected regulators of stem cell differentiation. CURRENT STEM CELL REPORTS 2023; 9:31-41. [PMID: 38939410 PMCID: PMC11210451 DOI: 10.1007/s40778-023-00227-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2023] [Indexed: 06/29/2024]
Abstract
Purpose of review The underlying molecular mechanisms that direct stem cell differentiation into fully functional, mature cells remain an area of ongoing investigation. Cell state is the product of the combinatorial effect of individual factors operating within a coordinated regulatory network. Here, we discuss the contribution of both gene regulatory and splicing regulatory networks in defining stem cell fate during differentiation and the critical role of protein isoforms in this process. Recent findings We review recent experimental and computational approaches that characterize gene regulatory networks, splice regulatory networks, and the resulting transcriptome and proteome they mediate during differentiation. Such approaches include long-read RNA sequencing, which has demonstrated high-resolution profiling of mRNA isoforms, and Cas13-based CRISPR, which could make possible high-throughput isoform screening. Collectively, these developments enable systems-level profiling of factors contributing to cell state. Summary Overall, gene and splice regulatory networks are important in defining cell state. The emerging high-throughput systems-level approaches will characterize the gene regulatory network components necessary in driving stem cell differentiation.
Collapse
Affiliation(s)
- Madison M Mehlferber
- Department of Biochemistry and Molecular Genetics, University Virginia, Charlottesville, VA 22903
| | - Muge Kuyumcu-Martinez
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Fontaine Medical Office Building 1, 415 Ray C. Hunt Dr, Charlottesville, VA 22903
| | - Clint L Miller
- Department of Public Health Sciences, Department of Biochemistry and Molecular Genetics, and Department of Biomedical Engineering, University of Virginia, Multistory Building, West Complex, 1335 Lee St, Charlottesville, VA 22908, PO Box 800717, Charlottesville, Virginia 22908
| | - Gloria M Sheynkman
- Department of Molecular Physiology and Biological Physics, Center for Public Health Genomics, UVA Comprehensive Cancer Center, Department of Biochemistry and Molecular Genetics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22903
| |
Collapse
|
15
|
Ellis JA, Hale MA, Cleary JD, Wang E, Andrew Berglund J. Alternative splicing outcomes across an RNA-binding protein concentration gradient. J Mol Biol 2023:168156. [PMID: 37230319 DOI: 10.1016/j.jmb.2023.168156] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/18/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023]
Abstract
Alternative splicing (AS) is a dynamic RNA processing step that produces multiple RNA isoforms from a single pre-mRNA transcript and contributes to the complexity of the cellular transcriptome and proteome. This process is regulated through a network of cis-regulatory sequence elements and trans-acting factors, most-notably RNA binding proteins (RBPs). The muscleblind-like (MBNL) and RNA binding fox-1 homolog (RBFOX) are two well characterized families of RBPs that regulate fetal to adult AS transitions critical for proper muscle, heart, and central nervous system development. To better understand how the concentration of these RBPs influences AS transcriptome wide, we engineered a MBNL1 and RBFOX1 inducible HEK-293 cell line. Modest induction of exogenous RBFOX1 in this cell line modulated MBNL1-dependent AS outcomes in 3 skipped exon events, despite significant levels of endogenous RBFOX1 and RBFOX2. Due to background RBFOX levels, we conducted a focused analysis of dose-dependent MBNL1 skipped exon AS outcomes and generated transcriptome wide dose-response curves. Analysis of this data demonstrates that MBNL1-regulated exclusion events may require higher concentrations of MBNL1 protein to properly regulate AS outcomes compared to inclusion events and that multiple arrangements of YGCY motifs can produce similar splicing outcomes. These results suggest that rather than a simple relationship between the organization of RBP binding sites and a specific splicing outcome, that complex interaction networks govern both AS inclusion and exclusion events across a RBP gradient.
Collapse
Affiliation(s)
- Joseph A Ellis
- Department of Biochemistry & Molecular Biology & Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, Florida 32610, United States; The RNA Institute, College of Arts and Sciences, University at Albany, SUNY, Albany, NY 12222, United States
| | - Melissa A Hale
- Department of Biochemistry & Molecular Biology & Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, Florida 32610, United States; Department of Neurology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - John D Cleary
- The RNA Institute, College of Arts and Sciences, University at Albany, SUNY, Albany, NY 12222, United States
| | - Eric Wang
- Department of Microbiology and Molecular Genetics & Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - J Andrew Berglund
- Department of Biochemistry & Molecular Biology & Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, Florida 32610, United States; The RNA Institute, College of Arts and Sciences, University at Albany, SUNY, Albany, NY 12222, United States; Department of Biological Sciences, College of Arts and Sciences, University at Albany, SUNY, Albany, NY 12222, United States; RNA Institute, State University of New York at Albany, LSRB-2033, 1400 Washington Avenue, Albany, New York, 12222.
| |
Collapse
|
16
|
van der Werf I, Mondala PK, Steel SK, Balaian L, Ladel L, Mason CN, Diep RH, Pham J, Cloos J, Kaspers GJL, Chan WC, Mark A, La Clair JJ, Wentworth P, Fisch KM, Crews LA, Whisenant TC, Burkart MD, Donohoe ME, Jamieson CHM. Detection and targeting of splicing deregulation in pediatric acute myeloid leukemia stem cells. Cell Rep Med 2023; 4:100962. [PMID: 36889320 PMCID: PMC10040387 DOI: 10.1016/j.xcrm.2023.100962] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/03/2022] [Accepted: 02/10/2023] [Indexed: 03/09/2023]
Abstract
Pediatric acute myeloid leukemia (pAML) is typified by high relapse rates and a relative paucity of somatic DNA mutations. Although seminal studies show that splicing factor mutations and mis-splicing fuel therapy-resistant leukemia stem cell (LSC) generation in adults, splicing deregulation has not been extensively studied in pAML. Herein, we describe single-cell proteogenomics analyses, transcriptome-wide analyses of FACS-purified hematopoietic stem and progenitor cells followed by differential splicing analyses, dual-fluorescence lentiviral splicing reporter assays, and the potential of a selective splicing modulator, Rebecsinib, in pAML. Using these methods, we discover transcriptomic splicing deregulation typified by differential exon usage. In addition, we discover downregulation of splicing regulator RBFOX2 and CD47 splice isoform upregulation. Importantly, splicing deregulation in pAML induces a therapeutic vulnerability to Rebecsinib in survival, self-renewal, and lentiviral splicing reporter assays. Taken together, the detection and targeting of splicing deregulation represent a potentially clinically tractable strategy for pAML therapy.
Collapse
Affiliation(s)
- Inge van der Werf
- Division of Regenerative Medicine, Department of Medicine, Sanford Stem Cell Institute, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA; Department of Hematology, Amsterdam University Medical Center, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, the Netherlands; Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Phoebe K Mondala
- Division of Regenerative Medicine, Department of Medicine, Sanford Stem Cell Institute, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA
| | - S Kathleen Steel
- Division of Regenerative Medicine, Department of Medicine, Sanford Stem Cell Institute, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA
| | - Larisa Balaian
- Division of Regenerative Medicine, Department of Medicine, Sanford Stem Cell Institute, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA
| | - Luisa Ladel
- Division of Regenerative Medicine, Department of Medicine, Sanford Stem Cell Institute, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA
| | - Cayla N Mason
- Division of Regenerative Medicine, Department of Medicine, Sanford Stem Cell Institute, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA
| | - Raymond H Diep
- Division of Regenerative Medicine, Department of Medicine, Sanford Stem Cell Institute, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA
| | - Jessica Pham
- Division of Regenerative Medicine, Department of Medicine, Sanford Stem Cell Institute, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA
| | - Jacqueline Cloos
- Department of Hematology, Amsterdam University Medical Center, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Gertjan J L Kaspers
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Emma Children's Hospital Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Pediatric Oncology, Amsterdam, the Netherlands
| | - Warren C Chan
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92037, USA
| | - Adam Mark
- Center for Computational Biology and Bioinformatics (CCBB), University of California, San Diego, La Jolla, CA 92037, USA
| | - James J La Clair
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92037, USA
| | - Peggy Wentworth
- Division of Regenerative Medicine, Department of Medicine, Sanford Stem Cell Institute, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA
| | - Kathleen M Fisch
- Center for Computational Biology and Bioinformatics (CCBB), University of California, San Diego, La Jolla, CA 92037, USA
| | - Leslie A Crews
- Division of Regenerative Medicine, Department of Medicine, Sanford Stem Cell Institute, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA
| | - Thomas C Whisenant
- Center for Computational Biology and Bioinformatics (CCBB), University of California, San Diego, La Jolla, CA 92037, USA
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92037, USA
| | - Mary E Donohoe
- Division of Regenerative Medicine, Department of Medicine, Sanford Stem Cell Institute, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA
| | - Catriona H M Jamieson
- Division of Regenerative Medicine, Department of Medicine, Sanford Stem Cell Institute, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA.
| |
Collapse
|
17
|
Campostrini G, Kosmidis G, Ward-van Oostwaard D, Davis RP, Yiangou L, Ottaviani D, Veerman CC, Mei H, Orlova VV, Wilde AAM, Bezzina CR, Verkerk AO, Mummery CL, Bellin M. Maturation of hiPSC-derived cardiomyocytes promotes adult alternative splicing of SCN5A and reveals changes in sodium current associated with cardiac arrhythmia. Cardiovasc Res 2023; 119:167-182. [PMID: 35394010 PMCID: PMC10022870 DOI: 10.1093/cvr/cvac059] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/07/2022] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
AIMS Human-induced pluripotent stem cell-cardiomyocytes (hiPSC-CMs) are widely used to study arrhythmia-associated mutations in ion channels. Among these, the cardiac sodium channel SCN5A undergoes foetal-to-adult isoform switching around birth. Conventional hiPSC-CM cultures, which are phenotypically foetal, have thus far been unable to capture mutations in adult gene isoforms. Here, we investigated whether tri-cellular cross-talk in a three-dimensional (3D) cardiac microtissue (MT) promoted post-natal SCN5A maturation in hiPSC-CMs. METHODS AND RESULTS We derived patient hiPSC-CMs carrying compound mutations in the adult SCN5A exon 6B and exon 4. Electrophysiological properties of patient hiPSC-CMs in monolayer were not altered by the exon 6B mutation compared with isogenic controls since it is not expressed; further, CRISPR/Cas9-mediated excision of the foetal exon 6A did not promote adult SCN5A expression. However, when hiPSC-CMs were matured in 3D cardiac MTs, SCN5A underwent isoform switch and the functional consequences of the mutation located in exon 6B were revealed. Up-regulation of the splicing factor muscleblind-like protein 1 (MBNL1) drove SCN5A post-natal maturation in microtissues since its overexpression in hiPSC-CMs was sufficient to promote exon 6B inclusion, whilst knocking-out MBNL1 failed to foster isoform switch. CONCLUSIONS Our study shows that (i) the tri-cellular cardiac microtissues promote post-natal SCN5A isoform switch in hiPSC-CMs, (ii) adult splicing of SCN5A is driven by MBNL1 in these tissues, and (iii) this model can be used for examining post-natal cardiac arrhythmias due to mutations in the exon 6B. TRANSLATIONAL PERSPECTIVE The cardiac sodium channel is essential for conducting the electrical impulse in the heart. Postnatal alternative splicing regulation causes mutual exclusive inclusion of fetal or adult exons of the corresponding gene, SCN5A. Typically, immature hiPSCCMs fall short in studying the effect of mutations located in the adult exon. We describe here that an innovative tri-cellular three-dimensional cardiac microtissue culture promotes hiPSC-CMs maturation through upregulation of MBNL1, thus revealing the effect of a pathogenic genetic variant located in the SCN5A adult exon. These results help advancing the use of hiPSC-CMs in studying adult heart disease and for developing personalized medicine applications.
Collapse
Affiliation(s)
- Giulia Campostrini
- Department of Anatomy and Embryology, Leiden University Medical Center (LUMC), 2333 ZA Leiden, The Netherlands
| | - Georgios Kosmidis
- Department of Anatomy and Embryology, Leiden University Medical Center (LUMC), 2333 ZA Leiden, The Netherlands
| | - Dorien Ward-van Oostwaard
- Department of Anatomy and Embryology, Leiden University Medical Center (LUMC), 2333 ZA Leiden, The Netherlands
| | - Richard Paul Davis
- Department of Anatomy and Embryology, Leiden University Medical Center (LUMC), 2333 ZA Leiden, The Netherlands
| | - Loukia Yiangou
- Department of Anatomy and Embryology, Leiden University Medical Center (LUMC), 2333 ZA Leiden, The Netherlands
| | - Daniele Ottaviani
- Department of Biology, University of Padua, 35121 Padua, Italy
- Veneto Institute of Molecular Medicine, 35129 Padua, Italy
| | - Christiaan Cornelis Veerman
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam University Medical Centre, location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core, Leiden University Medical Center, 2333 Leiden, The Netherlands
| | - Valeria Viktorovna Orlova
- Department of Anatomy and Embryology, Leiden University Medical Center (LUMC), 2333 ZA Leiden, The Netherlands
| | - Arthur Arnold Maria Wilde
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam University Medical Centre, location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Connie Rose Bezzina
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam University Medical Centre, location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Arie Otto Verkerk
- Department of Clinical and Experimental Cardiology, Heart Centre, Amsterdam University Medical Centre, location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Christine Lindsay Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center (LUMC), 2333 ZA Leiden, The Netherlands
- Department of Applied Stem Cell Technologies, University of Twente, 7500 AE, Enschede, The Netherlands
| | | |
Collapse
|
18
|
Pan YJ, Liu BW, Pei DS. The Role of Alternative Splicing in Cancer: Regulatory Mechanism, Therapeutic Strategy, and Bioinformatics Application. DNA Cell Biol 2022; 41:790-809. [PMID: 35947859 DOI: 10.1089/dna.2022.0322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
[Formula: see text] Alternative splicing (AS) can generate distinct transcripts and subsequent isoforms that play differential functions from the same pre-mRNA. Recently, increasing numbers of studies have emerged, unmasking the association between AS and cancer. In this review, we arranged AS events that are closely related to cancer progression and presented promising treatments based on AS for cancer therapy. Obtaining proliferative capacity, acquiring invasive properties, gaining angiogenic features, shifting metabolic ability, and getting immune escape inclination are all splicing events involved in biological processes. Spliceosome-targeted and antisense oligonucleotide technologies are two novel strategies that are hopeful in tumor therapy. In addition, bioinformatics applications based on AS were summarized for better prediction and elucidation of regulatory routines mingled in. Together, we aimed to provide a better understanding of complicated AS events associated with cancer biology and reveal AS a promising target of cancer treatment in the future.
Collapse
Affiliation(s)
- Yao-Jie Pan
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, China
| | - Bo-Wen Liu
- Department of General Surgery, Xuzhou Medical University, Xuzhou, China
| | - Dong-Sheng Pei
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
19
|
Dincã DM, Lallemant L, González-Barriga A, Cresto N, Braz SO, Sicot G, Pillet LE, Polvèche H, Magneron P, Huguet-Lachon A, Benyamine H, Azotla-Vilchis CN, Agonizantes-Juárez LE, Tahraoui-Boris J, Martinat C, Hernández-Hernández O, Auboeuf D, Rouach N, Bourgeois CF, Gourdon G, Gomes-Pereira M. Myotonic dystrophy RNA toxicity alters morphology, adhesion and migration of mouse and human astrocytes. Nat Commun 2022; 13:3841. [PMID: 35789154 PMCID: PMC9253038 DOI: 10.1038/s41467-022-31594-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 06/21/2022] [Indexed: 11/24/2022] Open
Abstract
Brain dysfunction in myotonic dystrophy type 1 (DM1), the prototype of toxic RNA disorders, has been mainly attributed to neuronal RNA misprocessing, while little attention has been given to non-neuronal brain cells. Here, using a transgenic mouse model of DM1 that expresses mutant RNA in various brain cell types (neurons, astroglia, and oligodendroglia), we demonstrate that astrocytes exhibit impaired ramification and polarization in vivo and defects in adhesion, spreading, and migration. RNA-dependent toxicity and phenotypes are also found in human transfected glial cells. In line with the cell phenotypes, molecular analyses reveal extensive expression and accumulation of toxic RNA in astrocytes, which result in RNA spliceopathy that is more severe than in neurons. Astrocyte missplicing affects primarily transcripts that regulate cell adhesion, cytoskeleton, and morphogenesis, and it is confirmed in human brain tissue. Our findings demonstrate that DM1 impacts astrocyte cell biology, possibly compromising their support and regulation of synaptic function. Myotonic dystrophy type 1 (DM1) is characterized by debilitating neurological symptoms. Dinca et al. demonstrate the pronounced impact of DM1 on the morphology and RNA metabolism of astrocytes. Their findings suggest astroglial pathology in DM1 brain dysfunction.
Collapse
Affiliation(s)
- Diana M Dincã
- Sorbonne Université, Inserm, Centre de Recherche en Myologie, 75013, Paris, France
| | - Louison Lallemant
- Sorbonne Université, Inserm, Centre de Recherche en Myologie, 75013, Paris, France
| | | | - Noémie Cresto
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, Inserm, Labex Memolife, 75005, Paris, France
| | - Sandra O Braz
- Sorbonne Université, Inserm, Centre de Recherche en Myologie, 75013, Paris, France.,Inserm UMR1163, Institut Imagine, Université Paris Cite, 75015, Paris, France
| | - Géraldine Sicot
- Sorbonne Université, Inserm, Centre de Recherche en Myologie, 75013, Paris, France
| | - Laure-Elise Pillet
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, Inserm, Labex Memolife, 75005, Paris, France.,Doctoral School N°562, Paris Descartes University, Paris, 75006, France
| | - Hélène Polvèche
- Inserm/UEVE UMR861, Université Paris Saclay I-STEM, 91110, Corbeil-Essonnes, France
| | - Paul Magneron
- Sorbonne Université, Inserm, Centre de Recherche en Myologie, 75013, Paris, France
| | - Aline Huguet-Lachon
- Sorbonne Université, Inserm, Centre de Recherche en Myologie, 75013, Paris, France
| | - Hélène Benyamine
- Sorbonne Université, Inserm, Centre de Recherche en Myologie, 75013, Paris, France
| | - Cuauhtli N Azotla-Vilchis
- Laboratory of Genomic Medicine, Department of Genetics, National Rehabilitation Institute (INR-LGII), Mexico City, Mexico
| | - Luis E Agonizantes-Juárez
- Laboratory of Genomic Medicine, Department of Genetics, National Rehabilitation Institute (INR-LGII), Mexico City, Mexico
| | - Julie Tahraoui-Boris
- Inserm/UEVE UMR861, Université Paris Saclay I-STEM, 91110, Corbeil-Essonnes, France
| | - Cécile Martinat
- Inserm/UEVE UMR861, Université Paris Saclay I-STEM, 91110, Corbeil-Essonnes, France
| | - Oscar Hernández-Hernández
- Laboratory of Genomic Medicine, Department of Genetics, National Rehabilitation Institute (INR-LGII), Mexico City, Mexico
| | - Didier Auboeuf
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allée d'Italie, 69364, Lyon, France
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, Inserm, Labex Memolife, 75005, Paris, France
| | - Cyril F Bourgeois
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allée d'Italie, 69364, Lyon, France
| | - Geneviève Gourdon
- Sorbonne Université, Inserm, Centre de Recherche en Myologie, 75013, Paris, France.
| | - Mário Gomes-Pereira
- Sorbonne Université, Inserm, Centre de Recherche en Myologie, 75013, Paris, France.
| |
Collapse
|
20
|
Reixachs‐Solé M, Eyras E. Uncovering the impacts of alternative splicing on the proteome with current omics techniques. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1707. [PMID: 34979593 PMCID: PMC9542554 DOI: 10.1002/wrna.1707] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 12/15/2022]
Abstract
The high-throughput sequencing of cellular RNAs has underscored a broad effect of isoform diversification through alternative splicing on the transcriptome. Moreover, the differential production of transcript isoforms from gene loci has been recognized as a critical mechanism in cell differentiation, organismal development, and disease. Yet, the extent of the impact of alternative splicing on protein production and cellular function remains a matter of debate. Multiple experimental and computational approaches have been developed in recent years to address this question. These studies have unveiled how molecular changes at different steps in the RNA processing pathway can lead to differences in protein production and have functional effects. New and emerging experimental technologies open exciting new opportunities to develop new methods to fully establish the connection between messenger RNA expression and protein production and to further investigate how RNA variation impacts the proteome and cell function. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing Translation > Regulation RNA Evolution and Genomics > Computational Analyses of RNA.
Collapse
Affiliation(s)
- Marina Reixachs‐Solé
- The John Curtin School of Medical ResearchAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
- EMBL Australia Partner Laboratory Network and the Australian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - Eduardo Eyras
- The John Curtin School of Medical ResearchAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
- EMBL Australia Partner Laboratory Network and the Australian National UniversityCanberraAustralian Capital TerritoryAustralia
- Catalan Institution for Research and Advanced StudiesBarcelonaSpain
- Hospital del Mar Medical Research Institute (IMIM)BarcelonaSpain
| |
Collapse
|
21
|
G R, Mitra A, Pk V. Predicting functional riboSNitches in the context of alternative splicing. Gene X 2022; 837:146694. [PMID: 35738445 DOI: 10.1016/j.gene.2022.146694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/11/2022] [Accepted: 06/17/2022] [Indexed: 11/19/2022] Open
Abstract
RNAs are the major regulators of gene expression, and their secondary structures play crucial roles at different levels. RiboSNitches are disease-associated SNPs that cause changes in the pre-mRNA secondary structural ensemble. Several riboSNitches have been detected in the 5' and 3' untranslated regions and lncRNA. Although cases of secondary structural elements playing a regulatory role in alternative splicing are known, regions specific to splicing events, such as splice junctions have not received much attention. We tested splice-site mutations for their efficiency in disrupting the secondary structure and hypothesized that these could play a crucial role in alternative splicing. Multiple riboSNitch prediction methods were applied to obtain overlapping results that are potentially more reliable. Putative riboSNitches were identified from aberrant 5' and 3' splice site mutations, cancer-causing somatic mutations, and genes that harbor the regulatory RNA secondary structural elements. Our workflow for predicting riboSNitches associated with alternative splicing is novel and paves the way for subsequent experimental validation.
Collapse
Affiliation(s)
- Ramya G
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Gachibowli, Hyderabad, Telangana 500032, India.
| | - Abhijit Mitra
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Gachibowli, Hyderabad, Telangana 500032, India.
| | - Vinod Pk
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Gachibowli, Hyderabad, Telangana 500032, India.
| |
Collapse
|
22
|
Choi S, Lee HS, Cho N, Kim I, Cheon S, Park C, Kim EM, Kim W, Kim KK. RBFOX2-regulated TEAD1 alternative splicing plays a pivotal role in Hippo-YAP signaling. Nucleic Acids Res 2022; 50:8658-8673. [PMID: 35699208 PMCID: PMC9410899 DOI: 10.1093/nar/gkac509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 11/14/2022] Open
Abstract
Alternative pre-mRNA splicing is key to proteome diversity; however, the biological roles of alternative splicing (AS) in signaling pathways remain elusive. Here, we focus on TEA domain transcription factor 1 (TEAD1), a YAP binding factor in the Hippo signaling pathway. Public database analyses showed that expression of YAP-TEAD target genes negatively correlated with the expression of a TEAD1 isoform lacking exon 6 (TEAD1ΔE6) but did not correlate with overall TEAD1 expression. We confirmed that the transcriptional activity and oncogenic properties of the full-length TEAD1 isoform were greater than those of TEAD1ΔE6, with the difference in transcription related to YAP interaction. Furthermore, we showed that RNA-binding Fox-1 homolog 2 (RBFOX2) promoted the inclusion of TEAD1 exon 6 via binding to the conserved GCAUG element in the downstream intron. These results suggest a regulatory mechanism of RBFOX2-mediated TEAD1 AS and provide insight into AS-specific modulation of signaling pathways.
Collapse
Affiliation(s)
- Sunkyung Choi
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyo Seong Lee
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Namjoon Cho
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Inyoung Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seongmin Cheon
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea.,Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Chungoo Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Eun-Mi Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Wantae Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Kee K Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
23
|
Wheeler JR, Whitney ON, Vogler TO, Nguyen ED, Pawlikowski B, Lester E, Cutler A, Elston T, Dalla Betta N, Parker KR, Yost KE, Vogel H, Rando TA, Chang HY, Johnson AM, Parker R, Olwin BB. RNA-binding proteins direct myogenic cell fate decisions. eLife 2022; 11:e75844. [PMID: 35695839 PMCID: PMC9191894 DOI: 10.7554/elife.75844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
RNA-binding proteins (RBPs), essential for skeletal muscle regeneration, cause muscle degeneration and neuromuscular disease when mutated. Why mutations in these ubiquitously expressed RBPs orchestrate complex tissue regeneration and direct cell fate decisions in skeletal muscle remains poorly understood. Single-cell RNA-sequencing of regenerating Mus musculus skeletal muscle reveals that RBP expression, including the expression of many neuromuscular disease-associated RBPs, is temporally regulated in skeletal muscle stem cells and correlates with specific stages of myogenic differentiation. By combining machine learning with RBP engagement scoring, we discovered that the neuromuscular disease-associated RBP Hnrnpa2b1 is a differentiation-specifying regulator of myogenesis that controls myogenic cell fate transitions during terminal differentiation in mice. The timing of RBP expression specifies cell fate transitions by providing post-transcriptional regulation of messenger RNAs that coordinate stem cell fate decisions during tissue regeneration.
Collapse
Affiliation(s)
- Joshua R Wheeler
- Department of Biochemistry, University of ColoradoBoulderUnited States
- Medical Scientist Training Program, University of Colorado Anschutz Medical CampusAuroraUnited States
- Howard Hughes Medical Institute, University of ColoradoBoulderUnited States
- Department of Pathology, Stanford UniversityStanfordUnited States
- Department of Neuropathology, Stanford UniversityStanfordUnited States
| | - Oscar N Whitney
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Thomas O Vogler
- Medical Scientist Training Program, University of Colorado Anschutz Medical CampusAuroraUnited States
- Department of Molecular, Cellular and Developmental Biology, University of ColoradoBoulderUnited States
- Department of Surgery, University of ColoradoAuroraUnited States
| | - Eric D Nguyen
- Medical Scientist Training Program, University of Colorado Anschutz Medical CampusAuroraUnited States
- Molecular Biology Program and Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Bradley Pawlikowski
- Department of Molecular, Cellular and Developmental Biology, University of ColoradoBoulderUnited States
| | - Evan Lester
- Department of Biochemistry, University of ColoradoBoulderUnited States
- Medical Scientist Training Program, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Alicia Cutler
- Department of Molecular, Cellular and Developmental Biology, University of ColoradoBoulderUnited States
| | - Tiffany Elston
- Department of Molecular, Cellular and Developmental Biology, University of ColoradoBoulderUnited States
| | - Nicole Dalla Betta
- Department of Molecular, Cellular and Developmental Biology, University of ColoradoBoulderUnited States
| | - Kevin R Parker
- Center for Personal and Dynamic Regulomes, Stanford UniversityPalo AltoUnited States
| | - Kathryn E Yost
- Center for Personal and Dynamic Regulomes, Stanford UniversityPalo AltoUnited States
| | - Hannes Vogel
- Department of Pathology, Stanford UniversityStanfordUnited States
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences, Stanford University School of MedicineStanfordUnited States
- Paul F. Glenn Center for the Biology of Aging, Stanford University School of MedicineStanfordUnited States
- Center for Tissue Regeneration, Repair, and Restoration, Veterans Affairs Palo Alto Health Care SystemPalo AltoUnited States
| | - Howard Y Chang
- Center for Personal and Dynamic Regulomes, Stanford UniversityPalo AltoUnited States
- Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Aaron M Johnson
- Molecular Biology Program and Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical CampusAuroraUnited States
- University of Colorado School of Medicine, RNA Bioscience Initiative, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Roy Parker
- Howard Hughes Medical Institute, University of ColoradoBoulderUnited States
| | - Bradley B Olwin
- Department of Molecular, Cellular and Developmental Biology, University of ColoradoBoulderUnited States
| |
Collapse
|
24
|
Fagg WS, Liu N, Braunschweig U, Pereira de Castro K, Chen X, Ditmars F, Widen S, Donohue JP, Modis K, Russell W, Fair JH, Weirauch M, Blencowe B, Garcia-Blanco M. Definition of germ layer cell lineage alternative splicing programs reveals a critical role for Quaking in specifying cardiac cell fate. Nucleic Acids Res 2022; 50:5313-5334. [PMID: 35544276 PMCID: PMC9122611 DOI: 10.1093/nar/gkac327] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/14/2022] [Accepted: 04/25/2022] [Indexed: 01/27/2023] Open
Abstract
Alternative splicing is critical for development; however, its role in the specification of the three embryonic germ layers is poorly understood. By performing RNA-Seq on human embryonic stem cells (hESCs) and derived definitive endoderm, cardiac mesoderm, and ectoderm cell lineages, we detect distinct alternative splicing programs associated with each lineage. The most prominent splicing program differences are observed between definitive endoderm and cardiac mesoderm. Integrative multi-omics analyses link each program with lineage-enriched RNA binding protein regulators, and further suggest a widespread role for Quaking (QKI) in the specification of cardiac mesoderm. Remarkably, knockout of QKI disrupts the cardiac mesoderm-associated alternative splicing program and formation of myocytes. These changes arise in part through reduced expression of BIN1 splice variants linked to cardiac development. Mechanistically, we find that QKI represses inclusion of exon 7 in BIN1 pre-mRNA via an exonic ACUAA motif, and this is concomitant with intron removal and cleavage from chromatin. Collectively, our results uncover alternative splicing programs associated with the three germ lineages and demonstrate an important role for QKI in the formation of cardiac mesoderm.
Collapse
Affiliation(s)
- W Samuel Fagg
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Naiyou Liu
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | - Xiaoting Chen
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Frederick S Ditmars
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Steven G Widen
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - John Paul Donohue
- Sinsheimer Labs, RNA Center for Molecular Biology, Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Katalin Modis
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - William K Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jeffrey H Fair
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Benjamin J Blencowe
- Donnelly Centre, University of Toronto, Toronto, ONM5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, ONM5S 1A8, Canada
| | - Mariano A Garcia-Blanco
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
25
|
The X-linked splicing regulator MBNL3 has been co-opted to restrict placental growth in eutherians. PLoS Biol 2022; 20:e3001615. [PMID: 35476669 PMCID: PMC9084524 DOI: 10.1371/journal.pbio.3001615] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 05/09/2022] [Accepted: 03/29/2022] [Indexed: 11/19/2022] Open
Abstract
Understanding the regulatory interactions that control gene expression during the development of novel tissues is a key goal of evolutionary developmental biology. Here, we show that Mbnl3 has undergone a striking process of evolutionary specialization in eutherian mammals resulting in the emergence of a novel placental function for the gene. Mbnl3 belongs to a family of RNA-binding proteins whose members regulate multiple aspects of RNA metabolism. We find that, in eutherians, while both Mbnl3 and its paralog Mbnl2 are strongly expressed in placenta, Mbnl3 expression has been lost from nonplacental tissues in association with the evolution of a novel promoter. Moreover, Mbnl3 has undergone accelerated protein sequence evolution leading to changes in its RNA-binding specificities and cellular localization. While Mbnl2 and Mbnl3 share partially redundant roles in regulating alternative splicing, polyadenylation site usage and, in turn, placenta maturation, Mbnl3 has also acquired novel biological functions. Specifically, Mbnl3 knockout (M3KO) alone results in increased placental growth associated with higher Myc expression. Furthermore, Mbnl3 loss increases fetal resource allocation during limiting conditions, suggesting that location of Mbnl3 on the X chromosome has led to its role in limiting placental growth, favoring the maternal side of the parental genetic conflict.
Collapse
|
26
|
Soubise B, Jiang Y, Douet-Guilbert N, Troadec MB. RBM22, a Key Player of Pre-mRNA Splicing and Gene Expression Regulation, Is Altered in Cancer. Cancers (Basel) 2022; 14:cancers14030643. [PMID: 35158909 PMCID: PMC8833553 DOI: 10.3390/cancers14030643] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/19/2022] [Accepted: 01/22/2022] [Indexed: 01/05/2023] Open
Abstract
RNA-Binding Proteins (RBP) are very diverse and cover a large number of functions in the cells. This review focuses on RBM22, a gene encoding an RBP and belonging to the RNA-Binding Motif (RBM) family of genes. RBM22 presents a Zinc Finger like and a Zinc Finger domain, an RNA-Recognition Motif (RRM), and a Proline-Rich domain with a general structure suggesting a fusion of two yeast genes during evolution: Cwc2 and Ecm2. RBM22 is mainly involved in pre-mRNA splicing, playing the essential role of maintaining the conformation of the catalytic core of the spliceosome and acting as a bridge between the catalytic core and other essential protein components of the spliceosome. RBM22 is also involved in gene regulation, and is able to bind DNA, acting as a bona fide transcription factor on a large number of target genes. Undoubtedly due to its wide scope in the regulation of gene expression, RBM22 has been associated with several pathologies and, notably, with the aggressiveness of cancer cells and with the phenotype of a myelodysplastic syndrome. Mutations, enforced expression level, and haploinsufficiency of RBM22 gene are observed in those diseases. RBM22 could represent a potential therapeutic target in specific diseases, and, notably, in cancer.
Collapse
Affiliation(s)
- Benoît Soubise
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (Y.J.); (N.D.-G.)
| | - Yan Jiang
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (Y.J.); (N.D.-G.)
- Department of Hematology, The First Hospital of Jilin University, Changchun 130021, China
| | - Nathalie Douet-Guilbert
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (Y.J.); (N.D.-G.)
- CHRU Brest, Service de Génétique, Laboratoire de Génétique Chromosomique, F-29200 Brest, France
| | - Marie-Bérengère Troadec
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (Y.J.); (N.D.-G.)
- CHRU Brest, Service de Génétique, Laboratoire de Génétique Chromosomique, F-29200 Brest, France
- Correspondence: ; Tel.: +33-2-98-01-64-55
| |
Collapse
|
27
|
Mennen RH, Oldenburger MM, Piersma AH. Endoderm and mesoderm derivatives in embryonic stem cell differentiation and their use in developmental toxicity testing. Reprod Toxicol 2021; 107:44-59. [PMID: 34861400 DOI: 10.1016/j.reprotox.2021.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 02/06/2023]
Abstract
Embryonic stem cell differentiation models have increasingly been applied in non-animal test systems for developmental toxicity. After the initial focus on cardiac differentiation, attention has also included an array of neuro-ectodermal differentiation routes. Alternative differentiation routes in the mesodermal and endodermal germ lines have received less attention. This review provides an inventory of achievements in the latter areas of embryonic stem cell differentiation, with a view to possibilities for their use in non-animal test systems in developmental toxicology. This includes murine and human stem cell differentiation models, and also gains information from the field of stem cell use in regenerative medicine. Endodermal stem cell derivatives produced in vitro include hepatocytes, pancreatic cells, lung epithelium, and intestinal epithelium, and mesodermal derivatives include cardiac muscle, osteogenic, vascular and hemopoietic cells. This inventory provides an overview of studies on the different cell types together with biomarkers and culture conditions that stimulate these differentiation routes from embryonic stem cells. These models may be used to expand the spectrum of embryonic stem cell based new approach methodologies in non-animal developmental toxicity testing.
Collapse
Affiliation(s)
- R H Mennen
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands.
| | | | - A H Piersma
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
28
|
Shkreta L, Delannoy A, Salvetti A, Chabot B. SRSF10: an atypical splicing regulator with critical roles in stress response, organ development, and viral replication. RNA (NEW YORK, N.Y.) 2021; 27:1302-1317. [PMID: 34315816 PMCID: PMC8522700 DOI: 10.1261/rna.078879.121] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Serine/arginine splicing factor 10 (SRSF10) is a member of the family of mammalian splicing regulators known as SR proteins. Like several of its SR siblings, the SRSF10 protein is composed of an RNA binding domain (RRM) and of arginine and serine-rich auxiliary domains (RS) that guide interactions with other proteins. The phosphorylation status of SRSF10 is of paramount importance for its activity and is subjected to changes during mitosis, heat-shock, and DNA damage. SRSF10 overexpression has functional consequences in a growing list of cancers. By controlling the alternative splicing of specific transcripts, SRSF10 has also been implicated in glucose, fat, and cholesterol metabolism, in the development of the embryonic heart, and in neurological processes. SRSF10 is also important for the proper expression and processing of HIV-1 and other viral transcripts. We discuss how SRSF10 could become a potentially appealing therapeutic target to combat cancer and viral infections.
Collapse
Affiliation(s)
- Lulzim Shkreta
- RNA group, Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1E 4K8
| | - Aurélie Delannoy
- RNA group, Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1E 4K8
| | - Anna Salvetti
- INSERM, U1111, Centre International de Recherche en Infectiologie de Lyon (CIRI), CNRS UMR 5308, Lyon, France
| | - Benoit Chabot
- RNA group, Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1E 4K8
| |
Collapse
|
29
|
Mérien A, Tahraoui-Bories J, Cailleret M, Dupont JB, Leteur C, Polentes J, Carteron A, Polvèche H, Concordet JP, Pinset C, Jarrige M, Furling D, Martinat C. CRISPR gene editing in pluripotent stem cells reveals the function of MBNL proteins during human in vitro myogenesis. Hum Mol Genet 2021; 31:41-56. [PMID: 34312665 PMCID: PMC8682758 DOI: 10.1093/hmg/ddab218] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/10/2021] [Accepted: 07/21/2021] [Indexed: 11/14/2022] Open
Abstract
Alternative splicing has emerged as a fundamental mechanism for the spatiotemporal control of development. A better understanding of how this mechanism is regulated has the potential not only to elucidate fundamental biological principles, but also to decipher pathological mechanisms implicated in diseases where normal splicing networks are misregulated. Here, we took advantage of human pluripotent stem cells to decipher during human myogenesis the role of muscleblind-like (MBNL) proteins, a family of tissue-specific splicing regulators whose loss of function is associated with myotonic dystrophy type 1 (DM1), an inherited neuromuscular disease. Thanks to the CRISPR/Cas9 technology, we generated human-induced pluripotent stem cells (hiPSCs) depleted in MBNL proteins and evaluated the consequences of their losses on the generation of skeletal muscle cells. Our results suggested that MBNL proteins are required for the late myogenic maturation. In addition, loss of MBNL1 and MBNL2 recapitulated the main features of DM1 observed in hiPSC-derived skeletal muscle cells. Comparative transcriptomic analyses also revealed the muscle-related processes regulated by these proteins that are commonly misregulated in DM1. Together, our study reveals the temporal requirement of MBNL proteins in human myogenesis and should facilitate the identification of new therapeutic strategies capable to cope with the loss of function of these MBNL proteins.
Collapse
Affiliation(s)
- Antoine Mérien
- INSERM/UEPS UMR 861, Paris Saclay University, I-STEM, 91100 Corbeil-Essonnes, France
| | - Julie Tahraoui-Bories
- INSERM/UEPS UMR 861, Paris Saclay University, I-STEM, 91100 Corbeil-Essonnes, France
| | - Michel Cailleret
- INSERM/UEPS UMR 861, Paris Saclay University, I-STEM, 91100 Corbeil-Essonnes, France
| | - Jean-Baptiste Dupont
- INSERM/UEPS UMR 861, Paris Saclay University, I-STEM, 91100 Corbeil-Essonnes, France
| | | | | | | | | | | | | | | | - Denis Furling
- Sorbonne Université, INSERM, Association Institut de Myologie, Centre de recherche en myologie, Paris, France
| | - Cécile Martinat
- INSERM/UEPS UMR 861, Paris Saclay University, I-STEM, 91100 Corbeil-Essonnes, France
| |
Collapse
|
30
|
Koscianska E, Kozlowska E, Fiszer A. Regulatory Potential of Competing Endogenous RNAs in Myotonic Dystrophies. Int J Mol Sci 2021; 22:6089. [PMID: 34200099 PMCID: PMC8201210 DOI: 10.3390/ijms22116089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Non-coding RNAs (ncRNAs) have been reported to be implicated in cell fate determination and various human diseases. All ncRNA molecules are emerging as key regulators of diverse cellular processes; however, little is known about the regulatory interaction among these various classes of RNAs. It has been proposed that the large-scale regulatory network across the whole transcriptome is mediated by competing endogenous RNA (ceRNA) activity attributed to both protein-coding and ncRNAs. ceRNAs are considered to be natural sponges of miRNAs that can influence the expression and availability of multiple miRNAs and, consequently, the global mRNA and protein levels. In this review, we summarize the current understanding of the role of ncRNAs in two neuromuscular diseases, myotonic dystrophy type 1 and 2 (DM1 and DM2), and the involvement of expanded CUG and CCUG repeat-containing transcripts in miRNA-mediated RNA crosstalk. More specifically, we discuss the possibility that long repeat tracts present in mutant transcripts can be potent miRNA sponges and may affect ceRNA crosstalk in these diseases. Moreover, we highlight practical information related to innovative disease modelling and studying RNA regulatory networks in cells. Extending knowledge of gene regulation by ncRNAs, and of complex regulatory ceRNA networks in DM1 and DM2, will help to address many questions pertinent to pathogenesis and treatment of these disorders; it may also help to better understand general rules of gene expression and to discover new rules of gene control.
Collapse
Affiliation(s)
- Edyta Koscianska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland; (E.K.); (A.F.)
| | | | | |
Collapse
|
31
|
Penev A, Bazley A, Shen M, Boeke JD, Savage SA, Sfeir A. Alternative splicing is a developmental switch for hTERT expression. Mol Cell 2021; 81:2349-2360.e6. [PMID: 33852895 PMCID: PMC8943697 DOI: 10.1016/j.molcel.2021.03.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 01/02/2023]
Abstract
Telomere length control is critical for cellular lifespan and tumor suppression. Telomerase is transiently activated in the inner cell mass of the developing blastocyst to reset telomere reserves. Its silencing upon differentiation leads to gradual telomere shortening in somatic cells. Here, we report that transcriptional regulation through cis-regulatory elements only partially accounts for telomerase activation in pluripotent cells. Instead, developmental control of telomerase is primarily driven by an alternative splicing event, centered around hTERT exon 2. Skipping of exon 2 triggers hTERT mRNA decay in differentiated cells, and conversely, its retention promotes telomerase accumulation in pluripotent cells. We identify SON as a regulator of exon 2 alternative splicing and report a patient carrying a SON mutation and suffering from insufficient telomerase and short telomeres. In summary, our study highlights a critical role for hTERT alternative splicing in the developmental regulation of telomerase and implicates defective splicing in telomere biology disorders.
Collapse
Affiliation(s)
- Alex Penev
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Andrew Bazley
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Michael Shen
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Jef D Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA; Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Agnel Sfeir
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
32
|
Vivori C, Papasaikas P, Stadhouders R, Di Stefano B, Rubio AR, Balaguer CB, Generoso S, Mallol A, Sardina JL, Payer B, Graf T, Valcárcel J. Dynamics of alternative splicing during somatic cell reprogramming reveals functions for RNA-binding proteins CPSF3, hnRNP UL1, and TIA1. Genome Biol 2021; 22:171. [PMID: 34082786 PMCID: PMC8173870 DOI: 10.1186/s13059-021-02372-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/05/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Somatic cell reprogramming is the process that allows differentiated cells to revert to a pluripotent state. In contrast to the extensively studied rewiring of epigenetic and transcriptional programs required for reprogramming, the dynamics of post-transcriptional changes and their associated regulatory mechanisms remain poorly understood. Here we study the dynamics of alternative splicing changes occurring during efficient reprogramming of mouse B cells into induced pluripotent stem (iPS) cells and compare them to those occurring during reprogramming of mouse embryonic fibroblasts. RESULTS We observe a significant overlap between alternative splicing changes detected in the two reprogramming systems, which are generally uncoupled from changes in transcriptional levels. Correlation between gene expression of potential regulators and specific clusters of alternative splicing changes enables the identification and subsequent validation of CPSF3 and hnRNP UL1 as facilitators, and TIA1 as repressor of mouse embryonic fibroblasts reprogramming. We further find that these RNA-binding proteins control partially overlapping programs of splicing regulation, involving genes relevant for developmental and morphogenetic processes. CONCLUSIONS Our results reveal common programs of splicing regulation during reprogramming of different cell types and identify three novel regulators of this process and their targets.
Collapse
Affiliation(s)
- Claudia Vivori
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Carrer del Dr. Aiguader 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Carrer del Dr. Aiguader 88, 08003 Barcelona, Spain
- Present address: The Francis Crick Institute, 1 Midland Road, London, NW1 1AT UK
| | - Panagiotis Papasaikas
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Carrer del Dr. Aiguader 88, 08003 Barcelona, Spain
- Present address: Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66/Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Ralph Stadhouders
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Carrer del Dr. Aiguader 88, 08003 Barcelona, Spain
- Present address: Departments of Pulmonary Medicine and Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Bruno Di Stefano
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Carrer del Dr. Aiguader 88, 08003 Barcelona, Spain
- Present address: Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Alkek Bldg Room N1020, Houston, TX 77030 USA
| | - Anna Ribó Rubio
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Carrer del Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Clara Berenguer Balaguer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Carrer del Dr. Aiguader 88, 08003 Barcelona, Spain
- Present address: Josep Carreras Leukaemia Research Institute, Carretera de Can Ruti, Camí de les Escoles, s/n, 08916 Badalona, Spain
| | - Serena Generoso
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Carrer del Dr. Aiguader 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Carrer del Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Anna Mallol
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Carrer del Dr. Aiguader 88, 08003 Barcelona, Spain
| | - José Luis Sardina
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Carrer del Dr. Aiguader 88, 08003 Barcelona, Spain
- Present address: Josep Carreras Leukaemia Research Institute, Carretera de Can Ruti, Camí de les Escoles, s/n, 08916 Badalona, Spain
| | - Bernhard Payer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Carrer del Dr. Aiguader 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Carrer del Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Thomas Graf
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Carrer del Dr. Aiguader 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Carrer del Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Juan Valcárcel
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Carrer del Dr. Aiguader 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Carrer del Dr. Aiguader 88, 08003 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
33
|
Guo HF, Bota-Rabassedas N, Terajima M, Leticia Rodriguez B, Gibbons DL, Chen Y, Banerjee P, Tsai CL, Tan X, Liu X, Yu J, Tokmina-Roszyk M, Stawikowska R, Fields GB, Miller MD, Wang X, Lee J, Dalby KN, Creighton CJ, Phillips GN, Tainer JA, Yamauchi M, Kurie JM. A collagen glucosyltransferase drives lung adenocarcinoma progression in mice. Commun Biol 2021; 4:482. [PMID: 33875777 PMCID: PMC8055892 DOI: 10.1038/s42003-021-01982-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 03/08/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer cells are a major source of enzymes that modify collagen to create a stiff, fibrotic tumor stroma. High collagen lysyl hydroxylase 2 (LH2) expression promotes metastasis and is correlated with shorter survival in lung adenocarcinoma (LUAD) and other tumor types. LH2 hydroxylates lysine (Lys) residues on fibrillar collagen's amino- and carboxy-terminal telopeptides to create stable collagen cross-links. Here, we show that electrostatic interactions between the LH domain active site and collagen determine the unique telopeptidyl lysyl hydroxylase (tLH) activity of LH2. However, CRISPR/Cas-9-mediated inactivation of tLH activity does not fully recapitulate the inhibitory effect of LH2 knock out on LUAD growth and metastasis in mice, suggesting that LH2 drives LUAD progression, in part, through a tLH-independent mechanism. Protein homology modeling and biochemical studies identify an LH2 isoform (LH2b) that has previously undetected collagen galactosylhydroxylysyl glucosyltransferase (GGT) activity determined by a loop that enhances UDP-glucose-binding in the GLT active site and is encoded by alternatively spliced exon 13 A. CRISPR/Cas-9-mediated deletion of exon 13 A sharply reduces the growth and metastasis of LH2b-expressing LUADs in mice. These findings identify a previously unrecognized collagen GGT activity that drives LUAD progression.
Collapse
Affiliation(s)
- Hou-Fu Guo
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neus Bota-Rabassedas
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Masahiko Terajima
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - B Leticia Rodriguez
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yulong Chen
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Priyam Banerjee
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chi-Lin Tsai
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaochao Tan
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xin Liu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jiang Yu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michal Tokmina-Roszyk
- Institute for Human Health & Disease Intervention (I-HEALTH) and Department of Chemistry & Biochemistry, Florida Atlantic University, Jupiter, FL, USA
| | - Roma Stawikowska
- Institute for Human Health & Disease Intervention (I-HEALTH) and Department of Chemistry & Biochemistry, Florida Atlantic University, Jupiter, FL, USA
| | - Gregg B Fields
- Institute for Human Health & Disease Intervention (I-HEALTH) and Department of Chemistry & Biochemistry, Florida Atlantic University, Jupiter, FL, USA
| | | | - Xiaoyan Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Juhoon Lee
- Division of Medicinal Chemistry, Targeted Therapeutic Drug Discovery and Development Program, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Kevin N Dalby
- Division of Medicinal Chemistry, Targeted Therapeutic Drug Discovery and Development Program, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Chad J Creighton
- Department of Medicine, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George N Phillips
- Department of Biosciences, Rice University, Houston, TX, USA
- Department of Chemistry, Rice University, Houston, TX, USA
| | - John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mitsuo Yamauchi
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jonathan M Kurie
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
34
|
Villemin JP, Lorenzi C, Cabrillac MS, Oldfield A, Ritchie W, Luco RF. A cell-to-patient machine learning transfer approach uncovers novel basal-like breast cancer prognostic markers amongst alternative splice variants. BMC Biol 2021; 19:70. [PMID: 33845831 PMCID: PMC8042689 DOI: 10.1186/s12915-021-01002-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Breast cancer is amongst the 10 first causes of death in women worldwide. Around 20% of patients are misdiagnosed leading to early metastasis, resistance to treatment and relapse. Many clinical and gene expression profiles have been successfully used to classify breast tumours into 5 major types with different prognosis and sensitivity to specific treatments. Unfortunately, these profiles have failed to subclassify breast tumours into more subtypes to improve diagnostics and survival rate. Alternative splicing is emerging as a new source of highly specific biomarkers to classify tumours in different grades. Taking advantage of extensive public transcriptomics datasets in breast cancer cell lines (CCLE) and breast cancer tumours (TCGA), we have addressed the capacity of alternative splice variants to subclassify highly aggressive breast cancers. RESULTS Transcriptomics analysis of alternative splicing events between luminal, basal A and basal B breast cancer cell lines identified a unique splicing signature for a subtype of tumours, the basal B, whose classification is not in use in the clinic yet. Basal B cell lines, in contrast with luminal and basal A, are highly metastatic and express epithelial-to-mesenchymal (EMT) markers, which are hallmarks of cell invasion and resistance to drugs. By developing a semi-supervised machine learning approach, we transferred the molecular knowledge gained from these cell lines into patients to subclassify basal-like triple negative tumours into basal A- and basal B-like categories. Changes in splicing of 25 alternative exons, intimately related to EMT and cell invasion such as ENAH, CD44 and CTNND1, were sufficient to identify the basal-like patients with the worst prognosis. Moreover, patients expressing this basal B-specific splicing signature also expressed newly identified biomarkers of metastasis-initiating cells, like CD36, supporting a more invasive phenotype for this basal B-like breast cancer subtype. CONCLUSIONS Using a novel machine learning approach, we have identified an EMT-related splicing signature capable of subclassifying the most aggressive type of breast cancer, which are basal-like triple negative tumours. This proof-of-concept demonstrates that the biological knowledge acquired from cell lines can be transferred to patients data for further clinical investigation. More studies, particularly in 3D culture and organoids, will increase the accuracy of this transfer of knowledge, which will open new perspectives into the development of novel therapeutic strategies and the further identification of specific biomarkers for drug resistance and cancer relapse.
Collapse
Affiliation(s)
- Jean-Philippe Villemin
- Institut de Génétique Humaine (IGH-UMR9002), Centre National de la Recherche Scientifique (CNRS), University of Montpellier, Montpellier, France
| | - Claudio Lorenzi
- Institut de Génétique Humaine (IGH-UMR9002), Centre National de la Recherche Scientifique (CNRS), University of Montpellier, Montpellier, France
| | - Marie-Sarah Cabrillac
- Institut de Génétique Humaine (IGH-UMR9002), Centre National de la Recherche Scientifique (CNRS), University of Montpellier, Montpellier, France
| | - Andrew Oldfield
- Institut de Génétique Humaine (IGH-UMR9002), Centre National de la Recherche Scientifique (CNRS), University of Montpellier, Montpellier, France
| | - William Ritchie
- Institut de Génétique Humaine (IGH-UMR9002), Centre National de la Recherche Scientifique (CNRS), University of Montpellier, Montpellier, France.
| | - Reini F Luco
- Institut de Génétique Humaine (IGH-UMR9002), Centre National de la Recherche Scientifique (CNRS), University of Montpellier, Montpellier, France.
| |
Collapse
|
35
|
Splicing reprogramming of TRAIL/DISC-components sensitizes lung cancer cells to TRAIL-mediated apoptosis. Cell Death Dis 2021; 12:287. [PMID: 33731677 PMCID: PMC7969956 DOI: 10.1038/s41419-021-03567-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 01/31/2023]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) selective killing of cancer cells underlines its anticancer potential. However, poor tolerability and resistance underscores the need to identify cancer-selective TRAIL-sensitizing agents. Apigenin, a dietary flavonoid, sensitizes lung cancer cell lines to TRAIL. It remains unknown, however, whether apigenin sensitizes primary lung cancer cells to TRAIL and its underlying mechanisms. Here we show that apigenin reprograms alternative splicing of key TRAIL/death-inducing-signaling-complex (DISC) components: TRAIL Death Receptor 5 (DR5) and cellular-FLICE-inhibitory-protein (c-FLIP) by interacting with the RNA-binding proteins hnRNPA2 and MSI2, resulting in increased DR5 and decreased c-FLIPS protein levels, enhancing TRAIL-induced apoptosis of primary lung cancer cells. In addition, apigenin directly bound heat shock protein 70 (Hsp70), promoting TRAIL/DISC assembly and triggering apoptosis. Our findings reveal that apigenin directs alternative splicing and inhibits Hsp70 enhancing TRAIL anticancer activity. These findings underscore impactful synergies between diet and cancer treatments opening new avenues for improved cancer treatments.
Collapse
|
36
|
Tanner MK, Tang Z, Thornton CA. Targeted splice sequencing reveals RNA toxicity and therapeutic response in myotonic dystrophy. Nucleic Acids Res 2021; 49:2240-2254. [PMID: 33503262 PMCID: PMC7913682 DOI: 10.1093/nar/gkab022] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 01/03/2021] [Accepted: 01/08/2021] [Indexed: 12/14/2022] Open
Abstract
Biomarker-driven trials hold promise for therapeutic development in chronic diseases, such as muscular dystrophy. Myotonic dystrophy type 1 (DM1) involves RNA toxicity, where transcripts containing expanded CUG-repeats (CUGexp) accumulate in nuclear foci and sequester splicing factors in the Muscleblind-like (Mbnl) family. Oligonucleotide therapies to mitigate RNA toxicity have emerged but reliable measures of target engagement are needed. Here we examined muscle transcriptomes in mouse models of DM1 and found that CUGexp expression or Mbnl gene deletion cause similar dysregulation of alternative splicing. We selected 35 dysregulated exons for further study by targeted RNA sequencing. Across a spectrum of mouse models, the individual splice events and a composite index derived from all events showed a graded response to decrements of Mbnl or increments of CUGexp. Antisense oligonucleotides caused prompt reduction of CUGexp RNA and parallel correction of the splicing index, followed by subsequent elimination of myotonia. These results suggest that targeted splice sequencing may provide a sensitive and reliable way to assess therapeutic impact in DM1.
Collapse
Affiliation(s)
- Matthew K Tanner
- Medical Scientist Training Program, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Zhenzhi Tang
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Charles A Thornton
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
37
|
Alternative splicing modulates cancer aggressiveness: role in EMT/metastasis and chemoresistance. Mol Biol Rep 2021; 48:897-914. [PMID: 33400075 DOI: 10.1007/s11033-020-06094-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022]
Abstract
Enhanced metastasis and disease recurrence accounts for the high mortality rates associated with cancer. The process of Epithelial-Mesenchymal Transition (EMT) contributes towards the augmentation of cancer invasiveness along with the gain of stem-like and the subsequent drug-resistant behavior. Apart from the well-established transcriptional regulation, EMT is also controlled post-transcriptionally by virtue of alternative splicing (AS). Numerous genes including Fibroblast Growth Factor receptor (FGFR) as well as CD44 are differentially spliced during this trans-differentiation process which, in turn, governs cancer progression. These splicing alterations are controlled by various splicing factors including ESRP, RBFOX2 as well as hnRNPs. Here, we have depicted the mechanisms governing the splice isoform switching of FGFR and CD44. Moreover, the role of the splice variants generated by AS of these gene transcripts in modulating the metastatic potential and stem-like/chemoresistant behavior of cancer cells has also been highlighted. Additionally, the involvement of splicing factors in regulating EMT/invasiveness along with drug-resistance as well as the metabolic properties of the cells has been emphasized. Tumorigenesis is accompanied by a remodeling of the cellular splicing profile generating diverse protein isoforms which, in turn, control the cancer-associated hallmarks. Therefore, we have also briefly discussed about a wide variety of genes which are differentially spliced in the tumor cells and promote cancer progression. We have also outlined different strategies for targeting the tumor-associated splicing events which have shown promising results and therefore this approach might be useful in developing therapies to reduce cancer aggressiveness in a more specific manner.
Collapse
|
38
|
Li J, Yang T, Tang H, Sha Z, Chen R, Chen L, Yu Y, Rowe GC, Das S, Xiao J. Inhibition of lncRNA MAAT Controls Multiple Types of Muscle Atrophy by cis- and trans-Regulatory Actions. Mol Ther 2020; 29:1102-1119. [PMID: 33279721 DOI: 10.1016/j.ymthe.2020.12.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 11/09/2020] [Accepted: 11/29/2020] [Indexed: 12/18/2022] Open
Abstract
Muscle atrophy is associated with negative outcomes in a variety of diseases. Identification of a common therapeutic target would address a significant unmet clinical need. Here, we identify a long non-coding RNA (lncRNA) (muscle-atrophy-associated transcript, lncMAAT) as a common regulator of skeletal muscle atrophy. lncMAAT is downregulated in multiple types of muscle-atrophy models both in vivo (denervation, Angiotensin II [AngII], fasting, immobilization, and aging-induced muscle atrophy) and in vitro (AngII, H2O2, and tumor necrosis factor alpha [TNF-α]-induced muscle atrophy). Gain- and loss-of-function analysis both in vitro and in vivo reveals that downregulation of lncMAAT is sufficient to induce muscle atrophy, while overexpression of lncMAAT can ameliorate multiple types of muscle atrophy. Mechanistically, lncMAAT negatively regulates the transcription of miR-29b through SOX6 by a trans-regulatory module and increases the expression of the neighboring gene Mbnl1 by a cis-regulatory module. Therefore, overexpression of lncMAAT may represent a promising therapy for muscle atrophy induced by different stimuli.
Collapse
Affiliation(s)
- Jin Li
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Sciences, Shanghai University, Shanghai 200444, China; School of Medicine, Shanghai University, Shanghai 200444, China
| | - Tingting Yang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Haifei Tang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Zhao Sha
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Rui Chen
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Lei Chen
- Department of Spine Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Yan Yu
- Department of Spine Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Glenn C Rowe
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Saumya Das
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02214, USA
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Sciences, Shanghai University, Shanghai 200444, China; School of Medicine, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
39
|
Voss DM, Sloan A, Spina R, Ames HM, Bar EE. The Alternative Splicing Factor, MBNL1, Inhibits Glioblastoma Tumor Initiation and Progression by Reducing Hypoxia-Induced Stemness. Cancer Res 2020; 80:4681-4692. [PMID: 32928918 DOI: 10.1158/0008-5472.can-20-1233] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/23/2020] [Accepted: 09/09/2020] [Indexed: 12/31/2022]
Abstract
Muscleblind-like proteins (MBNL) belong to a family of tissue-specific regulators of RNA metabolism that control premessenger RNA splicing. Inactivation of MBNL causes an adult-to-fetal alternative splicing transition, resulting in the development of myotonic dystrophy. We have previously shown that the aggressive brain cancer, glioblastoma (GBM), maintains stem-like features (glioma stem cell, GSC) through hypoxia-induced responses. Accordingly, we hypothesize here that hypoxia-induced responses in GBM might also include MBNL-based alternative splicing to promote tumor progression. When cultured in hypoxia condition, GSCs rapidly exported muscleblind-like-1 (MBNL1) out of the nucleus, resulting in significant inhibition of MBNL1 activity. Notably, hypoxia-regulated inhibition of MBNL1 also resulted in evidence of adult-to-fetal alternative splicing transitions. Forced expression of a constitutively active isoform of MBNL1 inhibited GSC self-renewal and tumor initiation in orthotopic transplantation models. Induced expression of MBNL1 in established orthotopic tumors dramatically inhibited tumor progression, resulting in significantly prolonged survival. This study reveals that MBNL1 plays an essential role in GBM stemness and tumor progression, where hypoxic responses within the tumor inhibit MBNL1 activity, promoting stem-like phenotypes and tumor growth. Reversing these effects on MBNL1 may therefore, yield potent tumor suppressor activities, uncovering new therapeutic opportunities to counter this disease. SIGNIFICANCE: This study describes an unexpected mechanism by which RNA-binding protein, MBNL1, activity is inhibited in hypoxia by a simple isoform switch to regulate glioma stem cell self-renewal, tumorigenicity, and progression.
Collapse
Affiliation(s)
- Dillon M Voss
- Department of Neurological Surgery, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Anthony Sloan
- Department of Neurological Surgery, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Raffaella Spina
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland.,Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Heather M Ames
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Eli E Bar
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland. .,Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
40
|
Seachrist DD, Hannigan MM, Ingles NN, Webb BM, Weber-Bonk KL, Yu P, Bebek G, Singh S, Sizemore ST, Varadan V, Licatalosi DD, Keri RA. The transcriptional repressor BCL11A promotes breast cancer metastasis. J Biol Chem 2020; 295:11707-11719. [PMID: 32576660 PMCID: PMC7450125 DOI: 10.1074/jbc.ra120.014018] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/17/2020] [Indexed: 01/14/2023] Open
Abstract
The phenotypes of each breast cancer subtype are defined by their transcriptomes. However, the transcription factors that regulate differential patterns of gene expression that contribute to specific disease outcomes are not well understood. Here, using gene silencing and overexpression approaches, RNA-Seq, and splicing analysis, we report that the transcription factor B-cell leukemia/lymphoma 11A (BCL11A) is highly expressed in triple-negative breast cancer (TNBC) and drives metastatic disease. Moreover, BCL11A promotes cancer cell invasion by suppressing the expression of muscleblind-like splicing regulator 1 (MBNL1), a splicing regulator that suppresses metastasis. This ultimately increases the levels of an alternatively spliced isoform of integrin-α6 (ITGA6), which is associated with worse patient outcomes. These results suggest that BCL11A sustains TNBC cell invasion and metastatic growth by repressing MBNL1-directed splicing of ITGA6 Our findings also indicate that BCL11A lies at the interface of transcription and splicing and promotes aggressive TNBC phenotypes.
Collapse
Affiliation(s)
- Darcie D Seachrist
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Molly M Hannigan
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Natasha N Ingles
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Bryan M Webb
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Kristen L Weber-Bonk
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Peng Yu
- Department of Electrical and Computer Engineering and TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, Texas, USA
| | - Gurkan Bebek
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Salendra Singh
- Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Steven T Sizemore
- Department of Radiation Oncology, The Ohio State University, Arthur G. James Comprehensive Cancer Center and Richard L. Solove Research Institute, Columbus, Ohio, USA
| | - Vinay Varadan
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
- Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Donny D Licatalosi
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Ruth A Keri
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
- Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
41
|
Park JW, Fu S, Huang B, Xu RH. Alternative splicing in mesenchymal stem cell differentiation. Stem Cells 2020; 38:1229-1240. [PMID: 32627865 PMCID: PMC7586970 DOI: 10.1002/stem.3248] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/03/2020] [Accepted: 06/11/2020] [Indexed: 01/07/2023]
Abstract
The differentiation and maturation of mesenchymal stem cells (MSCs) to mesodermal and other lineages are known to be controlled by various extrinsic and intrinsic signals. The dysregulation of the MSC differentiation balance has been linked to several pathophysiological conditions, including obesity and osteoporosis. Previous research of the molecular mechanisms governing MSC differentiation has mostly focused on transcriptional regulation. However, recent findings are revealing the underrated role of alternative splicing (AS) in MSC differentiation and functions. In this review, we discuss recent progress in elucidating the regulatory roles of AS in MSC differentiation. We catalogue and highlight the key AS events that modulate MSC differentiation to major osteocytes, chondrocytes, and adipocytes, and discuss the regulatory mechanisms by which AS is regulated.
Collapse
Affiliation(s)
- Jung Woo Park
- Center for Reproduction, Development, and Aging and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, People's Republic of China
| | - Siyi Fu
- Center for Reproduction, Development, and Aging and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, People's Republic of China
| | - Borong Huang
- Center for Reproduction, Development, and Aging and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, People's Republic of China
| | - Ren-He Xu
- Center for Reproduction, Development, and Aging and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, People's Republic of China
| |
Collapse
|
42
|
Laaref AM, Manchon L, Bareche Y, Lapasset L, Tazi J. The core spliceosomal factor U2AF1 controls cell-fate determination via the modulation of transcriptional networks. RNA Biol 2020; 17:857-871. [PMID: 32150510 PMCID: PMC7549707 DOI: 10.1080/15476286.2020.1733800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/10/2020] [Indexed: 12/16/2022] Open
Abstract
Alternative splicing (AS) plays a central role during cell-fate determination. However, how the core spliceosomal factors (CSFs) are involved in this process is poorly understood. Here, we report the down-regulation of the U2AF1 CSF during stem cell differentiation. To investigate its function in stemness and differentiation, we downregulated U2AF1 in human induced pluripotent stem cells (hiPSCs), using an inducible-shRNA system, to the level found in differentiated ectodermal, mesodermal and endodermal cells. RNA sequencing and computational analysis reveal that U2AF1 down-regulation modulates the expression of development-regulating genes and regulates transcriptional networks involved in cell-fate determination. Furthermore, U2AF1 down-regulation induces a switch in the AS of transcription factors (TFs) required to establish specific cell lineages, and favours the splicing of a differentiated cell-specific isoform of DNMT3B. Our results showed that the differential expression of the core spliceosomal factor U2AF1, between stem cells and the precursors of the three germ layers regulates a cell-type-specific alternative splicing programme and a transcriptional network involved in cell-fate determination via the modulation of gene expression and alternative splicing of transcription regulators.
Collapse
Affiliation(s)
| | | | - Yacine Bareche
- IGMM, CNRS, University of Montpellier, Montpellier, France
- Breast Cancer Translational Research Laboratory, J. C. Heuson, Institut Jules Bordet, Université Libre De Bruxelles, Brussels, Belgium
| | - Laure Lapasset
- IGMM, CNRS, University of Montpellier, Montpellier, France
- VP research, CNRS, University of Montpellier, Montpellier, France
| | - Jamal Tazi
- IGMM, CNRS, University of Montpellier, Montpellier, France
- Lead Contact
| |
Collapse
|
43
|
Itskovich SS, Gurunathan A, Clark J, Burwinkel M, Wunderlich M, Berger MR, Kulkarni A, Chetal K, Venkatasubramanian M, Salomonis N, Kumar AR, Lee LH. MBNL1 regulates essential alternative RNA splicing patterns in MLL-rearranged leukemia. Nat Commun 2020; 11:2369. [PMID: 32398749 PMCID: PMC7217953 DOI: 10.1038/s41467-020-15733-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 03/25/2020] [Indexed: 02/06/2023] Open
Abstract
Despite growing awareness of the biologic features underlying MLL-rearranged leukemia, targeted therapies for this leukemia have remained elusive and clinical outcomes remain dismal. MBNL1, a protein involved in alternative splicing, is consistently overexpressed in MLL-rearranged leukemias. We found that MBNL1 loss significantly impairs propagation of murine and human MLL-rearranged leukemia in vitro and in vivo. Through transcriptomic profiling of our experimental systems, we show that in leukemic cells, MBNL1 regulates alternative splicing (predominantly intron exclusion) of several genes including those essential for MLL-rearranged leukemogenesis, such as DOT1L and SETD1A. We finally show that selective leukemic cell death is achievable with a small molecule inhibitor of MBNL1. These findings provide the basis for a new therapeutic target in MLL-rearranged leukemia and act as further validation of a burgeoning paradigm in targeted therapy, namely the disruption of cancer-specific splicing programs through the targeting of selectively essential RNA binding proteins.
Collapse
Affiliation(s)
- Svetlana S Itskovich
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Arun Gurunathan
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Jason Clark
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Matthew Burwinkel
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Mark Wunderlich
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Mikaela R Berger
- College of Medicine, University of Cincinnati School of Medicine, Cincinnati, OH, 45267, USA
| | - Aishwarya Kulkarni
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, 45221, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Kashish Chetal
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Meenakshi Venkatasubramanian
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, 45221, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Nathan Salomonis
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, 45229, USA
| | - Ashish R Kumar
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, 45229, USA
| | - Lynn H Lee
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, 45229, USA.
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|
44
|
Annalora AJ, Marcus CB, Iversen PL. Alternative Splicing in the Nuclear Receptor Superfamily Expands Gene Function to Refine Endo-Xenobiotic Metabolism. Drug Metab Dispos 2020; 48:272-287. [DOI: 10.1124/dmd.119.089102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/31/2019] [Indexed: 12/20/2022] Open
|
45
|
Payer LM, Steranka JP, Ardeljan D, Walker J, Fitzgerald KC, Calabresi PA, Cooper TA, Burns KH. Alu insertion variants alter mRNA splicing. Nucleic Acids Res 2019; 47:421-431. [PMID: 30418605 PMCID: PMC6326789 DOI: 10.1093/nar/gky1086] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/20/2018] [Indexed: 12/23/2022] Open
Abstract
RNA splicing is a highly regulated process dependent on sequences near splice sites. Insertions of Alu retrotransposons can disrupt splice sites or bind splicing regulators. We hypothesized that some common inherited polymorphic Alu insertions are responsible for splicing QTLs (sQTL). We focused on intronic Alu variants mapping within 100 bp of an alternatively used exon and screened for those that alter splicing. We identify five loci, 21.7% of those assayed, where the polymorphic Alu alters splicing. While in most cases the Alu promotes exon skipping, at one locus the Alu increases exon inclusion. Of particular interest is an Alu polymorphism in the CD58 gene. Reduced CD58 expression is associated with risk for developing multiple sclerosis. We show that the Alu insertion promotes skipping of CD58 exon 3 and results in a frameshifted transcript, indicating that the Alu may be the causative variant for increased MS risk at this locus. Using RT-PCR analysis at the endogenous locus, we confirm that the Alu variant is a sQTL for CD58. In summary, altered splicing efficiency is a common functional consequence of Alu polymorphisms including at least one instance where the variant is implicated in disease risk. This work broadens our understanding of splicing regulatory sequences around exons.
Collapse
Affiliation(s)
- Lindsay M Payer
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jared P Steranka
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Daniel Ardeljan
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - JaNiece Walker
- Department of Biology, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Kathryn C Fitzgerald
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Thomas A Cooper
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kathleen H Burns
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
46
|
Gene-based genome-wide association studies and meta-analyses of conotruncal heart defects. PLoS One 2019; 14:e0219926. [PMID: 31314787 PMCID: PMC6636758 DOI: 10.1371/journal.pone.0219926] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 07/02/2019] [Indexed: 12/28/2022] Open
Abstract
Conotruncal heart defects (CTDs) are among the most common and severe groups of congenital heart defects. Despite evidence of an inherited genetic contribution to CTDs, little is known about the specific genes that contribute to the development of CTDs. We performed gene-based genome-wide analyses using microarray-genotyped and imputed common and rare variants data from two large studies of CTDs in the United States. We performed two case-parent trio analyses (N = 640 and 317 trios), using an extension of the family-based multi-marker association test, and two case-control analyses (N = 482 and 406 patients and comparable numbers of controls), using a sequence kernel association test. We also undertook two meta-analyses to combine the results from the analyses that used the same approach (i.e. family-based or case-control). To our knowledge, these analyses are the first reported gene-based, genome-wide association studies of CTDs. Based on our findings, we propose eight CTD candidate genes (ARF5, EIF4E, KPNA1, MAP4K3, MBNL1, NCAPG, NDFUS1 and PSMG3). Four of these genes (ARF5, KPNA1, NDUFS1 and PSMG3) have not been previously associated with normal or abnormal heart development. In addition, our analyses provide additional evidence that genes involved in chromatin-modification and in ribonucleic acid splicing are associated with congenital heart defects.
Collapse
|
47
|
Wang ET, Treacy D, Eichinger K, Struck A, Estabrook J, Olafson H, Wang TT, Bhatt K, Westbrook T, Sedehizadeh S, Ward A, Day J, Brook D, Berglund JA, Cooper T, Housman D, Thornton C, Burge C. Transcriptome alterations in myotonic dystrophy skeletal muscle and heart. Hum Mol Genet 2019; 28:1312-1321. [PMID: 30561649 DOI: 10.1093/hmg/ddy432] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/30/2018] [Accepted: 12/10/2018] [Indexed: 11/12/2022] Open
Abstract
Myotonic dystrophy (dystrophia myotonica, DM) is a multi-systemic disease caused by expanded CTG or CCTG microsatellite repeats. Characterized by symptoms in muscle, heart and central nervous system, among others, it is one of the most variable diseases known. A major pathogenic event in DM is the sequestration of muscleblind-like proteins by CUG or CCUG repeat-containing RNAs transcribed from expanded repeats, and differences in the extent of MBNL sequestration dependent on repeat length and expression level may account for some portion of the variability. However, many other cellular pathways are reported to be perturbed in DM, and the severity of specific disease symptoms varies among individuals. To help understand this variability and facilitate research into DM, we generated 120 RNASeq transcriptomes from skeletal and heart muscle derived from healthy and DM1 biopsies and autopsies. A limited number of DM2 and Duchenne muscular dystrophy samples were also sequenced. We analyzed splicing and gene expression, identified tissue-specific changes in RNA processing and uncovered transcriptome changes strongly correlating with muscle strength. We created a web resource at http://DMseq.org that hosts raw and processed transcriptome data and provides a lightweight, responsive interface that enables browsing of processed data across the genome.
Collapse
Affiliation(s)
- Eric T Wang
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Koch Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Molecular Genetics & Microbiology, University of Florida, Gainesville, FL, USA.,Center for NeuroGenetics, University of Florida, Gainesville, FL, USA.,University of Florida Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Daniel Treacy
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Katy Eichinger
- Department of Neurology, University of Rochester, Rochester, NY, USA
| | - Adam Struck
- Department of Biochemistry, University of Oregon, Eugene, OR, USA
| | - Joseph Estabrook
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Koch Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Molecular Genetics & Microbiology, University of Florida, Gainesville, FL, USA.,Center for NeuroGenetics, University of Florida, Gainesville, FL, USA.,University of Florida Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Hailey Olafson
- Department of Molecular Genetics & Microbiology, University of Florida, Gainesville, FL, USA.,Center for NeuroGenetics, University of Florida, Gainesville, FL, USA.,University of Florida Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Thomas T Wang
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kirti Bhatt
- Department of Neurology, University of Rochester, Rochester, NY, USA
| | - Tony Westbrook
- School of Life Sciences, Queen's Medical Center, University of Nottingham, Nottingham, UK
| | - Sam Sedehizadeh
- School of Life Sciences, Queen's Medical Center, University of Nottingham, Nottingham, UK
| | - Amanda Ward
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - John Day
- Department of Neurology, Stanford University, Palo Alto, CA, USA
| | - David Brook
- School of Life Sciences, Queen's Medical Center, University of Nottingham, Nottingham, UK
| | - J Andrew Berglund
- Department of Molecular Genetics & Microbiology, University of Florida, Gainesville, FL, USA.,Center for NeuroGenetics, University of Florida, Gainesville, FL, USA.,University of Florida Genetics Institute, University of Florida, Gainesville, FL, USA.,Department of Biochemistry, University of Oregon, Eugene, OR, USA
| | - Thomas Cooper
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - David Housman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Koch Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Charles Thornton
- Department of Neurology, University of Rochester, Rochester, NY, USA
| | - Christopher Burge
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Koch Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
48
|
Kanitz A, Syed AP, Kaji K, Zavolan M. Conserved regulation of RNA processing in somatic cell reprogramming. BMC Genomics 2019; 20:100. [PMID: 30704403 PMCID: PMC6357513 DOI: 10.1186/s12864-019-5438-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 01/08/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Along with the reorganization of epigenetic and transcriptional networks, somatic cell reprogramming brings about numerous changes at the level of RNA processing. These include the expression of specific transcript isoforms and 3' untranslated regions. A number of studies have uncovered RNA processing factors that modulate the efficiency of the reprogramming process. However, a comprehensive evaluation of the involvement of RNA processing factors in the reprogramming of somatic mammalian cells is lacking. RESULTS Here, we used data from a large number of studies carried out in three mammalian species, mouse, chimpanzee and human, to uncover consistent changes in gene expression upon reprogramming of somatic cells. We found that a core set of nine splicing factors have consistent changes across the majority of data sets in all three species. Most striking among these are ESRP1 and ESRP2, which accelerate and enhance the efficiency of somatic cell reprogramming by promoting isoform expression changes associated with mesenchymal-to-epithelial transition. We further identify genes and processes in which splicing changes are observed in both human and mouse. CONCLUSIONS Our results provide a general resource for gene expression and splicing changes that take place during somatic cell reprogramming. Furthermore, they support the concept that splicing factors with evolutionarily conserved, cell type-specific expression can modulate the efficiency of the process by reinforcing intermediate states resembling the cell types in which these factors are normally expressed.
Collapse
Affiliation(s)
- Alexander Kanitz
- Biozentrum, University of Basel, Basel, Switzerland
- RNA Regulatory Networks, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Afzal Pasha Syed
- Biozentrum, University of Basel, Basel, Switzerland
- RNA Regulatory Networks, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Keisuke Kaji
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, Scotland, UK
| | - Mihaela Zavolan
- Biozentrum, University of Basel, Basel, Switzerland
- RNA Regulatory Networks, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
49
|
Saito Y, Yuan Y, Zucker-Scharff I, Fak JJ, Jereb S, Tajima Y, Licatalosi DD, Darnell RB. Differential NOVA2-Mediated Splicing in Excitatory and Inhibitory Neurons Regulates Cortical Development and Cerebellar Function. Neuron 2019; 101:707-720.e5. [PMID: 30638744 DOI: 10.1016/j.neuron.2018.12.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 09/25/2018] [Accepted: 12/12/2018] [Indexed: 01/13/2023]
Abstract
RNA-binding proteins (RBPs) regulate genetic diversity, but the degree to which they do so in individual cell types in vivo is unknown. We developed NOVA2 cTag-crosslinking and immunoprecipitation (CLIP) to generate functional RBP-RNA maps from different neuronal populations in the mouse brain. Combining cell type datasets from Nova2-cTag and Nova2 conditional knockout mice revealed differential NOVA2 regulatory actions on alternative splicing (AS) on the same transcripts expressed in different neurons. This includes functional differences in transcripts expressed in cortical and cerebellar excitatory versus inhibitory neurons, where we find NOVA2 is required for, respectively, development of laminar structure, motor coordination, and synapse formation. We also find that NOVA2-regulated AS is coupled to NOVA2 regulation of intron retention in hundreds of transcripts, which can sequester the trans-acting splicing factor PTBP2. In summary, cTag-CLIP complements single-cell RNA sequencing (RNA-seq) studies by providing a means for understanding RNA regulation of functional cell diversity.
Collapse
Affiliation(s)
- Yuhki Saito
- Laboratory of Molecular Neuro-oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| | - Yuan Yuan
- Laboratory of Molecular Neuro-oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Ilana Zucker-Scharff
- Laboratory of Molecular Neuro-oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - John J Fak
- Laboratory of Molecular Neuro-oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Saša Jereb
- Laboratory of Molecular Neuro-oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Yoko Tajima
- Laboratory of Molecular Neuro-oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Donny D Licatalosi
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Robert B Darnell
- Laboratory of Molecular Neuro-oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
50
|
Ma F, Dong Z, Berberoglu MA. Expression of RNA-binding protein Rbfox1l demarcates a restricted population of dorsal telencephalic neurons within the adult zebrafish brain. Gene Expr Patterns 2019; 31:32-41. [PMID: 30634066 DOI: 10.1016/j.gep.2019.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/22/2018] [Accepted: 01/04/2019] [Indexed: 01/16/2023]
Abstract
Rbfox RNA-binding proteins are expressed in the adult mammalian brain and are required for proper brain development and function. Studies in mice and humans have implicated Rbfox1/RBFOX1 in autism, neuronal excitation and epilepsy, and Rbfox2/RBFOX2 in cerebellar development. The zebrafish has emerged as a prominent model system for brain study, possessing neuroanatomical conservation with mammals and an extensive capacity for adult neurogenesis and plasticity. In this study, we characterize Rbfox1l and Rbfox2 expression in the adult zebrafish brain. While Rbfox2 is expressed broadly, Rbfox1l is expressed in restricted populations of neurons in the dorsal telencephalon and cerebellum. In the dorsal telencephalon, Rbfox1l is expressed in a specific population of neurons spanning Dm and Dc regions. In the cerebellum, Rbfox1l and Rbfox2 are expressed in the Purkinje cell layer, reminiscent of Rbfox1 and Rbfox2 expression in the mammalian cerebellum. Our findings motivate future studies of Rbfox function in the zebrafish brain.
Collapse
Affiliation(s)
- Fengjun Ma
- Bio-Medical Center, College of Life Science & Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhiqiang Dong
- Bio-Medical Center, College of Life Science & Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Michael A Berberoglu
- Bio-Medical Center, College of Life Science & Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA; Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA; Center for Muscle Health and Neuromuscular Disorders, The Ohio State University, Nationwide Children's Hospital, Columbus, OH, 43210, USA.
| |
Collapse
|