1
|
Dolan M, Hughes LN, Tvrdy K. Hydrogel Composition Effects on Performance as Single-Walled Carbon Nanotube Purification Media. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:15923-15936. [PMID: 39371221 PMCID: PMC11448389 DOI: 10.1021/acs.jpcc.4c03765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 10/08/2024]
Abstract
Hydrogel microsphere media allows for postsynthetic purification of single-walled carbon nanotubes (SWNTs), affording characterization and application of their unique (n,m) chirality-dependent properties. This work reports the characterization of five hydrogel resins, Sephacryl S-100, S-200, S-300, S-400, and S-500, and the implementation of each as a SWNT purification medium. The physiochemical properties of each resin were explored spectroscopically through elemental analyses and with both light and electron microscopy. Both surface porosity and hydrogel swelling ratio were found to increase as the concentration of component allyl dextran (aDEX) decreased, each with an increasing Sephacryl S-number. Conversely, invariant properties included a hydrogel microsphere size distribution and concentrations of components methylenebisacrylamide and ammonium persulfate. When employed within gel-based SWNT purification schemes in overloading conditions, Sephacryl formulations of larger S-number adsorbed fewer SWNTs, but the chirality dependence of SWNT adsorption and elution was approximately consistent across all resins. In underloading conditions, approximately one-third of introduced SWNTs passed through each resin unabsorbed, while the resins showed varying chirality-dependent adsorption efficiencies. These observations collectively identify aDEX-rich gel regions as being responsible for SWNT purification, along with a SWNT-exclusive parameter other than chirality (speculated as length) that convolutes the effectiveness of gel-based single-chirality purification.
Collapse
Affiliation(s)
- Marshal Dolan
- Department of Chemistry & Biochemistry, University of Colorado at Colorado Springs, Colorado Springs, Colorado 80918, United States
| | - Laurique N Hughes
- Department of Chemistry & Biochemistry, University of Colorado at Colorado Springs, Colorado Springs, Colorado 80918, United States
| | - Kevin Tvrdy
- Department of Chemistry & Biochemistry, University of Colorado at Colorado Springs, Colorado Springs, Colorado 80918, United States
| |
Collapse
|
2
|
Lin NS, Kitamura M, Saito M, Hirayama K, Ide Y, Umemura K. Distinguishing Antioxidant Molecules with Near-Infrared Photoluminescence of DNA-Wrapped Single-Walled Carbon Nanotubes. ACS OMEGA 2022; 7:28896-28903. [PMID: 36033714 PMCID: PMC9404167 DOI: 10.1021/acsomega.2c02038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
In this study, two biomolecule solutions were distinguished using the capacity difference in the near-infrared photoluminescence (PL) of single-walled carbon nanotubes (SWNTs). Biosensing techniques using sensitive responses of SWNTs have been intensively studied. When a small amount of an oxidant or reductant solution was injected into the SWNT suspensions, the PL intensity of the SWNTs is significantly changed. However, distinguishing between different molecules remains challenging. In this study, we comparably injected saponin and banana solutions, which are known antioxidant chemicals, into an SWNT suspension. The SWNTs were solubilized by wrapping them with DNA molecules. The results show that 69.1 and 155.2% increases of PL intensities of SWNTs were observed after injection of 20 and 59 μg/mL saponin solutions, respectively. Subsequently, the increase in PL was saturated. With the banana solution, 18.1 and 175.4% increases in PL intensities were observed with 20 and 59 μg/mL banana solutions, respectively. Based on these results, the two antioxidant molecules could be distinguished based on the different PL responses of the SWNTs. In addition, the much higher saturated PL intensities observed with the banana solution suggests that the banana solution increased the capacity of the PL increase for the same SWNT suspension. These results provide helpful information for establishing biosensing applications of SWNTs, particularly for distinguishing chemicals.
Collapse
|
3
|
Thongam DD, Chaturvedi H. Functionalization of Pristine, Metallic, and Semiconducting-SWCNTs by ZnO for Efficient Charge Carrier Transfer: Analysis through Critical Coagulation Concentration. ACS OMEGA 2022; 7:14784-14796. [PMID: 35557661 PMCID: PMC9088952 DOI: 10.1021/acsomega.2c00193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/06/2022] [Indexed: 06/15/2023]
Abstract
Noncovalent functionalization of single-walled carbon nanotubes (SWCNT) by semiconducting oxides is a majorly sought technique to retain individual properties while creating a synergetic effect for an efficient heterostructure charge transfer. Three types of electronically and optically different SWCNTs: metallic (m), semiconducting (s), and pristine (p) are functionalized by ZnO using a facile sonication method. The physicochemical and morphological properties of the ZnO-functionalized SWCNTs, m-SWCNT+ZnO, s-SWCNT+ZnO, and p-SWCNT+ZnO, are analyzed by advanced characterization techniques. Evidence of charge transfer between SWCNT and ZnO is observed with an increase in charge carrier lifetime from 3.31 ns (ZnO) to 4.76 ns (s-SWCNT+ZnO). To investigate the optimum interaction between SWCNTs and ZnO, critical coagulation concentrations (CCC) are determined using UV-vis absorption spectroscopy for m-SWCNT, s-SWCNT, and p-SWCNT using different molar concentrations of ZnO as the coagulant. The interaction and coagulation mechanisms are described by the modified DLVO theory. Due to the variation in dielectric values and electronic properties of SWCNTs, the CCC values obtained have differed: m-SWCNT (1.9 × 10-4), s-SWCNT (3.4 × 10-4), and p-SWCNT (2 × 10-4). An additional analysis of the aggregates and supernatants of the CCC experiments is also shown to give an insight into the interaction and coagulation processes, explaining the absence of influence exerted by sedimentation and centrifugation.
Collapse
|
4
|
Zhao S, Kitaura R, Moon P, Koshino M, Wang F. Interlayer Interactions in 1D Van der Waals Moiré Superlattices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103460. [PMID: 34841726 PMCID: PMC8805582 DOI: 10.1002/advs.202103460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/02/2021] [Indexed: 06/13/2023]
Abstract
Studying two-dimensional (2D) van der Waals (vdW) moiré superlattices and their interlayer interactions have received surging attention after recent discoveries of many new phases of matter that are highly tunable. Different atomistic registry between layers forming the inner and outer nanotubes can also form one-dimensional (1D) vdW moiré superlattices. In this review, experimental observations and theoretical perspectives related to interlayer interactions in 1D vdW moiré superlattices are summarized. The discussion focuses on double-walled carbon nanotubes (DWNTs), a model 1D vdW moiré system, and the authors highlight the new optical features emerging from the non-trivial strong interlayer coupling effect and the unique physics in 1D DWNTs. Future directions and questions in probing the intriguing physical phenomena in 1D vdW moiré superlattices such as, correlated physics in different 1D moiré systems beyond DWNTs are proposed and discussed.
Collapse
Affiliation(s)
- Sihan Zhao
- Interdisciplinary Center for Quantum InformationZhejiang Province Key Laboratory of Quantum Technology and DeviceState Key Laboratory of Silicon MaterialsDepartment of PhysicsZhejiang UniversityHangzhou310027China
| | - Ryo Kitaura
- Department of ChemistryNagoya UniversityNagoya464‐8602Japan
| | - Pilkyung Moon
- Arts and SciencesNYU ShanghaiShanghai200122China
- NYU‐ECNU Institute of Physics at NYU ShanghaiShanghai200062China
| | - Mikito Koshino
- Department of PhysicsOsaka UniversityToyonaka560‐0043Japan
| | - Feng Wang
- Department of PhysicsUniversity of California at BerkeleyBerkeleyCA94720USA
- Materials Science DivisionLawrence Berkeley National LaboratoryBerkeleyCAUSA
- Kavli Energy NanoSciences Institute at University of California Berkeley and Lawrence Berkeley National LaboratoryBerkeleyCA94720USA
| |
Collapse
|
5
|
Ma X, Liu Q, Yu N, Xu D, Kim S, Liu Z, Jiang K, Wong BM, Yan R, Liu M. 6 nm super-resolution optical transmission and scattering spectroscopic imaging of carbon nanotubes using a nanometer-scale white light source. Nat Commun 2021; 12:6868. [PMID: 34824270 PMCID: PMC8617169 DOI: 10.1038/s41467-021-27216-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 11/03/2021] [Indexed: 11/09/2022] Open
Abstract
Optical transmission and scattering spectroscopic microscopy at the visible and adjacent wavelengths denote one of the most informative and inclusive characterization methods in material research. Unfortunately, restricted by the diffraction limit of light, it cannot resolve the nanoscale variation in light absorption and scattering, diagnostics of the local inhomogeneity in material structure and properties. Moreover, a large quantity of nanomaterials has anisotropic optical properties that are appealing yet hard to characterize through conventional optical methods. There is an increasing demand to extend the optical hyperspectral imaging into the nanometer length scale. In this work, we report a super-resolution hyperspectral imaging technique that uses a nanoscale white light source generated by superfocusing the light from a tungsten-halogen lamp to simultaneously obtain optical transmission and scattering spectroscopic images. A 6-nm spatial resolution in the visible to near-infrared wavelength regime (415-980 nm) is demonstrated on an individual single-walled carbon nanotube (SW-CNT). Both the longitudinal and transverse optical electronic transitions are measured, and the SW-CNT chiral indices can be identified. The band structure modulation in a SW-CNT through strain engineering is mapped.
Collapse
Affiliation(s)
- Xuezhi Ma
- grid.266097.c0000 0001 2222 1582Department of Electrical and Computer Engineering, University of California — Riverside, Riverside, CA 92521 USA
| | - Qiushi Liu
- grid.266097.c0000 0001 2222 1582Department of Electrical and Computer Engineering, University of California — Riverside, Riverside, CA 92521 USA
| | - Ning Yu
- grid.266097.c0000 0001 2222 1582Department of Chemical and Environmental Engineering, University of California — Riverside, Riverside, CA 92521 USA
| | - Da Xu
- grid.266097.c0000 0001 2222 1582Department of Electrical and Computer Engineering, University of California — Riverside, Riverside, CA 92521 USA
| | - Sanggon Kim
- grid.266097.c0000 0001 2222 1582Department of Chemical and Environmental Engineering, University of California — Riverside, Riverside, CA 92521 USA
| | - Zebin Liu
- grid.12527.330000 0001 0662 3178State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, 100084 Beijing, China
| | - Kaili Jiang
- grid.12527.330000 0001 0662 3178State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, 100084 Beijing, China
| | - Bryan M. Wong
- grid.266097.c0000 0001 2222 1582Department of Chemical and Environmental Engineering, University of California — Riverside, Riverside, CA 92521 USA ,grid.266097.c0000 0001 2222 1582Materials Science and Engineering program, University of California — Riverside, Riverside, CA 92521 USA
| | - Ruoxue Yan
- Department of Chemical and Environmental Engineering, University of California - Riverside, Riverside, CA, 92521, USA. .,Materials Science and Engineering program, University of California - Riverside, Riverside, CA, 92521, USA.
| | - Ming Liu
- Department of Electrical and Computer Engineering, University of California - Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
6
|
Abdelsalam H, Saroka VA, Atta MM, Osman W, Zhang Q. Tunable electro-optical properties of doped chiral graphene nanoribbons. Chem Phys 2021. [DOI: 10.1016/j.chemphys.2021.111116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Abstract
Molecular compounds with zigzag carbon nanotube geometries are exceedingly rare. Here we report the synthesis and characterization of carbon-based nanotubes with zigzag geometry, best described as radially oriented [n]cyclo-meta-phenylenes, extending the tubularene family of compounds. By the incorporation of edge-sharing benzene rings into the tubularene's radial π-surface, we have uncovered the first step to give rise to the emergence of radial orbital distribution in zigzag nanorings.
Collapse
Affiliation(s)
- Edison Castro
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Saber Mirzaei
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Raúl Hernández Sánchez
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
8
|
Dey S, Garboczi EJ, Hassan AM. Electromagnetic resonance analysis of asymmetric carbon nanotube dimers for sensing applications. NANOTECHNOLOGY 2020; 31:425501. [PMID: 32590375 DOI: 10.1088/1361-6528/aba058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, we study the electromagnetic scattering characteristics of asymmetric carbon nanotube (CNT) dimers with rigorous computational experiments. We show that the configurational asymmetry in the CNT dimer assembly creates a unique field distribution in the vicinity of the dimer, which in turn generates two distinct resonances representing the bonding and anti-bonding modes. The sensitivity of these two modes towards CNT lengths, orientations, and shapes, is studied. We also show the ability of asymmetric CNT dimer for the contactless detection of nanoparticles (NP). The presence of a NP in the vicinity of the CNT dimer perturbs the dimer's field distribution and causes unequal shifts in the bonding and anti-bonding resonances depending on the NP location, material, size and shape. By studying the differences in these resonance shifts, we show that the relative location and orientation of the NP can be reconstructed. The computational experiments performed in this work have the potential to guide the use of asymmetric CNT dimers for novel sensing applications.
Collapse
Affiliation(s)
- Sumitra Dey
- Department of Computer Science and Electrical Engineering, University of Missouri-Kansas City, Kansas City, MO 64110, United States of America
| | | | | |
Collapse
|
9
|
Yang F, Wang M, Zhang D, Yang J, Zheng M, Li Y. Chirality Pure Carbon Nanotubes: Growth, Sorting, and Characterization. Chem Rev 2020; 120:2693-2758. [PMID: 32039585 DOI: 10.1021/acs.chemrev.9b00835] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) have been attracting tremendous attention owing to their structure (chirality) dependent outstanding properties, which endow them with great potential in a wide range of applications. The preparation of chirality-pure SWCNTs is not only a great scientific challenge but also a crucial requirement for many high-end applications. As such, research activities in this area over the last two decades have been very extensive. In this review, we summarize recent achievements and accumulated knowledge thus far and discuss future developments and remaining challenges from three aspects: controlled growth, postsynthesis sorting, and characterization techniques. In the growth part, we focus on the mechanism of chirality-controlled growth and catalyst design. In the sorting part, we organize and analyze existing literature based on sorting targets rather than methods. Since chirality assignment and quantification is essential in the study of selective preparation, we also include in the last part a comprehensive description and discussion of characterization techniques for SWCNTs. It is our view that even though progress made in this area is impressive, more efforts are still needed to develop both methodologies for preparing ultrapure (e.g., >99.99%) SWCNTs in large quantity and nondestructive fast characterization techniques with high spatial resolution for various nanotube samples.
Collapse
Affiliation(s)
- Feng Yang
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Meng Wang
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Daqi Zhang
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Juan Yang
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ming Zheng
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Yan Li
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
10
|
Rochal S, Levshov D, Avramenko M, Arenal R, Cao TT, Nguyen VC, Sauvajol JL, Paillet M. Chirality manifestation in elastic coupling between the layers of double-walled carbon nanotubes. NANOSCALE 2019; 11:16092-16102. [PMID: 31432840 DOI: 10.1039/c9nr03853a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The search for new relatively easy physicochemical methods for the structural identification of carbon nanotubes represents a key challenge. Here, analyzing the experimental data on double-walled carbon nanotubes (DWCNTs) obtained by us and taken from the literature, we have expressed the magnitude of elastic coupling between two tubular walls forming a DWCNT as a simple function dependent not only on DWCNT diameters but also on the difference between the chirality angles of the constituent nanotubes. To get this quite unexpected result, which allows us to relate more precisely the structural parameters of a DWCNT with frequencies of its radial breathing-like modes (RBLM), we have developed a new model for the RBLM dynamics that takes into account a possible deposition of water molecules from ambient air onto the DWCNT surface. The model constructed allows us to predict the higher prevalence of DWCNTs comprising two walls with identical handedness. The application of the results obtained for the identification of DWCNTs is also considered.
Collapse
Affiliation(s)
- Sergei Rochal
- Department of Nanotechnology, Faculty of Physics, Southern Federal University, 5, Zorge Street, Rostov-on-Don, 344090, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Medeghini F, Hettich M, Rouxel R, Silva Santos SD, Hermelin S, Pertreux E, Torres Dias A, Legrand F, Maioli P, Crut A, Vallée F, San Miguel A, Del Fatti N. High-Pressure Effect on the Optical Extinction of a Single Gold Nanoparticle. ACS NANO 2018; 12:10310-10316. [PMID: 30299926 DOI: 10.1021/acsnano.8b05539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
When reducing the size of a material from bulk down to nanoscale, the enhanced surface-to-volume ratio and the presence of interfaces make the properties of nano-objects very sensitive not only to confinement effects but also to their local environment. In the optical domain, the latter dependence can be exploited to tune the plasmonic response of metal nanoparticles by controlling their surroundings, notably applying high pressures. To date, only a few optical absorption experiments have demonstrated this feasibility, on ensembles of metal nanoparticles in a diamond anvil cell. Here, we report a nontrivial combination between a spatial modulation spectroscopy microscope and an ultraflat diamond anvil cell, allowing us to quantitatively investigate the high-pressure optical extinction spectrum of an individual nano-object. A large tuning of the surface plasmon resonance of a gold nanobipyramid is experimentally demonstrated up to 10 GPa, in quantitative agreement with finite-element simulations and an analytical model disentangling the impact of metal and local environment dielectric modifications. High-pressure optical characterizations of single nanoparticles allow for the accurate investigation and modeling of size, strain, and environment effects on physical properties of nano-objects and also enable fine-tuned applications in nanocomposites, nanoelectromechanical systems, or nanosensing devices.
Collapse
Affiliation(s)
- Fabio Medeghini
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut Lumière Matière , 69622 Villeurbanne Cedex, France
| | - Mike Hettich
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut Lumière Matière , 69622 Villeurbanne Cedex, France
| | - Romain Rouxel
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut Lumière Matière , 69622 Villeurbanne Cedex, France
| | - Silvio D Silva Santos
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut Lumière Matière , 69622 Villeurbanne Cedex, France
| | - Sylvain Hermelin
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut Lumière Matière , 69622 Villeurbanne Cedex, France
| | - Etienne Pertreux
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut Lumière Matière , 69622 Villeurbanne Cedex, France
| | - Abraao Torres Dias
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut Lumière Matière , 69622 Villeurbanne Cedex, France
| | - Franck Legrand
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut Lumière Matière , 69622 Villeurbanne Cedex, France
| | - Paolo Maioli
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut Lumière Matière , 69622 Villeurbanne Cedex, France
| | - Aurélien Crut
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut Lumière Matière , 69622 Villeurbanne Cedex, France
| | - Fabrice Vallée
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut Lumière Matière , 69622 Villeurbanne Cedex, France
| | - Alfonso San Miguel
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut Lumière Matière , 69622 Villeurbanne Cedex, France
| | - Natalia Del Fatti
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut Lumière Matière , 69622 Villeurbanne Cedex, France
| |
Collapse
|
12
|
Knapper KA, Pan F, Rea MT, Horak EH, Rogers JD, Goldsmith RH. Single-particle photothermal imaging via inverted excitation through high-Q all-glass toroidal microresonators. OPTICS EXPRESS 2018; 26:25020-25030. [PMID: 30469610 DOI: 10.1364/oe.26.025020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/15/2018] [Indexed: 05/23/2023]
Abstract
Whispering-gallery mode (WGM) microresonators have recently been employed as platforms for label-free single-molecule and single-particle detection, imaging, and spectroscopy. However, innovations in device geometry and integration are needed to make WGM microresonators more versatile for biological and chemical applications. Particularly, thick device substrates, originating from wafer-scale fabrication processing, prevent convenient optical interrogation. In this work, we fabricate all-glass toroidal microresonators on a coverslip thickness (~170 μm) substrate, enabling excitation delivery through the sample, simplifying optical integration. Further, we demonstrate the application of this new geometry for single-particle photothermal imaging. Finally, we discover and develop simulations to explain a non-trivial astigmatism in the point spread function (PSF) arising from the curvature of the resonator.
Collapse
|
13
|
Yao F, Liu C, Chen C, Zhang S, Zhao Q, Xiao F, Wu M, Li J, Gao P, Zhao J, Bai X, Maruyama S, Yu D, Wang E, Sun Z, Zhang J, Wang F, Liu K. Measurement of complex optical susceptibility for individual carbon nanotubes by elliptically polarized light excitation. Nat Commun 2018; 9:3387. [PMID: 30140007 PMCID: PMC6107641 DOI: 10.1038/s41467-018-05932-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 07/31/2018] [Indexed: 11/09/2022] Open
Abstract
The complex optical susceptibility is the most fundamental parameter characterizing light-matter interactions and determining optical applications in any material. In one-dimensional (1D) materials, all conventional techniques to measure the complex susceptibility become invalid. Here we report a methodology to measure the complex optical susceptibility of individual 1D materials by an elliptical-polarization-based optical homodyne detection. This method is based on the accurate manipulation of interference between incident left- (right-) handed elliptically polarized light and the scattering light, which results in the opposite (same) contribution of the real and imaginary susceptibility in two sets of spectra. We successfully demonstrate its application in determining complex susceptibility of individual chirality-defined carbon nanotubes in a broad optical spectral range (1.6-2.7 eV) and under different environments (suspended and in device). This full characterization of the complex optical responses should accelerate applications of various 1D nanomaterials in future photonic, optoelectronic, photovoltaic, and bio-imaging devices.
Collapse
Affiliation(s)
- Fengrui Yao
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Centre of Quantum Matter, School of Physics, Peking University, Beijing, 100871, China
| | - Can Liu
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Centre of Quantum Matter, School of Physics, Peking University, Beijing, 100871, China
| | - Cheng Chen
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Centre of Quantum Matter, School of Physics, Peking University, Beijing, 100871, China
| | - Shuchen Zhang
- Center for Nanochemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Qiuchen Zhao
- Center for Nanochemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Fajun Xiao
- School of Science, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Muhong Wu
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Centre of Quantum Matter, School of Physics, Peking University, Beijing, 100871, China
| | - Jiaming Li
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Centre of Quantum Matter, School of Physics, Peking University, Beijing, 100871, China
| | - Peng Gao
- International Center for Quantum Materials and Electron Microscopy Laboratory, Peking University, Beijing, 100871, China
| | - Jianlin Zhao
- School of Science, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Xuedong Bai
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100875, China
| | - Shigeo Maruyama
- Department of Mechanical Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
- Energy NanoEngineering Lab, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8564, Japan
| | - Dapeng Yu
- Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Enge Wang
- International Center for Quantum Materials and Electron Microscopy Laboratory, Peking University, Beijing, 100871, China
| | - Zhipei Sun
- Department of Electronics and Nanoengineering, Aalto University, Espoo, 02150, Finland
- QTF Centre of Excellence, Department of Applied Physics, Aalto University, Espoo, 02150, Finland
| | - Jin Zhang
- Center for Nanochemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Feng Wang
- Department of Physics, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Kaihui Liu
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Centre of Quantum Matter, School of Physics, Peking University, Beijing, 100871, China.
| |
Collapse
|
14
|
Senga R, Pichler T, Yomogida Y, Tanaka T, Kataura H, Suenaga K. Direct Proof of a Defect-Modulated Gap Transition in Semiconducting Nanotubes. NANO LETTERS 2018; 18:3920-3925. [PMID: 29783838 DOI: 10.1021/acs.nanolett.8b01284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Measurements of optical properties at a nanometer level are of central importance for the characterization of optoelectronic devices. It is, however, difficult to use conventional light-probe measurements to determine the local optical properties from a single quantum object with nanometrical inhomogeneity. Here, we successfully measured the optical gap transitions of an individual semiconducting carbon nanotube with defects by using a monochromated electron source as a probe. The optical conductivity extracted from an electron energy-loss spectrum for a certain type of defect presents a characteristic modification near the lowest excitation peak ( E11), where excitons and nonradiative transitions, as well as phonon-coupled excitations, are strongly involved. Detailed line-shape analysis of the E11 peak clearly shows different degrees of exciton lifetime shortening and electronic state modification according to the defect type.
Collapse
Affiliation(s)
- Ryosuke Senga
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba 305-8565 , Japan
| | - Thomas Pichler
- Faculty of Physics , University of Vienna , Strudlhofgasse 4 , A-1090 Vienna , Austria
| | - Yohei Yomogida
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba 305-8565 , Japan
| | - Takeshi Tanaka
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba 305-8565 , Japan
| | - Hiromichi Kataura
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba 305-8565 , Japan
| | - Kazu Suenaga
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba 305-8565 , Japan
| |
Collapse
|
15
|
Thakkar N, Rea MT, Smith KC, Heylman KD, Quillin SC, Knapper KA, Horak EH, Masiello DJ, Goldsmith RH. Sculpting Fano Resonances To Control Photonic-Plasmonic Hybridization. NANO LETTERS 2017; 17:6927-6934. [PMID: 28968499 DOI: 10.1021/acs.nanolett.7b03332] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Hybrid photonic-plasmonic systems have tremendous potential as versatile platforms for the study and control of nanoscale light-matter interactions since their respective components have either high-quality factors or low mode volumes. Individual metallic nanoparticles deposited on optical microresonators provide an excellent example where ultrahigh-quality optical whispering-gallery modes can be combined with nanoscopic plasmonic mode volumes to maximize the system's photonic performance. Such optimization, however, is difficult in practice because of the inability to easily measure and tune critical system parameters. In this Letter, we present a general and practical method to determine the coupling strength and tailor the degree of hybridization in composite optical microresonator-plasmonic nanoparticle systems based on experimentally measured absorption spectra. Specifically, we use thermal annealing to control the detuning between a metal nanoparticle's localized surface plasmon resonance and the whispering-gallery modes of an optical microresonator cavity. We demonstrate the ability to sculpt Fano resonance lineshapes in the absorption spectrum and infer system parameters critical to elucidating the underlying photonic-plasmonic hybridization. We show that including decoherence processes is necessary to capture the evolution of the lineshapes. As a result, thermal annealing allows us to directly tune the degree of hybridization and various hybrid mode quantities such as the quality factor and mode volume and ultimately maximize the Purcell factor to be 104.
Collapse
Affiliation(s)
- Niket Thakkar
- Department of Applied Mathematics, University of Washington , Seattle, Washington 98195-3925, United States
| | - Morgan T Rea
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706-1322, United States
| | - Kevin C Smith
- Department of Physics, University of Washington , Seattle, Washington 98195-1560, United States
| | - Kevin D Heylman
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706-1322, United States
| | - Steven C Quillin
- Department of Chemistry, University of Washington , Seattle, Washington 98195-1700, United States
| | - Kassandra A Knapper
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706-1322, United States
| | - Erik H Horak
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706-1322, United States
| | - David J Masiello
- Department of Applied Mathematics, University of Washington , Seattle, Washington 98195-3925, United States
- Department of Chemistry, University of Washington , Seattle, Washington 98195-1700, United States
| | - Randall H Goldsmith
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706-1322, United States
| |
Collapse
|
16
|
Yang J, Zhang D, Hu Y, Xia C, Sun S, Li Y. Bilayer Plots for Accurately Determining the Chirality of Single-Walled Carbon Nanotubes Under Complex Environments. ACS NANO 2017; 11:10509-10518. [PMID: 28972732 DOI: 10.1021/acsnano.7b05860] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The chirality (n,m) determines all structures and properties of a single-walled carbon nanotube (SWNT), therefore, accurate and convenient (n,m) assignments are vital in nanotube-related science and technology. Previously, a so-called Kataura plot that protracts the excitonic transition energies (Eii's) of SWNTs with various (n,m) with respect to the tube diameter (dt) has been widely utilized by researchers in the nanotube community for all (n,m)-related studies. However, the facts that both Eii and the calculated dt are subject to interactions with the environments make it inconvenient to accurately determine the (n,m) under complex environments. Here, we propose a series of bilayer plots that take into account the interactions between the SWNTs and the environments so that the (n,m) of SWNTs can be accurately determined. These plots have more advantages than the Kataura plot in concision, less data overlapping, and the suitability to be used in complex environments. We strongly encourage the researchers in the carbon nanotube community to utilize the bilayer plots for all (n,m)-related studies, especially for accurate and convenient (n,m) determination.
Collapse
Affiliation(s)
- Juan Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Daqi Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Yuecong Hu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Chenmaya Xia
- Beijing National Laboratory for Molecular Sciences, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Sida Sun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Yan Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| |
Collapse
|
17
|
Yao F, Chen C, Liu C, Zhang J, Wang F, Liu K. High-Throughput Optical Imaging and Spectroscopy of One-Dimensional Materials. Chemistry 2017; 23:9703-9710. [PMID: 28378432 DOI: 10.1002/chem.201700731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Indexed: 11/07/2022]
Abstract
Direct visualization of one-dimensional (1D) materials under an optical microscope in ambient conditions is of great significance for their characterizations and applications. However, it is full of challenges to achieve such goal due to their relative small size (ca. 1 nm in diameter) in the optical-diffraction-limited laser spot (ca. 1 μm in diameter). In this Concept article, we introduce a polarization-based optical homodyne detection method that can be used as a general strategy to obtain high-throughput, real-time, optical imaging and in situ spectroscopy of polarization-inhomogeneous 1D materials. We will use carbon nanotubes (CNTs) as an example to demonstrate the applications of such characterization with respect to the absorption signal of individual nanotubes, real-time imaging of individual nanotubes in devices, and statistical structure information of nanotube arrays.
Collapse
Affiliation(s)
- Fengrui Yao
- State Key Laboratory for Mesoscopic Physics, School of Physics, Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, 100871, P. R. China
| | - Cheng Chen
- State Key Laboratory for Mesoscopic Physics, School of Physics, Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, 100871, P. R. China
| | - Can Liu
- State Key Laboratory for Mesoscopic Physics, School of Physics, Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, 100871, P. R. China
| | - Jin Zhang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Feng Wang
- Department of Physics, University of California at Berkeley, Advanced Light Source Division and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Kaihui Liu
- State Key Laboratory for Mesoscopic Physics, School of Physics, Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
18
|
Lee KF, Tian Y, Yang H, Mustonen K, Martinez A, Dai Q, Kauppinen EI, Malowicki J, Kumar P, Sun Z. Photon-Pair Generation with a 100 nm Thick Carbon Nanotube Film. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1605978. [PMID: 28437024 DOI: 10.1002/adma.201605978] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 02/22/2017] [Indexed: 05/26/2023]
Abstract
Nonlinear optics based on bulk materials is the current technique of choice for quantum-state generation and information processing. Scaling of nonlinear optical quantum devices is of significant interest to enable quantum devices with high performance. However, it is challenging to scale the nonlinear optical devices down to the nanoscale dimension due to relatively small nonlinear optical response of traditional bulk materials. Here, correlated photon pairs are generated in the nanometer scale using a nonlinear optical device for the first time. The approach uses spontaneous four-wave mixing in a carbon nanotube film with extremely large Kerr-nonlinearity (≈100 000 times larger than that of the widely used silica), which is achieved through careful control of the tube diameter during the carbon nanotube growth. Photon pairs with a coincidence to accidental ratio of 18 at the telecom wavelength of 1.5 µm are generated at room temperature in a ≈100 nm thick carbon nanotube film device, i.e., 1000 times thinner than the smallest existing devices. These results are promising for future integrated nonlinear quantum devices (e.g., quantum emission and processing devices).
Collapse
Affiliation(s)
- Kim Fook Lee
- EECS Department, Northwestern University, Evanston, IL, 60208, USA
| | - Ying Tian
- Department of Physics, Dalian Maritime University, Dalian, Liaoning, 116026, China
- Department of Applied Physics, Aalto University, FI, -00076, Aalto, Finland
| | - He Yang
- Department of Electronics and Nanoengineering, Aalto University, FI, -00076, Aalto, Finland
| | - Kimmo Mustonen
- Department of Applied Physics, Aalto University, FI, 00076, Aalto, Finland
| | - Amos Martinez
- Aston Institute of Photonic Technologies, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Qing Dai
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Esko I Kauppinen
- Department of Applied Physics, Aalto University, FI, 00076, Aalto, Finland
| | | | - Prem Kumar
- EECS Department, Northwestern University, Evanston, IL, 60208, USA
| | - Zhipei Sun
- Department of Electronics and Nanoengineering, Aalto University, FI, -00076, Aalto, Finland
| |
Collapse
|
19
|
Chen RB, Chen SC, Chiu CW, Lin MF. Optical properties of monolayer tinene in electric fields. Sci Rep 2017; 7:1849. [PMID: 28500317 PMCID: PMC5431958 DOI: 10.1038/s41598-017-01978-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/31/2017] [Indexed: 11/12/2022] Open
Abstract
The absorption spectra of monolayer tinene in perpendicular electric fields are studied by the tight-binding model. There are three kinds of special structures, namely shoulders, logarithmical symmetric peaks and asymmetric peaks in the square-root form, corresponding to the optical excitations of the extreme points, saddle points and constant-energy loops. With the increasing field strength, two splitting shoulder structures, which are dominated by the parabolic bands of 5p z orbitals, come to exist because of the spin-split energy bands. The frequency of threshold shoulder declines to zero and then linearly grows. The third shoulder at 0.75~0.85 eV mainly comes from (5p x , 5p y ) orbitals. The former and the latter orbitals, respectively, create the saddle-point symmetric peaks near the M point, while they hybridize with one another to generate the loop-related asymmetric peaks. Tinene quite differs from graphene, silicene, and germanene. The special relationship among the multi-orbital chemical bondings, spin-orbital couplings and Coulomb potentials accounts for the feature-rich optical properties.
Collapse
Affiliation(s)
- Rong-Bin Chen
- Center of General Studies, National Kaohsiung Marine University, Kaohsiung, 811, Taiwan.
| | - Szu-Chao Chen
- Department of Physics, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chih-Wei Chiu
- Department of Physics, National Kaohsiung Normal University, Kaohsiung, 824, Taiwan
| | - Ming-Fa Lin
- Department of Physics, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
20
|
Crut A, Maioli P, Vallée F, Del Fatti N. Linear and ultrafast nonlinear plasmonics of single nano-objects. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:123002. [PMID: 28094243 DOI: 10.1088/1361-648x/aa59cc] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Single-particle optical investigations have greatly improved our understanding of the fundamental properties of nano-objects, avoiding the spurious inhomogeneous effects that affect ensemble experiments. Correlation with high-resolution imaging techniques providing morphological information (e.g. electron microscopy) allows a quantitative interpretation of the optical measurements by means of analytical models and numerical simulations. In this topical review, we first briefly recall the principles underlying some of the most commonly used single-particle optical techniques: near-field, dark-field, spatial modulation and photothermal microscopies/spectroscopies. We then focus on the quantitative investigation of the surface plasmon resonance (SPR) of metallic nano-objects using linear and ultrafast optical techniques. While measured SPR positions and spectral areas are found in good agreement with predictions based on Maxwell's equations, SPR widths are strongly influenced by quantum confinement (or, from a classical standpoint, surface-induced electron scattering) and, for small nano-objects, cannot be reproduced using the dielectric functions of bulk materials. Linear measurements on single nano-objects (silver nanospheres and gold nanorods) allow a quantification of the size and geometry dependences of these effects in confined metals. Addressing the ultrafast response of an individual nano-object is also a powerful tool to elucidate the physical mechanisms at the origin of their optical nonlinearities, and their electronic, vibrational and thermal relaxation processes. Experimental investigations of the dynamical response of gold nanorods are shown to be quantitatively modeled in terms of modifications of the metal dielectric function enhanced by plasmonic effects. Ultrafast spectroscopy can also be exploited to unveil hidden physical properties of more complex nanosystems. In this context, two-color femtosecond pump-probe experiments performed on individual bimetallic heterodimers are discussed in the last part of the review, demonstrating the existence of Fano interferences in the optical absorption of a gold nanoparticle under the influence of a nearby silver one.
Collapse
Affiliation(s)
- Aurélien Crut
- FemtoNanoOptics group, Institut Lumière Matière UMR5306, Université Lyon 1, CNRS, Université de Lyon, 69622 Villeurbanne, France
| | | | | | | |
Collapse
|
21
|
Blancon JC, Tsai H, Nie W, Stoumpos CC, Pedesseau L, Katan C, Kepenekian M, Soe CMM, Appavoo K, Sfeir MY, Tretiak S, Ajayan PM, Kanatzidis MG, Even J, Crochet JJ, Mohite AD. Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites. Science 2017; 355:1288-1292. [DOI: 10.1126/science.aal4211] [Citation(s) in RCA: 688] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/22/2017] [Indexed: 01/20/2023]
|
22
|
Mann S, Sciacca B, Zhang Y, Wang J, Kontoleta E, Liu H, Garnett EC. Integrating Sphere Microscopy for Direct Absorption Measurements of Single Nanostructures. ACS NANO 2017; 11:1412-1418. [PMID: 28056171 PMCID: PMC5333184 DOI: 10.1021/acsnano.6b06534] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/05/2017] [Indexed: 05/21/2023]
Abstract
Nanoscale materials are promising for optoelectronic devices because their physical dimensions are on the order of the wavelength of light. This leads to a variety of complex optical phenomena that, for instance, enhance absorption and emission. However, quantifying the performance of these nanoscale devices frequently requires measuring absolute absorption at the nanoscale, and remarkably, there is no general method capable of doing so directly. Here, we present such a method based on an integrating sphere but modified to achieve submicron spatial resolution. We explore the limits of this technique by using it to measure spatial and spectral absorptance profiles on a wide variety of nanoscale systems, including different combinations of weakly and strongly absorbing and scattering nanomaterials (Si and GaAs nanowires, Au nanoparticles). This measurement technique provides quantitative information about local optical properties that are crucial for improving any optoelectronic device with nanoscale dimensions or nanoscale surface texturing.
Collapse
Affiliation(s)
- Sander
A. Mann
- Center
for Nanophotonics, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Beniamino Sciacca
- Center
for Nanophotonics, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Yunyan Zhang
- Department
of Electronic and Electrical Engineering, University College London, London WC1E 7JE, United Kingdom
| | - Jia Wang
- Center
for Nanophotonics, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Evgenia Kontoleta
- Center
for Nanophotonics, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Huiyun Liu
- Department
of Electronic and Electrical Engineering, University College London, London WC1E 7JE, United Kingdom
| | - Erik C. Garnett
- Center
for Nanophotonics, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
- E-mail:
| |
Collapse
|
23
|
Santra B, Shneider MN, Car R. In situ Characterization of Nanoparticles Using Rayleigh Scattering. Sci Rep 2017; 7:40230. [PMID: 28071715 PMCID: PMC5223183 DOI: 10.1038/srep40230] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 12/02/2016] [Indexed: 11/09/2022] Open
Abstract
We report a theoretical analysis showing that Rayleigh scattering could be used to monitor the growth of nanoparticles under arc discharge conditions. We compute the Rayleigh scattering cross sections of the nanoparticles by combining light scattering theory for gas-particle mixtures with calculations of the dynamic electronic polarizability of the nanoparticles. We find that the resolution of the Rayleigh scattering probe is adequate to detect nanoparticles as small as C60 at the expected concentrations of synthesis conditions in the arc periphery. Larger asymmetric nanoparticles would yield brighter signals, making possible to follow the evolution of the growing nanoparticle population from the evolution of the scattered intensity. Observable spectral features include characteristic resonant behaviour, shape-dependent depolarization ratio, and mass-dependent line shape. Direct observation of nanoparticles in the early stages of growth with unobtrusive laser probes should give insight on the particle formation mechanisms and may lead to better-controlled synthesis protocols.
Collapse
Affiliation(s)
- Biswajit Santra
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Mikhail N. Shneider
- Mechanical and Aerospace Engineering Department, Princeton University, Princeton, NJ 08544, USA
| | - Roberto Car
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
- Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, NJ 08544, USA
- Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
24
|
Mann SA, Oener SZ, Cavalli A, Haverkort JEM, Bakkers EPAM, Garnett EC. Quantifying losses and thermodynamic limits in nanophotonic solar cells. NATURE NANOTECHNOLOGY 2016; 11:1071-1075. [PMID: 27618257 DOI: 10.1038/nnano.2016.162] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/04/2016] [Indexed: 05/13/2023]
Abstract
Nanophotonic engineering shows great potential for photovoltaics: the record conversion efficiencies of nanowire solar cells are increasing rapidly and the record open-circuit voltages are becoming comparable to the records for planar equivalents. Furthermore, it has been suggested that certain nanophotonic effects can reduce costs and increase efficiencies with respect to planar solar cells. These effects are particularly pronounced in single-nanowire devices, where two out of the three dimensions are subwavelength. Single-nanowire devices thus provide an ideal platform to study how nanophotonics affects photovoltaics. However, for these devices the standard definition of power conversion efficiency no longer applies, because the nanowire can absorb light from an area much larger than its own size. Additionally, the thermodynamic limit on the photovoltage is unknown a priori and may be very different from that of a planar solar cell. This complicates the characterization and optimization of these devices. Here, we analyse an InP single-nanowire solar cell using intrinsic metrics to place its performance on an absolute thermodynamic scale and pinpoint performance loss mechanisms. To determine these metrics we have developed an integrating sphere microscopy set-up that enables simultaneous and spatially resolved quantitative absorption, internal quantum efficiency (IQE) and photoluminescence quantum yield (PLQY) measurements. For our record single-nanowire solar cell, we measure a photocurrent collection efficiency of >90% and an open-circuit voltage of 850 mV, which is 73% of the thermodynamic limit (1.16 V).
Collapse
Affiliation(s)
- Sander A Mann
- Center for Nanophotonics, FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Sebastian Z Oener
- Center for Nanophotonics, FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Alessandro Cavalli
- Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Jos E M Haverkort
- Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Erik P A M Bakkers
- Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
- Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Erik C Garnett
- Center for Nanophotonics, FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| |
Collapse
|
25
|
Sanchez SR, Bachilo SM, Kadria-Vili Y, Lin CW, Weisman RB. (n,m)-Specific Absorption Cross Sections of Single-Walled Carbon Nanotubes Measured by Variance Spectroscopy. NANO LETTERS 2016; 16:6903-6909. [PMID: 27760291 DOI: 10.1021/acs.nanolett.6b02819] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A new method based on variance spectroscopy has enabled the determination of absolute absorption cross sections for the first electronic transition of 12 (n,m) structural species of semiconducting single-walled carbon nanotubes (SWCNTs). Spectrally resolved measurements of fluorescence variance in dilute bulk samples provided particle number concentrations of specific SWCNT species. These values were converted to carbon concentrations and correlated with resonant components in the absorbance spectrum to deduce (n,m)-specific absorption cross sections (absorptivities) for nanotubes ranging in diameter from 0.69 to 1.03 nm. The measured cross sections per atom tend to vary inversely with nanotube diameter and are slightly greater for structures of mod 1 type than for mod 2. Directly measured and extrapolated values are now available to support quantitative analysis of SWCNT samples through absorption spectroscopy.
Collapse
Affiliation(s)
- Stephen R Sanchez
- Department of Chemistry and the Smalley-Curl Institute and ‡Department of Materials Science and NanoEngineering, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - Sergei M Bachilo
- Department of Chemistry and the Smalley-Curl Institute and ‡Department of Materials Science and NanoEngineering, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - Yara Kadria-Vili
- Department of Chemistry and the Smalley-Curl Institute and ‡Department of Materials Science and NanoEngineering, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - Ching-Wei Lin
- Department of Chemistry and the Smalley-Curl Institute and ‡Department of Materials Science and NanoEngineering, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - R Bruce Weisman
- Department of Chemistry and the Smalley-Curl Institute and ‡Department of Materials Science and NanoEngineering, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
26
|
Zakharko Y, Graf A, Zaumseil J. Plasmonic Crystals for Strong Light-Matter Coupling in Carbon Nanotubes. NANO LETTERS 2016; 16:6504-6510. [PMID: 27661764 PMCID: PMC5064305 DOI: 10.1021/acs.nanolett.6b03086] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/15/2016] [Indexed: 05/26/2023]
Abstract
Their high oscillator strength and large exciton binding energies make single-walled carbon nanotubes (SWCNTs) highly promising materials for the investigation of strong light-matter interactions in the near infrared and at room temperature. To explore their full potential, high-quality cavities-possibly with nanoscale field localization-are required. Here, we demonstrate the room temperature formation of plasmon-exciton polaritons in monochiral (6,5) SWCNTs coupled to the subdiffraction nanocavities of a plasmonic crystal created by a periodic gold nanodisk array. The interaction strength is easily tuned by the number of SWCNTs that collectively couple to the plasmonic crystal. Angle- and polarization resolved reflectivity and photoluminescence measurements combined with the coupled-oscillator model confirm strong coupling (coupling strength ∼120 meV). The combination of plasmon-exciton polaritons with the exceptional charge transport properties of SWCNTs should enable practical polariton devices at room temperature and at telecommunication wavelengths.
Collapse
Affiliation(s)
- Yuriy Zakharko
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Arko Graf
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Jana Zaumseil
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany
| |
Collapse
|
27
|
Chung HC, Chang CP, Lin CY, Lin MF. Electronic and optical properties of graphene nanoribbons in external fields. Phys Chem Chem Phys 2016; 18:7573-616. [PMID: 26744847 DOI: 10.1039/c5cp06533j] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A review work is done for the electronic and optical properties of graphene nanoribbons in magnetic, electric, composite, and modulated fields. Effects due to the lateral confinement, curvature, stacking, non-uniform subsystems and hybrid structures are taken into account. The special electronic properties, induced by complex competitions between external fields and geometric structures, include many one-dimensional parabolic subbands, standing waves, peculiar edge-localized states, width- and field-dependent energy gaps, magnetic-quantized quasi-Landau levels, curvature-induced oscillating Landau subbands, crossings and anti-crossings of quasi-Landau levels, coexistence and combination of energy spectra in layered structures, and various peak structures in the density of states. There exist diverse absorption spectra and different selection rules, covering edge-dependent selection rules, magneto-optical selection rule, splitting of the Landau absorption peaks, intragroup and intergroup Landau transitions, as well as coexistence of monolayer-like and bilayer-like Landau absorption spectra. Detailed comparisons are made between the theoretical calculations and experimental measurements. The predicted results, the parabolic subbands, edge-localized states, gap opening and modulation, and spatial distribution of Landau subbands, have been identified by various experimental measurements.
Collapse
Affiliation(s)
- Hsien-Ching Chung
- Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan. and Center for Micro/Nano Science and Technology (CMNST), National Cheng Kung University, Tainan 70101, Taiwan
| | - Cheng-Peng Chang
- Center for General Education, Tainan University of Technology, Tainan 701, Taiwan
| | - Chiun-Yan Lin
- Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan.
| | - Ming-Fa Lin
- Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
28
|
Li W, Hennrich F, Flavel BS, Kappes MM, Krupke R. Chiral-index resolved length mapping of carbon nanotubes in solution using electric-field induced differential absorption spectroscopy. NANOTECHNOLOGY 2016; 27:375706. [PMID: 27504810 DOI: 10.1088/0957-4484/27/37/375706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The length of single-walled carbon nanotubes (SWCNTs) is an important metric for the integration of SWCNTs into devices and for the performance of SWCNT-based electronic or optoelectronic applications. In this work we propose a rather simple method based on electric-field induced differential absorption spectroscopy to measure the chiral-index-resolved average length of SWCNTs in dispersions. The method takes advantage of the electric-field induced length-dependent dipole moment of nanotubes and has been verified and calibrated by atomic force microscopy. This method not only provides a low cost, in situ approach for length measurements of SWCNTs in dispersion, but due to the sensitivity of the method to the SWCNT chiral index, the chiral index dependent average length of fractions obtained by chromatographic sorting can also be derived. Also, the determination of the chiral-index resolved length distribution seems to be possible using this method.
Collapse
Affiliation(s)
- Wenshan Li
- Institute of Nanotechnology, Karlsruhe Institute of Technology, D-76021 Karlsruhe, Germany. Department of Materials and Earth Sciences, Technische Universität Darmstadt, D-64287 Darmstadt, Germany
| | | | | | | | | |
Collapse
|
29
|
Aspitarte L, McCulley DR, Minot ED. Photocurrent Quantum Yield in Suspended Carbon Nanotube p-n Junctions. NANO LETTERS 2016; 16:5589-5593. [PMID: 27575386 DOI: 10.1021/acs.nanolett.6b02148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We study photocurrent generation in individual suspended carbon nanotube p-n junctions using spectrally resolved scanning photocurrent microscopy. Spatial maps of the photocurrent allow us to determine the length of the p-n junction intrinsic region, as well as the role of the n-type Schottky barrier. We show that reverse-bias operation eliminates complications caused by the n-type Schottky barrier and increases the length of the intrinsic region. The absorption cross-section of the CNT is calculated using an empirically verified model, and the effect of substrate reflection is determined using FDTD simulations. We find that the room temperature photocurrent quantum yield is approximately 30% when exciting the carbon nanotube at the S44 and S55 excitonic transitions. The quantum yield value is an order of magnitude larger than previous estimates.
Collapse
Affiliation(s)
- Lee Aspitarte
- Department of Physics, Oregon State University , Corvallis, Oregon 97331, United States
| | - Daniel R McCulley
- Department of Physics, Oregon State University , Corvallis, Oregon 97331, United States
| | - Ethan D Minot
- Department of Physics, Oregon State University , Corvallis, Oregon 97331, United States
| |
Collapse
|
30
|
Hümmer T, Noe J, Hofmann MS, Hänsch TW, Högele A, Hunger D. Cavity-enhanced Raman microscopy of individual carbon nanotubes. Nat Commun 2016; 7:12155. [PMID: 27402165 PMCID: PMC4945868 DOI: 10.1038/ncomms12155] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 06/07/2016] [Indexed: 11/22/2022] Open
Abstract
Raman spectroscopy reveals chemically specific information and provides label-free insight into the molecular world. However, the signals are intrinsically weak and call for enhancement techniques. Here, we demonstrate Purcell enhancement of Raman scattering in a tunable high-finesse microcavity, and utilize it for molecular diagnostics by combined Raman and absorption imaging. Studying individual single-wall carbon nanotubes, we identify crucial structural parameters such as nanotube radius, electronic structure and extinction cross-section. We observe a 320-times enhanced Raman scattering spectral density and an effective Purcell factor of 6.2, together with a collection efficiency of 60%. Potential for significantly higher enhancement, quantitative signals, inherent spectral filtering and absence of intrinsic background in cavity-vacuum stimulated Raman scattering render the technique a promising tool for molecular imaging. Furthermore, cavity-enhanced Raman transitions involving localized excitons could potentially be used for gaining quantum control over nanomechanical motion and open a route for molecular cavity optomechanics.
Collapse
Affiliation(s)
- Thomas Hümmer
- Fakultät für Physik, Ludwig-Maximilians-Universität, Schellingstraβe 4, München 80799, Germany
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, Garching 85748, Germany
| | - Jonathan Noe
- Fakultät für Physik, Ludwig-Maximilians-Universität, Schellingstraβe 4, München 80799, Germany
- Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, Schellingstraβe 4, München 80799, Germany
| | - Matthias S. Hofmann
- Fakultät für Physik, Ludwig-Maximilians-Universität, Schellingstraβe 4, München 80799, Germany
- Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, Schellingstraβe 4, München 80799, Germany
| | - Theodor W. Hänsch
- Fakultät für Physik, Ludwig-Maximilians-Universität, Schellingstraβe 4, München 80799, Germany
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, Garching 85748, Germany
| | - Alexander Högele
- Fakultät für Physik, Ludwig-Maximilians-Universität, Schellingstraβe 4, München 80799, Germany
- Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, Schellingstraβe 4, München 80799, Germany
| | - David Hunger
- Fakultät für Physik, Ludwig-Maximilians-Universität, Schellingstraβe 4, München 80799, Germany
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, Garching 85748, Germany
| |
Collapse
|
31
|
Devkota T, Devadas MS, Brown A, Talghader J, Hartland GV. Spatial modulation spectroscopy imaging of nano-objects of different sizes and shapes. APPLIED OPTICS 2016; 55:796-801. [PMID: 26836082 DOI: 10.1364/ao.55.000796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Spatial modulation spectroscopy (SMS) is a powerful method for interrogating single nanoparticles. In these experiments optical extinction is measured by moving the particle in and out of a tightly focused laser beam. SMS is typically used for particles that are much smaller than the laser spot size. In this paper, we extend the analysis of the SMS signal to particles with sizes comparable to or larger than the laser spot, where the shape of the particle matters. These results are important for the analysis of polydisperse samples that have a wide range of sizes. The presented example images and analysis of a carbon microparticle sample show the utility of the derived expressions. In particular, we show that SMS can be used to generate extinction cross-section information about micrometer-sized particles with complex shapes.
Collapse
|
32
|
Cui W, Cerqueira TFT, Botti S, Marques MAL, San-Miguel A. Nanostructured water and carbon dioxide inside collapsing carbon nanotubes at high pressure. Phys Chem Chem Phys 2016; 18:19926-32. [DOI: 10.1039/c6cp03263j] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We present simulations of the collapse under hydrostatic pressure of carbon nanotubes containing either water or carbon dioxide.
Collapse
Affiliation(s)
- Wenwen Cui
- Institut Lumière Matière
- UMR5306 Université Lyon 1-CNRS
- Université de Lyon
- F-69622 Villeurbanne Cedex
- France
| | - Tiago F. T. Cerqueira
- Institut Lumière Matière
- UMR5306 Université Lyon 1-CNRS
- Université de Lyon
- F-69622 Villeurbanne Cedex
- France
| | - Silvana Botti
- Institut Lumière Matière
- UMR5306 Université Lyon 1-CNRS
- Université de Lyon
- F-69622 Villeurbanne Cedex
- France
| | - Miguel A. L. Marques
- Institut für Physik
- Martin-Luther-Universität Halle-Wittenberg
- D-06099 Halle
- Germany
- Institut Lumière Matière
| | - Alfonso San-Miguel
- Institut Lumière Matière
- UMR5306 Université Lyon 1-CNRS
- Université de Lyon
- F-69622 Villeurbanne Cedex
- France
| |
Collapse
|
33
|
Soavi G, Grupp A, Budweg A, Scotognella F, Hefner T, Hertel T, Lanzani G, Leitenstorfer A, Cerullo G, Brida D. Below-gap excitation of semiconducting single-wall carbon nanotubes. NANOSCALE 2015; 7:18337-18342. [PMID: 26488340 DOI: 10.1039/c5nr05218a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We investigate the optoelectronic properties of the semiconducting (6,5) species of single-walled carbon nanotubes by measuring ultrafast transient transmission changes with 20 fs time resolution. We demonstrate that photons with energy below the lowest exciton resonance efficiently lead to linear excitation of electronic states. This finding challenges the established picture of a vanishing optical absorption below the fundamental excitonic resonance. Our result points towards below-gap electronic states as an intrinsic property of semiconducting nanotubes.
Collapse
Affiliation(s)
- G Soavi
- Department of Physics and Center for Applied Photonics, University of Konstanz, D-78457 Konstanz, Germany. and Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
| | - A Grupp
- Department of Physics and Center for Applied Photonics, University of Konstanz, D-78457 Konstanz, Germany.
| | - A Budweg
- Department of Physics and Center for Applied Photonics, University of Konstanz, D-78457 Konstanz, Germany.
| | - F Scotognella
- Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy and IFN-CNR, Piazza L. da Vinci, 32, 20133 Milano, Italy
| | - T Hefner
- Inst. for Physical and Theoretical Chemistry Dept. of Chemistry and Pharmacy, University of Würzburg, Würzburg 97074, Germany
| | - T Hertel
- Inst. for Physical and Theoretical Chemistry Dept. of Chemistry and Pharmacy, University of Würzburg, Würzburg 97074, Germany
| | - G Lanzani
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Via Giovanni Pascoli, 70/3, 20133 Milano, Italy
| | - A Leitenstorfer
- Department of Physics and Center for Applied Photonics, University of Konstanz, D-78457 Konstanz, Germany.
| | - G Cerullo
- Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy and IFN-CNR, Piazza L. da Vinci, 32, 20133 Milano, Italy
| | - D Brida
- Department of Physics and Center for Applied Photonics, University of Konstanz, D-78457 Konstanz, Germany.
| |
Collapse
|
34
|
Martín-Moreno L, de Abajo FJG, García-Vidal FJ. Ultraefficient Coupling of a Quantum Emitter to the Tunable Guided Plasmons of a Carbon Nanotube. PHYSICAL REVIEW LETTERS 2015; 115:173601. [PMID: 26551115 DOI: 10.1103/physrevlett.115.173601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Indexed: 06/05/2023]
Abstract
We show that a single quantum emitter can efficiently couple to the tunable plasmons of a highly doped single-wall carbon nanotube (SWCNT). Plasmons in these quasi-one-dimensional carbon structures exhibit deep subwavelength confinement that pushes the coupling efficiency close to 100% over a very broad spectral range. This phenomenon takes place for distances and tube diameters comprising the nanometer and micrometer scales. In particular, we find a β factor ≈1 for QEs placed 1-100 nm away from SWCNTs that are just a few nanometers in diameter, while the corresponding Purcell factor exceeds 10(6).
Collapse
Affiliation(s)
- Luis Martín-Moreno
- Instituto de Ciencia de Materiales de Aragón and Departamento de Física de la Materia Condensada, CSIC-Universidad de Zaragoza, E-50009 Zaragoza, Spain
| | - F Javier García de Abajo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Francisco J García-Vidal
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain
- Donostia International Physics Center (DIPC), E-20018 Donostia/San Sebastian, Spain
| |
Collapse
|
35
|
Devadas MS, Devkota T, Johns P, Li Z, Lo SS, Yu K, Huang L, Hartland GV. Imaging nano-objects by linear and nonlinear optical absorption microscopies. NANOTECHNOLOGY 2015; 26:354001. [PMID: 26266335 DOI: 10.1088/0957-4484/26/35/354001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Absorption based microscopy measurements are emerging as important tools for studying nanomaterials. This review discusses the three most common techniques for performing these experiments: transient absorption microscopy, photothermal heterodyne imaging, and spatial modulation spectroscopy. The focus is on the application of these techniques to imaging and detection, using examples taken from the authors' laboratory. The advantages and disadvantages of the three methods are discussed, with an emphasis on the unique information that can be obtained from these experiments, in comparison to conventional emission or scattering based microscopy experiments.
Collapse
Affiliation(s)
- Mary Sajini Devadas
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556-5670, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Devadas MS, Devkota T, Guha S, Shaw SK, Smith BD, Hartland GV. Spatial modulation spectroscopy for imaging and quantitative analysis of single dye-doped organic nanoparticles inside cells. NANOSCALE 2015; 7:9779-9785. [PMID: 25964049 PMCID: PMC4465101 DOI: 10.1039/c5nr01614b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Imaging of non-fluorescent nanoparticles in complex biological environments, such as the cell cytosol, is a challenging problem. For metal nanoparticles, Rayleigh scattering methods can be used, but for organic nanoparticles, such as dye-doped polymer beads or lipid nanoparticles, light scattering does not provide good contrast. In this paper, spatial modulation spectroscopy (SMS) is used to image single organic nanoparticles doped with non-fluorescent, near-IR croconaine dye. SMS is a quantitative imaging technique that yields the absolute extinction cross-section of the nanoparticles, which can be used to determine the number of dye molecules per particle. SMS images were recorded for particles within EMT-6 breast cancer cells. The measurements allowed mapping of the nanoparticle location and the amount of dye in a single cell. The results demonstrate how SMS can facilitate efforts to optimize dye-doped nanoparticles for effective photothermal therapy of cancer.
Collapse
Affiliation(s)
- Mary Sajini Devadas
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556-5670, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Yorulmaz M, Nizzero S, Hoggard A, Wang LY, Cai YY, Su MN, Chang WS, Link S. Single-particle absorption spectroscopy by photothermal contrast. NANO LETTERS 2015; 15:3041-7. [PMID: 25849105 DOI: 10.1021/nl504992h] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Removing effects of sample heterogeneity through single-molecule and single-particle techniques has advanced many fields. While background free luminescence and scattering spectroscopy is widely used, recording the absorption spectrum only is rather difficult. Here we present an approach capable of recording pure absorption spectra of individual nanostructures. We demonstrate the implementation of single-particle absorption spectroscopy on strongly scattering plasmonic nanoparticles by combining photothermal microscopy with a supercontinuum laser and an innovative calibration procedure that accounts for chromatic aberrations and wavelength-dependent excitation powers. Comparison of the absorption spectra to the scattering spectra of the same individual gold nanoparticles reveals the blueshift of the absorption spectra, as predicted by Mie theory but previously not detectable in extinction measurements that measure the sum of absorption and scattering. By covering a wavelength range of 300 nm, we are furthermore able to record absorption spectra of single gold nanorods with different aspect ratios. We find that the spectral shift between absorption and scattering for the longitudinal plasmon resonance decreases as a function of nanorod aspect ratio, which is in agreement with simulations.
Collapse
Affiliation(s)
- Mustafa Yorulmaz
- †Department of Chemistry, ‡Applied Physics Graduate Program, §Department of Electrical and Computer Engineering, Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
| | - Sara Nizzero
- †Department of Chemistry, ‡Applied Physics Graduate Program, §Department of Electrical and Computer Engineering, Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
| | - Anneli Hoggard
- †Department of Chemistry, ‡Applied Physics Graduate Program, §Department of Electrical and Computer Engineering, Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
| | - Lin-Yung Wang
- †Department of Chemistry, ‡Applied Physics Graduate Program, §Department of Electrical and Computer Engineering, Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
| | - Yi-Yu Cai
- †Department of Chemistry, ‡Applied Physics Graduate Program, §Department of Electrical and Computer Engineering, Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
| | - Man-Nung Su
- †Department of Chemistry, ‡Applied Physics Graduate Program, §Department of Electrical and Computer Engineering, Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
| | - Wei-Shun Chang
- †Department of Chemistry, ‡Applied Physics Graduate Program, §Department of Electrical and Computer Engineering, Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
| | - Stephan Link
- †Department of Chemistry, ‡Applied Physics Graduate Program, §Department of Electrical and Computer Engineering, Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
38
|
Heylman KD, Knapper KA, Goldsmith RH. Photothermal Microscopy of Nonluminescent Single Particles Enabled by Optical Microresonators. J Phys Chem Lett 2014; 5:1917-23. [PMID: 26273873 DOI: 10.1021/jz500781g] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A powerful new paradigm for single-particle microscopy on nonluminescent targets is reported using ultrahigh-quality factor optical microresonators as the critical detecting element. The approach is photothermal in nature as the microresonators are used to detect heat dissipated from individual photoexcited nano-objects. The method potentially satisfies an outstanding need for single-particle microscopy on nonluminescent objects of increasingly smaller absorption cross section. Simultaneously, our approach couples the sensitivity of label-free detection using optical microresonators with a means of deriving chemical information on the target species, a significant benefit. As a demonstration, individual nonphotoluminescent multiwalled carbon nanotubes are spatially mapped, and the per-atom absorption cross section is determined. Finite-element simulations are employed to model the relevant thermal processes and elucidate the sensing mechanism. Finally, a direct pathway to the extension of this new technique to molecules is laid out, leading to a potent new method of performing measurements on individual molecules.
Collapse
Affiliation(s)
- Kevin D Heylman
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Kassandra A Knapper
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Randall H Goldsmith
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
39
|
Liu K, Hong X, Choi S, Jin C, Capaz RB, Kim J, Wang W, Bai X, Louie SG, Wang E, Wang F. Systematic determination of absolute absorption cross-section of individual carbon nanotubes. Proc Natl Acad Sci U S A 2014; 111:7564-9. [PMID: 24821815 PMCID: PMC4040614 DOI: 10.1073/pnas.1318851111] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Optical absorption is the most fundamental optical property characterizing light-matter interactions in materials and can be most readily compared with theoretical predictions. However, determination of optical absorption cross-section of individual nanostructures is experimentally challenging due to the small extinction signal using conventional transmission measurements. Recently, dramatic increase of optical contrast from individual carbon nanotubes has been successfully achieved with a polarization-based homodyne microscope, where the scattered light wave from the nanostructure interferes with the optimized reference signal (the reflected/transmitted light). Here we demonstrate high-sensitivity absorption spectroscopy for individual single-walled carbon nanotubes by combining the polarization-based homodyne technique with broadband supercontinuum excitation in transmission configuration. To our knowledge, this is the first time that high-throughput and quantitative determination of nanotube absorption cross-section over broad spectral range at the single-tube level was performed for more than 50 individual chirality-defined single-walled nanotubes. Our data reveal chirality-dependent behaviors of exciton resonances in carbon nanotubes, where the exciton oscillator strength exhibits a universal scaling law with the nanotube diameter and the transition order. The exciton linewidth (characterizing the exciton lifetime) varies strongly in different nanotubes, and on average it increases linearly with the transition energy. In addition, we establish an empirical formula by extrapolating our data to predict the absorption cross-section spectrum for any given nanotube. The quantitative information of absorption cross-section in a broad spectral range and all nanotube species not only provides new insight into the unique photophysics in one-dimensional carbon nanotubes, but also enables absolute determination of optical quantum efficiencies in important photoluminescence and photovoltaic processes.
Collapse
Affiliation(s)
- Kaihui Liu
- Department of Physics, University of California, Berkeley, CA 94720;State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Xiaoping Hong
- Department of Physics, University of California, Berkeley, CA 94720
| | - Sangkook Choi
- Department of Physics, University of California, Berkeley, CA 94720;Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Chenhao Jin
- Department of Physics, University of California, Berkeley, CA 94720
| | - Rodrigo B Capaz
- Department of Physics, University of California, Berkeley, CA 94720;Instituto de Física, Universidade Federal do Rio de Janeiro, 21941-972, Rio de Janeiro, RJ, Brazil
| | - Jihoon Kim
- Department of Physics, University of California, Berkeley, CA 94720
| | - Wenlong Wang
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xuedong Bai
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Steven G Louie
- Department of Physics, University of California, Berkeley, CA 94720;Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Enge Wang
- International Center for Quantum Materials and Collaborative Innovation Center of Quantum Matter, Peking University, Beijing 100871, China; and
| | - Feng Wang
- Department of Physics, University of California, Berkeley, CA 94720;Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720;Kavli Energy NanoSciences Institute at the University of California, Berkeley, and the Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| |
Collapse
|
40
|
Streit JK, Bachilo SM, Ghosh S, Lin CW, Weisman RB. Directly measured optical absorption cross sections for structure-selected single-walled carbon nanotubes. NANO LETTERS 2014; 14:1530-6. [PMID: 24502235 DOI: 10.1021/nl404791y] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We have measured peak and spectrally integrated absolute absorption cross sections for the first (E11) and second (E22) optical transitions of seven semiconducting single-walled carbon nanotube (SWCNT) species in bulk suspensions. Species-specific concentrations were determined using short-wave IR fluorescence microscopy to directly count SWCNTs in a known sample volume. Measured cross sections per atom are inversely related to nanotube diameter. E11 cross sections are larger for mod 1 species than for mod 2; the opposite is found for E22.
Collapse
Affiliation(s)
- Jason K Streit
- Department of Chemistry and Richard E. Smalley Institute for Nanoscale Science and Technology, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | | | | | | | | |
Collapse
|
41
|
Havard N, Li Z, Murthy V, Lo SS, Hartland GV. Spatial modulation spectroscopy of graphene sheets. J Chem Phys 2014; 140:074203. [DOI: 10.1063/1.4865833] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
42
|
Crut A, Maioli P, Del Fatti N, Vallée F. Optical absorption and scattering spectroscopies of single nano-objects. Chem Soc Rev 2014; 43:3921-56. [DOI: 10.1039/c3cs60367a] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|