1
|
Luo G, Ming T, Yang L, He L, Tao T, Wang Y. Modulators targeting protein-protein interactions in Mycobacterium tuberculosis. Microbiol Res 2024; 284:127675. [PMID: 38636239 DOI: 10.1016/j.micres.2024.127675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 04/20/2024]
Abstract
Tuberculosis (TB) is a chronic infectious disease caused by Mycobacterium tuberculosis (M. tuberculosis), mainly transmitted through droplets to infect the lungs, and seriously affecting patients' health and quality of life. Clinically, anti-TB drugs often entail side effects and lack efficacy against resistant strains. Thus, the exploration and development of novel targeted anti-TB medications are imperative. Currently, protein-protein interactions (PPIs) offer novel avenues for anti-TB drug development, and the study of targeted modulators of PPIs in M. tuberculosis has become a prominent research focus. Furthermore, a comprehensive PPI network has been constructed using computational methods and bioinformatics tools. This network allows for a more in-depth analysis of the structural biology of PPIs and furnishes essential insights for the development of targeted small-molecule modulators. Furthermore, this article provides a detailed overview of the research progress and regulatory mechanisms of PPI modulators in M. tuberculosis, the causative agent of TB. Additionally, it summarizes potential targets for anti-TB drugs and discusses the prospects of existing PPI modulators.
Collapse
Affiliation(s)
- Guofeng Luo
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tianqi Ming
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Luchuan Yang
- Institute of traditional Chinese medicine, Sichuan College of traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu 610031, China
| | - Lei He
- Institute of traditional Chinese medicine, Sichuan College of traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu 610031, China
| | - Tao Tao
- Institute of traditional Chinese medicine, Sichuan College of traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu 610031, China
| | - Yanmei Wang
- Institute of traditional Chinese medicine, Sichuan College of traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu 610031, China.
| |
Collapse
|
2
|
Santos-Júnior PFDS, Batista VDM, Nascimento IJDS, Nunes IC, Silva LR, Costa CACB, Freitas JDD, Quintans-Júnior LJ, Araújo-Júnior JXD, Freitas MEGD, Zhan P, Green KD, Garneau-Tsodikova S, Mendonça-Júnior FJB, Rodrigues-Junior VS, Silva-Júnior EFD. A consensus reverse docking approach for identification of a competitive inhibitor of acetyltransferase enhanced intracellular survival protein from Mycobacterium tuberculosis. Bioorg Med Chem 2024; 108:117774. [PMID: 38833750 DOI: 10.1016/j.bmc.2024.117774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/08/2024] [Accepted: 05/24/2024] [Indexed: 06/06/2024]
Abstract
Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (Mtb), which remains a significant global health challenge. The emergence of multidrug-resistant (MDR) Mtb strains imposes the development of new therapeutic strategies. This study focuses on the identification and evaluation of potential inhibitors against Mtb H37Ra through a comprehensive screening of an in-house chemolibrary. Subsequently, a promising pyrimidine derivative (LQM495) was identified as promising and then further investigated by experimental and in silico approaches. In this context, computational techniques were used to elucidate the potential molecular target underlying the inhibitory action of LQM495. Then, a consensus reverse docking (CRD) protocol was used to investigate the interactions between this compound and several Mtb targets. Out of 98 Mtb targets investigated, the enhanced intracellular survival (Eis) protein emerged as a target for LQM495. To gain insights into the stability of the LQM495-Eis complex, molecular dynamics (MD) simulations were conducted over a 400 ns trajectory. Further insights into its binding modes within the Eis binding site were obtained through a Quantum mechanics (QM) approach, using density functional theory (DFT), with B3LYP/D3 basis set. These calculations shed light on the electronic properties and reactivity of LQM495. Subsequently, inhibition assays and kinetic studies of the Eis activity were used to investigate the activity of LQM495. Then, an IC50 value of 11.0 ± 1.4 µM was found for LQM495 upon Eis protein. Additionally, its Vmax, Km, and Ki parameters indicated that it is a competitive inhibitor. Lastly, this study presents LQM495 as a promising inhibitor of Mtb Eis protein, which could be further explored for developing novel anti-TB drugs in the future.
Collapse
Affiliation(s)
| | - Vitoria de Melo Batista
- Research Group of Biological and Molecular Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, AC. Simões campus, 57072-970 Alagoas, Maceió, Brazil
| | - Igor José Dos Santos Nascimento
- Post-Graduation Program of Pharmaceutical Sciences, Pharmacy Department, State University of Paraíba, Campina Grande, Brazil
| | - Isabelle Cavalcante Nunes
- Research Group of Biological and Molecular Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, AC. Simões campus, 57072-970 Alagoas, Maceió, Brazil
| | - Leandro Rocha Silva
- Research Group of Biological and Molecular Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, AC. Simões campus, 57072-970 Alagoas, Maceió, Brazil
| | | | - Johnnatan Duarte de Freitas
- Department of Chemistry, Federal Institute of Alagoas, Maceió campus, Mizael Domingues Street, 57020-600 Maceió, Alagoas, Brazil
| | - Lucindo José Quintans-Júnior
- Pharmaceutical Sciences Graduate Program (PPGCS), Federal University of Sergipe, São Cristóvão, Sergipe 49100-001, Brazil
| | - João Xavier de Araújo-Júnior
- Laboratory of Medicinal Chemistry, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Lourival Melo Mota Avenue, AC. Simões campus, 57072-970 Alagoas, Maceió, Brazil
| | | | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Keith D Green
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, 40536-0596, United States
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, 40536-0596, United States
| | | | - Valnês S Rodrigues-Junior
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa, Brazil; Post-Graduation Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa, Brazil
| | - Edeildo Ferreira da Silva-Júnior
- Research Group of Biological and Molecular Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, AC. Simões campus, 57072-970 Alagoas, Maceió, Brazil.
| |
Collapse
|
3
|
Yuliani Y, Ilmi AFN, Petsong S, Sawatpanich A, Chirakul S, Chatsuwan T, Palaga T, Rotcheewaphan S. CRISPR Interference-Mediated Silencing of the mmpL3 Gene in Mycobacterium smegmatis and Its Impact on Antimicrobial Susceptibility. Antibiotics (Basel) 2024; 13:483. [PMID: 38927150 PMCID: PMC11200583 DOI: 10.3390/antibiotics13060483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND The discovery of novel therapeutic agents, especially those targeting mycobacterial membrane protein large 3 (mmpL3), has shown promise. In this study, the CRISPR interference-Streptococcus thermophilus nuclease-deactivated Cas9 (CRISPRi-dCas9Sth1) system was utilized to suppress mmpL3 expression in Mycobacterium smegmatis, and its impacts on susceptibility to antimicrobial agents were evaluated. METHODS The repression of the mmpL3 gene was confirmed by RT-qPCR. The essentiality, growth curve, viability, and antimicrobial susceptibility of the mmpL3 knockdown strain were investigated. RESULTS mmpL3 silencing was achieved by utilizing 0.5 and 1 ng/mL anhydrotetracycline (ATc), resulting in reductions in the expression of 60.4% and 74.4%, respectively. mmpL3 silencing led to a significant decrease in bacterial viability when combined with one-half of the minimal inhibitory concentrations (MICs) of rifampicin, rifabutin, ceftriaxone, or isoniazid, along with 0.1 or 0.5 ng/mL ATc (p < 0.05). However, no significant difference was observed for clarithromycin or amikacin. CONCLUSIONS The downregulation of the mmpL3 gene in mycobacteria was achieved through the use of CRISPRi-dCas9Sth1, resulting in growth deficiencies and resensitization to certain antimicrobial agents. The impact was dependent upon the level of gene expression.
Collapse
Affiliation(s)
- Yonita Yuliani
- Medical Sciences, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (Y.Y.); (A.F.N.I.)
| | - Azizah Fitriana Nurul Ilmi
- Medical Sciences, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (Y.Y.); (A.F.N.I.)
| | - Suthidee Petsong
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (S.P.); (A.S.); (S.C.); (T.C.)
| | - Ajcharaporn Sawatpanich
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (S.P.); (A.S.); (S.C.); (T.C.)
| | - Sunisa Chirakul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (S.P.); (A.S.); (S.C.); (T.C.)
- Center of Excellence in Antimicrobial Stewardship, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tanittha Chatsuwan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (S.P.); (A.S.); (S.C.); (T.C.)
- Center of Excellence in Antimicrobial Stewardship, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Suwatchareeporn Rotcheewaphan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (S.P.); (A.S.); (S.C.); (T.C.)
- Center of Excellence in Antimicrobial Stewardship, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
4
|
Singh P, Kumar A, Sharma P, Chugh S, Kumar A, Sharma N, Gupta S, Singh M, Kidwai S, Sankar J, Taneja N, Kumar Y, Dhiman R, Mahajan D, Singh R. Identification and optimization of pyridine carboxamide-based scaffold as a drug lead for Mycobacterium tuberculosis. Antimicrob Agents Chemother 2024; 68:e0076623. [PMID: 38193667 PMCID: PMC10848774 DOI: 10.1128/aac.00766-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/10/2023] [Indexed: 01/10/2024] Open
Abstract
New drugs with novel mechanisms of action are urgently needed to tackle the issue of drug-resistant tuberculosis. Here, we have performed phenotypic screening using the Pathogen Box library obtained from the Medicines for Malaria Venture against Mycobacterium tuberculosis in vitro. We have identified a pyridine carboxamide derivative, MMV687254, as a promising hit. This molecule is specifically active against M. tuberculosis and Mycobacterium bovis Bacillus Calmette-Guérin (M. bovis BCG) but inactive against Enterococcus faecalis, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Escherichia coli pathogens. We demonstrate that MMV687254 inhibits M. tuberculosis growth in liquid cultures in a bacteriostatic manner. Surprisingly, MMV687254 was as active as isoniazid in macrophages and inhibited M. tuberculosis growth in a bactericidal manner. Mechanistic studies revealed that MMV687254 is a prodrug and that its anti-mycobacterial activity requires AmiC-dependent hydrolysis. We further demonstrate that MMV687254 inhibits M. tuberculosis growth in macrophages by inducing autophagy. In the present study, we have also carried out a detailed structure-activity relationship study and identified a promising novel lead candidate. The identified novel series of compounds also showed activity against drug-resistant M. bovis BCG and M. tuberculosis clinical strains. Finally, we demonstrate that in contrast to MMV687254, the lead molecule was able to inhibit M. tuberculosis growth in a chronic mouse model of infection. Taken together, we have identified a novel lead molecule with a dual mechanism of action that can be further optimized to design more potent anti-tubercular agents.
Collapse
Affiliation(s)
- Padam Singh
- Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Arun Kumar
- Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Pankaj Sharma
- Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Saurabh Chugh
- Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Ashish Kumar
- Department of Life Science, Laboratory of Mycobacterial Immunology, National Institute of Technology, Rourkela, India
| | - Nidhi Sharma
- Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Sonu Gupta
- Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Manisha Singh
- Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Saqib Kidwai
- Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Jishnu Sankar
- Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Neha Taneja
- Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Yashwant Kumar
- Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Rohan Dhiman
- Department of Life Science, Laboratory of Mycobacterial Immunology, National Institute of Technology, Rourkela, India
| | - Dinesh Mahajan
- Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Ramandeep Singh
- Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| |
Collapse
|
5
|
Williams JT, Giletto M, Haiderer ER, Aleiwi B, Krieger-Burke T, Ellsworth E, Abramovitch RB. The Mycobacterium tuberculosis MmpL3 inhibitor MSU-43085 is active in a mouse model of infection. Microbiol Spectr 2024; 12:e0367723. [PMID: 38078724 PMCID: PMC10783087 DOI: 10.1128/spectrum.03677-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/10/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE MmpL3 is a protein that is required for the survival of bacteria that cause tuberculosis (TB) and nontuberculous mycobacterial (NTM) infections. This report describes the discovery and characterization of a new small molecule, MSU-43085, that targets MmpL3 and is a potent inhibitor of Mycobacterium tuberculosis (Mtb) and M. abscessus survival. MSU-43085 is shown to be orally bioavailable and efficacious in an acute model of Mtb infection. However, the analog is inactive against Mtb in chronically infected mice. Pharmacokinetic and metabolite identification studies identified in vivo metabolism of MSU-43085, leading to a short half-life in treated mice. These proof-of-concept studies will guide further development of the MSU-43085 series for the treatment of TB or NTM infections.
Collapse
Affiliation(s)
- John T. Williams
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Matthew Giletto
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Elizabeth R. Haiderer
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Bilal Aleiwi
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Teresa Krieger-Burke
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Edmund Ellsworth
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Robert B. Abramovitch
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
6
|
Dhulap A, Banerjee P. Pharmacophore based virtual screening & molecular docking approach for identification of mycobacterial membrane protein large 3 (MmpL3) inhibitors. J Biomol Struct Dyn 2023; 41:11062-11077. [PMID: 36571432 DOI: 10.1080/07391102.2022.2159876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 12/12/2022] [Indexed: 12/27/2022]
Abstract
Tuberculosis (TB) disease continues to remain one of the global threats for mankind. Till date many antibacterial compounds have been identified to target mycobacterium tuberculosis (MTB). However, the mutating nature of the mycobacteria has always posed a challenge for designing newer drugs which can target both the non-mutating and mutating forms of TB. In this process, Mycobacterial membrane protein Large 3 (MmpL3) transporter was identified as one of the key targets for inhibiting tuberculosis. Herein we have made an effort to find potential inhibitors against MmpL3 by using a pharmacophore-based virtual screening workflow, followed by molecular docking studies and molecular dynamic simulations. Based on a set of 220 compounds showing anti-tubercular activity proposed to target MmpL3 transporter with MIC values ranging from 0.003 to 737 μM, a 5-point pharmacophore ADHHR_2 model possessing one hydrogen acceptor, one hydrogen donor, two hydrophobic groups and an aromatic ring system was generated. The model validated by enrichment study was used to screen Asinex and DrugBank database to identify a potential lead compound such as DrugBank_6059 that was found to show better binding affinity (-11.36) and hydrophobic interactions with target protein in comparison to standard drug SQ109.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abhijeet Dhulap
- Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, (CSIR-HRDC) Campus, Ghaziabad, Uttar Pradesh, India
- CSIR Unit for Research and Development of Information Products, Pune, Maharashtra, India
| | - Paromita Banerjee
- Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, (CSIR-HRDC) Campus, Ghaziabad, Uttar Pradesh, India
- CSIR Unit for Research and Development of Information Products, Pune, Maharashtra, India
| |
Collapse
|
7
|
Parveen S, Shen J, Lun S, Zhao L, Alt J, Koleske B, Leone RD, Rais R, Powell JD, Murphy JR, Slusher BS, Bishai WR. Glutamine metabolism inhibition has dual immunomodulatory and antibacterial activities against Mycobacterium tuberculosis. Nat Commun 2023; 14:7427. [PMID: 37973991 PMCID: PMC10654700 DOI: 10.1038/s41467-023-43304-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
As one of the most successful human pathogens, Mycobacterium tuberculosis (Mtb) has evolved a diverse array of determinants to subvert host immunity and alter host metabolic patterns. However, the mechanisms of pathogen interference with host metabolism remain poorly understood. Here we show that a glutamine metabolism antagonist, JHU083, inhibits Mtb proliferation in vitro and in vivo. JHU083-treated mice exhibit weight gain, improved survival, a 2.5 log lower lung bacillary burden at 35 days post-infection, and reduced lung pathology. JHU083 treatment also initiates earlier T-cell recruitment, increased proinflammatory myeloid cell infiltration, and a reduced frequency of immunosuppressive myeloid cells when compared to uninfected and rifampin-treated controls. Metabolomic analysis of lungs from JHU083-treated Mtb-infected mice reveals citrulline accumulation, suggesting elevated nitric oxide (NO) synthesis, and lowered levels of quinolinic acid which is derived from the immunosuppressive metabolite kynurenine. JHU083-treated macrophages also produce more NO potentiating their antibacterial activity. When tested in an immunocompromised mouse model of Mtb infection, JHU083 loses its therapeutic efficacy suggesting the drug's host-directed effects are likely to be predominant. Collectively, these data reveal that JHU083-mediated glutamine metabolism inhibition results in dual antibacterial and host-directed activity against tuberculosis.
Collapse
Affiliation(s)
- Sadiya Parveen
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jessica Shen
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Shichun Lun
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Liang Zhao
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jesse Alt
- Johns Hopkins University, Baltimore, MD, USA
| | - Benjamin Koleske
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Robert D Leone
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Rana Rais
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jonathan D Powell
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Calico, South San Francisco, CA, USA
| | - John R Murphy
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Barbara S Slusher
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Johns Hopkins University, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - William R Bishai
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
8
|
Kim H, Shin SJ. Revolutionizing control strategies against Mycobacterium tuberculosis infection through selected targeting of lipid metabolism. Cell Mol Life Sci 2023; 80:291. [PMID: 37704889 PMCID: PMC11072447 DOI: 10.1007/s00018-023-04914-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/12/2023] [Accepted: 08/07/2023] [Indexed: 09/15/2023]
Abstract
Lipid species play a critical role in the growth and virulence expression of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB). During Mtb infection, foamy macrophages accumulate lipids in granulomas, providing metabolic adaptation and survival strategies for Mtb against multiple stresses. Host-derived lipid species, including triacylglycerol and cholesterol, can also contribute to the development of drug-tolerant Mtb, leading to reduced efficacy of antibiotics targeting the bacterial cell wall or transcription. Transcriptional and metabolic analyses indicate that lipid metabolism-associated factors of Mtb are highly regulated by antibiotics and ultimately affect treatment outcomes. Despite the well-known association between major antibiotics and lipid metabolites in TB treatment, a comprehensive understanding of how altered lipid metabolites in both host and Mtb influence treatment outcomes in a drug-specific manner is necessary to overcome drug tolerance. The current review explores the controversies and correlations between lipids and drug efficacy in various Mtb infection models and proposes novel approaches to enhance the efficacy of anti-TB drugs. Moreover, the review provides insights into the efficacious control of Mtb infection by elucidating the impact of lipids on drug efficacy. This review aims to improve the effectiveness of current anti-TB drugs and facilitate the development of innovative therapeutic strategies against Mtb infection by making reverse use of Mtb-favoring lipid species.
Collapse
Affiliation(s)
- Hagyu Kim
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
9
|
Wen Y, Lun S, Jiao Y, Zhang W, Liu T, Yang F, Tang J, Bishai WR, Yu LF. Structure-directed identification of pyridine-2-methylamine derivatives as MmpL3 inhibitors for use as antitubercular agents. Eur J Med Chem 2023; 255:115351. [PMID: 37116266 PMCID: PMC10239758 DOI: 10.1016/j.ejmech.2023.115351] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/30/2023]
Abstract
Mycobacterial membrane protein Large 3 (MmpL3), an inner membrane protein, plays a crucial role in the transport of mycolic acids that are essential for the viability of M. tuberculosis and has been a promising therapeutic target for new anti-TB agents. Herein, we report the discovery of pyridine-2-methylamine antitubercular compounds using a structure-based drug design strategy. Compound 62 stands out as the most potent compound with high activity against M. tb strain H37Rv (MIC = 0.016 μg/mL) as well as the clinically isolated strains of MDR/XDR-TB (MIC = 0.0039-0.0625 μg/mL), low Vero cell toxicity (IC50 ≥ 16 μg/mL), and moderate liver microsomal stability (CLint = 28 μL/min/mg). Furthermore, the resistant mutant of S288T due to single nucleotide polymorphism in mmpL3 was resistant to pyridine-2-methylamine 62, demonstrating compound 62 is likely target to MmpL3.
Collapse
Affiliation(s)
- Yu Wen
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Shichun Lun
- Center for Tuberculosis Research, Department of Medicine, Division of Infectious Disease, Johns Hopkins School of Medicine, Baltimore, MD, 21231-1044, United States
| | - Yuxue Jiao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Wei Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Ting Liu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Fan Yang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China.
| | - Jie Tang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - William R Bishai
- Center for Tuberculosis Research, Department of Medicine, Division of Infectious Disease, Johns Hopkins School of Medicine, Baltimore, MD, 21231-1044, United States.
| | - Li-Fang Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China.
| |
Collapse
|
10
|
North EJ, Schwartz CP, Zgurskaya HI, Jackson M. Recent advances in mycobacterial membrane protein large 3 inhibitor drug design for mycobacterial infections. Expert Opin Drug Discov 2023; 18:707-724. [PMID: 37226498 PMCID: PMC10330604 DOI: 10.1080/17460441.2023.2218082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/22/2023] [Indexed: 05/26/2023]
Abstract
INTRODUCTION Tuberculosis and nontuberculous mycobacterial infections are notoriously difficult to treat, requiring long-courses of intensive multi-drug therapies associated with adverse side effects. To identify better therapeutics, whole cell screens have identified novel pharmacophores, a surprisingly high number of which target an essential lipid transporter known as MmpL3. AREAS COVERED This paper summarizes what is known about MmpL3, its mechanism of lipid transport and therapeutic potential, and provides an overview of the different classes of MmpL3 inhibitors currently under development. It further describes the assays available to study MmpL3 inhibition by these compounds. EXPERT OPINION MmpL3 has emerged as a target of high therapeutic value. Accordingly, several classes of MmpL3 inhibitors are currently under development with one drug candidate (SQ109) having undergone a Phase 2b clinical study. The hydrophobic character of most MmpL3 series identified to date seems to drive antimycobacterial potency resulting in poor bioavailability, which is a significant impediment to their development. There is also a need for more high-throughput and informative assays to elucidate the precise mechanism of action of MmpL3 inhibitors and drive the rational optimization of analogues.
Collapse
Affiliation(s)
- E. Jeffrey North
- Department of Pharmacy Sciences, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Chris P. Schwartz
- Department of Pharmacy Sciences, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Helen I. Zgurskaya
- University of Oklahoma, Department of Chemistry and Biochemistry, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
11
|
Alcaraz M, Edwards TE, Kremer L. New therapeutic strategies for Mycobacterium abscessus pulmonary diseases - untapping the mycolic acid pathway. Expert Rev Anti Infect Ther 2023; 21:813-829. [PMID: 37314394 PMCID: PMC10529309 DOI: 10.1080/14787210.2023.2224563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/08/2023] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Treatment options against Mycobacterium abscessus infections are very limited. New compounds are needed to cure M. abscessus pulmonary diseases. While the mycolic acid biosynthetic pathway has been largely exploited for the treatment of tuberculosis, this metabolic process has been overlooked in M. abscessus, although it offers many potential drug targets for the treatment of this opportunistic pathogen. AREAS COVERED Herein, the authors review the role of the MmpL3 membrane protein and the enoyl-ACP reductase InhA involved in the transport and synthesis of mycolic acids, respectively. They discuss their importance as two major vulnerable drug targets in M. abscessus and report the activity of MmpL3 and InhA inhibitors. In particular, they focus on NITD-916, a direct InhA inhibitor against M. abscessus, particularly warranted in the context of multidrug resistance. EXPERT OPINION There is an increasing body of evidence validating the mycolic acid pathway as an attractive drug target to be further exploited for M. abscessus lung disease treatments. The NITD-916 studies provide a proof-of-concept that direct inhibitors of InhA are efficient in vitro, in macrophages and in zebrafish. Future work is now required to improve the activity and pharmacological properties of these inhibitors and their evaluation in pre-clinical models.
Collapse
Affiliation(s)
- Matthéo Alcaraz
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293, Montpellier, France
| | - Thomas E. Edwards
- UCB BioSciences, Bainbridge Island, WA 98109 USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA 98109 USA
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293, Montpellier, France
- INSERM, IRIM, 34293 Montpellier, France
| |
Collapse
|
12
|
Alsayed SSR, Gunosewoyo H. Tuberculosis: Pathogenesis, Current Treatment Regimens and New Drug Targets. Int J Mol Sci 2023; 24:ijms24065202. [PMID: 36982277 PMCID: PMC10049048 DOI: 10.3390/ijms24065202] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/30/2023] Open
Abstract
Mycobacterium tuberculosis (M. tb), the causative agent of TB, is a recalcitrant pathogen that is rife around the world, latently infecting approximately a quarter of the worldwide population. The asymptomatic status of the dormant bacteria escalates to the transmissible, active form when the host's immune system becomes debilitated. The current front-line treatment regimen for drug-sensitive (DS) M. tb strains is a 6-month protocol involving four different drugs that requires stringent adherence to avoid relapse and resistance. Poverty, difficulty to access proper treatment, and lack of patient compliance contributed to the emergence of more sinister drug-resistant (DR) strains, which demand a longer duration of treatment with more toxic and more expensive drugs compared to the first-line regimen. Only three new drugs, bedaquiline (BDQ) and the two nitroimidazole derivatives delamanid (DLM) and pretomanid (PMD) were approved in the last decade for treatment of TB-the first anti-TB drugs with novel mode of actions to be introduced to the market in more than 50 years-reflecting the attrition rates in the development and approval of new anti-TB drugs. Herein, we will discuss the M. tb pathogenesis, current treatment protocols and challenges to the TB control efforts. This review also aims to highlight several small molecules that have recently been identified as promising preclinical and clinical anti-TB drug candidates that inhibit new protein targets in M. tb.
Collapse
Affiliation(s)
- Shahinda S R Alsayed
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Bentley, Perth, WA 6102, Australia
| | - Hendra Gunosewoyo
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Bentley, Perth, WA 6102, Australia
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, Perth, WA 6102, Australia
| |
Collapse
|
13
|
Parveen S, Shen J, Lun S, Zhao L, Koleske B, Leone RD, Rais R, Powell JD, Murphy JR, Slusher BS, Bishai WR. Glutamine metabolism inhibition has dual immunomodulatory and antibacterial activities against Mycobacterium tuberculosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529704. [PMID: 36865287 PMCID: PMC9980128 DOI: 10.1101/2023.02.23.529704] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
As one of the most successful human pathogens, Mycobacterium tuberculosis (Mtb) has evolved a diverse array of determinants to subvert host immunity and alter host metabolic patterns. However, the mechanisms of pathogen interference with host metabolism remain poorly understood. Here we show that a novel glutamine metabolism antagonist, JHU083, inhibits Mtb proliferation in vitro and in vivo. JHU083-treated mice exhibit weight gain, improved survival, a 2.5 log lower lung bacillary burden at 35 days post-infection, and reduced lung pathology. JHU083 treatment also initiates earlier T-cell recruitment, increased proinflammatory myeloid cell infiltration, and a reduced frequency of immunosuppressive myeloid cells when compared to uninfected and rifampin-treated controls. Metabolomics analysis of lungs from JHU083-treated Mtb-infected mice revealed reduced glutamine levels, citrulline accumulation suggesting elevated NOS activity, and lowered levels of quinolinic acid which is derived from the immunosuppressive metabolite kynurenine. When tested in an immunocompromised mouse model of Mtb infection, JHU083 lost its therapeutic efficacy suggesting the drug's host-directed effects are likely to be predominant. Collectively, these data reveal that JHU083-mediated glutamine metabolism inhibition results in dual antibacterial and host-directed activity against tuberculosis.
Collapse
Affiliation(s)
- Sadiya Parveen
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Jessica Shen
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Shichun Lun
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Liang Zhao
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Benjamin Koleske
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Robert D. Leone
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Rana Rais
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Jonathan D. Powell
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - John R. Murphy
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Barbara S. Slusher
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - William R. Bishai
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
14
|
Williams JT, Abramovitch RB. Molecular Mechanisms of MmpL3 Function and Inhibition. Microb Drug Resist 2023; 29:190-212. [PMID: 36809064 PMCID: PMC10171966 DOI: 10.1089/mdr.2021.0424] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Mycobacteria species include a large number of pathogenic organisms such as Mycobacterium tuberculosis, Mycobacterium leprae, and various non-tuberculous mycobacteria. Mycobacterial membrane protein large 3 (MmpL3) is an essential mycolic acid and lipid transporter required for growth and cell viability. In the last decade, numerous studies have characterized MmpL3 with respect to protein function, localization, regulation, and substrate/inhibitor interactions. This review summarizes new findings in the field and seeks to assess future areas of research in our rapidly expanding understanding of MmpL3 as a drug target. An atlas of known MmpL3 mutations that provide resistance to inhibitors is presented, which maps amino acid substitutions to specific structural domains of MmpL3. In addition, chemical features of distinct classes of Mmpl3 inhibitors are compared to provide insights into shared and unique features of varied MmpL3 inhibitors.
Collapse
Affiliation(s)
- John T Williams
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Robert B Abramovitch
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
15
|
Bhattarai P, Hegde P, Li W, Prathipati PK, Stevens CM, Yang L, Zhou H, Pandya A, Cunningham K, Grissom J, Roman Sotelo M, Sowards M, Calisto L, Destache CJ, Rocha-Sanchez S, Gumbart JC, Zgurskaya HI, Jackson M, North EJ. Structural Determinants of Indole-2-carboxamides: Identification of Lead Acetamides with Pan Antimycobacterial Activity. J Med Chem 2023; 66:170-187. [PMID: 36563291 PMCID: PMC10010622 DOI: 10.1021/acs.jmedchem.2c00352] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (M.tb), is one of the leading causes of death in developing countries. Non-tuberculous mycobacteria (NTM) infections are rising and prey upon patients with structural lung diseases such as chronic obstructive pulmonary disease (COPD) and cystic fibrosis. All mycobacterial infections require lengthy treatment regimens with undesirable side effects. Therefore, new antimycobacterial compounds with novel mechanisms of action are urgently needed. Published indole-2-carboxamides (IC) with suggested inhibition of the essential transporter MmpL3 showed good potency against whole-cell M.tb, yet had poor aqueous solubility. This project focused on retaining the required MmpL3 inhibitory pharmacophore and increasing the molecular heteroatom percentage by reducing lipophilic atoms. We evaluated pyrrole, mandelic acid, imidazole, and acetamide functional groups coupled to lipophilic head groups, where lead acetamide-based compounds maintained high potency against mycobacterial pathogens, had improved in vitro ADME profiles over their indole-2-carboxamide analogs, were non-cytotoxic, and were determined to be MmpL3 inhibitors.
Collapse
Affiliation(s)
- Pankaj Bhattarai
- Department of Pharmacy Sciences, Creighton University, 2500 California Plaza, Omaha, Nebraska68178, United States
| | - Pooja Hegde
- Department of Pharmacy Sciences, Creighton University, 2500 California Plaza, Omaha, Nebraska68178, United States
| | - Wei Li
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado80523, United States
| | - Pavan Kumar Prathipati
- Department of Pharmacy Sciences, Creighton University, 2500 California Plaza, Omaha, Nebraska68178, United States
| | - Casey M Stevens
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma73019, United States
| | - Lixinhao Yang
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| | - Hinman Zhou
- Department of Pharmacy Sciences, Creighton University, 2500 California Plaza, Omaha, Nebraska68178, United States
| | - Amit Pandya
- Department of Pharmacy Sciences, Creighton University, 2500 California Plaza, Omaha, Nebraska68178, United States
| | - Katie Cunningham
- Department of Pharmacy Sciences, Creighton University, 2500 California Plaza, Omaha, Nebraska68178, United States
| | - Jenny Grissom
- Department of Pharmacy Sciences, Creighton University, 2500 California Plaza, Omaha, Nebraska68178, United States
| | - Mariaelena Roman Sotelo
- Department of Pharmacy Sciences, Creighton University, 2500 California Plaza, Omaha, Nebraska68178, United States
| | - Melanie Sowards
- Department of Pharmacy Sciences, Creighton University, 2500 California Plaza, Omaha, Nebraska68178, United States
| | - Lilian Calisto
- Department of Oral Biology, Creighton University, 2500 California Plaza, Omaha, Nebraska68178, United States
| | - Christopher J Destache
- Department of Pharmacy Practice, Creighton University, 2500 California Plaza, Omaha, Nebraska68178, United States
| | - Sonia Rocha-Sanchez
- Department of Oral Biology, Creighton University, 2500 California Plaza, Omaha, Nebraska68178, United States
| | - James C Gumbart
- School of Physics and School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| | - Helen I Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma73019, United States
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado80523, United States
| | - E Jeffrey North
- Department of Pharmacy Sciences, Creighton University, 2500 California Plaza, Omaha, Nebraska68178, United States
| |
Collapse
|
16
|
Girardini M, Ferlenghi F, Annunziato G, Degiacomi G, Papotti B, Marchi C, Sammartino JC, Rasheed SS, Contini A, Pasca MR, Vacondio F, Evans JC, Dick T, Müller R, Costantino G, Pieroni M. Expanding the knowledge around antitubercular 5-(2-aminothiazol-4-yl)isoxazole-3-carboxamides: Hit-to-lead optimization and release of a novel antitubercular chemotype via scaffold derivatization. Eur J Med Chem 2023; 245:114916. [PMID: 36399878 PMCID: PMC10583863 DOI: 10.1016/j.ejmech.2022.114916] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/13/2022]
Abstract
Tuberculosis is one of the deadliest infectious diseases in the world, and the increased number of multidrug-resistant and extensively drug-resistant strains is a reason for concern. We have previously reported a series of substituted 5-(2-aminothiazol-4-yl)isoxazole-3-carboxamides with growth inhibitory activity against Mycobacterium tuberculosis strains and low propensity to be substrate of efflux pumps. Encouraged by these preliminary results, we have undertaken a medicinal chemistry campaign to determine the metabolic fate of these compounds and to delineate a reliable body of Structure-Activity Relationships. Keeping intact the (thiazol-4-yl)isoxazole-3-carboxamide core, as it is deemed to be the pharmacophore of the molecule, we have extensively explored the structural modifications able to confer good activity and avoid rapid clearance. Also, a small set of analogues based on isostere manipulation of the 2-aminothiazole were prepared and tested, with the aim to disclose novel antitubercular chemotypes. These studies, combined, were instrumental in designing improved compounds such as 42g and 42l, escaping metabolic degradation by human liver microsomes and, at the same time, maintaining good antitubercular activity against both drug-susceptible and drug-resistant strains.
Collapse
Affiliation(s)
- Miriam Girardini
- P4T Group, Italy; Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | - Francesca Ferlenghi
- Department of Food and Drug, University of Parma, 43124, Parma, Italy; Centro Interdipartimentale "Biopharmanet-tec", Università degli Studi di Parma, Parma, Italy
| | | | - Giulia Degiacomi
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Bianca Papotti
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | - Cinzia Marchi
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | - José Camilla Sammartino
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Sari S Rasheed
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University Campus, 66123, Saarbrücken, Germany; German Centre for Infection Research, partner site Hannover-Braunschweig, Germany
| | - Anna Contini
- P4T Group, Italy; Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | - Maria Rosalia Pasca
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Federica Vacondio
- Department of Food and Drug, University of Parma, 43124, Parma, Italy; Centro Interdipartimentale "Biopharmanet-tec", Università degli Studi di Parma, Parma, Italy
| | - Joanna C Evans
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA; Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, USA; Department of Microbiology and Immunology, Georgetown University, Washington DC, USA
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University Campus, 66123, Saarbrücken, Germany; German Centre for Infection Research, partner site Hannover-Braunschweig, Germany
| | - Gabriele Costantino
- P4T Group, Italy; Department of Food and Drug, University of Parma, 43124, Parma, Italy; Centro Interdipartimentale "Biopharmanet-tec", Università degli Studi di Parma, Parma, Italy; Centro Interdipartimentale Misure (CIM) 'G. Casnati', University of Parma, Parma, Italy
| | - Marco Pieroni
- P4T Group, Italy; Department of Food and Drug, University of Parma, 43124, Parma, Italy; Centro Interdipartimentale "Biopharmanet-tec", Università degli Studi di Parma, Parma, Italy.
| |
Collapse
|
17
|
Nicola F, Cirillo DM, Lorè NI. Preclinical murine models to study lung infection with Mycobacterium abscessus complex. Tuberculosis (Edinb) 2023; 138:102301. [PMID: 36603391 DOI: 10.1016/j.tube.2022.102301] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022]
Abstract
Mycobacterium abscessus is a non-tuberculous mycobacterium (NTM) able to cause invasive pulmonary infections, named NTM pulmonary disease. The therapeutic approaches are limited, and infections are difficult to treat due to antibiotic resistance conferred by an impermeable cell wall, drug efflux pumps, or drug-modifying enzymes. The development of new therapeutics, intended as antimicrobials or drug limiting immunopathology, is urgently necessary. In this context, the preclinical murine models of M. abscessus represent a useful tool to validate and translate in vitro-proofed concepts. These in vivo models are essential for developing new targets and drugs, ameliorating our knowledge in combinatorial regimens of current existing antibiotic treatments, and repurposing existing drugs for new therapeutic options against M. abscessus infection. Thus, this review aims at providing an overview of the current state of the art of preclinical murine models to study M. abscessus lung infection and its exploitation for new therapeutic approaches. This review discusses the murine models available focusing on the different bacterial challenges (aerosol, intranasal, intratracheal, and intravenous administrations), murine genetic background, and additional bacterial related factors. Then, we discuss the successful preclinical models for M. abscessus respiratory infection exploited to study the efficacy and safety of new antimicrobials or to determine the best dosage and route of administration of existing drugs. Finally, we present the current murine models exploited to develop new therapeutic approaches to modulate the host immune response and limit immunopathological damage during M. abscessus lung disease. In conclusion, our review article provides an overview of current and available murine models to characterize acute or chronic infections and to study the outcome of new therapeutic strategies against M. abscessus lung infection.
Collapse
Affiliation(s)
- Francesca Nicola
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniela M Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Nicola I Lorè
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
18
|
Yan W, Zheng Y, Dou C, Zhang G, Arnaout T, Cheng W. The pathogenic mechanism of Mycobacterium tuberculosis: implication for new drug development. MOLECULAR BIOMEDICINE 2022; 3:48. [PMID: 36547804 PMCID: PMC9780415 DOI: 10.1186/s43556-022-00106-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is a tenacious pathogen that has latently infected one third of the world's population. However, conventional TB treatment regimens are no longer sufficient to tackle the growing threat of drug resistance, stimulating the development of innovative anti-tuberculosis agents, with special emphasis on new protein targets. The Mtb genome encodes ~4000 predicted proteins, among which many enzymes participate in various cellular metabolisms. For example, more than 200 proteins are involved in fatty acid biosynthesis, which assists in the construction of the cell envelope, and is closely related to the pathogenesis and resistance of mycobacteria. Here we review several essential enzymes responsible for fatty acid and nucleotide biosynthesis, cellular metabolism of lipids or amino acids, energy utilization, and metal uptake. These include InhA, MmpL3, MmaA4, PcaA, CmaA1, CmaA2, isocitrate lyases (ICLs), pantothenate synthase (PS), Lysine-ε amino transferase (LAT), LeuD, IdeR, KatG, Rv1098c, and PyrG. In addition, we summarize the role of the transcriptional regulator PhoP which may regulate the expression of more than 110 genes, and the essential biosynthesis enzyme glutamine synthetase (GlnA1). All these enzymes are either validated drug targets or promising target candidates, with drugs targeting ICLs and LAT expected to solve the problem of persistent TB infection. To better understand how anti-tuberculosis drugs act on these proteins, their structures and the structure-based drug/inhibitor designs are discussed. Overall, this investigation should provide guidance and support for current and future pharmaceutical development efforts against mycobacterial pathogenesis.
Collapse
Affiliation(s)
- Weizhu Yan
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Yanhui Zheng
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Chao Dou
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Guixiang Zhang
- grid.13291.380000 0001 0807 1581Division of Gastrointestinal Surgery, Department of General Surgery and Gastric Cancer center, West China Hospital, Sichuan University, No. 37. Guo Xue Xiang, Chengdu, 610041 China
| | - Toufic Arnaout
- Kappa Crystals Ltd., Dublin, Ireland ,MSD Dunboyne BioNX, Co. Meath, Ireland
| | - Wei Cheng
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| |
Collapse
|
19
|
A Hydrazine-Hydrazone Adamantine Compound Shows Antimycobacterial Activity and Is a Probable Inhibitor of MmpL3. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27207130. [PMID: 36296721 PMCID: PMC9610904 DOI: 10.3390/molecules27207130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/03/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
Abstract
Tuberculosis remains an important cause of morbidity and mortality throughout the world. Notably, an important number of multi drug resistant cases is an increasing concern. This problem points to an urgent need for novel compounds with antimycobacterial properties and to improve existing therapies. Whole-cell-based screening for compounds with activity against Mycobacterium tuberculosis complex strains in the presence of linezolid was performed in this study. A set of 15 bioactive compounds with antimycobacterial activity in vitro were identified with a minimal inhibitory concentration of less than 2 µg/mL. Among them, compound 1 is a small molecule with a chemical structure consisting of an adamantane moiety and a hydrazide–hydrazone moiety. Whole genome sequencing of spontaneous mutants resistant to the compounds suggested compound 1 to be a new inhibitor of MmpL3. This compound binds to the same pocket as other already published MmpL3 inhibitors, without disturbing the proton motive force of M. bovis BCG and M. smegmatis. Compound 1 showed a strong activity against a panel ofclinical strains of M. tuberculosis in vitro. This compound showed no toxicity against mammalian cells and protected Galleria mellonella larvae against M. bovis BCG infection. These results suggest that compound 1 is a promising anti-TB agent with the potential to improve TB treatment in combination with standard TB therapies.
Collapse
|
20
|
Why Matter Matters: Fast-Tracking Mycobacterium abscessus Drug Discovery. Molecules 2022; 27:molecules27206948. [PMID: 36296540 PMCID: PMC9608607 DOI: 10.3390/molecules27206948] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
Unlike Tuberculosis (TB), Mycobacterium abscessus lung disease is a highly drug-resistant bacterial infection with no reliable treatment options. De novo M. abscessus drug discovery is urgently needed but is hampered by the bacterium's extreme drug resistance profile, leaving the current drug pipeline underpopulated. One proposed strategy to accelerate de novo M. abscessus drug discovery is to prioritize screening of advanced TB-active compounds for anti-M. abscessus activity. This approach would take advantage of the greater chance of homologous drug targets between mycobacterial species, increasing hit rates. Furthermore, the screening of compound series with established structure-activity-relationship, pharmacokinetic, and tolerability properties should fast-track the development of in vitro anti-M. abscessus hits into lead compounds with in vivo efficacy. In this review, we evaluated the effectiveness of this strategy by examining the literature. We found several examples where the screening of advanced TB chemical matter resulted in the identification of anti-M. abscessus compounds with in vivo proof-of-concept, effectively populating the M. abscessus drug pipeline with promising new candidates. These reports validate the screening of advanced TB chemical matter as an effective means of fast-tracking M. abscessus drug discovery.
Collapse
|
21
|
Zhao H, Gao Y, Li W, Sheng L, Cui K, Wang B, Fu L, Gao M, Lin Z, Zou X, Jackson M, Huang H, Lu Y, Zhang D. Design, Synthesis, and Biological Evaluation of Pyrrole-2-carboxamide Derivatives as Mycobacterial Membrane Protein Large 3 Inhibitors for Treating Drug-Resistant Tuberculosis. J Med Chem 2022; 65:10534-10553. [PMID: 35915958 PMCID: PMC9379527 DOI: 10.1021/acs.jmedchem.2c00718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this work, pyrrole-2-carboxamides were designed with a structure-guided strategy based on the crystal structure of MmpL3 and a pharmacophore model. The structure-activity relationship studies revealed that attaching phenyl and pyridyl groups with electron-withdrawing substituents to the pyrrole ring and attaching bulky substituents to the carboxamide greatly improved anti-TB activity. Most compounds showed potent anti-TB activity (MIC < 0.016 μg/mL) and low cytotoxicity (IC50 > 64 μg/mL). Compound 32 displayed excellent activity against drug-resistant tuberculosis, good microsomal stability, almost no inhibition of the hERG K+ channel, and good in vivo efficacy. Furthermore, the target of the pyrrole-2-carboxamides was identified by measuring their potency against M. smegmatis expressing wild-type and mutated variants of the mmpL3 gene from M. tuberculosis (mmpL3tb) and determining their effect on mycolic acid biosynthesis using a [14C] acetate metabolic labeling assay. The present study provides new MmpL3 inhibitors that are promising anti-TB agents.
Collapse
Affiliation(s)
- Hongyi Zhao
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Chinese Academy of Medical Sciences Key Laboratory of Anti-DR TB Innovative Drug Research, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, P. R. China
| | - Yongxin Gao
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Chinese Academy of Medical Sciences Key Laboratory of Anti-DR TB Innovative Drug Research, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, P. R. China
| | - Wei Li
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Li Sheng
- Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Chinese Academy of Medical Sciences Key Laboratory of Anti-DR TB Innovative Drug Research, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, P. R. China
| | - Keli Cui
- College of Life Science and Bio-engineering, Beijing University of Technology, 100 Ping Le Yuan, Beijing 100124, P. R. China
| | - Bin Wang
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Department of Pharmacology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, 97 Ma Chang Street, Beijing 101149, P. R. China
| | - Lei Fu
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Department of Pharmacology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, 97 Ma Chang Street, Beijing 101149, P. R. China
| | - Meng Gao
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Chinese Academy of Medical Sciences Key Laboratory of Anti-DR TB Innovative Drug Research, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, P. R. China
| | - Ziyun Lin
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Chinese Academy of Medical Sciences Key Laboratory of Anti-DR TB Innovative Drug Research, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, P. R. China
| | - Xiaowen Zou
- Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Chinese Academy of Medical Sciences Key Laboratory of Anti-DR TB Innovative Drug Research, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, P. R. China
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Haihong Huang
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Chinese Academy of Medical Sciences Key Laboratory of Anti-DR TB Innovative Drug Research, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, P. R. China
| | - Yu Lu
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Department of Pharmacology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, 97 Ma Chang Street, Beijing 101149, P. R. China
| | - Dongfeng Zhang
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Chinese Academy of Medical Sciences Key Laboratory of Anti-DR TB Innovative Drug Research, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, P. R. China
| |
Collapse
|
22
|
Hu T, Yang X, Liu F, Sun S, Xiong Z, Liang J, Yang X, Wang H, Yang X, Guddat LW, Yang H, Rao Z, Zhang B. Structure-based design of anti-mycobacterial drug leads that target the mycolic acid transporter MmpL3. Structure 2022; 30:1395-1402.e4. [PMID: 35981536 DOI: 10.1016/j.str.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/11/2022] [Accepted: 07/22/2022] [Indexed: 11/26/2022]
Abstract
New anti-tubercular agents are urgently needed to address the emerging threat of drug resistance to human tuberculosis. Here, we have used structure-assisted methods to develop compounds that target mycobacterial membrane protein large 3 (MmpL3). MmpL3 is essential for the transport of mycolic acids, an important cell-wall component of mycobacteria. We prepared compounds that potently inhibit the growth of Mycobacterium tuberculosis (Mtb) and other mycobacteria in cell culture. The cryoelectron microscopy (cryo-EM) structure of mycobacterial MmpL3 in complex with one of these compounds (ST004) was determined using lipid nanodiscs at an overall resolution of 3.36 Å. The structure reveals the binding mode of ST004 to MmpL3, with the S4 and S5 subsites of the inhibitor-binding pocket in the proton translocation channel playing vital roles. These data are a promising starting point for the development of anti-tuberculosis drugs that target MmpL3.
Collapse
Affiliation(s)
- Tianyu Hu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaolin Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Fengjiang Liu
- Innovative Center for Pathogen Research, Guangzhou Laboratory, Guangzhou 510005, China
| | - Shan Sun
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhiqi Xiong
- Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China
| | - Jingxi Liang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300353, China
| | - Xiaobao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Haofeng Wang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiuna Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Shanghai Clinical Research and Trial Center, Shanghai 201210, China.
| | - Zihe Rao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Innovative Center for Pathogen Research, Guangzhou Laboratory, Guangzhou 510005, China; Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300353, China; Shanghai Clinical Research and Trial Center, Shanghai 201210, China.
| | - Bing Zhang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Shanghai Clinical Research and Trial Center, Shanghai 201210, China.
| |
Collapse
|
23
|
Khan SM, Garcia Hernandez A, Allaie IM, Grooms GM, Li K, Witola WH, Stec J. Activity of (1-benzyl-4-triazolyl)-indole-2-carboxamides against Toxoplasma gondii and Cryptosporidium parvum. Int J Parasitol Drugs Drug Resist 2022; 19:6-20. [PMID: 35462232 PMCID: PMC9046076 DOI: 10.1016/j.ijpddr.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 11/21/2022]
Abstract
Parasitic diseases such as toxoplasmosis and cryptosporidiosis remain serious global health challenges, not only to humans but also to domestic animals and wildlife. With only limited treatment options available, Toxoplasma gondii and Cryptosporidium parvum (the causative agents of toxoplasmosis and cryptosporidiosis, respectively) constitute a substantial health threat especially to young children and immunocompromised individuals. Herein, we report the synthesis and biological evaluation of a series of novel (1-benzyl-4-triazolyl)-indole-2-carboxamides and related compounds that show efficacy against T. gondii and C. parvum. Closely related analogs 7c (JS-2-30) and 7e (JS-2-44) showed low micromolar activity with IC50 indices ranging between 2.95 μM and 7.63 μM against both T. gondii and C. parvum, whereas the compound representing (1-adamantyl)-4-phenyl-triazole, 11b (JS-2-41), showed very good activity with an IC50 of 1.94 μM, and good selectivity against T. gondii in vitro. Importantly, compounds JS-2-41 and JS-2-44 showed appreciable in vivo efficacy in decreasing the number of T. gondii cysts in the brains of Brown Norway rats. Together, these results indicate that (1-benzyl-4-triazolyl)-indole-2-carboxamides and (1-adamantyl)-4-phenyl-triazoles are potential hits for medicinal chemistry explorations in search for novel antiparasitic agents for effective treatment of cryptosporidiosis and toxoplasmosis.
Collapse
Affiliation(s)
- Shahbaz M Khan
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, 2001 S. Lincoln Avenue, Urbana, IL, 61802, USA
| | - Anolan Garcia Hernandez
- Chicago State University, College of Pharmacy, Department of Pharmaceutical Sciences, 9501 S. King Drive, Chicago, IL, 60628, USA
| | - Idrees Mehraj Allaie
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, 2001 S. Lincoln Avenue, Urbana, IL, 61802, USA
| | - Gregory M Grooms
- Chicago State University, College of Pharmacy, Department of Pharmaceutical Sciences, 9501 S. King Drive, Chicago, IL, 60628, USA
| | - Kun Li
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, 2001 S. Lincoln Avenue, Urbana, IL, 61802, USA; Institute of Traditional Chinese Veterinary Medicine, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - William H Witola
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, 2001 S. Lincoln Avenue, Urbana, IL, 61802, USA.
| | - Jozef Stec
- Chicago State University, College of Pharmacy, Department of Pharmaceutical Sciences, 9501 S. King Drive, Chicago, IL, 60628, USA; Marshall B. Ketchum University, College of Pharmacy, Department of Pharmaceutical Sciences, 2575 Yorba Linda Blvd., Fullerton, CA, 82831, USA.
| |
Collapse
|
24
|
Stevens CM, Babii SO, Pandya AN, Li W, Li Y, Mehla J, Scott R, Hegde P, Prathipati PK, Acharya A, Liu J, Gumbart JC, North J, Jackson M, Zgurskaya HI. Proton transfer activity of the reconstituted Mycobacterium tuberculosis MmpL3 is modulated by substrate mimics and inhibitors. Proc Natl Acad Sci U S A 2022; 119:e2113963119. [PMID: 35858440 PMCID: PMC9335285 DOI: 10.1073/pnas.2113963119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 06/03/2022] [Indexed: 01/21/2023] Open
Abstract
Transporters belonging to the Resistance-Nodulation-cell Division (RND) superfamily of proteins such as Mycobacterium tuberculosis MmpL3 and its analogs are the focus of intense investigations due to their importance in the physiology of Corynebacterium-Mycobacterium-Nocardia species and antimycobacterial drug discovery. These transporters deliver trehalose monomycolates, the precursors of major lipids of the outer membrane, to the periplasm by a proton motive force-dependent mechanism. In this study, we successfully purified, from native membranes, the full-length and the C-terminal truncated M. tuberculosis MmpL3 and Corynebacterium glutamicum CmpL1 proteins and reconstituted them into proteoliposomes. We also generated a series of substrate mimics and inhibitors specific to these transporters, analyzed their activities in the reconstituted proteoliposomes, and carried out molecular dynamics simulations of the model MmpL3 transporter at different pH. We found that all reconstituted proteins facilitate proton translocation across a phospholipid bilayer, but MmpL3 and CmpL1 differ dramatically in their responses to pH and interactions with substrate mimics and indole-2-carboxamide inhibitors. Our results further suggest that some inhibitors abolish the transport activity of MmpL3 and CmpL1 by inhibition of proton translocation.
Collapse
Affiliation(s)
- Casey M. Stevens
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Svitlana O. Babii
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Amitkumar N. Pandya
- School of Pharmacy & Health Professions, Department of Pharmacy Sciences, Creighton University, Omaha, NE 68178
| | - Wei Li
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523
| | - Yupeng Li
- College of Chemistry, Jilin University, 130012 Changchun, China
- Tang Aoqing Honors Program in Science, Jilin University, 130012 Changchun, China
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332
| | - Jitender Mehla
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Robyn Scott
- School of Pharmacy & Health Professions, Department of Pharmacy Sciences, Creighton University, Omaha, NE 68178
| | - Pooja Hegde
- School of Pharmacy & Health Professions, Department of Pharmacy Sciences, Creighton University, Omaha, NE 68178
| | - Pavan K. Prathipati
- School of Pharmacy & Health Professions, Department of Pharmacy Sciences, Creighton University, Omaha, NE 68178
| | - Atanu Acharya
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332
| | - Jinchan Liu
- College of Chemistry, Jilin University, 130012 Changchun, China
- Tang Aoqing Honors Program in Science, Jilin University, 130012 Changchun, China
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332
| | - James C. Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332
| | - Jeffrey North
- School of Pharmacy & Health Professions, Department of Pharmacy Sciences, Creighton University, Omaha, NE 68178
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523
| | - Helen I. Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| |
Collapse
|
25
|
Bajad NG, Singh SK, Singh SK, Singh TD, Singh M. Indole: A promising scaffold for the discovery and development of potential anti-tubercular agents. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100119. [PMID: 35992375 PMCID: PMC9389259 DOI: 10.1016/j.crphar.2022.100119] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/13/2022] [Accepted: 07/05/2022] [Indexed: 11/08/2022] Open
Abstract
Indole-containing small molecules have been reported to have diverse pharmacological activities. The aromatic heterocyclic scaffold, which resembles various protein structures, has received attention from organic and medicinal chemists. Exploration of indole derivatives in drug discovery has rapidly yielded a vast array of biologically active compounds with broad therapeutic potential. Nature is the major source of indole scaffolds, but various classical and advanced synthesis methods for indoles have also been reported. One-pot synthesis is widely considered an efficient approach in synthetic organic chemistry and has been used to synthesize some indole compounds. The rapid emergence of drug-resistant tuberculosis is a major challenge to be addressed. Identifying novel targets and drug candidates for tuberculosis is therefore crucial. Researchers have extensively explored indole derivatives as potential anti-tubercular agents or drugs. Indole scaffolds containing the novel non-covalent (decaprenylphosphoryl-β-D-ribose2'-epimerase) DprE1 inhibitor 1,4-azaindole is currently in clinical trials to treat Mycobacterium tuberculosis. In addition, DG167 indazole sulfonamide with potent anti-tubercular activity is undergoing early-stage development in preclinical studies. Indole bearing cationic amphiphiles with high chemical diversity have been reported to depolarize and disrupt the mycobacterial membrane. Some indole-based compounds have potential inhibitory activities against distinct anti-tubercular targets, including the inhibition of cell wall synthesis, replication, transcription, and translation, as summarized in the graphical abstract. The success of computer-aided drug design in the fields of cancer and anti-viral drugs has accelerated in silico studies in antibacterial drug development. This review describes the sources of indole scaffolds, the potential for novel indole derivatives to serve as anti-tubercular agents, in silico findings, and proposed actions to facilitate the design of novel compounds with anti-tubercular activity.
Collapse
Affiliation(s)
- Nilesh Gajanan Bajad
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Sudhir Kumar Singh
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Sushil Kumar Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Tryambak Deo Singh
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Meenakshi Singh
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
26
|
Ray R, Birangal SR, Fathima F, Boshoff HI, Forbes HE, Chandrashekhar RH, Shenoy GG. Molecular insights into Mmpl3 leads to the development of novel indole-2-carboxamides as antitubercular agents. MOLECULAR SYSTEMS DESIGN & ENGINEERING 2022; 7:592-606. [PMID: 36186547 PMCID: PMC9518744 DOI: 10.1039/d1me00122a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Tuberculosis (TB) is an air-borne infectious disease and is the leading cause of death among all infectious diseases globally. The current treatment regimen for TB is overtly long and patient non-compliance often leads to drug resistant TB resulting in a need to develop new drugs that will act via novel mechanisms. In this research work, we selected Mycobacterium membrane protein large (MmpL3) as the drug target and indole-2-carboximide as our molecule of interest for further designing new molecules. A homology model was prepared for the Mycobacterium tuberculosis MmpL3 from the crystal structure of Mycobacterium smegmatis MmpL3. A series of indoles which are known to be MmpL3 inhibitors were docked in the prepared protein and the binding site properties were identified. Based on that, 10 molecules were designed and synthesized and their antitubercular activities evaluated. We identified four hits among which the highest potency candidate possessed a minimum inhibitory concentration (MIC) of 1.56 μM at 2-weeks. Finally, molecular dynamics simulation studies were done with 3b and a previously reported MmpL3 inhibitor to understand the intricacies of their binding in real time and to correlate the experimental findings with the simulation data.
Collapse
Affiliation(s)
- Rajdeep Ray
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal, Karnataka, India. Pin: 576104
| | - Sumit Raosaheb Birangal
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal, Karnataka, India. Pin: 576104
| | - Fajeelath Fathima
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal, Karnataka, India. Pin: 576104
| | - Helena I. Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - He Eun Forbes
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Raghu H. Chandrashekhar
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal, Karnataka, India. Pin: 576104
| | - Gautham G. Shenoy
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal, Karnataka, India. Pin: 576104
| |
Collapse
|
27
|
Kuang W, Zhang H, Wang X, Yang P. Overcoming Mycobacterium tuberculosis through small molecule inhibitors to break down cell wall synthesis. Acta Pharm Sin B 2022; 12:3201-3214. [PMID: 35967276 PMCID: PMC9366312 DOI: 10.1016/j.apsb.2022.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/08/2022] [Accepted: 04/19/2022] [Indexed: 12/16/2022] Open
Abstract
Mycobacterium tuberculosis (MTB) utilizes multiple mechanisms to obtain antibiotic resistance during the treatment of infections. In addition, the biofilms, secreted by MTB, can further protect the latter from the contact with drug molecules and immune cells. These self-defending mechanisms lay a formidable challenge to develop effective therapeutic agents against chronic and recurring antibiotic-tolerant MTB infections. Although several inexpensive and effective drugs (isoniazid, rifampicin, pyrazinamide and ethambutol) have been discovered for the treatment regimen, MTB continues to cause considerable morbidity and mortality worldwide. Antibiotic resistance and tolerance remain major global issues, and innovative therapeutic strategies are urgently needed to address the challenges associated with pathogenic bacteria. Gratifyingly, the cell wall synthesis of tubercle bacilli requires the participation of many enzymes which exclusively exist in prokaryotic organisms. These enzymes, absent in human hepatocytes, are recognized as promising targets to develop anti-tuberculosis drug. In this paper, we discussed the critical roles of potential drug targets in regulating cell wall synthesis of MTB. And also, we systematically reviewed the advanced development of novel bioactive compounds or drug leads for inhibition of cell wall synthesis, including their discovery, chemical modification, in vitro and in vivo evaluation.
Collapse
Affiliation(s)
- Wenbin Kuang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Haolin Zhang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao Wang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Peng Yang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- Corresponding author.
| |
Collapse
|
28
|
Bhakhar KA, Sureja DK, Dhameliya TM. Synthetic account of indoles in search of potential anti-mycobacterial agents: A review and future insights. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131522] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
29
|
Adams O, Deme JC, Parker JL, Fowler PW, Lea SM, Newstead S. Cryo-EM structure and resistance landscape of M. tuberculosis MmpL3: An emergent therapeutic target. Structure 2021; 29:1182-1191.e4. [PMID: 34242558 PMCID: PMC8752444 DOI: 10.1016/j.str.2021.06.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/24/2021] [Accepted: 06/14/2021] [Indexed: 11/09/2022]
Abstract
Tuberculosis (TB) is the leading cause of death from a single infectious agent and in 2019 an estimated 10 million people worldwide contracted the disease. Although treatments for TB exist, continual emergence of drug-resistant variants necessitates urgent development of novel antituberculars. An important new target is the lipid transporter MmpL3, which is required for construction of the unique cell envelope that shields Mycobacterium tuberculosis (Mtb) from the immune system. However, a structural understanding of the mutations in Mtb MmpL3 that confer resistance to the many preclinical leads is lacking, hampering efforts to circumvent resistance mechanisms. Here, we present the cryoelectron microscopy structure of Mtb MmpL3 and use it to comprehensively analyze the mutational landscape of drug resistance. Our data provide a rational explanation for resistance variants local to the central drug binding site, and also highlight a potential alternative route to resistance operating within the periplasmic domain.
Collapse
Affiliation(s)
- Oliver Adams
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Justin C Deme
- The Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; Central Oxford Structural Molecular Imaging Centre (COSMIC), University of Oxford, Oxford OX1 3RE, UK; Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Joanne L Parker
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Philip W Fowler
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK; National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, John Radcliffe, Oxford OX3 9DU, UK
| | - Susan M Lea
- The Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; Central Oxford Structural Molecular Imaging Centre (COSMIC), University of Oxford, Oxford OX1 3RE, UK; Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA.
| | - Simon Newstead
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; The Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
30
|
Umare MD, Khedekar PB, Chikhale RV. Mycobacterial Membrane Protein Large 3 (MmpL3) Inhibitors: A Promising Approach to Combat Tuberculosis. ChemMedChem 2021; 16:3136-3148. [PMID: 34288519 DOI: 10.1002/cmdc.202100359] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/17/2021] [Indexed: 11/08/2022]
Abstract
Tuberculosis is a prominent aliment throughout the world and a leading cause of mortality among infectious diseases. Drug development for multi-drug resistance and reducing the current therapy time is the top priority. Mycobacterial membrane protein large 3 (MmpL3) is a promising target with high potential, however, it has not been explored to its greatest potential. It is a membrane transporter that translocates trehalose-monomycolate which is a precursor for the synthesis of mycolic acid that is essential for the synthesis of the bacterial cell wall and is pathogenic in nature. In this review, we have discussed the current development of MmpL3 inhibitors, different scaffolds, their derivatives, and their synthetic schemes and provide insight into the challenges in developing these inhibitors.
Collapse
Affiliation(s)
- Mohit D Umare
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, 440033, MS, India
| | - Pramod B Khedekar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, 440033, MS, India
| | - Rupesh V Chikhale
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1 N 1AX, UK
| |
Collapse
|
31
|
Abstract
Nontuberculous mycobacteria infections are a growing concern, and their incidence has been increasing worldwide in recent years. Current treatments are not necessarily useful because many were initially designed to work against other bacteria, such as Mycobacterium tuberculosis. In addition, inadequate treatment means that resistant strains are increasingly appearing, particularly for Mycobacterium abscessus, one of the most virulent nontuberculous mycobacteria. There is an urgent need to develop new antibiotics specifically directed against these nontuberculous mycobacteria. To help in this fight against the emergence of these pathogens, this review describes the most promising heterocyclic antibiotics under development, with particular attention paid to their structure-activity relationships.
Collapse
|
32
|
Targeting MmpL3 for anti-tuberculosis drug development. Biochem Soc Trans 2021; 48:1463-1472. [PMID: 32662825 PMCID: PMC7458404 DOI: 10.1042/bst20190950] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023]
Abstract
The unique architecture of the mycobacterial cell envelope plays an important role in Mycobacterium tuberculosis (Mtb) pathogenesis. A critical protein in cell envelope biogenesis in mycobacteria, required for transport of precursors, trehalose monomycolates (TMMs), is the Mycobacterial membrane protein large 3 (MmpL3). Due to its central role in TMM transport, MmpL3 has been an attractive therapeutic target and a key target for several preclinical agents. In 2019, the first crystal structures of the MmpL3 transporter and its complexes with lipids and inhibitors were reported. These structures revealed several unique structural features of MmpL3 and provided invaluable information on the mechanism of TMM transport. This review aims to highlight the recent advances made in the function of MmpL3 and summarises structural findings. The overall goal is to provide a mechanistic perspective of MmpL3-mediated lipid transport and inhibition, and to highlight the prospects for potential antituberculosis therapies.
Collapse
|
33
|
Alsayed SSR, Lun S, Payne A, Bishai WR, Gunosewoyo H. Facile synthesis and antimycobacterial activity of isoniazid, pyrazinamide and ciprofloxacin derivatives. Chem Biol Drug Des 2021; 97:1137-1150. [PMID: 33638304 PMCID: PMC8113106 DOI: 10.1111/cbdd.13836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/12/2021] [Accepted: 01/28/2021] [Indexed: 12/14/2022]
Abstract
Several rationally designed isoniazid (INH), pyrazinamide (PZA) and ciprofloxacin (CPF) derivatives were conveniently synthesized and evaluated in vitro against H37Rv Mycobacterium tuberculosis (M. tb) strain. CPF derivative 16 displayed a modest activity (MIC = 16 µg/ml) and was docked into the M. tb DNA gyrase. Isoniazid-pyrazinoic acid (INH-POA) hybrid 21a showed the highest potency in our study (MIC = 2 µg/ml). It also retained its high activity against the other tested M. tb drug-sensitive strain (DS) V4207 (MIC = 4 µg/ml) and demonstrated negligible cytotoxicity against Vero cells (IC50 ≥ 64 µg/ml). Four tested drug-resistant (DR) M. tb strains were refractory to 21a, similar to INH, whilst being sensitive to CPF. Compound 21a was also inactive against two non-tuberculous mycobacterial (NTM) strains, suggesting its selective activity against M. tb. The noteworthy activity of 21a against DS strains and its low cytotoxicity highlight its potential to treat DS M. tb.
Collapse
Affiliation(s)
- Shahinda S. R. Alsayed
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley, Perth, WA 6102, Australia
| | - Shichun Lun
- Center for Tuberculosis Research, Department of Medicine, Division of Infectious Disease, Johns Hopkins School of Medicine, 1550, Orleans Street, Baltimore, Maryland, 21231-1044, United States
| | - Alan Payne
- School of Molecular and Life Sciences, Curtin University, Perth, WA 6102, Australia
| | - William R. Bishai
- Center for Tuberculosis Research, Department of Medicine, Division of Infectious Disease, Johns Hopkins School of Medicine, 1550, Orleans Street, Baltimore, Maryland, 21231-1044, United States
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, Maryland, 20815-6789, United States
| | - Hendra Gunosewoyo
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley, Perth, WA 6102, Australia
| |
Collapse
|
34
|
Tan YJ, Li M, Gunawan GA, Nyantakyi SA, Dick T, Go ML, Lam Y. Amide-Amine Replacement in Indole-2-carboxamides Yields Potent Mycobactericidal Agents with Improved Water Solubility. ACS Med Chem Lett 2021; 12:704-712. [PMID: 34055215 DOI: 10.1021/acsmedchemlett.0c00588] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022] Open
Abstract
Indolecarboxamides are potent but poorly soluble mycobactericidal agents. Here we found that modifying the incipient scaffold by amide-amine substitution and replacing the indole ring with benzothiophene or benzoselenophene led to striking (10-20-fold) improvements in solubility. Potent activity could be achieved without the carboxamide linker but not in the absence of the indole ring. The indolylmethylamine, N-cyclooctyl-6-trifluoromethylindol-2-ylmethylamine (33, MIC90Mtb 0.13 μM, MBC99.9Mtb 0.63 μM), exemplifies a promising member that is more soluble and equipotent to its carboxamide equivalent. It is also an inhibitor of the mycolate transporter MmpL3, a property shared by the methylamines of benzothiophene and benzoselenophene.
Collapse
Affiliation(s)
| | | | | | | | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, and Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey 07110, United States
- Department of Microbiology and Immunology, Georgetown University, Washington, D.C. 20057, United States
| | | | | |
Collapse
|
35
|
Klenotic PA, Moseng MA, Morgan CE, Yu EW. Structural and Functional Diversity of Resistance-Nodulation-Cell Division Transporters. Chem Rev 2021; 121:5378-5416. [PMID: 33211490 PMCID: PMC8119314 DOI: 10.1021/acs.chemrev.0c00621] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Multidrug resistant (MDR) bacteria are a global threat with many common infections becoming increasingly difficult to eliminate. While significant effort has gone into the development of potent biocides, the effectiveness of many first-line antibiotics has been diminished due to adaptive resistance mechanisms. Bacterial membrane proteins belonging to the resistance-nodulation-cell division (RND) superfamily play significant roles in mediating bacterial resistance to antimicrobials. They participate in multidrug efflux and cell wall biogenesis to transform bacterial pathogens into "superbugs" that are resistant even to last resort antibiotics. In this review, we summarize the RND superfamily of efflux transporters with a primary focus on the assembly and function of the inner membrane pumps. These pumps are critical for extrusion of antibiotics from the cell as well as the transport of lipid moieties to the outer membrane to establish membrane rigidity and stability. We analyze recently solved structures of bacterial inner membrane efflux pumps as to how they bind and transport their substrates. Our cumulative data indicate that these RND membrane proteins are able to utilize different oligomerization states to achieve particular activities, including forming MDR pumps and cell wall remodeling machineries, to ensure bacterial survival. This mechanistic insight, combined with simulated docking techniques, allows for the design and optimization of new efflux pump inhibitors to more effectively treat infections that today are difficult or impossible to cure.
Collapse
Affiliation(s)
- Philip A. Klenotic
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland OH 44106, USA
| | - Mitchell A. Moseng
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland OH 44106, USA
| | - Christopher E. Morgan
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland OH 44106, USA
| | - Edward W. Yu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland OH 44106, USA
| |
Collapse
|
36
|
Alsayed SSR, Lun S, Bailey AW, Suri A, Huang CC, Mocerino M, Payne A, Sredni ST, Bishai WR, Gunosewoyo H. Design, synthesis and evaluation of novel indole-2-carboxamides for growth inhibition of Mycobacterium tuberculosis and paediatric brain tumour cells. RSC Adv 2021; 11:15497-15511. [PMID: 35481189 PMCID: PMC9029315 DOI: 10.1039/d0ra10728j] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/10/2021] [Indexed: 12/17/2022] Open
Abstract
The omnipresent threat of tuberculosis (TB) and the scant treatment options thereof necessitate the development of new antitubercular agents, preferably working via a novel mechanism of action distinct from the current drugs. Various studies identified the mycobacterial membrane protein large 3 transporter (MmpL3) as the target of several classes of compounds, including the indole-2-caboxamides. Herein, several indoleamide analogues were rationally designed, synthesised, and evaluated for their antitubercular and antitumour activities. Compound 8g displayed the highest activity (MIC = 0.32 μM) against the drug-sensitive (DS) Mycobacterium tuberculosis (M. tb) H37Rv strain. This compound also exhibited high selective activity towards M. tb over mammalian cells [IC50 (Vero cells) = 40.9 μM, SI = 128], suggesting its minimal cytotoxicity. In addition, when docked into the MmpL3 active site, 8g adopted a binding profile similar to the indoleamide ligand ICA38. A related compound 8f showed dual antitubercular (MIC = 0.62 μM) and cytotoxic activities against paediatric glioblastoma multiforme (GBM) cell line KNS42 [IC50 (viability) = 0.84 μM]. Compound 8f also showed poor cytotoxic activity against healthy Vero cells (IC50 = 39.9 μM). Compounds 9a and 15, which were inactive against M. tb, showed potent cytotoxic (IC50 = 8.25 and 5.04 μM, respectively) and antiproliferative activities (IC50 = 9.85 and 6.62 μM, respectively) against KNS42 cells. Transcriptional analysis of KNS42 cells treated with compound 15 revealed a significant downregulation in the expression of the carbonic anhydrase 9 (CA9) and the spleen tyrosine kinase (SYK) genes. The expression levels of these genes in GBM tumours were previously shown to contribute to tumour progression, suggesting their involvement in our observed antitumour activities. Compounds 9a and 15 were selected for further evaluations against three different paediatric brain tumour cell lines (BT12, BT16 and DAOY) and non-neoplastic human fibroblast cells HFF1. Compound 9a showed remarkable cytotoxic (IC50 = 0.89 and 1.81 μM, respectively) and antiproliferative activities (IC50 = 7.44 and 6.06 μM, respectively) against the two tested atypical teratoid/rhabdoid tumour (AT/RT) cells BT12 and BT16. Interestingly, compound 9a was not cytotoxic when tested against non-neoplastic HFF1 cells [IC50 (viability) = 119 μM]. This suggests that an indoleamide scaffold can be fine-tuned to confer a set of derivatives with selective antitubercular and/or antitumour activities. In this study, we demonstrated that an indoleamide scaffold can be fine-tuned to confer a set of derivatives with selective antitubercular and/or antitumour activities.![]()
Collapse
Affiliation(s)
- Shahinda S R Alsayed
- Curtin Medical School, Faculty of Health Sciences, Curtin University Bentley Perth WA 6102 Australia
| | - Shichun Lun
- Center for Tuberculosis Research, Department of Medicine, Division of Infectious Disease, Johns Hopkins School of Medicine 1550, Orleans Street Baltimore Maryland 21231-1044 USA
| | - Anders W Bailey
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago Chicago IL 60611 USA
| | - Amreena Suri
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago Chicago IL 60611 USA
| | - Chiang-Ching Huang
- Department of Biostatistics, Zilber School of Public Health, University of Wisconsin Milwaukee WI 53205 USA
| | - Mauro Mocerino
- School of Molecular and Life Sciences, Curtin University Perth WA 6102 Australia
| | - Alan Payne
- School of Molecular and Life Sciences, Curtin University Perth WA 6102 Australia
| | - Simone Treiger Sredni
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago Chicago IL 60611 USA.,Department of Surgery, Northwestern University, Feinberg School of Medicine Chicago IL 60611 USA
| | - William R Bishai
- Center for Tuberculosis Research, Department of Medicine, Division of Infectious Disease, Johns Hopkins School of Medicine 1550, Orleans Street Baltimore Maryland 21231-1044 USA .,Howard Hughes Medical Institute 4000 Jones Bridge Road Chevy Chase Maryland 20815-6789 USA
| | - Hendra Gunosewoyo
- Curtin Medical School, Faculty of Health Sciences, Curtin University Bentley Perth WA 6102 Australia
| |
Collapse
|
37
|
Oh S, Trifonov L, Yadav VD, Barry CE, Boshoff HI. Tuberculosis Drug Discovery: A Decade of Hit Assessment for Defined Targets. Front Cell Infect Microbiol 2021; 11:611304. [PMID: 33791235 PMCID: PMC8005628 DOI: 10.3389/fcimb.2021.611304] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/25/2021] [Indexed: 11/20/2022] Open
Abstract
More than two decades have elapsed since the publication of the first genome sequence of Mycobacterium tuberculosis (Mtb) which, shortly thereafter, enabled methods to determine gene essentiality in the pathogen. Despite this, target-based approaches have not yielded drugs that have progressed to clinical testing. Whole-cell screening followed by elucidation of mechanism of action has to date been the most fruitful approach to progressing inhibitors into the tuberculosis drug discovery pipeline although target-based approaches are gaining momentum. This review discusses scaffolds that have been identified over the last decade from screens of small molecule libraries against Mtb or defined targets where mechanism of action investigation has defined target-hit couples and structure-activity relationship studies have described the pharmacophore.
Collapse
Affiliation(s)
- Sangmi Oh
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Lena Trifonov
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Veena D Yadav
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Clifton E Barry
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Helena I Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
38
|
Egorova A, Jackson M, Gavrilyuk V, Makarov V. Pipeline of anti-Mycobacterium abscessus small molecules: Repurposable drugs and promising novel chemical entities. Med Res Rev 2021; 41:2350-2387. [PMID: 33645845 DOI: 10.1002/med.21798] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/01/2021] [Accepted: 02/17/2021] [Indexed: 12/13/2022]
Abstract
The Mycobacterium abscessus complex is a group of emerging pathogens that are difficult to treat. There are no effective drugs for successful M. abscessus pulmonary infection therapy, and existing drug regimens recommended by the British or the American Thoracic Societies are associated with poor clinical outcomes. Therefore, novel antibacterial drugs are urgently needed to contain this global threat. The current anti-M. abscessus small-molecule drug development process can be enhanced by two parallel strategies-discovery of compounds from new chemical classes and commercial drug repurposing. This review focuses on recent advances in the finding of novel small-molecule agents, and more particularly focuses on the activity, mode of action and structure-activity relationship of promising inhibitors from five different chemical classes-benzimidazoles, indole-2-carboxamides, benzothiazoles, 4-piperidinoles, and oxazolidionones. We further discuss some other interesting small molecules, such as thiacetazone derivatives and benzoboroxoles, that are in the early stages of drug development, and summarize current knowledge about the efficacy of repurposable drugs, such as rifabutin, tedizolid, bedaquiline, and others. We finally review targets of therapeutic interest in M. abscessus that may be worthy of future drug and adjunct therapeutic development.
Collapse
Affiliation(s)
- Anna Egorova
- Research Center of Biotechnology RAS, Moscow, Russia
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Colorado, Fort Collins, USA
| | | | - Vadim Makarov
- Research Center of Biotechnology RAS, Moscow, Russia
| |
Collapse
|
39
|
Ray P, Huggett M, Turner PA, Taylor M, Cleghorn LAT, Early J, Kumar A, Bonnett SA, Flint L, Joerss D, Johnson J, Korkegian A, Mullen S, Moure AL, Davis SH, Murugesan D, Mathieson M, Caldwell N, Engelhart CA, Schnappinger D, Epemolu O, Zuccotto F, Riley J, Scullion P, Stojanovski L, Massoudi L, Robertson GT, Lenaerts AJ, Freiberg G, Kempf DJ, Masquelin T, Hipskind PA, Odingo J, Read KD, Green SR, Wyatt PG, Parish T. Spirocycle MmpL3 Inhibitors with Improved hERG and Cytotoxicity Profiles as Inhibitors of Mycobacterium tuberculosis Growth. ACS OMEGA 2021; 6:2284-2311. [PMID: 33521468 PMCID: PMC7841955 DOI: 10.1021/acsomega.0c05589] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/21/2020] [Indexed: 05/10/2023]
Abstract
With the emergence of multi-drug-resistant strains of Mycobacterium tuberculosis, there is a pressing need for new oral drugs with novel mechanisms of action. A number of scaffolds with potent anti-tubercular in vitro activity have been identified from phenotypic screening that appear to target MmpL3. However, the scaffolds are typically lipophilic, which facilitates partitioning into hydrophobic membranes, and several contain basic amine groups. Highly lipophilic basic amines are typically cytotoxic against mammalian cell lines and have associated off-target risks, such as inhibition of human ether-à-go-go related gene (hERG) and IKr potassium current modulation. The spirocycle compound 3 was reported to target MmpL3 and displayed promising efficacy in a murine model of acute tuberculosis (TB) infection. However, this highly lipophilic monobasic amine was cytotoxic and inhibited the hERG ion channel. Herein, the related spirocycles (1-2) are described, which were identified following phenotypic screening of the Eli Lilly corporate library against M. tuberculosis. The novel N-alkylated pyrazole portion offered improved physicochemical properties, and optimization led to identification of a zwitterion series, exemplified by lead 29, with decreased HepG2 cytotoxicity as well as limited hERG ion channel inhibition. Strains with mutations in MmpL3 were resistant to 29, and under replicating conditions, 29 demonstrated bactericidal activity against M. tuberculosis. Unfortunately, compound 29 had no efficacy in an acute model of TB infection; this was most likely due to the in vivo exposure remaining above the minimal inhibitory concentration for only a limited time.
Collapse
Affiliation(s)
- Peter
C. Ray
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
College of Life Sciences, University of
Dundee, Dundee DD1 5EH, U.K.
| | - Margaret Huggett
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
College of Life Sciences, University of
Dundee, Dundee DD1 5EH, U.K.
| | - Penelope A. Turner
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
College of Life Sciences, University of
Dundee, Dundee DD1 5EH, U.K.
| | - Malcolm Taylor
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
College of Life Sciences, University of
Dundee, Dundee DD1 5EH, U.K.
| | - Laura A. T. Cleghorn
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
College of Life Sciences, University of
Dundee, Dundee DD1 5EH, U.K.
| | - Julie Early
- TB
Discovery Research, Infectious Disease Research
Institute, 1616 Eastlake Avenue East, Suite 400, Seattle, Washington 98102, United States
| | - Anuradha Kumar
- TB
Discovery Research, Infectious Disease Research
Institute, 1616 Eastlake Avenue East, Suite 400, Seattle, Washington 98102, United States
| | - Shilah A. Bonnett
- TB
Discovery Research, Infectious Disease Research
Institute, 1616 Eastlake Avenue East, Suite 400, Seattle, Washington 98102, United States
| | - Lindsay Flint
- TB
Discovery Research, Infectious Disease Research
Institute, 1616 Eastlake Avenue East, Suite 400, Seattle, Washington 98102, United States
| | - Douglas Joerss
- TB
Discovery Research, Infectious Disease Research
Institute, 1616 Eastlake Avenue East, Suite 400, Seattle, Washington 98102, United States
| | - James Johnson
- TB
Discovery Research, Infectious Disease Research
Institute, 1616 Eastlake Avenue East, Suite 400, Seattle, Washington 98102, United States
| | - Aaron Korkegian
- TB
Discovery Research, Infectious Disease Research
Institute, 1616 Eastlake Avenue East, Suite 400, Seattle, Washington 98102, United States
| | - Steven Mullen
- TB
Discovery Research, Infectious Disease Research
Institute, 1616 Eastlake Avenue East, Suite 400, Seattle, Washington 98102, United States
| | - Abraham L. Moure
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
College of Life Sciences, University of
Dundee, Dundee DD1 5EH, U.K.
| | - Susan H. Davis
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
College of Life Sciences, University of
Dundee, Dundee DD1 5EH, U.K.
| | - Dinakaran Murugesan
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
College of Life Sciences, University of
Dundee, Dundee DD1 5EH, U.K.
| | - Michael Mathieson
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
College of Life Sciences, University of
Dundee, Dundee DD1 5EH, U.K.
| | - Nicola Caldwell
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
College of Life Sciences, University of
Dundee, Dundee DD1 5EH, U.K.
| | - Curtis A. Engelhart
- Department
of Microbiology and Immunology, Weill Cornell
Medical College, New York, New York 10065, United States
| | - Dirk Schnappinger
- Department
of Microbiology and Immunology, Weill Cornell
Medical College, New York, New York 10065, United States
| | - Ola Epemolu
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
College of Life Sciences, University of
Dundee, Dundee DD1 5EH, U.K.
| | - Fabio Zuccotto
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
College of Life Sciences, University of
Dundee, Dundee DD1 5EH, U.K.
| | - Jennifer Riley
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
College of Life Sciences, University of
Dundee, Dundee DD1 5EH, U.K.
| | - Paul Scullion
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
College of Life Sciences, University of
Dundee, Dundee DD1 5EH, U.K.
| | - Laste Stojanovski
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
College of Life Sciences, University of
Dundee, Dundee DD1 5EH, U.K.
| | - Lisa Massoudi
- Mycobacteria
Research Laboratories, Colorado State University, 200 W. Lake Street, Fort Collins, Colorado 80523-1682, United States
| | - Gregory T. Robertson
- Mycobacteria
Research Laboratories, Colorado State University, 200 W. Lake Street, Fort Collins, Colorado 80523-1682, United States
| | - Anne J. Lenaerts
- Mycobacteria
Research Laboratories, Colorado State University, 200 W. Lake Street, Fort Collins, Colorado 80523-1682, United States
| | - Gail Freiberg
- AbbVie, 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Dale J. Kempf
- AbbVie, 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Thierry Masquelin
- Discovery
Chemistry Research, Eli Lilly and Company, Lilly Corporate Centre, MC/87/02/203, G17, Indianapolis, Indiana 46285, United States
| | | | - Joshua Odingo
- TB
Discovery Research, Infectious Disease Research
Institute, 1616 Eastlake Avenue East, Suite 400, Seattle, Washington 98102, United States
| | - Kevin D. Read
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
College of Life Sciences, University of
Dundee, Dundee DD1 5EH, U.K.
| | - Simon R. Green
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
College of Life Sciences, University of
Dundee, Dundee DD1 5EH, U.K.
| | - Paul G. Wyatt
- Drug
Discovery Unit, Division of Biological Chemistry and Drug Discovery,
College of Life Sciences, University of
Dundee, Dundee DD1 5EH, U.K.
| | - Tanya Parish
- TB
Discovery Research, Infectious Disease Research
Institute, 1616 Eastlake Avenue East, Suite 400, Seattle, Washington 98102, United States
| |
Collapse
|
40
|
Zhang W, Liu LL, Lun S, Wang SS, Xiao S, Gunosewoyo H, Yang F, Tang J, Bishai WR, Yu LF. Design and synthesis of mycobacterial pks13 inhibitors: Conformationally rigid tetracyclic molecules. Eur J Med Chem 2021; 213:113202. [PMID: 33516983 DOI: 10.1016/j.ejmech.2021.113202] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/03/2020] [Accepted: 01/12/2021] [Indexed: 10/22/2022]
Abstract
We previously reported a series of coumestans-a naturally occurring tetracyclic scaffold containing a δ-lactone-that effectively target the thioesterase domain of polyketide synthase 13 (Pks13) in Mycobacterium tuberculosis (Mtb), resulting in superior anti-tuberculosis (TB) activity. Compared to the corresponding 'open-form' ethyl benzofuran-3-carboxylates, the enhanced anti-TB effects seen with the conformationally restricted coumestan series could be attributed to the extra π-π stacking interactions between the benzene ring of coumestans and the phenyl ring of F1670 residue located in the Pks13-TE binding domain. To further probe this binding feature, novel tetracyclic analogues were synthesized and evaluated for their anti-TB activity against the Mtb strain H37Rv. Initial comparison of the 'open-form' analogueues against the tetracyclic counterparts again showed that the latter is superior in terms of anti-TB activity. In particular, the δ-lactam-containing 5H-benzofuro [3,2-c]quinolin-6-ones gave the most promising results. Compound 65 demonstrated potent activity against Mtb H37Rv with MIC value between 0.0313 and 0.0625 μg/mL, with high selectivity to Vero cells (64-128 fold). The thermal stability analysis supports the notion that the tetracyclic compounds bind to the Pks13-TE domain as measured by nano DSF, consistent with the observed SAR trends. Compound 65 also showed excellent selectivity against actinobacteria and therefore unlikely to develop potential drug resistance to nonpathogenic bacteria.
Collapse
Affiliation(s)
- Wei Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Ling-Ling Liu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Shichun Lun
- Center for Tuberculosis Research, Department of Medicine, Division of Infectious Disease, Johns Hopkins School of Medicine, Baltimore, MD, 21231-1044, United States
| | - Shuang-Shuang Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Shiqi Xiao
- Center for Tuberculosis Research, Department of Medicine, Division of Infectious Disease, Johns Hopkins School of Medicine, Baltimore, MD, 21231-1044, United States
| | - Hendra Gunosewoyo
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley, Perth, WA, 6102, Australia
| | - Fan Yang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Jie Tang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - William R Bishai
- Center for Tuberculosis Research, Department of Medicine, Division of Infectious Disease, Johns Hopkins School of Medicine, Baltimore, MD, 21231-1044, United States.
| | - Li-Fang Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China.
| |
Collapse
|
41
|
Grover S, Engelhart CA, Pérez-Herrán E, Li W, Abrahams KA, Papavinasasundaram K, Bean JM, Sassetti CM, Mendoza-Losana A, Besra GS, Jackson M, Schnappinger D. Two-Way Regulation of MmpL3 Expression Identifies and Validates Inhibitors of MmpL3 Function in Mycobacterium tuberculosis. ACS Infect Dis 2021; 7:141-152. [PMID: 33319550 PMCID: PMC7802072 DOI: 10.1021/acsinfecdis.0c00675] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
MmpL3,
an essential mycolate transporter in the inner membrane
of Mycobacterium tuberculosis (Mtb), has been identified as a target of multiple, chemically diverse
antitubercular drugs. However, several of these molecules seem to
have secondary targets and inhibit bacterial growth by more than one
mechanism. Here, we describe a cell-based assay that utilizes two-way
regulation of MmpL3 expression to readily identify MmpL3-specific
inhibitors. We successfully used this assay to identify a novel guanidine-based
MmpL3 inhibitor from a library of 220 compounds that inhibit growth
of Mtb by largely unknown mechanisms. We furthermore
identified inhibitors of cytochrome bc1-aa3 oxidase as one class of off-target hits in whole-cell screens for
MmpL3 inhibitors and report a novel sulfanylacetamide as a potential
QcrB inhibitor.
Collapse
Affiliation(s)
- Shipra Grover
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York 10065, United States
| | - Curtis A. Engelhart
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York 10065, United States
| | - Esther Pérez-Herrán
- TB Research Unit, Global Health R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Wei Li
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Katherine A. Abrahams
- Institute of Microbiology and Infection, School of Biological Sciences, University of Birmingham, Birmingham B15 2TT, U.K
| | - Kadamba Papavinasasundaram
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655, United States
| | - James M. Bean
- Sloan Kettering Institute, New York, New York 10065, United States
| | - Christopher M. Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655, United States
| | - Alfonso Mendoza-Losana
- TB Research Unit, Global Health R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Gurdyal S. Besra
- Institute of Microbiology and Infection, School of Biological Sciences, University of Birmingham, Birmingham B15 2TT, U.K
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York 10065, United States
| |
Collapse
|
42
|
Alsayed SSR, Lun S, Payne A, Bishai WR, Gunosewoyo H. Design, synthesis and antimycobacterial evaluation of novel adamantane and adamantanol analogues effective against drug-resistant tuberculosis. Bioorg Chem 2020; 106:104486. [PMID: 33276981 DOI: 10.1016/j.bioorg.2020.104486] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022]
Abstract
The treacherous nature of tuberculosis (TB) combined with the ubiquitous presence of the drug-resistant (DR) forms pose this disease as a growing public health menace. Therefore, it is imperative to develop new chemotherapeutic agents with a novel mechanism of action to circumvent the cross-resistance problems. The unique architecture of the Mycobacterium tuberculosis (M. tb) outer envelope plays a predominant role in its pathogenesis, contributing to its intrinsic resistance against available therapeutic agents. The mycobacterial membrane protein large 3 (MmpL3), which is a key player in forging the M. tb rigid cell wall, represents an emerging target for TB drug development. Several indole-2-carboxamides were previously identified in our group as potent anti-TB agents that act as inhibitor of MmpL3 transporter protein. Despite their highly potent in vitro activities, the lingering Achilles heel of these indoleamides can be ascribed to their high lipophilicity as well as low water solubility. In this study, we report our attempt to improve the aqueous solubility of these indole-2-carboxamides while maintaining an adequate lipophilicity to allow effective M. tb cell wall penetration. A more polar adamantanol moiety was incorporated into the framework of several indole-2-carboxamides, whereupon the corresponding analogues were tested for their anti-TB activity against drug-sensitive (DS) M. tb H37Rv strain. Three adamantanol derivatives 8i, 8j and 8l showed nearly 2- and 4-fold higher activity (MIC = 1.32 - 2.89 µM) than ethambutol (MIC = 4.89 µM). Remarkably, the most potent adamantanol analogue 8j demonstrated high selectivity towards DS and DR M. tb strains over mammalian cells [IC50 (Vero cells) ≥ 169 µM], evincing its lack of cytotoxicity. The top eight active compounds 8b, 8d, 8f, 8i, 8j, 8k, 8l and 10a retained their in vitro potency against DR M. tb strains and were docked into the MmpL3 active site. The most potent adamantanol/adamantane-based indoleamides 8j/8k displayed a two-fold surge in potency against extensively DR (XDR) M. tb strains with MIC values of 0.66 and 0.012 µM, respectively. The adamantanol-containing indole-2-carboxamides exhibited improved water solubility both in silico and experimentally, relative to the adamantane counterparts. Overall, the observed antimycobacterial and physicochemical profiles support the notion that adamantanol moiety is a suitable replacement to the adamantane scaffold within the series of indole-2-carboxamide-based MmpL3 inhibitors.
Collapse
Affiliation(s)
- Shahinda S R Alsayed
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley, Perth, WA 6102, Australia
| | - Shichun Lun
- Center for Tuberculosis Research, Department of Medicine, Division of Infectious Disease, Johns Hopkins School of Medicine, 1550, Orleans Street, Baltimore, MD 21231-1044, United States
| | - Alan Payne
- School of Molecular and Life Sciences, Curtin University, Perth, WA 6102, Australia
| | - William R Bishai
- Center for Tuberculosis Research, Department of Medicine, Division of Infectious Disease, Johns Hopkins School of Medicine, 1550, Orleans Street, Baltimore, MD 21231-1044, United States; Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, Maryland 20815-6789, United States.
| | - Hendra Gunosewoyo
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley, Perth, WA 6102, Australia.
| |
Collapse
|
43
|
Abstract
Mycobacterium tuberculosis is a major global human pathogen, and new drugs and new drug targets are urgently required. Cell wall biosynthesis is a major target of current tuberculosis drugs and of new agents under development. Several new classes of molecules appear to have the same target, MmpL3, which is involved in the export and synthesis of the mycobacterial cell wall. However, there is still debate over whether MmpL3 is the primary or only target for these classes. We wanted to confirm the mechanism of resistance for one series. We identified mutations in MmpL3 which led to resistance to the spiral amine series. High-level resistance to these compounds and two other series was conferred by multiple mutations in the same protein (MmpL3). These mutations did not reduce growth rate in culture. These results support the hypothesis that MmpL3 is the primary mechanism of resistance and likely target for these pharmacophores. The Mycobacterium tuberculosis protein MmpL3 performs an essential role in cell wall synthesis, since it effects the transport of trehalose monomycolates across the inner membrane. Numerous structurally diverse pharmacophores have been identified as inhibitors of MmpL3 largely based on the identification of resistant isolates with mutations in MmpL3. For some compounds, it is possible there are different primary or secondary targets. Here, we have investigated resistance to the spiral amine class of compounds. Isolation and sequencing of resistant mutants demonstrated that all had mutations in MmpL3. We hypothesized that if additional targets of this pharmacophore existed, then successive rounds to generate resistant isolates might reveal mutations in other loci. Since compounds were still active against resistant isolates, albeit with reduced potency, we isolated resistant mutants in this background at higher concentrations. After a second round of isolation with the spiral amine, we found additional mutations in MmpL3. To increase our chance of finding alternative targets, we ran a third round of isolation using a different molecule scaffold (AU1235, an adamantyl urea). Surprisingly, we obtained further mutations in MmpL3. Multiple mutations in MmpL3 increased the level and spectrum of resistance to different pharmacophores but did not incur a fitness cost in vitro. These results support the hypothesis that MmpL3 is the primary mechanism of resistance and likely target for these pharmacophores. IMPORTANCEMycobacterium tuberculosis is a major global human pathogen, and new drugs and new drug targets are urgently required. Cell wall biosynthesis is a major target of current tuberculosis drugs and of new agents under development. Several new classes of molecules appear to have the same target, MmpL3, which is involved in the export and synthesis of the mycobacterial cell wall. However, there is still debate over whether MmpL3 is the primary or only target for these classes. We wanted to confirm the mechanism of resistance for one series. We identified mutations in MmpL3 which led to resistance to the spiral amine series. High-level resistance to these compounds and two other series was conferred by multiple mutations in the same protein (MmpL3). These mutations did not reduce growth rate in culture. These results support the hypothesis that MmpL3 is the primary mechanism of resistance and likely target for these pharmacophores.
Collapse
|
44
|
Sethiya JP, Sowards MA, Jackson M, North EJ. MmpL3 Inhibition: A New Approach to Treat Nontuberculous Mycobacterial Infections. Int J Mol Sci 2020; 21:E6202. [PMID: 32867307 PMCID: PMC7503588 DOI: 10.3390/ijms21176202] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022] Open
Abstract
Outside of Mycobacterium tuberculosis and Mycobacterium leprae, nontuberculous mycobacteria (NTM) are environmental mycobacteria (>190 species) and are classified as slow- or rapid-growing mycobacteria. Infections caused by NTM show an increased incidence in immunocompromised patients and patients with underlying structural lung disease. The true global prevalence of NTM infections remains unknown because many countries do not require mandatory reporting of the infection. This is coupled with a challenging diagnosis and identification of the species. Current therapies for treatment of NTM infections require multidrug regimens for a minimum of 18 months and are associated with serious adverse reactions, infection relapse, and high reinfection rates, necessitating discovery of novel antimycobacterial agents. Robust drug discovery processes have discovered inhibitors targeting mycobacterial membrane protein large 3 (MmpL3), a protein responsible for translocating mycolic acids from the inner membrane to periplasm in the biosynthesis of the mycobacterial cell membrane. This review focuses on promising new chemical scaffolds that inhibit MmpL3 function and represent interesting and promising putative drug candidates for the treatment of NTM infections. Additionally, agents (FS-1, SMARt-420, C10) that promote reversion of drug resistance are also reviewed.
Collapse
Affiliation(s)
- Jigar P. Sethiya
- Department of Pharmacy Sciences, School of Pharmacy & Health Professions, Creighton University, Omaha, NE 68178, USA; (J.P.S.); (M.A.S.)
| | - Melanie A. Sowards
- Department of Pharmacy Sciences, School of Pharmacy & Health Professions, Creighton University, Omaha, NE 68178, USA; (J.P.S.); (M.A.S.)
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA;
| | - Elton Jeffrey North
- Department of Pharmacy Sciences, School of Pharmacy & Health Professions, Creighton University, Omaha, NE 68178, USA; (J.P.S.); (M.A.S.)
| |
Collapse
|
45
|
Li M, Phua ZY, Xi Y, Xu Z, Nyantakyi SA, Li W, Jackson M, Wong MW, Lam Y, Chng SS, Go ML, Dick T. Potency Increase of Spiroketal Analogs of Membrane Inserting Indolyl Mannich Base Antimycobacterials Is Due to Acquisition of MmpL3 Inhibition. ACS Infect Dis 2020; 6:1882-1893. [PMID: 32413266 PMCID: PMC7875313 DOI: 10.1021/acsinfecdis.0c00121] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chemistry campaigns identified amphiphilic indolyl Mannich bases as novel membrane-permeabilizing antimycobacterials. Spiroketal analogs of this series showed increased potency, and the lead compound 1 displayed efficacy in a mouse model of tuberculosis. Yet the mechanism by which the spiroketal moiety accomplished the potency "jump" remained unknown. Consistent with its membrane-permeabilizing mechanism, no resistant mutants could be isolated against indolyl Mannich base 2 lacking the spiroketal moiety. In contrast, mutations resistant against spiroketal analog 1 were obtained in mycobacterial membrane protein large 3 (MmpL3), a proton motive force (PMF)-dependent mycolate transporter. Thus, we hypothesized that the potency jump observed for 1 may be due to MmpL3 inhibition acquired by the addition of the spiroketal moiety. Here we showed that 1 inhibited MmpL3 flippase activity without loss of the PMF, colocalized with MmpL3tb-GFP in intact organisms, and yielded a consistent docking pose within the "common inhibitor binding pocket" of MmpL3. The presence of the spiroketal motif in 1 ostensibly augmented its interaction with MmpL3, an outcome not observed in the nonspiroketal analog 2, which displayed no cross-resistance to mmpL3 mutants, dissipated the PMF, and docked poorly in the MmpL3 binding pocket. Surprisingly, 2 inhibited MmpL3 flippase activity, which may be an epiphenomenon arising from its wider membrane disruptive effects. Hence, we conclude that the potency increase associated with the spiroketal analog 1 is linked to the acquisition of a second mechanism, MmpL3 inhibition. In contrast, the nonspiroketal analog 2 acts pleiotropically, affecting several cell membrane-embedded targets, including MmpL3, through its membrane permeabilizing and depolarizing effects.
Collapse
Affiliation(s)
- Ming Li
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Zheng Yen Phua
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore
| | - Yu Xi
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore
| | - Zhujun Xu
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore
| | - Samuel A. Nyantakyi
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore
| | - Wei Li
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Ming Wah Wong
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore
| | - Yulin Lam
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore
| | - Shu Sin Chng
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore
- Singapore Centre for Environmental Life Science Engineering (SCELSE), National University of Singapore, Singapore
| | - Mei Lin Go
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore
| | - Thomas Dick
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine at Seton Hall University, Nutley, NJ, USA
| |
Collapse
|
46
|
Onajole OK, Lun S, Yun YJ, Langue DY, Jaskula-Dybka M, Flores A, Frazier E, Scurry AC, Zavala A, Arreola KR, Pierzchalski B, Ayitou AJL, Bishai WR. Design, synthesis, and biological evaluation of novel imidazo[1,2-a]pyridinecarboxamides as potent anti-tuberculosis agents. Chem Biol Drug Des 2020; 96:1362-1371. [PMID: 32515129 DOI: 10.1111/cbdd.13739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/13/2020] [Accepted: 05/31/2020] [Indexed: 12/14/2022]
Abstract
Tuberculosis (TB) is a highly infectious disease that has been plaguing the human race for centuries. The emergence of multidrug-resistant strains of TB has been detrimental to the fight against tuberculosis with very few safe therapeutic options available. As part of an ongoing effort to identify potent anti-tuberculosis agents, we synthesized and screened a series of novel imidazo[1,2-a]pyridinecarboxamide derivatives for their anti-tuberculosis properties. These compounds were designed based on reported anti-tuberculosis properties of the indolecarboxamides (I2Cs) and imidazo[1,2-a]pyridinecarboxamides (IPAs). In this series, we identified compounds 15 and 16 with excellent anti-TB activity against H37Rv strain of tuberculosis (MIC = 0.10-0.19 μM); these compounds were further screened against selected clinical isolates of Mtb. Compounds 15 and 16 showed excellent activities against multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains of TB (MIC range: 0.05-1.5 μM) with excellent selectivity indices. In addition, preliminary ADME studies on compound 16 showed favorable pharmacokinetic properties.
Collapse
Affiliation(s)
- Oluseye K Onajole
- Department of Biological, Physical and Health Sciences, Roosevelt University, Chicago, IL, USA
| | - Shichun Lun
- Division of Infectious Disease, Department of Medicine, Center for Tuberculosis Research, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Young Ju Yun
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, USA
| | - Damkam Y Langue
- Department of Biological, Physical and Health Sciences, Roosevelt University, Chicago, IL, USA
| | - Michelle Jaskula-Dybka
- Department of Biological, Physical and Health Sciences, Roosevelt University, Chicago, IL, USA
| | - Adrian Flores
- Department of Biological, Physical and Health Sciences, Roosevelt University, Chicago, IL, USA
| | - Eriel Frazier
- Department of Biological, Physical and Health Sciences, Roosevelt University, Chicago, IL, USA
| | - Ashle C Scurry
- Department of Biological, Physical and Health Sciences, Roosevelt University, Chicago, IL, USA
| | - Ambernice Zavala
- Department of Biological, Physical and Health Sciences, Roosevelt University, Chicago, IL, USA
| | - Karen R Arreola
- Department of Biological, Physical and Health Sciences, Roosevelt University, Chicago, IL, USA
| | - Bryce Pierzchalski
- Department of Biological, Physical and Health Sciences, Roosevelt University, Chicago, IL, USA
| | - A Jean-Luc Ayitou
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, USA
| | - William R Bishai
- Division of Infectious Disease, Department of Medicine, Center for Tuberculosis Research, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
47
|
Alsayed SSR, Lun S, Luna G, Beh CC, Payne AD, Foster N, Bishai WR, Gunosewoyo H. Design, synthesis, and biological evaluation of novel arylcarboxamide derivatives as anti-tubercular agents. RSC Adv 2020; 10:7523-7540. [PMID: 33014349 PMCID: PMC7497412 DOI: 10.1039/c9ra10663d] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/10/2020] [Indexed: 12/19/2022] Open
Abstract
Our group has previously reported several indolecarboxamides exhibiting potent antitubercular activity. Herein, we rationally designed several arylcarboxamides based on our previously reported homology model and the recently published crystal structure of the mycobacterial membrane protein large 3 (MmpL3). Many analogues showed considerable anti-TB activity against drug-sensitive (DS) Mycobacterium tuberculosis (M. tb) strain. Naphthamide derivatives 13c and 13d were the most active compounds in our study (MIC: 6.55, 7.11 μM, respectively), showing comparable potency to the first line anti-tuberculosis (anti-TB) drug ethambutol (MIC: 4.89 μM). In addition to the naphthamide derivatives, we also identified the quinolone-2-carboxamides and 4-arylthiazole-2-carboxamides as potential MmpL3 inhibitors in which compounds 8i and 18b had MIC values of 9.97 and 9.82 μM, respectively. All four compounds retained their high activity against multidrug-resistant (MDR) and extensively drug-resistant (XDR) M. tb strains. It is worth noting that the two most active compounds 13c and 13d also exhibited the highest selective activity towards DS, MDR and XDR M. tb strains over mammalian cells [IC50 (Vero cells) ≥ 227 μM], indicating their potential lack of cytotoxicity. The four compounds were docked into the MmpL3 active site and were studied for their drug-likeness using Lipinski's rule of five. Synthesis and pharmacological evaluation of arylcarboxamide derivatives based on an antimycobacterial indole-2-carboxamide scaffold. The most active compounds demonstrated activities against MDR and XDR M. tb strains.![]()
Collapse
Affiliation(s)
- Shahinda S R Alsayed
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley, Perth, WA 6102, Australia.
| | - Shichun Lun
- Center for Tuberculosis Research, Department of Medicine, Division of Infectious Disease, Johns Hopkins School of Medicine, 1550, Orleans Street, Baltimore, Maryland 21231-1044, USA.
| | - Giuseppe Luna
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley, Perth, WA 6102, Australia.
| | - Chau Chun Beh
- Western Australia School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Bentley 6102, WA, Australia
| | - Alan D Payne
- School of Molecular and Life Sciences, Curtin University, Perth, WA 6102, Australia
| | - Neil Foster
- Western Australia School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Bentley 6102, WA, Australia
| | - William R Bishai
- Center for Tuberculosis Research, Department of Medicine, Division of Infectious Disease, Johns Hopkins School of Medicine, 1550, Orleans Street, Baltimore, Maryland 21231-1044, USA. .,Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, Maryland 20815-6789, USA
| | - Hendra Gunosewoyo
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley, Perth, WA 6102, Australia.
| |
Collapse
|
48
|
Raynaud C, Daher W, Johansen MD, Roquet-Banères F, Blaise M, Onajole OK, Kozikowski AP, Herrmann JL, Dziadek J, Gobis K, Kremer L. Active Benzimidazole Derivatives Targeting the MmpL3 Transporter in Mycobacterium abscessus. ACS Infect Dis 2020; 6:324-337. [PMID: 31860799 DOI: 10.1021/acsinfecdis.9b00389] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The prevalence of pulmonary infections due to nontuberculous mycobacteria such as Mycobacterium abscessus has been increasing and surpassing tuberculosis (TB) in some industrialized countries. Because of intrinsic resistance to most antibiotics that drastically limits conventional chemotherapeutic treatment options, new anti-M. abscessus therapeutics are urgently needed against this emerging pathogen. Extensive screening of a library of benzimidazole derivatives that were previously shown to be active against Mycobacterium tuberculosis led to the identification of a lead compound exhibiting very potent in vitro activity against a wide panel of M. abscessus clinical strains. Designated EJMCh-6, this compound, a 2-(2-cyclohexylethyl)-5,6-dimethyl-1H-benzo[d]imidazole), also exerted very strong activity against intramacrophage-residing M. abscessus. Moreover, the treatment of infected zebrafish embryos with EJMCh-6 was correlated with significantly increased embryo survival and a decrease in the bacterial burden as compared to those for untreated fish. Insights into the mechanism of action were inferred from the generation of spontaneous benzimidazole-resistant strains and the identification of a large set of missense mutations in MmpL3, the mycolic acid transporter in mycobacteria. Overexpression of the mutated mmpL3 alleles in a susceptible M. abscessus strain was associated with high resistance levels to EJMCh-6 and to other known MmpL3 inhibitors. Mapping the mutations conferring resistance on an MmpL3 three-dimensional homology model defined a potential EJMCh-6-binding cavity. These data emphasize a yet unexploited chemical structure class against M. abscessus with promising translational development for the treatment of M. abscessus lung diseases.
Collapse
Affiliation(s)
- Clément Raynaud
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
| | - Wassim Daher
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
| | - Matt D. Johansen
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
| | - Françoise Roquet-Banères
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
| | - Mickael Blaise
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
| | - Oluseye K. Onajole
- Department of Biological, Physical and Health Sciences, Roosevelt University, 425 S. Wabash Avenue, Chicago, Illinois 60605, United States
| | - Alan P. Kozikowski
- StarWise Therapeutics LLC, 2020 N. Lincoln Park West, Chicago, Illinois 60614, United States
| | - Jean-Louis Herrmann
- 2I, UVSQ, INSERM UMR1173, Université Paris-Saclay, 2 avenue de la Source de la Bièvre, 78180 Montigny-Le-Bretonneux, France
- APHP, GHU-Paris Saclay, Hôpital Raymond Poincaré, Garches, France
| | - Jaroslaw Dziadek
- Institute for Medical Biology, Polish Academy of Sciences, Lodowa 106, Łódź 93-232, Poland
| | - Katarzyna Gobis
- Department of Organic Chemistry, Medical University of Gdansk, 107 Gen. Hallera Avenue, 80-416 Gdansk, Poland
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
- INSERM, IRIM, 34293 Montpellier, France
| |
Collapse
|
49
|
Enniatin A1, A Natural Compound with Bactericidal Activity against Mycobacterium tuberculosis In Vitro. Molecules 2019; 25:molecules25010038. [PMID: 31861925 PMCID: PMC6982829 DOI: 10.3390/molecules25010038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/12/2022] Open
Abstract
Background: Tuberculosis remains a global disease that poses a serious threat to human health, but there is lack of new and available anti-tuberculosis agents to prevent the emergence of drug-resistant strains. To address this problem natural products are still potential sources for the development of novel drugs. Methods: A whole-cell screening approach was utilized to obtain a natural compound enniatin A1 from a natural products library. The target compound’s antibacterial activity against Mycobacterium tuberculosis (M. tuberculosis) was evaluated by using the resazurin reduction micro-plate assay (REMA) method. The cytotoxicity of the compound against Vero cells was measured to calculate the selectivity index. The intracellular inhibition activity of enniatin A1 was determined. We performed its time-kill kinetic assay against M. tuberculosis. We first tested its synergistic effect in combination with the first and second-line anti-tuberculosis drugs. Finally, we measured the membrane potential and intracellular ATP levels of M. tuberculosis after exposure to enniatin A1. Results: We identified enniatinA1 as a potential antibacterial agent against M. tuberculosis, against which it showed strong selectivity. Enniatin A1 exhibited a time-concentration-dependent bactericidal effect against M. tuberculosis, and it displayed synergy with rifamycin, amikacin, and ethambutol. After exposure to enniatinA1, the membrane potential and intracellular ATP levels of M. tuberculosis was significantly decreased. Conclusions: Enniatin A1 exhibits the positive potential anti-tuberculosis agent characteristics.
Collapse
|
50
|
Zhang B, Li J, Yang X, Wu L, Zhang J, Yang Y, Zhao Y, Zhang L, Yang X, Yang X, Cheng X, Liu Z, Jiang B, Jiang H, Guddat LW, Yang H, Rao Z. Crystal Structures of Membrane Transporter MmpL3, an Anti-TB Drug Target. Cell 2019; 176:636-648.e13. [PMID: 30682372 DOI: 10.1016/j.cell.2019.01.003] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 10/22/2018] [Accepted: 12/31/2018] [Indexed: 01/01/2023]
Abstract
Despite intensive efforts to discover highly effective treatments to eradicate tuberculosis (TB), it remains as a major threat to global human health. For this reason, new TB drugs directed toward new targets are highly coveted. MmpLs (Mycobacterial membrane proteins Large), which play crucial roles in transporting lipids, polymers and immunomodulators and which also extrude therapeutic drugs, are among the most important therapeutic drug targets to emerge in recent times. Here, crystal structures of mycobacterial MmpL3 alone and in complex with four TB drug candidates, including SQ109 (in Phase 2b-3 clinical trials), are reported. MmpL3 consists of a periplasmic pore domain and a twelve-helix transmembrane domain. Two Asp-Tyr pairs centrally located in this domain appear to be key facilitators of proton-translocation. SQ109, AU1235, ICA38, and rimonabant bind inside the transmembrane region and disrupt these Asp-Tyr pairs. This structural data will greatly advance the development of MmpL3 inhibitors as new TB drugs.
Collapse
Affiliation(s)
- Bing Zhang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Jun Li
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Xiaolin Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Lijie Wu
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Jia Zhang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yang Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yao Zhao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China; University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Lu Zhang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300353, China
| | - Xiuna Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xiaobao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xi Cheng
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zhijie Liu
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Biao Jiang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Hualiang Jiang
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Zihe Rao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300353, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; Laboratory of Structural Biology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|