1
|
Gu J, Isaji T. Specific sialylation of N-glycans and its novel regulatory mechanism. Glycoconj J 2024; 41:175-183. [PMID: 38958800 PMCID: PMC11329402 DOI: 10.1007/s10719-024-10157-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 06/04/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024]
Abstract
Altered glycosylation is a common feature of cancer cells. Some subsets of glycans are found to be frequently enriched on the tumor cell surface and implicated in different tumor phenotypes. Among these, changes in sialylation have long been associated with metastatic cell behaviors such as invasion and enhanced cell survival. Sialylation typically exists in three prominent linkages: α2,3, α2,6, and α2,8, catalyzed by a group of sialyltransferases. The aberrant expression of all three linkages has been related to cancer progression. The increased α2,6 sialylation on N-glycans catalyzed by β-galactoside α2,6 sialyltransferase 1 (ST6Gal1) is frequently observed in many cancers. In contrast, functions of α2,3 sialylation on N-glycans catalyzed by at least three β-galactoside α2,3-sialyltransferases, ST3Gal3, ST3Gal4, and ST3Gal6 remain elusive due to a possibility of compensating for one another. In this minireview, we briefly describe functions of sialylation and recent findings that different α2,3 sialyltransferases specifically modify target proteins, as well as sialylation regulatory mechanisms vis a complex formation among integrin α3β1, Golgi phosphoprotein 3 (GOLPH3), phosphatidylinositol 4-kinase IIα (PI4KIIα), focal adhesion kinase (FAK) and sialyltransferase, which suggests a new concept for the regulation of glycosylation in cell biology.
Collapse
Affiliation(s)
- Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan.
| | - Tomoya Isaji
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| |
Collapse
|
2
|
Isaji T, Gu J. Novel regulatory mechanisms of N-glycan sialylation: Implication of integrin and focal adhesion kinase in the regulation. Biochim Biophys Acta Gen Subj 2024; 1868:130617. [PMID: 38614280 DOI: 10.1016/j.bbagen.2024.130617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND Sialylation of glycoproteins, including integrins, is crucial in various cancers and diseases such as immune disorders. These modifications significantly impact cellular functions and are associated with cancer progression. Sialylation, catalyzed by specific sialyltransferases (STs), has traditionally been considered to be regulated at the mRNA level. SCOPE OF REVIEW Recent research has expanded our understanding of sialylation, revealing ST activity changes beyond mRNA level variations. This includes insights into COPI vesicle formation and Golgi apparatus maintenance and identifying specific target proteins of STs that are not predictable through recombinant enzyme assays. MAJOR CONCLUSIONS This review summarizes that Golgi-associated pathways largely influence the regulation of STs. GOLPH3, GORAB, PI4K, and FAK have become critical elements in sialylation regulation. Some STs have been revealed to possess specificity for specific target proteins, suggesting the presence of additional, enzyme-specific regulatory mechanisms. GENERAL SIGNIFICANCE This study enhances our understanding of the molecular interplay in sialylation regulation, mainly focusing on the role of integrin and FAK. It proposes a bidirectional system where sialylations might influence integrins and vice versa. The diversity of STs and their specific linkages offer new perspectives in cancer research, potentially broadening our understanding of cellular mechanisms and opening avenues for new therapeutic approaches in targeting sialylation pathways.
Collapse
Affiliation(s)
- Tomoya Isaji
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan.
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan.
| |
Collapse
|
3
|
Fuggetta N, Rigolli N, Magdeleine M, Hamaï A, Seminara A, Drin G. Reconstitution of ORP-mediated lipid exchange coupled to PI4P metabolism. Proc Natl Acad Sci U S A 2024; 121:e2315493121. [PMID: 38408242 PMCID: PMC10927502 DOI: 10.1073/pnas.2315493121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/24/2024] [Indexed: 02/28/2024] Open
Abstract
Oxysterol-binding protein-related proteins (ORPs) play key roles in the distribution of lipids in eukaryotic cells by exchanging sterol or phosphatidylserine for PI4P between the endoplasmic reticulum (ER) and other cell regions. However, it is unclear how their exchange capacity is coupled to PI4P metabolism. To address this question quantitatively, we analyze the activity of a representative ORP, Osh4p, in an ER/Golgi interface reconstituted with ER- and Golgi-mimetic membranes functionalized with PI4P phosphatase Sac1p and phosphatidylinositol (PI) 4-kinase, respectively. Using real-time assays, we demonstrate that upon adenosine triphosphate (ATP) addition, Osh4p creates a sterol gradient between these membranes, relying on the spatially distant synthesis and hydrolysis of PI4P, and quantify how much PI4P is needed for this process. Then, we develop a quantitatively accurate kinetic model, validated by our data, and extrapolate this to estimate to what extent PI4P metabolism can drive ORP-mediated sterol transfer in cells. Finally, we show that Sec14p can support PI4P metabolism and Osh4p activity by transferring PI between membranes. This study establishes that PI4P synthesis drives ORP-mediated lipid exchange and that ATP energy is needed to generate intermembrane lipid gradients. Furthermore, it defines to what extent ORPs can distribute lipids in the cell and reassesses the role of PI-transfer proteins in PI4P metabolism.
Collapse
Affiliation(s)
- Nicolas Fuggetta
- Université Côte d’Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne06560, France
| | - Nicola Rigolli
- Department of Physics, École Normale Supérieure (LPENS), Paris75005, France
| | - Maud Magdeleine
- Université Côte d’Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne06560, France
| | - Amazigh Hamaï
- Université Côte d’Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne06560, France
| | - Agnese Seminara
- Malga, Department of Civil, Chemical and Environmental Engineering, University of Genoa, Genoa16145, Italy
| | - Guillaume Drin
- Université Côte d’Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne06560, France
| |
Collapse
|
4
|
Li G, Wu Y, Zhang Y, Wang H, Li M, He D, Guan W, Yao H. Research progress on phosphatidylinositol 4-kinase inhibitors. Biochem Pharmacol 2024; 220:115993. [PMID: 38151075 DOI: 10.1016/j.bcp.2023.115993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
Phosphatidylinositol 4-kinases (PI4Ks) could phosphorylate phosphatidylinositol (PI) to produce phosphatidylinositol 4-phosphate (PI4P) and maintain its metabolic balance and location. PI4P, the most abundant monophosphate inositol in eukaryotic cells, is a precursor of higher phosphoinositols and an essential substrate for the PLC/PKC and PI3K/Akt signaling pathways. PI4Ks regulate vesicle transport, signal transduction, cytokinesis, and cell unity, and are involved in various physiological and pathological processes, including infection and growth of parasites such as Plasmodium and Cryptosporidium, replication and survival of RNA viruses, and the development of tumors and nervous system diseases. The development of novel drugs targeting PI4Ks and PI4P has been the focus of the research and clinical application of drugs, especially in recent years. In particular, PI4K inhibitors have made great progress in the treatment of malaria and cryptosporidiosis. We describe the biological characteristics of PI4Ks; summarize the physiological functions and effector proteins of PI4P; and analyze the structural basis of selective PI4K inhibitors for the treatment of human diseases in this review. Herein, this review mainly summarizes the developments in the structure and enzyme activity of PI4K inhibitors.
Collapse
Affiliation(s)
- Gang Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Yanting Wu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China; Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, 999077, China
| | - Yali Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Huamin Wang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Mengjie Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Dengqin He
- School of Biotechnology and Health Science, Wuyi University, 22 Dongchengcun, Jiangmen, Guangdong, 529020, China
| | - Wen Guan
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Hongliang Yao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China.
| |
Collapse
|
5
|
Derkaczew M, Martyniuk P, Hofman R, Rutkowski K, Osowski A, Wojtkiewicz J. The Genetic Background of Abnormalities in Metabolic Pathways of Phosphoinositides and Their Linkage with the Myotubular Myopathies, Neurodegenerative Disorders, and Carcinogenesis. Biomolecules 2023; 13:1550. [PMID: 37892232 PMCID: PMC10605126 DOI: 10.3390/biom13101550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/16/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Myo-inositol belongs to one of the sugar alcohol groups known as cyclitols. Phosphatidylinositols are one of the derivatives of Myo-inositol, and constitute important mediators in many intracellular processes such as cell growth, cell differentiation, receptor recycling, cytoskeletal organization, and membrane fusion. They also have even more functions that are essential for cell survival. Mutations in genes encoding phosphatidylinositols and their derivatives can lead to many disorders. This review aims to perform an in-depth analysis of these connections. Many authors emphasize the significant influence of phosphatidylinositols and phosphatidylinositols' phosphates in the pathogenesis of myotubular myopathies, neurodegenerative disorders, carcinogenesis, and other less frequently observed diseases. In our review, we have focused on three of the most often mentioned groups of disorders. Inositols are the topic of many studies, and yet, there are no clear results of successful clinical trials. Analysis of the available literature gives promising results and shows that further research is still needed.
Collapse
Affiliation(s)
- Maria Derkaczew
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland
- Students’ Scientific Club of Pathophysiologists, Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-082 Olsztyn, Poland
| | - Piotr Martyniuk
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland
- Students’ Scientific Club of Pathophysiologists, Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-082 Olsztyn, Poland
| | - Robert Hofman
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland
- Students’ Scientific Club of Pathophysiologists, Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-082 Olsztyn, Poland
| | - Krzysztof Rutkowski
- Students’ Scientific Club of Pathophysiologists, Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-082 Olsztyn, Poland
- The Nicolaus Copernicus Municipal Polyclinical Hospital in Olsztyn, 10-045 Olsztyn, Poland
| | - Adam Osowski
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland
| | - Joanna Wojtkiewicz
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland
| |
Collapse
|
6
|
Fuggetta N, Rigolli N, Magdeleine M, Seminara A, Drin G. Reconstitution of ORP-mediated lipid exchange process coupled to PI(4)P metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.551917. [PMID: 37577629 PMCID: PMC10418177 DOI: 10.1101/2023.08.04.551917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Lipid distribution in the eukaryotic cells depends on tight couplings between lipid transfer and lipid metabolism. Yet these couplings remain poorly described. Notably, it is unclear to what extent lipid exchangers of the OSBP-related proteins (ORPs) family, coupled to PI(4)P metabolism, contribute to the formation of sterol and phosphatidylserine gradient between the endoplasmic reticulum (ER) and other cell regions. To address this question, we have examined in vitro the activity of Osh4p, a representative ORP, between Golgi mimetic membranes in which PI(4)P is produced by a PI 4-kinase and ER mimetic membranes in which PI(4)P is hydrolyzed by the phosphatase Sac1p. Using quantitative, real-time assays, we demonstrate that Osh4p creates a sterol gradient between the two membranes by sterol/PI(4)P exchange as soon as a PI(4)P gradient is generated at this interface following ATP addition, and define how much PI(4)P must be synthesized for this process. Then, using a kinetic model supported by our in vitro data, we estimate to what extent PI(4)P metabolism can drive lipid transfer in cells. Finally, we show that Sec14p, by transferring phosphatidylinositol between membranes, can support the synthesis of PI(4)P and the creation of a sterol gradient by Osh4p. These results indicate to what extent ORPs, under the control of PI(4)P metabolism, can distribute lipids in the cell.
Collapse
Affiliation(s)
- Nicolas Fuggetta
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne, France
| | - Nicola Rigolli
- Laboratoire de Physique, École Normale Supérieure (LPENS), 75005 Paris, France
| | - Maud Magdeleine
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne, France
| | - Agnese Seminara
- Malga, Department of Civil, Chemical and Environmental Engineering, University of Genoa, Villa Cambiaso 1, 16145 Genoa, Italy
| | - Guillaume Drin
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne, France
| |
Collapse
|
7
|
Calcagni' A, Staiano L, Zampelli N, Minopoli N, Herz NJ, Di Tullio G, Huynh T, Monfregola J, Esposito A, Cirillo C, Bajic A, Zahabiyon M, Curnock R, Polishchuk E, Parkitny L, Medina DL, Pastore N, Cullen PJ, Parenti G, De Matteis MA, Grumati P, Ballabio A. Loss of the batten disease protein CLN3 leads to mis-trafficking of M6PR and defective autophagic-lysosomal reformation. Nat Commun 2023; 14:3911. [PMID: 37400440 DOI: 10.1038/s41467-023-39643-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/21/2023] [Indexed: 07/05/2023] Open
Abstract
Batten disease, one of the most devastating types of neurodegenerative lysosomal storage disorders, is caused by mutations in CLN3. Here, we show that CLN3 is a vesicular trafficking hub connecting the Golgi and lysosome compartments. Proteomic analysis reveals that CLN3 interacts with several endo-lysosomal trafficking proteins, including the cation-independent mannose 6 phosphate receptor (CI-M6PR), which coordinates the targeting of lysosomal enzymes to lysosomes. CLN3 depletion results in mis-trafficking of CI-M6PR, mis-sorting of lysosomal enzymes, and defective autophagic lysosomal reformation. Conversely, CLN3 overexpression promotes the formation of multiple lysosomal tubules, which are autophagy and CI-M6PR-dependent, generating newly formed proto-lysosomes. Together, our findings reveal that CLN3 functions as a link between the M6P-dependent trafficking of lysosomal enzymes and lysosomal reformation pathway, explaining the global impairment of lysosomal function in Batten disease.
Collapse
Affiliation(s)
- Alessia Calcagni'
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA.
| | - Leopoldo Staiano
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Institute for Genetic and Biomedical Research, National Research Council (CNR), Milan, Italy
| | | | - Nadia Minopoli
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Department of Translational Medical Sciences, Federico II University, 80131, Naples, Italy
| | - Niculin J Herz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | | | - Tuong Huynh
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | | | - Alessandra Esposito
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- SSM School for Advanced Studies, Federico II University, Naples, Italy
| | - Carmine Cirillo
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Aleksandar Bajic
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Mahla Zahabiyon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Rachel Curnock
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Elena Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Luke Parkitny
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Diego Luis Medina
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Department of Translational Medical Sciences, Federico II University, 80131, Naples, Italy
| | - Nunzia Pastore
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Department of Translational Medical Sciences, Federico II University, 80131, Naples, Italy
| | - Peter J Cullen
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Giancarlo Parenti
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Department of Translational Medical Sciences, Federico II University, 80131, Naples, Italy
| | - Maria Antonietta De Matteis
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy
| | - Paolo Grumati
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Andrea Ballabio
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA.
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy.
- Department of Translational Medical Sciences, Federico II University, 80131, Naples, Italy.
- SSM School for Advanced Studies, Federico II University, Naples, Italy.
| |
Collapse
|
8
|
Bura A, Čabrijan S, Đurić I, Bruketa T, Jurak Begonja A. A Plethora of Functions Condensed into Tiny Phospholipids: The Story of PI4P and PI(4,5)P 2. Cells 2023; 12:1411. [PMID: 37408244 PMCID: PMC10216963 DOI: 10.3390/cells12101411] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 07/07/2023] Open
Abstract
Phosphoinositides (PIs) are small, phosphorylated lipids that serve many functions in the cell. They regulate endo- and exocytosis, vesicular trafficking, actin reorganization, and cell mobility, and they act as signaling molecules. The most abundant PIs in the cell are phosphatidylinositol-4-monophosphate (PI4P) and phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2]. PI4P is mostly localized at the Golgi apparatus where it regulates the anterograde trafficking from the Golgi apparatus to the plasma membrane (PM), but it also localizes at the PM. On the other hand, the main localization site of PI(4,5)P2 is the PM where it regulates the formation of endocytic vesicles. The levels of PIs are regulated by many kinases and phosphatases. Four main kinases phosphorylate the precursor molecule phosphatidylinositol into PI4P, divided into two classes (PI4KIIα, PI4KIIβ, PI4KIIIα, and PI4KIIIβ), and three main kinases phosphorylate PI4P to form PI(4,5)P2 (PI4P5KIα, PI4P5KIβ, and PI4P5KIγ). In this review, we discuss the localization and function of the kinases that produce PI4P and PI(4,5)P2, as well as the localization and function of their product molecules with an overview of tools for the detection of these PIs.
Collapse
Affiliation(s)
| | | | | | | | - Antonija Jurak Begonja
- Laboratory of Hematopoiesis, Department of Biotechnology, University of Rijeka, R. Matejcic 2, 51000 Rijeka, Croatia
| |
Collapse
|
9
|
Du Y, Chang W, Gao L, Deng L, Ji WK. Tex2 is required for lysosomal functions at TMEM55-dependent ER membrane contact sites. J Cell Biol 2023; 222:213838. [PMID: 36705603 PMCID: PMC9930140 DOI: 10.1083/jcb.202205133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/17/2022] [Accepted: 01/05/2023] [Indexed: 01/28/2023] Open
Abstract
ER tubules form and maintain membrane contact sites (MCSs) with late endosomes/lysosomes (LE/lys). The molecular composition and cellular functions of these MCSs are poorly understood. Here, we find that Tex2, an SMP domain-containing lipid transfer protein conserved in metazoan and yeast, is a tubular ER protein and is recruited to ER-LE/lys MCSs by TMEM55, phosphatases that convert PI(4,5)P2 to PI5P on LE/lys. We show that the Tex2-TMEM55 interaction occurs between an N-terminal region of Tex2 and a catalytic motif in the PTase domain of TMEM55. The Tex2-TMEM55 interaction can be regulated by endosome-resident type 2 PI4K activities. Functionally, Tex2 knockout results in defects in lysosomal trafficking, digestive capacity, and lipid composition of LE/lys membranes. Together, our data identify Tex2 as a tubular ER protein that resides at TMEM55-dependent ER-LE/lys MCSs required for lysosomal functions.
Collapse
Affiliation(s)
- Yuanjiao Du
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Wuhan, China,https://ror.org/00p991c53Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, Hubei, China,https://ror.org/00sdcjz77Shenzhen Bay Laboratory, Shenzhen, China
| | - Weiping Chang
- https://ror.org/00sdcjz77Shenzhen Bay Laboratory, Shenzhen, China
| | - Lei Gao
- https://ror.org/05hfa4n20Microscopy Core Facility, Westlake University, Hangzhou, Zhejiang, China
| | - Lin Deng
- https://ror.org/00sdcjz77Shenzhen Bay Laboratory, Shenzhen, China
| | - Wei-Ke Ji
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Wuhan, China,https://ror.org/00p991c53Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, Hubei, China,https://ror.org/00sdcjz77Shenzhen Bay Laboratory, Shenzhen, China,Correspondence to Wei-Ke Ji:
| |
Collapse
|
10
|
Banerjee A, Ray A, Barpanda A, Dash A, Gupta I, Nissa MU, Zhu H, Shah A, Duttagupta SP, Goel A, Srivastava S. Evaluation of autoantibody signatures in pituitary adenoma patients using human proteome arrays. Proteomics Clin Appl 2022; 16:e2100111. [PMID: 35939377 DOI: 10.1002/prca.202100111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/08/2022] [Accepted: 08/03/2022] [Indexed: 12/30/2022]
Abstract
PURPOSE To identify the specific diagnostic biomarkers related to pituitary adenomas (PAs), we performed serological antibody profiles for three types of PAs, namely Acromegaly, Cushing's and Nonfunctional Pituitary Adenomas (NFPAs), using the human proteome (HuProt) microarray. This is the first study describing the serum autoantibody profile of PAs. EXPERIMENTAL DESIGN We performed serological autoantibody profiling of four healthy controls, four Acromegaly, three Cushing's and three NFPAs patient samples to obtain their autoantibody profiles, which were used for studying expression, interaction and altered biological pathways. Further, significant autoantibodies of PAs were compared with data available for glioma, meningioma and AAgAtlas for their specificity. RESULTS Autoantibody profile of PAs led to the identification of differentially expressed significant proteins such as AKNAD1 (AT-Hook Transcription Factor [AKNA] Domain Containing 1), NINJ1 (Nerve injury-induced protein 1), L3HYPDH (Trans-3-hydroxy-L-proline dehydratase), RHOG (Rho-related GTP-binding protein) and PTP4A1 (Protein Tyrosine Phosphatase Type IVA 1) in Acromegaly. Protein ABR (Active breakpoint cluster region-related protein), ST6GALNAC6 (ST6 N-acetylgalactosaminide alpha-2, 6-sialyltransferase 6), NOL3 (Nucleolar protein 3), ANXA8 (Annexin A8) and POLR2H (RNA polymerase II, I and III subunit H) showed an antigenic response in Cushing's patient's serum samples. Protein dipeptidyl peptidase 3 (DPP3) and reticulon-4 (RTN4) exhibited a very high antigenic response in NFPA patients. These proteins hold promise as potential autoantibody biomarkers in PAs.
Collapse
Affiliation(s)
- Arghya Banerjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Arka Ray
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Abhilash Barpanda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Ankita Dash
- Miranda House, University of Delhi, University Enclave, New Delhi, Delhi, India
| | - Ishika Gupta
- Department of Biotechnology Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Mehar Un Nissa
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences/High-Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Abhidha Shah
- Department of Neurosurgery at King Edward Memorial Hospital and Seth G. S. Medical College, Parel, Mumbai, India
| | - Siddhartha P Duttagupta
- Department of Electrical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Atul Goel
- Department of Neurosurgery at King Edward Memorial Hospital and Seth G. S. Medical College, Parel, Mumbai, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| |
Collapse
|
11
|
Tan JX, Finkel T. A phosphoinositide signalling pathway mediates rapid lysosomal repair. Nature 2022; 609:815-821. [PMID: 36071159 PMCID: PMC9450835 DOI: 10.1038/s41586-022-05164-4] [Citation(s) in RCA: 116] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 07/29/2022] [Indexed: 12/23/2022]
Abstract
Lysosomal dysfunction has been increasingly linked to disease and normal ageing1,2. Lysosomal membrane permeabilization (LMP), a hallmark of lysosome-related diseases, can be triggered by diverse cellular stressors3. Given the damaging contents of lysosomes, LMP must be rapidly resolved, although the underlying mechanisms are poorly understood. Here, using an unbiased proteomic approach, we show that LMP stimulates a phosphoinositide-initiated membrane tethering and lipid transport (PITT) pathway for rapid lysosomal repair. Upon LMP, phosphatidylinositol-4 kinase type 2α (PI4K2A) accumulates rapidly on damaged lysosomes, generating high levels of the lipid messenger phosphatidylinositol-4-phosphate. Lysosomal phosphatidylinositol-4-phosphate in turn recruits multiple oxysterol-binding protein (OSBP)-related protein (ORP) family members, including ORP9, ORP10, ORP11 and OSBP, to orchestrate extensive new membrane contact sites between damaged lysosomes and the endoplasmic reticulum. The ORPs subsequently catalyse robust endoplasmic reticulum-to-lysosome transfer of phosphatidylserine and cholesterol to support rapid lysosomal repair. Finally, the lipid transfer protein ATG2 is also recruited to damaged lysosomes where its activity is potently stimulated by phosphatidylserine. Independent of macroautophagy, ATG2 mediates rapid membrane repair through direct lysosomal lipid transfer. Together, our findings identify that the PITT pathway maintains lysosomal membrane integrity, with important implications for numerous age-related diseases characterized by impaired lysosomal function.
Collapse
Affiliation(s)
- Jay Xiaojun Tan
- Aging Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Toren Finkel
- Aging Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
12
|
Structure-based design and modular synthesis of novel PI4K class II inhibitors bearing a 4-aminoquinazoline scaffold. Bioorg Med Chem Lett 2022; 76:129010. [DOI: 10.1016/j.bmcl.2022.129010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/22/2022]
|
13
|
Lenoir G, D'Ambrosio JM, Dieudonné T, Čopič A. Transport Pathways That Contribute to the Cellular Distribution of Phosphatidylserine. Front Cell Dev Biol 2021; 9:737907. [PMID: 34540851 PMCID: PMC8440936 DOI: 10.3389/fcell.2021.737907] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/10/2021] [Indexed: 12/05/2022] Open
Abstract
Phosphatidylserine (PS) is a negatively charged phospholipid that displays a highly uneven distribution within cellular membranes, essential for establishment of cell polarity and other processes. In this review, we discuss how combined action of PS biosynthesis enzymes in the endoplasmic reticulum (ER), lipid transfer proteins (LTPs) acting within membrane contact sites (MCS) between the ER and other compartments, and lipid flippases and scramblases that mediate PS flip-flop between membrane leaflets controls the cellular distribution of PS. Enrichment of PS in specific compartments, in particular in the cytosolic leaflet of the plasma membrane (PM), requires input of energy, which can be supplied in the form of ATP or by phosphoinositides. Conversely, coupling between PS synthesis or degradation, PS flip-flop and PS transfer may enable PS transfer by passive flow. Such scenario is best documented by recent work on the formation of autophagosomes. The existence of lateral PS nanodomains, which is well-documented in the case of the PM and postulated for other compartments, can change the steepness or direction of PS gradients between compartments. Improvements in cellular imaging of lipids and membranes, lipidomic analysis of complex cellular samples, reconstitution of cellular lipid transport reactions and high-resolution structural data have greatly increased our understanding of cellular PS homeostasis. Our review also highlights how budding yeast has been instrumental for our understanding of the organization and transport of PS in cells.
Collapse
Affiliation(s)
- Guillaume Lenoir
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette, France
| | - Juan Martín D'Ambrosio
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, Montpellier, France
| | - Thibaud Dieudonné
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Alenka Čopič
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, Montpellier, France
| |
Collapse
|
14
|
Overduin M, Kervin TA. The phosphoinositide code is read by a plethora of protein domains. Expert Rev Proteomics 2021; 18:483-502. [PMID: 34351250 DOI: 10.1080/14789450.2021.1962302] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The proteins that decipher nucleic acid- and protein-based information are well known, however, those that read membrane-encoded information remain understudied. Here we report 70 different human, microbial and viral protein folds that recognize phosphoinositides (PIs), comprising the readers of a vast membrane code. AREAS COVERED Membrane recognition is best understood for FYVE, PH and PX domains, which exemplify hundreds of PI code readers. Comparable lipid interaction mechanisms may be mediated by kinases, adjacent C1 and C2 domains, trafficking arrestin, GAT and VHS modules, membrane-perturbing annexin, BAR, CHMP, ENTH, HEAT, syntaxin and Tubby helical bundles, multipurpose FERM, EH, MATH, PHD, PDZ, PROPPIN, PTB and SH2 domains, as well as systems that regulate receptors, GTPases and actin filaments, transfer lipids and assembled bacterial and viral particles. EXPERT OPINION The elucidation of how membranes are recognized has extended the genetic code to the PI code. Novel discoveries include PIP-stop and MET-stop residues to which phosphates and metabolites are attached to block phosphatidylinositol phosphate (PIP) recognition, memteins as functional membrane protein apparatuses, and lipidons as lipid "codons" recognized by membrane readers. At least 5% of the human proteome senses such membrane signals and allows eukaryotic organelles and pathogens to operate and replicate.
Collapse
Affiliation(s)
- Michael Overduin
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Troy A Kervin
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
15
|
Huang T, Hosseinibarkooie S, Borne AL, Granade ME, Brulet JW, Harris TE, Ferris HA, Hsu KL. Chemoproteomic profiling of kinases in live cells using electrophilic sulfonyl triazole probes. Chem Sci 2021; 12:3295-3307. [PMID: 34164099 PMCID: PMC8179411 DOI: 10.1039/d0sc06623k] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/08/2021] [Indexed: 12/23/2022] Open
Abstract
Sulfonyl-triazoles are a new class of electrophiles that mediate covalent reaction with tyrosine residues on proteins through sulfur-triazole exchange (SuTEx) chemistry. Recent studies demonstrate the broad utility and tunability of SuTEx chemistry for chemical proteomics and protein ligand discovery. Here, we present a strategy for mapping protein interaction networks of structurally complex binding elements using functionalized SuTEx probes. We show that the triazole leaving group (LG) can serve as a releasable linker for embedding hydrophobic fragments to direct molecular recognition while permitting efficient proteome-wide identification of binding sites in live cells. We synthesized a series of SuTEx probes functionalized with a lipid kinase fragment binder for discovery of ligandable tyrosines residing in catalytic and regulatory domains of protein and metabolic kinases in live cells. We performed competition studies with kinase inhibitors and substrates to demonstrate that probe binding is occurring in an activity-dependent manner. Our functional studies led to discovery of probe-modified sites within the C2 domain that were important for downregulation of protein kinase C-alpha in response to phorbol ester activation. Our proof of concept studies highlight the triazole LG of SuTEx probes as a traceless linker for locating protein binding sites targeted by complex recognition elements in live cells.
Collapse
Affiliation(s)
- Tao Huang
- Department of Chemistry, University of Virginia McCormick Road, P.O. Box 400319 Charlottesville Virginia 22904 USA +1-434-297-4864
| | | | - Adam L Borne
- Department of Pharmacology, University of Virginia School of Medicine Charlottesville Virginia 22908 USA
| | - Mitchell E Granade
- Department of Pharmacology, University of Virginia School of Medicine Charlottesville Virginia 22908 USA
| | - Jeffrey W Brulet
- Department of Chemistry, University of Virginia McCormick Road, P.O. Box 400319 Charlottesville Virginia 22904 USA +1-434-297-4864
| | - Thurl E Harris
- Department of Pharmacology, University of Virginia School of Medicine Charlottesville Virginia 22908 USA
| | - Heather A Ferris
- Department of Medicine, University of Virginia School of Medicine Charlottesville Virginia 22903 USA
| | - Ku-Lung Hsu
- Department of Chemistry, University of Virginia McCormick Road, P.O. Box 400319 Charlottesville Virginia 22904 USA +1-434-297-4864
- Department of Pharmacology, University of Virginia School of Medicine Charlottesville Virginia 22908 USA
- University of Virginia Cancer Center, University of Virginia Charlottesville VA 22903 USA
- Department of Molecular Physiology and Biological Physics, University of Virginia Charlottesville Virginia 22908 USA
| |
Collapse
|
16
|
Schianchi F, Glatz JFC, Navarro Gascon A, Nabben M, Neumann D, Luiken JJFP. Putative Role of Protein Palmitoylation in Cardiac Lipid-Induced Insulin Resistance. Int J Mol Sci 2020; 21:ijms21249438. [PMID: 33322406 PMCID: PMC7764417 DOI: 10.3390/ijms21249438] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/25/2022] Open
Abstract
In the heart, inhibition of the insulin cascade following lipid overload is strongly associated with contractile dysfunction. The translocation of fatty acid transporter CD36 (SR-B2) from intracellular stores to the cell surface is a hallmark event in the lipid-overloaded heart, feeding forward to intracellular lipid accumulation. Yet, the molecular mechanisms by which intracellularly arrived lipids induce insulin resistance is ill-understood. Bioactive lipid metabolites (diacyl-glycerols, ceramides) are contributing factors but fail to correlate with the degree of cardiac insulin resistance in diabetic humans. This leaves room for other lipid-induced mechanisms involved in lipid-induced insulin resistance, including protein palmitoylation. Protein palmitoylation encompasses the reversible covalent attachment of palmitate moieties to cysteine residues and is governed by protein acyl-transferases and thioesterases. The function of palmitoylation is to provide proteins with proper spatiotemporal localization, thereby securing the correct unwinding of signaling pathways. In this review, we provide examples of palmitoylations of individual signaling proteins to discuss the emerging role of protein palmitoylation as a modulator of the insulin signaling cascade. Second, we speculate how protein hyper-palmitoylations (including that of CD36), as they occur during lipid oversupply, may lead to insulin resistance. Finally, we conclude that the protein palmitoylation machinery may offer novel targets to fight lipid-induced cardiomyopathy.
Collapse
Affiliation(s)
- Francesco Schianchi
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (F.S.); (J.F.C.G.); (A.N.G.); (M.N.)
| | - Jan F. C. Glatz
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (F.S.); (J.F.C.G.); (A.N.G.); (M.N.)
- Department of Clinical Genetics, Maastricht University Medical Center+, 6202 AZ Maastricht, The Netherlands
| | - Artur Navarro Gascon
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (F.S.); (J.F.C.G.); (A.N.G.); (M.N.)
| | - Miranda Nabben
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (F.S.); (J.F.C.G.); (A.N.G.); (M.N.)
- Department of Clinical Genetics, Maastricht University Medical Center+, 6202 AZ Maastricht, The Netherlands
| | - Dietbert Neumann
- Department of Pathology, Maastricht University Medical Center+, 6202 AZ Maastricht, The Netherlands;
| | - Joost J. F. P. Luiken
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (F.S.); (J.F.C.G.); (A.N.G.); (M.N.)
- Department of Clinical Genetics, Maastricht University Medical Center+, 6202 AZ Maastricht, The Netherlands
- Correspondence: ; Tel.: +31-43-388-1998
| |
Collapse
|
17
|
Mohamed M, Gardeitchik T, Balasubramaniam S, Guerrero‐Castillo S, Dalloyaux D, van Kraaij S, Venselaar H, Hoischen A, Urban Z, Brandt U, Al‐Shawi R, Simons JP, Frison M, Ngu L, Callewaert B, Spelbrink H, Kallemeijn WW, Aerts JMFG, Waugh MG, Morava E, Wevers RA. Novel defect in phosphatidylinositol 4-kinase type 2-alpha (PI4K2A) at the membrane-enzyme interface is associated with metabolic cutis laxa. J Inherit Metab Dis 2020; 43:1382-1391. [PMID: 32418222 PMCID: PMC7687218 DOI: 10.1002/jimd.12255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/16/2022]
Abstract
Inherited cutis laxa, or inelastic, sagging skin is a genetic condition of premature and generalised connective tissue ageing, affecting various elastic components of the extracellular matrix. Several cutis laxa syndromes are inborn errors of metabolism and lead to severe neurological symptoms. In a patient with cutis laxa, a choreoathetoid movement disorder, dysmorphic features and intellectual disability we performed exome sequencing to elucidate the underlying genetic defect. We identified the amino acid substitution R275W in phosphatidylinositol 4-kinase type IIα, caused by a homozygous missense mutation in the PI4K2A gene. We used lipidomics, complexome profiling and functional studies to measure phosphatidylinositol 4-phosphate synthesis in the patient and evaluated PI4K2A deficient mice to define a novel metabolic disorder. The R275W residue, located on the surface of the protein, is involved in forming electrostatic interactions with the membrane. The catalytic activity of PI4K2A in patient fibroblasts was severely reduced and lipid mass spectrometry showed that particular acyl-chain pools of PI4P and PI(4,5)P2 were decreased. Phosphoinositide lipids play a major role in intracellular signalling and trafficking and regulate the balance between proliferation and apoptosis. Phosphatidylinositol 4-kinases such as PI4K2A mediate the first step in the main metabolic pathway that generates PI4P, PI(4,5)P2 and PI(3,4,5)P3 . Although neurologic involvement is common, cutis laxa has not been reported previously in metabolic defects affecting signalling. Here we describe a patient with a complex neurological phenotype, premature ageing and a mutation in PI4K2A, illustrating the importance of this enzyme in the generation of inositol lipids with particular acylation characteristics.
Collapse
Affiliation(s)
- Miski Mohamed
- Department of PaediatricsRadboud University Medical CenterNijmegenThe Netherlands
| | - Thatjana Gardeitchik
- Department of PaediatricsRadboud University Medical CenterNijmegenThe Netherlands
- Department of GeneticsRadboud University Medical CenterNijmegenThe Netherlands
| | - Shanti Balasubramaniam
- Clinical Genetic DepartmentHospital Kuala Lumpur, Jalan PahangKuala LumpurMalaysia
- Discipline of Genetic Medicine, Sydney Medical SchoolUniversity of SydneySydneyNew South WalesAustralia
- Western Sydney Genetics ProgramThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
| | - Sergio Guerrero‐Castillo
- Radboud Center for Mitochondrial MedicineRadboud University Medical CenterNijmegenThe Netherlands
- Translational Metabolic Laboratory, Department of Laboratory MedicineRadboud University Medical CenterNijmegenThe Netherlands
| | - Daisy Dalloyaux
- Department of PaediatricsRadboud University Medical CenterNijmegenThe Netherlands
| | - Sanne van Kraaij
- Translational Metabolic Laboratory, Department of Laboratory MedicineRadboud University Medical CenterNijmegenThe Netherlands
| | - Hanka Venselaar
- Center of Molecular and Biomolecular InformaticsRadboud University Medical CenterNijmegenThe Netherlands
| | - Alexander Hoischen
- Department of GeneticsRadboud University Medical CenterNijmegenThe Netherlands
- Department of Internal MedicineRadboud University Medical CenterNijmegenThe Netherlands
- Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Zsolt Urban
- Department of Human Genetics, Graduate School of Public HealthUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Ulrich Brandt
- Radboud Center for Mitochondrial MedicineRadboud University Medical CenterNijmegenThe Netherlands
- Translational Metabolic Laboratory, Department of Laboratory MedicineRadboud University Medical CenterNijmegenThe Netherlands
| | - Raya Al‐Shawi
- Wolfson Drug Discovery Unit, Division of Medicine, Royal Free CampusUniversity College LondonLondonUK
| | - J. Paul Simons
- Wolfson Drug Discovery Unit, Division of Medicine, Royal Free CampusUniversity College LondonLondonUK
| | - Michele Frison
- Wolfson Drug Discovery Unit, Division of Medicine, Royal Free CampusUniversity College LondonLondonUK
| | - Lock‐Hock Ngu
- Clinical Genetic DepartmentHospital Kuala Lumpur, Jalan PahangKuala LumpurMalaysia
| | - Bert Callewaert
- Center for Medical GeneticsGhent University HospitalGhentBelgium
| | - Hans Spelbrink
- Department of PaediatricsRadboud University Medical CenterNijmegenThe Netherlands
| | - Wouter W. Kallemeijn
- Department of Medical Biochemistry, Leiden Institute of ChemistryLeiden UniversityLeidenThe Netherlands
- Department of ChemistryImperial College LondonLondonUK
| | - Johannes M. F. G. Aerts
- Department of Medical Biochemistry, Leiden Institute of ChemistryLeiden UniversityLeidenThe Netherlands
| | - Mark G. Waugh
- Lipid and Membrane Biology Group, Institute for Liver & Digestive HealthUniversity College LondonLondonUK
| | - Eva Morava
- Haywards Genetics CenterTulane UniversityNew OrleansLouisianaUSA
- Department of PediatricsUniversity Medical CentreLeuvenBelgium
| | - Ron A. Wevers
- Translational Metabolic Laboratory, Department of Laboratory MedicineRadboud University Medical CenterNijmegenThe Netherlands
| |
Collapse
|
18
|
Haralampiev I, Alonso de Armiño DJ, Luck M, Fischer M, Abel T, Huster D, Di Lella S, Scheidt HA, Müller P. Interaction of the small-molecule kinase inhibitors tofacitinib and lapatinib with membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183414. [PMID: 32710852 DOI: 10.1016/j.bbamem.2020.183414] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/09/2020] [Accepted: 07/12/2020] [Indexed: 12/31/2022]
Abstract
Lapatinib and tofacitinib are small-molecule kinase inhibitors approved for the treatment of advanced or metastatic breast cancer and rheumatoid arthritis, respectively. So far, the mechanisms which are responsible for their activities are not entirely understood. Here, we focus on the interaction of these drug molecules with phospholipid membranes, which has not yet been investigated before in molecular detail. Owing to their lipophilic characteristics, quantitatively reflected by large differences of the partition equilibrium between water and octanol phases (expressed by logP values), rather drastic differences in the membrane interaction of both molecules have to be expected. Applying experimental (nuclear magnetic resonance, fluorescence and ESR spectroscopy) and theoretical (molecular dynamics simulations) approaches, we found that lapatinib and tofacitinib bind to lipid membranes and insert into the lipid-water interface of the bilayer. For lapatinib, a deeper embedding into the membrane bilayer was observed than for tofacitinib implying different impacts of the molecules on the bilayer structure. While for tofacitinib, no influence to the membrane structure was found, lapatinib causes a membrane disturbance, as concluded from an increased permeability of the membrane for polar molecules. These data may contribute to a better understanding of the cellular uptake mechanism(s) and the side effects of the drugs.
Collapse
Affiliation(s)
- Ivan Haralampiev
- Humboldt-Universität zu Berlin, Department of Biology, Invalidenstr. 42, D-10115 Berlin, Germany
| | - Diego Javier Alonso de Armiño
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA Buenos Aires, Argentina
| | - Meike Luck
- Humboldt-Universität zu Berlin, Department of Biology, Invalidenstr. 42, D-10115 Berlin, Germany
| | - Markus Fischer
- Leipzig University, Institute for Medical Physics and Biophysics, Härtelstr. 16-18, D-04107 Leipzig, Germany
| | - Tobias Abel
- Leipzig University, Institute for Medical Physics and Biophysics, Härtelstr. 16-18, D-04107 Leipzig, Germany
| | - Daniel Huster
- Leipzig University, Institute for Medical Physics and Biophysics, Härtelstr. 16-18, D-04107 Leipzig, Germany
| | - Santiago Di Lella
- Instituto de Química Biológica - Ciencias Exactas y Naturales (IQUIBICEN) Conicet - Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, C1428EHA Ciudad de Buenos Aires, Argentina.
| | - Holger A Scheidt
- Leipzig University, Institute for Medical Physics and Biophysics, Härtelstr. 16-18, D-04107 Leipzig, Germany.
| | - Peter Müller
- Humboldt-Universität zu Berlin, Department of Biology, Invalidenstr. 42, D-10115 Berlin, Germany.
| |
Collapse
|
19
|
Xu C, Wan Z, Shaheen S, Wang J, Yang Z, Liu W. A PI(4,5)P2-derived "gasoline engine model" for the sustained B cell receptor activation. Immunol Rev 2020; 291:75-90. [PMID: 31402506 DOI: 10.1111/imr.12775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 12/14/2022]
Abstract
To efficiently initiate activation responses against rare ligands in the microenvironment, lymphocytes employ sophisticated mechanisms involving signaling amplification. Recently, a signaling amplification mechanism initiated from phosphatidylinositol (PI) 4, 5-biphosphate [PI(4,5)P2] hydrolysis and synthesis for sustained B cell activation has been reported. Antigen and B cell receptor (BCR) recognition triggered the prompt reduction of PI(4,5)P2 density within the BCR microclusters, which led to the positive feedback for the synthesis of PI(4,5)P2 outside of the BCR microclusters. At single molecule level, the diffusion of PI(4,5)P2 was slow, allowing for the maintenance of a PI(4,5)P2 density gradient between the inside and outside of the BCR microclusters and the persistent supply of PI(4,5)P2 from outside to inside of the BCR microclusters. Here, we review studies that have contributed to uncovering the molecular mechanisms of PI(4,5)P2-derived signaling amplification model. Based on these studies, we proposed a "gasoline engine model" in which the activation of B cell signaling inside the microclusters is similar to the working principle of burning gasoline within the engine chamber of a gasoline engine. We also discuss the evidences showing the potential universality of this model and future prospects.
Collapse
Affiliation(s)
- Chenguang Xu
- Center for Life Sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Zhengpeng Wan
- Center for Life Sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Samina Shaheen
- Center for Life Sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Jing Wang
- Center for Life Sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Zhiyong Yang
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California
| | - Wanli Liu
- Center for Life Sciences, MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| |
Collapse
|
20
|
Essandoh K, Philippe JM, Jenkins PM, Brody MJ. Palmitoylation: A Fatty Regulator of Myocardial Electrophysiology. Front Physiol 2020; 11:108. [PMID: 32140110 PMCID: PMC7042378 DOI: 10.3389/fphys.2020.00108] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 01/30/2020] [Indexed: 01/02/2023] Open
Abstract
Regulation of cardiac physiology is well known to occur through the action of kinases that reversibly phosphorylate ion channels, calcium handling machinery, and signaling effectors. However, it is becoming increasingly apparent that palmitoylation or S-acylation, the post-translational modification of cysteines with saturated fatty acids, plays instrumental roles in regulating the localization, activity, stability, sorting, and function of numerous proteins, including proteins known to have essential functions in cardiomyocytes. However, the impact of this modification on cardiac physiology requires further investigation. S-acylation is catalyzed by the zDHHC family of S-acyl transferases that localize to intracellular organelle membranes or the sarcolemma. Recent work has begun to uncover functions of S-acylation in the heart, particularly in the regulation of cardiac electrophysiology, including modification of the sodium-calcium exchanger, phospholemman and the cardiac sodium pump, as well as the voltage-gated sodium channel. Elucidating the regulatory functions of zDHHC enzymes in cardiomyocytes and determination of how S-acylation is altered in the diseased heart will shed light on how these modifications participate in cardiac pathogenesis and potentially identify novel targets for the treatment of cardiovascular disease. Indeed, proteins with critical signaling roles in the heart are also S-acylated, including receptors and G-proteins, yet the dynamics and functions of these modifications in myocardial physiology have not been interrogated. Here, we will review what is known about zDHHC enzymes and substrate S-acylation in myocardial physiology and highlight future areas of investigation that will uncover novel functions of S-acylation in cardiac homeostasis and pathophysiology.
Collapse
Affiliation(s)
- Kobina Essandoh
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, United States
| | - Julie M Philippe
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, United States
| | - Paul M Jenkins
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, United States.,Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Matthew J Brody
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, United States.,Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
21
|
The Great Escape: how phosphatidylinositol 4-kinases and PI4P promote vesicle exit from the Golgi (and drive cancer). Biochem J 2019; 476:2321-2346. [DOI: 10.1042/bcj20180622] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022]
Abstract
Abstract
Phosphatidylinositol 4-phosphate (PI4P) is a membrane glycerophospholipid and a major regulator of the characteristic appearance of the Golgi complex as well as its vesicular trafficking, signalling and metabolic functions. Phosphatidylinositol 4-kinases, and in particular the PI4KIIIβ isoform, act in concert with PI4P to recruit macromolecular complexes to initiate the biogenesis of trafficking vesicles for several Golgi exit routes. Dysregulation of Golgi PI4P metabolism and the PI4P protein interactome features in many cancers and is often associated with tumour progression and a poor prognosis. Increased expression of PI4P-binding proteins, such as GOLPH3 or PITPNC1, induces a malignant secretory phenotype and the release of proteins that can remodel the extracellular matrix, promote angiogenesis and enhance cell motility. Aberrant Golgi PI4P metabolism can also result in the impaired post-translational modification of proteins required for focal adhesion formation and cell–matrix interactions, thereby potentiating the development of aggressive metastatic and invasive tumours. Altered expression of the Golgi-targeted PI 4-kinases, PI4KIIIβ, PI4KIIα and PI4KIIβ, or the PI4P phosphate Sac1, can also modulate oncogenic signalling through effects on TGN-endosomal trafficking. A Golgi trafficking role for a PIP 5-kinase has been recently described, which indicates that PI4P is not the only functionally important phosphoinositide at this subcellular location. This review charts new developments in our understanding of phosphatidylinositol 4-kinase function at the Golgi and how PI4P-dependent trafficking can be deregulated in malignant disease.
Collapse
|
22
|
Muller MP, Jiang T, Sun C, Lihan M, Pant S, Mahinthichaichan P, Trifan A, Tajkhorshid E. Characterization of Lipid-Protein Interactions and Lipid-Mediated Modulation of Membrane Protein Function through Molecular Simulation. Chem Rev 2019; 119:6086-6161. [PMID: 30978005 PMCID: PMC6506392 DOI: 10.1021/acs.chemrev.8b00608] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The cellular membrane constitutes one of the most fundamental compartments of a living cell, where key processes such as selective transport of material and exchange of information between the cell and its environment are mediated by proteins that are closely associated with the membrane. The heterogeneity of lipid composition of biological membranes and the effect of lipid molecules on the structure, dynamics, and function of membrane proteins are now widely recognized. Characterization of these functionally important lipid-protein interactions with experimental techniques is however still prohibitively challenging. Molecular dynamics (MD) simulations offer a powerful complementary approach with sufficient temporal and spatial resolutions to gain atomic-level structural information and energetics on lipid-protein interactions. In this review, we aim to provide a broad survey of MD simulations focusing on exploring lipid-protein interactions and characterizing lipid-modulated protein structure and dynamics that have been successful in providing novel insight into the mechanism of membrane protein function.
Collapse
Affiliation(s)
- Melanie P. Muller
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- College of Medicine
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tao Jiang
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chang Sun
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Muyun Lihan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shashank Pant
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Paween Mahinthichaichan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Anda Trifan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- College of Medicine
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
23
|
Isaji T, Im S, Kameyama A, Wang Y, Fukuda T, Gu J. A complex between phosphatidylinositol 4-kinase IIα and integrin α3β1 is required for N-glycan sialylation in cancer cells. J Biol Chem 2019; 294:4425-4436. [PMID: 30659093 DOI: 10.1074/jbc.ra118.005208] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 01/08/2019] [Indexed: 01/08/2023] Open
Abstract
Aberrant N-glycan sialylation of glycoproteins is closely associated with malignant phenotypes of cancer cells and metastatic potential, which includes cell adhesion, migration, and growth. Recently, phosphatidylinositol 4-kinase IIα (PI4KIIα), which is localized to the trans-Golgi network, was identified as a regulator of Golgi phosphoprotein 3 (GOLPH3) and of vesicle transport in the Golgi apparatus. GOLPH3 is a target of PI4KIIα and helps anchor sialyltransferases and thereby regulates sialylation of cell surface receptors. However, how PI4KIIα-mediated sialyation of cell surface proteins is regulated remains unclear. In this study, using several cell lines, CRISPR/Cas9-based gene knockout and short hairpin RNA-mediated silencing, RT-PCR, lentivirus-mediated overexpression, and immunoblotting methods, we confirmed that PI4KIIα knockdown suppresses the sialylation of N-glycans on the cell surface, in Akt phosphorylation and activation, and integrin α3-mediated cell migration of MDA-MB-231 breast cancer cells. Interestingly, both integrin α3β1 and PI4KIIα co-localized to the trans-Golgi network, where they physically interacted with each other, and PI4KIIα specifically associated with integrin α3 but not α5. Furthermore, overexpression of both integrin α3β1 and PI4KIIα induced hypersialylation. Conversely, integrin α3 knockout significantly inhibited the sialylation of membrane proteins, such as the epidermal growth factor receptor, as well as in total cell lysates. These findings suggest that the malignant phenotype of cancer cells is affected by a sialylation mechanism that is regulated by a complex between PI4KIIα and integrin α3β1.
Collapse
Affiliation(s)
- Tomoya Isaji
- From the Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai Miyagi 981-8558, Japan
| | - Sanghun Im
- From the Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai Miyagi 981-8558, Japan
| | - Akihiko Kameyama
- the Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan, and
| | - Yuqin Wang
- the Department of Pharmacology, Pharmacy College, Nantong University, Nantong, Jiangsu 226001, China
| | - Tomohiko Fukuda
- From the Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai Miyagi 981-8558, Japan
| | - Jianguo Gu
- From the Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai Miyagi 981-8558, Japan,
| |
Collapse
|
24
|
Structural Basis for Regulation of Phosphoinositide Kinases and Their Involvement in Human Disease. Mol Cell 2018; 71:653-673. [DOI: 10.1016/j.molcel.2018.08.005] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/22/2018] [Accepted: 07/30/2018] [Indexed: 01/09/2023]
|
25
|
Minogue S. The Many Roles of Type II Phosphatidylinositol 4-Kinases in Membrane Trafficking: New Tricks for Old Dogs. Bioessays 2017; 40. [PMID: 29280156 DOI: 10.1002/bies.201700145] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/09/2017] [Indexed: 12/12/2022]
Abstract
The type II phosphatidylinositol 4-kinases (PI4KIIs) produce the lipid phosphatidylinositol 4-phosphate (PtdIns4P) and participate in a confusing variety of membrane trafficking and signaling roles. This review argues that both historical and contemporary evidence supports the function of the PI4KIIs in numerous trafficking pathways, and that the key to understanding the enzymatic regulation is through membrane interaction and the intrinsic membrane environment. By summarizing new research and examining the trafficking roles of the PI4KIIs in the context of recently solved molecular structures, I highlight how mechanisms of PI4KII function and regulation are providing insights into the development of cancer and in neurological disease. I present an integrated view connecting the cell biology, molecular regulation, and roles in whole animal systems of these increasingly important proteins.
Collapse
Affiliation(s)
- Shane Minogue
- Lipid and Membrane Biology Group, UCL Division of Medicine, Royal Free Campus, University College London, London, NW3 2PF, UK
| |
Collapse
|
26
|
Sobocińska J, Roszczenko-Jasińska P, Zaręba-Kozioł M, Hromada-Judycka A, Matveichuk OV, Traczyk G, Łukasiuk K, Kwiatkowska K. Lipopolysaccharide Upregulates Palmitoylated Enzymes of the Phosphatidylinositol Cycle: An Insight from Proteomic Studies. Mol Cell Proteomics 2017; 17:233-254. [PMID: 29217618 DOI: 10.1074/mcp.ra117.000050] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Indexed: 12/28/2022] Open
Abstract
Lipopolysaccharide (LPS) is a component of the outer membrane of Gram-negative bacteria that induces strong proinflammatory reactions of mammals. These processes are triggered upon sequential binding of LPS to CD14, a GPI-linked plasma membrane raft protein, and to the TLR4/MD2 receptor complex. We have found earlier that upon LPS binding, CD14 triggers generation of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2], a lipid controlling subsequent proinflammatory cytokine production. Here we show that stimulation of RAW264 macrophage-like cells with LPS induces global changes of the level of fatty-acylated, most likely palmitoylated, proteins. Among the acylated proteins that were up-regulated in those conditions were several enzymes of the phosphatidylinositol cycle. Global profiling of acylated proteins was performed by metabolic labeling of RAW264 cells with 17ODYA, an analogue of palmitic acid functionalized with an alkyne group, followed by detection and enrichment of labeled proteins using biotin-azide/streptavidin and their identification with mass spectrometry. This proteomic approach revealed that 154 fatty-acylated proteins were up-regulated, 186 downregulated, and 306 not affected in cells stimulated with 100 ng/ml LPS for 60 min. The acylated proteins affected by LPS were involved in diverse biological functions, as found by Ingenuity Pathway Analysis. Detailed studies of 17ODYA-labeled and immunoprecipitated proteins revealed that LPS induces S-palmitoylation, hence activation, of type II phosphatidylinositol 4-kinase (PI4KII) β, which phosphorylates phosphatidylinositol to phosphatidylinositol 4-monophosphate, a PI(4,5)P2 precursor. Silencing of PI4KIIβ and PI4KIIα inhibited LPS-induced expression and production of proinflammatory cytokines, especially in the TRIF-dependent signaling pathway of TLR4. Reciprocally, this LPS-induced signaling pathway was significantly enhanced after overexpression of PI4KIIβ or PI4KIIα; this was dependent on palmitoylation of the kinases. However, the S-palmitoylation of PI4KIIα, hence its activity, was constitutive in RAW264 cells. Taken together the data indicate that LPS triggers S-palmitoylation and activation of PI4KIIβ, which generates PI(4)P involved in signaling pathways controlling production of proinflammatory cytokines.
Collapse
Affiliation(s)
- Justyna Sobocińska
- From the ‡Laboratory of Molecular Membrane Biology, Department of Cell Biology
| | | | - Monika Zaręba-Kozioł
- §Laboratory of Cell Biophysics, Department of Molecular and Cellular Neurobiology
| | | | - Orest V Matveichuk
- From the ‡Laboratory of Molecular Membrane Biology, Department of Cell Biology
| | - Gabriela Traczyk
- From the ‡Laboratory of Molecular Membrane Biology, Department of Cell Biology
| | - Katarzyna Łukasiuk
- ¶Laboratory of Epileptogenesis, Department of Neurophysiology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland
| | | |
Collapse
|
27
|
PI-273, a Substrate-Competitive, Specific Small-Molecule Inhibitor of PI4KIIα, Inhibits the Growth of Breast Cancer Cells. Cancer Res 2017; 77:6253-6266. [DOI: 10.1158/0008-5472.can-17-0484] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 06/29/2017] [Accepted: 08/14/2017] [Indexed: 11/16/2022]
|
28
|
Audagnotto M, Dal Peraro M. Protein post-translational modifications: In silico prediction tools and molecular modeling. Comput Struct Biotechnol J 2017; 15:307-319. [PMID: 28458782 PMCID: PMC5397102 DOI: 10.1016/j.csbj.2017.03.004] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 03/17/2017] [Accepted: 03/21/2017] [Indexed: 02/09/2023] Open
Abstract
Post-translational modifications (PTMs) occur in almost all proteins and play an important role in numerous biological processes by significantly affecting proteins' structure and dynamics. Several computational approaches have been developed to study PTMs (e.g., phosphorylation, sumoylation or palmitoylation) showing the importance of these techniques in predicting modified sites that can be further investigated with experimental approaches. In this review, we summarize some of the available online platforms and their contribution in the study of PTMs. Moreover, we discuss the emerging capabilities of molecular modeling and simulation that are able to complement these bioinformatics methods, providing deeper molecular insights into the biological function of post-translational modified proteins.
Collapse
Affiliation(s)
- Martina Audagnotto
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Matteo Dal Peraro
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
29
|
Urbanus ML, Quaile AT, Stogios PJ, Morar M, Rao C, Di Leo R, Evdokimova E, Lam M, Oatway C, Cuff ME, Osipiuk J, Michalska K, Nocek BP, Taipale M, Savchenko A, Ensminger AW. Diverse mechanisms of metaeffector activity in an intracellular bacterial pathogen, Legionella pneumophila. Mol Syst Biol 2016; 12:893. [PMID: 27986836 PMCID: PMC5199130 DOI: 10.15252/msb.20167381] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pathogens deliver complex arsenals of translocated effector proteins to host cells during infection, but the extent to which these proteins are regulated once inside the eukaryotic cell remains poorly defined. Among all bacterial pathogens, Legionella pneumophila maintains the largest known set of translocated substrates, delivering over 300 proteins to the host cell via its Type IVB, Icm/Dot translocation system. Backed by a few notable examples of effector–effector regulation in L. pneumophila, we sought to define the extent of this phenomenon through a systematic analysis of effector–effector functional interaction. We used Saccharomyces cerevisiae, an established proxy for the eukaryotic host, to query > 108,000 pairwise genetic interactions between two compatible expression libraries of ~330 L. pneumophila‐translocated substrates. While capturing all known examples of effector–effector suppression, we identify fourteen novel translocated substrates that suppress the activity of other bacterial effectors and one pair with synergistic activities. In at least nine instances, this regulation is direct—a hallmark of an emerging class of proteins called metaeffectors, or “effectors of effectors”. Through detailed structural and functional analysis, we show that metaeffector activity derives from a diverse range of mechanisms, shapes evolution, and can be used to reveal important aspects of each cognate effector's function. Metaeffectors, along with other, indirect, forms of effector–effector modulation, may be a common feature of many intracellular pathogens—with unrealized potential to inform our understanding of how pathogens regulate their interactions with the host cell.
Collapse
Affiliation(s)
- Malene L Urbanus
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Andrew T Quaile
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Peter J Stogios
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Mariya Morar
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Chitong Rao
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Rosa Di Leo
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Elena Evdokimova
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Mandy Lam
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Christina Oatway
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Marianne E Cuff
- Biosciences Division, Argonne National Laboratory, Structural Biology Center, Lemont, IL, USA.,Midwest Center for Structural Genomics, Lemont IL, USA
| | - Jerzy Osipiuk
- Biosciences Division, Argonne National Laboratory, Structural Biology Center, Lemont, IL, USA.,Midwest Center for Structural Genomics, Lemont IL, USA
| | - Karolina Michalska
- Biosciences Division, Argonne National Laboratory, Structural Biology Center, Lemont, IL, USA.,Midwest Center for Structural Genomics, Lemont IL, USA
| | - Boguslaw P Nocek
- Biosciences Division, Argonne National Laboratory, Structural Biology Center, Lemont, IL, USA.,Midwest Center for Structural Genomics, Lemont IL, USA
| | - Mikko Taipale
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada .,Midwest Center for Structural Genomics, Lemont IL, USA
| | - Alexander W Ensminger
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada .,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,Public Health Ontario, Toronto, ON, Canada
| |
Collapse
|
30
|
Modulation of membrane phosphoinositide dynamics by the phosphatidylinositide 4-kinase activity of the Legionella LepB effector. Nat Microbiol 2016; 2:16236. [PMID: 27941800 DOI: 10.1038/nmicrobiol.2016.236] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 10/07/2016] [Indexed: 11/08/2022]
Abstract
Legionella pneumophila, the causative bacterium for Legionnaires' disease, hijacks host membrane trafficking for the maturation of the Legionella-containing vacuole (LCV). The LCV membrane mainly contains PtdIns4P, which is important for anchoring many secreted Legionella effectors onto the LCV. Here, we identify a cryptic functional domain (LepB_NTD) preceding the well-characterized RabGAP domain in the Legionella Dot/Icm type IV secretion system effector LepB. LepB_NTD alone is toxic to yeast and can disrupt the Golgi in mammalian cells. The crystal structure reveals an unexpected kinase fold and catalytic motif important for LepB_NTD function in eukaryotes. Cell biology-guided biochemical analyses uncovered a lipid kinase activity in LepB_NTD that specifically converts PtdIns3P into PtdIns(3,4)P2. PtdIns(3,4)P2 is efficiently hydrolysed into PtdIns4P by another Dot/Icm effector SidF that is known to possess phosphoinositide phosphatase activity. Consistently, SidF is capable of counteracting the cellular functions of LepB_NTD. Genetic analyses show a requirement for LepB kinase activity as well as lipid phosphatase activity of SidF for PtdIns4P biosynthesis on the LCV membrane. Our study identifies an unprecedented phosphatidylinositide 4-kinase activity from bacteria and highlights a sophisticated manipulation of host phosphoinositide metabolism by a bacterial pathogen.
Collapse
|
31
|
The interaction of sorafenib and regorafenib with membranes is modulated by their lipid composition. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2871-2881. [PMID: 27581086 DOI: 10.1016/j.bbamem.2016.08.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/29/2016] [Accepted: 08/25/2016] [Indexed: 11/22/2022]
Abstract
Sorafenib and regorafenib are small-molecule kinase inhibitors approved for the treatment of locally recurrent or metastatic, progressive, differentiated thyroid carcinoma, renal cell carcinoma, and hepatocellular carcinoma (sorafenib) and of colorectal cancer (regorafenib). As of now, the mechanisms, which are responsible for their antitumor activities, are not completely understood. Given the lipophilic nature of the molecules, it can be hypothesized that the pharmacological impact is mediated by the interaction with cellular membranes as it is true for many pharmacologically active molecules. However, an interaction of sorafenib or regorafenib with lipid membranes has not yet been investigated in detail. Here, we characterized the interaction of both drugs with lipid membranes by applying a variety of biophysical approaches including nuclear magnetic resonance, electron spin resonance, and fluorescence spectroscopy. We found that sorafenib and regorafenib bind to lipid membranes by inserting into the lipid-water interface of the bilayer. This membrane embedding causes a disturbance of bilayer structure leading to an increased permeability of the membrane for polar molecules. One approach shows that the extent of the effects depends on the membrane lipid composition underlining a particular role of phosphatidylcholine and cholesterol. Our data for the first time characterize the impact of sorafenib and regorafenib on the lipid membrane structure and dynamics, which may contribute to a better understanding of their effectiveness in the treatment of malignancies as well as of their side effects.
Collapse
|
32
|
Baumlova A, Gregor J, Boura E. The structural basis for calcium inhibition of lipid kinase PI4K IIalpha and comparison with the apo state. Physiol Res 2016; 65:987-993. [PMID: 27539108 DOI: 10.33549/physiolres.933344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
PI4K IIalpha is a critical enzyme for the maintenance of Golgi and is also known to function in the synaptic vesicles. The product of its catalytical function, phosphatidylinositol 4-phosphate (PI4P), is an important lipid molecule because it is a hallmark of the Golgi and TGN, is directly recognized by many proteins and also serves as a precursor molecule for synthesis of higher phosphoinositides. Here, we report crystal structures of PI4K IIalpha enzyme in the apo-state and inhibited by calcium. The apo-structure reveals a surprising rigidity of the active site residues important for catalytic activity. The structure of calcium inhibited kinase reveals how calcium locks ATP in the active site.
Collapse
Affiliation(s)
- A Baumlova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic.
| | | | | |
Collapse
|
33
|
Płóciennikowska A, Hromada-Judycka A, Dembinńska J, Roszczenko P, Ciesielska A, Kwiatkowska K. Contribution of CD14 and TLR4 to changes of the PI(4,5)P2
level in LPS-stimulated cells. J Leukoc Biol 2016; 100:1363-1373. [DOI: 10.1189/jlb.2vma1215-577r] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 06/12/2016] [Accepted: 06/29/2016] [Indexed: 01/09/2023] Open
|
34
|
Scheidt HA, Haralampiev I, Theisgen S, Schirbel A, Sbiera S, Huster D, Kroiss M, Müller P. The adrenal specific toxicant mitotane directly interacts with lipid membranes and alters membrane properties depending on lipid composition. Mol Cell Endocrinol 2016; 428:68-81. [PMID: 27002491 DOI: 10.1016/j.mce.2016.03.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/26/2016] [Accepted: 03/16/2016] [Indexed: 11/20/2022]
Abstract
Mitotane (o,p'.-DDD) is an orphan drug approved for the treatment of adrenocortical carcinoma. The mechanisms, which are responsible for this activity of the drug, are not completely understood. It can be hypothesized that an impact of mitotane is mediated by the interaction with cellular membranes. However, an interaction of mitotane with (lipid) membranes has not yet been investigated in detail. Here, we characterized the interaction of mitotane and its main metabolite o,p'-dichlorodiphenyldichloroacetic acid (o,p'-DDA) with lipid membranes by applying a variety of biophysical approaches of nuclear magnetic resonance, electron spin resonance, and fluorescence spectroscopy. We found that mitotane and o,p'-DDA bind to lipid membranes by inserting into the lipid-water interface of the bilayer. Mitotane but not o,p'-DDA directly causes a disturbance of bilayer structure leading to an increased permeability of the membrane for polar molecules. Mitotane induced alterations of the membrane integrity required the presence of phosphatidylethanolamine and/or cholesterol. Collectively, our data for the first time characterize the impact of mitotane on the lipid membrane structure and dynamics, which may contribute to a better understanding of specific mitotane effects and side effects.
Collapse
Affiliation(s)
- Holger A Scheidt
- University of Leipzig, Institute of Medical Physics and Biophysics, Härtelstr. 16-18, 04107 Leipzig, Germany
| | - Ivan Haralampiev
- Humboldt University Berlin, Department of Biology, Invalidenstr. 42, 10115 Berlin, Germany
| | - Stephan Theisgen
- University of Leipzig, Institute of Medical Physics and Biophysics, Härtelstr. 16-18, 04107 Leipzig, Germany
| | - Andreas Schirbel
- University Hospital Würzburg, Department of Nuclear Medicine, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Silviu Sbiera
- University Hospital Würzburg, Department of Internal Medicine I, Endocrinology and Diabetes Unit, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Daniel Huster
- University of Leipzig, Institute of Medical Physics and Biophysics, Härtelstr. 16-18, 04107 Leipzig, Germany
| | - Matthias Kroiss
- University Hospital Würzburg, Department of Internal Medicine I, Endocrinology and Diabetes Unit, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Peter Müller
- Humboldt University Berlin, Department of Biology, Invalidenstr. 42, 10115 Berlin, Germany.
| |
Collapse
|
35
|
Abstract
UNLABELLED In neurons, loss of plasma membrane phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] leads to a decrease in exocytosis and changes in electrical excitability. Restoration of PI(4,5)P2 levels after phospholipase C activation is therefore essential for a return to basal neuronal activity. However, the dynamics of phosphoinositide metabolism have not been analyzed in neurons. We measured dynamic changes of PI(4,5)P2, phosphatidylinositol 4-phosphate, diacylglycerol, inositol 1,4,5-trisphosphate, and Ca(2+) upon muscarinic stimulation in sympathetic neurons from adult male Sprague-Dawley rats with electrophysiological and optical approaches. We used this kinetic information to develop a quantitative description of neuronal phosphoinositide metabolism. The measurements and analysis show and explain faster synthesis of PI(4,5)P2 in sympathetic neurons than in electrically nonexcitable tsA201 cells. They can be used to understand dynamic effects of receptor-mediated phospholipase C activation on excitability and other PI(4,5)P2-dependent processes in neurons. SIGNIFICANCE STATEMENT Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] is a minor phospholipid in the cytoplasmic leaflet of the plasma membrane. Depletion of PI(4,5)P2 via phospholipase C-mediated hydrolysis leads to a decrease in exocytosis and alters electrical excitability in neurons. Restoration of PI(4,5)P2 is essential for a return to basal neuronal activity. However, the dynamics of phosphoinositide metabolism have not been analyzed in neurons. We studied the dynamics of phosphoinositide metabolism in sympathetic neurons upon muscarinic stimulation and used the kinetic information to develop a quantitative description of neuronal phosphoinositide metabolism. The measurements and analysis show a several-fold faster synthesis of PI(4,5)P2 in sympathetic neurons than in an electrically nonexcitable cell line, and provide a framework for future studies of PI(4,5)P2-dependent processes in neurons.
Collapse
|
36
|
Terwilliger TC, Bunkóczi G, Hung LW, Zwart PH, Smith JL, Akey DL, Adams PD. Can I solve my structure by SAD phasing? Anomalous signal in SAD phasing. Acta Crystallogr D Struct Biol 2016; 72:346-58. [PMID: 26960122 PMCID: PMC4784666 DOI: 10.1107/s2059798315019269] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 10/12/2015] [Indexed: 12/19/2022] Open
Abstract
A key challenge in the SAD phasing method is solving a structure when the anomalous signal-to-noise ratio is low. A simple theoretical framework for describing measurements of anomalous differences and the resulting useful anomalous correlation and anomalous signal in a SAD experiment is presented. Here, the useful anomalous correlation is defined as the correlation of anomalous differences with ideal anomalous differences from the anomalous substructure. The useful anomalous correlation reflects the accuracy of the data and the absence of minor sites. The useful anomalous correlation also reflects the information available for estimating crystallographic phases once the substructure has been determined. In contrast, the anomalous signal (the peak height in a model-phased anomalous difference Fourier at the coordinates of atoms in the anomalous substructure) reflects the information available about each site in the substructure and is related to the ability to find the substructure. A theoretical analysis shows that the expected value of the anomalous signal is the product of the useful anomalous correlation, the square root of the ratio of the number of unique reflections in the data set to the number of sites in the substructure, and a function that decreases with increasing values of the atomic displacement factor for the atoms in the substructure. This means that the ability to find the substructure in a SAD experiment is increased by high data quality and by a high ratio of reflections to sites in the substructure, and is decreased by high atomic displacement factors for the substructure.
Collapse
Affiliation(s)
- Thomas C. Terwilliger
- Bioscience Division, Los Alamos National Laboratory, Mail Stop M888, Los Alamos, NM 87545, USA
| | - Gábor Bunkóczi
- Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Cambridge CB2 0XY, England
| | - Li-Wei Hung
- Physics Division, Los Alamos National Laboratory, Mail Stop D454, Los Alamos, NM 87545, USA
| | - Peter H. Zwart
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Janet L. Smith
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - David L. Akey
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Paul D. Adams
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
37
|
Terwilliger TC, Bunkóczi G, Hung LW, Zwart PH, Smith JL, Akey DL, Adams PD. Can I solve my structure by SAD phasing? Planning an experiment, scaling data and evaluating the useful anomalous correlation and anomalous signal. Acta Crystallogr D Struct Biol 2016; 72:359-74. [PMID: 26960123 PMCID: PMC4784667 DOI: 10.1107/s2059798315019403] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 10/13/2015] [Indexed: 01/15/2023] Open
Abstract
A key challenge in the SAD phasing method is solving a structure when the anomalous signal-to-noise ratio is low. Here, algorithms and tools for evaluating and optimizing the useful anomalous correlation and the anomalous signal in a SAD experiment are described. A simple theoretical framework [Terwilliger et al. (2016), Acta Cryst. D72, 346-358] is used to develop methods for planning a SAD experiment, scaling SAD data sets and estimating the useful anomalous correlation and anomalous signal in a SAD data set. The phenix.plan_sad_experiment tool uses a database of solved and unsolved SAD data sets and the expected characteristics of a SAD data set to estimate the probability that the anomalous substructure will be found in the SAD experiment and the expected map quality that would be obtained if the substructure were found. The phenix.scale_and_merge tool scales unmerged SAD data from one or more crystals using local scaling and optimizes the anomalous signal by identifying the systematic differences among data sets, and the phenix.anomalous_signal tool estimates the useful anomalous correlation and anomalous signal after collecting SAD data and estimates the probability that the data set can be solved and the likely figure of merit of phasing.
Collapse
Affiliation(s)
- Thomas C. Terwilliger
- Bioscience Division, Los Alamos National Laboratory, Mail Stop M888, Los Alamos, NM 87545, USA
| | - Gábor Bunkóczi
- Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Cambridge CB2 0XY, England
| | - Li-Wei Hung
- Physics Division, Los Alamos National Laboratory, Mail Stop D454, Los Alamos, NM 87545, USA
| | - Peter H. Zwart
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Janet L. Smith
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - David L. Akey
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Paul D. Adams
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
38
|
Heilmann I. Plant phosphoinositide signaling - dynamics on demand. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1345-1351. [PMID: 26924252 DOI: 10.1016/j.bbalip.2016.02.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 02/18/2016] [Accepted: 02/19/2016] [Indexed: 10/22/2022]
Abstract
Eukaryotic membranes contain small amounts of lipids with regulatory roles. An important class of such regulatory lipids are phosphoinositides (PIs). Within membranes, PIs serve as recruitment signals, as regulators of membrane protein function or as precursors for second messenger production, thereby influencing a multitude of cellular processes with key importance for plant function and development. Plant PIs occur locally and transiently within membrane microdomains, and their abundance is strictly controlled. To understand the functions of the plant PI-network it is important to understand not only downstream PI-effects, but also to identify and characterize factors contributing to dynamic PI formation. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.
Collapse
Affiliation(s)
- Ingo Heilmann
- Department of Cellular Biochemistry, Institute for Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany.
| |
Collapse
|
39
|
Type III phosphatidylinositol 4 kinases: structure, function, regulation, signalling and involvement in disease. Biochem Soc Trans 2016; 44:260-6. [DOI: 10.1042/bst20150219] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Many important cellular functions are regulated by the selective recruitment of proteins to intracellular membranes mediated by specific interactions with lipid phosphoinositides. The enzymes that generate lipid phosphoinositides therefore must be properly positioned and regulated at their correct cellular locations. Phosphatidylinositol 4 kinases (PI4Ks) are key lipid signalling enzymes, and they generate the lipid species phosphatidylinositol 4-phosphate (PI4P), which plays important roles in regulating physiological processes including membrane trafficking, cytokinesis and organelle identity. PI4P also acts as the substrate for the generation of the signalling phosphoinositides phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol 3,4,5-trisphosphate (PIP3). PI4Ks also play critical roles in a number of pathological processes including mediating replication of a number of pathogenic RNA viruses, and in the development of the parasite responsible for malaria. Key to the regulation of PI4Ks is their regulation by a variety of both host and viral protein-binding partners. We review herein our current understanding of the structure, regulatory interactions and role in disease of the type III PI4Ks.
Collapse
|
40
|
Boura E, Nencka R. Phosphatidylinositol 4-kinases: Function, structure, and inhibition. Exp Cell Res 2015; 337:136-45. [DOI: 10.1016/j.yexcr.2015.03.028] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 03/12/2015] [Indexed: 02/07/2023]
|
41
|
Lin YH, Doms AG, Cheng E, Kim B, Evans TR, Machner MP. Host Cell-catalyzed S-Palmitoylation Mediates Golgi Targeting of the Legionella Ubiquitin Ligase GobX. J Biol Chem 2015; 290:25766-81. [PMID: 26316537 DOI: 10.1074/jbc.m115.637397] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Indexed: 01/10/2023] Open
Abstract
The facultative intracellular pathogen Legionella pneumophila, the causative agent of Legionnaires disease, infects and replicates within human alveolar macrophages. L. pneumophila delivers almost 300 effector proteins into the besieged host cell that alter signaling cascades and create conditions that favor intracellular bacterial survival. In order for the effectors to accomplish their intracellular mission, their activity needs to be specifically directed toward the correct host cell protein or target organelle. Here, we show that the L. pneumophila effector GobX possesses E3 ubiquitin ligase activity that is mediated by a central region homologous to mammalian U-box domains. Furthermore, we demonstrate that GobX exploits host cell S-palmitoylation to specifically localize to Golgi membranes. The hydrophobic palmitate moiety is covalently attached to a cysteine residue at position 175, which is part of an amphipathic α-helix within the C-terminal region of GobX. Site-directed mutagenesis of cysteine 175 or residues on the hydrophobic face of the amphipathic helix strongly attenuated palmitoylation and Golgi localization of GobX. Together, our study provides evidence that the L. pneumophila effector GobX exploits two post-translational modification pathways of host cells, ubiquitination and S-palmitoylation.
Collapse
Affiliation(s)
- Yi-Han Lin
- From the Unit on Microbial Pathogenesis, Cell Biology and Metabolism Program, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892
| | - Alexandra G Doms
- From the Unit on Microbial Pathogenesis, Cell Biology and Metabolism Program, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892
| | - Eric Cheng
- From the Unit on Microbial Pathogenesis, Cell Biology and Metabolism Program, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892
| | - Byoungkwan Kim
- From the Unit on Microbial Pathogenesis, Cell Biology and Metabolism Program, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892
| | - Timothy R Evans
- From the Unit on Microbial Pathogenesis, Cell Biology and Metabolism Program, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892
| | - Matthias P Machner
- From the Unit on Microbial Pathogenesis, Cell Biology and Metabolism Program, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
42
|
Listowski MA, Leluk J, Kraszewski S, Sikorski AF. Cholesterol Interaction with the MAGUK Protein Family Member, MPP1, via CRAC and CRAC-Like Motifs: An In Silico Docking Analysis. PLoS One 2015; 10:e0133141. [PMID: 26186446 PMCID: PMC4505867 DOI: 10.1371/journal.pone.0133141] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 06/24/2015] [Indexed: 12/22/2022] Open
Abstract
Cholesterol is essential for the proper organization of the biological membrane. Therefore, predicting which proteins can bind cholesterol is important in understanding how proteins participate in lateral membrane organization. In this study, a simple bioinformatics approach was used to establish whether MPP1, a member of the MAGUK protein family, is capable of binding cholesterol. Modelled and experimentally-validated fragment structures were mined from online resources and searched for CRAC and CRAC-like motifs. Several of these motifs were found in the primary structure of MPP1, and these were structurally visualized to see whether they localized to the protein surface. Since all of the CRAC and CRAC-like motifs were found at the surface of MPP1 domains, in silico docking experiments were performed to assess the possibility of interaction between CRAC motifs and cholesterol. The results obtained show that MPP1 can bind cholesterol via CRAC and CRAC-like motifs with moderate to high affinity (KI in the nano- to micro-molar range). It was also found that palmitoylation-mimicking mutations (C/F or C/M) did not affect the affinity of MPP1 towards cholesterol. Data presented here may help to understand at least one of the molecular mechanisms via which MPP1 affects lateral organization of the membrane.
Collapse
Affiliation(s)
- Marcin A. Listowski
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Jacek Leluk
- Department of Molecular Biology, University of Zielona Góra, Zielona Góra, Poland
| | - Sebastian Kraszewski
- Department of Biomedical Engineering, Wrocław University of Technology, Wrocław, Poland
| | - Aleksander F. Sikorski
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
- Department of Molecular Biology, University of Zielona Góra, Zielona Góra, Poland
- * E-mail:
| |
Collapse
|
43
|
Klima M, Baumlova A, Chalupska D, Hřebabecký H, Dejmek M, Nencka R, Boura E. The high-resolution crystal structure of phosphatidylinositol 4-kinase IIβ and the crystal structure of phosphatidylinositol 4-kinase IIα containing a nucleoside analogue provide a structural basis for isoform-specific inhibitor design. ACTA ACUST UNITED AC 2015; 71:1555-63. [PMID: 26143926 DOI: 10.1107/s1399004715009505] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/18/2015] [Indexed: 11/10/2022]
Abstract
Phosphatidylinositol 4-phosphate (PI4P) is the most abundant monophosphoinositide in eukaryotic cells. Humans have four phosphatidylinositol 4-kinases (PI4Ks) that synthesize PI4P, among which are PI4K IIβ and PI4K IIα. In this study, two crystal structures are presented: the structure of human PI4K IIβ and the structure of PI4K IIα containing a nucleoside analogue. The former, a complex with ATP, is the first high-resolution (1.9 Å) structure of a PI4K. These structures reveal new details such as high conformational heterogeneity of the lateral hydrophobic pocket of the C-lobe and together provide a structural basis for isoform-specific inhibitor design.
Collapse
Affiliation(s)
- Martin Klima
- Department of Biochemistry, Institute of Organic Chemistry and Biochemistry, Flemingovo nam. 2, 166 10 Prague, Czech Republic
| | - Adriana Baumlova
- Department of Biochemistry, Institute of Organic Chemistry and Biochemistry, Flemingovo nam. 2, 166 10 Prague, Czech Republic
| | - Dominika Chalupska
- Department of Biochemistry, Institute of Organic Chemistry and Biochemistry, Flemingovo nam. 2, 166 10 Prague, Czech Republic
| | - Hubert Hřebabecký
- Department of Biochemistry, Institute of Organic Chemistry and Biochemistry, Flemingovo nam. 2, 166 10 Prague, Czech Republic
| | - Milan Dejmek
- Department of Biochemistry, Institute of Organic Chemistry and Biochemistry, Flemingovo nam. 2, 166 10 Prague, Czech Republic
| | - Radim Nencka
- Department of Biochemistry, Institute of Organic Chemistry and Biochemistry, Flemingovo nam. 2, 166 10 Prague, Czech Republic
| | - Evzen Boura
- Department of Biochemistry, Institute of Organic Chemistry and Biochemistry, Flemingovo nam. 2, 166 10 Prague, Czech Republic
| |
Collapse
|
44
|
Mejdrová I, Chalupská D, Kögler M, Šála M, Plačková P, Baumlová A, Hřebabecký H, Procházková E, Dejmek M, Guillon R, Strunin D, Weber J, Lee G, Birkus G, Mertlíková-Kaiserová H, Boura E, Nencka R. Highly Selective Phosphatidylinositol 4-Kinase IIIβ Inhibitors and Structural Insight into Their Mode of Action. J Med Chem 2015; 58:3767-93. [PMID: 25897704 DOI: 10.1021/acs.jmedchem.5b00499] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Phosphatidylinositol 4-kinase IIIβ is a cellular lipid kinase pivotal to pathogenesis of various RNA viruses. These viruses hijack the enzyme in order to modify the structure of intracellular membranes and use them for the construction of functional replication machinery. Selective inhibitors of this enzyme are potential broad-spectrum antiviral agents, as inhibition of this enzyme results in the arrest of replication of PI4K IIIβ-dependent viruses. Herein, we report a detailed study of novel selective inhibitors of PI4K IIIβ, which exert antiviral activity against a panel of single-stranded positive-sense RNA viruses. Our crystallographic data show that the inhibitors occupy the binding site for the adenine ring of the ATP molecule and therefore prevent the phosphorylation reaction.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Gary Lee
- ‡Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Gabriel Birkus
- ‡Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | | | | | | |
Collapse
|
45
|
Waugh MG. PIPs in neurological diseases. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1066-82. [PMID: 25680866 DOI: 10.1016/j.bbalip.2015.02.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/29/2015] [Accepted: 02/01/2015] [Indexed: 12/19/2022]
Abstract
Phosphoinositide (PIP) lipids regulate many aspects of cell function in the nervous system including receptor signalling, secretion, endocytosis, migration and survival. Levels of PIPs such as PI4P, PI(4,5)P2 and PI(3,4,5)P3 are normally tightly regulated by phosphoinositide kinases and phosphatases. Deregulation of these biochemical pathways leads to lipid imbalances, usually on intracellular endosomal membranes, and these changes have been linked to a number of major neurological diseases including Alzheimer's, Parkinson's, epilepsy, stroke, cancer and a range of rarer inherited disorders including brain overgrowth syndromes, Charcot-Marie-Tooth neuropathies and neurodevelopmental conditions such as Lowe's syndrome. This article analyses recent progress in this area and explains how PIP lipids are involved, to varying degrees, in almost every class of neurological disease. This article is part of a Special Issue entitled Brain Lipids.
Collapse
Affiliation(s)
- Mark G Waugh
- Lipid and Membrane Biology Group, Institute for Liver and Digestive Health, UCL, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom.
| |
Collapse
|
46
|
Baumlova A, Chalupska D, Róźycki B, Jovic M, Wisniewski E, Klima M, Dubankova A, Kloer DP, Nencka R, Balla T, Boura E. The crystal structure of the phosphatidylinositol 4-kinase IIα. EMBO Rep 2014; 15:1085-92. [PMID: 25168678 DOI: 10.15252/embr.201438841] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Phosphoinositides are a class of phospholipids generated by the action of phosphoinositide kinases with key regulatory functions in eukaryotic cells. Here, we present the atomic structure of phosphatidylinositol 4-kinase type IIα (PI4K IIα), in complex with ATP solved by X-ray crystallography at 2.8 Å resolution. The structure revealed a non-typical kinase fold that could be divided into N- and C-lobes with the ATP binding groove located in between. Surprisingly, a second ATP was found in a lateral hydrophobic pocket of the C-lobe. Molecular simulations and mutagenesis analysis revealed the membrane binding mode and the putative function of the hydrophobic pocket. Taken together, our results suggest a mechanism of PI4K IIα recruitment, regulation, and function at the membrane.
Collapse
Affiliation(s)
- Adriana Baumlova
- Institute of Organic Chemistry and Biochemistry AS CR, Prague, Czech Republic
| | - Dominika Chalupska
- Institute of Organic Chemistry and Biochemistry AS CR, Prague, Czech Republic
| | - Bartosz Róźycki
- Institute of Physics Polish Academy of Sciences, Warsaw, Poland
| | - Marko Jovic
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, NICHD NIH, Bethesda, MD, USA
| | - Eva Wisniewski
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, NICHD NIH, Bethesda, MD, USA
| | - Martin Klima
- Institute of Organic Chemistry and Biochemistry AS CR, Prague, Czech Republic
| | - Anna Dubankova
- Institute of Organic Chemistry and Biochemistry AS CR, Prague, Czech Republic
| | - Daniel P Kloer
- Syngenta Jealott's Hill Internation Research Centre, Bracknell, UK
| | - Radim Nencka
- Institute of Organic Chemistry and Biochemistry AS CR, Prague, Czech Republic
| | - Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, NICHD NIH, Bethesda, MD, USA
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry AS CR, Prague, Czech Republic
| |
Collapse
|
47
|
Dual inhibition of EGFR at protein and activity level via combinatorial blocking of PI4KIIα as anti-tumor strategy. Protein Cell 2014; 5:457-68. [PMID: 24801752 PMCID: PMC4026421 DOI: 10.1007/s13238-014-0055-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 03/20/2014] [Indexed: 11/04/2022] Open
Abstract
Our previous studies indicate that phosphatidylinositol 4-kinase IIα can promote the growth of multi-malignant tumors via HER-2/PI3K and MAPK pathways. However, the molecular mechanisms of this pathway and its potential for clinical application remain unknown. In this study, we found that PI4KIIα could be an ideal combinatorial target for EGFR treatment via regulating EGFR degradation. Results showed that PI4KIIα knockdown reduced EGFR protein level, and the expression of PI4KIIα shows a strong correlation with EGFR in human breast cancer tissues (r = 0.77, P < 0.01). PI4KIIα knockdown greatly prolonged the effects and decreased the effective dosage of AG-1478, a specific inhibitor of EGFR. In addition, it significantly enhanced AG1478-induced inhibition of tumor cell survival and strengthened the effect of the EGFR-targeting anti-cancer drug Iressa in xenograft tumor models. Mechanistically, we found that PI4KIIα suppression increased EGFR ligand-independent degradation. Quantitative proteomic analysis by stable isotope labeling with amino acids in cell culture (SILAC) and LC-MS/MS suggested that HSP90 mediated the effect of PI4KIIα on EGFR. Furthermore, we found that combined inhibition of PI4KIIα and EGFR suppressed both PI3K/AKT and MAPK/ERK pathways, and resulted in downregulation of multiple oncogenes like PRDX2, FASN, MTA2, ultimately leading to suppression of tumor growth. Therefore, we conclude that combined inhibition of PI4KIIα and EGFR exerts a multiple anti-tumor effect. Dual inhibition of EGFR at protein and activity level via combinatorial blocking of PI4KIIα presents a novel strategy to combat EGFR-dependent tumors.
Collapse
|
48
|
Puzzle out the regulation mechanism of PI4KIIα activity. SCIENCE CHINA-LIFE SCIENCES 2014; 57:636-8. [DOI: 10.1007/s11427-014-4656-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 04/14/2014] [Indexed: 10/25/2022]
|