1
|
Agatha O, Mutwil-Anderwald D, Tan JY, Mutwil M. Plant sesquiterpene lactones. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230350. [PMID: 39343024 PMCID: PMC11449222 DOI: 10.1098/rstb.2023.0350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 10/01/2024] Open
Abstract
Sesquiterpene lactones (STLs) are a prominent group of plant secondary metabolites predominantly found in the Asteraceae family and have multiple ecological roles and medicinal applications. This review describes the evolutionary and ecological significance of STLs, highlighting their roles in plant defence mechanisms against herbivory and as phytotoxins, alongside their function as environmental signalling molecules. We also cover the substantial role of STLs in medicine and their mode of action in health and disease. We discuss the biosynthetic pathways and the various modifications that make STLs one of the most diverse groups of metabolites. Finally, we discuss methods for identifying and predicting STL biosynthesis pathways. This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Olivia Agatha
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive , Singapore 637551, Singapore
| | - Daniela Mutwil-Anderwald
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive , Singapore 637551, Singapore
| | - Jhing Yein Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive , Singapore 637551, Singapore
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive , Singapore 637551, Singapore
| |
Collapse
|
2
|
Li C, Colinas M, Wood JC, Vaillancourt B, Hamilton JP, Jones SL, Caputi L, O'Connor SE, Buell CR. Cell-type-aware regulatory landscapes governing monoterpene indole alkaloid biosynthesis in the medicinal plant Catharanthus roseus. THE NEW PHYTOLOGIST 2024. [PMID: 39456129 DOI: 10.1111/nph.20208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024]
Abstract
In plants, the biosynthetic pathways of some specialized metabolites are partitioned into specialized or rare cell types, as exemplified by the monoterpenoid indole alkaloid (MIA) pathway of Catharanthus roseus (Madagascar Periwinkle), the source of the anticancer compounds vinblastine and vincristine. In the leaf, the C. roseus MIA biosynthetic pathway is partitioned into three cell types with the final known steps of the pathway expressed in the rare cell type termed idioblast. How cell-type specificity of MIA biosynthesis is achieved is poorly understood. We generated single-cell multi-omics data from C. roseus leaves. Integrating gene expression and chromatin accessibility profiles across single cells, as well as transcription factor (TF)-binding site profiles, we constructed a cell-type-aware gene regulatory network for MIA biosynthesis. We showcased cell-type-specific TFs as well as cell-type-specific cis-regulatory elements. Using motif enrichment analysis, co-expression across cell types, and functional validation approaches, we discovered a novel idioblast-specific TF (Idioblast MYB1, CrIDM1) that activates expression of late-stage MIA biosynthetic genes in the idioblast. These analyses not only led to the discovery of the first documented cell-type-specific TF that regulates the expression of two idioblast-specific biosynthetic genes within an idioblast metabolic regulon but also provides insights into cell-type-specific metabolic regulation.
Collapse
Affiliation(s)
- Chenxin Li
- Center for Applied Genetic Technologies, University of Georgia, Athens, 30602, GA, USA
- Department of Crop and Soil Sciences, University of Georgia, Athens, 30602, GA, USA
| | - Maite Colinas
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Joshua C Wood
- Center for Applied Genetic Technologies, University of Georgia, Athens, 30602, GA, USA
| | - Brieanne Vaillancourt
- Center for Applied Genetic Technologies, University of Georgia, Athens, 30602, GA, USA
| | - John P Hamilton
- Center for Applied Genetic Technologies, University of Georgia, Athens, 30602, GA, USA
- Department of Crop and Soil Sciences, University of Georgia, Athens, 30602, GA, USA
| | - Sophia L Jones
- Center for Applied Genetic Technologies, University of Georgia, Athens, 30602, GA, USA
| | - Lorenzo Caputi
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - C Robin Buell
- Center for Applied Genetic Technologies, University of Georgia, Athens, 30602, GA, USA
- Department of Crop and Soil Sciences, University of Georgia, Athens, 30602, GA, USA
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Athens, 30602, GA, USA
| |
Collapse
|
3
|
Lezin E, Durand M, Birer Williams C, Lopez Vazquez AL, Perrot T, Gautron N, Pétrignet J, Cuello C, Jansen HJ, Magot F, Szwarc S, Le Pogam P, Beniddir MA, Koudounas K, Oudin A, St-Pierre B, Giglioli-Guivarc'h N, Sun C, Papon N, Jensen MK, Dirks RP, O'Connor SE, Besseau S, Courdavault V. Genome-based discovery of pachysiphine synthases in Tabernaemontana elegans. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 39427334 DOI: 10.1111/tpj.17085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/18/2024] [Accepted: 09/28/2024] [Indexed: 10/22/2024]
Abstract
Plant-specialized metabolism represents an inexhaustible source of active molecules, some of which have been used in human health for decades. Among these, monoterpene indole alkaloids (MIAs) include a wide range of valuable compounds with anticancer, antihypertensive, or neuroactive properties. This is particularly the case for the pachysiphine derivatives which show interesting antitumor and anti-Alzheimer activities but accumulate at very low levels in several Tabernaemontana species. Unfortunately, genome data in Tabernaemontanaceae are lacking and knowledge on the biogenesis of pachysiphine-related MIAs in planta remains scarce, limiting the prospects for the biotechnological supply of many pachysiphine-derived biopharmaceuticals. Here, we report a raw version of the toad tree (Tabernaemontana elegans) genome sequence. These new genomic resources led to the identification and characterization of a couple of genes encoding cytochrome P450 with pachysiphine synthase activity. Our phylogenomic and docking analyses highlight the different evolutionary processes that have been recruited to epoxidize the pachysiphine precursor tabersonine at a specific position and in a dedicated orientation, thus enriching our understanding of the diversification and speciation of the MIA metabolism in plants. These gene discoveries also allowed us to engineer the synthesis of MIAs in yeast through the combinatorial association of metabolic enzymes resulting in the tailor-made synthesis of non-natural MIAs. Overall, this work represents a step forward for the future supply of pachysiphine-derived drugs by microbial cell factories.
Collapse
Affiliation(s)
- Enzo Lezin
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, Tours, 37200, France
| | - Mickael Durand
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, Tours, 37200, France
| | - Caroline Birer Williams
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, Tours, 37200, France
| | - Ana Luisa Lopez Vazquez
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, Tours, 37200, France
| | - Thomas Perrot
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, Tours, 37200, France
| | - Nicolas Gautron
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, Tours, 37200, France
| | - Julien Pétrignet
- Laboratoire Synthèse et Isolement de Molécules BioActives (SIMBA, EA 7502), Université de Tours, Tours, 37200, France
| | - Clément Cuello
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, Tours, 37200, France
| | - Hans J Jansen
- Future Genomics Technologies, Leiden, 2333 BE, The Netherlands
| | - Florent Magot
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, Tours, 37200, France
| | - Sarah Szwarc
- Équipe Chimie des Substances Naturelles, BioCIS, Université Paris-Saclay, CNRS, Orsay, 91400, France
| | - Pierre Le Pogam
- Équipe Chimie des Substances Naturelles, BioCIS, Université Paris-Saclay, CNRS, Orsay, 91400, France
| | - Mehdi A Beniddir
- Équipe Chimie des Substances Naturelles, BioCIS, Université Paris-Saclay, CNRS, Orsay, 91400, France
| | - Konstantinos Koudounas
- Laboratory of Agricultural Chemistry, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Audrey Oudin
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, Tours, 37200, France
| | - Benoit St-Pierre
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, Tours, 37200, France
| | | | - Chao Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nicolas Papon
- Univ Angers, Univ Brest, IRF, SFR ICAT, Angers, F-49000, France
| | - Michael Krogh Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Ron P Dirks
- Future Genomics Technologies, Leiden, 2333 BE, The Netherlands
| | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Sébastien Besseau
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, Tours, 37200, France
| | - Vincent Courdavault
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, Tours, 37200, France
| |
Collapse
|
4
|
Golubova D, Tansley C, Su H, Patron NJ. Engineering Nicotiana benthamiana as a platform for natural product biosynthesis. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102611. [PMID: 39098308 DOI: 10.1016/j.pbi.2024.102611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/06/2024] [Accepted: 07/15/2024] [Indexed: 08/06/2024]
Abstract
Nicotiana benthamiana is a model plant, widely used for research. The susceptibility of young plants to Agrobacterium tumefaciens has been utilised for transient gene expression, enabling the production of recombinant proteins at laboratory and commercial scales. More recently, this technique has been used for the rapid prototyping of synthetic genetic circuits and for the elucidation and reconstruction of metabolic pathways. In the last few years, many complex metabolic pathways have been successfully reconstructed in this species. In addition, the availability of improved genomic resources and efficient gene editing tools have enabled the application of sophisticated metabolic engineering approaches to increase the purity and yield of target compounds. In this review, we discuss recent advances in the use of N. benthamiana for understanding and engineering plant metabolism, as well as efforts to improve the utility of this species as a production chassis for natural products.
Collapse
Affiliation(s)
- D Golubova
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - C Tansley
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK; Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - H Su
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - N J Patron
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK; Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK.
| |
Collapse
|
5
|
Zhu Y, Zhao J, Ding H, Qiu M, Xue L, Ge D, Wen G, Ren H, Li P, Wang J. Applications of plant-derived extracellular vesicles in medicine. MedComm (Beijing) 2024; 5:e741. [PMID: 39309692 PMCID: PMC11413507 DOI: 10.1002/mco2.741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
Plant-derived extracellular vesicles (EVs) are promising therapeutic agents owing to their natural abundance, accessibility, and unique biological properties. This review provides a comprehensive exploration of the therapeutic potential of plant-derived EVs and emphasizes their anti-inflammatory, antimicrobial, and tumor-inhibitory effects. Here, we discussed the advancements in isolation and purification techniques, such as ultracentrifugation and size-exclusion chromatography, which are critical for maintaining the functional integrity of these nanovesicles. Next, we investigated the diverse administration routes of EVs and carefully weighed their respective advantages and challenges related to bioavailability and patient compliance. Moreover, we elucidated the multifaceted mechanisms of action of plant-derived EVs, including their roles in anti-inflammation, antioxidation, antitumor activity, and modulation of gut microbiota. We also discussed the impact of EVs on specific diseases such as cancer and inflammatory bowel disease, highlighting the importance of addressing current challenges related to production scalability, regulatory compliance, and immunogenicity. Finally, we proposed future research directions for optimizing EV extraction and developing targeted delivery systems. Through these efforts, we envision the seamless integration of plant-derived EVs into mainstream medicine, offering safe and potent therapeutic alternatives across various medical disciplines.
Collapse
Affiliation(s)
- Yawen Zhu
- Division of Hepatobiliary and Transplantation SurgeryDepartment of General SurgeryNanjing Drum Tower HospitalClinical College of Nanjing University of Chinese MedicineNanjingChina
| | - Junqi Zhao
- Division of Hepatobiliary and Transplantation SurgeryDepartment of General SurgeryNanjing Drum Tower HospitalClinical College of Nanjing University of Chinese MedicineNanjingChina
| | - Haoran Ding
- Division of Hepatobiliary and Transplantation SurgeryDepartment of General SurgeryNanjing Drum Tower HospitalClinical College of Nanjing University of Chinese MedicineNanjingChina
| | - Mengdi Qiu
- Division of Hepatobiliary and Transplantation SurgeryDepartment of General SurgeryNanjing Drum Tower HospitalClinical College of Nanjing University of Chinese MedicineNanjingChina
| | - Lingling Xue
- Division of Hepatobiliary and Transplantation SurgeryDepartment of General SurgeryNanjing Drum Tower HospitalClinical College of Nanjing University of Chinese MedicineNanjingChina
| | - Dongxue Ge
- Division of Hepatobiliary and Transplantation SurgeryDepartment of General SurgeryNanjing Drum Tower HospitalClinical College of Nanjing University of Chinese MedicineNanjingChina
| | - Gaolin Wen
- Division of Hepatobiliary and Transplantation SurgeryDepartment of General SurgeryNanjing Drum Tower HospitalClinical College of Nanjing University of Chinese MedicineNanjingChina
| | - Haozhen Ren
- Division of Hepatobiliary and Transplantation SurgeryDepartment of General SurgeryNanjing Drum Tower HospitalClinical College of Nanjing University of Chinese MedicineNanjingChina
| | - Peng Li
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Jinglin Wang
- Division of Hepatobiliary and Transplantation SurgeryDepartment of General SurgeryNanjing Drum Tower HospitalClinical College of Nanjing University of Chinese MedicineNanjingChina
| |
Collapse
|
6
|
Shen X, Guan Z, Zhang C, Yan Z, Sun C. The multicellular compartmentation of plant specialized metabolism. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102616. [PMID: 39142253 DOI: 10.1016/j.pbi.2024.102616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024]
Abstract
The phenomenon of multicellular compartmentation in biosynthetic pathways has been documented for only a limited subset of specialized metabolites, despite its hypothesized significance in facilitating plant survival and adaptation to environmental stress. Transporters that shuttle metabolic intermediates between cells are hypothesized to be integral components enabling compartmentalized biosynthesis. Nevertheless, our understanding of the multicellular compartmentation of plant specialized metabolism and the associated intermediate transporters remains incomplete. The emergence of single-cell and spatial multiomics techniques holds promise for shedding light on unresolved questions in this field, such as the prevalence of multicellular compartmentation across the plant kingdom and the specific types of specialized metabolites whose biosynthetic pathways are prone to compartmentation. Advancing our understanding of the mechanisms underlying multicellular compartmentation will contribute to improving the production of specialized target metabolites through metabolic engineering or synthetic biology.
Collapse
Affiliation(s)
- Xiaofeng Shen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing, 100700, China
| | - Zhijing Guan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Chuyi Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Zhaojiu Yan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Chao Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing, 100700, China.
| |
Collapse
|
7
|
Chang C, Yang B, Guo X, Gao C, Wang B, Zhao X, Tang Z. Genome-Wide Survey of the Potential Function of CrLBDs in Catharanthus roseus MIA Biosynthesis. Genes (Basel) 2024; 15:1140. [PMID: 39336732 PMCID: PMC11431567 DOI: 10.3390/genes15091140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Catharanthus roseus (C. roseus) can produce over 150 types of monoterpenoid indole alkaloids (MIAs), including vinblastine and vincristine, which are currently the primary sources of these alkaloids. Exploring the complex regulatory mechanisms of C. roseus is significant for resolving MIA biosynthesis. The Lateral Organ Boundaries Domain (LBD) is a plant-specific transcription factor family that plays crucial roles in the physiological processes of plant growth, stress tolerance, and specialized metabolism. However, the LBD gene family has not been extensively characterized in C. roseus, and whether its members are involved in MIA biosynthesis is still being determined. A total of 34 C. roseus LBD (CrLBD) genes were identified. RNA-Seq data were investigated to examine the expression patterns of CrLBD genes in various tissues and methyl jasmonate (MeJA) treatments. The results revealed that the Class Ia member CrLBD4 is positively correlated with iridoid biosynthetic genes (p < 0.05, r ≥ 0.8); the Class IIb member CrLBD11 is negatively correlated with iridoid biosynthetic genes (p < 0.05, r ≤ -0.8). Further validation in leaves at different growth stages of C. roseus showed that CrLBD4 and CrLBD11 exhibited different potential expression trends with iridoid biosynthetic genes and the accumulation of vindoline and catharanthine. Yeast one-hybrid (Y1H) and subcellular localization assays demonstrated that CrLBD4 and CrLBD11 could bind to the "aattatTCCGGccgc" cis-element and localize to the nucleus. These findings suggest that CrLBD4 and CrLBD11 may be potential candidates for regulating MIA biosynthesis in C. roseus. In this study, we systematically analyzed the CrLBD gene family and provided insights into the roles of certain CrLBDs in the MIA biosynthesis of C. roseus.
Collapse
Affiliation(s)
- Chunhao Chang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (C.C.); (X.G.); (C.G.)
- Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin 150040, China
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China; (B.Y.); (B.W.)
| | - Bingrun Yang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China; (B.Y.); (B.W.)
| | - Xiaorui Guo
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (C.C.); (X.G.); (C.G.)
- Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin 150040, China
| | - Chunyan Gao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (C.C.); (X.G.); (C.G.)
- Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin 150040, China
| | - Biying Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China; (B.Y.); (B.W.)
| | - Xiaoju Zhao
- Bioengineering Institute, Daqing Normal University, Daqing 163712, China
| | - Zhonghua Tang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (C.C.); (X.G.); (C.G.)
- Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
8
|
Vu AH, Kang M, Wurlitzer J, Heinicke S, Li C, Wood JC, Grabe V, Buell CR, Caputi L, O’Connor SE. Quantitative Single-Cell Mass Spectrometry Provides a Highly Resolved Analysis of Natural Product Biosynthesis Partitioning in Plants. J Am Chem Soc 2024; 146:23891-23900. [PMID: 39138868 PMCID: PMC11363012 DOI: 10.1021/jacs.4c06336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
Plants produce an extraordinary array of natural products (specialized metabolites). Notably, these structurally complex molecules are not evenly distributed throughout plant tissues but are instead synthesized and stored in specific cell types. Elucidating both the biosynthesis and function of natural products would be greatly facilitated by tracking the location of these metabolites at the cell-level resolution. However, detection, identification, and quantification of metabolites in single cells, particularly from plants, have remained challenging. Here, we show that we can definitively identify and quantify the concentrations of 16 molecules from four classes of natural products in individual cells of leaf, root, and petal of the medicinal plant Catharanthus roseus using a plate-based single-cell mass spectrometry method. We show that identical natural products show substantially different patterns of cell-type localization in different tissues. Moreover, we show that natural products are often found in a wide range of concentrations across a population of cells, with some natural products at concentrations of over 100 mM per cell. This single-cell mass spectrometry method provides a highly resolved picture of plant natural product biosynthesis partitioning at a cell-specific resolution.
Collapse
Affiliation(s)
- Anh Hai Vu
- Department
of Natural Product Biosynthesis, Max Planck
Institute for Chemical Ecology, Jena 07745, Germany
| | - Moonyoung Kang
- Department
of Natural Product Biosynthesis, Max Planck
Institute for Chemical Ecology, Jena 07745, Germany
| | - Jens Wurlitzer
- Department
of Natural Product Biosynthesis, Max Planck
Institute for Chemical Ecology, Jena 07745, Germany
| | - Sarah Heinicke
- Department
of Natural Product Biosynthesis, Max Planck
Institute for Chemical Ecology, Jena 07745, Germany
| | - Chenxin Li
- Center
for Applied Genetic Technologies, University
of Georgia, Athens, Georgia 30602, United States
- Department
of Crop and Soil Sciences, University of
Georgia, Athens, Georgia 30602, United
States
| | - Joshua C. Wood
- Center
for Applied Genetic Technologies, University
of Georgia, Athens, Georgia 30602, United States
| | - Veit Grabe
- Microscopic
Imaging Service, Max Planck Institute for
Chemical Ecology, Jena 07745, Germany
| | - C. Robin Buell
- Center
for Applied Genetic Technologies, University
of Georgia, Athens, Georgia 30602, United States
- Department
of Crop and Soil Sciences, University of
Georgia, Athens, Georgia 30602, United
States
- Institute
of Plant Breeding, Genetics, and Genomics, University of Georgia, Athens, Georgia 30602, United States
| | - Lorenzo Caputi
- Department
of Natural Product Biosynthesis, Max Planck
Institute for Chemical Ecology, Jena 07745, Germany
| | - Sarah E. O’Connor
- Department
of Natural Product Biosynthesis, Max Planck
Institute for Chemical Ecology, Jena 07745, Germany
| |
Collapse
|
9
|
Ye C, Li M, Gao J, Zuo Y, Xiao F, Jiang X, Cheng J, Huang L, Xu Z, Lian J. Metabolic engineering of Pichia pastoris for overproduction of cis-trans nepetalactol. Metab Eng 2024; 84:83-94. [PMID: 38897449 DOI: 10.1016/j.ymben.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/13/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Monoterpene indole alkaloids (MIAs) are a group of plant-derived natural products with high-value medicinal properties. However, their availability for clinical application is limited due to challenges in plant extraction. Microbial production has emerged as a promising strategy to meet the clinical demands for MIAs. The biosynthetic pathway of cis-trans nepetalactol, which serves as the universal iridoid scaffold for all MIAs, has been successfully identified and reconstituted. However, bottlenecks and challenges remain to construct a high-yielding platform strain for cis-trans nepetalactol production, which is vital for subsequent MIAs biosynthesis. In the present study, we focused on engineering of Pichia pastoris cell factories to enhance the production of geraniol, 8-hydroxygeraniol, and cis-trans nepetalactol. By targeting the biosynthetic pathway from acetyl-CoA to geraniol in both peroxisomes and cytoplasm, we achieved comparable geraniol titers in both compartments. Through protein engineering, we found that either G8H or CPR truncation increased the production of 8-hydroxygeraniol, with a 47.8-fold and 14.0-fold increase in the peroxisomal and cytosolic pathway strain, respectively. Furthermore, through a combination of dynamical control of ERG20, precursor and cofactor supply engineering, diploid engineering, and dual subcellular compartmentalization engineering, we achieved the highest ever reported production of cis-trans nepetalactol, with a titer of 4429.4 mg/L using fed-batch fermentation in a 5-L bioreactor. We anticipate our systematic metabolic engineering strategies to facilitate the development of P. pastoris cell factories for sustainable production of MIAs and other plant natural products.
Collapse
Affiliation(s)
- Cuifang Ye
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Mengxin Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jucan Gao
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310000, China
| | - Yimeng Zuo
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310000, China
| | - Feng Xiao
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310000, China
| | - Xiaojing Jiang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jintao Cheng
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310000, China
| | - Lei Huang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310000, China
| | - Zhinan Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310000, China.
| |
Collapse
|
10
|
Bergman ME, Kortbeek RWJ, Gutensohn M, Dudareva N. Plant terpenoid biosynthetic network and its multiple layers of regulation. Prog Lipid Res 2024; 95:101287. [PMID: 38906423 DOI: 10.1016/j.plipres.2024.101287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Terpenoids constitute one of the largest and most chemically diverse classes of primary and secondary metabolites in nature with an exceptional breadth of functional roles in plants. Biosynthesis of all terpenoids begins with the universal five‑carbon building blocks, isopentenyl diphosphate (IPP) and its allylic isomer dimethylallyl diphosphate (DMAPP), which in plants are derived from two compartmentally separated but metabolically crosstalking routes, the mevalonic acid (MVA) and methylerythritol phosphate (MEP) pathways. Here, we review the current knowledge on the terpenoid precursor pathways and highlight the critical hidden constraints as well as multiple regulatory mechanisms that coordinate and homeostatically govern carbon flux through the terpenoid biosynthetic network in plants.
Collapse
Affiliation(s)
- Matthew E Bergman
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States; Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Ruy W J Kortbeek
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States; Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Michael Gutensohn
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, United States
| | - Natalia Dudareva
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States; Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States; Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
11
|
Fu H, Wang Y, Mi F, Wang L, Yang Y, Wang F, Yue Z, He Y. Transcriptome and metabolome analysis reveals mechanism of light intensity modulating iridoid biosynthesis in Gentiana macrophylla Pall. BMC PLANT BIOLOGY 2024; 24:526. [PMID: 38858643 PMCID: PMC11165902 DOI: 10.1186/s12870-024-05217-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/29/2024] [Indexed: 06/12/2024]
Abstract
Light intensity is a key factor affecting the synthesis of secondary metabolites in plants. However, the response mechanisms of metabolites and genes in Gentiana macrophylla under different light intensities have not been determined. In the present study, G. macrophylla seedlings were treated with LED light intensities of 15 µmol/m2/s (low light, LL), 90 µmol/m2/s (medium light, ML), and 200 µmol/m2/s (high light, HL), and leaves were collected on the 5th day for further investigation. A total of 2162 metabolites were detected, in which, the most abundant metabolites were identified as flavonoids, carbohydrates, terpenoids and amino acids. A total of 3313 and 613 differentially expressed genes (DEGs) were identified in the LL and HL groups compared with the ML group, respectively, mainly enriched in KEGG pathways such as carotenoid biosynthesis, carbon metabolism, glycolysis/gluconeogenesis, amino acids biosynthesis, plant MAPK pathway and plant hormone signaling. Besides, the transcription factors of GmMYB5 and GmbHLH20 were determined to be significantly correlated with loganic acid biosynthesis; the expression of photosystem-related enzyme genes was altered under different light intensities, regulating the expression of enzyme genes involved in the carotenoid, chlorophyll, glycolysis and amino acids pathway, then affecting their metabolic biosynthesis. As a result, low light inhibited photosynthesis, delayed glycolysis, thus, increased certain amino acids and decreased loganic acid production, while high light got an opposite trend. Our research contributed significantly to understand the molecular mechanism of light intensity in controlling metabolic accumulation in G. macrophylla.
Collapse
Affiliation(s)
- Huanhuan Fu
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Co-construction Collaborative Innovation Center for Chinese Medicinal Resources Industrialization by Shaanxi & Education Ministry, School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, P.R. China
| | - Yaomin Wang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Co-construction Collaborative Innovation Center for Chinese Medicinal Resources Industrialization by Shaanxi & Education Ministry, School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, P.R. China
| | - Fakai Mi
- College of Life Science, Qinghai Normal University, Xining, 810016, P.R. China
| | - Li Wang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Co-construction Collaborative Innovation Center for Chinese Medicinal Resources Industrialization by Shaanxi & Education Ministry, School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, P.R. China
| | - Ye Yang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Co-construction Collaborative Innovation Center for Chinese Medicinal Resources Industrialization by Shaanxi & Education Ministry, School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, P.R. China
| | - Fang Wang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Co-construction Collaborative Innovation Center for Chinese Medicinal Resources Industrialization by Shaanxi & Education Ministry, School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, P.R. China
| | - Zhenggang Yue
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Co-construction Collaborative Innovation Center for Chinese Medicinal Resources Industrialization by Shaanxi & Education Ministry, School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, P.R. China.
- College of Life Science, Qinghai Normal University, Xining, 810016, P.R. China.
| | - Yihan He
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Co-construction Collaborative Innovation Center for Chinese Medicinal Resources Industrialization by Shaanxi & Education Ministry, School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, P.R. China.
| |
Collapse
|
12
|
Zhou P, Dang J, Jiang Z, Dai S, Qu C, Wu Q. Transcriptome and metabolome analysis revealed the dynamic change of bioactive compounds of Fructus Ligustri Lucidi. BMC PLANT BIOLOGY 2024; 24:489. [PMID: 38825671 PMCID: PMC11145772 DOI: 10.1186/s12870-024-05096-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 05/02/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND The Fructus Ligustri Lucidi, the fruit of Ligustrum lucidum, contains a variety of bioactive compounds, such as flavonoids, triterpenoids, and secoiridoids. The proportions of these compounds vary greatly during the different fruit development periods of Fructus Ligustri Lucidi. However, a clear understanding of how the proportions of the compounds and their regulatory biosynthetic mechanisms change across the different fruit development periods of Fructus Ligustri Lucidi is still lacking. RESULTS In this study, metabolite profiling and transcriptome analysis of six fruit development periods (45 DAF, 75 DAF, 112 DAF, 135 DAF, 170 DAF, and 195 DAF) were performed. Seventy compounds were tentatively identified, of which secoiridoids were the most abundant. Eleven identified compounds were quantified by high performance liquid chromatography. A total of 103,058 unigenes were obtained from six periods of Fructus Ligustri Lucidi. Furthermore, candidate genes involved in triterpenoids, phenylethanols, and oleoside-type secoiridoid biosynthesis were identified and analyzed. The in vitro enzyme activities of nine glycosyltransferases involved in salidroside biosynthesis revealed that they can catalyze trysol and hydroxytyrosol to salidroside and hydroxylsalidroside. CONCLUSIONS These results provide valuable information to clarify the profile and molecular regulatory mechanisms of metabolite biosynthesis, and also in optimizing the harvest time of this fruit.
Collapse
Affiliation(s)
- Peina Zhou
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, 210023, China
| | - Jingjie Dang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, 210023, China
| | - Zheng Jiang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, 210023, China
| | - Shilin Dai
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, 210023, China
| | - Cheng Qu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, 210023, China.
| | - Qinan Wu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, 210023, China.
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, 210023, China.
| |
Collapse
|
13
|
Smit SJ, Ayten S, Radzikowska BA, Hamilton JP, Langer S, Unsworth WP, Larson TR, Buell CR, Lichman BR. The genomic and enzymatic basis for iridoid biosynthesis in cat thyme (Teucrium marum). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1589-1602. [PMID: 38489316 DOI: 10.1111/tpj.16698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/30/2024] [Accepted: 02/14/2024] [Indexed: 03/17/2024]
Abstract
Iridoids are non-canonical monoterpenoids produced by both insects and plants. An example is the cat-attracting and insect-repelling volatile iridoid nepetalactone, produced by Nepeta sp. (catmint) and aphids. Recently, both nepetalactone biosynthetic pathways were elucidated, showing a remarkable convergent evolution. The iridoid, dolichodial, produced by Teucrium marum (cat thyme) and multiple insect species, has highly similar properties to nepetalactone but its biosynthetic origin remains unknown. We set out to determine the genomic, enzymatic, and evolutionary basis of iridoid biosynthesis in T. marum. First, we generated a de novo chromosome-scale genome assembly for T. marum using Oxford Nanopore Technologies long reads and proximity-by-ligation Hi-C reads. The 610.3 Mb assembly spans 15 pseudomolecules with a 32.9 Mb N50 scaffold size. This enabled identification of iridoid biosynthetic genes, whose roles were verified via activity assays. Phylogenomic analysis revealed that the evolutionary history of T. marum iridoid synthase, the iridoid scaffold-forming enzyme, is not orthologous to typical iridoid synthases but is derived from its conserved paralog. We discovered an enzymatic route from nepetalactol to diverse iridoids through the coupled activity of an iridoid oxidase cytochrome P450 and acetyltransferases, via an inferred acylated intermediate. This work provides a genomic resource for specialized metabolite research in mints and demonstration of the role of acetylation in T. marum iridoid diversity. This work will enable future biocatalytic or biosynthetic production of potent insect repellents, as well as comparative studies into iridoid biosynthesis in insects.
Collapse
Affiliation(s)
- Samuel J Smit
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
| | - Sefa Ayten
- Institute of Plant Breeding, Genetics, & Genomics, University of Georgia, Athens, Georgia, 30602, USA
| | - Barbara A Radzikowska
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - John P Hamilton
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia, 30602, USA
- Department of Crop & Soil Sciences, University of Georgia, Athens, Georgia, 30602, USA
| | - Swen Langer
- Bioscience Technology Facility, Department of Biology, University of York, York, YO10 5DD, UK
| | | | - Tony R Larson
- Bioscience Technology Facility, Department of Biology, University of York, York, YO10 5DD, UK
| | - C Robin Buell
- Institute of Plant Breeding, Genetics, & Genomics, University of Georgia, Athens, Georgia, 30602, USA
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia, 30602, USA
- Department of Crop & Soil Sciences, University of Georgia, Athens, Georgia, 30602, USA
| | - Benjamin R Lichman
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
| |
Collapse
|
14
|
Chen H, Sahu SK, Wang S, Liu J, Yang J, Cheng L, Chiu TY, Liu H. Chromosome-level Alstonia scholaris genome unveils evolutionary insights into biosynthesis of monoterpenoid indole alkaloids. iScience 2024; 27:109599. [PMID: 38646178 PMCID: PMC11033161 DOI: 10.1016/j.isci.2024.109599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/25/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Alstonia scholaris of the Apocynaceae family is a medicinal plant with a rich source of bioactive monoterpenoid indole alkaloids (MIAs), which possess anti-cancer activity like vinca alkaloids. To gain genomic insights into MIA biosynthesis, we assembled a high-quality chromosome-level genome for A. scholaris using nanopore and Hi-C data. The 444.95 Mb genome contained 35,488 protein-coding genes. A total of 20 chromosomes were assembled with a scaffold N50 of 21.75 Mb. The genome contained a cluster of strictosidine synthases and tryptophan decarboxylases with synteny to other species and a saccharide-terpene cluster involved in the monoterpenoid biosynthesis pathway of the MIA upstream pathway. The multi-omics data of A. scholaris provide a valuable resource for understanding the evolutionary origins of MIAs and for discovering biosynthetic pathways and synthetic biology efforts for producing pharmaceutically useful alkaloids.
Collapse
Affiliation(s)
- Haixia Chen
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China
- BGI Research, Wuhan 430074, China
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China
- BGI Research, Wuhan 430074, China
| | - Shujie Wang
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China
| | - Jia Liu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Jinlong Yang
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China
| | - Le Cheng
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China
| | - Tsan-Yu Chiu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China
| |
Collapse
|
15
|
Uzaki M, Mori T, Sato M, Wakazaki M, Takeda-Kamiya N, Yamamoto K, Murakami A, Guerrero DAS, Shichijo C, Ohnishi M, Ishizaki K, Fukaki H, O'Connor SE, Toyooka K, Mimura T, Hirai MY. Integration of cell differentiation and initiation of monoterpenoid indole alkaloid metabolism in seed germination of Catharanthus roseus. THE NEW PHYTOLOGIST 2024; 242:1156-1171. [PMID: 38513692 DOI: 10.1111/nph.19662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/22/2024] [Indexed: 03/23/2024]
Abstract
In Catharanthus roseus, monoterpenoid indole alkaloids (MIAs) are produced through the cooperation of four cell types, with final products accumulating in specialized cells known as idioblasts and laticifers. To explore the relationship between cellular differentiation and cell type-specific MIA metabolism, we analyzed the expression of MIA biosynthesis in germinating seeds. Embryos from immature and mature seeds were observed via stereomicroscopy, fluorescence microscopy, and electron microscopy. Time-series MIA and iridoid quantification, along with transcriptome analysis, were conducted to determine the initiation of MIA biosynthesis. In addition, the localization of MIAs was examined using alkaloid staining and imaging mass spectrometry (IMS). Laticifers were present in embryos before seed maturation. MIA biosynthesis commenced 12 h after germination. MIAs accumulated in laticifers of embryos following seed germination, and MIA metabolism is induced after germination in a tissue-specific manner. These findings suggest that cellular morphological differentiation precedes metabolic differentiation. Considering the well-known toxicity and defense role of MIAs in matured plants, MIAs may be an important defense strategy already in the delicate developmental phase of seed germination, and biosynthesis and accumulation of MIAs may require the tissue and cellular differentiation.
Collapse
Affiliation(s)
- Mai Uzaki
- Graduate School of Bioagricultural Science, Nagoya University, Nagoya, Aichi, 464-8601, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Tetsuya Mori
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Mayuko Sato
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Mayumi Wakazaki
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Noriko Takeda-Kamiya
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Kotaro Yamamoto
- School of Science, Yokohama City University, Yokohama, Kanagawa, 236-0027, Japan
| | - Akio Murakami
- Graduate School of Science, Kobe University, Kobe, Hyogo, 657-8501, Japan
| | - Delia Ayled Serna Guerrero
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, D-07745, Germany
| | - Chizuko Shichijo
- Graduate School of Science, Kobe University, Kobe, Hyogo, 657-8501, Japan
| | - Miwa Ohnishi
- Graduate School of Science, Kobe University, Kobe, Hyogo, 657-8501, Japan
- Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Kimitsune Ishizaki
- Graduate School of Science, Kobe University, Kobe, Hyogo, 657-8501, Japan
| | - Hidehiro Fukaki
- Graduate School of Science, Kobe University, Kobe, Hyogo, 657-8501, Japan
| | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, D-07745, Germany
| | - Kiminori Toyooka
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Tetsuro Mimura
- Graduate School of Science, Kobe University, Kobe, Hyogo, 657-8501, Japan
- College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan
- The Institute for Sustainable Agro-ecosystem Services, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 188-0002, Japan
- Faculty of Bioenvironmental Sciences, Kyoto University of Advanced Science, Kyoto, 621-8555, Japan
| | - Masami Yokota Hirai
- Graduate School of Bioagricultural Science, Nagoya University, Nagoya, Aichi, 464-8601, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| |
Collapse
|
16
|
Wu PQ, Liu ZD, Ren YH, Zhou JS, Liu QF, Wu Y, Zhang JL, Zhou B, Yue JM. Monoterpenoid indole alkaloids from Alstonia scholaris and their Toxoplasma gondii inhibitory activity. PHYTOCHEMISTRY 2024; 220:113993. [PMID: 38266954 DOI: 10.1016/j.phytochem.2024.113993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
Nine previously unreported various types of monoterpenoid indole alkaloids, together with seven known analogues were isolated from the stem barks of Alstonia scholaris through a silica gel free methodology. The structures of 1-9 were elucidated by spectroscopic data analysis, electronic circular dichroism calculations, and single-crystal X-ray diffraction. Compound 1 is a modified echitamine-type alkaloid with a novel 6/5/5/7/6/6 hetero hexacyclic bridged ring system, and 8 and 9 exist as a zwitterion and trifluoroacetate salt, respectively. The anti-Toxoplasma activity of all isolates on infected Vero cells were evaluated, which revealed that compound 14 at 0.24 μM displayed potent activity. This study expanded the structural diversity of alkaloids of A. scholaris, and presented their potential application in anti-Toxoplasma drug development.
Collapse
Affiliation(s)
- Pei-Qian Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, People's Republic of China
| | - Zhen-Di Liu
- Health Science Center, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Yu-Hao Ren
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, People's Republic of China
| | - Jun-Su Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, People's Republic of China
| | - Qun-Fang Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, People's Republic of China
| | - Yan Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, People's Republic of China
| | - Ji-Li Zhang
- Health Science Center, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Bin Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, People's Republic of China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, People's Republic of China.
| | - Jian-Min Yue
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, People's Republic of China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, People's Republic of China.
| |
Collapse
|
17
|
Cuello C, Jansen HJ, Abdallah C, Zamar Mbadinga DL, Birer Williams C, Durand M, Oudin A, Papon N, Giglioli-Guivarc'h N, Dirks RP, Jensen MK, O'Connor SE, Besseau S, Courdavault V. The Madagascar palm genome provides new insights on the evolution of Apocynaceae specialized metabolism. Heliyon 2024; 10:e28078. [PMID: 38533072 PMCID: PMC10963385 DOI: 10.1016/j.heliyon.2024.e28078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
Specialized metabolites possess diverse interesting biological activities and some cardenolides- and monoterpene indole alkaloids- (MIAs) derived pharmaceuticals are currently used to treat human diseases such as cancers or hypertension. While these two families of biocompounds are produced by specific subfamilies of Apocynaceae, one member of this medicinal plant family, the succulent tree Pachypodium lamerei Drake (also known as Madagascar palm), does not produce such specialized metabolites. To explore the evolutionary paths that have led to the emergence and loss of cardenolide and MIA biosynthesis in Apocynaceae, we sequenced and assembled the P. lamerei genome by combining Oxford Nanopore Technologies long-reads and Illumina short-reads. Phylogenomics revealed that, among the Apocynaceae whose genomes have been sequenced, the Madagascar palm is so far the species closest to the common ancestor between MIA producers/non-MIA producers. Transposable elements, constituting 72.48% of the genome, emerge as potential key players in shaping genomic architecture and influencing specialized metabolic pathways. The absence of crucial MIA biosynthetic genes such as strictosidine synthase in P. lamerei and non-Rauvolfioideae species hints at a transposon-mediated mechanism behind gene loss. Phylogenetic analysis not only showcases the evolutionary divergence of specialized metabolite biosynthesis within Apocynaceae but also underscores the role of transposable elements in this intricate process. Moreover, we shed light on the low conservation of enzymes involved in the final stages of MIA biosynthesis in the distinct MIA-producing plant families, inferring independent gains of these specialized enzymes along the evolution of these medicinal plant clades. Overall, this study marks a leap forward in understanding the genomic dynamics underpinning the evolution of specialized metabolites biosynthesis in the Apocynaceae family, with transposons emerging as potential architects of genomics restructuring and gene loss.
Collapse
Affiliation(s)
- Clément Cuello
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Hans J. Jansen
- Future Genomics Technologies, 2333 BE, Leiden, the Netherlands
| | - Cécile Abdallah
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | | | - Caroline Birer Williams
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Mickael Durand
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Audrey Oudin
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Nicolas Papon
- Univ Angers, Univ Brest, IRF, SFR ICAT, F-49000, Angers, France
| | | | - Ron P. Dirks
- Future Genomics Technologies, 2333 BE, Leiden, the Netherlands
| | - Michael Krogh Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Sarah Ellen O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Sébastien Besseau
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Vincent Courdavault
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| |
Collapse
|
18
|
Jamal QMS, Ahmad V. Identification of Metabolites from Catharanthus roseus Leaves and Stem Extract, and In Vitro and In Silico Antibacterial Activity against Food Pathogens. Pharmaceuticals (Basel) 2024; 17:450. [PMID: 38675411 PMCID: PMC11054124 DOI: 10.3390/ph17040450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
The plant produced powerful secondary metabolites and showed strong antibacterial activities against food-spoiling bacterial pathogens. The present study aimed to evaluate antibacterial activities and to identify metabolites from the leaves and stems of Catharanthus roseus using NMR spectroscopy. The major metabolites likely to be observed in aqueous extraction were 2,3-butanediol, quinic acids, vindoline, chlorogenic acids, vindolinine, secologanin, and quercetin in the leaf and stem of the Catharanthus roseus. The aqueous extracts from the leaves and stems of this plant have been observed to be most effective against food spoilage bacterial strains, followed by methanol and hexane. However, leaf extract was observed to be most significant in terms of the content and potency of metabolites. The minimum inhibitory concentration (20 µg/mL) and bactericidal concentrations (35 g/mL) of leaf extract were observed to be significant as compared to the ampicillin. Molecular docking showed that chlorogenic acid and vindolinine strongly interacted with the bacterial penicillin-binding protein. The docking energies of chlorogenic acid and vindolinine also indicated that these could be used as food preservatives. Therefore, the observed metabolite could be utilized as a potent antibacterial compound for food preservation or to treat their illness, and further research is needed to perform.
Collapse
Affiliation(s)
- Qazi Mohammad Sajid Jamal
- Department of Health Informatics, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Varish Ahmad
- Health Information Technology Department, The Applied College, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
19
|
Zhong Z, Wu M, Yang T, Nan X, Zhang S, Zhang L, Jin L. Integrated transcriptomic and proteomic analyses uncover the early response mechanisms of Catharanthus roseus under ultraviolet-B radiation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 252:112862. [PMID: 38330691 DOI: 10.1016/j.jphotobiol.2024.112862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/23/2024] [Accepted: 02/02/2024] [Indexed: 02/10/2024]
Abstract
Catharanthus roseus produces a large array of terpenoid indole alkaloids (TIAs) that are important natural source for many drugs. Ultraviolet B (UVB) radiation have been proved to have regulatory effect towards biosynthesis of TIAs, which were meaningful for boost of TIA production. To decipher more comprehensive molecular characteristics in C. roseus under UVB radiation, integrated analysis of the nuclear proteome together with the transcriptome data under UVB radiation were performed. Expression of genes related to transmembrane transporters gradually increased during the prolonged exposure to UVB radiation. Some of known TIA transporters were affected by UVB. Abundance of proteins associated with spliceosome and nucleocytoplasmic transport increased. Homologs belonging to ORCA and CrWRKY transcription factors family increased at both transcriptomic and proteomic levels. At the same time, the numbers of differential alternative splicing events between UVB-radiated and white-light-treated plants continuously increased. These results suggest that the nucleus participated in early response of C. roseus under UVB radiation, where alternative splicing events occurred and might regulate multiple pathways. Furthermore, integrative omics analysis indicates that expression of enzymes at the terminal stages of seco-iridoid pathway decreased with the prolonged radiation exposure, potentially inhibiting further rise of TIA synthesis under extended UVB exposure.
Collapse
Affiliation(s)
- Zhuoheng Zhong
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Mengmin Wu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Tiancai Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Xiaoyue Nan
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Shuyao Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Lin Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| | - Limin Jin
- Clinical Laboratory, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing 314001, PR China.
| |
Collapse
|
20
|
Shao Y, Mu D, Zhou Y, Liu X, Huang X, Wilson IW, Qi Y, Lu Y, Zhu L, Zhang Y, Qiu D, Tang Q. Genome-Wide Mining of CULLIN E3 Ubiquitin Ligase Genes from Uncaria rhynchophylla. PLANTS (BASEL, SWITZERLAND) 2024; 13:532. [PMID: 38498523 PMCID: PMC10891735 DOI: 10.3390/plants13040532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 03/20/2024]
Abstract
CULLIN (CUL) protein is a subtype of E3 ubiquitin ligase that is involved in a variety of biological processes and responses to stress in plants. In Uncaria rhynchophylla, the CUL gene family has not been identified and its role in plant development, stress response and secondary metabolite synthesis has not been studied. In this study, 12 UrCUL gene members all contained the typical N-terminal domain and C-terminal domain identified from the U. rhynchophylla genome and were classified into four subfamilies based on the phylogenetic relationship with CULs in Arabidopsis thaliana. They were unevenly distributed on eight chromosomes but had a similar structural composition in the same subfamily, indicating that they were relatively conserved and potentially had similar gene functions. An interspecific and intraspecific collinearity analysis showed that fragment duplication played an important role in the evolution of the CUL gene family. The analysis of the cis-acting elements suggests that the UrCULs may play an important role in various biological processes, including the abscisic acid (ABA) response. To investigate this hypothesis, we treated the roots of U. rhynchophylla tissue-cultured seedlings with ABA. The expression pattern analysis showed that all the UrCUL genes were widely expressed in roots with various expression patterns. The co-expression association analysis of the UrCULs and key enzyme genes in the terpenoid indole alkaloid (TIA) synthesis pathway revealed the complex expression patterns of 12 UrCUL genes and some key TIA enzyme genes, especially UrCUL1, UrCUL1-likeA, UrCUL2-likeA and UrCUL2-likeB, which might be involved in the biosynthesis of TIAs. The results showed that the UrCULs were involved in the response to ABA hormones, providing important information for elucidating the function of UrCULs in U. rhynchophylla. The mining of UrCULs in the whole genome of U. rhynchophylla provided new information for understanding the CUL gene and its function in plant secondary metabolites, growth and development.
Collapse
Affiliation(s)
- Yingying Shao
- College of Horticulture, National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (D.M.); (Y.Z.); (X.L.); (Y.L.); (L.Z.); (Y.Z.)
| | - Detian Mu
- College of Horticulture, National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (D.M.); (Y.Z.); (X.L.); (Y.L.); (L.Z.); (Y.Z.)
| | - Yu Zhou
- College of Horticulture, National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (D.M.); (Y.Z.); (X.L.); (Y.L.); (L.Z.); (Y.Z.)
| | - Xinghui Liu
- College of Horticulture, National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (D.M.); (Y.Z.); (X.L.); (Y.L.); (L.Z.); (Y.Z.)
| | - Xueshuang Huang
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, Hunan University of Medicine, Huaihua 410208, China;
| | - Iain W. Wilson
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia
| | - Yuxin Qi
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, Hunan University of Medicine, Huaihua 410208, China;
| | - Ying Lu
- College of Horticulture, National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (D.M.); (Y.Z.); (X.L.); (Y.L.); (L.Z.); (Y.Z.)
| | - Lina Zhu
- College of Horticulture, National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (D.M.); (Y.Z.); (X.L.); (Y.L.); (L.Z.); (Y.Z.)
| | - Yao Zhang
- College of Horticulture, National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (D.M.); (Y.Z.); (X.L.); (Y.L.); (L.Z.); (Y.Z.)
| | - Deyou Qiu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China;
| | - Qi Tang
- College of Horticulture, National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; (Y.S.); (D.M.); (Y.Z.); (X.L.); (Y.L.); (L.Z.); (Y.Z.)
| |
Collapse
|
21
|
Shao Y, Zhou Y, Yang L, Mu D, Wilson IW, Zhang Y, Zhu L, Liu X, Luo L, He J, Qiu D, Tang Q. Genome-wide identification of GATA transcription factor family and the effect of different light quality on the accumulation of terpenoid indole alkaloids in Uncaria rhynchophylla. PLANT MOLECULAR BIOLOGY 2024; 114:15. [PMID: 38329633 DOI: 10.1007/s11103-023-01400-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/07/2023] [Indexed: 02/09/2024]
Abstract
Uncaria rhynchophylla is an evergreen vine plant, belonging to the Rubiaceae family, that is rich in terpenoid indole alkaloids (TIAs) that have therapeutic effects on hypertension and Alzheimer's disease. GATA transcription factors (TF) are a class of transcription regulators that participate in the light response regulation, chlorophyll synthesis, and metabolism, with the capability to bind to GATA cis-acting elements in the promoter region of target genes. Currently the charactertics of GATA TFs in U. rhynchophylla and how different light qualities affect the expression of GATA and key enzyme genes, thereby affecting the changes in U. rhynchophylla alkaloids have not been investigated. In this study, 25 UrGATA genes belonging to four subgroups were identified based on genome-wide analysis. Intraspecific collinearity analysis revealed that only segmental duplications were identified among the UrGATA gene family. Collinearity analysis of GATA genes between U. rhynchophylla and four representative plant species, Arabidopsis thaliana, Oryza sativa, Coffea Canephora, and Catharanthus roseus was also performed. U. rhynchophylla seedlings grown in either red lights or under reduced light intensity had altered TIAs content after 21 days. Gene expression analysis reveal a complex pattern of expression from the 25 UrGATA genes as well as a number of key TIA enzyme genes. UrGATA7 and UrGATA8 were found to have similar expression profiles to key enzyme TIA genes in response to altered light treatments, implying that they may be involved in the regulation TIA content. In this research, we comprehensively analyzed the UrGATA TFs, and offered insight into the involvement of UrGATA TFs from U. rhynchophylla in TIAs biosynthesis.
Collapse
Affiliation(s)
- Yingying Shao
- College of Horticulture, National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, 410128, Changsha, China
| | - Yu Zhou
- College of Horticulture, National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, 410128, Changsha, China
| | - Li Yang
- College of Horticulture, National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, 410128, Changsha, China
| | - Detian Mu
- College of Horticulture, National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, 410128, Changsha, China.
| | - Iain W Wilson
- CSIRO Agriculture and Food, Canberra, ACT, 2601, Australia
| | - Yao Zhang
- College of Horticulture, National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, 410128, Changsha, China
| | - Lina Zhu
- College of Horticulture, National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, 410128, Changsha, China
| | - Xinghui Liu
- College of Horticulture, National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, 410128, Changsha, China
| | - Ling Luo
- College of Horticulture, National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, 410128, Changsha, China
| | - Jialong He
- College of Horticulture, National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, 410128, Changsha, China
| | - Deyou Qiu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, 100091, Beijing, China
| | - Qi Tang
- College of Horticulture, National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, 410128, Changsha, China.
| |
Collapse
|
22
|
Ahmad N, Xu Y, Zang F, Li D, Liu Z. The evolutionary trajectories of specialized metabolites towards antiviral defense system in plants. MOLECULAR HORTICULTURE 2024; 4:2. [PMID: 38212862 PMCID: PMC10785382 DOI: 10.1186/s43897-023-00078-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 01/13/2024]
Abstract
Viral infections in plants pose major challenges to agriculture and global food security in the twenty-first century. Plants have evolved a diverse range of specialized metabolites (PSMs) for defenses against pathogens. Although, PSMs-mediated plant-microorganism interactions have been widely discovered, these are mainly confined to plant-bacteria or plant-fungal interactions. PSM-mediated plant-virus interaction, however, is more complicated often due to the additional involvement of virus spreading vectors. Here, we review the major classes of PSMs and their emerging roles involved in antiviral resistances. In addition, evolutionary scenarios for PSM-mediated interactions between plant, virus and virus-transmitting vectors are presented. These advancements in comprehending the biochemical language of PSMs during plant-virus interactions not only lay the foundation for understanding potential co-evolution across life kingdoms, but also open a gateway to the fundamental principles of biological control strategies and beyond.
Collapse
Affiliation(s)
- Naveed Ahmad
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yi Xu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Faheng Zang
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dapeng Li
- National Key Laboratory of Plant Molecular Genetics, CAS-JIC Centre of Excellence for Plant and Microbial Science, Center for Excellence in Molecular Plant Sciences (CEPMS), Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhenhua Liu
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
23
|
Aničić N, Matekalo D, Skorić M, Gašić U, Nestorović Živković J, Dmitrović S, Božunović J, Milutinović M, Petrović L, Dimitrijević M, Anđelković B, Mišić D. Functional iridoid synthases from iridoid producing and non-producing Nepeta species (subfam. Nepetoidae, fam. Lamiaceae). FRONTIERS IN PLANT SCIENCE 2024; 14:1211453. [PMID: 38235204 PMCID: PMC10792066 DOI: 10.3389/fpls.2023.1211453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024]
Abstract
Iridoids, a class of atypical monoterpenes, exhibit exceptional diversity within the Nepeta genus (subfam. Nepetoidae, fam. Lamiaceae).The majority of these plants produce iridoids of the unique stereochemistry, with nepetalactones (NLs) predominating; however, a few Nepeta species lack these compounds. By comparatively analyzing metabolomics, transcriptomics, gene co-expression, and phylogenetic data of the iridoid-producing N. rtanjensis Diklić & Milojević and iridoid-lacking N. nervosa Royle & Bentham, we presumed that one of the factors responsible for the absence of these compounds in N. nervosa is iridoid synthase (ISY). Two orthologues of ISY were mined from leaves transcriptome of N. rtanjensis (NrPRISE1 and NrPRISE2), while in N. nervosa only one (NnPRISE) was identified, and it was phylogenetically closer to the representatives of the Family 1 isoforms, designated as P5βRs. Organ-specific and MeJA-elicited profiling of iridoid content and co-expression analysis of IBG candidates, highlighted NrPRISE2 and NnPRISE as promising candidates for ISY orthologues, and their function was confirmed using in vitro assays with recombinant proteins, after heterologous expression of recombinant proteins in E. coli and their His-tag affinity purification. NrPRISE2 demonstrated ISY activity both in vitro and likely in planta, which was supported by the 3D modeling and molecular docking analysis, thus reclassification of NrPRISE2 to NrISY is accordingly recommended. NnPRISE also displays in vitro ISY-like activity, while its role under in vivo conditions was not here unambiguously confirmed. Most probably under in vivo conditions the NnPRISE lacks substrates to act upon, as a result of the loss of function of some of the upstream enzymes of the iridoid pathway. Our ongoing work is conducted towards re-establishing the biosynthesis of iridoids in N. nervosa.
Collapse
Affiliation(s)
- Neda Aničić
- Institute for Biological Research “Siniša Stanković” - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Dragana Matekalo
- Institute for Biological Research “Siniša Stanković” - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Marijana Skorić
- Institute for Biological Research “Siniša Stanković” - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Uroš Gašić
- Institute for Biological Research “Siniša Stanković” - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jasmina Nestorović Živković
- Institute for Biological Research “Siniša Stanković” - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Slavica Dmitrović
- Institute for Biological Research “Siniša Stanković” - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jelena Božunović
- Institute for Biological Research “Siniša Stanković” - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milica Milutinović
- Institute for Biological Research “Siniša Stanković” - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Luka Petrović
- Institute for Biological Research “Siniša Stanković” - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milena Dimitrijević
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | | | - Danijela Mišić
- Institute for Biological Research “Siniša Stanković” - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
24
|
Guedes JG, Ribeiro R, Carqueijeiro I, Guimarães AL, Bispo C, Archer J, Azevedo H, Fonseca NA, Sottomayor M. The leaf idioblastome of the medicinal plant Catharanthus roseus is associated with stress resistance and alkaloid metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:274-299. [PMID: 37804484 PMCID: PMC10735432 DOI: 10.1093/jxb/erad374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 10/06/2023] [Indexed: 10/09/2023]
Abstract
Catharanthus roseus leaves produce a range of monoterpenoid indole alkaloids (MIAs) that include low levels of the anticancer drugs vinblastine and vincristine. The MIA pathway displays a complex architecture spanning different subcellular and cell type localizations, and is under complex regulation. As a result, the development of strategies to increase the levels of the anticancer MIAs has remained elusive. The pathway involves mesophyll specialized idioblasts where the late unsolved biosynthetic steps are thought to occur. Here, protoplasts of C. roseus leaf idioblasts were isolated by fluorescence-activated cell sorting, and their differential alkaloid and transcriptomic profiles were characterized. This involved the assembly of an improved C. roseus transcriptome from short- and long-read data, IDIO+. It was observed that C. roseus mesophyll idioblasts possess a distinctive transcriptomic profile associated with protection against biotic and abiotic stresses, and indicative that this cell type is a carbon sink, in contrast to surrounding mesophyll cells. Moreover, it is shown that idioblasts are a hotspot of alkaloid accumulation, suggesting that their transcriptome may hold the key to the in-depth understanding of the MIA pathway and the success of strategies leading to higher levels of the anticancer drugs.
Collapse
Affiliation(s)
- Joana G Guedes
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
- Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal
| | - Rogério Ribeiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
| | - Inês Carqueijeiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
| | - Ana Luísa Guimarães
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
| | - Cláudia Bispo
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - John Archer
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Herlander Azevedo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
| | - Nuno A Fonseca
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Mariana Sottomayor
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
| |
Collapse
|
25
|
Coscarella M, Nardi M, Alipieva K, Bonacci S, Popova M, Procopio A, Scarpelli R, Simeonov S. Alternative Assisted Extraction Methods of Phenolic Compounds Using NaDESs. Antioxidants (Basel) 2023; 13:62. [PMID: 38247486 PMCID: PMC10812405 DOI: 10.3390/antiox13010062] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/16/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
A renewed understanding of eco-friendly principles is moving the industrial sector toward a shift in the utilization of less harmful solvents as a main strategy to improve manufacturing. Green analytical chemistry (GAC) has definitely paved the way for this transition by presenting green solvents to a larger audience. Among the most promising, surely DESs (deep eutectic solvents), NaDESs (natural deep eutectic solvents), HDESs (hydrophobic deep eutectic solvents), and HNaDESs (hydrophobic natural deep eutectic solvents), with their unique features, manifest a wide-range of applications, including their use as a means for the extraction of small bioactive compounds. In examining recent advancements, in this review, we want to focus our attention on some of the most interesting and novel 'solvent-free' extraction techniques, such as microwave-assisted extraction (MAE) and ultrasound-assisted extraction (UAE) in relation to the possibility of better exploiting DESs and NaDESs as plausible extracting solvents of the phenolic compounds (PCs) present in different matrices from olive oil components, such as virgin olive pomace, olive leaves and twigs, virgin and extra virgin olive oil (VOO and EVOO, respectively), and olive cake and olive mill wastewaters (OMWW). Therefore, the status of DESs and NaDESs is shown in terms of their nature, efficacy and selectivity in the extraction of bioactive phytochemicals such as secoiridoids, lignans, phenolic acids and alcohols. Related studies on experimental design and processes' optimization of the most promising DESs/NaDESs are also reviewed. In this framework, an extensive list of relevant works found in the literature is described to consider DESs/NaDESs as a suitable alternative to petrochemicals in cosmetics, pharmaceutical, or food applications.
Collapse
Affiliation(s)
- Mario Coscarella
- Department of Health Sciences, Università “Magna Græcia” di Catanzaro, Viale Europa, Campus Universitario “S. Venuta”, Germaneto, 88100 Catanzaro, Italy; (M.C.); (S.B.); (A.P.); (R.S.)
| | - Monica Nardi
- Department of Health Sciences, Università “Magna Græcia” di Catanzaro, Viale Europa, Campus Universitario “S. Venuta”, Germaneto, 88100 Catanzaro, Italy; (M.C.); (S.B.); (A.P.); (R.S.)
| | - Kalina Alipieva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bontchev Str. Bl. 9, 1113 Sofia, Bulgaria; (K.A.); (M.P.); (S.S.)
| | - Sonia Bonacci
- Department of Health Sciences, Università “Magna Græcia” di Catanzaro, Viale Europa, Campus Universitario “S. Venuta”, Germaneto, 88100 Catanzaro, Italy; (M.C.); (S.B.); (A.P.); (R.S.)
| | - Milena Popova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bontchev Str. Bl. 9, 1113 Sofia, Bulgaria; (K.A.); (M.P.); (S.S.)
| | - Antonio Procopio
- Department of Health Sciences, Università “Magna Græcia” di Catanzaro, Viale Europa, Campus Universitario “S. Venuta”, Germaneto, 88100 Catanzaro, Italy; (M.C.); (S.B.); (A.P.); (R.S.)
| | - Rosa Scarpelli
- Department of Health Sciences, Università “Magna Græcia” di Catanzaro, Viale Europa, Campus Universitario “S. Venuta”, Germaneto, 88100 Catanzaro, Italy; (M.C.); (S.B.); (A.P.); (R.S.)
| | - Svilen Simeonov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bontchev Str. Bl. 9, 1113 Sofia, Bulgaria; (K.A.); (M.P.); (S.S.)
| |
Collapse
|
26
|
Kisaka H, Chin DP, Miwa T, Hirano H, Uchiyama S, Mii M, Iyo M. Development of an efficient Agrobacterium-mediated transformation method and its application in tryptophan pathway modification in Catharanthus roseus. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2023; 40:311-320. [PMID: 38434110 PMCID: PMC10902617 DOI: 10.5511/plantbiotechnology.23.0819a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/19/2023] [Indexed: 03/05/2024]
Abstract
The biosynthetic pathway of Catharanthus roseus vinca alkaloids has a long research history, including not only identification of metabolic intermediates but also the mechanisms of inter-cellular transport and accumulation of biosynthesized components. Vinca alkaloids pathway begins with strictosidine, which is biosynthesized by condensing tryptamine from the tryptophan pathway and secologanin from the isoprenoid pathway. Therefore, increasing the supply of precursor tryptophan may enhance vinca alkaloid content or their metabolic intermediates. Many reports on the genetic modification of C. roseus use cultured cells or hairy roots, but few reports cover the production of transgenic plants. In this study, we first investigated a method for stably producing transgenic plants of C. roseus, then, using this technique, we modified the tryptophan metabolism system to produce transgenic plants with increased tryptophan content. Transformed plants were obtained by infecting cotyledons two weeks after sowing with Agrobacterium strain A13 containing a plant expression vector, then selecting with 1/2 B5 medium supplemented with 50 mg l-1 kanamycin and 20 mg l-1 meropenem. Sixty-eight regenerated plants were obtained from 4,200 cotyledons infected with Agrobacterium, after which genomic PCR analysis using NPTII-specific primers confirmed gene presence in 24 plants with a transformation rate of 0.6%. Furthermore, we performed transformation into C. roseus using an expression vector to join trpE8 and aroG4 genes, which are feedback-resistant mutant genes derived from Escherichia coli. The resulting transformed plants showed exactly the same morphology as the wild-type, albeit with a marked increase in tryptophan and alkaloids content, especially catharanthine in leaves.
Collapse
Affiliation(s)
- Hiroaki Kisaka
- Biosolutions Development Section, Biosolutions Labs, Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-8681, Japan
| | - Dong Poh Chin
- Center for Environment, Health and Field Sciences, Chiba University, 6-2-1 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
| | - Tetsuya Miwa
- Biosolutions Development Section, Biosolutions Labs, Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-8681, Japan
| | - Hiroto Hirano
- Biosolutions Development Section, Biosolutions Labs, Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-8681, Japan
| | - Sato Uchiyama
- Biosolutions Development Section, Biosolutions Labs, Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-8681, Japan
| | - Masahiro Mii
- Center for Environment, Health and Field Sciences, Chiba University, 6-2-1 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
| | - Mayu Iyo
- Biosolutions Development Section, Biosolutions Labs, Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-8681, Japan
| |
Collapse
|
27
|
Ahmed J, Sajjad Y, Gatasheh MK, Ibrahim KE, Huzafa M, Khan SA, Situ C, Abbasi AM, Hassan A. Genome-wide identification of NAC transcription factors and regulation of monoterpenoid indole alkaloid biosynthesis in Catharanthus roseus. FRONTIERS IN PLANT SCIENCE 2023; 14:1286584. [PMID: 38223288 PMCID: PMC10785006 DOI: 10.3389/fpls.2023.1286584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/01/2023] [Indexed: 01/16/2024]
Abstract
NAC transcription factors (TFs) are crucial to growth and defense responses in plants. Though NACs have been characterized for their role in several plants, comprehensive information regarding their role in Catharanthus roseus, a perennial ornamental plant, is lacking. Homology modelling was employed to identify and characterize NACs in C. roseus. In-vitro propagation of C. roseus plants was carried out using cell suspension and nodal culture and were elicited with two auxin-antagonists, 5-fluoro Indole Acetic Acid (5-F-IAA) and α-(phenyl ethyl-2-oxo)-Indole-Acetic-Acid (PEO-IAA) for the enhanced production of monoterpenoid indole alkaloids (MIAs) namely catharanthine, vindoline, and vinblastine. Analyses revealed the presence of 47 putative CrNAC genes in the C. roseus genome, primarily localized in the nucleus. Phylogenetic analysis categorized these CrNACs into eight clusters, demonstrating the highest synteny with corresponding genes in Camptotheca acuminata. Additionally, at least one defense or hormone-responsive cis-acting element was identified in the promoter region of all the putative CrNACs. Of the two elicitors, 5-F-IAA was effective at 200 µM to elicit a 3.07-fold increase in catharanthine, 2.76-fold in vindoline, and 2.4-fold in vinblastine production in nodal culture. While a relatively lower increase in MIAs was recorded in suspension culture. Validation of RNA-Seq by qRT-PCR showed upregulated expression of stress-related genes (CrNAC-07 and CrNAC-24), and downregulated expression of growth-related gene (CrNAC-25) in elicited nodal culture of C. roseus. Additionally, the expression of genes involved in the biosynthesis of MIAs was significantly upregulated upon elicitation. The current study provides the first report on the role of CrNACs in regulating the biosynthesis of MIAs.
Collapse
Affiliation(s)
- Jawad Ahmed
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad, Pakistan
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Belfast, United Kingdom
| | - Yasar Sajjad
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Mansour K. Gatasheh
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Khalid Elfaki Ibrahim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Huzafa
- Department of Plant Sciences, Quaid-e-Azam University, Islamabad, Pakistan, Pakistan
| | - Sabaz Ali Khan
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Chen Situ
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Belfast, United Kingdom
| | - Arshad Mehmood Abbasi
- Department of Environmental Sciences, COMSATS University, Islamabad, Abbottabad, Pakistan
| | - Amjad Hassan
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad, Pakistan
| |
Collapse
|
28
|
Vollheyde K, Dudley QM, Yang T, Oz MT, Mancinotti D, Fedi MO, Heavens D, Linsmith G, Chhetry M, Smedley MA, Harwood WA, Swarbreck D, Geu‐Flores F, Patron NJ. An improved Nicotiana benthamiana bioproduction chassis provides novel insights into nicotine biosynthesis. THE NEW PHYTOLOGIST 2023; 240:302-317. [PMID: 37488711 PMCID: PMC10952274 DOI: 10.1111/nph.19141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/28/2023] [Indexed: 07/26/2023]
Abstract
The model plant Nicotiana benthamiana is an increasingly attractive organism for the production of high-value, biologically active molecules. However, N. benthamiana accumulates high levels of pyridine alkaloids, in particular nicotine, which complicates the downstream purification processes. Here, we report a new assembly of the N. benthamiana genome as well as the generation of low-nicotine lines by CRISPR/Cas9-based inactivation of berberine bridge enzyme-like proteins (BBLs). Triple as well as quintuple mutants accumulated three to four times less nicotine than the respective control lines. The availability of lines without functional BBLs allowed us to probe their catalytic role in nicotine biosynthesis, which has remained obscure. Notably, chiral analysis revealed that the enantiomeric purity of nicotine was fully lost in the quintuple mutants. In addition, precursor feeding experiments showed that these mutants cannot facilitate the specific loss of C6 hydrogen that characterizes natural nicotine biosynthesis. Our work delivers an improved N. benthamiana chassis for bioproduction and uncovers the crucial role of BBLs in the stereoselectivity of nicotine biosynthesis.
Collapse
Affiliation(s)
- Katharina Vollheyde
- Department of Plant and Environmental SciencesUniversity of Copenhagen1871 FrederiksbergCopenhagenDenmark
| | | | - Ting Yang
- Department of Plant and Environmental SciencesUniversity of Copenhagen1871 FrederiksbergCopenhagenDenmark
| | - Mehmet T. Oz
- Earlham Institute, Norwich Research ParkNorwichNorfolkNR4 7UZUK
| | - Davide Mancinotti
- Department of Plant and Environmental SciencesUniversity of Copenhagen1871 FrederiksbergCopenhagenDenmark
| | | | - Darren Heavens
- Earlham Institute, Norwich Research ParkNorwichNorfolkNR4 7UZUK
| | - Gareth Linsmith
- Earlham Institute, Norwich Research ParkNorwichNorfolkNR4 7UZUK
| | - Monika Chhetry
- John Innes Centre, Norwich Research ParkNorwichNorfolkNR4 7UHUK
| | - Mark A. Smedley
- John Innes Centre, Norwich Research ParkNorwichNorfolkNR4 7UHUK
| | | | - David Swarbreck
- Earlham Institute, Norwich Research ParkNorwichNorfolkNR4 7UZUK
| | - Fernando Geu‐Flores
- Department of Plant and Environmental SciencesUniversity of Copenhagen1871 FrederiksbergCopenhagenDenmark
| | | |
Collapse
|
29
|
Shelake RM, Jadhav AM, Bhosale PB, Kim JY. Unlocking secrets of nature's chemists: Potential of CRISPR/Cas-based tools in plant metabolic engineering for customized nutraceutical and medicinal profiles. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108070. [PMID: 37816270 DOI: 10.1016/j.plaphy.2023.108070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023]
Abstract
Plant species have evolved diverse metabolic pathways to effectively respond to internal and external signals throughout their life cycle, allowing adaptation to their sessile and phototropic nature. These pathways selectively activate specific metabolic processes, producing plant secondary metabolites (PSMs) governed by genetic and environmental factors. Humans have utilized PSM-enriched plant sources for millennia in medicine and nutraceuticals. Recent technological advances have significantly contributed to discovering metabolic pathways and related genes involved in the biosynthesis of specific PSM in different food crops and medicinal plants. Consequently, there is a growing demand for plant materials rich in nutrients and bioactive compounds, marketed as "superfoods". To meet the industrial demand for superfoods and therapeutic PSMs, modern methods such as system biology, omics, synthetic biology, and genome editing (GE) play a crucial role in identifying the molecular players, limiting steps, and regulatory circuitry involved in PSM production. Among these methods, clustered regularly interspaced short palindromic repeats-CRISPR associated protein (CRISPR/Cas) is the most widely used system for plant GE due to its simple design, flexibility, precision, and multiplexing capabilities. Utilizing the CRISPR-based toolbox for metabolic engineering (ME) offers an ideal solution for developing plants with tailored preventive (nutraceuticals) and curative (therapeutic) metabolic profiles in an ecofriendly way. This review discusses recent advances in understanding the multifactorial regulation of metabolic pathways, the application of CRISPR-based tools for plant ME, and the potential research areas for enhancing plant metabolic profiles.
Collapse
Affiliation(s)
- Rahul Mahadev Shelake
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| | - Amol Maruti Jadhav
- Research Institute of Green Energy Convergence Technology (RIGET), Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Pritam Bhagwan Bhosale
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Republic of Korea; Division of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea; Nulla Bio Inc, 501 Jinju-daero, Jinju, 52828, Republic of Korea.
| |
Collapse
|
30
|
Rao P, Yaroslavsky MA, Miller JC, Schuler MA. Catalytic Site Constraints in the P450s Mediating Loganic Acid (7DLH) and Secologanic Acid Synthesis (SLAS) in Camptotheca. Biochemistry 2023; 62:2763-2774. [PMID: 37656055 DOI: 10.1021/acs.biochem.3c00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Terpene indole alkaloids (TIAs) are plant-derived natural products synthesized in low levels in medicinal plants such as Catharanthus roseus and Camptotheca acuminata. TIA pathways species utilize several CYP72A subfamily members to form loganic acid from 7-deoxyloganic acid (a simple hydroxylation) as well as secologanin and secologanic acid from loganin and loganic acid (a C-C bond scission). Divergences in the specificities of these P450s have allowed Camptotheca secologanic acid synthases (SLASs) to become bifunctional enzymes capable of performing both reactions. In contrast, Catharanthus 7-deoxyloganic acid hydroxylase (7DLH) and secologanin synthase (SLS) have remained monofunctional enzymes capable either of monooxygenation or C-C bond scission. Our in vitro reconstitutions have now demonstrated that Camptotheca also contains a monofunctional 7DLH capable only of hydroxylating 7-deoxyloganic acid. Mutageneses aimed at evaluating residues important for the tight specificity of Camptotheca 7DLH (CYP72A729) and the broad specificity of SLAS (CYP72A564) have identified several residues where reciprocal switches substantially affect their activities: Lys128His in 7DLH increases hydroxylation of 7-deoxyloganic acid, and His132Lys in SLAS decreases this hydroxylation and C-C bond scissions of loganic acid and loganin; Gly321Ser in 7DLH does not affect hydroxylation of 7-deoxyloganic acid, whereas Ser324Gly in SLAS significantly increases C-C bond scission of loganic acid; Asp332Glu in the acid-alcohol pair of 7DLH increases hydroxylation of 7-deoxyloganic acid, whereas Glu335Asp in SLAS completely eliminates both of its activities. These mutations that enhance or eliminate these respective activities have significant potential to aid engineering efforts aimed at increasing TIA production in cell cultures, microbial systems, and/or other plants.
Collapse
Affiliation(s)
- Priya Rao
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Mark A Yaroslavsky
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Justin C Miller
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Mary A Schuler
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
31
|
Traxler F, Zhang H, Mahavorasirikul W, Krivanek K, Cai XH, Aiyakool W, Pfeiffer M, Brecker L, Schinnerl J. Two Novel Iboga-Type and an Oxindole Glucuronide Alkaloid from Tabernaemontana peduncularis Disclose Related Biosynthetic Pathways to Tabernaemontana divaricata. Molecules 2023; 28:6664. [PMID: 37764440 PMCID: PMC10535570 DOI: 10.3390/molecules28186664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Phytochemical investigation of the two Tabernaemontana species (Apocynaceae) T. peduncularis Wall. and T. divaricata (L.) R.Br. ex Roem. & Schult. indicated closely related biosynthetic pathways leading to lipophilic and hydrophilic alkaloids. In total, 18 specialized metabolites comprising indole-derived alkaloid aglycones, three oxindole-derived alkaloid glycosides, and two iridoid glucosides could be identified in the studied species. Among the alkaloids, the two Iboga-type alkaloids 3,7-coronaridine isoindolenine, coronaridine 3,4-iminium and a javaniside derivative bearing a glucuronic acid, named javanuronic acid, could be described by spectroscopic and spectrometric methods for the first time. A docking experiment using alpha-fold was performed to generate a protein model of the enzyme 7-deoxyloganetic acid glucosyl transferase. Performed bioassays exhibited a growth reduction of neonate Spodoptera littoralis larvae and reduced cell viability of HepG2 cells of the extracts containing Iboga alkaloids, whilst the javaniside derivatives containing hydrophilic fraction did not show any effects. These findings indicate a high flexibility in the formation of bioactive indole alkaloid aglycones by Tabernaemontana species and also evidence similar accumulation trends in both species as well as indicate that biosynthetic routes leading to oxindole alkaloids like javanisides are more widespread than reported. Furthermore, the incorporation of the three novel compounds into potential biosynthetic pathways is discussed.
Collapse
Affiliation(s)
- Florian Traxler
- Department of Organic Chemistry, University of Vienna, Währinger Strasse 38, A-1090 Vienna, Austria; (F.T.); (K.K.)
- Vienna Doctoral School in Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
| | - Haoqi Zhang
- Department of Organic Chemistry, University of Vienna, Währinger Strasse 38, A-1090 Vienna, Austria; (F.T.); (K.K.)
- Vienna Doctoral School in Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
| | - Wiratchanee Mahavorasirikul
- Drug Discovery and Development Center, Advanced Science and Technologies, Thammasat University (Rangsit Campus), Pathumthani 12121, Thailand;
- Thammasat University Research Unit in Cannabis and Herbal Products Innovation, Thammasat University (Rangsit Campus), Pathumthani 12121, Thailand
| | - Katharina Krivanek
- Department of Organic Chemistry, University of Vienna, Währinger Strasse 38, A-1090 Vienna, Austria; (F.T.); (K.K.)
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Xiang-Hai Cai
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
| | - Wichai Aiyakool
- Department of Botany, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
- Department of Agriculture, Ministry of Agriculture and Cooperatives, Bangkok 10900, Thailand
| | - Martin Pfeiffer
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, A-8010 Graz, Austria;
| | - Lothar Brecker
- Department of Organic Chemistry, University of Vienna, Währinger Strasse 38, A-1090 Vienna, Austria; (F.T.); (K.K.)
| | - Johann Schinnerl
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| |
Collapse
|
32
|
Jędrzejewski M, Szeleszczuk Ł, Pisklak DM. The Reaction Mechanism of Loganic Acid Methyltransferase: A Molecular Dynamics Simulation and Quantum Mechanics Study. Molecules 2023; 28:5767. [PMID: 37570737 PMCID: PMC10420828 DOI: 10.3390/molecules28155767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
In this work, the catalytic mechanism of loganic acid methyltransferase was characterized at the molecular level. This enzyme is responsible for the biosynthesis of loganin, which is a precursor for a wide range of biologically active compounds. Due to the lack of detailed knowledge about this process, the aim of this study was the analysis of the structure and activity of loganic acid methyltransferase. Using molecular dynamics (MD) simulations, the native structure of the complex was reconstructed, and the key interactions between the substrate and loganic acid methyltransferase were investigated. Subsequently, the structures obtained from the simulations were used for quantum chemical (QM) calculations. The QM calculations allowed for the exploration of the energetic aspects of the reaction and the characterization of its mechanism. The results obtained in this study suggest the existence of two patterns of interactions between loganic acid methyltransferase and the substrate. The role of residue Q38 in the binding and orientation of the substrate's carboxyl group was also demonstrated. By employing a combined MD and QM approach, the experimental reaction barrier was reproduced, and detailed insights into the enzymatic activity mechanism of loganic acid methyltransferase were revealed.
Collapse
Affiliation(s)
| | | | - Dariusz Maciej Pisklak
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-093 Warsaw, Poland; (M.J.); (Ł.S.)
| |
Collapse
|
33
|
Salim V, Jarecki SA, Vick M, Miller R. Advances in Metabolic Engineering of Plant Monoterpene Indole Alkaloids. BIOLOGY 2023; 12:1056. [PMID: 37626942 PMCID: PMC10452178 DOI: 10.3390/biology12081056] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023]
Abstract
Monoterpene indole alkaloids (MIAs) encompass a diverse family of over 3000 plant natural products with a wide range of medical applications. Further utilizations of these compounds, however, are hampered due to low levels of abundance in their natural sources, causing difficult isolation and complex multi-steps in uneconomical chemical syntheses. Metabolic engineering of MIA biosynthesis in heterologous hosts is attractive, particularly for increasing the yield of natural products of interest and expanding their chemical diversity. Here, we review recent advances and strategies which have been adopted to engineer microbial and plant systems for the purpose of generating MIAs and discuss the current issues and future developments of manufacturing MIAs by synthetic biology approaches.
Collapse
Affiliation(s)
- Vonny Salim
- Department of Biological Sciences, Louisiana State University Shreveport, Shreveport, LA 71115, USA; (S.-A.J.); (M.V.)
| | - Sara-Alexis Jarecki
- Department of Biological Sciences, Louisiana State University Shreveport, Shreveport, LA 71115, USA; (S.-A.J.); (M.V.)
| | - Marshall Vick
- Department of Biological Sciences, Louisiana State University Shreveport, Shreveport, LA 71115, USA; (S.-A.J.); (M.V.)
| | - Ryan Miller
- School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA 70112, USA;
| |
Collapse
|
34
|
Lawas LMF, Kamileen MO, Buell CR, O'Connor SE, Leisner CP. Transcriptome-based identification and functional characterization of iridoid synthase involved in monotropein biosynthesis in blueberry. PLANT DIRECT 2023; 7:e512. [PMID: 37440931 PMCID: PMC10333835 DOI: 10.1002/pld3.512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 05/08/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023]
Abstract
Blueberries (Vaccinium spp.) are well known for their nutritional quality, and recent work has shown that Vaccinium spp. also produce iridoids, which are specialized metabolites with potent health-promoting benefits. The iridoid glycoside monotropein, which has anti-inflammatory and antinociceptive activities, has been detected in several wild blueberry species but in only a few cultivated highbush blueberry cultivars. How monotropein is produced in blueberry and the genes involved in its biosynthesis remain to be elucidated. Using a monotropein-positive (M+) and monotropein-negative (M-) cultivar of blueberry, we employed transcriptomics and comparative genomics to identify candidate genes in the blueberry iridoid biosynthetic pathway. Orthology analysis was completed using de novo transcript assemblies for both the M+ and M- blueberry cultivars along with the known iridoid-producing plant species Catharanthus roseus to identify putative genes involved in key steps in the early iridoid biosynthetic pathway. From the identified orthologs, we functionally characterized iridoid synthase (ISY), a key enzyme involved in formation of the iridoid scaffold, from both the M+ and M- cultivars. Detection of nepetalactol suggests that ISY from both the M+ and M- cultivars produce functional enzymes that catalyze the formation of iridoids. Transcript accumulation of the putative ISY gene did not correlate with monotropein production, suggesting other genes in the monotropein biosynthetic pathway may be more directly responsible for differential accumulation of the metabolite in blueberry. Mutual rank analysis revealed that ISY is co-expressed with UDP-glucuronosyltransferase, which encodes an enzyme downstream of the ISY step. Results from this study contribute new knowledge in our understanding of iridoid biosynthesis in blueberry and could lead to development of new cultivars with increased human health benefits.
Collapse
Affiliation(s)
| | - Mohamed O. Kamileen
- Department of Natural Product BiosynthesisMax Planck Institute for Chemical EcologyJenaGermany
| | - C. Robin Buell
- Department of Plant BiologyMichigan State UniversityEast LansingMichiganUSA
- Department of Crop and Soil SciencesInstitute of Plant Breeding, Genetics, & Genomics, University of GeorgiaAthensGeorgiaUSA
| | - Sarah E. O'Connor
- Department of Natural Product BiosynthesisMax Planck Institute for Chemical EcologyJenaGermany
| | - Courtney P. Leisner
- Department of Biological SciencesAuburn UniversityAuburnAlabamaUSA
- School of Plant and Environmental SciencesVirginia TechBlacksburgVirginiaUSA
| |
Collapse
|
35
|
Shimamoto Y, Fujitani T, Uchiage E, Isoda H, Tominaga KI. Solid acid-catalyzed one-step synthesis of oleacein from oleuropein. Sci Rep 2023; 13:8275. [PMID: 37217598 DOI: 10.1038/s41598-023-35423-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/17/2023] [Indexed: 05/24/2023] Open
Abstract
In this study, we developed a new synthetic strategy to convert secoiridoid glucosides into unique dialdehydic compounds using solid acid catalysts. Specifically, we succeeded in the direct synthesis of oleacein, a rare component of extra-virgin olive oil, from oleuropein, which is abundant in olive leaves. Whereas the conventional total synthesis of oleacein from lyxose requires more than 10 steps, these solid acid catalysts enabled the one-step synthesis of oleacein from oleuropein. A key step in this synthesis was the selective hydrolysis of methyl ester. Density functional theory calculations at the B3LYP/631+G (d) level of theory revealed the formation of a tetrahedral intermediate bonded to one H2O molecule. These solid acid catalysts were easily recovered and reused at least five times by simple cleaning. Importantly, this synthetic procedure was not only applicable to other secoiridoid glucosides, but could also be employed for the corresponding scale-up reaction using oleuropein extracted from olive leaves as the starting material.
Collapse
Affiliation(s)
- Yasuhiro Shimamoto
- National Institute of Advanced Industrial Science and Technology (AIST), Interdisciplinary Research Center of Catalytic Chemistry, Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Tadahiro Fujitani
- National Institute of Advanced Industrial Science and Technology (AIST), Interdisciplinary Research Center of Catalytic Chemistry, Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Eriko Uchiage
- National Institute of Advanced Industrial Science and Technology (AIST), Open Innovation Laboratory for Food and Medicinal Resource Engineering, 1-1-1 Tennodai, Tsukuba, 305-8577, Japan
| | - Hiroko Isoda
- National Institute of Advanced Industrial Science and Technology (AIST), Open Innovation Laboratory for Food and Medicinal Resource Engineering, 1-1-1 Tennodai, Tsukuba, 305-8577, Japan
- School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572, Japan
| | - Ken-Ichi Tominaga
- National Institute of Advanced Industrial Science and Technology (AIST), Interdisciplinary Research Center of Catalytic Chemistry, Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan.
- National Institute of Advanced Industrial Science and Technology (AIST), Open Innovation Laboratory for Food and Medicinal Resource Engineering, 1-1-1 Tennodai, Tsukuba, 305-8577, Japan.
| |
Collapse
|
36
|
Li C, Wood JC, Vu AH, Hamilton JP, Rodriguez Lopez CE, Payne RME, Serna Guerrero DA, Gase K, Yamamoto K, Vaillancourt B, Caputi L, O'Connor SE, Robin Buell C. Single-cell multi-omics in the medicinal plant Catharanthus roseus. Nat Chem Biol 2023:10.1038/s41589-023-01327-0. [PMID: 37188960 PMCID: PMC10374443 DOI: 10.1038/s41589-023-01327-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 04/04/2023] [Indexed: 05/17/2023]
Abstract
Advances in omics technologies now permit the generation of highly contiguous genome assemblies, detection of transcripts and metabolites at the level of single cells and high-resolution determination of gene regulatory features. Here, using a complementary, multi-omics approach, we interrogated the monoterpene indole alkaloid (MIA) biosynthetic pathway in Catharanthus roseus, a source of leading anticancer drugs. We identified clusters of genes involved in MIA biosynthesis on the eight C. roseus chromosomes and extensive gene duplication of MIA pathway genes. Clustering was not limited to the linear genome, and through chromatin interaction data, MIA pathway genes were present within the same topologically associated domain, permitting the identification of a secologanin transporter. Single-cell RNA-sequencing revealed sequential cell-type-specific partitioning of the leaf MIA biosynthetic pathway that, when coupled with a single-cell metabolomics approach, permitted the identification of a reductase that yields the bis-indole alkaloid anhydrovinblastine. We also revealed cell-type-specific expression in the root MIA pathway.
Collapse
Affiliation(s)
- Chenxin Li
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA
| | - Joshua C Wood
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA
| | - Anh Hai Vu
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - John P Hamilton
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA
| | | | - Richard M E Payne
- The John Innes Centre, Department of Biological Chemistry, Norwich Research Park, Norwich, UK
| | | | - Klaus Gase
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Kotaro Yamamoto
- School of Science, Association of International Arts and Science, Yokohama City University, Yokohama, Japan
| | | | - Lorenzo Caputi
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany.
| | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany.
| | - C Robin Buell
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA.
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, USA.
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, USA.
| |
Collapse
|
37
|
Zhou M, Jiang Y, Liu X, Kong W, Zhang C, Yang J, Ke S, Li Y. Genome-Wide Identification and Evolution Analysis of the CYP76 Subfamily in Rice ( Oryza sativa). Int J Mol Sci 2023; 24:ijms24108522. [PMID: 37239869 DOI: 10.3390/ijms24108522] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
The CYP76 subfamily, a member of the CYP superfamily, plays crucial roles in the biosynthesis of phytohormones in plants, involving biosynthesis of secondary metabolites, hormone signaling, and response to environmental stresses. Here, we conducted a genome-wide analysis of the CYP76 subfamily in seven AA genome species: Oryza sativa ssp. japonica, Oryza sativa ssp. indica, Oryza rufipogon, Oryza glaberrima, Oryza meridionalis, Oryza barthii, and Oryza glumaepatula. These were identified and classified into three groups, and it was found that Group 1 contained the largest number of members. Analysis of cis-acting elements revealed a large number of elements related to jasmonic acid and light response. The gene duplication analysis revealed that the CYP76 subfamily expanded mainly in SD/WGD and tandem forms and underwent strong purifying selection during evolution. Expression pattern analysis of OsCYP76s in various developmental stages revealed that the majority of OsCYP76s exhibit relatively restricted expression patterns in leaves and roots. We further analyzed the expression of CYP76s in O. sativa, japonica, and O. sativa, indica under cold, flooding, drought, and salt abiotic stresses by qRT-PCR. We found that OsCYP76-11 showed a huge increase in relative expression after drought and salt stresses. After flooding stress, OsiCYP76-4 showed a greater increase in expression compared to other genes. CYP76 in japonica and indica showed different response patterns to the same abiotic stresses, revealing functional divergence in the gene family during evolution; these may be the key genes responsible for the differences in tolerance to indica japonica. Our results provide valuable insights into the functional diversity and evolutionary history of the CYP76 subfamily and pave the way for the development of new strategies for improving stress tolerance and agronomic traits in rice.
Collapse
Affiliation(s)
- Mingao Zhou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yifei Jiang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xuhui Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Weilong Kong
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Shenzhen Branch, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Chenhao Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Department of Biomedical Informatics, School of Basic Medical Science, Peking University Health Science Center, Beijing 100191, China
| | - Jian Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Simin Ke
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yangsheng Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
38
|
Habib MA, Islam MM, Islam MM, Hasan MM, Baek KH. Current Status and De Novo Synthesis of Anti-Tumor Alkaloids in Nicotiana. Metabolites 2023; 13:metabo13050623. [PMID: 37233664 DOI: 10.3390/metabo13050623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Alkaloids are the most diversified nitrogen-containing secondary metabolites, having antioxidant and antimicrobial properties, and are extensively used in pharmaceuticals to treat different types of cancer. Nicotiana serves as a reservoir of anti-cancer alkaloids and is also used as a model plant for the de novo synthesis of various anti-cancer molecules through genetic engineering. Up to 4% of the total dry weight of Nicotiana was found to be composed of alkaloids, where nicotine, nornicotine, anatabine, and anabasine are reported as the dominant alkaloids. Additionally, among the alkaloids present in Nicotiana, β-carboline (Harmane and Norharmane) and Kynurenines are found to show anti-tumor effects, especially in the cases of colon and breast cancers. Creating new or shunting of existing biosynthesis pathways in different species of Nicotiana resulted in de novo or increased synthesis of different anti-tumor molecules or their derivatives or precursors including Taxadiane (~22.5 µg/g), Artemisinin (~120 μg/g), Parthenolide (~2.05 ng/g), Costunolide (~60 ng/g), Etoposide (~1 mg/g), Crocin (~400 µg/g), Catharanthine (~60 ng/g), Tabersonine (~10 ng/g), Strictosidine (~0.23 mg/g), etc. Enriching the precursor pool, especially Dimethylallyl Diphosphate (DMAPP), down-regulating other bi-product pathways, compartmentalization or metabolic shunting, or organelle-specific reconstitution of the precursor pool, might trigger the enhanced accumulation of the targeted anti-cancer alkaloid in Nicotiana.
Collapse
Affiliation(s)
- Md Ahsan Habib
- Department of Plant Pathology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Md Mobinul Islam
- Department of Plant Pathology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Md Mukul Islam
- Department of Plant Pathology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Md Mohidul Hasan
- Department of Plant Pathology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
39
|
Schotte C, Jiang Y, Grzech D, Dang TTT, Laforest LC, León F, Mottinelli M, Nadakuduti SS, McCurdy CR, O’Connor SE. Directed Biosynthesis of Mitragynine Stereoisomers. J Am Chem Soc 2023; 145:4957-4963. [PMID: 36883326 PMCID: PMC9999412 DOI: 10.1021/jacs.2c13644] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Indexed: 02/24/2023]
Abstract
Mitragyna speciosa ("kratom") is used as a natural remedy for pain and management of opioid dependence. The pharmacological properties of kratom have been linked to a complex mixture of monoterpene indole alkaloids, most notably mitragynine. Here, we report the central biosynthetic steps responsible for the scaffold formation of mitragynine and related corynanthe-type alkaloids. We illuminate the mechanistic basis by which the key stereogenic center of this scaffold is formed. These discoveries were leveraged for the enzymatic production of mitragynine, the C-20 epimer speciogynine, and fluorinated analogues.
Collapse
Affiliation(s)
- Carsten Schotte
- Department
of Natural Product Biosynthesis, Max Planck
Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Yindi Jiang
- Department
of Natural Product Biosynthesis, Max Planck
Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Dagny Grzech
- Department
of Natural Product Biosynthesis, Max Planck
Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Thu-Thuy T. Dang
- Department
of Natural Product Biosynthesis, Max Planck
Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Larissa C. Laforest
- Plant
Molecular and Cell Biology Program, University
of Florida, Gainesville, Florida 32606, United States
| | - Francisco León
- Department
of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Marco Mottinelli
- Department
of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Satya Swathi Nadakuduti
- Plant
Molecular and Cell Biology Program, University
of Florida, Gainesville, Florida 32606, United States
- Department
of Environmental Horticulture, University
of Florida, Gainesville, Florida 32606, United
States
| | - Christopher R. McCurdy
- Department
of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Sarah E. O’Connor
- Department
of Natural Product Biosynthesis, Max Planck
Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| |
Collapse
|
40
|
Comparative transcriptome analyses of three Gentiana species provides signals for the molecular footprints of selection effects and the phylogenetic relationships. Mol Genet Genomics 2023; 298:399-411. [PMID: 36592219 DOI: 10.1007/s00438-022-01991-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/27/2022] [Indexed: 01/03/2023]
Abstract
Species in Gentiana section Cruciata are important alpine plants with a center of diversity and speciation in Qinghai-Tibet Plateau (QTP), and some of these species are sympatrically distributed in northeastern QTP. Studies on genome features and natural selection signatures of sympatric species in section Crucata have been impeded by a lack of genomic resources. Here, we showed transcript characterizations and molecular footprints of selection effects on G. straminea, G. dahurica and G. officinalis based on the comparative transcriptome. A total of 62.97 Gb clean reads were obtained with unigene numbers per species ranging from 141,819 to 236,408 after assembly. We found that these three species had similar distribution of functional categories in different databases, and key enzyme-encoding genes involved in the iridoids biosynthesis were also obtained. The selective pressure analyses indicated that most paired orthologs between these three species were subject to negative selection, and only a low proportion of the orthologs that underwent positive selection were detected. We found that some positive selected genes were involved in "catalytic activity", "metabolic process", "response to stimulus" and "response to stress". Besides, large numbers of SSR primer pairs with transferabilities were successfully designed based on the available transcriptome datasets of three Gentiana species. The phylogenetic relationships reconstructed based on 352 single-copy nuclear genes provided a rough phylogenetic framework for this genus and confirmed the monophyly of section Cruciata. Our study not only provides insights for the natural selection effects on sympatric Gentiana species, but also enhances future genetic breeding or evolutionary studies on Qinjiao species.
Collapse
|
41
|
Raorane ML, Manz C, Hildebrandt S, Mielke M, Thieme M, Keller J, Bunzel M, Nick P. Cell type matters: competence for alkaloid metabolism differs in two seed-derived cell strains of Catharanthus roseus. PROTOPLASMA 2023; 260:349-369. [PMID: 35697946 PMCID: PMC9931846 DOI: 10.1007/s00709-022-01781-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Since the discovery of the anticancer drugs vinblastine and vincristine, Catharanthus roseus has been intensively studied for biosynthesis of several terpene indole alkaloids (TIAs). Due to their low abundance in plant tissues at a simultaneously high demand, modes of production alternative to conventional extraction are mandatory. Plant cell fermentation might become one of these alternatives, yet decades of research have shown limited success to certain product classes, leading to the question: how to preserve the intrinsic ability to produce TIAs (metabolic competence) in cell culture? We used the strategy to use the developmental potency of mature embryos to generate such strains. Two cell strains (C1and C4) from seed embryos of Catharanthus roseus were found to differ not only morphologically, but also in their metabolic competence. This differential competence became manifest not only under phytohormone elicitation, but also upon feeding with alkaloid pathway precursors. The more active strain C4 formed larger cell aggregates and was endowed with longer mitochondria. These cellular features were accompanied by higher alkaloid accumulation in response to methyl jasmonate (MeJA) elicitation. The levels of catharanthine could be increased significantly, while the concurrent vindoline branch of the pathway was blocked, such that no bisindole alkaloids were detectable. By feeding vindoline to MeJA-elicited C4 cells, vincristine became detectable; however, only to marginal amounts. In conclusion, these results show that cultured cells are not "de-differentiated", but can differ in metabolic competence. In addition to elicitation and precursor feeding, the cellular properties of the "biomatter" are highly relevant for the success of plant cell fermentation.
Collapse
Affiliation(s)
- Manish L Raorane
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany.
- Institute of Pharmacy, Martin-Luther-University, Hoher Weg 8, 06120, Halle-WittenbergHalle (Saale), Germany.
| | - Christina Manz
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Sarah Hildebrandt
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Marion Mielke
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Marc Thieme
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Judith Keller
- Institute of Applied Biosciences, Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT), 76131, Karlsruhe, Germany
| | - Mirko Bunzel
- Institute of Applied Biosciences, Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT), 76131, Karlsruhe, Germany
| | - Peter Nick
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| |
Collapse
|
42
|
Lemos Cruz P, Carqueijeiro I, Koudounas K, Bomzan DP, Stander EA, Abdallah C, Kulagina N, Oudin A, Lanoue A, Giglioli-Guivarc'h N, Nagegowda DA, Papon N, Besseau S, Clastre M, Courdavault V. Identification of a second 16-hydroxytabersonine-O-methyltransferase suggests an evolutionary relationship between alkaloid and flavonoid metabolisms in Catharanthus roseus. PROTOPLASMA 2023; 260:607-624. [PMID: 35947213 DOI: 10.1007/s00709-022-01801-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
The medicinal plant Catharanthus roseus biosynthesizes many important drugs for human health, including the anticancer monoterpene indole alkaloids (MIAs) vinblastine and vincristine. Over the past decades, the continuous increase in pharmaceutical demand has prompted several research groups to characterize MIA biosynthetic pathways for considering future metabolic engineering processes of supply. In line with previous work suggesting that diversification can potentially occur at various steps along the vindoline branch, we were here interested in investigating the involvement of distinct isoforms of tabersonine-16-O-methyltransferase (16OMT) which plays a pivotal role in the MIA biosynthetic pathway. By combining homology searches based on the previously characterized 16OMT1, phylogenetic analyses, functional assays in yeast, and biochemical and in planta characterizations, we identified a second isoform of 16OMT, referred to as 16OMT2. 16OMT2 appears to be a multifunctional enzyme working on both MIA and flavonoid substrates, suggesting that a constrained evolution of the enzyme for accommodating the MIA substrate has probably occurred to favor the apparition of 16OMT2 from an ancestral specific flavonoid-O-methyltransferase. Since 16OMT1 and 16OMT2 displays a high sequence identity and similar kinetic parameters for 16-hydroxytabersonine, we postulate that 16OMT1 may result from a later 16OMT2 gene duplication accompanied by a continuous neofunctionalization leading to an almost complete loss of flavonoid O-methyltransferase activity. Overall, these results participate in increasing our knowledge on the evolutionary processes that have likely led to enzyme co-optation for MIA synthesis.
Collapse
Affiliation(s)
- Pamela Lemos Cruz
- Université de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Ines Carqueijeiro
- Université de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | | | - Dikki Pedenla Bomzan
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru, 560065, India
| | - Emily Amor Stander
- Université de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Cécile Abdallah
- Université de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Natalja Kulagina
- Université de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Audrey Oudin
- Université de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Arnaud Lanoue
- Université de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | | | - Dinesh A Nagegowda
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru, 560065, India
| | - Nicolas Papon
- Univ Angers, Univ Brest, IRF, SFR, ICAT, F-49000, Angers, France
| | - Sébastien Besseau
- Université de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Marc Clastre
- Université de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France
| | - Vincent Courdavault
- Université de Tours, EA2106 "Biomolécules et Biotechnologies Végétales", Tours, France.
| |
Collapse
|
43
|
MYC2: A Master Switch for Plant Physiological Processes and Specialized Metabolite Synthesis. Int J Mol Sci 2023; 24:ijms24043511. [PMID: 36834921 PMCID: PMC9963318 DOI: 10.3390/ijms24043511] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/27/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
The jasmonic acid (JA) signaling pathway plays important roles in plant defenses, development, and the synthesis of specialized metabolites synthesis. Transcription factor MYC2 is a major regulator of the JA signaling pathway and is involved in the regulation of plant physiological processes and specialized metabolite synthesis. Based on our understanding of the mechanism underlying the regulation of specialized metabolite synthesis in plants by the transcription factor MYC2, the use of synthetic biology approaches to design MYC2-driven chassis cells for the synthesis of specialized metabolites with high medicinal value, such as paclitaxel, vincristine, and artemisinin, seems to be a promising strategy. In this review, the regulatory role of MYC2 in JA signal transduction of plants to biotic and abiotic stresses, plant growth, development and specialized metabolite synthesis is described in detail, which will provide valuable reference for the use of MYC2 molecular switches to regulate plant specialized metabolite biosynthesis.
Collapse
|
44
|
Liu X, Zhang P, Zhao Q, Huang AC. Making small molecules in plants: A chassis for synthetic biology-based production of plant natural products. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:417-443. [PMID: 35852486 DOI: 10.1111/jipb.13330] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Plant natural products have been extensively exploited in food, medicine, flavor, cosmetic, renewable fuel, and other industrial sectors. Synthetic biology has recently emerged as a promising means for the cost-effective and sustainable production of natural products. Compared with engineering microbes for the production of plant natural products, the potential of plants as chassis for producing these compounds is underestimated, largely due to challenges encountered in engineering plants. Knowledge in plant engineering is instrumental for enabling the effective and efficient production of valuable phytochemicals in plants, and also paves the way for a more sustainable future agriculture. In this manuscript, we briefly recap the biosynthesis of plant natural products, focusing primarily on industrially important terpenoids, alkaloids, and phenylpropanoids. We further summarize the plant hosts and strategies that have been used to engineer the production of natural products. The challenges and opportunities of using plant synthetic biology to achieve rapid and scalable production of high-value plant natural products are also discussed.
Collapse
Affiliation(s)
- Xinyu Liu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, SUSTech-PKU Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Peijun Zhang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, SUSTech-PKU Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qiao Zhao
- Shenzhen Institutes of Advanced Technology (SIAT), the Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ancheng C Huang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, SUSTech-PKU Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
45
|
Jiang CX, Yu JX, Fei X, Pan XJ, Zhu NN, Lin CL, Zhou D, Zhu HR, Qi Y, Wu ZG. Gene coexpression networks allow the discovery of two strictosidine synthases underlying monoterpene indole alkaloid biosynthesis in Uncaria rhynchophylla. Int J Biol Macromol 2023; 226:1360-1373. [PMID: 36442554 DOI: 10.1016/j.ijbiomac.2022.11.249] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Plant-derived monoterpene indole alkaloids (MIAs) from Uncaria rhynchophylla (UR) have huge medicinal properties in treating Alzheimer's disease, Parkinson's disease, and depression. Although many bioactive UR-MIA products have been isolated as drugs, their biosynthetic pathway remains largely unexplored. In this study, untargeted metabolome identified 79 MIA features in UR tissues (leaf, branch stem, hook stem, and stem), of which 30 MIAs were differentially accumulated among different tissues. Short time series expression analysis captured 58 pathway genes and 12 hub regulators responsible for UR-MIA biosynthesis and regulation, which were strong links with main UR-MIA features. Coexpression networks further pointed to two strictosidine synthases (UrSTR1/5) that were coregulated with multiple MIA-related genes and highly correlated with UR-MIA features (r > 0.7, P < 0.005). Both UrSTR1/5 catalyzed the formation of strictosidine with tryptamine and secologanin as substrates, highlighting the importance of key residues (UrSTR1: Glu309, Tyr155; UrSTR5: Glu295, Tyr141). Further, overexpression of UrSTR1/5 in UR hairy roots constitutively increased the biosynthesis of bioactive UR-MIAs (rhynchophylline, isorhynchophylline, corynoxeine, etc), whereas RNAi of UrSTR1/5 significantly decreased UR-MIA biosynthesis. Collectively, our work not only provides candidates for reconstituting the biosynthesis of bioactive UR-MIAs in heterologous hosts but also highlights a powerful strategy for mining natural product biosynthesis in medicinal plants.
Collapse
Affiliation(s)
- Cheng-Xi Jiang
- Key Laboratory of Traditional Chinese Medicine Research, School of Pharmacy, Wenzhou Medical University, Wenzhou 325035, China
| | - Jia-Xing Yu
- Key Laboratory of Traditional Chinese Medicine Research, School of Pharmacy, Wenzhou Medical University, Wenzhou 325035, China
| | - Xuan Fei
- Key Laboratory of Traditional Chinese Medicine Research, School of Pharmacy, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiao-Jun Pan
- Key Laboratory of Traditional Chinese Medicine Research, School of Pharmacy, Wenzhou Medical University, Wenzhou 325035, China
| | - Ning-Ning Zhu
- Key Laboratory of Traditional Chinese Medicine Research, School of Pharmacy, Wenzhou Medical University, Wenzhou 325035, China
| | - Chong-Liang Lin
- The 1(st) Affiliated Hospital of WMU, The 1(st) School of Medicine, Wenzhou Medical University, Wenzhou 325025, China
| | - Dan Zhou
- Key Laboratory of Traditional Chinese Medicine Research, School of Pharmacy, Wenzhou Medical University, Wenzhou 325035, China
| | - Hao-Ru Zhu
- Key Laboratory of Traditional Chinese Medicine Research, School of Pharmacy, Wenzhou Medical University, Wenzhou 325035, China
| | - Yu Qi
- Key Laboratory of Traditional Chinese Medicine Research, School of Pharmacy, Wenzhou Medical University, Wenzhou 325035, China
| | - Zhi-Gang Wu
- Key Laboratory of Traditional Chinese Medicine Research, School of Pharmacy, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
46
|
Grzech D, Hong B, Caputi L, Sonawane PD, O’Connor SE. Engineering the Biosynthesis of Late-Stage Vinblastine Precursors Precondylocarpine Acetate, Catharanthine, Tabersonine in Nicotiana benthamiana. ACS Synth Biol 2023; 12:27-34. [PMID: 36516122 PMCID: PMC9872167 DOI: 10.1021/acssynbio.2c00434] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Indexed: 12/15/2022]
Abstract
Vinblastine is a chemotherapy agent produced by the plant Catharanthus roseus in small quantities. Currently, vinblastine is sourced by isolation or semisynthesis. Nicotiana benthamiana is a plant heterologous host that can be used for reconstitution of biosynthetic pathways as an alternative natural product sourcing strategy. Recently, the biosynthesis of the late-stage vinblastine precursors precondylocarpine acetate, catharanthine, and tabersonine have been fully elucidated. However, the large number of enzymes involved in the pathway and the unstable nature of intermediates make the reconstitution of late-stage vinblastine precursor biosynthesis challenging. We used the N. benthamiana chassis and a state-of-art modular vector assembly to optimize the six biosynthetic steps leading to production of precondylocarpine acetate from the central intermediate strictosidine (∼2.7 mg per 1 g frozen tissue). After selecting the optimal regulatory element combination, we constructed four transcriptional unit assemblies and tested their efficiency. Finally, we successfully reconstituted the biosynthetic steps leading to production of catharanthine and tabersonine.
Collapse
Affiliation(s)
- Dagny Grzech
- Department
of Natural Product Biosynthesis, Max Planck
Institute for Chemical Ecology, 07745 Jena, Germany
| | - Benke Hong
- Department
of Natural Product Biosynthesis, Max Planck
Institute for Chemical Ecology, 07745 Jena, Germany
| | - Lorenzo Caputi
- Department
of Natural Product Biosynthesis, Max Planck
Institute for Chemical Ecology, 07745 Jena, Germany
| | - Prashant D. Sonawane
- Department
of Natural Product Biosynthesis, Max Planck
Institute for Chemical Ecology, 07745 Jena, Germany
| | - Sarah E. O’Connor
- Department
of Natural Product Biosynthesis, Max Planck
Institute for Chemical Ecology, 07745 Jena, Germany
| |
Collapse
|
47
|
Zhang T, Wang M, Li Z, Wu X, Liu X. Transcriptome analysis and exploration of genes involved in the biosynthesis of secoiridoids in Gentiana rhodantha. PeerJ 2023; 11:e14968. [PMID: 36915654 PMCID: PMC10007974 DOI: 10.7717/peerj.14968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 02/07/2023] [Indexed: 03/11/2023] Open
Abstract
Gentiana rhodantha is a medicinally important perennial herb used as traditional Chinese and ethnic medicines. Secoiridoids are one of the major bioactive compounds in G. rhodantha. To better understand the secoiridoid biosynthesis pathway, we generated transcriptome sequences from four organs (root, leaf, stem and flower), followed by the de novo sequence assembly. We verified 8-HGO (8-hydroxygeraniol oxidoreductase), which may encode key enzymes of the secoiridoid biosynthesis by qRT-PCR. The mangiferin, swertiamarin and loganic acid contents in root, stem, leaf, and flower were determined by HPLC. The results showed that there were 47,871 unigenes with an average length of 1,107.38 bp. Among them, 1,422 unigenes were involved in 25 standard secondary metabolism-related pathways in the KEGG database. Furthermore, we found that 1,005 unigenes can be divided into 66 transcription factor (TF) families, with no family members exhibiting significant organ-specificity. There were 54 unigenes in G. rhodantha that encoded 17 key enzymes of the secoiridoid biosynthetic pathway. The qRT-PCR of the 8-HGO and HPLC results showed that the relative expression and the mangiferin, swertiamarin, and loganic acid contents of the aerial parts were higher than in the root. Six types of SSR were identified by SSR analysis of unigenes: mono-nucleoside repeat SSR, di-nucleoside repeat SSR, tri-nucleoside repeat SSR, tetra-nucleoside repeat SSR, penta-nucleoside repeat SSR, and hexa-nucleoside repeat SSR. This report not only enriches the Gentiana transcriptome database but helps further study the function and regulation of active component biosynthesis of G. rhodantha.
Collapse
Affiliation(s)
- Ting Zhang
- College of Chinese Material Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan, China.,Medicine Yunnan Provincial Key Laboratory of Molecular Biology for Sino Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Miaomiao Wang
- College of Chinese Material Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Zhaoju Li
- College of Chinese Material Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Xien Wu
- College of Chinese Material Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Xiaoli Liu
- College of Chinese Material Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan, China.,Medicine Yunnan Provincial Key Laboratory of Molecular Biology for Sino Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
48
|
Hao J, Zheng L, Han Y, Zhang H, Hou K, Liang X, Chen C, Wang Z, Qian J, Lin Z, Wang Z, Zeng H, Shen C. Genome-wide identification and expression analysis of TCP family genes in Catharanthus roseus. FRONTIERS IN PLANT SCIENCE 2023; 14:1161534. [PMID: 37123846 PMCID: PMC10130365 DOI: 10.3389/fpls.2023.1161534] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
Introduction The anti-tumor vindoline and catharanthine alkaloids are naturally existed in Catharanthus roseus (C. roseus), an ornamental plant in many tropical countries. Plant-specific TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors play important roles in various plant developmental processes. However, the roles of C. roseus TCPs (CrTCPs) in terpenoid indole alkaloid (TIA) biosynthesis are largely unknown. Methods Here, a total of 15 CrTCP genes were identified in the newly updated C. roseus genome and were grouped into three major classes (P-type, C-type and CYC/TB1). Results Gene structure and protein motif analyses showed that CrTCPs have diverse intron-exon patterns and protein motif distributions. A number of stress responsive cis-elements were identified in promoter regions of CrTCPs. Expression analysis showed that three CrTCP genes (CrTCP2, CrTCP4, and CrTCP7) were expressed specifically in leaves and four CrTCP genes (CrTCP13, CrTCP8, CrTCP6, and CrTCP10) were expressed specifically in flowers. HPLC analysis showed that the contents of three classic TIAs, vindoline, catharanthine and ajmalicine, were significantly increased by ultraviolet-B (UV-B) and methyl jasmonate (MeJA) in leaves. By analyzing the expression patterns under UV-B radiation and MeJA application with qRT-PCR, a number of CrTCP and TIA biosynthesis-related genes were identified to be responsive to UV-B and MeJA treatments. Interestingly, two TCP binding elements (GGNCCCAC and GTGGNCCC) were identified in several TIA biosynthesis-related genes, suggesting that they were potential target genes of CrTCPs. Discussion These results suggest that CrTCPs are involved in the regulation of the biosynthesis of TIAs, and provide a basis for further functional identification of CrTCPs.
Collapse
Affiliation(s)
- Juan Hao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Lijun Zheng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Yidie Han
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Hongshan Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
- Kharkiv Institute, Hangzhou Normal University, Hangzhou, China
| | - Kailin Hou
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Xueshuang Liang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Cheng Chen
- College of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Zhijing Wang
- College of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Jiayi Qian
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Zhihao Lin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Zitong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Houqing Zeng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Kharkiv Institute, Hangzhou Normal University, Hangzhou, China
- *Correspondence: Chenjia Shen, ; Houqing Zeng,
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
- Kharkiv Institute, Hangzhou Normal University, Hangzhou, China
- *Correspondence: Chenjia Shen, ; Houqing Zeng,
| |
Collapse
|
49
|
Sun S, Shen X, Li Y, Li Y, Wang S, Li R, Zhang H, Shen G, Guo B, Wei J, Xu J, St-Pierre B, Chen S, Sun C. Single-cell RNA sequencing provides a high-resolution roadmap for understanding the multicellular compartmentation of specialized metabolism. NATURE PLANTS 2023; 9:179-190. [PMID: 36522449 DOI: 10.1038/s41477-022-01291-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 10/26/2022] [Indexed: 06/17/2023]
Abstract
Monoterpenoid indole alkaloids (MIAs) are among the most diverse specialized metabolites in plants and are of great pharmaceutical importance. We leveraged single-cell transcriptomics to explore the spatial organization of MIA metabolism in Catharanthus roseus leaves, and the transcripts of 20 MIA genes were first localized, updating the model of MIA biosynthesis. The MIA pathway was partitioned into three cell types, consistent with the results from RNA in situ hybridization experiments. Several candidate transporters were predicted to be essential players shuttling MIA intermediates between inter- and intracellular compartments, supplying potential targets to increase the overall yields of desirable MIAs in native plants or heterologous hosts through metabolic engineering and synthetic biology. This work provides not only a universal roadmap for elucidating the spatiotemporal distribution of biological processes at single-cell resolution, but also abundant cellular and genetic resources for further investigation of the higher-order organization of MIA biosynthesis, transport and storage.
Collapse
Affiliation(s)
- Sijie Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaofeng Shen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shu Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rucan Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huibo Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guoan Shen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Baolin Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianhe Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiang Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Benoit St-Pierre
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, Tours, France.
| | - Shilin Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
- Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Chao Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
50
|
Wu M, Lai H, Peng W, Zhou X, Zhu L, Tu H, Yuan K, Yang Z. Monotropein: A comprehensive review of biosynthesis, physicochemical properties, pharmacokinetics, and pharmacology. Front Pharmacol 2023; 14:1109940. [PMID: 36937894 PMCID: PMC10017856 DOI: 10.3389/fphar.2023.1109940] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
Monotropein, a principal natural compound in iridoid glycosides extracted from Morindae officinalis radix, has potent pharmacological activities. To understand and utilize monotropein, we systematically summarized the studies on monotropein, including its biosynthetic pathway, physicochemical properties, pharmacokinetics, and pharmacology. Interestingly, we found that the multiple bioactivities of monotropein, such as anti-osteoporosis, anti-inflammation, anti-oxidation, anti-nociception, and hepatic or renal protection, are closely associated with its capability of downregulating the nuclear factor-κB signaling pathway, inhibiting the mitogen-activated protein kinase signaling pathway, attenuating the activation of nuclear factor E2-related factor 2/heme oxygenase-1 signaling pathway, and regulating the mammalian target of rapamycin/autophagy signaling pathway. However, the clinically therapeutic effects and the potential problems need to be addressed. This review highlights the current research progress on monotropein, which provides a reference for further investigation of monotropein.
Collapse
Affiliation(s)
- Mingquan Wu
- Department of Pharmacy, Sichuan Orthopedic Hospital, Chengdu, Sichuan, China
- *Correspondence: Mingquan Wu, ; Zhirui Yang,
| | - Huabing Lai
- Department of Rehabilitation and Prosthetic Orthopedics Center, Sichuan Orthopedic Hospital, Chengdu, Sichuan, China
| | - Wei Peng
- Department of Pharmacy, Sichuan Orthopedic Hospital, Chengdu, Sichuan, China
| | - Xu Zhou
- Department of Pharmacy, Sichuan Orthopedic Hospital, Chengdu, Sichuan, China
| | - Liyang Zhu
- Department of Pharmacy, Sichuan Orthopedic Hospital, Chengdu, Sichuan, China
| | - He Tu
- Department of Pharmacy, Sichuan Orthopedic Hospital, Chengdu, Sichuan, China
| | - Kezhu Yuan
- Department of Scientific Research, Sichuan Orthopedic Hospital, Chengdu, Sichuan, China
| | - Zhirui Yang
- Department of Nuclear Medicine, Chengdu Second People’s Hospital, Chengdu, Sichuan, China
- *Correspondence: Mingquan Wu, ; Zhirui Yang,
| |
Collapse
|