1
|
Lopez-Charcas O, Benouna O, Lemoine R, Rosendo-Pineda MJ, Anguheven-Ledezma TG, Sandoval-Vazquez L, Gallegos-Gomez ML, Robles-Martinez L, Herrera-Carrillo Z, Ramírez-Aragón M, Alfaro A, Chadet S, Ferro F, Besson P, Jiang LH, Velu SE, Guerrero-Hernandez A, Roger S, Gomora JC. Blockade of Ca V3 calcium channels and induction of G 0/G 1 cell cycle arrest in colon cancer cells by gossypol. Br J Pharmacol 2024; 181:4546-4570. [PMID: 39081110 DOI: 10.1111/bph.16497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 08/30/2024] Open
Abstract
BACKGROUND AND PURPOSE Gastrointestinal tumours overexpress voltage-gated calcium (CaV3) channels (CaV3.1, 3.2 and 3.3). CaV3 channels regulate cell growth and apoptosis colorectal cancer. Gossypol, a polyphenolic aldehyde found in the cotton plant, has anti-tumour properties and inhibits CaV3 currents. A systematic study was performed on gossypol blocking mechanism on CaV3 channels and its potential anticancer effects in colon cancer cells, which express CaV3 isoforms. EXPERIMENTAL APPROACH Transcripts for CaV3 proteins were analysed in gastrointestinal cancers using public repositories and in human colorectal cancer cell lines HCT116, SW480 and SW620. The gossypol blocking mechanism on CaV3 channels was investigated by combining heterologous expression systems and patch-clamp experiments. The anti-tumoural properties of gossypol were estimated by cell proliferation, viability and cell cycle assays. Ca2+ dynamics were evaluated with cytosolic and endoplasmic reticulum (ER) Ca2+ indicators. KEY RESULTS High levels of CaV3 transcripts correlate with poor prognosis in gastrointestinal cancers. Gossypol blockade of CaV3 isoforms is concentration- and use-dependent interacting with the closed, activated and inactivated conformations of CaV3 channels. Gossypol and CaV3 channels down-regulation inhibit colorectal cancer cell proliferation by arresting cell cycles at the G0/G1 and G2/M phases, respectively. CaV3 channels underlie the vectorial Ca2+ uptake by endoplasmic reticulum in colorectal cancer cells. CONCLUSION AND IMPLICATIONS Gossypol differentially blocked CaV3 channel and its anticancer activity was correlated with high levels of CaV3.1 and CaV3.2 in colorectal cancer cells. The CaV3 regulates cell proliferation and Ca2+ dynamics in colorectal cancer cells. Understanding this blocking mechanism maybe improve cancer therapies.
Collapse
Grants
- SPF201909009198 Fondation pour la Recherche Médicale (FRM), France
- BB/C517317/1 Biotechnology and Biological Sciences Research Council, UK
- G2022026006L National High-End Foreign Expert Recruitment Plan of China, China
- pre-R01grant O'Neal Comprehensive Cancer Center, USA
- CVU1148606 Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico
- PrixRubanRoseAvenir Le Cancer du sein, parlons-en, France
- 16IRTSTHN020 Department of Education of the Henan Province, China
- Ministère de la Recherche et des Technologies, France
- A1-S-19171 Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico
- Université de Tours, France
- IN209820 PAPIIT-DGAPA-UNAM, Mexico
- NavMetarget Conseil Régional du Centre-Val de Loire, France
- 1R21CA226491 National Institutes of Health (NIH), USA
- 099758/Z/12/Z Wellcome Trust, UK
- CanalEx Conseil Régional du Centre-Val de Loire, France
- I1200/320/2022 CVU 369878 Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico
- Ligue Nationale Contre le Cancer, Interrégion Grand-Ouest: comités 29, 36, 86 and 37, France
- 2016PN-KFKT-06 Disciplinary Group of Psychology and Neuroscience, Xinxiang Medical University, China
Collapse
Affiliation(s)
- Osbaldo Lopez-Charcas
- Departamento de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Oumnia Benouna
- Université de Tours, Inserm U1327 ISCHEMIA 'Membrane Signalling and Inflammation in Reperfusion Injuries', Tours, France
| | - Roxane Lemoine
- Université de Tours, Inserm U1327 ISCHEMIA 'Membrane Signalling and Inflammation in Reperfusion Injuries', Tours, France
| | - Margarita Jacaranda Rosendo-Pineda
- Departamento de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Tonantzin Guadalupe Anguheven-Ledezma
- Departamento de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | | - Leticia Robles-Martinez
- Departamento de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Zazil Herrera-Carrillo
- Departamento de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Centro de Investigación en Ciencias de la Salud (CICSA), Universidad Anáhuac, Mexico City, Mexico
| | - Miguel Ramírez-Aragón
- Departamento de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ana Alfaro
- Servicio de Anatomía Patológica, Hospital General de México 'Dr. Eduardo Liceaga', Mexico City, Mexico
| | - Stéphanie Chadet
- Université de Tours, Inserm U1327 ISCHEMIA 'Membrane Signalling and Inflammation in Reperfusion Injuries', Tours, France
| | - Fabio Ferro
- Université de Tours, Inserm U1327 ISCHEMIA 'Membrane Signalling and Inflammation in Reperfusion Injuries', Tours, France
| | - Pierre Besson
- Université de Tours, Inserm U1327 ISCHEMIA 'Membrane Signalling and Inflammation in Reperfusion Injuries', Tours, France
| | - Lin-Hua Jiang
- Université de Tours, Inserm U1327 ISCHEMIA 'Membrane Signalling and Inflammation in Reperfusion Injuries', Tours, France
- Department of Physiology and Pathophysiology and Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Xinxiang Medical University, Xinxiang, China
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Sadanandan E Velu
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Sébastien Roger
- Université de Tours, Inserm U1327 ISCHEMIA 'Membrane Signalling and Inflammation in Reperfusion Injuries', Tours, France
| | - Juan Carlos Gomora
- Departamento de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
2
|
Pham TA, Boquet-Pujadas A, Mondal S, Unser M, Barbastathis G. Deep-prior ODEs augment fluorescence imaging with chemical sensors. Nat Commun 2024; 15:9172. [PMID: 39448575 PMCID: PMC11502814 DOI: 10.1038/s41467-024-53232-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
To study biological signalling, great effort goes into designing sensors whose fluorescence follows the concentration of chemical messengers as closely as possible. However, the binding kinetics of the sensors are often overlooked when interpreting cell signals from the resulting fluorescence measurements. We propose a method to reconstruct the spatiotemporal concentration of the underlying chemical messengers in consideration of the binding process. Our method fits fluorescence data under the constraint of the corresponding chemical reactions and with the help of a deep-neural-network prior. We test it on several GCaMP calcium sensors. The recovered concentrations concur in a common temporal waveform regardless of the sensor kinetics, whereas assuming equilibrium introduces artifacts. We also show that our method can reveal distinct spatiotemporal events in the calcium distribution of single neurons. Our work augments current chemical sensors and highlights the importance of incorporating physical constraints in computational imaging.
Collapse
Affiliation(s)
- Thanh-An Pham
- 3D Optical Systems Group, Massachusetts Institute of Technology, Mechanical Department, 3D Optical Systems Group, 77 Massachusetts Ave, Cambridge, MA, 02139-4307, USA.
| | - Aleix Boquet-Pujadas
- Biomedical Imaging Group, École Polytechnique Fédérale de Lausanne (EPFL), Station 17, Lausanne, 1015, Switzerland.
| | - Sandip Mondal
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Michael Unser
- Biomedical Imaging Group, École Polytechnique Fédérale de Lausanne (EPFL), Station 17, Lausanne, 1015, Switzerland
| | - George Barbastathis
- 3D Optical Systems Group, Massachusetts Institute of Technology, Mechanical Department, 3D Optical Systems Group, 77 Massachusetts Ave, Cambridge, MA, 02139-4307, USA
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| |
Collapse
|
3
|
Chen Y, Liu P, Zhong Z, Zhang H, Sun A, Wang Y. STIM1 functions as a proton sensor to coordinate cytosolic pH with store-operated calcium entry. J Biol Chem 2024:107924. [PMID: 39454952 DOI: 10.1016/j.jbc.2024.107924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/02/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
The meticulous regulation of intracellular pH (pHi) is crucial for maintaining cellular function and homeostasis, impacting physiological processes such as heart rhythm, cell migration, proliferation, and differentiation. Dysregulation of pHi is implicated in various pathologies such as arrhythmias, cancer, and neurodegenerative diseases. Here, we explore the role of STIM1, an ER calcium (Ca2+) sensor mediating Store Operated Ca2+ Entry (SOCE), in sensing pHi changes. Our study reveals that STIM1 functions as a sensor for pHi changes, independent of its Ca2+-binding state. Through comprehensive experimental approaches including confocal microscopy, FRET-based sensors, and mutagenesis, we demonstrate that changes in pHi induce conformational alterations in STIM1, thereby modifying its subcellular localization and activity. We identify two conserved histidine within STIM1 essential for sensing pHi shifts. Moreover, intracellular alkalization induced by agents such as Angiotensin II or NH4Cl enhances STIM1-mediated SOCE, promoting cardiac hypertrophy. These findings reveal a novel facet of STIM1 as a multi-modal stress sensor that coordinates cellular responses to both Ca2+ and pH fluctuations. This dual functionality underscores its potential as a therapeutic target for diseases associated with pH and Ca2+ dysregulation.
Collapse
Affiliation(s)
- Yilan Chen
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Panpan Liu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Ziyi Zhong
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Hanhan Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Aomin Sun
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Youjun Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China; Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
4
|
Lin L, Wang C, Wang W, Jiang H, Murayama T, Kobayashi T, Hadiatullah H, Chen YS, Wu S, Wang Y, Korza H, Gu Y, Zhang Y, Du J, Van Petegem F, Yuchi Z. Cryo-EM structures of ryanodine receptors and diamide insecticides reveal the mechanisms of selectivity and resistance. Nat Commun 2024; 15:9056. [PMID: 39428398 PMCID: PMC11491487 DOI: 10.1038/s41467-024-53490-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024] Open
Abstract
The resistance of pests to common insecticides is a global issue that threatens food production worldwide. Diamide insecticides target insect ryanodine receptors (RyRs), causing uncontrolled calcium release from the sarcoplasmic and endoplasmic reticulum. Despite their high potency and species selectivity, several resistance mutations have emerged. Using a chimeric RyR (chiRyR) approach and cryo-electron microscopy (cryo-EM), we investigate how insect RyRs engage two different diamide insecticides from separate families: flubendiamide, a phthalic acid derivative, and tetraniliprole, an anthranilic compound. Both compounds target the same site in the transmembrane region of the RyR, albeit with different poses, and promote channel opening through coupling with the pore-forming domain. To explore the resistance mechanisms, we also solve two cryo-EM structures of chiRyR carrying the two most common resistance mutations, I4790M and G4946E, both alone and in complex with the diamide insecticide chlorantraniliprole. The resistance mutations perturb the local structure, directly reducing the binding affinity and altering the binding pose. Our findings elucidate the mode of action of different diamide insecticides, reveal the molecular mechanism of resistance mutations, and provide important clues for the development of novel pesticides that can bypass the resistance mutations.
Collapse
Affiliation(s)
- Lianyun Lin
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Frontiers Science Center for Synthetic Biology, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China
| | - Changshi Wang
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wenlan Wang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Frontiers Science Center for Synthetic Biology, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China
| | - Heng Jiang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Frontiers Science Center for Synthetic Biology, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China
| | - Takashi Murayama
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takuya Kobayashi
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hadiatullah Hadiatullah
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Frontiers Science Center for Synthetic Biology, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China
| | - Yu Seby Chen
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shunfan Wu
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yiwen Wang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Frontiers Science Center for Synthetic Biology, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Henryk Korza
- Syngenta Jealott's Hill International Research Centre, Bracknell, Berkshire, UK
| | - Yucheng Gu
- Syngenta Jealott's Hill International Research Centre, Bracknell, Berkshire, UK
| | - Yan Zhang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Frontiers Science Center for Synthetic Biology, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China
| | - Jiamu Du
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Frontiers Science Center for Synthetic Biology, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China.
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China.
| |
Collapse
|
5
|
Loncke J, de Ridder I, Kale J, Wagner L, Kaasik A, Parys JB, Kerkhofs M, Andrews DW, Yule D, Vervliet T, Bultynck G. CISD2 counteracts the inhibition of ER-mitochondrial calcium transfer by anti-apoptotic BCL-2. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1872:119857. [PMID: 39370046 DOI: 10.1016/j.bbamcr.2024.119857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/19/2024] [Accepted: 09/27/2024] [Indexed: 10/08/2024]
Abstract
CISD2, a 2Fe2S cluster domain-containing protein, is implicated in Wolfram syndrome type 2, longevity and cancer. CISD2 is part of a ternary complex with IP3 receptors (IP3Rs) and anti-apoptotic BCL-2 proteins and enhances BCL-2's anti-autophagic function. Here, we examined how CISD2 impacted the function of BCL-2 in apoptosis and in controlling IP3R-mediated Ca2+ signaling. Using purified proteins, we found a direct interaction between the cytosolic region of CISD2 and BCL-2's BH4 domain with a submicromolar affinity. At the functional level, the cytosolic region of CISD2, as a purified protein, did not affect the ability of BCL-2 to inhibit BAX-pore formation. In a cellular context, loss of CISD2 did not impede the suppression of apoptosis by BCL-2. Also, in Ca2+-signaling assays, absence of CISD2 did not affect the inhibition of IP3R-mediated Ca2+ release by BCL-2. Combined, these experiments indicate that CISD2 is not essential for BCL-2 function in apoptosis and cytosolic Ca2+ signaling. Instead, CISD2 overexpression enhanced BCL-2-mediated suppression of cytosolic IP3R-mediated Ca2+ release. However, consistent with the presence of CISD2 and BCL-2 at mitochondria-associated ER membranes (MAMs), the most striking effect was observed at the level of ER-mitochondrial Ca2+ transfer. While BCL-2 overexpression inhibited ER-mitochondrial Ca2+ transfer, overexpression of CISD2 together with BCL-2 abrogated the effect of BCL-2. The underlying mechanism is linked to ER-mitochondrial contact sites, since BCL-2 reduced ER-mitochondrial contact sites while co-expression of CISD2 together with BCL-2 abolished this effect. These findings reveal a unique interplay between BCL-2 and CISD2 at Ca2+-signaling nanodomains between ER and mitochondria.
Collapse
Affiliation(s)
- Jens Loncke
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Ian de Ridder
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Justin Kale
- University of Toronto, Biological Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Larry Wagner
- University of Rochester, Department of Pharmacology and Physiology, School of Medicine and Dentistry, 601 Elmwood Avenue, Box 711, Rochester, NY 14642, USA
| | - Allen Kaasik
- University of Tartu, Department of Pharmacology, Institute of Biomedicine and Translational Medicine, Tartu, Estonia
| | - Jan B Parys
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Martijn Kerkhofs
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, BE-3000 Leuven, Belgium; Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008 Lyon, France
| | - David W Andrews
- University of Toronto, Biological Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - David Yule
- University of Rochester, Department of Pharmacology and Physiology, School of Medicine and Dentistry, 601 Elmwood Avenue, Box 711, Rochester, NY 14642, USA
| | - Tim Vervliet
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Geert Bultynck
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, BE-3000 Leuven, Belgium.
| |
Collapse
|
6
|
Ishii T, Kajimoto T, Kikkawa S, Narasaki S, Noguchi S, Imamura S, Harada K, Hide I, Tanaka S, Tsutsumi YM, Sakai N. Protein kinase C (PKC) inhibitor Calphostin C activates PKC in a light-dependent manner at high concentrations via the production of singlet oxygen. Eur J Pharmacol 2024; 984:177036. [PMID: 39368603 DOI: 10.1016/j.ejphar.2024.177036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/20/2024] [Accepted: 10/03/2024] [Indexed: 10/07/2024]
Abstract
Calphostin C (Cal-C) is a protein kinase C (PKC) inhibitor that binds to its C1 domain. The aim of the present study was to elucidate the action of Cal-C in addition to PKC inhibition. First, we confirmed that Cal-C at low concentrations (<200 nM) inhibit phorbol ester-induced PKC translocation and G-protein-coupled receptor (GPCR)-mediated PKC activation. Cal-C at higher concentrations (>2 μM) increased intracellular calcium ion concentrations ([Ca2+]i) in a concentration-dependent manner. The origin of this increase is the mobilization of the endoplasmic reticulum (ER), which does not involve GPCR or ryanodine receptors. Cal-C at high concentrations also cause structural changes in the ER, such as the formation of vacuoles and aggregates, and calcium leakage from the ER. At 2 μM, Cal-C translocated a calcium-sensitive PKCα. Studies using a C-kinase activity reporter and a myristoylated alanine-rich protein kinase C substrate fused with green fluorescent protein (GFP) have also revealed that Cal-C at high concentrations activate PKC in living cells. Additionally, the PKC-activating effects of Cal-C were light-dependent. Finally, studies using Si-DMA, an indicator of singlet oxygen, showed that Cal-C at high concentrations generated singlet oxygen, causing structural changes in the ER and leakage of calcium into the cytosol, which triggered PKC activation. This study confirms the novel action of Cal-C, solely considered a PKC inhibitor. Cal-C acted as a PKC inhibitor at low concentrations and a PKC activator at high concentrations by generating singlet oxygen in a light-dependent manner, suggesting that Cal-C can be used in photodynamic therapy.
Collapse
Affiliation(s)
- Tomomi Ishii
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan; Department of Anesthesiology and Critical Care, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Taketoshi Kajimoto
- Division of Biochemistry, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Japan
| | - Satoshi Kikkawa
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Soshi Narasaki
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan; Department of Anesthesiology and Critical Care, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Soma Noguchi
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Serika Imamura
- Department of Dental Anesthesiology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Kana Harada
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Izumi Hide
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Shigeru Tanaka
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Yasuo M Tsutsumi
- Department of Anesthesiology and Critical Care, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Norio Sakai
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan.
| |
Collapse
|
7
|
Murayama T, Otori Y, Kurebayashi N, Yamazawa T, Oyamada H, Sakurai T, Ogawa H. Dual role of the S5 segment in type 1 ryanodine receptor channel gating. Commun Biol 2024; 7:1108. [PMID: 39294299 PMCID: PMC11411075 DOI: 10.1038/s42003-024-06787-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 08/27/2024] [Indexed: 09/20/2024] Open
Abstract
The type 1 ryanodine receptor (RyR1) is a Ca2+ release channel in the sarcoplasmic reticulum that is essential for skeletal muscle contraction. RyR1 forms a channel with six transmembrane segments, in which S5 is the fifth segment and is thought to contribute to pore formation. However, its role in channel gating remains unclear. Here, we performed a functional analysis of several disease-associated mutations in S5 and interpreted the results with respect to the published RyR1 structures to identify potential interactions associated with the mutant phenotypes. We demonstrate that S5 plays a dual role in channel gating: the cytoplasmic side interacts with S6 to reduce the channel activity, whereas the luminal side forms a rigid structural base necessary for S6 displacement in channel opening. These results deepen our understanding of the molecular mechanisms of RyR1 channel gating and provide insight into the divergent disease phenotypes caused by mutations in S5.
Collapse
Affiliation(s)
- Takashi Murayama
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan.
| | - Yuya Otori
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Nagomi Kurebayashi
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Toshiko Yamazawa
- Core Research Facilities, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Hideto Oyamada
- Pharmacological Research Center, Showa University, Tokyo, 142-8555, Japan
| | - Takashi Sakurai
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Haruo Ogawa
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
8
|
Fjaervoll HK, Fjaervoll KA, Yang M, Reiten OK, Bair J, Lee C, Utheim TP, Dartt D. Purinergic agonists increase [Ca 2+] i in rat conjunctival goblet cells through ryanodine receptor type 3. Am J Physiol Cell Physiol 2024; 327:C830-C843. [PMID: 39099424 PMCID: PMC11427011 DOI: 10.1152/ajpcell.00291.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/08/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024]
Abstract
ATP and benzoylbenzoyl-ATP (BzATP) increase free cytosolic Ca2+ concentration ([Ca2+]i) in conjunctival goblet cells (CGCs) resulting in mucin secretion. The purpose of this study was to investigate the source of the Ca2+i mobilized by ATP and BzATP. First-passage cultured rat CGCs were incubated with Fura-2/AM, and [Ca2+]i was measured under several conditions with ATP and BzATP stimulation. The following conditions were used: 1) preincubation with the Ca2+ chelator EGTA, 2) preincubation with the SERCA inhibitor thapsigargin (10-6 M), which depletes ER Ca2+ stores, 3) preincubation with phospholipase C (PLC) or protein kinase A (PKA) inhibitor, or 4) preincubation with the voltage-gated calcium channel antagonist nifedipine (10-5 M) and the ryanodine receptor (RyR) antagonist dantrolene (10-5 M). Immunofluorescence microscopy (IF) and quantitative reverse transcription polymerase chain reaction (RT-qPCR) were used to investigate RyR presence in rat and human CGCs. ATP-stimulated peak [Ca2+]i was significantly lower after chelating Ca2+i with 2 mM EGTA in Ca2+-free buffer. The peak [Ca2+]i increase in CGCs preincubated with thapsigargin, the PKA inhibitor H89, nifedipine, and dantrolene, but not the PLC inhibitor, was reduced for ATP at 10-5 M and BzATP at 10-4 M. Incubating CGCs with dantrolene alone decreased [Ca2+]i and induced CGC cell death at a high concentration. RyR3 was detected in rat and human CGCs with IF and RT-qPCR. We conclude that ATP- and BzATP-induced Ca2+i increases originate from the ER and that RyR3 may be an essential regulator of CGC [Ca2+]i. This study contributes to the understanding of diseases arising from defective Ca2+ signaling in nonexcitable cells.NEW & NOTEWORTHY ATP and benzoylbenzoyl-ATP (BzATP) induce mucin secretion through an increase in free cytosolic calcium concentration ([Ca2+]i) in conjunctival goblet cells (CGCs). The mechanisms through which ATP and BzATP increase [Ca2+]i in CGCs are unclear. Ryanodine receptors (RyRs) are fundamental in [Ca2+]i regulation in excitable cells. Herein, we find that ATP and BzATP increase [Ca2+]i through the activation of protein kinase A, voltage-gated calcium channels, and RyRs, and that RyRs are crucial for nonexcitable CGCs' Ca2+i homeostasis.
Collapse
Affiliation(s)
- Haakon K Fjaervoll
- Division of Head, Neck and Reconstructive Surgery, Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
| | - Ketil A Fjaervoll
- Division of Head, Neck and Reconstructive Surgery, Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
| | - Menglu Yang
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| | - Ole K Reiten
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| | - Jeffrey Bair
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| | - Changrim Lee
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| | - Tor P Utheim
- Division of Head, Neck and Reconstructive Surgery, Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
| | - Darlene Dartt
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
9
|
Kim M, Han K, Choi G, Ahn S, Suh JS, Kim TJ. ECM stiffness regulates calcium influx into mitochondria via tubulin and VDAC1 activity. Anim Cells Syst (Seoul) 2024; 28:417-427. [PMID: 39220629 PMCID: PMC11363740 DOI: 10.1080/19768354.2024.2393811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/15/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
Calcium ions (Ca2+) play pivotal roles in regulating numerous cellular functions, including metabolism and growth, in normal and cancerous cells. Consequently, Ca2+ signaling is a vital determinant of cell fate and influences both cell survival and death. These intracellular signals are susceptible to modulation by various factors, including changes in the extracellular environment, which leads to mechanical alterations. However, the effect of extracellular matrix (ECM) stiffness variations on intracellular Ca2+ signaling remains underexplored. In this study, we aimed to elucidate the mechanisms of Ca2+ regulation through the mitochondria, which are crucial to Ca2+ homeostasis. We investigated how Ca2+ regulatory mechanisms adapt to different levels of ECM stiffness by simultaneously imaging the mitochondria and endoplasmic reticulum (ER) in live cells using genetically encoded biosensors. Our findings revealed that the uptake of mitochondrial Ca2+ through Voltage-Dependent Anion Channel 1 (VDAC1), facilitated by intracellular tubulin, is influenced by ECM stiffness. Unraveling these Ca2+ regulatory mechanisms under various conditions offers a novel perspective for advancing biomedical studies involving Ca2+ signaling.
Collapse
Affiliation(s)
- Minji Kim
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Busan, Republic of Korea
| | - Kiseok Han
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Busan, Republic of Korea
| | - Gyuho Choi
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Busan, Republic of Korea
| | - Sanghyun Ahn
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Busan, Republic of Korea
| | - Jung-Soo Suh
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Busan, Republic of Korea
| | - Tae-Jin Kim
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Busan, Republic of Korea
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, Republic of Korea
- Nuclear Science Research Institute, Pusan National University, Busan, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
10
|
Cook A, Kaydanov N, Ugarte-Uribe B, Boffi JC, Kamm GB, Prevedel R, Deo C. Chemigenetic Far-Red Labels and Ca 2+ Indicators Optimized for Photoacoustic Imaging. J Am Chem Soc 2024; 146:23963-23971. [PMID: 39158696 PMCID: PMC11363013 DOI: 10.1021/jacs.4c07080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/20/2024]
Abstract
Photoacoustic imaging is an emerging modality with significant promise for biomedical applications such as neuroimaging, owing to its capability to capture large fields of view deep inside complex scattering tissue. However, widespread adoption of this technique has been hindered by a lack of suitable molecular reporters for this modality. In this work, we introduce chemigenetic labels and calcium sensors specifically tailored for photoacoustic imaging, using a combination of synthetic dyes and HaloTag-based self-labeling proteins. We rationally design and engineer far-red "acoustogenic" dyes, showing high photoacoustic turn-ons upon binding to HaloTag, and develop a suite of tunable calcium indicators based on these scaffolds. These first-generation photoacoustic reporters show excellent performance in tissue-mimicking phantoms, with the best variants outperforming existing sensors in terms of signal intensity, sensitivity, and photostability. We demonstrate the application of these ligands for labeling HaloTag-expressing neurons in mouse brain tissue, producing strong, specifically targeted photoacoustic signal, and provide a first example of in vivo labeling with these chemigenetic photoacoustic probes. Together, this work establishes a new approach for the design of photoacoustic reporters, paving the way toward deep tissue functional imaging.
Collapse
Affiliation(s)
- Alexander Cook
- European Molecular Biology
Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Nikita Kaydanov
- European Molecular Biology
Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Begoña Ugarte-Uribe
- European Molecular Biology
Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Juan Carlos Boffi
- European Molecular Biology
Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Gretel B. Kamm
- European Molecular Biology
Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Robert Prevedel
- European Molecular Biology
Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Claire Deo
- European Molecular Biology
Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| |
Collapse
|
11
|
Diquigiovanni C, Rizzardi N, Cataldi-Stagetti E, Gozzellino L, Isidori F, Valenti F, Orsini A, Astolfi A, Giangregorio T, Pironi L, Boschetti E, Arrigo S, Maresca A, Magnoni P, Costanzini A, Carelli V, Taniguchi-Ikeda M, Fato R, Bergamini C, De Giorgio R, Bonora E. Glutamine Supplementation as a Novel Metabolic Therapeutic Strategy for LIG3-Dependent Chronic Intestinal Pseudo-obstruction. Gastroenterology 2024:S0016-5085(24)05350-2. [PMID: 39173721 DOI: 10.1053/j.gastro.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND & AIMS We recently identified a recessive syndrome due to DNA ligase 3 (LIG3) mutations in patients with chronic intestinal pseudo-obstruction, leukoencephalopathy, and neurogenic bladder. LIG3 mutations affect mitochondrial DNA maintenance, leading to defective energy production. We aimed at identifying altered molecular pathways and developing possible targeted treatments to revert/ameliorate the cellular energy impairment. METHODS Whole transcriptome analysis was performed on patient-derived fibroblasts total RNA and controls. Mitochondrial function, mitophagy, and l-glutamine supplementation effects were analyzed by live cell analysis, immunostaining, and Western blot. Patients were treated with Dipeptiven (Fresenius-Kabi) according to standard protocols. Patients' symptoms were analyzed by the Gastrointestinal Symptom Rating Scale questionnaire. RESULTS We identified deregulated transcripts in mutant fibroblasts vs controls, including overexpression of genes involved in extracellular matrix development and remodeling and mitochondrial functions. Gut biopsy specimens of LIG3-mutant patients documented collagen and elastic fiber accumulation. Mutant fibroblasts exhibited impaired mitochondrial mitophagy indicative of dysfunctional turnover and altered Ca2+ homeostasis. Supplementation with l-glutamine (6 mmol/L), previously shown to increase mitochondrial DNA-defective cell survival, improved growth rate and adenosine 5'-triphosphate production in LIG3-mutant fibroblasts. These data led us to provide parenterally a dipeptide containing l-glutamine to 3 siblings carrying biallelic LIG3 mutations. Compared with baseline, gastrointestinal and extra-gastrointestinal symptoms significantly improved after 8 months of treatment. CONCLUSIONS LIG3 deficiency leads to mitochondrial dysfunction. High levels l-glutamine supplementation were beneficial in LIG3-mutant cells and improved symptom severity without noticeable adverse effects. Our results provide a proof of concept to design ad hoc clinical trials with l-glutamine in LIG3-mutant patients.
Collapse
Affiliation(s)
- Chiara Diquigiovanni
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Nicola Rizzardi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Erica Cataldi-Stagetti
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Livia Gozzellino
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Federica Isidori
- Istituto di Ricovero e Cura a Carattere Scientifico Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesca Valenti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Arianna Orsini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Annalisa Astolfi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy; Istituto di Ricovero e Cura a Carattere Scientifico Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Tania Giangregorio
- Istituto di Ricovero e Cura a Carattere Scientifico Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Loris Pironi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy; Istituto di Ricovero e Cura a Carattere Scientifico Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Elisa Boschetti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Serena Arrigo
- Istituto di Ricovero e Cura a Carattere Scientifico Istituto Giannina Gaslini, Genova, Italy
| | - Alessandra Maresca
- Istituto di Ricovero e Cura a Carattere Scientifico Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Penelope Magnoni
- Istituto di Ricovero e Cura a Carattere Scientifico Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Anna Costanzini
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Valerio Carelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; Istituto di Ricovero e Cura a Carattere Scientifico Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Mariko Taniguchi-Ikeda
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Aichi, Japan
| | - Romana Fato
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Christian Bergamini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.
| | - Roberto De Giorgio
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy.
| | - Elena Bonora
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy; Istituto di Ricovero e Cura a Carattere Scientifico Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
12
|
Kunnas K, Vihinen-Ranta M, Leclerc S. Progression of herpesvirus infection is inhibited by calcium reporter. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001269. [PMID: 39228992 PMCID: PMC11369692 DOI: 10.17912/micropub.biology.001269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 09/05/2024]
Abstract
During infection, Herpes simplex virus type 1 (HSV-1) alters the mitochondrial structure and function of the host cell. Live-cell imaging with fluorescent reporters revealed increased mitochondrial calcium and a transient ROS enrichment after HSV-1 infection. Notably, cells co-transfected with a calcium reporter displayed smaller viral replication compartments, while those with a ROS reporter exhibited average growth of viral replication compartments. Our findings suggest that the virus-induced increase in mitochondrial calcium, followed by an increased amount of bound calcium reporter, interferes with the progression of the infection.
Collapse
Affiliation(s)
- Kari Kunnas
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, Jyvaskyla, Central Finland, Finland
| | - Maija Vihinen-Ranta
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, Jyvaskyla, Central Finland, Finland
| | - Simon Leclerc
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, Jyvaskyla, Central Finland, Finland
| |
Collapse
|
13
|
Lebas M, Chinigò G, Courmont E, Bettaieb L, Machmouchi A, Goveia J, Beatovic A, Van Kerckhove J, Robil C, Angulo FS, Vedelago M, Errerd A, Treps L, Gao V, Delgado De la Herrán HC, Mayeuf-Louchart A, L’homme L, Chamlali M, Dejos C, Gouyer V, Garikipati VNS, Tomar D, Yin H, Fukui H, Vinckier S, Stolte A, Conradi LC, Infanti F, Lemonnier L, Zeisberg E, Luo Y, Lin L, Desseyn JL, Pickering G, Kishore R, Madesh M, Dombrowicz D, Perocchi F, Staels B, Pla AF, Gkika D, Cantelmo AR. Integrated single-cell RNA-seq analysis reveals mitochondrial calcium signaling as a modulator of endothelial-to-mesenchymal transition. SCIENCE ADVANCES 2024; 10:eadp6182. [PMID: 39121218 PMCID: PMC11313856 DOI: 10.1126/sciadv.adp6182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/08/2024] [Indexed: 08/11/2024]
Abstract
Endothelial cells (ECs) are highly plastic, capable of differentiating into various cell types. Endothelial-to-mesenchymal transition (EndMT) is crucial during embryonic development and contributes substantially to vascular dysfunction in many cardiovascular diseases (CVDs). While targeting EndMT holds therapeutic promise, understanding its mechanisms and modulating its pathways remain challenging. Using single-cell RNA sequencing on three in vitro EndMT models, we identified conserved gene signatures. We validated original regulators in vitro and in vivo during embryonic heart development and peripheral artery disease. EndMT induction led to global expression changes in all EC subtypes rather than in mesenchymal clusters. We identified mitochondrial calcium uptake as a key driver of EndMT; inhibiting mitochondrial calcium uniporter (MCU) prevented EndMT in vitro, and conditional Mcu deletion in ECs blocked mesenchymal activation in a hind limb ischemia model. Tissues from patients with critical limb ischemia with EndMT features exhibited significantly elevated endothelial MCU. These findings highlight MCU as a regulator of EndMT and a potential therapeutic target.
Collapse
Affiliation(s)
- Mathilde Lebas
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Giorgia Chinigò
- Department of Life Sciences and Systems Biology, University of Torino, 10123 Torino, Italy
| | - Evan Courmont
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Louay Bettaieb
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Amani Machmouchi
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | | | | | | | - Cyril Robil
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Fabiola Silva Angulo
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Mauro Vedelago
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Alina Errerd
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
- Molecular Biosciences/Cancer Biology Program, Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lucas Treps
- Nantes Université, INSERM UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, F-44000 Nantes, France
| | - Vance Gao
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | | | - Alicia Mayeuf-Louchart
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Laurent L’homme
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Mohamed Chamlali
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Camille Dejos
- INSERM, U1003 - PHYCEL - Physiologie Cellulaire, Université de Lille, F-59000 Lille, France
| | - Valérie Gouyer
- Université de Lille, Inserm, CHU Lille, U1286 Infinite, F-59000 Lille, France
| | - Venkata Naga Srikanth Garikipati
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Dhanendra Tomar
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Hao Yin
- Robarts Research Institute, Western University, London, Canada
| | - Hajime Fukui
- National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 564-8565, Japan
| | - Stefan Vinckier
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), VIB and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Anneke Stolte
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075 Göttingen, Germany
| | - Lena-Christin Conradi
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075 Göttingen, Germany
| | | | - Loic Lemonnier
- INSERM, U1003 - PHYCEL - Physiologie Cellulaire, Université de Lille, F-59000 Lille, France
| | - Elisabeth Zeisberg
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
- DZHK German Center for Cardiovascular Research, Partner Site Lower Saxony, Göttingen, Germany
| | - Yonglun Luo
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Lin Lin
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jean-Luc Desseyn
- Université de Lille, Inserm, CHU Lille, U1286 Infinite, F-59000 Lille, France
| | - Geoffrey Pickering
- Robarts Research Institute, Western University, London, Canada
- Department of Medicine, Biochemistry, and Medical Biophysics, Western University, London, Canada
| | - Raj Kishore
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140 USA
| | - Muniswamy Madesh
- Department of Medicine, Center for Mitochondrial Medicine, Division of Cardiology, University of Texas Health San Antonio, San Antonio, TX 78229 USA
| | - David Dombrowicz
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Fabiana Perocchi
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Munich, Germany
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology, Munich, Germany
| | - Bart Staels
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Alessandra Fiorio Pla
- Department of Life Sciences and Systems Biology, University of Torino, 10123 Torino, Italy
- INSERM, U1003 - PHYCEL - Physiologie Cellulaire, Université de Lille, F-59000 Lille, France
| | - Dimitra Gkika
- Université de Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Anna Rita Cantelmo
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| |
Collapse
|
14
|
Li Y, Wang S, Zhang Y, Liu Z, Zheng Y, Zhang K, Chen S, Lv X, Huang M, Pan X, Zheng Y, Yuan M, Ge G, Zeng YA, Lin C, Chen J. Ca 2+ transients on the T cell surface trigger rapid integrin activation in a timescale of seconds. Nat Commun 2024; 15:6131. [PMID: 39033133 PMCID: PMC11271479 DOI: 10.1038/s41467-024-50464-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 07/12/2024] [Indexed: 07/23/2024] Open
Abstract
One question in lymphocyte homing is how integrins are rapidly activated to enable immediate arrest of fast rolling lymphocytes upon encountering chemokines at target vascular beds given the slow chemokine-induced integrin inside-out activation. Herein we demonstrate that chemokine CCL25-triggered Ca2+ influx induces T cell membrane-proximal external Ca2+ concentration ([Ca2+]ex) drop in 6 s from physiological concentration 1.2 mM to 0.3 mM, a critical extracellular Ca2+ threshold for inducing αLβ2 activation, triggering rapid αLβ2 activation and T cell arrest before occurrence of αLβ2 inside-out activation. Talin knockdown inhibits the slow inside-out activation of αLβ2 but not [Ca2+]ex drop-triggered αLβ2 quick activation. Blocking Ca2+ influx significantly suppresses T cell rolling-to-arrest transition and homing to skin lesions in a mouse psoriasis model, thus alleviating skin inflammation. [Ca2+]ex decrease-triggered rapid integrin activation bridges the gap between initial chemokine stimulation and slow integrin inside-out activation, ensuring immediate lymphocyte arrest and subsequent diapedesis on the right location.
Collapse
Affiliation(s)
- Yue Li
- State Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - ShiHui Wang
- State Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - YouHua Zhang
- Department of Pathology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - ZhaoYuan Liu
- State Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - YunZhe Zheng
- State Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Kun Zhang
- State Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - ShiYang Chen
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - XiaoYing Lv
- Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - MengWen Huang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - XingChao Pan
- State Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - YaJuan Zheng
- State Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - MengYa Yuan
- State Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - GaoXiang Ge
- State Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Yi Arial Zeng
- State Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - ChangDong Lin
- Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai, China.
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, China.
| | - JianFeng Chen
- State Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
15
|
Du Y, Wang F, Liu P, Zheng S, Li J, Huang R, Li W, Zhang X, Wang Y. Redox Enzymes P4HB and PDIA3 Interact with STIM1 to Fine-Tune Its Calcium Sensitivity and Activation. Int J Mol Sci 2024; 25:7578. [PMID: 39062821 PMCID: PMC11276767 DOI: 10.3390/ijms25147578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Sensing the lowering of endoplasmic reticulum (ER) calcium (Ca2+), STIM1 mediates a ubiquitous Ca2+ influx process called the store-operated Ca2+ entry (SOCE). Dysregulated STIM1 function or abnormal SOCE is strongly associated with autoimmune disorders, atherosclerosis, and various forms of cancers. Therefore, uncovering the molecular intricacies of post-translational modifications, such as oxidation, on STIM1 function is of paramount importance. In a recent proteomic screening, we identified three protein disulfide isomerases (PDIs)-Prolyl 4-hydroxylase subunit beta (P4HB), protein disulfide-isomerase A3 (PDIA3), and thioredoxin domain-containing protein 5 (TXNDC5)-as the ER-luminal interactors of STIM1. Here, we demonstrated that these PDIs dynamically associate with STIM1 and STIM2. The mutation of the two conserved cysteine residues of STIM1 (STIM1-2CA) decreased its Ca2+ affinity both in cellulo and in situ. Knockdown of PDIA3 or P4HB increased the Ca2+ affinity of wild-type STIM1 while showing no impact on the STIM1-2CA mutant, indicating that PDIA3 and P4HB regulate STIM1's Ca2+ affinity by acting on ER-luminal cysteine residues. This modulation of STIM1's Ca2+ sensitivity was further confirmed by Ca2+ imaging experiments, which showed that knockdown of these two PDIs does not affect STIM1-mediated SOCE upon full store depletion but leads to enhanced SOCE amplitudes upon partial store depletion. Thus, P4HB and PDIA3 dynamically modulate STIM1 activation by fine-tuning its Ca2+ binding affinity, adjusting the level of activated STIM1 in response to physiological cues. The coordination between STIM1-mediated Ca2+ signaling and redox responses reported herein may have implications for cell physiology and pathology.
Collapse
Affiliation(s)
- Yangchun Du
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.D.); (F.W.); (P.L.); (S.Z.); (J.L.); (R.H.); (W.L.)
| | - Feifan Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.D.); (F.W.); (P.L.); (S.Z.); (J.L.); (R.H.); (W.L.)
| | - Panpan Liu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.D.); (F.W.); (P.L.); (S.Z.); (J.L.); (R.H.); (W.L.)
| | - Sisi Zheng
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.D.); (F.W.); (P.L.); (S.Z.); (J.L.); (R.H.); (W.L.)
| | - Jia Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.D.); (F.W.); (P.L.); (S.Z.); (J.L.); (R.H.); (W.L.)
| | - Rui Huang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.D.); (F.W.); (P.L.); (S.Z.); (J.L.); (R.H.); (W.L.)
| | - Wanjie Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.D.); (F.W.); (P.L.); (S.Z.); (J.L.); (R.H.); (W.L.)
| | - Xiaoyan Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.D.); (F.W.); (P.L.); (S.Z.); (J.L.); (R.H.); (W.L.)
| | - Youjun Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.D.); (F.W.); (P.L.); (S.Z.); (J.L.); (R.H.); (W.L.)
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
16
|
Hanitrarimalala V, Bednarska I, Murakami T, Papadakos KS, Blom AM. Intracellular cartilage oligomeric matrix protein augments breast cancer resistance to chemotherapy. Cell Death Dis 2024; 15:480. [PMID: 38965233 PMCID: PMC11224260 DOI: 10.1038/s41419-024-06872-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Abstract
Chemotherapy persists as the primary intervention for breast cancer, with chemoresistance posing the principal obstacle to successful treatment. Herein, we show that cartilage oligomeric matrix protein (COMP) expression leads to increased cancer cell survival and attenuated apoptosis under treatment with several chemotherapeutic drugs, anti-HER2 targeted treatment, and endocrine therapy in several breast cancer cell lines tested. The COMP-induced chemoresistance was independent of the breast cancer subtype. Extracellularly delivered recombinant COMP failed to rescue cells from apoptosis while endoplasmic reticulum (ER)-restricted COMP-KDEL conferred resistance to apoptosis, consistent with the localization of COMP in the ER, where it interacted with calpain. Calpain activation was reduced in COMP-expressing cells and maintained at a lower level of activation during treatment with epirubicin. Moreover, the downstream caspases of calpain, caspases -9, -7, and -3, exhibited significantly reduced activation in COMP-expressing cells under chemotherapy treatment. Chemotherapy, when combined with calpain activators, rendered the cells expressing COMP more chemosensitive. Also, the anti-apoptotic proteins phospho-Bcl2 and survivin were increased in COMP-expressing cells upon chemotherapy. Cells expressing a mutant COMP lacking thrombospondin repeats exhibited reduced chemoresistance compared to cells expressing full-length COMP. Evaluation of calcium levels in the ER, cytosol, and mitochondria revealed that COMP expression modulates intracellular calcium homeostasis. Furthermore, patients undergoing chemotherapy or endocrine therapy demonstrated significantly reduced overall survival time when tumors expressed high levels of COMP. This study identifies a novel role of COMP in chemoresistance and calpain inactivation in breast cancer, a discovery with potential implications for anti-cancer therapy.
Collapse
Affiliation(s)
| | - Izabela Bednarska
- Department of Translational Medicine, Lund University, Malmö, S-214 28, Sweden
| | - Takashi Murakami
- Department of Microbiology, Saitama Medical University, Saitama, 350-0495, Japan
| | | | - Anna M Blom
- Department of Translational Medicine, Lund University, Malmö, S-214 28, Sweden
| |
Collapse
|
17
|
Kang H, Choi SW, Kim JY, Oh SJ, Kim SJ, Lee MS. ER-to-lysosome Ca 2+ refilling followed by K + efflux-coupled store-operated Ca 2+ entry in inflammasome activation and metabolic inflammation. eLife 2024; 12:RP87561. [PMID: 38953285 PMCID: PMC11219040 DOI: 10.7554/elife.87561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024] Open
Abstract
We studied lysosomal Ca2+ in inflammasome. Lipopolysaccharide (LPS) + palmitic acid (PA) decreased lysosomal Ca2+ ([Ca2+]Lys) and increased [Ca2+]i through mitochondrial ROS, which was suppressed in Trpm2-KO macrophages. Inflammasome activation and metabolic inflammation in adipose tissue of high-fat diet (HFD)-fed mice were ameliorated by Trpm2 KO. ER→lysosome Ca2+ refilling occurred after lysosomal Ca2+ release whose blockade attenuated LPS + PA-induced inflammasome. Subsequently, store-operated Ca2+entry (SOCE) was activated whose inhibition suppressed inflammasome. SOCE was coupled with K+ efflux whose inhibition reduced ER Ca2+ content ([Ca2+]ER) and impaired [Ca2+]Lys recovery. LPS + PA activated KCa3.1 channel, a Ca2+-activated K+ channel. Inhibitors of KCa3.1 channel or Kcnn4 KO reduced [Ca2+]ER, attenuated increase of [Ca2+]i or inflammasome activation by LPS + PA, and ameliorated HFD-induced inflammasome or metabolic inflammation. Lysosomal Ca2+ release induced delayed JNK and ASC phosphorylation through CAMKII-ASK1. These results suggest a novel role of lysosomal Ca2+ release sustained by ER→lysosome Ca2+ refilling and K+ efflux through KCa3.1 channel in inflammasome activation and metabolic inflammation.
Collapse
Affiliation(s)
- Hyereen Kang
- Severance Biomedical Science Institute, Yonsei University College of MedicineSeoulRepublic of Korea
| | - Seong Woo Choi
- Department of Physiology and Ion Channel Disease Research Center, Dongguk University College of MedicineGyeongjuRepublic of Korea
| | - Joo Young Kim
- Department of Pharmacology and Brain Korea 21 Project for Medical Sciences, Yonsei University College of MedicineSeoulRepublic of Korea
| | - Soo-Jin Oh
- Soonchunhyang Institute of Medi-bio Science and Division of Endocrinology, Department of Internal Medicine, Soonchunhyang University College of MedicineCheonanRepublic of Korea
| | - Sung Joon Kim
- Department of Physiology, Ischemic/Hypoxic Disease Institute, Seoul National University College of MedicineSeoulRepublic of Korea
| | - Myung-Shik Lee
- Severance Biomedical Science Institute, Yonsei University College of MedicineSeoulRepublic of Korea
- Soonchunhyang Institute of Medi-bio Science and Division of Endocrinology, Department of Internal Medicine, Soonchunhyang University College of MedicineCheonanRepublic of Korea
| |
Collapse
|
18
|
Bovo E, Jamrozik T, Kahn D, Karkut P, Robia SL, Zima AV. Phosphorylation of phospholamban promotes SERCA2a activation by dwarf open reading frame (DWORF). Cell Calcium 2024; 121:102910. [PMID: 38823350 PMCID: PMC11247691 DOI: 10.1016/j.ceca.2024.102910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/03/2024]
Abstract
In cardiac myocytes, the type 2a sarco/endoplasmic reticulum Ca-ATPase (SERCA2a) plays a key role in intracellular Ca regulation. Due to its critical role in heart function, SERCA2a activity is tightly regulated by different mechanisms, including micropeptides. While phospholamban (PLB) is a well-known SERCA2a inhibitor, dwarf open reading frame (DWORF) is a recently identified SERCA2a activator. Since PLB phosphorylation is the most recognized mechanism of SERCA2a activation during adrenergic stress, we studied whether PLB phosphorylation also affects SERCA2a regulation by DWORF. By using confocal Ca imaging in a HEK293 expressing cell system, we analyzed the effect of the co-expression of PLB and DWORF using a bicistronic construct on SERCA2a-mediated Ca uptake. Under these conditions of matched expression of PLB and DWORF, we found that SERCA2a inhibition by non-phosphorylated PLB prevails over DWORF activating effect. However, when PLB is phosphorylated at PKA and CaMKII sites, not only PLB's inhibitory effect was relieved, but SERCA2a was effectively activated by DWORF. Förster resonance energy transfer (FRET) analysis between SERCA2a and DWORF showed that DWORF has a higher relative affinity for SERCA2a when PLB is phosphorylated. Thus, SERCA2a regulation by DWORF responds to the PLB phosphorylation status, suggesting that DWORF might contribute to SERCA2a activation during conditions of adrenergic stress.
Collapse
Affiliation(s)
- Elisa Bovo
- Department of Cell and Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, 2160 South First Avenue, Maywood, IL 60153, USA.
| | - Thomas Jamrozik
- Department of Cell and Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, 2160 South First Avenue, Maywood, IL 60153, USA
| | - Daniel Kahn
- Department of Cell and Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, 2160 South First Avenue, Maywood, IL 60153, USA
| | - Patryk Karkut
- Department of Cell and Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, 2160 South First Avenue, Maywood, IL 60153, USA
| | - Seth L Robia
- Department of Cell and Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, 2160 South First Avenue, Maywood, IL 60153, USA
| | - Aleksey V Zima
- Department of Cell and Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, 2160 South First Avenue, Maywood, IL 60153, USA
| |
Collapse
|
19
|
Ge WD, Du TT, Wang CY, Sun LN, Wang YQ. Calcium signaling crosstalk between the endoplasmic reticulum and mitochondria, a new drug development strategies of kidney diseases. Biochem Pharmacol 2024; 225:116278. [PMID: 38740223 DOI: 10.1016/j.bcp.2024.116278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/25/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Calcium (Ca2+) acts as a second messenger and constitutes a complex and large information exchange system between the endoplasmic reticulum (ER) and mitochondria; this process is involved in various life activities, such as energy metabolism, cell proliferation and apoptosis. Increasing evidence has suggested that alterations in Ca2+ crosstalk between the ER and mitochondria, including alterations in ER and mitochondrial Ca2+ channels and related Ca2+ regulatory proteins, such as sarco/endoplasmic reticulum Ca2+-ATPase (SERCA), inositol 1,4,5-trisphosphate receptor (IP3R), and calnexin (CNX), are closely associated with the development of kidney disease. Therapies targeting intracellular Ca2+ signaling have emerged as an emerging field in the treatment of renal diseases. In this review, we focused on recent advances in Ca2+ signaling, ER and mitochondrial Ca2+ monitoring methods and Ca2+ homeostasis in the development of renal diseases and sought to identify new targets and insights for the treatment of renal diseases by targeting Ca2+ channels or related Ca2+ regulatory proteins.
Collapse
Affiliation(s)
- Wen-Di Ge
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China; Department of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Tian-Tian Du
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China; Department of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Cao-Yang Wang
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China; Department of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Lu-Ning Sun
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China; Department of Pharmacy, Nanjing Medical University, Nanjing, China.
| | - Yong-Qing Wang
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China; Department of Pharmacy, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
20
|
Atakpa-Adaji P, Ivanova A, Kujawa K, Taylor CW. KRAP regulates mitochondrial Ca2+ uptake by licensing IP3 receptor activity and stabilizing ER-mitochondrial junctions. J Cell Sci 2024; 137:jcs261728. [PMID: 38786982 PMCID: PMC11234384 DOI: 10.1242/jcs.261728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
Inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) are high-conductance channels that allow the regulated redistribution of Ca2+ from the endoplasmic reticulum (ER) to the cytosol and, at specialized membrane contact sites (MCSs), to other organelles. Only a subset of IP3Rs release Ca2+ to the cytosol in response to IP3. These 'licensed' IP3Rs are associated with Kras-induced actin-interacting protein (KRAP, also known as ITPRID2) beneath the plasma membrane. It is unclear whether KRAP regulates IP3Rs at MCSs. We show, using simultaneous measurements of Ca2+ concentration in the cytosol and mitochondrial matrix, that KRAP also licenses IP3Rs to release Ca2+ to mitochondria. Loss of KRAP abolishes cytosolic and mitochondrial Ca2+ signals evoked by stimulation of IP3Rs via endogenous receptors. KRAP is located at ER-mitochondrial membrane contact sites (ERMCSs) populated by IP3R clusters. Using a proximity ligation assay between IP3R and voltage-dependent anion channel 1 (VDAC1), we show that loss of KRAP reduces the number of ERMCSs. We conclude that KRAP regulates Ca2+ transfer from IP3Rs to mitochondria by both licensing IP3R activity and stabilizing ERMCSs.
Collapse
Affiliation(s)
- Peace Atakpa-Adaji
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Adelina Ivanova
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Karolina Kujawa
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Colin W. Taylor
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| |
Collapse
|
21
|
Song Y, Zhao Z, Xu L, Huang P, Gao J, Li J, Wang X, Zhou Y, Wang J, Zhao W, Wang L, Zheng C, Gao B, Jiang L, Liu K, Guo Y, Yao X, Duan L. Using an ER-specific optogenetic mechanostimulator to understand the mechanosensitivity of the endoplasmic reticulum. Dev Cell 2024; 59:1396-1409.e5. [PMID: 38569547 DOI: 10.1016/j.devcel.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 12/21/2023] [Accepted: 03/08/2024] [Indexed: 04/05/2024]
Abstract
The ability of cells to perceive and respond to mechanical cues is essential for numerous biological activities. Emerging evidence indicates important contributions of organelles to cellular mechanosensitivity and mechanotransduction. However, whether and how the endoplasmic reticulum (ER) senses and reacts to mechanical forces remains elusive. To fill the knowledge gap, after developing a light-inducible ER-specific mechanostimulator (LIMER), we identify that mechanostimulation of ER elicits a transient, rapid efflux of Ca2+ from ER in monkey kidney COS-7 cells, which is dependent on the cation channels transient receptor potential cation channel, subfamily V, member 1 (TRPV1) and polycystin-2 (PKD2) in an additive manner. This ER Ca2+ release can be repeatedly stimulated and tuned by varying the intensity and duration of force application. Moreover, ER-specific mechanostimulation inhibits ER-to-Golgi trafficking. Sustained mechanostimuli increase the levels of binding-immunoglobulin protein (BiP) expression and phosphorylated eIF2α, two markers for ER stress. Our results provide direct evidence for ER mechanosensitivity and tight mechanoregulation of ER functions, placing ER as an important player on the intricate map of cellular mechanotransduction.
Collapse
Affiliation(s)
- Yutong Song
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR 999077, China
| | - Zhihao Zhao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR 999077, China
| | - Linyu Xu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR 999077, China
| | - Peiyuan Huang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR 999077, China
| | - Jiayang Gao
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR 999077, China
| | - Jingxuan Li
- School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR 999077, China
| | - Xuejie Wang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR 999077, China
| | - Yiren Zhou
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR 999077, China
| | - Jinhui Wang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR 999077, China
| | - Wenting Zhao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore
| | - Likun Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chaogu Zheng
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR 999077, China
| | - Bo Gao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR 999077, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR 999077, China
| | - Kai Liu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR 999077, China; Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR 999077, China
| | - Yusong Guo
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR 999077, China
| | - Xiaoqiang Yao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR 999077, China
| | - Liting Duan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR 999077, China.
| |
Collapse
|
22
|
Rojo-Ruiz J, Sánchez-Rabadán C, Calvo B, García-Sancho J, Alonso MT. Using Fluorescent GAP Indicators to Monitor ER Ca 2. Curr Protoc 2024; 4:e1060. [PMID: 38923371 DOI: 10.1002/cpz1.1060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
The endoplasmic reticulum (ER) is the main reservoir of Ca2+ of the cell. Accurate and quantitative measuring of Ca2+ dynamics within the lumen of the ER has been challenging. In the last decade a few genetically encoded Ca2+ indicators have been developed, including a family of fluorescent Ca2+ indicators, dubbed GFP-Aequorin Proteins (GAPs). They are based on the fusion of two jellyfish proteins, the green fluorescent protein (GFP) and the Ca2+-binding protein aequorin. GAP Ca2+ indicators exhibit a combination of several features: they are excitation ratiometric indicators, with reciprocal changes in the fluorescence excited at 405 and 470 nm, which is advantageous for imaging experiments; they exhibit a Hill coefficient of 1, which facilitates the calibration of the fluorescent signal into Ca2+ concentrations; they are insensible to variations in the Mg2+ concentrations or pH variations (in the 6.5-8.5 range); and, due to the lack of mammalian homologues, these proteins have a favorable expression in transgenic animals. A low Ca2+ affinity version of GAP, GAP3 (KD ≅ 489 µM), has been engineered to conform with the estimated [Ca2+] in the ER. GAP3 targeted to the lumen of the ER (erGAP3) can be utilized for imaging intraluminal Ca2+. The ratiometric measurements provide a quantitative method to assess accurate [Ca2+]ER, both dynamically and at rest. In addition, erGAP3 can be combined with synthetic cytosolic Ca2+ indicators to simultaneously monitor ER and cytosolic Ca2+. Here, we provide detailed methods to assess erGAP3 expression and to perform Ca2+ imaging, either restricted to the ER lumen, or simultaneously in the ER and the cytosol. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Detection of erGAP3 in the ER by immunofluorescence Basic Protocol 2: Monitoring ER Ca2+ Basic Protocol 3: Monitoring ER- and cytosolic-Ca2+ Support Protocol: Generation of a stable cell line expressing erGAP3.
Collapse
Affiliation(s)
- Jonathan Rojo-Ruiz
- Unidad de Excelencia, Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Cinthia Sánchez-Rabadán
- Unidad de Excelencia, Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Belen Calvo
- Unidad de Excelencia, Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Javier García-Sancho
- Unidad de Excelencia, Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Maria Teresa Alonso
- Unidad de Excelencia, Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| |
Collapse
|
23
|
Pontisso I, Ornelas-Guevara R, Chevet E, Combettes L, Dupont G. Gradual ER calcium depletion induces a progressive and reversible UPR signaling. PNAS NEXUS 2024; 3:pgae229. [PMID: 38933930 PMCID: PMC11200134 DOI: 10.1093/pnasnexus/pgae229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 05/29/2024] [Indexed: 06/28/2024]
Abstract
The unfolded protein response (UPR) is a widespread signal transduction pathway triggered by endoplasmic reticulum (ER) stress. Because calcium (Ca2+) is a key factor in the maintenance of ER homeostasis, massive Ca2+ depletion of the ER is a potent inducer of ER stress. Although moderate changes in ER Ca2+ drive the ubiquitous Ca2+ signaling pathways, a possible incremental relationship between UPR activation and Ca2+ changes has yet to be described. Here, we determine the sensitivity and time-dependency of activation of the three ER stress sensors, inositol-requiring protein 1 alpha (IRE1α), protein kinase R-like ER kinase (PERK), and activating transcription factor 6 alpha (ATF6α) in response to controlled changes in the concentration of ER Ca2+ in human cultured cells. Combining Ca2+ imaging, fluorescence recovery after photobleaching experiments, biochemical analyses, and mathematical modeling, we uncover a nonlinear rate of activation of the IRE1α branch of UPR, as compared to the PERK and ATF6α branches that become activated gradually with time and are sensitive to more important ER Ca2+ depletions. However, the three arms are all activated within a 1 h timescale. The model predicted the deactivation of PERK and IRE1α upon refilling the ER with Ca2+. Accordingly, we showed that ER Ca2+ replenishment leads to the complete reversion of IRE1α and PERK phosphorylation in less than 15 min, thus revealing the highly plastic character of the activation of the upstream UPR sensors. In conclusion, our results reveal a dynamic and dose-sensitive Ca2+-dependent activation/deactivation cycle of UPR induction, which could tightly control cell fate upon acute and/or chronic stress.
Collapse
Affiliation(s)
- Ilaria Pontisso
- U1282 “Calcium Signaling and Microbial Infections”, Institut de Biologie Intégrative de la Cellule (I2BC)—Université Paris-Saclay, Gif-Sur-Yvette 91190, France
| | - Roberto Ornelas-Guevara
- Unit of Theoretical Chronobiology, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Eric Chevet
- Inserm U1242 Université de Rennes, 35000 Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, 35042 Rennes, France
| | - Laurent Combettes
- U1282 “Calcium Signaling and Microbial Infections”, Institut de Biologie Intégrative de la Cellule (I2BC)—Université Paris-Saclay, Gif-Sur-Yvette 91190, France
| | - Geneviève Dupont
- Unit of Theoretical Chronobiology, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| |
Collapse
|
24
|
Eom Y, Kim SR, Kim YK, Lee SH. Mitochondrial Calcium Waves by Electrical Stimulation in Cultured Hippocampal Neurons. Mol Neurobiol 2024; 61:3477-3489. [PMID: 37995079 DOI: 10.1007/s12035-023-03795-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/31/2023] [Indexed: 11/24/2023]
Abstract
Mitochondria are critical to cellular Ca2+ homeostasis via the sequestering of cytosolic Ca2+ in the mitochondrial matrix. Mitochondrial Ca2+ buffering regulates neuronal activity and neuronal death by shaping cytosolic and presynaptic Ca2+ or controlling energy metabolism. Dysfunction in mitochondrial Ca2+ buffering has been implicated in psychological and neurological disorders. Ca2+ wave propagation refers to the spreading of Ca2+ for buffering and maintaining the associated rise in Ca2+ concentration. We investigated mitochondrial Ca2+ waves in hippocampal neurons using genetically encoded Ca2+ indicators. Neurons transfected with mito-GCaMP5G, mito-RCaMP1h, and CEPIA3mt exhibited evidence of mitochondrial Ca2+ waves with electrical stimulation. These waves were observed with 200 action potentials at 40 Hz or 20 Hz but not with lower frequencies or fewer action potentials. The application of inhibitors of mitochondrial calcium uniporter and oxidative phosphorylation suppressed mitochondrial Ca2+ waves. However, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors and N-methyl-d-aspartate receptor blockade had no effect on mitochondrial Ca2+ wave were propagation. The Ca2+ waves were not observed in endoplasmic reticula, presynaptic terminals, or cytosol in association with electrical stimulation of 200 action potentials at 40 Hz. These results offer novel insights into the mechanisms underlying mitochondrial Ca2+ buffering and the molecular basis of mitochondrial Ca2+ waves in neurons in response to electrical stimulation.
Collapse
Affiliation(s)
- Yunkyung Eom
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sung Rae Kim
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
- Brain Research Core Facilities of Korea Brain Research Institute (KBRI), Daegu, 41068, Republic of Korea
| | - Yeong-Kyeong Kim
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sung Hoon Lee
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
25
|
Chen W, Motsinger MM, Li J, Bohannon KP, Hanson PI. Ca 2+-sensor ALG-2 engages ESCRTs to enhance lysosomal membrane resilience to osmotic stress. Proc Natl Acad Sci U S A 2024; 121:e2318412121. [PMID: 38781205 PMCID: PMC11145288 DOI: 10.1073/pnas.2318412121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/10/2024] [Indexed: 05/25/2024] Open
Abstract
Lysosomes are central players in cellular catabolism, signaling, and metabolic regulation. Cellular and environmental stresses that damage lysosomal membranes can compromise their function and release toxic content into the cytoplasm. Here, we examine how cells respond to osmotic stress within lysosomes. Using sensitive assays of lysosomal leakage and rupture, we examine acute effects of the osmotic disruptant glycyl-L-phenylalanine 2-naphthylamide (GPN). Our findings reveal that low concentrations of GPN rupture a small fraction of lysosomes, but surprisingly trigger Ca2+ release from nearly all. Chelating cytoplasmic Ca2+ makes lysosomes more sensitive to GPN-induced rupture, suggesting a role for Ca2+ in lysosomal membrane resilience. GPN-elicited Ca2+ release causes the Ca2+-sensor Apoptosis Linked Gene-2 (ALG-2), along with Endosomal Sorting Complex Required for Transport (ESCRT) proteins it interacts with, to redistribute onto lysosomes. Functionally, ALG-2, but not its ESCRT binding-disabled ΔGF122 splice variant, increases lysosomal resilience to osmotic stress. Importantly, elevating juxta-lysosomal Ca2+ without membrane damage by activating TRPML1 also recruits ALG-2 and ESCRTs, protecting lysosomes from subsequent osmotic rupture. These findings reveal that Ca2+, through ALG-2, helps bring ESCRTs to lysosomes to enhance their resilience and maintain organelle integrity in the face of osmotic stress.
Collapse
Affiliation(s)
- Wei Chen
- Department of Biological Chemistry, University of Michigan School of Medicine, Ann Arbor, MI48109
| | - Madeline M. Motsinger
- Department of Biological Chemistry, University of Michigan School of Medicine, Ann Arbor, MI48109
| | - Jiaqian Li
- Department of Biological Chemistry, University of Michigan School of Medicine, Ann Arbor, MI48109
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI48109
| | - Kevin P. Bohannon
- Department of Biological Chemistry, University of Michigan School of Medicine, Ann Arbor, MI48109
| | - Phyllis I. Hanson
- Department of Biological Chemistry, University of Michigan School of Medicine, Ann Arbor, MI48109
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI48109
| |
Collapse
|
26
|
Pathiriparambath MSR, Joseph M, Manog M, Thomas V, Tharayil H, Nair LV. Glutamic Acid Modified Gold Nanorod Sensor for the Detection of Calcium ions in Neuronal Cells. Chembiochem 2024; 25:e202400009. [PMID: 38545627 DOI: 10.1002/cbic.202400009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/10/2024] [Indexed: 04/18/2024]
Abstract
Calcium (Ca2+) ions play a crucial role in the functioning of neurons, governing various aspects of neuronal activity such as rapid modulation and alterations in gene expression. Ca2+ signaling has a significant impact on the development of diseases and the impairment of neuronal functions. Herein, the study reports a Ca2+ ion sensor in neuronal cells using a gold nanorod. The gold nanorod (GA-GNR) conjugated glutamic acid developed in the study was used as a nano-bio probe for the experimental and in vitro detection of calcium. The nanosensor is colloidally stable, preserves plasmonic properties, and shows good viability in neuronal cells, as well as promoting neuron cell line growth. The cytotoxicity and cell penetration of the nanosensor are studied using Raman spectroscopy, brightfield and darkfield microscopy imaging, and MTT assays. The quantification of Ca2+ ions in neuronal cells is determined by monitoring the surface plasmon resonance (SPR) of the GA-GNR. The change in the intensity profile in the presence of Ca2+ incubated neurons was effectively used to develop a portable prototype of an optical Ca2+ sensor, proposing it as a tool for neurodegenerative disease diagnosis and neuromodulation evaluation.
Collapse
Affiliation(s)
| | - Merin Joseph
- Department of Materials Science and Engineering, National Institute of Technology Calicut, Kozhikode, 673601, Kerala, India
| | - Mithun Manog
- Department of Materials Science and Engineering, National Institute of Technology Calicut, Kozhikode, 673601, Kerala, India
| | - Vinoy Thomas
- Department of Mechanical and Materials Engineering, University Alabama at Birmingham, USA
| | - Hanas Tharayil
- Department of Materials Science and Engineering, National Institute of Technology Calicut, Kozhikode, 673601, Kerala, India
| | - Lakshmi V Nair
- Department of Materials Science and Engineering, National Institute of Technology Calicut, Kozhikode, 673601, Kerala, India
- Department of Mechanical and Materials Engineering, University Alabama at Birmingham, USA
| |
Collapse
|
27
|
Acreman S, Ma J, Denwood G, Gao R, Tarasov A, Rorsman P, Zhang Q. The endoplasmic reticulum plays a key role in α-cell intracellular Ca 2+ dynamics and glucose-regulated glucagon secretion in mouse islets. iScience 2024; 27:109665. [PMID: 38646167 PMCID: PMC11033163 DOI: 10.1016/j.isci.2024.109665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/13/2024] [Accepted: 04/02/2024] [Indexed: 04/23/2024] Open
Abstract
Glucagon is secreted by pancreatic α-cells to counteract hypoglycaemia. How glucose regulates glucagon secretion remains unclear. Here, using mouse islets, we studied the role of transmembrane and endoplasmic reticulum (ER) Ca2+ on intrinsic α-cell glucagon secretion. Blocking isradipine-sensitive L-type voltage-gated Ca2+ (Cav) channels abolished α-cell electrical activity but had little impact on its cytosolic Ca2+ oscillations or low-glucose-stimulated glucagon secretion. In contrast, depleting ER Ca2+ with cyclopiazonic acid or blocking ER Ca2+-releasing ryanodine receptors abolished α-cell glucose sensitivity and low-glucose-stimulated glucagon secretion. ER Ca2+ mobilization in α-cells is regulated by intracellular ATP and likely to be coupled to Ca2+ influx through P/Q-type Cav channels. ω-Agatoxin IVA blocked α-cell ER Ca2+ release and cell exocytosis, but had no additive effect on glucagon secretion when combined with ryanodine. We conclude that glucose regulates glucagon secretion through the control of ER Ca2+ mobilization, a mechanism that can be independent of α-cell electrical activity.
Collapse
Affiliation(s)
- Samuel Acreman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
- Institute of Neuroscience and Physiology, Department of Physiology, Metabolic Research Unit, Sahlgrenska Academy, University of Gothenburg, Box 430, S-405 30 Gothenburg, Sweden
| | - Jinfang Ma
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Geoffrey Denwood
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
| | - Rui Gao
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
| | - Andrei Tarasov
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
- Institute of Neuroscience and Physiology, Department of Physiology, Metabolic Research Unit, Sahlgrenska Academy, University of Gothenburg, Box 430, S-405 30 Gothenburg, Sweden
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Quan Zhang
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
28
|
Lee J, Pye N, Ellis L, Vos KD, Mortiboys H. Evidence of mitochondrial dysfunction in ALS and methods for measuring in model systems. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 176:269-325. [PMID: 38802177 DOI: 10.1016/bs.irn.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Metabolic dysfunction is a hallmark of multiple amyotrophic lateral sclerosis (ALS) models with a majority of ALS patients exhibiting hypermetabolism. The central sites of metabolism in the cell are mitochondria, capable of utilising a multitude of cellular substrates in an array of ATP-generating reactions. With reactive oxygen species (ROS) production occurring during some of these reactions, mitochondria can contribute considerably to oxidative stress. Mitochondria are also very dynamic organelles, interacting with other organelles, undergoing fusion/fission in response to changing metabolic states and being turned over by the cell regularly. Disruptions to many of these mitochondrial functions and processes have been reported in ALS models, largely indicating compromised mitochondrial function, increased ROS production by mitochondria, disrupted interactions with the endoplasmic reticulum and reduced turnover. This chapter summarises methods routinely used to assess mitochondria in ALS models and the alterations that have been reported in these models.
Collapse
Affiliation(s)
- James Lee
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
| | - Natalie Pye
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
| | - Laura Ellis
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
| | - Kurt De Vos
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
| | - Heather Mortiboys
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
29
|
Yu F, Courjaret R, Assaf L, Elmi A, Hammad A, Fisher M, Terasaki M, Machaca K. Mitochondria-ER contact sites expand during mitosis. iScience 2024; 27:109379. [PMID: 38510124 PMCID: PMC10951641 DOI: 10.1016/j.isci.2024.109379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/31/2024] [Accepted: 02/27/2024] [Indexed: 03/22/2024] Open
Abstract
Mitochondria-ER contact sites (MERCS) are involved in energy homeostasis, redox and Ca2+ signaling, and inflammation. MERCS are heavily studied; however, little is known about their regulation during mitosis. Here, we show that MERCS expand during mitosis in three cell types using various approaches, including transmission electron microscopy, serial EM coupled to 3D reconstruction, and a split GFP MERCS marker. We further show enhanced Ca2+ transfer between the ER and mitochondria using either direct Ca2+ measurements or by quantifying the activity of Ca2+-dependent mitochondrial dehydrogenases. Collectively, our results support a lengthening of MERCS in mitosis that is associated with improved Ca2+ coupling between the two organelles. This augmented Ca2+ coupling could be important to support the increased energy needs of the cell during mitosis.
Collapse
Affiliation(s)
- Fang Yu
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Raphael Courjaret
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Lama Assaf
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- College of Health and Life Science, Hamad bin Khalifa University, Doha, Qatar
| | - Asha Elmi
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- College of Health and Life Science, Hamad bin Khalifa University, Doha, Qatar
| | - Ayat Hammad
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- College of Health and Life Science, Hamad bin Khalifa University, Doha, Qatar
| | - Melanie Fisher
- Department of Cell Biology, UConn Health, 263 Farmington Ave, Farmington, CT 06030, USA
| | - Mark Terasaki
- Department of Cell Biology, UConn Health, 263 Farmington Ave, Farmington, CT 06030, USA
| | - Khaled Machaca
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
30
|
Vishnu N, Venkatesan M, Madaris TR, Venkateswaran MK, Stanley K, Ramachandran K, Chidambaram A, Madesh AK, Yang W, Nair J, Narkunan M, Muthukumar T, Karanam V, Joseph LC, Le A, Osidele A, Aslam MI, Morrow JP, Malicdan MC, Stathopulos PB, Madesh M. ERMA (TMEM94) is a P-type ATPase transporter for Mg 2+ uptake in the endoplasmic reticulum. Mol Cell 2024; 84:1321-1337.e11. [PMID: 38513662 PMCID: PMC10997467 DOI: 10.1016/j.molcel.2024.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 10/16/2023] [Accepted: 02/27/2024] [Indexed: 03/23/2024]
Abstract
Intracellular Mg2+ (iMg2+) is bound with phosphometabolites, nucleic acids, and proteins in eukaryotes. Little is known about the intracellular compartmentalization and molecular details of Mg2+ transport into/from cellular organelles such as the endoplasmic reticulum (ER). We found that the ER is a major iMg2+ compartment refilled by a largely uncharacterized ER-localized protein, TMEM94. Conventional and AlphaFold2 predictions suggest that ERMA (TMEM94) is a multi-pass transmembrane protein with large cytosolic headpiece actuator, nucleotide, and phosphorylation domains, analogous to P-type ATPases. However, ERMA uniquely combines a P-type ATPase domain and a GMN motif for ERMg2+ uptake. Experiments reveal that a tyrosine residue is crucial for Mg2+ binding and activity in a mechanism conserved in both prokaryotic (mgtB and mgtA) and eukaryotic Mg2+ ATPases. Cardiac dysfunction by haploinsufficiency, abnormal Ca2+ cycling in mouse Erma+/- cardiomyocytes, and ERMA mRNA silencing in human iPSC-cardiomyocytes collectively define ERMA as an essential component of ERMg2+ uptake in eukaryotes.
Collapse
Affiliation(s)
- Neelanjan Vishnu
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Manigandan Venkatesan
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Travis R Madaris
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Mridula K Venkateswaran
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Kristen Stanley
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Karthik Ramachandran
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Adhishree Chidambaram
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Abitha K Madesh
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Wenli Yang
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jyotsna Nair
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Melanie Narkunan
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Tharani Muthukumar
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Varsha Karanam
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Leroy C Joseph
- Department of Medicine, College of Physicians and Surgeons of Columbia University, 650 W 168 Street, New York, NY 10032, USA
| | - Amy Le
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Ayodeji Osidele
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - M Imran Aslam
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - John P Morrow
- Department of Medicine, College of Physicians and Surgeons of Columbia University, 650 W 168 Street, New York, NY 10032, USA
| | - May C Malicdan
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA; NIH Undiagnosed Diseases Program, Office of the Clinical Director, National Human Genome Research Institute, and the Common Fund, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter B Stathopulos
- Department of Physiology and Pharmacology, Western University, London, ON N6A 5C1, Canada
| | - Muniswamy Madesh
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
31
|
Cai C, Tu J, Najarro J, Zhang R, Fan H, Zhang FQ, Li J, Xie Z, Su R, Dong L, Arellano N, Ciboddo M, Elf SE, Gao X, Chen J, Wu R. NRAS Mutant Dictates AHCYL1-Governed ER Calcium Homeostasis for Melanoma Tumor Growth. Mol Cancer Res 2024; 22:386-401. [PMID: 38294692 PMCID: PMC10987265 DOI: 10.1158/1541-7786.mcr-23-0445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/27/2023] [Accepted: 01/29/2024] [Indexed: 02/01/2024]
Abstract
Calcium homeostasis is critical for cell proliferation, and emerging evidence shows that cancer cells exhibit altered calcium signals to fulfill their need for proliferation. However, it remains unclear whether there are oncogene-specific calcium homeostasis regulations that can expose novel therapeutic targets. Here, from RNAi screen, we report that adenosylhomocysteinase like protein 1 (AHCYL1), a suppressor of the endoplasmic reticulum (ER) calcium channel protein inositol trisphosphate receptor (IP3R), is selectively upregulated and critical for cell proliferation and tumor growth potential of human NRAS-mutated melanoma, but not for melanoma expressing BRAF V600E. Mechanistically, AHCYL1 deficiency results in decreased ER calcium levels, activates the unfolded protein response (UPR), and triggers downstream apoptosis. In addition, we show that AHCYL1 transcription is regulated by activating transcription factor 2 (ATF2) in NRAS-mutated melanoma. Our work provides evidence for oncogene-specific calcium regulations and suggests AHCYL1 as a novel therapeutic target for RAS mutant-expressing human cancers, including melanoma. IMPLICATIONS Our findings suggest that targeting the AHCYL1-IP3R axis presents a novel therapeutic approach for NRAS-mutated melanomas, with potential applicability to all cancers harboring RAS mutations, such as KRAS-mutated human colorectal cancers.
Collapse
Affiliation(s)
- Chufan Cai
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Jiayi Tu
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Jeronimo Najarro
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Rukang Zhang
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Hao Fan
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Freya Q. Zhang
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Jiacheng Li
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Zhicheng Xie
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Rui Su
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Lei Dong
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Nicole Arellano
- The Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Michele Ciboddo
- The Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Shannon E. Elf
- The Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Xue Gao
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
- Current address: Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Jing Chen
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Rong Wu
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
32
|
Kochkina EN, Kopylova EE, Rogachevskaja OA, Kovalenko NP, Kabanova NV, Kotova PD, Bystrova MF, Kolesnikov SS. Agonist-Induced Ca 2+ Signaling in HEK-293-Derived Cells Expressing a Single IP 3 Receptor Isoform. Cells 2024; 13:562. [PMID: 38607001 PMCID: PMC11011116 DOI: 10.3390/cells13070562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
In mammals, three genes encode IP3 receptors (IP3Rs), which are involved in agonist-induced Ca2+ signaling in cells of apparently all types. Using the CRISPR/Cas9 approach for disruption of two out of three IP3R genes in HEK-293 cells, we generated three monoclonal cell lines, IP3R1-HEK, IP3R2-HEK, and IP3R3-HEK, with the single functional isoform, IP3R1, IP3R2, and IP3R3, respectively. All engineered cells responded to ACh with Ca2+ transients in an "all-or-nothing" manner, suggesting that each IP3R isotype was capable of mediating CICR. The sensitivity of cells to ACh strongly correlated with the affinity of IP3 binding to an IP3R isoform they expressed. Based on a mathematical model of intracellular Ca2+ signals induced by thapsigargin, a SERCA inhibitor, we developed an approach for estimating relative Ca2+ permeability of Ca2+ store and showed that all three IP3R isoforms contributed to Ca2+ leakage from ER. The relative Ca2+ permeabilities of Ca2+ stores in IP3R1-HEK, IP3R2-HEK, and IP3R3-HEK cells were evaluated as 1:1.75:0.45. Using the genetically encoded sensor R-CEPIA1er for monitoring Ca2+ signals in ER, engineered cells were ranged by resting levels of stored Ca2+ as IP3R3-HEK ≥ IP3R1-HEK > IP3R2-HEK. The developed cell lines could be helpful for further assaying activity, regulation, and pharmacology of individual IP3R isoforms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Stanislav S. Kolesnikov
- Institute of Cell Biophysics, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 3 Institutskaya Street, 142290 Pushchino, Russia
| |
Collapse
|
33
|
Berna-Erro A, Granados MP, Teruel-Montoya R, Ferrer-Marin F, Delgado E, Corbacho AJ, Fenández E, Vazquez-Godoy MT, Tapia JA, Redondo PC. SARAF overexpression impairs thrombin-induced Ca 2+ homeostasis in neonatal platelets. Br J Haematol 2024; 204:988-1004. [PMID: 38062782 DOI: 10.1111/bjh.19210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 03/14/2024]
Abstract
Neonatal platelets present a reduced response to the platelet agonist, thrombin (Thr), thus resulting in a deficient Thr-induced aggregation. These alterations are more pronounced in premature newborns. Here, our aim was to uncover the causes underneath the impaired Ca2+ homeostasis described in neonatal platelets. Both Ca2+ mobilization and Ca2+ influx in response to Thr are decreased in neonatal platelets compared to maternal and control woman platelets. In neonatal platelets, we observed impaired Ca2+ mobilization in response to the PAR-1 agonist (SFLLRN) or by blocking SERCA3 function with tert-butylhydroquinone. Regarding SOCE, the STIM1 regulatory protein, SARAF, was found overexpressed in neonatal platelets, promoting an increase in STIM1/SARAF interaction even under resting conditions. Additionally, higher interaction between SARAF and PDCD61/ALG2 was also observed, reducing SARAF ubiquitination and prolonging its half-life. These results were reproduced by overexpressing SARAF in MEG01 and DAMI cells. Finally, we also observed that pannexin 1 permeability is enhanced in response to Thr in control woman and maternal platelets, but not in neonatal platelets, hence, leading to the deregulation of the Ca2+ entry found in neonatal platelets. Summarizing, we show that in neonatal platelets both Ca2+ accumulation in the intracellular stores and Thr-evoked Ca2+ entry through either capacitative channels or non-selective channels are altered in neonatal platelets, contributing to deregulated Ca2+ homeostasis in neonatal platelets and leading to the altered aggregation observed in these subjects.
Collapse
Affiliation(s)
- Alejandro Berna-Erro
- Department of Physiology (PHYCELL Group), University of Extremadura, Caceres, Spain
| | - Maria P Granados
- Pharmacy Unit of Health Center, Extremadura County Health Service, Caceres, Spain
| | - Raul Teruel-Montoya
- Hemodonation County Center, University Hospital of Morales-Meseguer, IMIB-Arrixaca, CIBERER CB55, Murcia, Spain
| | - Francisca Ferrer-Marin
- Hemodonation County Center, University Hospital of Morales-Meseguer, IMIB-Arrixaca, CIBERER CB55, Murcia, Spain
| | - Elena Delgado
- Blood Donation Center, Extremadura County Health Service, Merida, Spain
| | | | | | | | - Jose A Tapia
- Department of Physiology (PHYCELL Group), University of Extremadura, Caceres, Spain
| | - Pedro Cosme Redondo
- Department of Physiology (PHYCELL Group), University of Extremadura, Caceres, Spain
| |
Collapse
|
34
|
Lee A, Sung G, Shin S, Lee SY, Sim J, Nhung TTM, Nghi TD, Park SK, Sathieshkumar PP, Kang I, Mun JY, Kim JS, Rhee HW, Park KM, Kim K. OrthoID: profiling dynamic proteomes through time and space using mutually orthogonal chemical tools. Nat Commun 2024; 15:1851. [PMID: 38424052 PMCID: PMC10904832 DOI: 10.1038/s41467-024-46034-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
Identifying proteins at organelle contact sites, such as mitochondria-associated endoplasmic reticulum membranes (MAM), is essential for understanding vital cellular processes, yet challenging due to their dynamic nature. Here we report "OrthoID", a proteomic method utilizing engineered enzymes, TurboID and APEX2, for the biotinylation (Bt) and adamantylation (Ad) of proteins close to the mitochondria and endoplasmic reticulum (ER), respectively, in conjunction with high-affinity binding pairs, streptavidin-biotin (SA-Bt) and cucurbit[7]uril-adamantane (CB[7]-Ad), for selective orthogonal enrichment of Bt- and Ad-labeled proteins. This approach effectively identifies protein candidates associated with the ER-mitochondria contact, including LRC59, whose roles at the contact site were-to the best of our knowledge-previously unknown, and tracks multiple protein sets undergoing structural and locational changes at MAM during mitophagy. These findings demonstrate that OrthoID could be a powerful proteomics tool for the identification and analysis of spatiotemporal proteins at organelle contact sites and revealing their dynamic behaviors in vital cellular processes.
Collapse
Affiliation(s)
- Ara Lee
- Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang, Republic of Korea
- Division of Advanced Materials Science (AMS), Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Gihyun Sung
- Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang, Republic of Korea
- Division of Advanced Materials Science (AMS), Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Sanghee Shin
- Center for RNA Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Song-Yi Lee
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Jaehwan Sim
- Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Truong Thi My Nhung
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Tran Diem Nghi
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Sang Ki Park
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | | | - Imkyeung Kang
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
- Department of Microbiology, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Ji Young Mun
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Jong-Seo Kim
- Center for RNA Research, Institute for Basic Science (IBS), Seoul, Republic of Korea.
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.
| | - Hyun-Woo Rhee
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea.
| | - Kyeng Min Park
- Department of Biochemistry, Daegu Catholic University School of Medicine, Daegu, Republic of Korea.
| | - Kimoon Kim
- Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang, Republic of Korea.
- Division of Advanced Materials Science (AMS), Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
| |
Collapse
|
35
|
Campos J, Gleitze S, Hidalgo C, Núñez MT. IP 3R-Mediated Calcium Release Promotes Ferroptotic Death in SH-SY5Y Neuroblastoma Cells. Antioxidants (Basel) 2024; 13:196. [PMID: 38397794 PMCID: PMC10886377 DOI: 10.3390/antiox13020196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Ferroptosis is an iron-dependent cell death pathway that involves the depletion of intracellular glutathione (GSH) levels and iron-mediated lipid peroxidation. Ferroptosis is experimentally caused by the inhibition of the cystine/glutamate antiporter xCT, which depletes cells of GSH, or by inhibition of glutathione peroxidase 4 (GPx4), a key regulator of lipid peroxidation. The events that occur between GPx4 inhibition and the execution of ferroptotic cell death are currently a matter of active research. Previous work has shown that calcium release from the endoplasmic reticulum (ER) mediated by ryanodine receptor (RyR) channels contributes to ferroptosis-induced cell death in primary hippocampal neurons. Here, we used SH-SY5Y neuroblastoma cells, which do not express RyR channels, to test if calcium release mediated by the inositol 1,4,5-trisphosphate receptor (IP3R) channel plays a role in this process. We show that treatment with RAS Selective Lethal Compound 3 (RSL3), a GPx4 inhibitor, enhanced reactive oxygen species (ROS) generation, increased cytoplasmic and mitochondrial calcium levels, increased lipid peroxidation, and caused cell death. The RSL3-induced calcium signals were inhibited by Xestospongin B, a specific inhibitor of the ER-resident IP3R calcium channel, by decreasing IP3R levels with carbachol and by IP3R1 knockdown, which also prevented the changes in cell morphology toward roundness induced by RSL3. Intracellular calcium chelation by incubation with BAPTA-AM inhibited RSL3-induced calcium signals, which were not affected by extracellular calcium depletion. We propose that GPx4 inhibition activates IP3R-mediated calcium release in SH-SY5Y cells, leading to increased cytoplasmic and mitochondrial calcium levels, which, in turn, stimulate ROS production and induce lipid peroxidation and cell death in a noxious positive feedback cycle.
Collapse
Affiliation(s)
- Joaquín Campos
- Chica and Heinz Schaller Foundation, Institute for Anatomy and Cell Biology, University of Heidelberg, 69120 Heidelberg, Germany;
| | - Silvia Gleitze
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile; (S.G.); (C.H.)
| | - Cecilia Hidalgo
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile; (S.G.); (C.H.)
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
- Physiology and Biophysics Program, Institute of Biomedical Sciences and Center for Exercise, Metabolism and Cancer Studies, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
| | - Marco T. Núñez
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago 7800024, Chile
| |
Collapse
|
36
|
Chandra S, Katiyar P, Durairaj AS, Wang X. Mitochondrial Calcium Transport During Autophagy Initiation. MITOCHONDRIAL COMMUNICATIONS 2024; 2:14-20. [PMID: 38347884 PMCID: PMC10861220 DOI: 10.1016/j.mitoco.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
While it has been shown that Ca2+ dynamics at the ER membrane is essential for the initiation of certain types of autophagy such as starvation-induced autophagy, how mitochondrial Ca2+ transport changes during the first stage of autophagy is not systemically characterized. An investigation of mitochondrial Ca2+ dynamics during autophagy initiation may help us determine the relationship between autophagy and mitochondrial Ca2+ fluxes. Here we examine acute mitochondrial and ER calcium responses to a panel of autophagy inducers in different cell types. Mitochondrial Ca2+ transport and Ca2+ transients at the ER membrane are triggered by different autophagy inducers. The mitophagy-inducer-initiated mitochondrial Ca2+ uptake relies on mitochondrial calcium uniporter and may decelerate the following mitophagy. In neurons derived from a Parkinson's patient, mitophagy-inducer-triggered mitochondrial Ca2+ influx is faster, which may slow the ensuing mitophagy.
Collapse
Affiliation(s)
- Sujyoti Chandra
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA94305, USA
| | - Parul Katiyar
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA94305, USA
| | - Aarooran S Durairaj
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA94305, USA
| | - Xinnan Wang
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA94305, USA
| |
Collapse
|
37
|
Graff SM, Nakhe AY, Dadi PK, Dickerson MT, Dobson JR, Zaborska KE, Ibsen CE, Butterworth RB, Vierra NC, Jacobson DA. TALK-1-mediated alterations of β-cell mitochondrial function and insulin secretion impair glucose homeostasis on a diabetogenic diet. Cell Rep 2024; 43:113673. [PMID: 38206814 PMCID: PMC10961926 DOI: 10.1016/j.celrep.2024.113673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 11/08/2023] [Accepted: 01/01/2024] [Indexed: 01/13/2024] Open
Abstract
Mitochondrial Ca2+ ([Ca2+]m) homeostasis is critical for β-cell function and becomes disrupted during the pathogenesis of diabetes. [Ca2+]m uptake is dependent on elevations in cytoplasmic Ca2+ ([Ca2+]c) and endoplasmic reticulum Ca2+ ([Ca2+]ER) release, both of which are regulated by the two-pore domain K+ channel TALK-1. Here, utilizing a novel β-cell TALK-1-knockout (β-TALK-1-KO) mouse model, we found that TALK-1 limited β-cell [Ca2+]m accumulation and ATP production. However, following exposure to a high-fat diet (HFD), ATP-linked respiration, glucose-stimulated oxygen consumption rate, and glucose-stimulated insulin secretion (GSIS) were increased in control but not TALK1-KO mice. Although β-TALK-1-KO animals showed similar GSIS before and after HFD treatment, these mice were protected from HFD-induced glucose intolerance. Collectively, these data identify that TALK-1 channel control of β-cell function reduces [Ca2+]m and suggest that metabolic remodeling in diabetes drives dysglycemia.
Collapse
Affiliation(s)
- Sarah M Graff
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacy and Pharmaceutical Sciences, Lipscomb University, Nashville, TN 37204, USA
| | - Arya Y Nakhe
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Prasanna K Dadi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Matthew T Dickerson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Jordyn R Dobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Karolina E Zaborska
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Chloe E Ibsen
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Regan B Butterworth
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Nicholas C Vierra
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - David A Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
38
|
Csordás G, Weaver D, Várnai P, Hajnóczky G. Supralinear Dependence of the IP 3 Receptor-to-Mitochondria Local Ca 2+ Transfer on the Endoplasmic Reticulum Ca 2+ Loading. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2024; 7:25152564241229273. [PMID: 38362008 PMCID: PMC10868505 DOI: 10.1177/25152564241229273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/31/2023] [Accepted: 01/12/2024] [Indexed: 02/17/2024]
Abstract
Calcium signal propagation from endoplasmic reticulum (ER) to mitochondria regulates a multitude of mitochondrial and cell functions, including oxidative ATP production and cell fate decisions. Ca2+ transfer is optimal at the ER-mitochondrial contacts, where inositol 1,4,5-trisphosphate (IP3) receptors (IP3R) can locally expose the mitochondrial Ca2+ uniporter (mtCU) to high [Ca2+] nanodomains. The Ca2+ loading state of the ER (Ca2 + ER) can vary broadly in physiological and pathological scenarios, however, the correlation between Ca2 + ER and the local Ca2+ transfer is unclear. Here, we studied IP3-induced Ca2+ transfer to mitochondria at different Ca2 + ER in intact and permeabilized RBL-2H3 cells via fluorescence measurements of cytoplasmic [Ca2+] ([Ca2+]c) and mitochondrial matrix [Ca2+] ([Ca2+]m). Preincubation of intact cells in high versus low extracellular [Ca2+] caused disproportionally greater increase in [Ca2+]m than [Ca2+]c responses to IP3-mobilizing agonist. Increasing Ca2 + ER by small Ca2+ boluses in suspensions of permeabilized cells supralinearly enhanced the mitochondrial Ca2+ uptake from IP3-induced Ca2+ release. The IP3-induced local [Ca2+] spikes exposing the mitochondrial surface measured using a genetically targeted sensor appeared to linearly correlate with Ca2 + ER, indicating that amplification happened in the mitochondria. Indeed, overexpression of an EF-hand deficient mutant of the mtCU gatekeeper MICU1 reduced the cooperativity of mitochondrial Ca2+ uptake. Interestingly, the IP3-induced [Ca2+]m signal plateaued at high Ca2 + ER, indicating activation of a matrix Ca2+ binding/chelating species. Mitochondria thus seem to maintain a "working [Ca2+]m range" via a low-affinity and high-capacity buffer species, and the ER loading steeply enhances the IP3R-linked [Ca2+]m signals in this working range.
Collapse
Affiliation(s)
- György Csordás
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - David Weaver
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Péter Várnai
- Department of Physiology, Semmelweis Medical University, Budapest, Hungary
| | - György Hajnóczky
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
39
|
Delrio-Lorenzo A, Rojo-Ruiz J, Torres-Vidal P, Alonso MT, García-Sancho J. In vitro and in vivo calibration of low affinity genetic Ca 2+ indicators. Cell Calcium 2024; 117:102819. [PMID: 37956535 DOI: 10.1016/j.ceca.2023.102819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023]
Abstract
Calcium is a universal intracellular messenger and proper Ca2+concentrations ([Ca2+]) both in the cytosol and in the lumen of cytoplasmic organelles are essential for cell functions. Ca2+ homeostasis is achieved by a delicate pump/leak balance both at the plasma membrane and at the endomembranes, and improper Ca2+ levels result in malfunction and disease. Selective intraorganellar Ca2+measurements are best achieved by using targeted genetically encoded Ca2+ indicators (GECIs) but to calibrate the luminal fluorescent signals into accurate [Ca2+] is challenging, especially in vivo, due to the difficulty to normalize and calibrate the fluorescent signal in various tissues or conditions. We report here a procedure to calibrate the ratiometric signal of GAP (GFP-Aequorin Protein) targeted to the endo-sarcoplasmic reticulum (ER/SR) into [Ca2+]ER/SR based on imaging of fluorescence after heating the tissue at 50-52 °C, since this value coincides with that obtained in the absence of Ca2+ (Rmin). Knowledge of the dynamic range (Rmax/Rmin) and the Ca2+-affinity (KD) of the indicator permits calculation of [Ca2+] by applying a simple algorithm. We have validated this procedure in vitro using several cell types (HeLa, HEK 293T and mouse astrocytes), as well as in vivo in Drosophila. Moreover, this methodology is applicable to other low Ca2+ affinity green and red GECIs.
Collapse
Affiliation(s)
- Alba Delrio-Lorenzo
- Unidad de Excelencia, Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), c/ Sanz y Forés 3, Valladolid 47003, Spain
| | - Jonathan Rojo-Ruiz
- Unidad de Excelencia, Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), c/ Sanz y Forés 3, Valladolid 47003, Spain
| | - Patricia Torres-Vidal
- Unidad de Excelencia, Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), c/ Sanz y Forés 3, Valladolid 47003, Spain
| | - Maria Teresa Alonso
- Unidad de Excelencia, Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), c/ Sanz y Forés 3, Valladolid 47003, Spain.
| | - Javier García-Sancho
- Unidad de Excelencia, Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), c/ Sanz y Forés 3, Valladolid 47003, Spain
| |
Collapse
|
40
|
Janer A, Morris JL, Krols M, Antonicka H, Aaltonen MJ, Lin ZY, Anand H, Gingras AC, Prudent J, Shoubridge EA. ESYT1 tethers the ER to mitochondria and is required for mitochondrial lipid and calcium homeostasis. Life Sci Alliance 2024; 7:e202302335. [PMID: 37931956 PMCID: PMC10627786 DOI: 10.26508/lsa.202302335] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023] Open
Abstract
Mitochondria interact with the ER at structurally and functionally specialized membrane contact sites known as mitochondria-ER contact sites (MERCs). Combining proximity labelling (BioID), co-immunoprecipitation, confocal microscopy and subcellular fractionation, we found that the ER resident SMP-domain protein ESYT1 was enriched at MERCs, where it forms a complex with the outer mitochondrial membrane protein SYNJ2BP. BioID analyses using ER-targeted, outer mitochondrial membrane-targeted, and MERC-targeted baits, confirmed the presence of this complex at MERCs and the specificity of the interaction. Deletion of ESYT1 or SYNJ2BP reduced the number and length of MERCs. Loss of the ESYT1-SYNJ2BP complex impaired ER to mitochondria calcium flux and provoked a significant alteration of the mitochondrial lipidome, most prominently a reduction of cardiolipins and phosphatidylethanolamines. Both phenotypes were rescued by reexpression of WT ESYT1 and an artificial mitochondria-ER tether. Together, these results reveal a novel function for ESYT1 in mitochondrial and cellular homeostasis through its role in the regulation of MERCs.
Collapse
Affiliation(s)
- Alexandre Janer
- https://ror.org/01pxwe438 Department of Human Genetics, McGill University, Montreal, Canada
- https://ror.org/01pxwe438 Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Jordan L Morris
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Michiel Krols
- https://ror.org/01pxwe438 Montreal Neurological Institute, McGill University, Montreal, Canada
- https://ror.org/01pxwe438 Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Hana Antonicka
- https://ror.org/01pxwe438 Department of Human Genetics, McGill University, Montreal, Canada
- https://ror.org/01pxwe438 Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Mari J Aaltonen
- https://ror.org/01pxwe438 Department of Human Genetics, McGill University, Montreal, Canada
- https://ror.org/01pxwe438 Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Zhen-Yuan Lin
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Hanish Anand
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Julien Prudent
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Eric A Shoubridge
- https://ror.org/01pxwe438 Department of Human Genetics, McGill University, Montreal, Canada
- https://ror.org/01pxwe438 Montreal Neurological Institute, McGill University, Montreal, Canada
| |
Collapse
|
41
|
Gao X, Keller KR, Bonzerato CG, Li P, Laemmerhofer M, Wojcikiewicz RJH. The ubiquitin-proteasome pathway inhibitor TAK-243 has major effects on calcium handling in mammalian cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119618. [PMID: 37907195 DOI: 10.1016/j.bbamcr.2023.119618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/17/2023] [Accepted: 10/22/2023] [Indexed: 11/02/2023]
Abstract
The ubiquitin-proteasome pathway (UPP) is a major route for protein degradation and a key regulatory mechanism in mammalian cells. UPP inhibitors, including TAK-243, a first-in-class inhibitor of the E1 ubiquitin-activating enzyme, are currently being used and tested for treatment of a range of diseases, particularly cancer. Here, we reveal that TAK-243 has major effects on Ca2+ handling in a range of cultured mammalian cells (αT3, HeLa and SH-SY5Y). Effects were seen on agonist-induced Ca2+ mobilization, basal cytosolic Ca2+ levels, Ca2+ leak from the endoplasmic reticulum (ER), store-operated Ca2+ entry and mitochondrial Ca2+ uptake. These effects correlated with induction of ER stress, as measured by PERK activation / eIF2α phosphorylation, and most seemed to be underpinned by enhanced Ca2+ leak from the ER. Overall, these data indicate that TAK-243 reprograms the Ca2+-handling properties of mammalian cells and that these effects should be considered when UPP inhibitors are employed as therapeutic agents.
Collapse
Affiliation(s)
- Xiaokong Gao
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Katherine R Keller
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Caden G Bonzerato
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Peng Li
- Institute of Pharmaceutical Sciences, University of Tuebingen, Tuebingen 72076, Germany
| | - Michael Laemmerhofer
- Institute of Pharmaceutical Sciences, University of Tuebingen, Tuebingen 72076, Germany
| | | |
Collapse
|
42
|
Ramlow L, Falcke M, Lindner B. An integrate-and-fire approach to Ca 2+ signaling. Part II: Cumulative refractoriness. Biophys J 2023; 122:4710-4729. [PMID: 37981761 PMCID: PMC10754692 DOI: 10.1016/j.bpj.2023.11.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/20/2023] [Accepted: 11/15/2023] [Indexed: 11/21/2023] Open
Abstract
Inositol 1,4,5-trisphosphate-induced Ca2+ signaling is a second messenger system used by almost all eukaryotic cells. The agonist concentration stimulating Ca2+ signals is encoded in the frequency of a Ca2+ concentration spike sequence. When a cell is stimulated, the interspike intervals (ISIs) often show a distinct transient during which they gradually increase, a system property we refer to as cumulative refractoriness. We extend a previously published stochastic model to include the Ca2+ concentration in the intracellular Ca2+ store as a slow adaptation variable. This model can reproduce both stationary and transient statistics of experimentally observed ISI sequences. We derive approximate expressions for the mean and coefficient of variation of the stationary ISIs. We also consider the response to the onset of a constant stimulus and estimate the length of the transient and the strength of the adaptation of the ISI. We show that the adaptation sets the coefficient of variation in agreement with current ideas derived from experiments. Moreover, we explain why, despite a pronounced transient behavior, ISI correlations can be weak, as often observed in experiments. Finally, we fit our model to reproduce the transient statistics of experimentally observed ISI sequences in stimulated HEK cells. The fitted model is able to qualitatively reproduce the relationship between the stationary interval correlations and the number of transient intervals, as well as the strength of the ISI adaptation. We also find positive correlations in the experimental sequence that cannot be explained by our model.
Collapse
Affiliation(s)
- Lukas Ramlow
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany; Department of Physics, Humboldt University Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Martin Falcke
- Department of Physics, Humboldt University Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine, Berlin, Germany.
| | - Benjamin Lindner
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany; Department of Physics, Humboldt University Berlin, Berlin, Germany
| |
Collapse
|
43
|
Ishida R, Kurebayashi N, Iinuma H, Zeng X, Mori S, Kodama M, Murayama T, Masuno H, Takeda F, Kawahata M, Tanatani A, Miura A, Nishio H, Sakurai T, Kagechika H. A potent and selective cis-amide inhibitor of ryanodine receptor 2 as a candidate for cardiac arrhythmia treatment. Eur J Med Chem 2023; 262:115910. [PMID: 37922828 DOI: 10.1016/j.ejmech.2023.115910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
Ryanodine receptor 2 (RyR2) is a Ca2+ release channel mainly located on the sarcoplasmic reticulum (SR) membrane of heart muscle cells and regulates the concentration of Ca2+ in the cytosol. RyR2 overactivation causes potentially lethal cardiac arrhythmias, but no specific inhibitor is yet available. Herein we developed the first highly potent and selective RyR2 inhibitor, TMDJ-035, containing 3,5-difluoro substituents on the A ring and a 4-fluoro substituent on the B ring, based on a comprehensive structure-activity relationship (SAR) study of tetrazole compound 1. The SAR study also showed that the amide conformation is critical for inhibitory potency. Single-crystal X-ray diffraction analysis and variable-temperature 1H NMR revealed that TMDJ-035 strongly favors cis-amide configuration, while the inactive analogue TMDJ-011 with a secondary amide takes trans-amide configuration. Examination of the selectivity among RyRs indicated that TMDJ-035 displayed high selectivity for RyR2. TMDJ-035 suppressed abnormal Ca2+ waves and transients in isolated cardiomyocytes from RyR2-mutated mice. It appears to be a promising candidate drug for treating cardiac arrhythmias due to RyR2 overactivation, as well as a tool for studying the mechanism and dynamics of RyR2 channel gating.
Collapse
Affiliation(s)
- Ryosuke Ishida
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, 101-0062, Japan
| | - Nagomi Kurebayashi
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan.
| | - Hiroto Iinuma
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, 101-0062, Japan
| | - Xi Zeng
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, 101-0062, Japan
| | - Shuichi Mori
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, 101-0062, Japan
| | - Masami Kodama
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Takashi Murayama
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Hiroyuki Masuno
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, 101-0062, Japan
| | - Fumi Takeda
- Department of Chemistry, Faculty of Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, 112-8610, Japan
| | - Masatoshi Kawahata
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo, 194-8543, Japan
| | - Aya Tanatani
- Department of Chemistry, Faculty of Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, 112-8610, Japan
| | - Aya Miura
- Department of Legal Medicine, Hyogo Medical University, Nishinomiya, 663-8501, Japan
| | - Hajime Nishio
- Department of Legal Medicine, Hyogo Medical University, Nishinomiya, 663-8501, Japan
| | - Takashi Sakurai
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Hiroyuki Kagechika
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, 101-0062, Japan.
| |
Collapse
|
44
|
Mitronova GY, Quentin C, Belov VN, Wegener JW, Kiszka KA, Lehnart SE. 1,4-Benzothiazepines with Cyclopropanol Groups and Their Structural Analogues Exhibit Both RyR2-Stabilizing and SERCA2a-Stimulating Activities. J Med Chem 2023; 66:15761-15775. [PMID: 37991191 PMCID: PMC10726367 DOI: 10.1021/acs.jmedchem.3c01235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/24/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023]
Abstract
To discover new multifunctional agents for the treatment of cardiovascular diseases, we designed and synthesized a series of compounds with a cyclopropyl alcohol moiety and evaluated them in biochemical assays. Biological screening identified derivatives with dual activity: preventing Ca2+ leak through ryanodine receptor 2 (RyR2) and enhancing cardiac sarco-endoplasmic reticulum (SR) Ca2+ load by activation of Ca2+-dependent ATPase 2a (SERCA2a). The compounds that stabilize RyR2 at micro- and nanomolar concentrations are either structurally related to RyR-stabilizing drugs or Rycals or have structures similar to them. The novel compounds also demonstrate a good ability to increase ATP hydrolysis mediated by SERCA2a activity in cardiac microsomes, e.g., the half-maximal effective concentration (EC50) was as low as 383 nM for compound 12a, which is 1,4-benzothiazepine with two cyclopropanol groups. Our findings indicate that these derivatives can be considered as new lead compounds to improve cardiac function in heart failure.
Collapse
Affiliation(s)
- Gyuzel Y. Mitronova
- Department
of NanoBiophotonics, Max Planck Institute
for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
- German
Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen 37075, Germany
| | - Christine Quentin
- Department
of NanoBiophotonics, Max Planck Institute
for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Vladimir N. Belov
- Department
of NanoBiophotonics, Max Planck Institute
for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Jörg W. Wegener
- Department
of Cardiology & Pulmonology, Heart Research Center Göttingen, University Medical Center Göttingen, Robert-Koch-Strasse 42a, Göttingen 37075, Germany
- German
Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen 37075, Germany
| | - Kamila A. Kiszka
- Department
of NanoBiophotonics, Max Planck Institute
for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Stephan E. Lehnart
- Department
of Cardiology & Pulmonology, Heart Research Center Göttingen, University Medical Center Göttingen, Robert-Koch-Strasse 42a, Göttingen 37075, Germany
- German
Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen 37075, Germany
| |
Collapse
|
45
|
Bovo E, Rebbeck RT, Roopnarine O, Cornea RL, Thomas DD, Zima AV. Regulation of cardiac calcium signaling by newly identified calcium pump modulators. Biochem Biophys Res Commun 2023; 685:149136. [PMID: 37907012 PMCID: PMC10841636 DOI: 10.1016/j.bbrc.2023.149136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/09/2023] [Accepted: 10/18/2023] [Indexed: 11/02/2023]
Abstract
In cardiomyocytes, the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2a) is a central component of intracellular Ca2+ regulation. Several heart diseases, including heart failure, are associated with reduced myocardial contraction due to SERCA2a downregulation. Therefore, the need for developing new drugs that could improve SERCA2a function is high. We have recently identified SERCA2a modulators (Compounds 6 and 8) from our screening campaigns and confirmed activation of biochemical SERCA2a ATPase activity and Ca2+ uptake activity. In this study, confocal microscopy and in-cell Ca2+ imaging were used to characterize the effects of these SERCA2a activators on Ca2+ regulation in mouse ventricular myocytes and endoplasmic reticulum (ER) Ca2+ uptake in a HEK293 cell expressing human SERCA2a. Analysis of cytosolic Ca2+ dynamics in cardiomyocytes revealed that both Compounds (6 and 8) increase the action potential-induced Ca2+ transients and sarcoplasmic reticulum (SR) Ca2+ load. While Compound 6 induced a negligible effect on Ca2+ transients invoked by the L-type Ca2+ channel (LTCC) current, Compound 8 increased Ca2+ transients during LTCC activation, suggesting an off-target protein interaction of Compound 8. Analysis of ER Ca2+ transport by human SERCA2a in HEK cells showed that only Compound 6 increased both ER Ca2+ uptake and ER Ca2+ load significantly, whereas Compound 8 had no effect on SERCA2a Ca2+ transport. This study revealed that Compound 6 exhibits promising characteristics that can improve intracellular Ca2+ dynamics by selectively enhancing SERCA2a Ca2+ uptake.
Collapse
Affiliation(s)
- Elisa Bovo
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Robyn T Rebbeck
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Osha Roopnarine
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Razvan L Cornea
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - David D Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Aleksey V Zima
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, 60153, USA.
| |
Collapse
|
46
|
Takenaka M, Kodama M, Murayama T, Ishigami-Yuasa M, Mori S, Ishida R, Suzuki J, Kanemaru K, Sugihara M, Iino M, Miura A, Nishio H, Morimoto S, Kagechika H, Sakurai T, Kurebayashi N. Screening for Novel Type 2 Ryanodine Receptor Inhibitors by Endoplasmic Reticulum Ca 2+ Monitoring. Mol Pharmacol 2023; 104:275-286. [PMID: 37678938 DOI: 10.1124/molpharm.123.000720] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023] Open
Abstract
Type 2 ryanodine receptor (RyR2) is a Ca2+ release channel on the endoplasmic (ER)/sarcoplasmic reticulum that plays a central role in the excitation-contraction coupling in the heart. Hyperactivity of RyR2 has been linked to ventricular arrhythmias in patients with catecholaminergic polymorphic ventricular tachycardia and heart failure, where spontaneous Ca2+ release via hyperactivated RyR2 depolarizes diastolic membrane potential to induce triggered activity. In such cases, drugs that suppress RyR2 activity are expected to prevent the arrhythmias, but there is no clinically available RyR2 inhibitors at present. In this study, we searched for RyR2 inhibitors from a well-characterized compound library using a recently developed ER Ca2+-based assay, where the inhibition of RyR2 activity was detected by the increase in ER Ca2+ signals from R-CEPIA1er, a genetically encoded ER Ca2+ indicator, in RyR2-expressing HEK293 cells. By screening 1535 compounds in the library, we identified three compounds (chloroxylenol, methyl orsellinate, and riluzole) that greatly increased the ER Ca2+ signal. All of the three compounds suppressed spontaneous Ca2+ oscillations in RyR2-expressing HEK293 cells and correspondingly reduced the Ca2+-dependent [3H]ryanodine binding activity. In cardiomyocytes from RyR2-mutant mice, the three compounds effectively suppressed abnormal Ca2+ waves without substantial effects on the action-potential-induced Ca2+ transients. These results confirm that ER Ca2+-based screening is useful for identifying modulators of ER Ca2+ release channels and suggest that RyR2 inhibitors have potential to be developed as a new category of antiarrhythmic drugs. SIGNIFICANCE STATEMENT: We successfully identified three compounds having RyR2 inhibitory action from a well-characterized compound library using an endoplasmic reticulum Ca2+-based assay, and demonstrated that these compounds suppressed arrhythmogenic Ca2+ wave generation without substantially affecting physiological action-potential induced Ca2+ transients in cardiomyocytes. This study will facilitate the development of RyR2-specific inhibitors as a potential new class of drugs for life-threatening arrhythmias induced by hyperactivation of RyR2.
Collapse
Affiliation(s)
- Mai Takenaka
- Department of Cellular and Molecular Pharmacology (M.T., M.K., T.M., T.S., N.K.) and Department of Clinical Laboratory Medicine (M.S.), Juntendo University Graduate School of Medicine, Tokyo, Japan; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan (M.I.-Y., Sh.M., R.I., H.K.); Department of Physiology, University of California San Francisco, San Francisco, California (J.S.); Department of Physiology, Nihon University School of Medicine, Tokyo, Japan (K.K., M.I.); Department of Legal Medicine, Hyogo Medical University, Nishinomiya, Japan (A.M., H.N.); and Department of Health Sciences at Fukuoka, International University of Health and Welfare, Fukuoka, Japan (Sa.M.)
| | - Masami Kodama
- Department of Cellular and Molecular Pharmacology (M.T., M.K., T.M., T.S., N.K.) and Department of Clinical Laboratory Medicine (M.S.), Juntendo University Graduate School of Medicine, Tokyo, Japan; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan (M.I.-Y., Sh.M., R.I., H.K.); Department of Physiology, University of California San Francisco, San Francisco, California (J.S.); Department of Physiology, Nihon University School of Medicine, Tokyo, Japan (K.K., M.I.); Department of Legal Medicine, Hyogo Medical University, Nishinomiya, Japan (A.M., H.N.); and Department of Health Sciences at Fukuoka, International University of Health and Welfare, Fukuoka, Japan (Sa.M.)
| | - Takashi Murayama
- Department of Cellular and Molecular Pharmacology (M.T., M.K., T.M., T.S., N.K.) and Department of Clinical Laboratory Medicine (M.S.), Juntendo University Graduate School of Medicine, Tokyo, Japan; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan (M.I.-Y., Sh.M., R.I., H.K.); Department of Physiology, University of California San Francisco, San Francisco, California (J.S.); Department of Physiology, Nihon University School of Medicine, Tokyo, Japan (K.K., M.I.); Department of Legal Medicine, Hyogo Medical University, Nishinomiya, Japan (A.M., H.N.); and Department of Health Sciences at Fukuoka, International University of Health and Welfare, Fukuoka, Japan (Sa.M.)
| | - Mari Ishigami-Yuasa
- Department of Cellular and Molecular Pharmacology (M.T., M.K., T.M., T.S., N.K.) and Department of Clinical Laboratory Medicine (M.S.), Juntendo University Graduate School of Medicine, Tokyo, Japan; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan (M.I.-Y., Sh.M., R.I., H.K.); Department of Physiology, University of California San Francisco, San Francisco, California (J.S.); Department of Physiology, Nihon University School of Medicine, Tokyo, Japan (K.K., M.I.); Department of Legal Medicine, Hyogo Medical University, Nishinomiya, Japan (A.M., H.N.); and Department of Health Sciences at Fukuoka, International University of Health and Welfare, Fukuoka, Japan (Sa.M.)
| | - Shuichi Mori
- Department of Cellular and Molecular Pharmacology (M.T., M.K., T.M., T.S., N.K.) and Department of Clinical Laboratory Medicine (M.S.), Juntendo University Graduate School of Medicine, Tokyo, Japan; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan (M.I.-Y., Sh.M., R.I., H.K.); Department of Physiology, University of California San Francisco, San Francisco, California (J.S.); Department of Physiology, Nihon University School of Medicine, Tokyo, Japan (K.K., M.I.); Department of Legal Medicine, Hyogo Medical University, Nishinomiya, Japan (A.M., H.N.); and Department of Health Sciences at Fukuoka, International University of Health and Welfare, Fukuoka, Japan (Sa.M.)
| | - Ryosuke Ishida
- Department of Cellular and Molecular Pharmacology (M.T., M.K., T.M., T.S., N.K.) and Department of Clinical Laboratory Medicine (M.S.), Juntendo University Graduate School of Medicine, Tokyo, Japan; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan (M.I.-Y., Sh.M., R.I., H.K.); Department of Physiology, University of California San Francisco, San Francisco, California (J.S.); Department of Physiology, Nihon University School of Medicine, Tokyo, Japan (K.K., M.I.); Department of Legal Medicine, Hyogo Medical University, Nishinomiya, Japan (A.M., H.N.); and Department of Health Sciences at Fukuoka, International University of Health and Welfare, Fukuoka, Japan (Sa.M.)
| | - Junji Suzuki
- Department of Cellular and Molecular Pharmacology (M.T., M.K., T.M., T.S., N.K.) and Department of Clinical Laboratory Medicine (M.S.), Juntendo University Graduate School of Medicine, Tokyo, Japan; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan (M.I.-Y., Sh.M., R.I., H.K.); Department of Physiology, University of California San Francisco, San Francisco, California (J.S.); Department of Physiology, Nihon University School of Medicine, Tokyo, Japan (K.K., M.I.); Department of Legal Medicine, Hyogo Medical University, Nishinomiya, Japan (A.M., H.N.); and Department of Health Sciences at Fukuoka, International University of Health and Welfare, Fukuoka, Japan (Sa.M.)
| | - Kazunori Kanemaru
- Department of Cellular and Molecular Pharmacology (M.T., M.K., T.M., T.S., N.K.) and Department of Clinical Laboratory Medicine (M.S.), Juntendo University Graduate School of Medicine, Tokyo, Japan; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan (M.I.-Y., Sh.M., R.I., H.K.); Department of Physiology, University of California San Francisco, San Francisco, California (J.S.); Department of Physiology, Nihon University School of Medicine, Tokyo, Japan (K.K., M.I.); Department of Legal Medicine, Hyogo Medical University, Nishinomiya, Japan (A.M., H.N.); and Department of Health Sciences at Fukuoka, International University of Health and Welfare, Fukuoka, Japan (Sa.M.)
| | - Masami Sugihara
- Department of Cellular and Molecular Pharmacology (M.T., M.K., T.M., T.S., N.K.) and Department of Clinical Laboratory Medicine (M.S.), Juntendo University Graduate School of Medicine, Tokyo, Japan; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan (M.I.-Y., Sh.M., R.I., H.K.); Department of Physiology, University of California San Francisco, San Francisco, California (J.S.); Department of Physiology, Nihon University School of Medicine, Tokyo, Japan (K.K., M.I.); Department of Legal Medicine, Hyogo Medical University, Nishinomiya, Japan (A.M., H.N.); and Department of Health Sciences at Fukuoka, International University of Health and Welfare, Fukuoka, Japan (Sa.M.)
| | - Masamitsu Iino
- Department of Cellular and Molecular Pharmacology (M.T., M.K., T.M., T.S., N.K.) and Department of Clinical Laboratory Medicine (M.S.), Juntendo University Graduate School of Medicine, Tokyo, Japan; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan (M.I.-Y., Sh.M., R.I., H.K.); Department of Physiology, University of California San Francisco, San Francisco, California (J.S.); Department of Physiology, Nihon University School of Medicine, Tokyo, Japan (K.K., M.I.); Department of Legal Medicine, Hyogo Medical University, Nishinomiya, Japan (A.M., H.N.); and Department of Health Sciences at Fukuoka, International University of Health and Welfare, Fukuoka, Japan (Sa.M.)
| | - Aya Miura
- Department of Cellular and Molecular Pharmacology (M.T., M.K., T.M., T.S., N.K.) and Department of Clinical Laboratory Medicine (M.S.), Juntendo University Graduate School of Medicine, Tokyo, Japan; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan (M.I.-Y., Sh.M., R.I., H.K.); Department of Physiology, University of California San Francisco, San Francisco, California (J.S.); Department of Physiology, Nihon University School of Medicine, Tokyo, Japan (K.K., M.I.); Department of Legal Medicine, Hyogo Medical University, Nishinomiya, Japan (A.M., H.N.); and Department of Health Sciences at Fukuoka, International University of Health and Welfare, Fukuoka, Japan (Sa.M.)
| | - Hajime Nishio
- Department of Cellular and Molecular Pharmacology (M.T., M.K., T.M., T.S., N.K.) and Department of Clinical Laboratory Medicine (M.S.), Juntendo University Graduate School of Medicine, Tokyo, Japan; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan (M.I.-Y., Sh.M., R.I., H.K.); Department of Physiology, University of California San Francisco, San Francisco, California (J.S.); Department of Physiology, Nihon University School of Medicine, Tokyo, Japan (K.K., M.I.); Department of Legal Medicine, Hyogo Medical University, Nishinomiya, Japan (A.M., H.N.); and Department of Health Sciences at Fukuoka, International University of Health and Welfare, Fukuoka, Japan (Sa.M.)
| | - Sachio Morimoto
- Department of Cellular and Molecular Pharmacology (M.T., M.K., T.M., T.S., N.K.) and Department of Clinical Laboratory Medicine (M.S.), Juntendo University Graduate School of Medicine, Tokyo, Japan; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan (M.I.-Y., Sh.M., R.I., H.K.); Department of Physiology, University of California San Francisco, San Francisco, California (J.S.); Department of Physiology, Nihon University School of Medicine, Tokyo, Japan (K.K., M.I.); Department of Legal Medicine, Hyogo Medical University, Nishinomiya, Japan (A.M., H.N.); and Department of Health Sciences at Fukuoka, International University of Health and Welfare, Fukuoka, Japan (Sa.M.)
| | - Hiroyuki Kagechika
- Department of Cellular and Molecular Pharmacology (M.T., M.K., T.M., T.S., N.K.) and Department of Clinical Laboratory Medicine (M.S.), Juntendo University Graduate School of Medicine, Tokyo, Japan; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan (M.I.-Y., Sh.M., R.I., H.K.); Department of Physiology, University of California San Francisco, San Francisco, California (J.S.); Department of Physiology, Nihon University School of Medicine, Tokyo, Japan (K.K., M.I.); Department of Legal Medicine, Hyogo Medical University, Nishinomiya, Japan (A.M., H.N.); and Department of Health Sciences at Fukuoka, International University of Health and Welfare, Fukuoka, Japan (Sa.M.)
| | - Takashi Sakurai
- Department of Cellular and Molecular Pharmacology (M.T., M.K., T.M., T.S., N.K.) and Department of Clinical Laboratory Medicine (M.S.), Juntendo University Graduate School of Medicine, Tokyo, Japan; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan (M.I.-Y., Sh.M., R.I., H.K.); Department of Physiology, University of California San Francisco, San Francisco, California (J.S.); Department of Physiology, Nihon University School of Medicine, Tokyo, Japan (K.K., M.I.); Department of Legal Medicine, Hyogo Medical University, Nishinomiya, Japan (A.M., H.N.); and Department of Health Sciences at Fukuoka, International University of Health and Welfare, Fukuoka, Japan (Sa.M.)
| | - Nagomi Kurebayashi
- Department of Cellular and Molecular Pharmacology (M.T., M.K., T.M., T.S., N.K.) and Department of Clinical Laboratory Medicine (M.S.), Juntendo University Graduate School of Medicine, Tokyo, Japan; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan (M.I.-Y., Sh.M., R.I., H.K.); Department of Physiology, University of California San Francisco, San Francisco, California (J.S.); Department of Physiology, Nihon University School of Medicine, Tokyo, Japan (K.K., M.I.); Department of Legal Medicine, Hyogo Medical University, Nishinomiya, Japan (A.M., H.N.); and Department of Health Sciences at Fukuoka, International University of Health and Welfare, Fukuoka, Japan (Sa.M.)
| |
Collapse
|
47
|
Sun P, Zhang Z, Zhao J, Zhang H, Lin L, Wang X, Li L, Cao P, Wang Z, Li Z, Yuchi Z, Li Y. Novel Nitrophenyl Substituted Anthranilic Diamide Derivatives: Design, Synthesis, Selectivity, and Antiresistance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17646-17657. [PMID: 37939255 DOI: 10.1021/acs.jafc.3c03067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Diamide insecticides have gained popularity due to their high efficacy and low toxicity to nontarget organisms. However, diamide-associated resistance has emerged recently, causing a significant reduction in their potency, thereby hindering sustainable agricultural development. Here, we explored novel diamide insecticide analogs and, using a structure-based approach, rationally designed and synthesized 28 nitrophenyl substituted anthranilic diamides. Most of the compounds showed moderate to good activity against Mythimna separata, Plutella xylostella, and Spodoptera frugiperda. Among them, compounds Ia and Im showed extraordinarily high activity and their mode of action was verified on isolated neurons. Additionally, Im exhibited over 10-fold greater potency than chlorantraniliprole in a HEK293 cell line stably expressing S. frugiperda ryanodine receptors (SfRyRs) containing the resistance mutations, G4891E and I4734M. The binding modes of Im in the SfRyRs were predicted using in silico molecular docking analysis. Our novel nitrophenyl substituted anthranilic diamide derivatives provide valuable insights for the design of insecticidal RyR-targeting compounds to effectively control both wild type and diamide insecticide-resistant lepidopteran pests.
Collapse
Affiliation(s)
- Pengwei Sun
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Ze Zhang
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Jiahui Zhao
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Hongyuan Zhang
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Lianyun Lin
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Xinyao Wang
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Linshan Li
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Peng Cao
- Key Laboratory of Drug Targets and Drug Leads for Degenerative Diseases, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| | - Zhongwen Wang
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Zhengming Li
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Yuxin Li
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, 371 Tongzipo Road, Changsha 410013, Hunan, China
| |
Collapse
|
48
|
Sakai‐Takemura F, Saito F, Nogami K, Maruyama Y, Elhussieny A, Matsumura K, Takeda S, Aoki Y, Miyagoe‐Suzuki Y. Antioxidants restore store-operated Ca 2+ entry in patient-iPSC-derived myotubes with tubular aggregate myopathy-associated Ile484ArgfsX21 STIM1 mutation via upregulation of binding immunoglobulin protein. FASEB Bioadv 2023; 5:453-469. [PMID: 37936920 PMCID: PMC10626159 DOI: 10.1096/fba.2023-00069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/27/2023] [Accepted: 10/11/2023] [Indexed: 11/09/2023] Open
Abstract
Store-operated Ca2+ entry (SOCE) is indispensable for intracellular Ca2+ homeostasis in skeletal muscle, and constitutive activation of SOCE causes tubular aggregate myopathy (TAM). To understand the pathogenesis of TAM, we induced pluripotent stem cells (iPSCs) from a TAM patient with a rare mutation (c.1450_1451insGA; p. Ile484ArgfsX21) in the STIM1 gene. This frameshift mutation produces a truncated STIM1 with a disrupted C-terminal inhibitory domain (CTID) and was reported to diminish SOCE. Myotubes induced from the patient's-iPSCs (TAM myotubes) showed severely impaired SOCE, but antioxidants greatly restored SOCE partly via upregulation of an endoplasmic reticulum (ER) chaperone, BiP (GRP78), in the TAM myotubes. Our observation suggests that antioxidants are promising tools for treatment of TAM caused by reduced SOCE.
Collapse
Affiliation(s)
- Fusako Sakai‐Takemura
- Department of Molecular TherapyNational Institute of Neuroscience, National Center of Neurology and PsychiatryTokyoJapan
| | - Fumiaki Saito
- Department of Neurology, School of MedicineTeikyo UniversityTokyoJapan
| | - Ken'ichiro Nogami
- Department of Molecular TherapyNational Institute of Neuroscience, National Center of Neurology and PsychiatryTokyoJapan
- Department of Neurology, Neurological Institute, Graduate School of Medical ScienceKyushu UniversityFukuokaJapan
| | - Yusuke Maruyama
- Department of Molecular TherapyNational Institute of Neuroscience, National Center of Neurology and PsychiatryTokyoJapan
- Department of Gene Regulation, Faculty of Pharmaceutical ScienceTokyo University of ScienceChibaJapan
| | - Ahmed Elhussieny
- Department of Molecular TherapyNational Institute of Neuroscience, National Center of Neurology and PsychiatryTokyoJapan
- Department of Neurology, Faculty of MedicineMinia UniversityMiniaEgypt
| | | | - Shin'ichi Takeda
- Department of Molecular TherapyNational Institute of Neuroscience, National Center of Neurology and PsychiatryTokyoJapan
| | - Yoshitsugu Aoki
- Department of Molecular TherapyNational Institute of Neuroscience, National Center of Neurology and PsychiatryTokyoJapan
| | - Yuko Miyagoe‐Suzuki
- Department of Molecular TherapyNational Institute of Neuroscience, National Center of Neurology and PsychiatryTokyoJapan
| |
Collapse
|
49
|
Benson JC, Romito O, Abdelnaby AE, Xin P, Pathak T, Weir SE, Kirk V, Castaneda F, Yoast RE, Emrich SM, Tang PW, Yule DI, Hempel N, Potier-Cartereau M, Sneyd J, Trebak M. A multiple-oscillator mechanism underlies antigen-induced Ca 2+ oscillations in Jurkat T-cells. J Biol Chem 2023; 299:105310. [PMID: 37778728 PMCID: PMC10641176 DOI: 10.1016/j.jbc.2023.105310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 09/11/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023] Open
Abstract
T-cell receptor stimulation triggers cytosolic Ca2+ signaling by inositol-1,4,5-trisphosphate (IP3)-mediated Ca2+ release from the endoplasmic reticulum (ER) and Ca2+ entry through Ca2+ release-activated Ca2+ (CRAC) channels gated by ER-located stromal-interacting molecules (STIM1/2). Physiologically, cytosolic Ca2+ signaling manifests as regenerative Ca2+ oscillations, which are critical for nuclear factor of activated T-cells-mediated transcription. In most cells, Ca2+ oscillations are thought to originate from IP3 receptor-mediated Ca2+ release, with CRAC channels indirectly sustaining them through ER refilling. Here, experimental and computational evidence support a multiple-oscillator mechanism in Jurkat T-cells whereby both IP3 receptor and CRAC channel activities oscillate and directly fuel antigen-evoked Ca2+ oscillations, with the CRAC channel being the major contributor. KO of either STIM1 or STIM2 significantly reduces CRAC channel activity. As such, STIM1 and STIM2 synergize for optimal Ca2+ oscillations and activation of nuclear factor of activated T-cells 1 and are essential for ER refilling. The loss of both STIM proteins abrogates CRAC channel activity, drastically reduces ER Ca2+ content, severely hampers cell proliferation and enhances cell death. These results clarify the mechanism and the contribution of STIM proteins to Ca2+ oscillations in T-cells.
Collapse
Affiliation(s)
- J Cory Benson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Graduate Program in Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Olivier Romito
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Inserm UMR 1069, Nutrition Croissance Cancer, Faculté de Médecine, Université de Tours, Tours, France
| | - Ahmed Emam Abdelnaby
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ping Xin
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Trayambak Pathak
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sierra E Weir
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Vivien Kirk
- Department of Mathematics, University of Auckland, Auckland, New Zealand
| | | | - Ryan E Yoast
- Graduate Program in Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Scott M Emrich
- Graduate Program in Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Priscilla W Tang
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - David I Yule
- Department of Pharmacology and Physiology, University of Rochester, Rochester, New York, USA
| | - Nadine Hempel
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Marie Potier-Cartereau
- Inserm UMR 1069, Nutrition Croissance Cancer, Faculté de Médecine, Université de Tours, Tours, France
| | - James Sneyd
- Department of Mathematics, University of Auckland, Auckland, New Zealand
| | - Mohamed Trebak
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
50
|
Lemos FO, de Ridder I, Bootman MD, Bultynck G, Parys JB. The Complex Effects of PKM2 and PKM2:IP 3R Disruption on Intracellular Ca 2+ Handling and Cellular Functions. Cells 2023; 12:2527. [PMID: 37947604 PMCID: PMC10647343 DOI: 10.3390/cells12212527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/12/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023] Open
Abstract
Pyruvate kinase M (PKM) 2 was described to interact with the inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) and suppress its activity. To further investigate the physiological importance of the PKM2:IP3R interaction, we developed and characterized HeLa PKM2 knockout (KO) cells. In the HeLa PKM2 KO cells, the release of Ca2+ to the cytosol appears to be more sensitive to low agonist concentrations than in HeLa wild-type (WT) cells. However, upon an identical IP3-induced Ca2+ release, Ca2+ uptake in the mitochondria is decreased in HeLa PKM2 KO cells, which may be explained by the smaller number of contact sites between the ER and the mitochondria. Furthermore, in HeLa PKM2 KO cells, mitochondria are more numerous, though they are smaller and less branched and have a hyperpolarized membrane potential. TAT-D5SD, a cell-permeable peptide representing a sequence derived from IP3R1 that can disrupt the PKM2:IP3R interaction, induces Ca2+ release into the cytosol and Ca2+ uptake into mitochondria in both HeLa WT and PKM2 KO cells. Moreover, TAT-D5SD induced apoptosis in HeLa WT and PKM2 KO cells but not in HeLa cells completely devoid of IP3Rs. These results indicate that PKM2 separately regulates cytosolic and mitochondrial Ca2+ handling and that the cytotoxic effect of TAT-D5SD depends on IP3R activity but not on PKM2. However, the tyrosine kinase Lck, which also interacts with the D5SD sequence, is expressed neither in HeLa WT nor PKM2 KO cells, and we can also exclude a role for PKM1, which is upregulated in HeLa PKM2 KO cells, indicating that the TAT-D5SD peptide has a more complex mode of action than anticipated.
Collapse
Affiliation(s)
- Fernanda O. Lemos
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, KU Leuven, Herestraat 49, Campus Gasthuisberg O&NI—B802, 3000 Leuven, Belgium; (I.d.R.); (G.B.)
| | - Ian de Ridder
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, KU Leuven, Herestraat 49, Campus Gasthuisberg O&NI—B802, 3000 Leuven, Belgium; (I.d.R.); (G.B.)
| | - Martin D. Bootman
- School of Life, Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK;
| | - Geert Bultynck
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, KU Leuven, Herestraat 49, Campus Gasthuisberg O&NI—B802, 3000 Leuven, Belgium; (I.d.R.); (G.B.)
| | - Jan B. Parys
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, KU Leuven, Herestraat 49, Campus Gasthuisberg O&NI—B802, 3000 Leuven, Belgium; (I.d.R.); (G.B.)
| |
Collapse
|