1
|
Padma HH, Dominic D, Illath K, Kar S, Santra TS. Light-activated nanocomposite thin sheet for high throughput contactless biomolecular delivery into hard-to-transfect cells. Analyst 2025; 150:860-876. [PMID: 39781686 DOI: 10.1039/d4an01331j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
High throughput intracellular delivery of biological macromolecules is crucial for cell engineering, gene expression, therapeutics, diagnostics, and clinical studies; however, most existing techniques are either contact-based or have throughput limitations. Herein, we report a light-activated, contactless, high throughput photoporation method for highly efficient and viable cell transfection of more than a million cells within a minute. We fabricated reduced graphene oxide (rGO) nanoflakes that was mixed with a polydimethylsiloxane (PDMS) nanocomposite thin sheet with an area of 3 cm2 and a thickness of ∼600 μm. Upon infrared (980 nm) nanosecond pulse laser exposure, the rGO nanoflakes induced heat and created photothermal bubbles, leading to cell membrane deformation and biomolecular delivery. Using this platform, we achieved delivery of small to large size molecules, such as propidium iodide (PI) dye (668 Da), dextran (3000 Da), siRNA (20-24 bp), EGFP (6159 bp) and enzymes (465 kDa), in L929, N2a, and HeLa cells as well as in hard-to-transfect NiH3T3 and HuH7 cells. The best results were achieved for enzymes with ∼97% transfection efficiency and 98% cell viability in Huh7 cells. This highly efficient cargo delivery tool is simple and easy to use, and its dimensions can be varied according to the user requirements. Moreover, this safe and successful method has applicability in diagnostics and cell therapy.
Collapse
Affiliation(s)
- Hima Harshan Padma
- Department of Engineering Design, Indian Institute of Technology Madras, India.
| | - Donia Dominic
- Department of Engineering Design, Indian Institute of Technology Madras, India.
| | - Kavitha Illath
- Department of Engineering Design, Indian Institute of Technology Madras, India.
| | - Srabani Kar
- Department of Engineering Design, Indian Institute of Technology Madras, India.
- Department of Physics, Indian Institute of Technology Hyderabad, India
| | - Tuhin Subhra Santra
- Department of Engineering Design, Indian Institute of Technology Madras, India.
| |
Collapse
|
2
|
Hou S, Hao J, Deng L, Cui X, Mao R, Jiang N. The Synthesis of Needle-Like Monocrystalline Diamonds with a High Aspect Ratio up to 14. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405521. [PMID: 39350439 DOI: 10.1002/smll.202405521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/22/2024] [Indexed: 12/13/2024]
Abstract
Diamond exhibits nontrivial hardness and abrasion, ultra-high thermal conductivity, and light transmission over a wide wavelength range. All these properties are anisotropic. There is considerable literature on the synthesis of large-sized monocrystalline diamonds but the synthesis of highly oriented monocrystalline diamonds is limited. Here, [100] oriented monocrystalline needle-like diamonds are successfully synthesized with an aspect ratio of up to 14 by controlling the temperature gradient and carbon concentration gradient using FeCo alloy as the catalyst at ≈5.8 GPa and 1473 K. The distinctive morphology and microstructure of needle-like diamonds are characterized using Scanning Electron Microscopy, X-ray diffraction, and Focused Ion Beam-Transmission Electron Microscopy. A four-stage growth model is established to elucidate the growth mechanism along the [100], which sheds light on the synthesis of diamonds with predetermines crystal orientations. Increasing the aspect ratio of needle-like diamonds further may enable the development of diamond fibers and assist in the fabrication of laser diamonds with specific orientation requirements.
Collapse
Affiliation(s)
- Shuai Hou
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Qianwan Institute of CNITECH, Zhongchuang 1st Road, Zhongchuang Park, Qianwan New Area, Ningbo, 315336, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jinglin Hao
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Qianwan Institute of CNITECH, Zhongchuang 1st Road, Zhongchuang Park, Qianwan New Area, Ningbo, 315336, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lifen Deng
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Qianwan Institute of CNITECH, Zhongchuang 1st Road, Zhongchuang Park, Qianwan New Area, Ningbo, 315336, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiwei Cui
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Qianwan Institute of CNITECH, Zhongchuang 1st Road, Zhongchuang Park, Qianwan New Area, Ningbo, 315336, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Rongqi Mao
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Qianwan Institute of CNITECH, Zhongchuang 1st Road, Zhongchuang Park, Qianwan New Area, Ningbo, 315336, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Nan Jiang
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Qianwan Institute of CNITECH, Zhongchuang 1st Road, Zhongchuang Park, Qianwan New Area, Ningbo, 315336, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
3
|
Li C, Jiang X, Yang N. Synthesis, Surface Chemistry, and Applications of Non-Zero-Dimensional Diamond Nanostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400798. [PMID: 39340271 DOI: 10.1002/smll.202400798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 09/13/2024] [Indexed: 09/30/2024]
Abstract
Diamond nanomaterials are renowned for their exceptional properties, which include the inherent attributes of bulk diamond. Additionally, they exhibit unique characteristics at the nanoscale, including high specific surface areas, tunable surface structure, and excellent biocompatibility. These multifaceted attributes have piqued the interest of researchers globally, leading to an extensive exploration of various diamond nanostructures in a myriad of applications. This review focuses on non-zero-dimensional (non-0D) diamond nanostructures including diamond films and extended diamond nanostructures, such as diamond nanowires, nanoplatelets, and diamond foams. It delves into the fabrication, modification, and diverse applications of non-0D diamond nanostructures. This review begins with a concise review of the preparation methods for different types of diamond films and extended nanostructures, followed by an exploration of the intricacies of surface termination and the process of immobilizing target moieties of interest. It then transitions into an exploration of the applications of diamond films and extended nanostructures in the fields of biomedicine and electrochemistry. In the concluding section, this article provides a forward-looking perspective on the current state and future directions of diamond films and extended nanostructures research, offering insights into the opportunities and challenges that lie ahead in this exciting field.
Collapse
Affiliation(s)
- Changli Li
- Institute of Materials Engineering, University of Siegen, 57076, Siegen, Germany
| | - Xin Jiang
- Institute of Materials Engineering, University of Siegen, 57076, Siegen, Germany
| | - Nianjun Yang
- Department of Chemistry, Hasselt University, Diepenbeek, 3590, Belgium
- IMO-IMOMEC, Hasselt University, Diepenbeek, 3590, Belgium
| |
Collapse
|
4
|
Jiang Y, Harberts J, Assadi A, Chen Y, Spatz JP, Duan W, Nisbet DR, Voelcker NH, Elnathan R. The Roles of Micro- and Nanoscale Materials in Cell-Engineering Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410908. [PMID: 39401098 DOI: 10.1002/adma.202410908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/13/2024] [Indexed: 11/29/2024]
Abstract
Customizable manufacturing of ex vivo cell engineering is driven by the need for innovations in the biomedical field and holds substantial potential for addressing current therapeutic challenges; but it is still only in its infancy. Micro- and nanoscale-engineered materials are increasingly used to control core cell-level functions in cellular engineering. By reprogramming or redirecting targeted cells for extremely precise functions, these advanced materials offer new possibilities. This influences the modularity of cell reprogramming and reengineering, making these materials part of versatile and emerging technologies. Here, the roles of micro- and nanoscale materials in cell engineering are highlighted, demonstrating how they can be adaptively controlled to regulate cellular reprogramming and core cell-level functions, including differentiation, proliferation, adhesion, user-defined gene expression, and epigenetic changes. The current reprogramming routes used to achieve pluripotency from somatic cells and the significant potential of induced pluripotent stem cell technology for translational biomedical research are covered. Recent advances in nonviral intracellular delivery modalities for cell reprogramming and their constraints are evaluated. This paper focuses on emerging physical and combinatorial approaches of intracellular delivery for cell engineering, revealing the capabilities and limitations of these routes. It is showcased how these programmable materials are continually being explored as customizable tools for inducing biophysical stimulation. Harnessing the power of micro- and nanoscale-engineered materials will be a step change in the design of cell engineering, producing a suite of powerful tools for addressing potential future challenges in therapeutic cell engineering.
Collapse
Affiliation(s)
- Yuan Jiang
- Faculty of Health, School of Medicine, Deakin University, Waurn Ponds, Victoria, 3216, Australia
- The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| | - Jann Harberts
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Victoria, Clayton, 3168, Australia
| | - Artin Assadi
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Victoria, Clayton, 3168, Australia
| | - Yaping Chen
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Zhejiang, 325000, China
| | - Joachim P Spatz
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
- Institute for Molecular Systems Engineering (IMSE), Heidelberg University, 69120, Heidelberg, Germany
- Max Planck School Matter to Life, Max Planck Schools, 69120, Heidelberg, Germany
| | - Wei Duan
- Faculty of Health, School of Medicine, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| | - David R Nisbet
- The Graeme Clark Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Melbourne, Parkville, Victoria, 3010, Australia
- Medical School, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Melbourne, Parkville, VIC, 3010, Australia
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Victoria, Clayton, 3168, Australia
| | - Roey Elnathan
- Faculty of Health, School of Medicine, Deakin University, Waurn Ponds, Victoria, 3216, Australia
- The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Waurn Ponds, Victoria, 3216, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Victoria, Clayton, 3168, Australia
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| |
Collapse
|
5
|
Liu X, Jiang J, Liu J, Yang H, Huang Z, Deng C, Li Y, Shang L, Wang X, Xie X, Wang J. Nanoneedle Array-Electroporation Facilitates Intranuclear Ribonucleoprotein Delivery and High Throughput Gene Editing. Adv Healthc Mater 2024:e2400645. [PMID: 39240050 DOI: 10.1002/adhm.202400645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/24/2024] [Indexed: 09/07/2024]
Abstract
Dendritic cells (DCs) are critical regulators of T cell immunity, with immense therapeutic potential against tumors and autoimmune diseases. Efficient gene editing in DCs is crucial for understanding their regulatory mechanisms and maximizing their therapeutic efficacy. However, DCs are notoriously difficult to transfect, posing a major bottleneck for conventional DNA and RNA-based editing approaches. Microneedle-mediated injection of Cas9/sgRNA ribonucleoprotein (RNP) directly into the nucleus, akin to gene editing in reproductive cells, offers promise but suffers from limitations in scalability. Here, an intranuclear delivery system using a hollow nanoneedle array (HNA) combined with nano-electroporation is developed. The 2 µm-high HNA physically reaches the nucleus, positioning the nuclear envelope and plasma membrane in close proximity at the tip. Transient electronic pulses then induce simultaneous perforations across all 3 membranes, enabling direct RNP delivery into the nucleus. This HNA-based system achieves efficient knockout of genes like PD-L1 in primary DCs, demonstrating its potential as a powerful tool for gene editing in DCs and other hard-to-transfect cells.
Collapse
Affiliation(s)
- Xinmin Liu
- Center for Reproductive Medicine and Department of Gynecology & Obstetrics, Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangdong Provincial Clinical Research Center for obstetrical and gynecological diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P. R. China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P. R. China
| | - Juan Jiang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P. R. China
| | - Jing Liu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P. R. China
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510080, P. R. China
| | - Hao Yang
- School of Life Science, Liaoning University, Shenyang, 110036, P. R. China
| | - Zhangping Huang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P. R. China
| | - Caiguanxi Deng
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P. R. China
| | - Yongyong Li
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P. R. China
| | - Liru Shang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P. R. China
| | - Xiafeng Wang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P. R. China
| | - Xi Xie
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P. R. China
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510080, P. R. China
| | - Ji Wang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P. R. China
| |
Collapse
|
6
|
Yu G, Ye Z, Yuan Y, Wang X, Li T, Wang Y, Wang Y, Yan J. Recent Advancements in Biomaterials for Chimeric Antigen Receptor T Cell Immunotherapy. Biomater Res 2024; 28:0045. [PMID: 39011521 PMCID: PMC11246982 DOI: 10.34133/bmr.0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/13/2024] [Indexed: 07/17/2024] Open
Abstract
Cellular immunotherapy is an innovative cancer treatment method that utilizes the patient's own immune system to combat tumor cells effectively. Currently, the mainstream therapeutic approaches include chimeric antigen receptor T cell (CAR-T) therapy, T cell receptor gene-modified T cell therapy and chimeric antigen receptor natural killer-cell therapy with CAR-T therapy mostly advanced. Nonetheless, the conventional manufacturing process of this therapy has shortcomings in each step that call for improvement. Marked efforts have been invested for its enhancement while notable progresses achieved in the realm of biomaterials application. With CAR-T therapy as a prime example, the aim of this review is to comprehensively discuss the various biomaterials used in cell immunotherapy, their roles in regulating immune cells, and their potential for breakthroughs in cancer treatment from gene transduction to efficacy enhancement. This article additionally addressed widely adopted animal models for efficacy evaluating.
Collapse
Affiliation(s)
- Gaoyu Yu
- School of Medicine,
Zhejiang University, Hangzhou 310028, China
| | - Zhichao Ye
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine,
Zhejiang University, Hangzhou 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine,
Zhejiang University, Hangzhou 310028, China
| | - Yuyang Yuan
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine,
Zhejiang University, Hangzhou 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine,
Zhejiang University, Hangzhou 310028, China
- Department of Translational Medicine & Clinical Research, Sir Run Run Shaw Hospital, School of Medicine,
Zhejiang University, Hangzhou 310028, China
| | - Xiaofeng Wang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital,
Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang Province, China
| | - Tianyu Li
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine,
Zhejiang University, Hangzhou 310028, China
- Department of Translational Medicine & Clinical Research, Sir Run Run Shaw Hospital, School of Medicine,
Zhejiang University, Hangzhou 310028, China
| | - Yi Wang
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine,
Zhejiang University, Hangzhou 310028, China
| | - Yifan Wang
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine,
Zhejiang University, Hangzhou 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine,
Zhejiang University, Hangzhou 310028, China
- Department of Translational Medicine & Clinical Research, Sir Run Run Shaw Hospital, School of Medicine,
Zhejiang University, Hangzhou 310028, China
| | - Jianing Yan
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine,
Zhejiang University, Hangzhou 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine,
Zhejiang University, Hangzhou 310028, China
| |
Collapse
|
7
|
Wang Y, Qu J, Xiong C, Chen B, Xie K, Wang M, Liu Z, Yue Z, Liang Z, Wang F, Zhang T, Zhu G, Kuang YB, Shi P. Transdermal microarrayed electroporation for enhanced cancer immunotherapy based on DNA vaccination. Proc Natl Acad Sci U S A 2024; 121:e2322264121. [PMID: 38865265 PMCID: PMC11194603 DOI: 10.1073/pnas.2322264121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/14/2024] [Indexed: 06/14/2024] Open
Abstract
Despite the tremendous clinical potential of nucleic acid-based vaccines, their efficacy to induce therapeutic immune response has been limited by the lack of efficient local gene delivery techniques in the human body. In this study, we develop a hydrogel-based organic electronic device (μEPO) for both transdermal delivery of nucleic acids and in vivo microarrayed cell electroporation, which is specifically oriented toward one-step transfection of DNAs in subcutaneous antigen-presenting cells (APCs) for cancer immunotherapy. The μEPO device contains an array of microneedle-shaped electrodes with pre-encapsulated dry DNAs. Upon a pressurized contact with skin tissue, the electrodes are rehydrated, electrically triggered to release DNAs, and then electroporate nearby cells, which can achieve in vivo transfection of more than 50% of the cells in the epidermal and upper dermal layer. As a proof-of-concept, the μEPO technique is employed to facilitate transdermal delivery of neoantigen genes to activate antigen-specific immune response for enhanced cancer immunotherapy based on a DNA vaccination strategy. In an ovalbumin (OVA) cancer vaccine model, we show that high-efficiency transdermal transfection of APCs with OVA-DNAs induces robust cellular and humoral immune responses, including antigen presentation and generation of IFN-γ+ cytotoxic T lymphocytes with a more than 10-fold dose sparing over existing intramuscular injection (IM) approach, and effectively inhibits tumor growth in rodent animals.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region999077, China
| | - Jin Qu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region999077, China
| | - Chuxiao Xiong
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region999077, China
| | - Bing Chen
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region999077, China
| | - Kai Xie
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region999077, China
| | - Mingxue Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region999077, China
| | - Zhen Liu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region999077, China
| | - Zhao Yue
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region999077, China
| | - Zhenghua Liang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong Special Administrative Region999077, China
| | - Feng Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region999077, China
| | - Tianlong Zhang
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region999077, China
| | - Guangyu Zhu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region999077, China
| | - Yi Becki Kuang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong Special Administrative Region999077, China
| | - Peng Shi
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region999077, China
- Center of Super-Diamond and Advanced Films, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region999077, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong Special Administrative Region999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen518000, China
| |
Collapse
|
8
|
Zhang B, Liu B, Wu Z, Oyama K, Ikari M, Yagi H, Tochio N, Kigawa T, Mikawa T, Miyake T. A Hybrid Nanotube Stamp System in Intracellular Protein Delivery for Cancer Treatment and NMR Analytical Techniques. Anal Chem 2024; 96:8349-8355. [PMID: 38745349 DOI: 10.1021/acs.analchem.3c05331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
In contrast to intracellular gene transfer, the direct delivery of expressed proteins is a significantly challenging yet essential technique for elucidating cellular functions, including protein complex structure, liquid-liquid phase separation, therapeutic applications, and reprogramming. In this study, we developed a hybrid nanotube (HyNT) stamp system that physically inserts the HyNTs into adhesive cells, enabling the injection of target molecules through HyNT ducts. This system demonstrates the capability to deliver multiple proteins, such as lactate oxidase (LOx) and ubiquitin (UQ), to approximately 1.8 × 107 adhesive cells with a delivery efficiency of 89.9% and a viability of 97.1%. The delivery of LOx enzyme into HeLa cancer cells induced cell death, while enzyme-delivered healthy cells remained viable. Furthermore, our stamp system can deliver an isotope-labeled UQ into adhesive cells for detection by nuclear magnetic resonance (NMR).
Collapse
Affiliation(s)
- Bowen Zhang
- Graduate School of Information, Production and Systems, Waseda University, Kitakyushu, Fukuoka 808-0135, Japan
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Bingfu Liu
- Graduate School of Information, Production and Systems, Waseda University, Kitakyushu, Fukuoka 808-0135, Japan
| | - Zhouji Wu
- Graduate School of Information, Production and Systems, Waseda University, Kitakyushu, Fukuoka 808-0135, Japan
| | - Kazuhiro Oyama
- Graduate School of Information, Production and Systems, Waseda University, Kitakyushu, Fukuoka 808-0135, Japan
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Masaomi Ikari
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Hiromasa Yagi
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Naoya Tochio
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Takanori Kigawa
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Tsutomu Mikawa
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Takeo Miyake
- Graduate School of Information, Production and Systems, Waseda University, Kitakyushu, Fukuoka 808-0135, Japan
| |
Collapse
|
9
|
Jiang J, Liu J, Liu X, Xu X, Liu Z, Huang S, Huang X, Yao C, Wang X, Chen Y, Chen HJ, Wang J, Xie X. Coupling of nanostraws with diverse physicochemical perforation strategies for intracellular DNA delivery. J Nanobiotechnology 2024; 22:131. [PMID: 38532389 DOI: 10.1186/s12951-024-02392-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/10/2024] [Indexed: 03/28/2024] Open
Abstract
Effective intracellular DNA transfection is imperative for cell-based therapy and gene therapy. Conventional gene transfection methods, including biochemical carriers, physical electroporation and microinjection, face challenges such as cell type dependency, low efficiency, safety concerns, and technical complexity. Nanoneedle arrays have emerged as a promising avenue for improving cellular nucleic acid delivery through direct penetration of the cell membrane, bypassing endocytosis and endosome escape processes. Nanostraws (NS), characterized by their hollow tubular structure, offer the advantage of flexible solution delivery compared to solid nanoneedles. However, NS struggle to stably self-penetrate the cell membrane, resulting in limited delivery efficiency. Coupling with extra physiochemical perforation strategies is a viable approach to improve their performance. This study systematically compared the efficiency of NS coupled with polyethylenimine (PEI) chemical modification, mechanical force, photothermal effect, and electric field on cell membrane perforation and DNA transfection. The results indicate that coupling NS with PEI modification, mechanical force, photothermal effects provide limited enhancement effects. In contrast, NS-electric field coupling significantly improves intracellular DNA transfection efficiency. This work demonstrates that NS serve as a versatile platform capable of integrating various physicochemical strategies, while electric field coupling stands out as a form worthy of primary consideration for efficient DNA transfection.
Collapse
Affiliation(s)
- Juan Jiang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Republic of China
| | - Jing Liu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Republic of China
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, Republic of China
| | - Xinmin Liu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Republic of China
| | - Xingyuan Xu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, Republic of China
| | - Zhengjie Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, Republic of China
| | - Shuang Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, Republic of China
| | - Xinshuo Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, Republic of China
| | - Chuanjie Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, Republic of China
| | - Xiafeng Wang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Republic of China
| | - Yixin Chen
- Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, 510080, Republic of China
| | - Hui-Jiuan Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, Republic of China.
| | - Ji Wang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Republic of China.
| | - Xi Xie
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Republic of China.
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, Republic of China.
| |
Collapse
|
10
|
Kim H, Gu C, Mustfa SA, Martella DA, Wang C, Wang Y, Chiappini C. CRISPR/Cas-Assisted Nanoneedle Sensor for Adenosine Triphosphate Detection in Living Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49964-49973. [PMID: 37769296 PMCID: PMC10623508 DOI: 10.1021/acsami.3c07918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/18/2023] [Indexed: 09/30/2023]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein (Cas) (CRISPR/Cas) systems have recently emerged as powerful molecular biosensing tools based on their collateral cleavage activity due to their simplicity, sensitivity, specificity, and broad applicability. However, the direct application of the collateral cleavage activity for in situ intracellular detection is still challenging. Here, we debut a CRISPR/Cas-assisted nanoneedle sensor (nanoCRISPR) for intracellular adenosine triphosphate (ATP), which avoids the challenges associated with intracellular collateral cleavage by introducing a two-step process of intracellular target recognition, followed by extracellular transduction and detection. ATP recognition occurs by first presenting in the cell cytosol an aptamer-locked Cas12a activator conjugated to nanoneedles; the recognition event unlocks the activator immobilized on the nanoneedles. The nanoneedles are then removed from the cells and exposed to the Cas12a/crRNA complex, where the activator triggers the cleavage of an ssDNA fluorophore-quencher pair, generating a detectable fluorescence signal. NanoCRISPR has an ATP detection limit of 246 nM and a dynamic range from 1.56 to 50 μM. Importantly, nanoCRISPR can detect intracellular ATP in 30 min in live cells without impacting cell viability. We anticipate that the nanoCRISPR approach will contribute to broadening the biomedical applications of CRISPR/Cas sensors for the detection of diverse intracellular molecules in living systems.
Collapse
Affiliation(s)
- Hongki Kim
- Centre
for Craniofacial and Regenerative Biology, King’s College London, London SE1 9RT, U.K.
- Department
of Chemistry, Kongju National University, Gongju 32588, Republic of Korea
| | - Chenlei Gu
- Centre
for Craniofacial and Regenerative Biology, King’s College London, London SE1 9RT, U.K.
- London
Centre for Nanotechnology, King’s
College London, London SE1 9RT, U.K.
| | - Salman Ahmad Mustfa
- Centre
for Craniofacial and Regenerative Biology, King’s College London, London SE1 9RT, U.K.
| | | | - Cong Wang
- Centre
for Craniofacial and Regenerative Biology, King’s College London, London SE1 9RT, U.K.
- London
Centre for Nanotechnology, King’s
College London, London SE1 9RT, U.K.
| | - Yikai Wang
- Centre
for Craniofacial and Regenerative Biology, King’s College London, London SE1 9RT, U.K.
- London
Centre for Nanotechnology, King’s
College London, London SE1 9RT, U.K.
| | - Ciro Chiappini
- Centre
for Craniofacial and Regenerative Biology, King’s College London, London SE1 9RT, U.K.
- London
Centre for Nanotechnology, King’s
College London, London SE1 9RT, U.K.
| |
Collapse
|
11
|
Liu J, Jiang J, He M, Chen J, Huang S, Liu Z, Yao C, Chen HJ, Xie X, Wang J. Nanopore Electroporation Device for DNA Transfection into Various Spreading and Nonadherent Cell Types. ACS APPLIED MATERIALS & INTERFACES 2023; 15:50015-50033. [PMID: 37853502 DOI: 10.1021/acsami.3c10939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Cell transfection plays a crucial role in the study of gene function and regulation of gene expression. The existing gene transfection methods, such as chemical carriers, viruses, electroporation, and microinjection, suffer from limitations, including cell type dependence, reliance on cellular endocytosis, low efficiency, safety concerns, and technical complexity. Nanopore-coupled electroporation offers a promising approach to localizing electric fields for efficient cell membrane perforation and nucleic acid transfection. However, the applicability of nanopore electroporation technology across different cell types lacks a systematic investigation. In this study, we explore the potential of nanopore electroporation for transfecting DNA plasmids into various cell types. Our nanopore electroporation device employs track-etched membranes as the core component. We find that nanopore electroporation efficiently transfects adherent cells, including well-spreading epithelial-like HeLa cells, cardiomyocyte-like HL-1 cells, and dendritic-cell-like DC2.4 cells. However, it shows a limited transfection efficiency in weakly spreading macrophages (RAW264.7) and suspension cells (Jurkat). To gain insights into these observations, we develop a COMSOL model, revealing that nanopore electroporation better localizes the electric field on adherent and well-spreading cells, promoting favorable membrane poration conditions. Our findings provide valuable references for advancing nanopore electroporation as a high-throughput, safe, and efficient gene transfection platform.
Collapse
Affiliation(s)
- Jing Liu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, 510080 Guangzhou, People's Republic of China
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, 510006 Guangzhou, People's Republic of China
| | - Juan Jiang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, 510080 Guangzhou, People's Republic of China
| | - Mengyi He
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, 510006 Guangzhou, People's Republic of China
| | - Jiayi Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, 510006 Guangzhou, People's Republic of China
| | - Shuang Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, 510006 Guangzhou, People's Republic of China
| | - Zhengjie Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, 510006 Guangzhou, People's Republic of China
| | - Chuanjie Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, 510006 Guangzhou, People's Republic of China
| | - Hui-Jiuan Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, 510006 Guangzhou, People's Republic of China
| | - Xi Xie
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, 510080 Guangzhou, People's Republic of China
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, 510006 Guangzhou, People's Republic of China
| | - Ji Wang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, 510080 Guangzhou, People's Republic of China
| |
Collapse
|
12
|
Shokouhi AR, Chen Y, Yoh HZ, Murayama T, Suu K, Morikawa Y, Brenker J, Alan T, Voelcker NH, Elnathan R. Electroactive nanoinjection platform for intracellular delivery and gene silencing. J Nanobiotechnology 2023; 21:273. [PMID: 37592297 PMCID: PMC10433684 DOI: 10.1186/s12951-023-02056-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Nanoinjection-the process of intracellular delivery using vertically configured nanostructures-is a physical route that efficiently negotiates the plasma membrane, with minimal perturbation and toxicity to the cells. Nanoinjection, as a physical membrane-disruption-mediated approach, overcomes challenges associated with conventional carrier-mediated approaches such as safety issues (with viral carriers), genotoxicity, limited packaging capacity, low levels of endosomal escape, and poor versatility for cell and cargo types. Yet, despite the implementation of nanoinjection tools and their assisted analogues in diverse cellular manipulations, there are still substantial challenges in harnessing these platforms to gain access into cell interiors with much greater precision without damaging the cell's intricate structure. Here, we propose a non-viral, low-voltage, and reusable electroactive nanoinjection (ENI) platform based on vertically configured conductive nanotubes (NTs) that allows for rapid influx of targeted biomolecular cargos into the intracellular environment, and for successful gene silencing. The localization of electric fields at the tight interface between conductive NTs and the cell membrane drastically lowers the voltage required for cargo delivery into the cells, from kilovolts (for bulk electroporation) to only ≤ 10 V; this enhances the fine control over membrane disruption and mitigates the problem of high cell mortality experienced by conventional electroporation. RESULTS Through both theoretical simulations and experiments, we demonstrate the capability of the ENI platform to locally perforate GPE-86 mouse fibroblast cells and efficiently inject a diverse range of membrane-impermeable biomolecules with efficacy of 62.5% (antibody), 55.5% (mRNA), and 51.8% (plasmid DNA), with minimal impact on cells' viability post nanoscale-EP (> 90%). We also show gene silencing through the delivery of siRNA that targets TRIOBP, yielding gene knockdown efficiency of 41.3%. CONCLUSIONS We anticipate that our non-viral and low-voltage ENI platform is set to offer a new safe path to intracellular delivery with broader selection of cargo and cell types, and will open opportunities for advanced ex vivo cell engineering and gene silencing.
Collapse
Affiliation(s)
- Ali-Reza Shokouhi
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
| | - Yaping Chen
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
| | - Hao Zhe Yoh
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
| | - Takahide Murayama
- Institute of Semiconductor and Electronics Technologies, ULVAC Inc, 1220-1 Suyama, Susono, Shizuoka, 410-1231, Japan
| | - Koukou Suu
- Institute of Semiconductor and Electronics Technologies, ULVAC Inc, 1220-1 Suyama, Susono, Shizuoka, 410-1231, Japan
| | - Yasuhiro Morikawa
- Institute of Semiconductor and Electronics Technologies, ULVAC Inc, 1220-1 Suyama, Susono, Shizuoka, 410-1231, Japan
| | - Jason Brenker
- Department of Mechanical and Aerospace Engineering, Monash University, Wellington Rd, Clayton, VIC, 3168, Australia
| | - Tuncay Alan
- Department of Mechanical and Aerospace Engineering, Monash University, Wellington Rd, Clayton, VIC, 3168, Australia
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia.
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia.
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany.
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, VIC, 3168, Australia.
| | - Roey Elnathan
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia.
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia.
- Faculty of Health, School of Medicine, Deakin University, Waurn Ponds, Melbourne, VIC, 3216, Australia.
- Institute for Frontier Materials, Deakin University, Geelong Waurn Ponds campus, Melbourne, VIC, 3216, Australia.
- The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong Waurn Ponds Campus, Melbourne, VIC, 3216, Australia.
| |
Collapse
|
13
|
Zhang G, Kang D, Zhang Z, Li Y, Jiang J, Tu Q, Du J, Wang J. Verification and Analysis of Filter Paper-Based Intracellular Delivery of Exogenous Substances. Anal Chem 2023; 95:4353-4361. [PMID: 36623324 DOI: 10.1021/acs.analchem.2c04675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The intracellular delivery of exogenous substances is an essential technical means in the field of biomedical research, including cell therapy and gene editing. Although many delivery technologies and strategies are present, each technique has its own limitations. The delivery cost is usually a major limiting factor for general laboratories. In addition, simplifying the operation process and shortening the delivery time are key challenges. Here, we develop a filter paper-syringe (FPS) delivery method, a new type of cell permeation approach based on filter paper. The cells in a syringe are forced to pass through the filter paper quickly. During this process, external pressure forces the cells to collide and squeeze with the fiber matrix of the filter paper, causing the cells to deform rapidly, thereby enhancing the permeability of the cell membrane and realizing the delivery of exogenous substances. Moreover, the large gap between the fiber networks of filter paper can prevent the cells from bearing high pressure, thus maintaining high cell vitality. Results showed that the slow-speed filter paper used can realize efficient intracellular delivery of various exogenous substances, especially small molecular substances (e.g., 3-5 kDa dextran and siRNA). Meanwhile, we found that the FPS method not only does not require a lengthy operating step compared with the widely used liposomal delivery of siRNA but also that the delivery efficiency is similar. In conclusion, the FPS approach is a simple, easy-to-operate, and fast (about 2 s) delivery method and may be an attractive alternative to membrane destruction-based transfection.
Collapse
Affiliation(s)
- Guorui Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Di Kang
- State Key Laboratory of Veterinary Etiological Biology, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P. R. China
| | - Zhonghui Zhang
- State Key Laboratory of Veterinary Etiological Biology, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P. R. China
| | - Yuanchang Li
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Jingjing Jiang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Qin Tu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Junzheng Du
- State Key Laboratory of Veterinary Etiological Biology, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P. R. China
| | - Jinyi Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| |
Collapse
|
14
|
Li X, Ma Y, Xue Y, Zhang X, Lv L, Quan Q, Chen Y, Yu G, Liang Z, Zhang X, Weng D, Chen L, Chen K, Han X, Wang J. High-Throughput and Efficient Intracellular Delivery Method via a Vibration-Assisted Nanoneedle/Microfluidic Composite System. ACS NANO 2023; 17:2101-2113. [PMID: 36479877 DOI: 10.1021/acsnano.2c07852] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Intracellular delivery and genetic modification have brought a significant revolutionary to tumor immunotherapy, yet existing methods are still limited by low delivery efficiency, poor throughput, excessive cell damage, or unsuitability for suspension immune cells, specifically the natural killer cell, which is highly resistant to transfection. Here, we proposed a vibration-assisted nanoneedle/microfluidic composite system that uses large-area nanoneedles to rapidly puncture and detach the fast-moving suspension cells in the microchannel under vibration to achieve continuous high-throughput intracellular delivery. The nanoneedle arrays fabricated based on the large-area self-assembly technique and microchannels can maximize the delivery efficiency. Cas9 ribonucleoprotein complexes (Cas9/RNPs) can be delivered directly into cells due to the sufficient cellular membrane nanoperforation size; for difficult-to-transfect immune cells, the delivery efficiency can be up to 98%, while the cell viability remains at about 80%. Moreover, the throughput is demonstrated to maintain a mL/min level, which is significantly higher than that of conventional delivery techniques. Further, we prepared CD96 knockout NK-92 cells via this platform, and the gene-edited NK-92 cells possessed higher immunity by reversing exhaustion. The high-throughput, high-efficiency, and low-damage performance of our intracellular delivery strategy has great potential for cellular immunotherapy in clinical applications.
Collapse
Affiliation(s)
- Xuan Li
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China
| | - Yuan Ma
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China
| | - Yu Xue
- School of Medicine & Holistic Integrative Medicine, University of Chinese Medicine Nanjing, Nanjing 210023, P.R. China
| | - Xuanhe Zhang
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China
| | - Linwen Lv
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Qianghua Quan
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China
| | - Yiqing Chen
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China
| | - Guoxu Yu
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China
| | - Zhenwei Liang
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China
| | - Xinping Zhang
- Beijing University of Civil Engineering and Architecture, Beijing 102616, P.R. China
| | - Ding Weng
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China
| | - Lei Chen
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China
| | - Kui Chen
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xin Han
- School of Medicine & Holistic Integrative Medicine, University of Chinese Medicine Nanjing, Nanjing 210023, P.R. China
| | - Jiadao Wang
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
15
|
Nanomaterial-mediated photoporation for intracellular delivery. Acta Biomater 2023; 157:24-48. [PMID: 36584801 DOI: 10.1016/j.actbio.2022.12.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Translocation of extrinsic molecules into living cells is becoming increasingly crucial in biological studies ranging from cell engineering to biomedical applications. The concerns regarding biosafety and immunogenicity for conventional vectors and physical methods yet challenge effective intracellular delivery. Here, we begin with an overview of approaches for trans-membrane delivery up to now. These methods are featured with a relatively mature application but usually encounter low cell survival. Our review then proposes an advanced application for nanomaterial-sensitized photoporation triggered with a laser. We cover the mechanisms, procedures, and outcomes of photoporation-induced intracellular delivery with a highlight on its versatility to different living cells. We hope the review discussed here encourages researchers to further improvement and applications for photoporation-induced intracellular delivery. STATEMENT OF SIGNIFICANCE.
Collapse
|
16
|
Maurizi E, Martella DA, Schiroli D, Merra A, Mustfa SA, Pellegrini G, Macaluso C, Chiappini C. Nanoneedles Induce Targeted siRNA Silencing of p16 in the Human Corneal Endothelium. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203257. [PMID: 36253148 PMCID: PMC9685449 DOI: 10.1002/advs.202203257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Nanoneedles can target nucleic acid transfection to primary cells at tissue interfaces with high efficiency and minimal perturbation. The corneal endothelium is an ideal target for nanoneedle-mediated RNA interference therapy aimed at enhancing its proliferative capacity, necessary for tissue regeneration. This work develops a strategy for siRNA nanoninjection to the human corneal endothelium. Nanoneedles can deliver p16-targeting siRNA to primary human corneal endothelial cells in vitro without toxicity. The nanoinjection of siRNA induces p16 silencing and increases cell proliferation, as monitored by ki67 expression. Furthermore, siRNA nanoinjection targeting the human corneal endothelium is nontoxic ex vivo, and silences p16 in transfected cells. These data indicate that nanoinjection can support targeted RNA interference therapy for the treatment of endothelial corneal dysfunction.
Collapse
Affiliation(s)
- Eleonora Maurizi
- Dentistry Centre LabUniversity of Parmavia Gramsci 14Parma43126Italy
- Centre for Regenerative Medicine ‘‘S. Ferrari’’University of Modena and Reggio EmiliaModena41125Italy
| | | | - Davide Schiroli
- Transfusion Medicine UnitAzienda USL‐IRCCSReggio Emilia42122Italy
| | | | - Salman Ahmad Mustfa
- Centre for Craniofacial and Regenerative BiologyKing's College LondonLondonSE1 9RTUK
- AstraZenecaGranta Park, Great AbingtonCambridgeCB21 6GHUnited Kingdom
| | - Graziella Pellegrini
- Centre for Regenerative Medicine ‘‘S. Ferrari’’University of Modena and Reggio EmiliaModena41125Italy
- Holostem Terapie Avanzate S.r.l.Modena41125Italy
| | - Claudio Macaluso
- Dentistry Centre LabUniversity of Parmavia Gramsci 14Parma43126Italy
| | - Ciro Chiappini
- Centre for Craniofacial and Regenerative BiologyKing's College LondonLondonSE1 9RTUK
- London Centre for NanotechnologyKing's College LondonLondonWC2R 2LSUK
| |
Collapse
|
17
|
Fang J, Huang S, Liu F, He G, Li X, Huang X, Chen HJ, Xie X. Semi-Implantable Bioelectronics. NANO-MICRO LETTERS 2022; 14:125. [PMID: 35633391 PMCID: PMC9148344 DOI: 10.1007/s40820-022-00818-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/09/2022] [Indexed: 06/15/2023]
Abstract
Developing techniques to effectively and real-time monitor and regulate the interior environment of biological objects is significantly important for many biomedical engineering and scientific applications, including drug delivery, electrophysiological recording and regulation of intracellular activities. Semi-implantable bioelectronics is currently a hot spot in biomedical engineering research area, because it not only meets the increasing technical demands for precise detection or regulation of biological activities, but also provides a desirable platform for externally incorporating complex functionalities and electronic integration. Although there is less definition and summary to distinguish it from the well-reviewed non-invasive bioelectronics and fully implantable bioelectronics, semi-implantable bioelectronics have emerged as highly unique technology to boost the development of biochips and smart wearable device. Here, we reviewed the recent progress in this field and raised the concept of "Semi-implantable bioelectronics", summarizing the principle and strategies of semi-implantable device for cell applications and in vivo applications, discussing the typical methodologies to access to intracellular environment or in vivo environment, biosafety aspects and typical applications. This review is meaningful for understanding in-depth the design principles, materials fabrication techniques, device integration processes, cell/tissue penetration methodologies, biosafety aspects, and applications strategies that are essential to the development of future minimally invasive bioelectronics.
Collapse
Affiliation(s)
- Jiaru Fang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Shuang Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Fanmao Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Gen He
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Xiangling Li
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Xinshuo Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Hui-Jiuan Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
18
|
Zhang A, Fang J, Li X, Wang J, Chen M, Chen HJ, He G, Xie X. Cellular nanointerface of vertical nanostructure arrays and its applications. NANOSCALE ADVANCES 2022; 4:1844-1867. [PMID: 36133409 PMCID: PMC9419580 DOI: 10.1039/d1na00775k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/28/2021] [Indexed: 06/16/2023]
Abstract
Vertically standing nanostructures with various morphologies have been developed with the emergence of the micro-/nanofabrication technology. When cells are cultured on them, various bio-nano interfaces between cells and vertical nanostructures would impact the cellular activities, depending on the shape, density, and height of nanostructures. Many cellular pathway activation processes involving a series of intracellular molecules (proteins, RNA, DNA, enzymes, etc.) would be triggered by the cell morphological changes induced by nanostructures, affecting the cell proliferation, apoptosis, differentiation, immune activation, cell adhesion, cell migration, and other behaviors. In addition, the highly localized cellular nanointerface enhances coupled stimulation on cells. Therefore, understanding the mechanism of the cellular nanointerface can not only provide innovative tools for regulating specific cell functions but also offers new aspects to understand the fundamental cellular activities that could facilitate the precise monitoring and treatment of diseases in the future. This review mainly describes the fabrication technology of vertical nanostructures, analyzing the formation of cellular nanointerfaces and the effects of cellular nanointerfaces on cells' fates and functions. At last, the applications of cellular nanointerfaces based on various nanostructures are summarized.
Collapse
Affiliation(s)
- Aihua Zhang
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University Guangzhou 510006 Guangdong Province China
| | - Jiaru Fang
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University Guangzhou 510006 Guangdong Province China
| | - Xiangling Li
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University Guangzhou 510006 Guangdong Province China
- School of Biomedical Engineering, Sun Yat-Sen University Guangzhou 510006 China
| | - Ji Wang
- The First Affiliated Hospital of Sun Yat-Sen University Guangzhou 510080 China
| | - Meiwan Chen
- Institute of Chinese Medical Sciences, University of Macau Taipa Macau SAR China
| | - Hui-Jiuan Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University Guangzhou 510006 Guangdong Province China
| | - Gen He
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University Guangzhou 510006 Guangdong Province China
- Key Laboratory of Molecular Target & Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University Guangzhou 511436 P. R. China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University Guangzhou 510006 Guangdong Province China
- The First Affiliated Hospital of Sun Yat-Sen University Guangzhou 510080 China
| |
Collapse
|
19
|
Li Z, Xuan Y, Ghatak S, Guda PR, Roy S, Sen CK. Modeling the gene delivery process of the needle array-based tissue nanotransfection. NANO RESEARCH 2022; 15:3409-3421. [PMID: 36275042 PMCID: PMC9581438 DOI: 10.1007/s12274-021-3947-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/17/2021] [Accepted: 10/24/2021] [Indexed: 05/14/2023]
Abstract
Hollow needle array-based tissue nanotransfection (TNT) presents an in vivo transfection approach that directly translocate exogeneous genes to target tissues by using electric pulses. In this work, the gene delivery process of TNT was simulated and experimentally validated. We adopted the asymptotic method and cell-array-based model to investigate the electroporation behaviors of cells within the skin structure. The distribution of nonuniform electric field across the skin results in various electroporation behavior for each cell. Cells underneath the hollow microchannels of the needle exhibited the highest total pore numbers compared to others due to the stronger localized electric field. The percentage of electroporated cells within the skin structure, with pore radius over 10 nm, increases from 25% to 82% as the applied voltage increases from 100 to 150 V/mm. Furthermore, the gene delivery behavior across the skin tissue was investigated through the multilayer-stack-based model. The delivery distance increased nonlinearly as the applied voltage and pulse number increased, which mainly depends on the diffusion characteristics and electric conductivity of each layer. It was also found that the skin is required to be exfoliated prior to the TNT procedure to enhance the delivery depth. This work provides the foundation for transition from the study of murine skin to translation use in large animals and human settings.
Collapse
Affiliation(s)
- Zhigang Li
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Birck Nanotechnology Center and Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Yi Xuan
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Birck Nanotechnology Center and Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Subhadip Ghatak
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Poornachander R. Guda
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sashwati Roy
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Chandan K. Sen
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Birck Nanotechnology Center and Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
20
|
Yang F, Lu H, Meng X, Dong H, Zhang X. Shedding Light on DNA-Based Nanoprobes for Live-Cell MicroRNA Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106281. [PMID: 34854567 DOI: 10.1002/smll.202106281] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Indexed: 06/13/2023]
Abstract
DNA-based nanoprobes integrated with various imaging signals have been employed for fabricating versatile biosensor platforms for the study of intracellular biological process and biomarker detection. The nanoprobes developments also provide opportunities for endogenous microRNA (miRNA) in situ analysis. In this review, the authors are primarily interested in various DNA-based nanoprobes for miRNA biosensors and declare strategies to reveal how to customize the desired nanoplatforms. Initially, various delivery vehicles for nanoprobe architectures transmembrane transport are delineated, and their biosecurity and ability for resisting the complex cellular environment are evaluated. Then, the novel strategies for designing DNA sequences as target miRNA specific recognition and signal amplification modules for miRNA detection are presented. Afterward, recent advances in imaging technologies to accurately respond and produce significant signal output are summarized. Finally, the challenges and future directions in the field are discussed.
Collapse
Affiliation(s)
- Fan Yang
- Marshall Laboratory of Biomedical Engineering Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong, 518060, P. R. China
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, P. R. China
- School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing, 100083, P. R. China
| | - Huiting Lu
- School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing, 100083, P. R. China
| | - Xiangdan Meng
- School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing, 100083, P. R. China
| | - Haifeng Dong
- Marshall Laboratory of Biomedical Engineering Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong, 518060, P. R. China
- School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing, 100083, P. R. China
| | - Xueji Zhang
- Marshall Laboratory of Biomedical Engineering Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong, 518060, P. R. China
| |
Collapse
|
21
|
Houthaeve G, De Smedt SC, Braeckmans K, De Vos WH. The cellular response to plasma membrane disruption for nanomaterial delivery. NANO CONVERGENCE 2022; 9:6. [PMID: 35103909 PMCID: PMC8807741 DOI: 10.1186/s40580-022-00298-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Delivery of nanomaterials into cells is of interest for fundamental cell biological research as well as for therapeutic and diagnostic purposes. One way of doing so is by physically disrupting the plasma membrane (PM). Several methods that exploit electrical, mechanical or optical cues have been conceived to temporarily disrupt the PM for intracellular delivery, with variable effects on cell viability. However, apart from acute cytotoxicity, subtler effects on cell physiology may occur as well. Their nature and timing vary with the severity of the insult and the efficiency of repair, but some may provoke permanent phenotypic alterations. With the growing palette of nanoscale delivery methods and applications, comes a need for an in-depth understanding of this cellular response. In this review, we summarize current knowledge about the chronology of cellular events that take place upon PM injury inflicted by different delivery methods. We also elaborate on their significance for cell homeostasis and cell fate. Based on the crucial nodes that govern cell fitness and functionality, we give directions for fine-tuning nano-delivery conditions.
Collapse
Affiliation(s)
- Gaëlle Houthaeve
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
22
|
Chakrabarty P, Gupta P, Illath K, Kar S, Nagai M, Tseng FG, Santra TS. Microfluidic mechanoporation for cellular delivery and analysis. Mater Today Bio 2022; 13:100193. [PMID: 35005598 PMCID: PMC8718663 DOI: 10.1016/j.mtbio.2021.100193] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 01/08/2023] Open
Abstract
Highly efficient intracellular delivery strategies are essential for developing therapeutic, diagnostic, biological, and various biomedical applications. The recent advancement of micro/nanotechnology has focused numerous researches towards developing microfluidic device-based strategies due to the associated high throughput delivery, cost-effectiveness, robustness, and biocompatible nature. The delivery strategies can be carrier-mediated or membrane disruption-based, where membrane disruption methods find popularity due to reduced toxicity, enhanced delivery efficiency, and cell viability. Among all of the membrane disruption techniques, the mechanoporation strategies are advantageous because of no external energy source required for membrane deformation, thereby achieving high delivery efficiencies and increased cell viability into different cell types with negligible toxicity. The past two decades have consequently seen a tremendous boost in mechanoporation-based research for intracellular delivery and cellular analysis. This article provides a brief review of the most recent developments on microfluidic-based mechanoporation strategies such as microinjection, nanoneedle arrays, cell-squeezing, and hydroporation techniques with their working principle, device fabrication, cellular delivery, and analysis. Moreover, a brief discussion of the different mechanoporation strategies integrated with other delivery methods has also been provided. Finally, the advantages, limitations, and future prospects of this technique are discussed compared to other intracellular delivery techniques.
Collapse
Affiliation(s)
- Pulasta Chakrabarty
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai, India
| | - Pallavi Gupta
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai, India
| | - Kavitha Illath
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai, India
| | - Srabani Kar
- Department of Electrical Engineering, University of Cambridge, Cambridge, CB30FA, UK
| | - Moeto Nagai
- Department of Mechanical Engineering, Toyohashi University of Technology, Aichi, Japan
| | - Fan-Gang Tseng
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Tuhin Subhra Santra
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
23
|
Chen SY, Xu XX, Li X, Yi NB, Li SZ, Xiang XC, Cheng DB, Sun T. Recent advances in the intracellular delivery of macromolecule therapeutics. Biomater Sci 2022; 10:6642-6655. [DOI: 10.1039/d2bm01348g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review summarizes the uptake pathway of intracellular delivery vehicles for macromolecule therapeutics, and provides in-depth discussions and prospects about intracellular delivery of macromolecule therapeutics.
Collapse
Affiliation(s)
- Si-Yi Chen
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, PR China
| | - Xiao-Xue Xu
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, PR China
| | - Xin Li
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, PR China
| | - Ning-Bo Yi
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, PR China
| | - Shi-Zhuo Li
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, PR China
| | - Xing-Cheng Xiang
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, PR China
| | - Dong-Bing Cheng
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, PR China
| | - Taolei Sun
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, PR China
| |
Collapse
|
24
|
Penedo M, Miyazawa K, Okano N, Furusho H, Ichikawa T, Alam MS, Miyata K, Nakamura C, Fukuma T. Visualizing intracellular nanostructures of living cells by nanoendoscopy-AFM. SCIENCE ADVANCES 2021; 7:eabj4990. [PMID: 34936434 PMCID: PMC10954033 DOI: 10.1126/sciadv.abj4990] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 11/10/2021] [Indexed: 06/14/2023]
Abstract
Atomic force microscopy (AFM) is the only technique that allows label-free imaging of nanoscale biomolecular dynamics, playing a crucial role in solving biological questions that cannot be addressed by other major bioimaging tools (fluorescence or electron microscopy). However, such imaging is possible only for systems either extracted from cells or reconstructed on solid substrates. Thus, nanodynamics inside living cells largely remain inaccessible with the current nanoimaging techniques. Here, we overcome this limitation by nanoendoscopy-AFM, where a needle-like nanoprobe is inserted into a living cell, presenting actin fiber three-dimensional (3D) maps, and 2D nanodynamics of the membrane inner scaffold, resulting in undetectable changes in cell viability. Unlike previous AFM methods, the nanoprobe directly accesses the target intracellular components, exploiting all the AFM capabilities, such as high-resolution imaging, nanomechanical mapping, and molecular recognition. These features should greatly expand the range of intracellular structures observable in living cells.
Collapse
Affiliation(s)
- Marcos Penedo
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Keisuke Miyazawa
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
- Division of Electric Engineering and Computer Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Faculty of Frontier Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Naoko Okano
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Hirotoshi Furusho
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Takehiko Ichikawa
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Mohammad Shahidul Alam
- Division of Nano Life Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Kazuki Miyata
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
- Division of Electric Engineering and Computer Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Faculty of Frontier Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Division of Nano Life Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Chikashi Nakamura
- AIST-INDIA Diverse Assets and Applications International Laboratory (DAILAB), Cellular and Molecular Biotechnology Research Institute (CMB), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| | - Takeshi Fukuma
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
- Division of Electric Engineering and Computer Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Faculty of Frontier Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Division of Nano Life Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
25
|
Harberts J, Bours K, Siegmund M, Hedrich C, Glatza M, Schöler HR, Haferkamp U, Pless O, Zierold R, Blick RH. Culturing human iPSC-derived neural progenitor cells on nanowire arrays: mapping the impact of nanowire length and array pitch on proliferation, viability, and membrane deformation. NANOSCALE 2021; 13:20052-20066. [PMID: 34842880 DOI: 10.1039/d1nr04352h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanowire arrays used as cell culture substrates build a potent tool for advanced biological applications such as cargo delivery and biosensing. The unique topography of nanowire arrays, however, renders them a challenging growth environment for cells and explains why only basic cell lines have been employed in existing studies. Here, we present the culturing of human induced pluripotent stem cell-derived neural progenitor cells on rectangularly arranged nanowire arrays: In detail, we mapped the impact on proliferation, viability, and topography-induced membrane deformation across a multitude of array pitches (1, 3, 5, 10 μm) and nanowire lengths (1.5, 3, 5 μm). Against the intuitive expectation, a reduced proliferation was found on the arrays with the smallest array pitch of 1 μm and long NWs. Typically, cells settle in a fakir-like state on such densely-spaced nanowires and thus experience no substantial stress caused by nanowires indenting the cell membrane. However, imaging of F-actin showed a distinct reorganization of the cytoskeleton along the nanowire tips in the case of small array pitches interfering with regular proliferation. For larger pitches, the cell numbers depend on the NW lengths but proliferation generally continued although heavy deformations of the cell membrane were observed caused by the encapsulation of the nanowires. Moreover, we noticed a strong interaction of the nanowires with the nucleus in terms of squeezing and indenting. Remarkably, the cell viability is maintained at about 85% despite the massive deformation of the cells. Considering the enormous potential of human induced stem cells to study neurodegenerative diseases and the high cellular viability combined with a strong interaction with nanowire arrays, we believe that our results pave the way to apply nanowire arrays to human stem cells for future applications in stem cell research and regenerative medicine.
Collapse
Affiliation(s)
- Jann Harberts
- Center for Hybrid Nanostructures (CHyN), Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany.
| | - Katja Bours
- Center for Hybrid Nanostructures (CHyN), Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany.
| | - Malte Siegmund
- Center for Hybrid Nanostructures (CHyN), Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany.
| | - Carina Hedrich
- Center for Hybrid Nanostructures (CHyN), Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany.
| | - Michael Glatza
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Hans R Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Undine Haferkamp
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), ScreeningPort, Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Ole Pless
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), ScreeningPort, Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Robert Zierold
- Center for Hybrid Nanostructures (CHyN), Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany.
| | - Robert H Blick
- Center for Hybrid Nanostructures (CHyN), Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany.
- Material Science and Engineering, College of Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
26
|
Xuan Y, Ghatak S, Clark A, Li Z, Khanna S, Pak D, Agarwal M, Roy S, Duda P, Sen CK. Fabrication and use of silicon hollow-needle arrays to achieve tissue nanotransfection in mouse tissue in vivo. Nat Protoc 2021; 16:5707-5738. [PMID: 34837085 PMCID: PMC9104164 DOI: 10.1038/s41596-021-00631-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/10/2021] [Indexed: 11/09/2022]
Abstract
Tissue nanotransfection (TNT) is an electromotive gene transfer technology that was developed to achieve tissue reprogramming in vivo. This protocol describes how to fabricate the required hardware, commonly referred to as a TNT chip, and use it for in vivo TNT. Silicon hollow-needle arrays for TNT applications are fabricated in a standardized and reproducible way. In <1 s, these silicon hollow-needle arrays can be used to deliver plasmids to a predetermined specific depth in murine skin in response to pulsed nanoporation. Tissue nanotransfection eliminates the need to use viral vectors, minimizing the risk of genomic integration or cell transformation. The TNT chip fabrication process typically takes 5-6 d, and in vivo TNT takes 30 min. This protocol does not require specific expertise beyond a clean room equipped for basic nanofabrication processes.
Collapse
Affiliation(s)
- Yi Xuan
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
| | - Subhadip Ghatak
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrew Clark
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Zhigang Li
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Savita Khanna
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Dongmin Pak
- Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
| | - Mangilal Agarwal
- Integrated Nanosystems Development Institute, IUPUI, Indianapolis, IN, USA
| | - Sashwati Roy
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| | - Peter Duda
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Chandan K Sen
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
27
|
Chiappini C, Chen Y, Aslanoglou S, Mariano A, Mollo V, Mu H, De Rosa E, He G, Tasciotti E, Xie X, Santoro F, Zhao W, Voelcker NH, Elnathan R. Tutorial: using nanoneedles for intracellular delivery. Nat Protoc 2021; 16:4539-4563. [PMID: 34426708 DOI: 10.1038/s41596-021-00600-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/30/2021] [Indexed: 02/08/2023]
Abstract
Intracellular delivery of advanced therapeutics, including biologicals and supramolecular agents, is complex because of the natural biological barriers that have evolved to protect the cell. Efficient delivery of therapeutic nucleic acids, proteins, peptides and nanoparticles is crucial for clinical adoption of emerging technologies that can benefit disease treatment through gene and cell therapy. Nanoneedles are arrays of vertical high-aspect-ratio nanostructures that can precisely manipulate complex processes at the cell interface, enabling effective intracellular delivery. This emerging technology has already enabled the development of efficient and non-destructive routes for direct access to intracellular environments and delivery of cell-impermeant payloads. However, successful implementation of this technology requires knowledge of several scientific fields, making it complex to access and adopt by researchers who are not directly involved in developing nanoneedle platforms. This presents an obstacle to the widespread adoption of nanoneedle technologies for drug delivery. This tutorial aims to equip researchers with the knowledge required to develop a nanoinjection workflow. It discusses the selection of nanoneedle devices, approaches for cargo loading and strategies for interfacing to biological systems and summarises an array of bioassays that can be used to evaluate the efficacy of intracellular delivery.
Collapse
Affiliation(s)
- Ciro Chiappini
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK.
- London Centre for Nanotechnology, King's College London, London, UK.
| | - Yaping Chen
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria, Australia
| | - Stella Aslanoglou
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria, Australia
- CSIRO Manufacturing, Clayton, Victoria, Australia
| | - Anna Mariano
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Naples, Italy
| | - Valentina Mollo
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Naples, Italy
| | - Huanwen Mu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Enrica De Rosa
- Center for Musculoskeletal Regeneration, Orthopedics & Sports Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Gen He
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, China
| | - Ennio Tasciotti
- IRCCS San Raffaele Pisana Hospital, Rome, Italy
- San Raffaele University, Rome, Italy
- Sclavo Pharma, Siena, Italy
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, China.
| | - Francesca Santoro
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Naples, Italy.
| | - Wenting Zhao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore.
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria, Australia.
- CSIRO Manufacturing, Clayton, Victoria, Australia.
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, Australia.
| | - Roey Elnathan
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria, Australia.
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
28
|
Hur J, Chung AJ. Microfluidic and Nanofluidic Intracellular Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004595. [PMID: 34096197 PMCID: PMC8336510 DOI: 10.1002/advs.202004595] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/14/2021] [Indexed: 05/05/2023]
Abstract
Innate cell function can be artificially engineered and reprogrammed by introducing biomolecules, such as DNAs, RNAs, plasmid DNAs, proteins, or nanomaterials, into the cytosol or nucleus. This process of delivering exogenous cargos into living cells is referred to as intracellular delivery. For instance, clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 gene editing begins with internalizing Cas9 protein and guide RNA into cells, and chimeric antigen receptor-T (CAR-T) cells are prepared by delivering CAR genes into T lymphocytes for cancer immunotherapies. To deliver external biomolecules into cells, tools, including viral vectors, and electroporation have been traditionally used; however, they are suboptimal for achieving high levels of intracellular delivery while preserving cell viability, phenotype, and function. Notably, as emerging solutions, microfluidic and nanofluidic approaches have shown remarkable potential for addressing this open challenge. This review provides an overview of recent advances in microfluidic and nanofluidic intracellular delivery strategies and discusses new opportunities and challenges for clinical applications. Furthermore, key considerations for future efforts to develop microfluidics- and nanofluidics-enabled next-generation intracellular delivery platforms are outlined.
Collapse
Affiliation(s)
- Jeongsoo Hur
- School of Biomedical EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Aram J. Chung
- School of Biomedical EngineeringInterdisciplinary Program in Precision Public HealthKorea UniversitySeoul02841Republic of Korea
| |
Collapse
|
29
|
Becce M, Klöckner A, Higgins SG, Penders J, Hachim D, Bashor CJ, Edwards AM, Stevens MM. Assessing the impact of silicon nanowires on bacterial transformation and viability of Escherichia coli. J Mater Chem B 2021; 9:4906-4914. [PMID: 34100486 PMCID: PMC8221286 DOI: 10.1039/d0tb02762f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 05/25/2021] [Indexed: 11/21/2022]
Abstract
We investigated the biomaterial interface between the bacteria Escherichia coli DH5α and silicon nanowire patterned surfaces. We optimised the engineering of silicon nanowire coated surfaces using metal-assisted chemical etching. Using a combination of focussed ion beam scanning electron microscopy, and cell viability and transformation assays, we found that with increasing interfacing force, cell viability decreases, as a result of increasing cell rupture. However, despite this aggressive interfacing regime, a proportion of the bacterial cell population remains viable. We found that the silicon nanowires neither resulted in complete loss of cell viability nor partial membrane disruption and corresponding DNA plasmid transformation. Critically, assay choice was observed to be important, as a reduction-based metabolic reagent was found to yield false-positive results on the silicon nanowire substrate. We discuss the implications of these results for the future design and assessment of bacteria-nanostructure interfacing experiments.
Collapse
Affiliation(s)
- Michele Becce
- Department of Materials, Imperial College LondonLondonUK
- Department of Bioengineering, Imperial College LondonLondonUK
- Institute of Biomedical Engineering, Imperial College LondonLondonUK
| | - Anna Klöckner
- Department of Materials, Imperial College LondonLondonUK
- Department of Bioengineering, Imperial College LondonLondonUK
- Institute of Biomedical Engineering, Imperial College LondonLondonUK
- MRC Centre for Molecular Bacteriology and Infection, Imperial College LondonLondonUK
| | - Stuart G. Higgins
- Department of Materials, Imperial College LondonLondonUK
- Department of Bioengineering, Imperial College LondonLondonUK
- Institute of Biomedical Engineering, Imperial College LondonLondonUK
| | - Jelle Penders
- Department of Materials, Imperial College LondonLondonUK
- Department of Bioengineering, Imperial College LondonLondonUK
- Institute of Biomedical Engineering, Imperial College LondonLondonUK
| | - Daniel Hachim
- Department of Materials, Imperial College LondonLondonUK
- Department of Bioengineering, Imperial College LondonLondonUK
- Institute of Biomedical Engineering, Imperial College LondonLondonUK
| | - Caleb J. Bashor
- Department of Bioengineering, Rice UniversityHoustonTexasUSA
| | - Andrew M. Edwards
- MRC Centre for Molecular Bacteriology and Infection, Imperial College LondonLondonUK
| | - Molly M. Stevens
- Department of Materials, Imperial College LondonLondonUK
- Department of Bioengineering, Imperial College LondonLondonUK
- Institute of Biomedical Engineering, Imperial College LondonLondonUK
| |
Collapse
|
30
|
Penedo M, Shirokawa T, Alam MS, Miyazawa K, Ichikawa T, Okano N, Furusho H, Nakamura C, Fukuma T. Cell penetration efficiency analysis of different atomic force microscopy nanoneedles into living cells. Sci Rep 2021; 11:7756. [PMID: 33833307 PMCID: PMC8032717 DOI: 10.1038/s41598-021-87319-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 03/26/2021] [Indexed: 11/11/2022] Open
Abstract
Over the last decade, nanoneedle-based systems have demonstrated to be extremely useful in cell biology. They can be used as nanotools for drug delivery, biosensing or biomolecular recognition inside cells; or they can be employed to select and sort in parallel a large number of living cells. When using these nanoprobes, the most important requirement is to minimize the cell damage, reducing the forces and indentation lengths needed to penetrate the cell membrane. This is normally achieved by reducing the diameter of the nanoneedles. However, several studies have shown that nanoneedles with a flat tip display lower penetration forces and indentation lengths. In this work, we have tested different nanoneedle shapes and diameters to reduce the force and the indentation length needed to penetrate the cell membrane, demonstrating that ultra-thin and sharp nanoprobes can further reduce them, consequently minimizing the cell damage.
Collapse
Affiliation(s)
- Marcos Penedo
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, 920-1192, Japan. .,Bioengineering department, Ecole Polytechnique Fédérale de Lausanne, EPFL STI IBI-STI LBNI, Lausanne, Switzerland.
| | - Tetsuya Shirokawa
- Division of Electrical Engineering and Computer Science, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan
| | - Mohammad Shahidul Alam
- Division of Nano Life Science, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan
| | - Keisuke Miyazawa
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, 920-1192, Japan.,Division of Electrical Engineering and Computer Science, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan.,Faculty of Frontier Engineering, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan
| | - Takehiko Ichikawa
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, 920-1192, Japan
| | - Naoko Okano
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, 920-1192, Japan
| | - Hirotoshi Furusho
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, 920-1192, Japan
| | - Chikashi Nakamura
- AIST-INDIA Diverse Assets and Applications International Laboratory (DAILAB), Cellular and Molecular Biotechnology Research Institute (CMB), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8565, Japan
| | - Takeshi Fukuma
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, 920-1192, Japan. .,Division of Electrical Engineering and Computer Science, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan. .,Division of Nano Life Science, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan. .,Faculty of Frontier Engineering, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan.
| |
Collapse
|
31
|
Xie K, Wang Z, Qi L, Zhao X, Wang Y, Qu J, Xu P, Huang L, Zhang W, Yang Y, Wang X, Shi P. Profiling MicroRNAs with Associated Spatial Dynamics in Acute Tissue Slices. ACS NANO 2021; 15:4881-4892. [PMID: 33719400 DOI: 10.1021/acsnano.0c09676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
MicroRNAs (miRNAs) are suggested to play important roles in the pathogenesis and progress of human diseases with heterogeneous regulation in different types of cells. However, limited technique is available for profiling miRNAs with both expression and spatial dynamics. Here, we describe a platform for multiplexed in situ miRNA profiling in acute tissue slices. The technique uses diamond nanoneedles functionalized with RNA-binding proteins to directly isolate targeted miRNAs from the cytosol of a large population of cells to achieve a quasi-single-cell analysis for a tissue sample. In addition to a quantitative evaluation of the expression level of particular miRNAs, the technique also provides the relative spatial dynamics of the cellular miRNAs in associated cell populations, which was demonstrated to be useful in analyzing the susceptibility and spatial reorganization of different types of cells in the tissues from normal or diseased animals. As a proof-of-concept, in MK-801-induced schizophrenia model, we found that astrocytes, instead of neurons, are more heterogeneously affected in the hippocampus of rats that underwent repeated injection of MK-801, showing an expression fingerprint related to differentially down-regulated miRNA-135a and miRNA-143; the associated astrocyte subpopulation is also more spatially dispersed in the hippocampus, suggesting an astrocyte dysregulation in the induced schizophrenia animals.
Collapse
Affiliation(s)
- Kai Xie
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR China
| | - Zixun Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR China
| | - Lin Qi
- Department of Biomedical Science, City University of Hong Kong, Kowloon, Hong Kong SAR China
| | - Xi Zhao
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR China
| | - Yuan Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR China
| | - Jin Qu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR China
| | - Ping Xu
- Department of Respiratory and Critical Care Medicine, Peking University Shenzhen Hospital, Shenzhen, China 518036
| | - Linfeng Huang
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu China 215300
| | - Wenjun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong SAR China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China 518000
| | - Yang Yang
- Functional Thin Films Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China 518055
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong SAR China
| | - Xin Wang
- Department of Biomedical Science, City University of Hong Kong, Kowloon, Hong Kong SAR China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China 518000
| | - Peng Shi
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong SAR China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China 518000
| |
Collapse
|
32
|
Tang H, Wang J, Yu L, Zhang S, Yang H, Li X, Brash JL, Wang L, Chen H. Ultrahigh Efficiency and Minimalist Intracellular Delivery of Macromolecules Mediated by Latent-Photothermal Surfaces. ACS APPLIED MATERIALS & INTERFACES 2021; 13:12594-12602. [PMID: 33661595 DOI: 10.1021/acsami.0c22736] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Intracellular delivery of exogenous macromolecules by photothermal methods is still not widely employed despite its universal and clear effect on cell membrane rupture. The main causes are the unsatisfactory delivery efficiency, poor cell activity, poor cell harvest, and sophisticated operation; these challenges stem from the difficulty of simply controlling laser hotspots. Here, we constructed latent-photothermal surfaces based on multiwall carbon nanotube-doped poly(dimethyl siloxane), which can deliver cargoes with high delivery efficiency and cell viability. Also, cell release and harvest efficiencies were not affected by coordinating the hotspot content and surface structure. This system is suitable for use with a wide range of cell lines, including hard-to-transfect types. The delivery efficiency and cell viability were shown to be greater than 85 and 80%, respectively, and the cell release and harvest efficiency were greater than 95 and 80%, respectively. Moreover, this system has potential application prospects in the field of cell therapy, including stem cell neural differentiation and dendritic cell vaccines.
Collapse
Affiliation(s)
- Heming Tang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jinghong Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Liying Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Sixuan Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - He Yang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xin Li
- Suzhou Seemine-Nebula Biotech Company Ltd, Suzhou 215123, China
| | - John L Brash
- School of Biomedical Engineering and Department of Chemical Engineering, McMaster University, Hamilton, Ontario L8S4L7, Canada
| | - Lei Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
33
|
Brooks J, Minnick G, Mukherjee P, Jaberi A, Chang L, Espinosa HD, Yang R. High Throughput and Highly Controllable Methods for In Vitro Intracellular Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004917. [PMID: 33241661 PMCID: PMC8729875 DOI: 10.1002/smll.202004917] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/06/2020] [Indexed: 05/03/2023]
Abstract
In vitro and ex vivo intracellular delivery methods hold the key for releasing the full potential of tissue engineering, drug development, and many other applications. In recent years, there has been significant progress in the design and implementation of intracellular delivery systems capable of delivery at the same scale as viral transfection and bulk electroporation but offering fewer adverse outcomes. This review strives to examine a variety of methods for in vitro and ex vivo intracellular delivery such as flow-through microfluidics, engineered substrates, and automated probe-based systems from the perspective of throughput and control. Special attention is paid to a particularly promising method of electroporation using micro/nanochannel based porous substrates, which expose small patches of cell membrane to permeabilizing electric field. Porous substrate electroporation parameters discussed include system design, cells and cargos used, transfection efficiency and cell viability, and the electric field and its effects on molecular transport. The review concludes with discussion of potential new innovations which can arise from specific aspects of porous substrate-based electroporation platforms and high throughput, high control methods in general.
Collapse
Affiliation(s)
- Justin Brooks
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Grayson Minnick
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Prithvijit Mukherjee
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Arian Jaberi
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Lingqian Chang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Horacio D. Espinosa
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, IL, 60208, USA
| | - Ruiguo Yang
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
34
|
Hur J, Park I, Lim KM, Doh J, Cho SG, Chung AJ. Microfluidic Cell Stretching for Highly Effective Gene Delivery into Hard-to-Transfect Primary Cells. ACS NANO 2020; 14:15094-15106. [PMID: 33034446 DOI: 10.1021/acsnano.0c05169] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Cell therapy and cellular engineering begin with internalizing synthetic biomolecules and functional nanomaterials into primary cells. Conventionally, electroporation, lipofection, or viral transduction has been used; however, these are limited by their cytotoxicity, low scalability, cost, and/or preparation complexity, especially in primary cells. Thus, a universal intracellular delivery method that outperforms the existing methods must be established. Here, we present a versatile intracellular delivery platform that leverages intrinsic inertial flow developed in a T-junction microchannel with a cavity. The elongational recirculating flows exerted in the channel substantially stretch the cells, creating discontinuities on cell membranes, thereby enabling highly effective internalization of nanomaterials, such as plasmid DNA (7.9 kbp), mRNA, siRNA, quantum dots, and large nanoparticles (300 nm), into different cell types, including hard-to-transfect primary stem and immune cells. We identified that the internalization mechanism of external cargos during the cell elongation-restoration process is achieved by both passive diffusion and convection-based rapid solution exchange across the cell membrane. Using fluidic cell mechanoporation, we demonstrated a transfection yield superior to that of other state-of-the-art microfluidic platforms as well as current benchtop techniques, including lipofectamine and electroporation. In summary, the intracellular delivery platform developed in the present study enables a high delivery efficiency (up to 98%), easy operation (single-step), low material cost (<$1), high scalability (1 × 106 cells/min), minimal cell perturbation (up to 90%), and cell type/cargo insensitive delivery, providing a practical and robust approach anticipated to critically impact cell-based research.
Collapse
Affiliation(s)
- Jeongsoo Hur
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Inae Park
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Kyung Min Lim
- Department of Stem Cell and Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Republic of Korea
| | - Junsang Doh
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Republic of Korea
| | - Aram J Chung
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
35
|
Zhao C, Man T, Xu X, Yang Q, Liu W, Jonas SJ, Teitell MA, Chiou PY, Weiss PS. Photothermal Intracellular Delivery Using Gold Nanodisk Arrays. ACS MATERIALS LETTERS 2020; 2:1475-1483. [PMID: 34708213 PMCID: PMC8547743 DOI: 10.1021/acsmaterialslett.0c00428] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Local heating using pulsed laser-induced photothermal effects on plasmonic nanostructured substrates can be used for intracellular delivery applications. However, the fabrication of plasmonic nanostructured interfaces is hampered by complex nanomanufacturing schemes. Here, we demonstrate the fabrication of large-area plasmonic gold (Au) nanodisk arrays that enable photothermal intracellular delivery of biomolecular cargo at high efficiency. The Au nanodisks (350 nm in diameter) were fabricated using chemical lift-off lithography (CLL). Nanosecond laser pulses were used to excite the plasmonic nanostructures, thereby generating transient pores at the outer membranes of targeted cells that enable the delivery of biomolecules via diffusion. Delivery efficiencies of >98% were achieved using the cell impermeable dye calcein (0.6 kDa) as a model payload, while maintaining cell viabilities at >98%. The highly efficient intracellular delivery approach demonstrated in this work will facilitate translational studies targeting molecular screening and drug testing that bridge laboratory and clinical investigations.
Collapse
Affiliation(s)
- Chuanzhen Zhao
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Tianxing Man
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Xiaobin Xu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Qing Yang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Wenfei Liu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Steven J Jonas
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Pediatrics, David Geffen School of Medicine, Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Children's Discovery and Innovation Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Michael A Teitell
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Pathology and Laboratory Medicine, Jonsson Comprehensive Cancer Center, Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, and Molecular Biology Institute, University of California, Los Angeles, California 90095, United States
| | - Pei-Yu Chiou
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Paul S Weiss
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
36
|
Chen Y, Wang J, Li X, Hu N, Voelcker NH, Xie X, Elnathan R. Emerging Roles of 1D Vertical Nanostructures in Orchestrating Immune Cell Functions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001668. [PMID: 32844502 PMCID: PMC7461044 DOI: 10.1002/adma.202001668] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/16/2020] [Indexed: 05/07/2023]
Abstract
Engineered nano-bio cellular interfaces driven by 1D vertical nanostructures (1D-VNS) are set to prompt radical progress in modulating cellular processes at the nanoscale. Here, tuneable cell-VNS interfacial interactions are probed and assessed, highlighting the use of 1D-VNS in immunomodulation, and intracellular delivery into immune cells-both crucial in fundamental and translational biomedical research. With programmable topography and adaptable surface functionalization, 1D-VNS provide unique biophysical and biochemical cues to orchestrate innate and adaptive immunity, both ex vivo and in vivo. The intimate nanoscale cell-VNS interface leads to membrane penetration and cellular deformation, facilitating efficient intracellular delivery of diverse bioactive cargoes into hard-to-transfect immune cells. The unsettled interfacial mechanisms reported to be involved in VNS-mediated intracellular delivery are discussed. By identifying up-to-date progress and fundamental challenges of current 1D-VNS technology in immune-cell manipulation, it is hoped that this report gives timely insights for further advances in developing 1D-VNS as a safe, universal, and highly scalable platform for cell engineering and enrichment in advanced cancer immunotherapy such as chimeric antigen receptor-T therapy.
Collapse
Affiliation(s)
- Yaping Chen
- Monash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
- Melbourne Centre for NanofabricationVictorian Node of the Australian National Fabrication Facility151 Wellington RoadClayton3168Australia
| | - Ji Wang
- The First Affiliated Hospital of Sun Yat‐sen UniversitySun Yat‐sen UniversityGuangzhou510006China
| | - Xiangling Li
- State Key Laboratory of Optoelectronic Materials and TechnologiesSchool of Electronics and Information TechnologySun Yat‐sen UniversityGuangzhou510006China
| | - Ning Hu
- State Key Laboratory of Optoelectronic Materials and TechnologiesSchool of Electronics and Information TechnologySun Yat‐sen UniversityGuangzhou510006China
| | - Nicolas H. Voelcker
- Monash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
- Melbourne Centre for NanofabricationVictorian Node of the Australian National Fabrication Facility151 Wellington RoadClayton3168Australia
- Department of Materials Science and EngineeringMonash University22 Alliance LaneClaytonVIC3168Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)ClaytonVIC3168Australia
- INM‐Leibniz Institute for New MaterialsCampus D2 2Saarbrücken66123Germany
| | - Xi Xie
- The First Affiliated Hospital of Sun Yat‐sen UniversitySun Yat‐sen UniversityGuangzhou510006China
- State Key Laboratory of Optoelectronic Materials and TechnologiesSchool of Electronics and Information TechnologySun Yat‐sen UniversityGuangzhou510006China
| | - Roey Elnathan
- Monash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
- Melbourne Centre for NanofabricationVictorian Node of the Australian National Fabrication Facility151 Wellington RoadClayton3168Australia
- Department of Materials Science and EngineeringMonash University22 Alliance LaneClaytonVIC3168Australia
| |
Collapse
|
37
|
Li Y, Li P, Li R, Xu Q. Intracellular Antibody Delivery Mediated by Lipids, Polymers, and Inorganic Nanomaterials for Therapeutic Applications. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000178] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yamin Li
- Department of Biomedical Engineering Tufts University Medford MA 02155 USA
| | - Peixuan Li
- Department of Biomedical Engineering Tufts University Medford MA 02155 USA
| | - Raissa Li
- Department of Biomedical Engineering Tufts University Medford MA 02155 USA
| | - Qiaobing Xu
- Department of Biomedical Engineering Tufts University Medford MA 02155 USA
| |
Collapse
|
38
|
Yan L, Gonca S, Zhu G, Zhang W, Chen X. Layered double hydroxide nanostructures and nanocomposites for biomedical applications. J Mater Chem B 2020; 7:5583-5601. [PMID: 31508652 DOI: 10.1039/c9tb01312a] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Layered double hydroxide (LDH) nanostructures and related nanocomposites have attracted significant interest in biomedical applications including cancer therapy, bioimaging and antibacterial treatment. These materials hold great advantages including low cost and facile preparation, convenient drug loading, high drug incorporation capacity, good biocompatibility, efficient intracellular uptake and endosome/lysosome escape, and natural biodegradability in an acidic environment. In this review, we summarize the development of three types of LDH nanostructures including pristine LDH, surface modified LDH, and LDH nanocomposites for a range of biomedical applications. The advantages and disadvantages of LDH nanostructures and insights into the future development are also discussed.
Collapse
Affiliation(s)
- Li Yan
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | | | | | | | | |
Collapse
|
39
|
Qu Y, Zhang Y, Yu Q, Chen H. Surface-Mediated Intracellular Delivery by Physical Membrane Disruption. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31054-31078. [PMID: 32559060 DOI: 10.1021/acsami.0c06978] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Effective and nondestructive intracellular delivery of exogenous molecules and other functional materials into living cells is of importance for diverse biological fundamental research and therapeutic applications, such as gene editing and cell-based therapies. However, for most exogenous molecules, the cell plasma membrane is effectively impermeable and thus remains the greatest barrier to intracellular delivery. In recent years, methods based on surface-mediated physical membrane disruption have attracted considerable attention. These methods exploit the physical properties of the surface to transiently increase the membrane permeability of cells come in contact thereto, thereby facilitating the efficient intracellular delivery of molecules regardless of molecule or target cell type. In this Review, we focus on recent progress, particularly over the past decade, on these surface-mediated membrane disruption-based delivery systems. According to the membrane disruption mechanism, three categories can be recognized: (i) mechanical penetration, (ii) electroporation, and (iii) photothermal poration. Each of these is discussed in turn and a brief perspective on future developments in this promising area is presented.
Collapse
Affiliation(s)
- Yangcui Qu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Yanxia Zhang
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, 215007, P. R. China
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
40
|
Wang Y, Wang Z, Xie K, Zhao X, Jiang X, Chen B, Han Y, Lu Y, Huang L, Zhang W, Yang Y, Shi P. High-Efficiency Cellular Reprogramming by Nanoscale Puncturing. NANO LETTERS 2020; 20:5473-5481. [PMID: 32520569 DOI: 10.1021/acs.nanolett.0c01979] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Induced pluripotent stem cells (iPSCs) bear great potential for disease modeling, drug discovery, and regenerative medicine; however, the wide adoption of iPSC for clinically relevant applications has been hindered by the extremely low reprogramming efficiency. Here, we describe a high-efficiency cellular reprogramming strategy by puncturing cells with an array of diamond nanoneedles, which is applied to temporally disrupt the cell membrane in a reversible and minimally invasive format. This method enables high-efficiency cytoplasmic delivery of mini-intronic plasmid vectors to initiate the conversion of human fibroblast cells to either primed iPSCs or naı̈ve iPSCs. The nanopuncturing operation is directly performed on cells in adherent culture without any cell lift-off and is completed within just 5 min. The treated cells are then cultured in feeder-free medium to achieve a reprogramming efficiency of 1.17 ± 0.28%, which is more than 2 orders of magnitude higher than the typical results from common methods involving plasmid delivery.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Zixun Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Kai Xie
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xi Zhao
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xuezhen Jiang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Bing Chen
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Ying Han
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Yang Lu
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Linfeng Huang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Wenjun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR, China
| | - Yang Yang
- Functional Thin Films Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Peng Shi
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
41
|
Dai J, Gong J, Kong N, Yao Y. Cellular architecture response to aspect ratio tunable nanoarrays. NANOSCALE 2020; 12:12395-12404. [PMID: 32490496 DOI: 10.1039/d0nr01003k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nanoarrays have been emerging as popular nanostructure platforms to investigate both cell behaviors and biological functions, due to the cell architecture respondence to the biointerface of nanostructures. Herein, we developed a series of aspect ratio tunable nanoarrays through a metal-assisted chemical etching method. Nanoarrays including nanoneedles, nanopillars, and nanoclusters were fabricated with a controllable aspect ratio. We found that nanostructures with a high aspect ratio (>10) induced significant alterations of cell physiological behaviors such as surface attachment, architecture deformation, viability, proliferation and motility. The cells on nanostructures with a high aspect ratio exhibited reorganized actin stress fibers and vimentin filaments, as well as reduced focal adhesion. This research enlarges the diversity of nanostructures on nano-bio interface investigation, provides a new insight for the surface-dependent architecture of cells, and offers unbiased understanding of factors influencing cell physiology.
Collapse
Affiliation(s)
- Jing Dai
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China.
| | | | | | | |
Collapse
|
42
|
Liu J, Fraire JC, De Smedt SC, Xiong R, Braeckmans K. Intracellular Labeling with Extrinsic Probes: Delivery Strategies and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000146. [PMID: 32351015 DOI: 10.1002/smll.202000146] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/29/2020] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
Extrinsic probes have outstanding properties for intracellular labeling to visualize dynamic processes in and of living cells, both in vitro and in vivo. Since extrinsic probes are in many cases cell-impermeable, different biochemical, and physical approaches have been used to break the cell membrane barrier for direct delivery into the cytoplasm. In this Review, these intracellular delivery strategies are discussed, briefly explaining the mechanisms and how they are used for live-cell labeling applications. Methods that are discussed include three biochemical agents that are used for this purpose-purpose-different nanocarriers, cell penetrating peptides and the pore-foraming bacterial toxin streptolysin O. Most successful intracellular label delivery methods are, however, based on physical principles to permeabilize the membrane and include electroporation, laser-induced photoporation, micro- and nanoinjection, nanoneedles or nanostraws, microfluidics, and nanomachines. The strengths and weaknesses of each strategy are discussed with a systematic comparison provided. Finally, the extrinsic probes that are reported for intracellular labeling so-far are summarized, together with the delivery strategies that are used and their performance. This combined information should provide for a useful guide for choosing the most suitable delivery method for the desired probes.
Collapse
Affiliation(s)
- Jing Liu
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, B-9000, Belgium
| | - Juan C Fraire
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, B-9000, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, B-9000, Belgium
- Centre for Advanced Light Microscopy, Ghent University, Ghent, B-9000, Belgium
- Joint Laboratory of Advanced Biomedical Technology (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing, 210037, P. R. China
| | - Ranhua Xiong
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, B-9000, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, B-9000, Belgium
- Centre for Advanced Light Microscopy, Ghent University, Ghent, B-9000, Belgium
| |
Collapse
|
43
|
Wang Z, Qi L, Yang Y, Lu M, Xie K, Zhao X, Cheung EHC, Wang Y, Jiang X, Zhang W, Huang L, Wang X, Shi P. High-throughput intracellular biopsy of microRNAs for dissecting the temporal dynamics of cellular heterogeneity. SCIENCE ADVANCES 2020; 6:eaba4971. [PMID: 32577522 PMCID: PMC7286670 DOI: 10.1126/sciadv.aba4971] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/16/2020] [Indexed: 05/11/2023]
Abstract
The capability to analyze small RNAs responsible for post-transcriptional regulation of genes expression is essential for characterizing cellular phenotypes. Here, we describe an intracellular biopsy technique (inCell-Biopsy) for fast, multiplexed, and highly sensitive profiling of microRNAs (miRNAs). The technique uses an array of diamond nanoneedles that are functionalized with size-dependent RNA binding proteins, working as "fishing rods" to directly pull miRNAs out of cytoplasm while keeping the cells alive, thus enabling quasi-single-cell miRNA analysis. Each nanoneedle works as a reaction chamber for parallel in situ amplification, visualization, and quantification of miRNAs as low as femtomolar, which is sufficient to detect miRNAs of a single-copy intracellular abundance with specificity to single-nucleotide variation. Using inCell-Biopsy, we analyze the temporal miRNA transcriptome over the differentiation of embryonic stem cells (ESCs). The combinatorial miRNA expression patterns derived by inCell-Biopsy identify emerging cell subpopulations differentiated from ESCs and reveal the dynamic evolution of cellular heterogeneity.
Collapse
Affiliation(s)
- Zixun Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Lin Qi
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Yang Yang
- Functional Thin Films Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Mingxing Lu
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Kai Xie
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Xi Zhao
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Elvis Hung Chi Cheung
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Yuan Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Xuezhen Jiang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Wenjun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Corresponding author. (W.Z.); (L.H.); (X.W.); (P.S.)
| | - Linfeng Huang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Corresponding author. (W.Z.); (L.H.); (X.W.); (P.S.)
| | - Xin Wang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China
- Corresponding author. (W.Z.); (L.H.); (X.W.); (P.S.)
| | - Peng Shi
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China
- Corresponding author. (W.Z.); (L.H.); (X.W.); (P.S.)
| |
Collapse
|
44
|
Kang G, Carlson DW, Kang TH, Lee S, Haward SJ, Choi I, Shen AQ, Chung AJ. Intracellular Nanomaterial Delivery via Spiral Hydroporation. ACS NANO 2020; 14:3048-3058. [PMID: 32069037 DOI: 10.1021/acsnano.9b07930] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In recent nanobiotechnology developments, a wide variety of functional nanomaterials and engineered biomolecules have been created, and these have numerous applications in cell biology. For these nanomaterials to fulfill their promises completely, they must be able to reach their biological targets at the subcellular level and with a high level of specificity. Traditionally, either nanocarrier- or membrane disruption-based method has been used to deliver nanomaterials inside cells; however, these methods are suboptimal due to their toxicity, inconsistent delivery, and low throughput, and they are also labor intensive and time-consuming, highlighting the need for development of a next-generation, intracellular delivery system. This study reports on the development of an intracellular nanomaterial delivery platform, based on unexpected cell-deformation phenomena via spiral vortex and vortex breakdown exerted in the cross- and T-junctions at moderate Reynolds numbers. These vortex-induced cell deformation and sequential restoration processes open cell membranes transiently, allowing effective and robust intracellular delivery of nanomaterials in a single step without the aid of carriers or external apparatus. By using the platform described here (termed spiral hydroporator), we demonstrate the delivery of different nanomaterials, including gold nanoparticles (200 nm diameter), functional mesoporous silica nanoparticles (150 nm diameter), dextran (hydrodynamic diameters between 2-55 nm), and mRNA, into different cell types. We demonstrate here that the system is highly efficient (up to 96.5%) with high throughput (up to 1 × 106 cells/min) and rapid delivery (∼1 min) while maintaining high levels of cell viability (up to 94%).
Collapse
Affiliation(s)
- GeoumYoung Kang
- Department of Bio-convergence Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Daniel W Carlson
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa 904-0495, Japan
| | - Tae Ho Kang
- Department of Life Science, University of Seoul, Seoul 02504, Republic of Korea
| | - Seungki Lee
- Department of Life Science, University of Seoul, Seoul 02504, Republic of Korea
| | - Simon J Haward
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa 904-0495, Japan
| | - Inhee Choi
- Department of Life Science, University of Seoul, Seoul 02504, Republic of Korea
| | - Amy Q Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa 904-0495, Japan
| | - Aram J Chung
- Department of Bio-convergence Engineering, Korea University, Seoul 02841, Republic of Korea
- Department of Bioengineering, Korea University, Seoul 02841, Republic of Korea
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
45
|
Higgins SG, Becce M, Belessiotis-Richards A, Seong H, Sero JE, Stevens MM. High-Aspect-Ratio Nanostructured Surfaces as Biological Metamaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903862. [PMID: 31944430 PMCID: PMC7610849 DOI: 10.1002/adma.201903862] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/02/2019] [Indexed: 04/14/2023]
Abstract
Materials patterned with high-aspect-ratio nanostructures have features on similar length scales to cellular components. These surfaces are an extreme topography on the cellular level and have become useful tools for perturbing and sensing the cellular environment. Motivation comes from the ability of high-aspect-ratio nanostructures to deliver cargoes into cells and tissues, access the intracellular environment, and control cell behavior. These structures directly perturb cells' ability to sense and respond to external forces, influencing cell fate, and enabling new mechanistic studies. Through careful design of their nanoscale structure, these systems act as biological metamaterials, eliciting unusual biological responses. While predominantly used to interface eukaryotic cells, there is growing interest in nonanimal and prokaryotic cell interfacing. Both experimental and theoretical studies have attempted to develop a mechanistic understanding for the observed behaviors, predominantly focusing on the cell-nanostructure interface. This review considers how high-aspect-ratio nanostructured surfaces are used to both stimulate and sense biological systems.
Collapse
Affiliation(s)
- Stuart G. Higgins
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | | | | | - Hyejeong Seong
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Julia E. Sero
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Molly M. Stevens
- Department of Materials, Imperial College London, London, SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
46
|
Fang J, Hsueh YY, Soto J, Sun W, Wang J, Gu Z, Khademhosseini A, Li S. Engineering Biomaterials with Micro/Nanotechnologies for Cell Reprogramming. ACS NANO 2020; 14:1296-1318. [PMID: 32011856 PMCID: PMC10067273 DOI: 10.1021/acsnano.9b04837] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Cell reprogramming is a revolutionized biotechnology that offers a powerful tool to engineer cell fate and function for regenerative medicine, disease modeling, drug discovery, and beyond. Leveraging advances in biomaterials and micro/nanotechnologies can enhance the reprogramming performance in vitro and in vivo through the development of delivery strategies and the control of biophysical and biochemical cues. In this review, we present an overview of the state-of-the-art technologies for cell reprogramming and highlight the recent breakthroughs in engineering biomaterials with micro/nanotechnologies to improve reprogramming efficiency and quality. Finally, we discuss future directions and challenges for reprogramming technologies and clinical translation.
Collapse
Affiliation(s)
- Jun Fang
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Medicine , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Yuan-Yu Hsueh
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Division of Plastic Surgery, Department of Surgery, College of Medicine , National Cheng Kung University Hospital , Tainan 70456 , Taiwan
| | - Jennifer Soto
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Medicine , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Wujin Sun
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute , University of California, Los Angeles , Los Angles , California 90095 , United States
| | - Jinqiang Wang
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute , University of California, Los Angeles , Los Angles , California 90095 , United States
| | - Zhen Gu
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute , University of California, Los Angeles , Los Angles , California 90095 , United States
- Jonsson Comprehensive Cancer Center , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Ali Khademhosseini
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute , University of California, Los Angeles , Los Angles , California 90095 , United States
- Department of Chemical and Biomolecular Engineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Radiology , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Song Li
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Medicine , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute , University of California, Los Angeles , Los Angles , California 90095 , United States
| |
Collapse
|
47
|
Zheng Y, Wu Y, Zhou Y, Wu J, Wang X, Qu Y, Wang Y, Zhang Y, Yu Q. Photothermally Activated Electrospun Nanofiber Mats for High-Efficiency Surface-Mediated Gene Transfection. ACS APPLIED MATERIALS & INTERFACES 2020; 12:7905-7914. [PMID: 31976653 DOI: 10.1021/acsami.9b20221] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Although electrospun nanofibers have been used to deliver functional genes into cells attached to the surface of the nanofibers, the controllable release of genes from nanofibers and the subsequent gene transfection with high efficiency remain challenging. Herein, photothermally activated electrospun hybrid nanofibers are developed for high-efficiency surface-mediated gene transfection. Nanofibers with a core-sheath structure are fabricated using coaxial electrospinning. Plasmid DNA (pDNA) encoding basic fibroblast growth factor is encapsulated in the fiber core, and gold nanorods with photothermal properties are embedded in the fiber sheath composed of poly(l-lactic acid) and gelatin. The nanofiber mats show excellent and controllable photothermal response under near-infrared irradiation. The permeability of the nanofibers is thereby enhanced to allow the rapid release of pDNA. In addition, transient holes are formed in the membranes of NIH-3T3 fibroblasts attached to the mat, thus facilitating delivery and transfection with pDNA and leading to increased proliferation and migration of the transfected cells in vitro. This work offers a facile and reliable method for the regulation of cell function and cell behavior via localized gene transfection, showing great potential for application in tissue engineering and cell-based therapy.
Collapse
Affiliation(s)
- Yanjun Zheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Yong Wu
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital , Soochow University , Suzhou 215007 , P. R. China
| | - Yang Zhou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Jingxian Wu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Xiaoyu Wang
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital , Soochow University , Suzhou 215007 , P. R. China
| | - Yangcui Qu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Yaran Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Yanxia Zhang
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital , Soochow University , Suzhou 215007 , P. R. China
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| |
Collapse
|
48
|
Dixit HG, Starr R, Dundon ML, Pairs PI, Yang X, Zhang Y, Nampe D, Ballas CB, Tsutsui H, Forman SJ, Brown CE, Rao MP. Massively-Parallelized, Deterministic Mechanoporation for Intracellular Delivery. NANO LETTERS 2020; 20:860-867. [PMID: 31647675 PMCID: PMC8210888 DOI: 10.1021/acs.nanolett.9b03175] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Microfluidic intracellular delivery approaches based on plasma membrane poration have shown promise for addressing the limitations of conventional cellular engineering techniques in a wide range of applications in biology and medicine. However, the inherent stochasticity of the poration process in many of these approaches often results in a trade-off between delivery efficiency and cellular viability, thus potentially limiting their utility. Herein, we present a novel microfluidic device concept that mitigates this trade-off by providing opportunity for deterministic mechanoporation (DMP) of cells en masse. This is achieved by the impingement of each cell upon a single needle-like penetrator during aspiration-based capture, followed by diffusive influx of exogenous cargo through the resulting membrane pore, once the cells are released by reversal of flow. Massive parallelization enables high throughput operation, while single-site poration allows for delivery of small and large-molecule cargos in difficult-to-transfect cells with efficiencies and viabilities that exceed both conventional and emerging transfection techniques. As such, DMP shows promise for advancing cellular engineering practice in general and engineered cell product manufacturing in particular.
Collapse
Affiliation(s)
- Harish G. Dixit
- Department of Bioengineering, University of California – Riverside, Riverside, California 92521, United States
| | - Renate Starr
- Department of Cancer Immunotherapy and Tumor Immunology, City of Hope Beckman Research Institute and Medical Center, Duarte, California 91010, United States
| | - Morgan L. Dundon
- Materials Science and Engineering Program, University of California – Riverside, Riverside, California 92521, United States
| | - Pranee I. Pairs
- Materials Science and Engineering Program, University of California – Riverside, Riverside, California 92521, United States
| | - Xin Yang
- Department of Cancer Immunotherapy and Tumor Immunology, City of Hope Beckman Research Institute and Medical Center, Duarte, California 91010, United States
| | - Yanyan Zhang
- Department of Mechanical Engineering, University of California – Riverside, Riverside, California 92521, United States
| | - Daniel Nampe
- Department of Bioengineering, University of California – Riverside, Riverside, California 92521, United States
- Department of Mechanical Engineering, University of California – Riverside, Riverside, California 92521, United States
| | - Christopher B. Ballas
- Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Hideaki Tsutsui
- Department of Bioengineering, University of California – Riverside, Riverside, California 92521, United States
- Department of Mechanical Engineering, University of California – Riverside, Riverside, California 92521, United States
- Stem Cell Center, University of California – Riverside, Riverside, California 92521, United States
| | - Stephen J. Forman
- Department of Cancer Immunotherapy and Tumor Immunology, City of Hope Beckman Research Institute and Medical Center, Duarte, California 91010, United States
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Beckman Research Institute and Medical Center, Duarte, California 91010, United States
| | - Christine E. Brown
- Department of Cancer Immunotherapy and Tumor Immunology, City of Hope Beckman Research Institute and Medical Center, Duarte, California 91010, United States
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Beckman Research Institute and Medical Center, Duarte, California 91010, United States
| | - Masaru P. Rao
- Department of Bioengineering, University of California – Riverside, Riverside, California 92521, United States
- Materials Science and Engineering Program, University of California – Riverside, Riverside, California 92521, United States
- Department of Mechanical Engineering, University of California – Riverside, Riverside, California 92521, United States
| |
Collapse
|
49
|
Harberts J, Haferkamp U, Haugg S, Fendler C, Lam D, Zierold R, Pless O, Blick RH. Interfacing human induced pluripotent stem cell-derived neurons with designed nanowire arrays as a future platform for medical applications. Biomater Sci 2020; 8:2434-2446. [DOI: 10.1039/d0bm00182a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nanostructured substrates such as nanowire arrays form a powerful tool for building next-generation medical devices.
Collapse
Affiliation(s)
- Jann Harberts
- Center for Hybrid Nanostructures
- Universität Hamburg
- 22761 Hamburg
- Germany
| | | | - Stefanie Haugg
- Center for Hybrid Nanostructures
- Universität Hamburg
- 22761 Hamburg
- Germany
| | - Cornelius Fendler
- Center for Hybrid Nanostructures
- Universität Hamburg
- 22761 Hamburg
- Germany
| | - Dennis Lam
- Fraunhofer IME ScreeningPort
- 22525 Hamburg
- Germany
| | - Robert Zierold
- Center for Hybrid Nanostructures
- Universität Hamburg
- 22761 Hamburg
- Germany
| | - Ole Pless
- Fraunhofer IME ScreeningPort
- 22525 Hamburg
- Germany
| | - Robert H. Blick
- Center for Hybrid Nanostructures
- Universität Hamburg
- 22761 Hamburg
- Germany
- Material Science and Engineering
| |
Collapse
|
50
|
Backlund CM, Hango CR, Minter LM, Tew GN. Protein and Antibody Delivery into Difficult-to-Transfect Cells by Polymeric Peptide Mimics. ACS APPLIED BIO MATERIALS 2019; 3:180-185. [DOI: 10.1021/acsabm.9b00876] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Coralie M. Backlund
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Christopher R. Hango
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Lisa M. Minter
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, Massachusetts 01003, Untied States
| | - Gregory N. Tew
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, Massachusetts 01003, Untied States
| |
Collapse
|