1
|
Narayan AB, Hariom SK, Mukherjee AP, Das D, Nair A, Nelson EJR. 'Nomadic' Hematopoietic Stem Cells Navigate the Embryonic Landscape. Stem Cell Rev Rep 2025:10.1007/s12015-025-10843-6. [PMID: 39786676 DOI: 10.1007/s12015-025-10843-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2025] [Indexed: 01/12/2025]
Abstract
Hematopoietic stem cells are a unique population of tissue-resident multipotent cells with an extensive ability to self-renew and regenerate the entire lineage of differentiated blood cells. Stem cells reside in a highly specialized microenvironment with surrounding supporting cells, forming a complex and dynamic network to preserve and maintain their function. The survival, activation, and quiescence of stem cells are largely influenced by niche-derived signals, with aging niche contributing to a decline in stem cell function. Although the role of niche in regulating hematopoiesis has long been established by transplantation studies, limited methods in observing the process in vivo have eluded a detailed understanding of the various niche components. Danio rerio (zebrafish) has emerged as a solution in the past few decades, enabling discovery of cellular interactions, in addition to chemical and genetic factors regulating HSCs. This review reiterates zebrafish as a suitable model for studies on vertebrate embryonic and adult hematopoiesis, delving into this temporally and spatially dissected multi-step process. The critical role played by epigenetic regulators are discussed, along with contributions of the various physiological processes in sustaining the stem cell population. Stem cell niche transcends mere knowledge acquisition, assuring scope in cell therapy, organoid cultures, aging research, and clinical applications including bone marrow transplantation and cancer. A better understanding of the various niche components could also leverage therapeutic efforts to drive differentiation of HSCs from pluripotent progenitors, sustain stemness in laboratory cultures, and improve stem cell transplantation outcomes.
Collapse
Affiliation(s)
- Anand Badhri Narayan
- Department of Integrative Biology, Gene Therapy Laboratory, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, TN, 632 014, India
| | - Senthil Kumar Hariom
- Department of Integrative Biology, Gene Therapy Laboratory, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, TN, 632 014, India
| | - Ayan Prasad Mukherjee
- Department of Integrative Biology, Gene Therapy Laboratory, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, TN, 632 014, India
| | - Deotima Das
- Department of Integrative Biology, Gene Therapy Laboratory, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, TN, 632 014, India
| | - Aadhira Nair
- Department of Integrative Biology, Gene Therapy Laboratory, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, TN, 632 014, India
| | - Everette Jacob Remington Nelson
- Department of Integrative Biology, Gene Therapy Laboratory, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, TN, 632 014, India.
| |
Collapse
|
2
|
Wang B, Jiang H, Sun N, Wang Z, Wang C, Yang T, Wang Y, Wang L. Angelica sinensis polysaccharides ameliorate 5-FU-induced stress anemia via promoting extramedullary erythroblastic island central macrophage-mediated erythroid differentiation. Int Immunopharmacol 2024; 142:113061. [PMID: 39260313 DOI: 10.1016/j.intimp.2024.113061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/30/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Chronic anemia, especially chemotherapy-induced anemia, is a common and intractable symptom. Puzzlingly, the conventional anemic treatment may lead to various side effects, and the mechanism of stress anemia remains unclear. METHODS Here, peripheral blood, histopathological and transmission electron microscopical examination, colony forming test, flow cytometry, and qRT-PCR assay were used to investigate the effects of Angelia sinensis polysaccharide (ASP), one main active ingredient of Chinese herb medicine Angelica sinensis, on ameliorating 5-fluorouracil (5-FU)-induced stress anemia. RESULTS We found that intraperitoneal injection to a C57BL/6J mouse ASP 100 mg/kg per day for consecutive 10 days or 14 days, remarkably accelerated the recovery of RBC, hemoglobin, and hematocrit in blood. ASP alleviated 5-FU-caused impairment of bone marrow cell and BFU-E enumeration. Meanwhile, ASP antagonized 5-FU promoting extramedullary erythropoiesis in the spleen, inducing splenomegaly due to stress erythroblastic islands, and occurrence of megakaryocytes and hematopoietic precursors in splenic colonies. ASP increased splenic stress BFU-E enumeration, driving BFU-E differentiation towards Pro-E and end-stage erythroblasts. Furthermore, ASP increased the number of F4/80+VCAM-1+ splenic erythroblastic island central macrophages, upregulating genetic expression of EPOR, Emp, VCAM-1, Hmox-1, Trf, TfR1, Fpn1, Spi-C, DNase2a, Tim4, MertK, and Klf1 in splenocytes. CONCLUSIONS Our findings indicate that the possible mechanism of chemotherapy-induced anemia is related to stress erythroid maturation arrest. Whereas, ASP may promote stress erythroid differentiation via elevated EPO sensitivity in extramedullary hematopoietic organs and enhanced macrophage-mediated adhesion, iron homeostasis and transfer, and nuclear engulfment, which may represent a promising therapeutic strategy.
Collapse
Affiliation(s)
- Biyao Wang
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China
| | - Honghui Jiang
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China
| | - Nianci Sun
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China
| | - Ziling Wang
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China
| | - Cheng Wang
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China
| | - Ting Yang
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China
| | - Yaping Wang
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China
| | - Lu Wang
- Laboratory of Stem Cells and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
3
|
Weijts B, Robin C. Capturing embryonic hematopoiesis in temporal and spatial dimensions. Exp Hematol 2024; 136:104257. [PMID: 38897373 DOI: 10.1016/j.exphem.2024.104257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
Hematopoietic stem cells (HSCs) possess the ability to sustain the continuous production of all blood cell types throughout an organism's lifespan. Although primarily located in the bone marrow of adults, HSCs originate during embryonic development. Visualization of the birth of HSCs, their developmental trajectory, and the specific interactions with their successive niches have significantly contributed to our understanding of the biology and mechanics governing HSC formation and expansion. Intravital techniques applied to live embryos or non-fixed samples have remarkably provided invaluable insights into the cellular and anatomical origins of HSCs. These imaging technologies have also shed light on the dynamic interactions between HSCs and neighboring cell types within the surrounding microenvironment or niche, such as endothelial cells or macrophages. This review delves into the advancements made in understanding the origin, production, and cellular interactions of HSCs, particularly during the embryonic development of mice and zebrafish, focusing on studies employing (live) imaging analysis.
Collapse
Affiliation(s)
- Bart Weijts
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Catherine Robin
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands; Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
4
|
Doyle EH, Vaughan HJ, Mariani SA. From drosophila to humans: a journey through macrophage development. Exp Hematol 2024; 136:104272. [PMID: 38972565 DOI: 10.1016/j.exphem.2024.104272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/09/2024]
Abstract
Macrophages are fascinating immune cells involved in a variety of processes in both health and disease. Although they were first discovered and characterized by their functions as professional phagocytes and antigen-presenting cells, it is now clear that macrophages have multiple roles within embryonic development, tissue homeostasis, regulation of inflammation, and host response to pathogens and tissue insults. Interestingly, macrophages, or macrophage-like cells, exist in a variety of organisms, from echinoderms to humans, and are present also in species that lack an adaptive immune system or hematopoietic stem cells (HSCs). In mammals, macrophages can be generated from bone marrow precursors through a monocyte intermediate, but it is now known that they are also generated during earlier hematopoietic waves in the embryo. Seeding a variety of tissues at different times, macrophages contribute to embryonic organogenesis and tissue homeostasis. Interestingly, in species where embryonic macrophages are generated before HSC specification, they seem to be an important component of the HSC generative microenvironment. There are many excellent reviews reporting the current knowledge on the ontogeny and functions of macrophages in adult tissues. Here, we aim to summarize the current knowledge on the development and functions of embryonic macrophages across the most used animal models, with a special focus on developmental hematopoiesis.
Collapse
Affiliation(s)
- Eva H Doyle
- Centre for Inflammation Research, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom
| | - Hollie J Vaughan
- Centre for Inflammation Research, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom
| | - Samanta A Mariani
- Centre for Inflammation Research, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
5
|
Clements WK, Khoury H. The molecular and cellular hematopoietic stem cell specification niche. Exp Hematol 2024; 136:104280. [PMID: 39009276 PMCID: PMC11338702 DOI: 10.1016/j.exphem.2024.104280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024]
Abstract
Hematopoietic stem cells (HSCs) are a population of tissue-specific stem cells that reside in the bone marrow of adult mammals, where they self-renew and continuously regenerate the adult hematopoietic lineages over the life of the individual. Prominence as a stem cell model and clinical usefulness have driven interest in understanding the physiologic processes that lead to the specification of HSCs during embryonic development. High-efficiency directed differentiation of HSCs by the instruction of defined progenitor cells using sequentially defined instructive molecules and conditions remains impossible, indicating that comprehensive knowledge of the complete set of precursor intermediate identities and required inductive inputs remains incompletely understood. Recently, interest in the molecular and cellular microenvironment where HSCs are specified from endothelial precursors-the "specification niche"-has increased. Here we review recent progress in understanding these niche spaces across vertebrate phyla, as well as how a better characterization of the origin and molecular phenotypes of the niche cell populations has helped inform and complicate previous understanding of signaling required for HSC emergence and maturation.
Collapse
Affiliation(s)
- Wilson K Clements
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN.
| | - Hanane Khoury
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| |
Collapse
|
6
|
Zhao C, Yang Z, Li Y, Wen Z. Macrophages in tissue repair and regeneration: insights from zebrafish. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:12. [PMID: 38861103 PMCID: PMC11166613 DOI: 10.1186/s13619-024-00195-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/31/2024] [Indexed: 06/12/2024]
Abstract
Macrophages play crucial and versatile roles in regulating tissue repair and regeneration upon injury. However, due to their complex compositional heterogeneity and functional plasticity, deciphering the nature of different macrophage subpopulations and unraveling their dynamics and precise roles during the repair process have been challenging. With its distinct advantages, zebrafish (Danio rerio) has emerged as an invaluable model for studying macrophage development and functions, especially in tissue repair and regeneration, providing valuable insights into our understanding of macrophage biology in health and diseases. In this review, we present the current knowledge and challenges associated with the role of macrophages in tissue repair and regeneration, highlighting the significant contributions made by zebrafish studies. We discuss the unique advantages of the zebrafish model, including its genetic tools, imaging techniques, and regenerative capacities, which have greatly facilitated the investigation of macrophages in these processes. Additionally, we outline the potential of zebrafish research in addressing the remaining challenges and advancing our understanding of the intricate interplay between macrophages and tissue repair and regeneration.
Collapse
Affiliation(s)
- Changlong Zhao
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhiyong Yang
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Division of Life Science, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yunbo Li
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Division of Life Science, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Zilong Wen
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
- Shenzhen Bay Laboratory, Shenzhen, 518055, China.
| |
Collapse
|
7
|
Belt AJ, Grant S, Tombes RM, Rothschild SC. Myeloid Targeted Human MLL-ENL and MLL-AF9 Induces cdk9 and bcl2 Expression in Zebrafish Embryos. PLoS Genet 2024; 20:e1011308. [PMID: 38829886 PMCID: PMC11175583 DOI: 10.1371/journal.pgen.1011308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 06/13/2024] [Accepted: 05/19/2024] [Indexed: 06/05/2024] Open
Abstract
Acute myeloid leukemia (AML) accounts for greater than twenty thousand new cases of leukemia annually in the United States. The average five-year survival rate is approximately 30%, pointing to the need for developing novel model systems for drug discovery. In particular, patients with chromosomal rearrangements in the mixed lineage leukemia (MLL) gene have higher relapse rates with poor outcomes. In this study we investigated the expression of human MLL-ENL and MLL-AF9 in the myeloid lineage of zebrafish embryos. We observed an expansion of MLL positive cells and determined these cells colocalized with the myeloid markers spi1b, mpx, and mpeg. In addition, expression of MLL-ENL and MLL-AF9 induced the expression of endogenous bcl2 and cdk9, genes that are often dysregulated in MLL-r-AML. Co-treatment of lyz: MLL-ENL or lyz:MLL-AF9 expressing embryos with the BCL2 inhibitor, Venetoclax, and the CDK9 inhibitor, Flavopiridol, significantly reduced the number of MLL positive cells compared to embryos treated with vehicle or either drug alone. In addition, cotreatment with Venetoclax and Flavopiridol significantly reduced the expression of endogenous mcl1a compared to vehicle, consistent with AML. This new model of MLL-r-AML provides a novel tool to understand the molecular mechanisms underlying disease progression and a platform for drug discovery.
Collapse
MESH Headings
- Zebrafish/genetics
- Zebrafish/embryology
- Animals
- Cyclin-Dependent Kinase 9/genetics
- Cyclin-Dependent Kinase 9/metabolism
- Cyclin-Dependent Kinase 9/antagonists & inhibitors
- Myeloid-Lymphoid Leukemia Protein/genetics
- Myeloid-Lymphoid Leukemia Protein/metabolism
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Humans
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Sulfonamides/pharmacology
- Piperidines/pharmacology
- Embryo, Nonmammalian
- Flavonoids/pharmacology
- Myeloid Cells/metabolism
- Myeloid Cells/drug effects
- Histone-Lysine N-Methyltransferase/genetics
- Histone-Lysine N-Methyltransferase/metabolism
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
- Alex J. Belt
- Life Sciences, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Steven Grant
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Robert M. Tombes
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Sarah C. Rothschild
- Life Sciences, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| |
Collapse
|
8
|
Monticelli S, Sommer A, AlHajj Hassan Z, Garcia Rodriguez C, Adé K, Cattenoz P, Delaporte C, Gomez Perdiguero E, Giangrande A. Early-wave macrophages control late hematopoiesis. Dev Cell 2024; 59:1284-1301.e8. [PMID: 38569551 DOI: 10.1016/j.devcel.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/08/2024] [Accepted: 03/07/2024] [Indexed: 04/05/2024]
Abstract
Macrophages constitute the first defense line against the non-self, but their ability to remodel their environment in organ development/homeostasis is starting to be appreciated. Early-wave macrophages (EMs), produced from hematopoietic stem cell (HSC)-independent progenitors, seed the mammalian fetal liver niche wherein HSCs expand and differentiate. The involvement of niche defects in myeloid malignancies led us to identify the cues controlling HSCs. In Drosophila, HSC-independent EMs also colonize the larva when late hematopoiesis occurs. The evolutionarily conserved immune system allowed us to investigate whether/how EMs modulate late hematopoiesis in two models. We show that loss of EMs in Drosophila and mice accelerates late hematopoiesis, which does not correlate with inflammation and does not rely on macrophage phagocytic ability. Rather, EM-derived extracellular matrix components underlie late hematopoiesis acceleration. This demonstrates a developmental role for EMs.
Collapse
Affiliation(s)
- Sara Monticelli
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, 67400 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, UMR, S 1258, 67400 Illkirch, France; Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, 67400 Illkirch, France
| | - Alina Sommer
- Macrophages and endothelial cells unit, Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, UMR3738 CNRS, 75015 Paris, France; Sorbonne Université, Collège doctoral, 75005 Paris, France
| | - Zeinab AlHajj Hassan
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, 67400 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, UMR, S 1258, 67400 Illkirch, France; Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, 67400 Illkirch, France
| | - Clarisabel Garcia Rodriguez
- Macrophages and endothelial cells unit, Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, UMR3738 CNRS, 75015 Paris, France; Sorbonne Université, Collège doctoral, 75005 Paris, France
| | - Kémy Adé
- Macrophages and endothelial cells unit, Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, UMR3738 CNRS, 75015 Paris, France
| | - Pierre Cattenoz
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, 67400 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, UMR, S 1258, 67400 Illkirch, France; Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, 67400 Illkirch, France
| | - Claude Delaporte
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, 67400 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, UMR, S 1258, 67400 Illkirch, France; Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, 67400 Illkirch, France
| | - Elisa Gomez Perdiguero
- Macrophages and endothelial cells unit, Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, UMR3738 CNRS, 75015 Paris, France.
| | - Angela Giangrande
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, 67400 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, UMR, S 1258, 67400 Illkirch, France; Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, 67400 Illkirch, France.
| |
Collapse
|
9
|
El Omar R, Abdellaoui N, Coulibaly ST, Fontenille L, Lanza F, Gachet C, Freund JN, Negroni M, Kissa K, Tavian M. Macrophage depletion overcomes human hematopoietic cell engraftment failure in zebrafish embryo. Cell Death Dis 2024; 15:305. [PMID: 38693109 PMCID: PMC11063059 DOI: 10.1038/s41419-024-06682-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/06/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024]
Abstract
Zebrafish is widely adopted as a grafting model for studying human development and diseases. Current zebrafish xenotransplantations are performed using embryo recipients, as the adaptive immune system, responsible for host versus graft rejection, only reaches maturity at juvenile stage. However, transplanted primary human hematopoietic stem/progenitor cells (HSC) rapidly disappear even in zebrafish embryos, suggesting that another barrier to transplantation exists before the onset of adaptive immunity. Here, using a labelled macrophage zebrafish line, we demonstrated that engraftment of human HSC induces a massive recruitment of macrophages which rapidly phagocyte transplanted cells. Macrophages depletion, by chemical or pharmacological treatments, significantly improved the uptake and survival of transplanted cells, demonstrating the crucial implication of these innate immune cells for the successful engraftment of human cells in zebrafish. Beyond identifying the reasons for human hematopoietic cell engraftment failure, this work images the fate of human cells in real time over several days in macrophage-depleted zebrafish embryos.
Collapse
Affiliation(s)
- Reine El Omar
- University of Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, Strasbourg, France
- Université de Lorraine, CITHEFOR, F-54505, Vandoeuvre Les Nancy, France
| | | | - Safiatou T Coulibaly
- University of Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, Strasbourg, France
- ITI Innovec, Strasbourg, France
| | | | - François Lanza
- University of Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, Strasbourg, France
| | - Christian Gachet
- University of Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, Strasbourg, France
| | - Jean-Noel Freund
- ITI Innovec, Strasbourg, France
- University of Strasbourg, INSERM, IRFAC/UMR-S1113, Strasbourg, France
- INSERM, U1256 - NGERE, Université de Lorraine, 54500, Vandoeuvre-lès-Nancy, France
| | - Matteo Negroni
- University of Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, Strasbourg, France
- ITI Innovec, Strasbourg, France
| | - Karima Kissa
- University of Montpellier, VBIC, INSERM U1047, Montpellier, France
- AZELEAD SAS, Montpellier, France
| | - Manuela Tavian
- University of Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, Strasbourg, France.
- ITI Innovec, Strasbourg, France.
- University of Strasbourg, INSERM, IRFAC/UMR-S1113, Strasbourg, France.
| |
Collapse
|
10
|
Brenet A, Somkhit J, Csaba Z, Ciura S, Kabashi E, Yanicostas C, Soussi-Yanicostas N. Microglia Mitigate Neuronal Activation in a Zebrafish Model of Dravet Syndrome. Cells 2024; 13:684. [PMID: 38667299 PMCID: PMC11049242 DOI: 10.3390/cells13080684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
It has been known for a long time that epileptic seizures provoke brain neuroinflammation involving the activation of microglial cells. However, the role of these cells in this disease context and the consequences of their inflammatory activation on subsequent neuron network activity remain poorly understood so far. To fill this gap of knowledge and gain a better understanding of the role of microglia in the pathophysiology of epilepsy, we used an established zebrafish Dravet syndrome epilepsy model based on Scn1Lab sodium channel loss-of-function, combined with live microglia and neuronal Ca2+ imaging, local field potential (LFP) recording, and genetic microglia ablation. Data showed that microglial cells in scn1Lab-deficient larvae experiencing epileptiform seizures displayed morphological and biochemical changes characteristic of M1-like pro-inflammatory activation; i.e., reduced branching, amoeboid-like morphology, and marked increase in the number of microglia expressing pro-inflammatory cytokine Il1β. More importantly, LFP recording, Ca2+ imaging, and swimming behavior analysis showed that microglia-depleted scn1Lab-KD larvae displayed an increase in epileptiform seizure-like neuron activation when compared to that seen in scn1Lab-KD individuals with microglia. These findings strongly suggest that despite microglia activation and the synthesis of pro-inflammatory cytokines, these cells provide neuroprotective activities to epileptic neuronal networks, making these cells a promising therapeutic target in epilepsy.
Collapse
Affiliation(s)
- Alexandre Brenet
- NeuroDiderot, INSERM U1141, Université Paris Cité, Robert Debré Hospital, 75019 Paris, France (C.Y.)
| | - Julie Somkhit
- NeuroDiderot, INSERM U1141, Université Paris Cité, Robert Debré Hospital, 75019 Paris, France (C.Y.)
| | - Zsolt Csaba
- NeuroDiderot, INSERM U1141, Université Paris Cité, Robert Debré Hospital, 75019 Paris, France (C.Y.)
| | - Sorana Ciura
- Institut Imagine, University Paris Descartes, Necker-Enfants Malades Hospital, 75015 Paris, France
| | - Edor Kabashi
- Institut Imagine, University Paris Descartes, Necker-Enfants Malades Hospital, 75015 Paris, France
| | - Constantin Yanicostas
- NeuroDiderot, INSERM U1141, Université Paris Cité, Robert Debré Hospital, 75019 Paris, France (C.Y.)
- INSERM, T3S, Department of Biochemistry, Université Paris Cité, 75006 Paris, France
| | - Nadia Soussi-Yanicostas
- NeuroDiderot, INSERM U1141, Université Paris Cité, Robert Debré Hospital, 75019 Paris, France (C.Y.)
- INSERM, T3S, Department of Biochemistry, Université Paris Cité, 75006 Paris, France
| |
Collapse
|
11
|
Miladinovic O, Canto PY, Pouget C, Piau O, Radic N, Freschu P, Megherbi A, Brujas Prats C, Jacques S, Hirsinger E, Geeverding A, Dufour S, Petit L, Souyri M, North T, Isambert H, Traver D, Jaffredo T, Charbord P, Durand C. A multistep computational approach reveals a neuro-mesenchymal cell population in the embryonic hematopoietic stem cell niche. Development 2024; 151:dev202614. [PMID: 38451068 PMCID: PMC11057820 DOI: 10.1242/dev.202614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/23/2024] [Indexed: 03/08/2024]
Abstract
The first hematopoietic stem and progenitor cells (HSPCs) emerge in the Aorta-Gonad-Mesonephros (AGM) region of the mid-gestation mouse embryo. However, the precise nature of their supportive mesenchymal microenvironment remains largely unexplored. Here, we profiled transcriptomes of laser micro-dissected aortic tissues at three developmental stages and individual AGM cells. Computational analyses allowed the identification of several cell subpopulations within the E11.5 AGM mesenchyme, with the presence of a yet unidentified subpopulation characterized by the dual expression of genes implicated in adhesive or neuronal functions. We confirmed the identity of this cell subset as a neuro-mesenchymal population, through morphological and lineage tracing assays. Loss of function in the zebrafish confirmed that Decorin, a characteristic extracellular matrix component of the neuro-mesenchyme, is essential for HSPC development. We further demonstrated that this cell population is not merely derived from the neural crest, and hence, is a bona fide novel subpopulation of the AGM mesenchyme.
Collapse
Affiliation(s)
- Olivera Miladinovic
- Laboratoire de Biologie du Développement/UMR7622, Institut de Biologie Paris Seine, Sorbonne Université, CNRS, Inserm U1156,9 Quai St-Bernard, 75005 Paris, France
| | - Pierre-Yves Canto
- Laboratoire de Biologie du Développement/UMR7622, Institut de Biologie Paris Seine, Sorbonne Université, CNRS, Inserm U1156,9 Quai St-Bernard, 75005 Paris, France
| | - Claire Pouget
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093-0380, USA
| | - Olivier Piau
- Laboratoire de Biologie du Développement/UMR7622, Institut de Biologie Paris Seine, Sorbonne Université, CNRS, Inserm U1156,9 Quai St-Bernard, 75005 Paris, France
- Centre de Recherche Saint-Antoine-Team Proliferation and Differentiation of Stem Cells, Institut Universitaire de Cancérologie, Sorbonne Université, Inserm, UMR-S 938,F-75012 Paris, France
| | - Nevenka Radic
- Laboratoire de Biologie du Développement/UMR7622, Institut de Biologie Paris Seine, Sorbonne Université, CNRS, Inserm U1156,9 Quai St-Bernard, 75005 Paris, France
| | - Priscilla Freschu
- Laboratoire de Biologie du Développement/UMR7622, Institut de Biologie Paris Seine, Sorbonne Université, CNRS, Inserm U1156,9 Quai St-Bernard, 75005 Paris, France
| | - Alexandre Megherbi
- Laboratoire de Biologie du Développement/UMR7622, Institut de Biologie Paris Seine, Sorbonne Université, CNRS, Inserm U1156,9 Quai St-Bernard, 75005 Paris, France
| | - Carla Brujas Prats
- Laboratoire de Biologie du Développement/UMR7622, Institut de Biologie Paris Seine, Sorbonne Université, CNRS, Inserm U1156,9 Quai St-Bernard, 75005 Paris, France
| | - Sebastien Jacques
- Plateforme de génomique, Université de Paris, Institut Cochin, Inserm, CNRS, F-75014 Paris, France
| | - Estelle Hirsinger
- Laboratoire de Biologie du Développement/UMR7622, Institut de Biologie Paris Seine, Sorbonne Université, CNRS, Inserm U1156,9 Quai St-Bernard, 75005 Paris, France
| | - Audrey Geeverding
- Service de microscopie électronique, Fr3631 Institut de Biologie Paris Seine, Sorbonne Université, CNRS, 7-9Quai St-Bernard, 75005 Paris, France
| | - Sylvie Dufour
- Université Paris-Est Créteil, Inserm, IMRB, F94010 Créteil, France
| | - Laurence Petit
- Laboratoire de Biologie du Développement/UMR7622, Institut de Biologie Paris Seine, Sorbonne Université, CNRS, Inserm U1156,9 Quai St-Bernard, 75005 Paris, France
| | - Michele Souyri
- Université de Paris, Inserm UMR 1131, Institut de Recherche Saint Louis, Hôpital Saint Louis, 1 Avenue Claude Vellefaux, 75010 Paris, France
| | - Trista North
- Stem Cell Program, Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
- Developmental and Regenerative Biology Program, Harvard Medical School, Boston, MA 02115, USA
| | - Hervé Isambert
- Institut Curie, PSL Research University, CNRS UMR168, Paris, France
| | - David Traver
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093-0380, USA
| | - Thierry Jaffredo
- Laboratoire de Biologie du Développement/UMR7622, Institut de Biologie Paris Seine, Sorbonne Université, CNRS, Inserm U1156,9 Quai St-Bernard, 75005 Paris, France
| | - Pierre Charbord
- Laboratoire de Biologie du Développement/UMR7622, Institut de Biologie Paris Seine, Sorbonne Université, CNRS, Inserm U1156,9 Quai St-Bernard, 75005 Paris, France
| | - Charles Durand
- Laboratoire de Biologie du Développement/UMR7622, Institut de Biologie Paris Seine, Sorbonne Université, CNRS, Inserm U1156,9 Quai St-Bernard, 75005 Paris, France
| |
Collapse
|
12
|
Elsaid R, Mikdache A, Castillo KQ, Salloum Y, Diabangouaya P, Gros G, Feijoo CG, Hernández PP. Definitive hematopoiesis is dispensable to sustain erythrocytes and macrophages during zebrafish ontogeny. iScience 2024; 27:108922. [PMID: 38327794 PMCID: PMC10847700 DOI: 10.1016/j.isci.2024.108922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 09/23/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024] Open
Abstract
In all organisms studied, from flies to humans, blood cells emerge in several sequential waves and from distinct hematopoietic origins. However, the relative contribution of these ontogenetically distinct hematopoietic waves to embryonic blood lineages and to tissue regeneration during development is yet elusive. Here, using a lineage-specific "switch and trace" strategy in the zebrafish embryo, we report that the definitive hematopoietic progeny barely contributes to erythrocytes and macrophages during early development. Lineage tracing further shows that ontogenetically distinct macrophages exhibit differential recruitment to the site of injury based on the developmental stage of the organism. We further demonstrate that primitive macrophages can solely maintain tissue regeneration during early larval developmental stages after selective ablation of definitive macrophages. Our findings highlight that the sequential emergence of hematopoietic waves in embryos ensures the abundance of blood cells required for tissue homeostasis and integrity during development.
Collapse
Affiliation(s)
- Ramy Elsaid
- Institut Curie, PSL Research University CNRS UMR 3215, INSERM U934, 26 Rue d’Ulm, 75248 Paris Cedex 05, France
| | - Aya Mikdache
- Institut Curie, PSL Research University CNRS UMR 3215, INSERM U934, 26 Rue d’Ulm, 75248 Paris Cedex 05, France
| | - Keinis Quintero Castillo
- Fish Immunology Laboratory, Faculty of Life Science, Andres Bello University, Santiago 8370146, Chile
| | - Yazan Salloum
- Institut Curie, PSL Research University CNRS UMR 3215, INSERM U934, 26 Rue d’Ulm, 75248 Paris Cedex 05, France
| | - Patricia Diabangouaya
- Institut Curie, PSL Research University CNRS UMR 3215, INSERM U934, 26 Rue d’Ulm, 75248 Paris Cedex 05, France
| | - Gwendoline Gros
- Institut Curie, PSL Research University CNRS UMR 3215, INSERM U934, 26 Rue d’Ulm, 75248 Paris Cedex 05, France
| | - Carmen G. Feijoo
- Fish Immunology Laboratory, Faculty of Life Science, Andres Bello University, Santiago 8370146, Chile
| | - Pedro P. Hernández
- Institut Curie, PSL Research University CNRS UMR 3215, INSERM U934, 26 Rue d’Ulm, 75248 Paris Cedex 05, France
| |
Collapse
|
13
|
Mastrogiovanni M, Martínez-Navarro FJ, Bowman TV, Cayuela ML. Inflammation in Development and Aging: Insights from the Zebrafish Model. Int J Mol Sci 2024; 25:2145. [PMID: 38396822 PMCID: PMC10889087 DOI: 10.3390/ijms25042145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Zebrafish are an emergent animal model to study human diseases due to their significant genetic similarity to humans, swift development, and genetic manipulability. Their utility extends to the exploration of the involvement of inflammation in host defense, immune responses, and tissue regeneration. Additionally, the zebrafish model system facilitates prompt screening of chemical compounds that affect inflammation. This study explored the diverse roles of inflammatory pathways in zebrafish development and aging. Serving as a crucial model, zebrafish provides insights into the intricate interplay of inflammation in both developmental and aging contexts. The evidence presented suggests that the same inflammatory signaling pathways often play instructive or beneficial roles during embryogenesis and are associated with malignancies in adults.
Collapse
Affiliation(s)
- Marta Mastrogiovanni
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Francisco Juan Martínez-Navarro
- Grupo de Telomerasa, Cáncer y Envejecimiento, Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria-Arrixaca, 30120 Murcia, Spain
| | - Teresa V. Bowman
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - María L. Cayuela
- Grupo de Telomerasa, Cáncer y Envejecimiento, Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 30100 Murcia, Spain
| |
Collapse
|
14
|
Cheng X, Barakat R, Pavani G, Usha MK, Calderon R, Snella E, Gorden A, Zhang Y, Gadue P, French DL, Dorman KS, Fidanza A, Campbell CA, Espin-Palazon R. Nod1-dependent NF-kB activation initiates hematopoietic stem cell specification in response to small Rho GTPases. Nat Commun 2023; 14:7668. [PMID: 37996457 PMCID: PMC10667254 DOI: 10.1038/s41467-023-43349-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
Uncovering the mechanisms regulating hematopoietic specification not only would overcome current limitations related to hematopoietic stem and progenitor cell (HSPC) transplantation, but also advance cellular immunotherapies. However, generating functional human induced pluripotent stem cell (hiPSC)-derived HSPCs and their derivatives has been elusive, necessitating a better understanding of the developmental mechanisms that trigger HSPC specification. Here, we reveal that early activation of the Nod1-Ripk2-NF-kB inflammatory pathway in endothelial cells (ECs) primes them to switch fate towards definitive hemogenic endothelium, a pre-requisite to specify HSPCs. Our genetic and chemical embryonic models show that HSPCs fail to specify in the absence of Nod1 and its downstream kinase Ripk2 due to a failure on hemogenic endothelial (HE) programming, and that small Rho GTPases coordinate the activation of this pathway. Manipulation of NOD1 in a human system of definitive hematopoietic differentiation indicates functional conservation. This work establishes the RAC1-NOD1-RIPK2-NF-kB axis as a critical intrinsic inductor that primes ECs prior to HE fate switch and HSPC specification. Manipulation of this pathway could help derive a competent HE amenable to specify functional patient specific HSPCs and their derivatives for the treatment of blood disorders.
Collapse
Affiliation(s)
- Xiaoyi Cheng
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Radwa Barakat
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
- Department of Toxicology, Faculty of Veterinary Medicine, Benha University, Qalyubia, 13518, Egypt
| | - Giulia Pavani
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Masuma Khatun Usha
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Rodolfo Calderon
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Elizabeth Snella
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Abigail Gorden
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Yudi Zhang
- Department of Statistics, Iowa State University, Ames, IA, 50011, USA
| | - Paul Gadue
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Deborah L French
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Karin S Dorman
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
- Department of Statistics, Iowa State University, Ames, IA, 50011, USA
| | - Antonella Fidanza
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, EH16 4UU, Edinburgh, United Kingdom
| | - Clyde A Campbell
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Raquel Espin-Palazon
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
15
|
Chi Y, Yang G, Guo C, Zhang S, Hong L, Tang H, Sang X, Wang J, Ma J, Xue Y, Zeng F. Identification of Cellular Compositions in Different Microenvironments and Their Potential Impacts on Hematopoietic Stem Cells HSCs Using Single-Cell RNA Sequencing with Systematical Confirmation. Life (Basel) 2023; 13:2157. [PMID: 38004297 PMCID: PMC10671877 DOI: 10.3390/life13112157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 11/26/2023] Open
Abstract
Hematopoietic stem cells (HSCs) are stem cells that can differentiate into various blood cells and have long-term self-renewal capacity. At present, HSC transplantation is an effective therapeutic means for many malignant hematological diseases, such as aplastic hematological diseases and autoimmune diseases. The hematopoietic microenvironment affects the proliferation, differentiation, and homeostasis of HSCs. The regulatory effect of the hematopoietic microenvironment on HSCs is complex and has not been thoroughly studied yet. In this study, we focused on mononuclear cells (MNCs), which provided an important microenvironment for HSCs and established a methodological system for identifying cellular composition by means of multiple technologies and methods. First, single-cell RNA sequencing (scRNA-seq) technology was used to investigate the cellular composition of cells originating from different microenvironments during different stages of hematopoiesis, including mouse fetal liver mononuclear cells (FL-MNCs), bone marrow mononuclear cells (BM-MNCs), and in vitro-cultured fetal liver stromal cells. Second, bioinformatics analysis showed a higher proportion and stronger proliferation of the HSCs in FL-MNCs than those in BM-MNCs. On the other hand, macrophages in in vitro-cultured fetal liver stromal cells were enriched to about 76%. Differential gene expression analysis and Gene Ontology (GO) functional enrichment analysis demonstrated that fetal liver macrophages have strong cell migration and actin skeleton formation capabilities, allowing them to participate in the hematopoietic homeostasis through endocytosis and exocytosis. Last, various validation experiments such as quantitative real-time PCR (qRT-PCR), ELISA, and confocal image assays were performed on randomly selected target genes or proteins secreted by fetal liver macrophages to further demonstrate the potential relationship between HSCs and the cells inhabiting their microenvironment. This system, which integrates multiple methods, could be used to better understand the fate of these specific cells by determining regulation mechanism of both HSCs and macrophages and could also be extended to studies in other cellular models.
Collapse
Affiliation(s)
- Yanan Chi
- Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Guanheng Yang
- Shanghai Institute of Medical Genetics, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200040, China (H.T.); (X.S.)
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China
| | - Chuanliang Guo
- Shanghai Institute of Medical Genetics, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200040, China (H.T.); (X.S.)
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China
| | - Shaoqing Zhang
- Shanghai Institute of Medical Genetics, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200040, China (H.T.); (X.S.)
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China
| | - Lei Hong
- Shanghai Institute of Medical Genetics, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200040, China (H.T.); (X.S.)
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China
| | - Huixiang Tang
- Shanghai Institute of Medical Genetics, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200040, China (H.T.); (X.S.)
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China
| | - Xiao Sang
- Shanghai Institute of Medical Genetics, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200040, China (H.T.); (X.S.)
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China
| | - Jie Wang
- Shanghai Institute of Medical Genetics, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200040, China (H.T.); (X.S.)
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China
| | - Ji Ma
- Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Institute of Medical Genetics, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200040, China (H.T.); (X.S.)
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China
| | - Yan Xue
- Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Institute of Medical Genetics, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200040, China (H.T.); (X.S.)
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China
| | - Fanyi Zeng
- Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Institute of Medical Genetics, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200040, China (H.T.); (X.S.)
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China
- School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| |
Collapse
|
16
|
Mokkath JH. Plasmon induced hot carrier generation in a pyridine@Au20 composite. Phys Chem Chem Phys 2023; 25:28750-28760. [PMID: 37850351 DOI: 10.1039/d3cp02907g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Using time-dependent density functional theory calculations, we have investigated the generation of hot carriers (HCs) in a system comprising a pyridine molecule and a tetrahedral Au20 plasmonic cluster. Our findings indicate that the decay of the localized surface plasmon resonance (LSPR) induced in the pyridine@Au20 system by a laser pulse facilitates the direct transfer of hot electrons from the occupied states of the Au20 cluster to the unoccupied molecular orbitals of pyridine. Notably, we have identified that the interparticle gap distance between the Au20 cluster and the pyridine molecule plays a critical role in controlling the generation of HCs. By precisely controlling the interaction between the plasmonic cluster and the molecule, we can effectively manipulate the energy distribution of the generated HCs. These insights have the potential to drive advancements in the development of more efficient systems for plasmonic catalysis.
Collapse
Affiliation(s)
- Junais Habeeb Mokkath
- Quantum Nanophotonics Simulations Lab, Department of Physics, Kuwait College of Science and Technology, Doha Area, 7th Ring Road, P.O. Box 27235, Kuwait.
| |
Collapse
|
17
|
Ding J, Li Y, Larochelle A. De Novo Generation of Human Hematopoietic Stem Cells from Pluripotent Stem Cells for Cellular Therapy. Cells 2023; 12:321. [PMID: 36672255 PMCID: PMC9857267 DOI: 10.3390/cells12020321] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/02/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
The ability to manufacture human hematopoietic stem cells (HSCs) in the laboratory holds enormous promise for cellular therapy of human blood diseases. Several differentiation protocols have been developed to facilitate the emergence of HSCs from human pluripotent stem cells (PSCs). Most approaches employ a stepwise addition of cytokines and morphogens to recapitulate the natural developmental process. However, these protocols globally lack clinical relevance and uniformly induce PSCs to produce hematopoietic progenitors with embryonic features and limited engraftment and differentiation capabilities. This review examines how key intrinsic cues and extrinsic environmental inputs have been integrated within human PSC differentiation protocols to enhance the emergence of definitive hematopoiesis and how advances in genomics set the stage for imminent breakthroughs in this field.
Collapse
Affiliation(s)
| | | | - Andre Larochelle
- Cellular and Molecular Therapeutics Branch, National Heart Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| |
Collapse
|
18
|
A zebrafish HCT116 xenograft model to predict anandamide outcomes on colorectal cancer. Cell Death Dis 2022; 13:1069. [PMID: 36564370 PMCID: PMC9789132 DOI: 10.1038/s41419-022-05523-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Colon cancer is one of the leading causes of death worldwide. In recent years, cannabinoids have been extensively studied for their potential anticancer effects and symptom management. Several in vitro studies reported anandamide's (AEA) ability to block cancer cell proliferation and migration, but evidence from in vivo studies is still lacking. Thus, in this study, the effects of AEA exposure in zebrafish embryos transplanted with HCT116 cells were evaluated. Totally, 48 hpf xenografts were exposed to 10 nM AEA, 10 nM AM251, one of the cannabinoid 1 receptor (CB1) antagonist/inverse agonists, and to AEA + AM251, to verify the specific effect of AEA treatment. AEA efficacy was evaluated by confocal microscopy, which demonstrated that these xenografts presented a smaller tumor size, reduced tumor angiogenesis, and lacked micrometastasis formation. To gain deeper evidence into AEA action, microscopic observations were completed by molecular analyses. RNA seq performed on zebrafish transcriptome reported the downregulation of genes involved in cell proliferation, angiogenesis, and the immune system. Conversely, HCT116 cell transcripts resulted not affected by AEA treatment. In vitro HCT116 culture, in fact, confirmed that AEA exposure did not affect cell proliferation and viability, thus suggesting that the reduced tumor size mainly depends on direct effects on the fish rather than on the transplanted cancer cells. AEA reduced cell proliferation and tumor angiogenesis, as suggested by socs3 and pcnp mRNAs and Vegfc protein levels, and exerted anti-inflammatory activity, as indicated by the reduction of il-11a, mhc1uba, and csf3b mRNA. Of note, are the results obtained in groups exposed to AM251, which presence nullifies AEA's beneficial effects. In conclusion, this study promotes the efficacy of AEA in personalized cancer therapy, as suggested by its ability to drive tumor growth and metastasis, and strongly supports the use of zebrafish xenograft as an emerging model platform for cancer studies.
Collapse
|
19
|
Wattrus SJ, Smith ML, Rodrigues CP, Hagedorn EJ, Kim JW, Budnik B, Zon LI. Quality assurance of hematopoietic stem cells by macrophages determines stem cell clonality. Science 2022; 377:1413-1419. [PMID: 36137040 PMCID: PMC9524573 DOI: 10.1126/science.abo4837] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Tissue-specific stem cells persist for a lifetime and can differentiate to maintain homeostasis or transform to initiate cancer. Despite their importance, there are no described quality assurance mechanisms for newly formed stem cells. We observed intimate and specific interactions between macrophages and nascent blood stem cells in zebrafish embryos. Macrophage interactions frequently led to either removal of cytoplasmic material and stem cell division or complete engulfment and stem cell death. Stressed stem cells were marked by surface Calreticulin, which stimulated macrophage interactions. Using cellular barcoding, we found that Calreticulin knock-down or embryonic macrophage depletion reduced the number of stem cell clones that established adult hematopoiesis. Our work supports a model in which embryonic macrophages determine hematopoietic clonality by monitoring stem cell quality.
Collapse
Affiliation(s)
- Samuel J Wattrus
- Howard Hughes Medical Institute, Boston Children's Hospital Boston, MA, USA
- Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA, USA
| | - Mackenzie L Smith
- Howard Hughes Medical Institute, Boston Children's Hospital Boston, MA, USA
- Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA, USA
| | - Cecilia Pessoa Rodrigues
- Howard Hughes Medical Institute, Boston Children's Hospital Boston, MA, USA
- Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA, USA
| | - Elliott J Hagedorn
- Howard Hughes Medical Institute, Boston Children's Hospital Boston, MA, USA
- Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA, USA
| | - Ji Wook Kim
- Howard Hughes Medical Institute, Boston Children's Hospital Boston, MA, USA
- Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA, USA
| | - Bogdan Budnik
- Mass Spectrometry and Proteomics Resource Laboratory, Faculty of Arts and Sciences Division of Science, Harvard University, Cambridge, MA, USA
| | - Leonard I Zon
- Howard Hughes Medical Institute, Boston Children's Hospital Boston, MA, USA
- Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA, USA
| |
Collapse
|
20
|
Cacialli P, Mailhe MP, Wagner I, Merkler D, Golub R, Bertrand JY. Synergistic prostaglandin E synthesis by myeloid and endothelial cells promotes fetal hematopoietic stem cell expansion in vertebrates. EMBO J 2022; 41:e108536. [PMID: 35924455 PMCID: PMC9531293 DOI: 10.15252/embj.2021108536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/21/2022] Open
Abstract
During development, hematopoietic stem cells (HSCs) are produced from the hemogenic endothelium and will expand in a transient hematopoietic niche. Prostaglandin E2 (PGE2) is essential during vertebrate development and HSC specification, but its precise source in the embryo remains elusive. Here, we show that in the zebrafish embryo, PGE2 synthesis genes are expressed by distinct stromal cell populations, myeloid (neutrophils, macrophages), and endothelial cells of the caudal hematopoietic tissue. Ablation of myeloid cells, which produce the PGE2 precursor prostaglandin H2 (PGH2), results in loss of HSCs in the caudal hematopoietic tissue, which could be rescued by exogeneous PGE2 or PGH2 supplementation. Endothelial cells contribute by expressing the PGH2 import transporter slco2b1 and ptges3, the enzyme converting PGH2 into PGE2. Of note, differential niche cell expression of PGE2 biosynthesis enzymes is also observed in the mouse fetal liver. Taken altogether, our data suggest that the triad composed of neutrophils, macrophages, and endothelial cells sequentially and synergistically contributes to blood stem cell expansion during vertebrate development.
Collapse
Affiliation(s)
- Pietro Cacialli
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva 4, Switzerland
| | | | - Ingrid Wagner
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva 4, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva 4, Switzerland.,Division of Clinical Pathology, Department of Diagnostic, University Hospitals of Geneva, Geneva, Switzerland
| | - Rachel Golub
- Unité Lymphocytes et Immunité, Pasteur Institute, Paris Cedex 15, France.,Université de Paris, Paris, France
| | - Julien Y Bertrand
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva 4, Switzerland
| |
Collapse
|
21
|
Somkhit J, Yanicostas C, Soussi-Yanicostas N. Microglia Remodelling and Neuroinflammation Parallel Neuronal Hyperactivation Following Acute Organophosphate Poisoning. Int J Mol Sci 2022; 23:ijms23158240. [PMID: 35897817 PMCID: PMC9332153 DOI: 10.3390/ijms23158240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 01/27/2023] Open
Abstract
Organophosphate (OP) compounds include highly toxic chemicals widely used both as pesticides and as warfare nerve agents. Existing countermeasures are lifesaving, but do not alleviate all long-term neurological sequelae, making OP poisoning a public health concern worldwide and the search for fully efficient antidotes an urgent need. OPs cause irreversible acetylcholinesterase (AChE) inhibition, inducing the so-called cholinergic syndrome characterized by peripheral manifestations and seizures associated with permanent psychomotor deficits. Besides immediate neurotoxicity, recent data have also identified neuroinflammation and microglia activation as two processes that likely play an important, albeit poorly understood, role in the physiopathology of OP intoxication and its long-term consequences. To gain insight into the response of microglia to OP poisoning, we used a previously described model of diisopropylfluorophosphate (DFP) intoxication of zebrafish larvae. This model reproduces almost all the defects seen in poisoned humans and preclinical models, including AChE inhibition, neuronal epileptiform hyperexcitation, and increased neuronal death. Here, we investigated in vivo the consequences of acute DFP exposure on microglia morphology and behaviour, and on the expression of a set of pro- and anti-inflammatory cytokines. We also used a genetic method of microglial ablation to evaluate the role in the OP-induced neuropathology. We first showed that DFP intoxication rapidly induced deep microglial phenotypic remodelling resembling that seen in M1-type activated macrophages and characterized by an amoeboid morphology, reduced branching, and increased mobility. DFP intoxication also caused massive expression of genes encoding pro-inflammatory cytokines Il1β, Tnfα, Il8, and to a lesser extent, immuno-modulatory cytokine Il4, suggesting complex microglial reprogramming that included neuroinflammatory activities. Finally, microglia-depleted larvae were instrumental in showing that microglia were major actors in DFP-induced neuroinflammation and, more importantly, that OP-induced neuronal hyperactivation was markedly reduced in larvae fully devoid of microglia. DFP poisoning rapidly triggered massive microglia-mediated neuroinflammation, probably as a result of DFP-induced neuronal hyperexcitation, which in turn further exacerbated neuronal activation. Microglia are thus a relevant therapeutic target, and identifying substances reducing microglial activation could add efficacy to existing OP antidote cocktails.
Collapse
|
22
|
Cui Y, Shi W, Zhang K, Hou Z, Wang Y, Yan W, Ma Q, He S, Huang J, Lu C, Wang Y, Wang G, Qiu J. Temporal-spatial low shear stress induces heterogenous distribution of hematopoietic stem cell budding in zebrafish. Cell Mol Life Sci 2022; 79:399. [PMID: 35792959 PMCID: PMC11073138 DOI: 10.1007/s00018-022-04411-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/22/2022] [Accepted: 06/01/2022] [Indexed: 11/03/2022]
Abstract
Hematopoietic stem/progenitor cells (HSPCs) originate from endothelial cells (ECs) localized on the ventral side of the dorsal aorta (DA), and hemodynamic parameters may suffer sharp changes in DA at HSPCs development stage for intersegmental vessel formation. However, the temporal-spatial shear stress parameters and biomechanics mechanisms of HSPC budding remain unknown. Here, we found that the hematopoietic endothelium (HE) in the aorta-gonad-mesonephros was heterogeneous; that is, HEs were mainly distributed at the ventral side of the vascular bifurcation in zebrafish embryos, which was found to show low shear stress (LSS) through numerical simulation analysis. Furthermore, HSPCs localized in the posterior somite of aorta-gonad-mesonephros with slow velocity. On the temporal scale, there was a slow velocity and LSS during HE budding from 36 h post-fertilization and decreased shear stress with drug expanded HSPC numbers. Mechanistically, matrix metalloproteinase (MMP) expression and macrophage chemotaxis were significantly increased in HEs by RNA-seq. After treatment with an MMP13 inhibitor, HSPCs were significantly reduced in both the aorta-gonad-mesonephros and caudal hematopoietic tissue in embryos. Our results show that HSPC budding is heterogeneous, and the mechanism is that physiological LSS controls the emergence of HSPCs by promoting the accumulation of macrophages and subsequent MMP expression.
Collapse
Affiliation(s)
- Yuliang Cui
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Wenpeng Shi
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Kun Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Zhengjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Yanyun Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - WenHua Yan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Qinfeng Ma
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Shicheng He
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Junli Huang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Chenfei Lu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Yeqi Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
23
|
Stosik M, Tokarz-Deptuła B, Deptuła W. Haematopoiesis in Zebrafish (Danio Rerio). Front Immunol 2022; 13:902941. [PMID: 35720291 PMCID: PMC9201100 DOI: 10.3389/fimmu.2022.902941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Haematopoiesis in fish and mammals is a complex process, and many aspects regarding its model and the differentiation of haematopoietic stem cells (HSCs) still remain enigmatic despite advanced studies. The effects of microenvironmental factors or HSCs niche and signalling pathways on haematopoiesis are also unclear. This review presents Danio rerio as a model organism for studies on haematopoiesis in vertebrates and discusses the development of this process during the embryonic period and in adult fish. It describes the role of the microenvironment of the haematopoietic process in regulating the formation and function of HSCs/HSPCs (hematopoietic stem/progenitor cells) and highlights facts and research areas important for haematopoiesis in fish and mammals.
Collapse
Affiliation(s)
- Michał Stosik
- Institute of Biological Science, Faculty of Biological Sciences, University of Zielona Góra, Zielona Góra, Poland
| | | | - Wiesław Deptuła
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Poland
| |
Collapse
|
24
|
Bennett LF, Mumau MD, Li Y, Speck NA. MyD88-dependent TLR signaling oppositely regulates hematopoietic progenitor and stem cell formation in the embryo. Development 2022; 149:274040. [PMID: 35043940 PMCID: PMC8935211 DOI: 10.1242/dev.200025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/07/2022] [Indexed: 11/20/2022]
Abstract
Hemogenic endothelial (HE) cells in the dorsal aorta undergo an endothelial-to-hematopoietic transition (EHT) to form multipotent progenitors, lympho-myeloid biased progenitors (LMPs), pre-hematopoietic stem cells (pre-HSCs) and adult-repopulating HSCs. These briefly accumulate in intra-arterial hematopoietic clusters (IAHCs) before being released into the circulation. It is generally assumed that the number of IAHC cells correlates with the number of HSCs. Here, we show that changes in the number of IAHC cells, LMPs and HSCs can be uncoupled. Mutations impairing MyD88-dependent toll-like receptor (TLR) signaling decreased the number of IAHC cells and LMPs, but increased the number of HSCs in the aorta-gonad-mesonephros region of mouse embryos. TLR4-deficient embryos generated normal numbers of HE cells, but IAHC cell proliferation decreased. Loss of MyD88-dependent TLR signaling in innate immune myeloid cells had no effect on IAHC cell numbers. Instead, TLR4 deletion in endothelial cells (ECs) recapitulated the phenotype observed with germline deletion, demonstrating that MyD88-dependent TLR signaling in ECs and/or in IAHCs regulates the numbers of LMPs and HSCs.
Collapse
Affiliation(s)
- Laura F. Bennett
- Abramson Family Cancer Research Institute and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Melanie D. Mumau
- Abramson Family Cancer Research Institute and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yan Li
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Nancy A. Speck
- Abramson Family Cancer Research Institute and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,Author for correspondence ()
| |
Collapse
|
25
|
Codolo G, Facchinello N, Papa N, Bertocco A, Coletta S, Benna C, Dall’Olmo L, Mocellin S, Tiso N, de Bernard M. Macrophage-Mediated Melanoma Reduction after HP-NAP Treatment in a Zebrafish Xenograft Model. Int J Mol Sci 2022; 23:ijms23031644. [PMID: 35163566 PMCID: PMC8836027 DOI: 10.3390/ijms23031644] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/21/2022] [Accepted: 01/29/2022] [Indexed: 01/02/2023] Open
Abstract
The Helicobacter pylori Neutrophil Activating Protein (HP-NAP) is endowed with immunomodulatory properties that make it a potential candidate for anticancer therapeutic applications. By activating cytotoxic Th1 responses, HP-NAP inhibits the growth of bladder cancer and enhances the anti-tumor activity of oncolytic viruses in the treatment of metastatic breast cancer and neuroendocrine tumors. The possibility that HP-NAP exerts its anti-tumor effect also by modulating the activity of innate immune cells has not yet been explored. Taking advantage of the zebrafish model, we examined the therapeutic efficacy of HP-NAP against metastatic human melanoma, limiting the observational window to 9 days post-fertilization, well before the maturation of the adaptive immunity. Human melanoma cells were xenotransplanted into zebrafish embryos and tracked in the presence or absence of HP-NAP. The behavior and phenotype of macrophages and the impact of their drug-induced depletion were analyzed exploiting macrophage-expressed transgenes. HP-NAP administration efficiently inhibited tumor growth and metastasis and this was accompanied by strong recruitment of macrophages with a pro-inflammatory profile at the tumor site. The depletion of macrophages almost completely abrogated the ability of HP-NAP to counteract tumor growth. Our findings highlight the pivotal role of activated macrophages in counteracting melanoma growth and support the notion that HP-NAP might become a new biological therapeutic agent for the treatment of metastatic melanomas.
Collapse
Affiliation(s)
- Gaia Codolo
- Department of Biology, University of Padova, 35131 Padova, Italy; (G.C.); (N.P.); (S.C.)
| | - Nicola Facchinello
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy;
| | - Nicole Papa
- Department of Biology, University of Padova, 35131 Padova, Italy; (G.C.); (N.P.); (S.C.)
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata 64, 35128 Padova, Italy; (L.D.); (S.M.)
| | - Ambra Bertocco
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy;
| | - Sara Coletta
- Department of Biology, University of Padova, 35131 Padova, Italy; (G.C.); (N.P.); (S.C.)
| | - Clara Benna
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padova, 35124 Padova, Italy;
| | - Luigi Dall’Olmo
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata 64, 35128 Padova, Italy; (L.D.); (S.M.)
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padova, 35124 Padova, Italy;
| | - Simone Mocellin
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata 64, 35128 Padova, Italy; (L.D.); (S.M.)
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padova, 35124 Padova, Italy;
| | - Natascia Tiso
- Department of Biology, University of Padova, 35131 Padova, Italy; (G.C.); (N.P.); (S.C.)
- Correspondence: (N.T.); (M.d.B.)
| | - Marina de Bernard
- Department of Biology, University of Padova, 35131 Padova, Italy; (G.C.); (N.P.); (S.C.)
- Correspondence: (N.T.); (M.d.B.)
| |
Collapse
|
26
|
Azzoni E, Frontera V, Anselmi G, Rode C, James C, Deltcheva EM, Demian AS, Brown J, Barone C, Patelli A, Harman JR, Nicholls M, Conway SJ, Morrissey E, Jacobsen SEW, Sparrow DB, Harris AL, Enver T, de Bruijn MFTR. The onset of circulation triggers a metabolic switch required for endothelial to hematopoietic transition. Cell Rep 2021; 37:110103. [PMID: 34910918 PMCID: PMC8692754 DOI: 10.1016/j.celrep.2021.110103] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/11/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022] Open
Abstract
Hematopoietic stem cells (HSCs) emerge during development from the vascular wall of the main embryonic arteries. The onset of circulation triggers several processes that provide critical external factors for HSC generation. Nevertheless, it is not fully understood how and when the onset of circulation affects HSC emergence. Here we show that in Ncx1-/- mouse embryos devoid of circulation the HSC lineage develops until the phenotypic pro-HSC stage. However, these cells reside in an abnormal microenvironment, fail to activate the hematopoietic program downstream of Runx1, and are functionally impaired. Single-cell transcriptomics shows that during the endothelial-to-hematopoietic transition, Ncx1-/- cells fail to undergo a glycolysis to oxidative phosphorylation metabolic switch present in wild-type cells. Interestingly, experimental activation of glycolysis results in decreased intraembryonic hematopoiesis. Our results suggest that the onset of circulation triggers metabolic changes that allow HSC generation to proceed.
Collapse
Affiliation(s)
- Emanuele Azzoni
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK.
| | - Vincent Frontera
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Giorgio Anselmi
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Christina Rode
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Chela James
- Department of Cancer Biology, UCL Cancer Institute, University College London, London, WC1E 6DD, UK
| | - Elitza M Deltcheva
- Department of Cancer Biology, UCL Cancer Institute, University College London, London, WC1E 6DD, UK
| | - Atanasiu S Demian
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - John Brown
- Department of Cancer Biology, UCL Cancer Institute, University College London, London, WC1E 6DD, UK
| | - Cristiana Barone
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, 20900, Italy
| | - Arianna Patelli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, 20900, Italy
| | - Joe R Harman
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Matthew Nicholls
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Simon J Conway
- HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, IN 46033, USA
| | - Edward Morrissey
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Sten Eirik W Jacobsen
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK; Hematopoietic Stem Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK; Department of Cell and Molecular Biology, Wallenberg Institute for Regenerative Medicine and Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet and Karolinska University Hospital, 171 77 Stockholm, Sweden
| | - Duncan B Sparrow
- Department of Physiology, Anatomy and Genetics, BHF Centre of Research Excellence, University of Oxford, Oxford, OX1 3PT, UK
| | - Adrian L Harris
- Department of Oncology, Molecular Oncology Laboratories, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Tariq Enver
- Department of Cancer Biology, UCL Cancer Institute, University College London, London, WC1E 6DD, UK; Division of Molecular Medicine and Gene Therapy, Lund University, Lund, 22184, Sweden
| | - Marella F T R de Bruijn
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK.
| |
Collapse
|
27
|
Hapln1b, a central organizer of the extracellular matrix, modulates kit signalling to control developmental haematopoiesis. Blood Adv 2021; 5:4935-4948. [PMID: 34543380 PMCID: PMC9152995 DOI: 10.1182/bloodadvances.2020001524] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/30/2021] [Indexed: 11/20/2022] Open
Abstract
During early vertebrate development, hematopoietic stem and progenitor cells (HSPCs) are produced from hemogenic endothelium located in the dorsal aorta, before they migrate to a transient niche where they expand, the fetal liver and the caudal hematopoietic tissue (CHT), in mammals and zebrafish, respectively. In zebrafish, previous studies have shown that the extracellular matrix (ECM) around the aorta needs to be degraded to allow HSPCs to leave the aortic floor and reach blood circulation. However, the role of the ECM components in HSPC specification has never been addressed. We show here that hapln1b, a key component of the ECM is specifically expressed in hematopoietic sites in the zebrafish embryo. Gain- and loss-of-function experiments all resulted in the absence of HSPCs in the early embryo, showing that hapln1b is required, at the correct level, to specify HSPCs in the hemogenic endothelium. Furthermore, we show that the expression of hapln1b is necessary to maintain the integrity of the ECM through its link domain. By combining functional analyses and computer modelling, we show that kitlgb interacts with the ECM to specify HSPCs. We demonstrate that the ECM is an integral component of the microenvironment and mediates cytokine signalling that is required for HSPC specification.
Collapse
|
28
|
Lévesque JP, Summers KM, Bisht K, Millard SM, Winkler IG, Pettit AR. Macrophages form erythropoietic niches and regulate iron homeostasis to adapt erythropoiesis in response to infections and inflammation. Exp Hematol 2021; 103:1-14. [PMID: 34500024 DOI: 10.1016/j.exphem.2021.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/24/2022]
Abstract
It has recently emerged that tissue-resident macrophages are key regulators of several stem cell niches orchestrating tissue formation during development, as well as postnatally, when they also organize the repair and regeneration of many tissues including the hemopoietic tissue. The fact that macrophages are also master regulators and effectors of innate immunity and inflammation allows them to coordinate hematopoietic response to infections, injuries, and inflammation. After recently reviewing the roles of phagocytes and macrophages in regulating normal and pathologic hematopoietic stem cell niches, we now focus on the key roles of macrophages in regulating erythropoiesis and iron homeostasis. We review herein the recent advances in understanding how macrophages at the center of erythroblastic islands form an erythropoietic niche that controls the terminal differentiation and maturation of erythroblasts into reticulocytes; how red pulp macrophages in the spleen control iron recycling and homeostasis; how these macrophages coordinate emergency erythropoiesis in response to blood loss, infections, and inflammation; and how persistent infections or inflammation can lead to anemia of inflammation via macrophages. Finally, we discuss the technical challenges associated with the molecular characterization of erythroid island macrophages and red pulp macrophages.
Collapse
Affiliation(s)
- Jean-Pierre Lévesque
- Mater Research Institute - The University of Queensland, Woolloongabba, QLD, Australia.
| | - Kim M Summers
- Mater Research Institute - The University of Queensland, Woolloongabba, QLD, Australia
| | - Kavita Bisht
- Mater Research Institute - The University of Queensland, Woolloongabba, QLD, Australia
| | - Susan M Millard
- Mater Research Institute - The University of Queensland, Woolloongabba, QLD, Australia
| | - Ingrid G Winkler
- Mater Research Institute - The University of Queensland, Woolloongabba, QLD, Australia
| | - Allison R Pettit
- Mater Research Institute - The University of Queensland, Woolloongabba, QLD, Australia
| |
Collapse
|
29
|
Mack R, Zhang L, Breslin Sj P, Zhang J. The Fetal-to-Adult Hematopoietic Stem Cell Transition and its Role in Childhood Hematopoietic Malignancies. Stem Cell Rev Rep 2021; 17:2059-2080. [PMID: 34424480 DOI: 10.1007/s12015-021-10230-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2021] [Indexed: 01/07/2023]
Abstract
As with most organ systems that undergo continuous generation and maturation during the transition from fetal to adult life, the hematopoietic and immune systems also experience dynamic changes. Such changes lead to many unique features in blood cell function and immune responses in early childhood. The blood cells and immune cells in neonates are a mixture of fetal and adult origin due to the co-existence of both fetal and adult types of hematopoietic stem cells (HSCs) and progenitor cells (HPCs). Fetal blood and immune cells gradually diminish during maturation of the infant and are almost completely replaced by adult types of cells by 3 to 4 weeks after birth in mice. Such features in early childhood are associated with unique features of hematopoietic and immune diseases, such as leukemia, at these developmental stages. Therefore, understanding the cellular and molecular mechanisms by which hematopoietic and immune changes occur throughout ontogeny will provide useful information for the study and treatment of pediatric blood and immune diseases. In this review, we summarize the most recent studies on hematopoietic initiation during early embryonic development, the expansion of both fetal and adult types of HSCs and HPCs in the fetal liver and fetal bone marrow stages, and the shift from fetal to adult hematopoiesis/immunity during neonatal/infant development. We also discuss the contributions of fetal types of HSCs/HPCs to childhood leukemias.
Collapse
Affiliation(s)
- Ryan Mack
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Lei Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Peter Breslin Sj
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA.,Departments of Molecular/Cellular Physiology and Biology, Loyola University Medical Center and Loyola University Chicago, Chicago, IL, 60660, USA
| | - Jiwang Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA.
| |
Collapse
|
30
|
A connexin/ifi30 pathway bridges HSCs with their niche to dampen oxidative stress. Nat Commun 2021; 12:4484. [PMID: 34301940 PMCID: PMC8302694 DOI: 10.1038/s41467-021-24831-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 07/10/2021] [Indexed: 12/22/2022] Open
Abstract
Reactive oxygen species (ROS) represent a by-product of metabolism and their excess is toxic for hematopoietic stem and progenitor cells (HSPCs). During embryogenesis, a small number of HSPCs are produced from the hemogenic endothelium, before they colonize a transient organ where they expand, for example the fetal liver in mammals. In this study, we use zebrafish to understand the molecular mechanisms that are important in the caudal hematopoietic tissue (equivalent to the mammalian fetal liver) to promote HSPC expansion. High levels of ROS are deleterious for HSPCs in this niche, however this is rescued by addition of antioxidants. We show that Cx41.8 is important to lower ROS levels in HSPCs. We also demonstrate a new role for ifi30, known to be involved in the immune response. In the hematopoietic niche, Ifi30 can recycle oxidized glutathione to allow HSPCs to dampen their levels of ROS, a role that could be conserved in human fetal liver. Reactive oxygen species (ROS) are metabolic by-products which in excess can be toxic for hematopoietic stem and progenitor cells (HSPCs). Here the authors show that toxic ROS are transferred by expanding HSPCs to the zebrafish developmental niche via connexin Cx41.8, where Ifi30 promotes their detoxification.
Collapse
|
31
|
Lévesque JP, Summers KM, Millard SM, Bisht K, Winkler IG, Pettit AR. Role of macrophages and phagocytes in orchestrating normal and pathologic hematopoietic niches. Exp Hematol 2021; 100:12-31.e1. [PMID: 34298116 DOI: 10.1016/j.exphem.2021.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 12/13/2022]
Abstract
The bone marrow (BM) contains a mosaic of niches specialized in supporting different maturity stages of hematopoietic stem and progenitor cells such as hematopoietic stem cells and myeloid, lymphoid, and erythroid progenitors. Recent advances in BM imaging and conditional gene knockout mice have revealed that niches are a complex network of cells of mesenchymal, endothelial, neuronal, and hematopoietic origins, together with local physicochemical parameters. Within these complex structures, phagocytes, such as neutrophils, macrophages, and dendritic cells, all of which are of hematopoietic origin, have been found to be important in regulating several niches in the BM, including hematopoietic stem cell niches, erythropoietic niches, and niches involved in endosteal bone formation. There is also increasing evidence that these macrophages have an important role in adapting hematopoiesis, erythropoiesis, and bone formation in response to inflammatory stressors and play a key part in maintaining the integrity and function of these. Likewise, there is also accumulating evidence that subsets of monocytes, macrophages, and other phagocytes contribute to the progression and response to treatment of several lymphoid malignancies such as multiple myeloma, Hodgkin lymphoma, and non-Hodgkin lymphoma, as well as lymphoblastic leukemia, and may also play a role in myelodysplastic syndrome and myeloproliferative neoplasms associated with Noonan syndrome and aplastic anemia. In this review, the potential functions of macrophages and other phagocytes in normal and pathologic niches are discussed, as are the challenges in studying BM and other tissue-resident macrophages at the molecular level.
Collapse
Affiliation(s)
- Jean-Pierre Lévesque
- Mater Research Institute, University of Queensland, Woolloongabba, QLD, Australia.
| | - Kim M Summers
- Mater Research Institute, University of Queensland, Woolloongabba, QLD, Australia
| | - Susan M Millard
- Mater Research Institute, University of Queensland, Woolloongabba, QLD, Australia
| | - Kavita Bisht
- Mater Research Institute, University of Queensland, Woolloongabba, QLD, Australia
| | - Ingrid G Winkler
- Mater Research Institute, University of Queensland, Woolloongabba, QLD, Australia
| | - Allison R Pettit
- Mater Research Institute, University of Queensland, Woolloongabba, QLD, Australia
| |
Collapse
|
32
|
Rasheed A, Rayner KJ. Macrophage Responses to Environmental Stimuli During Homeostasis and Disease. Endocr Rev 2021; 42:407-435. [PMID: 33523133 PMCID: PMC8284619 DOI: 10.1210/endrev/bnab004] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Indexed: 12/20/2022]
Abstract
Work over the last 40 years has described macrophages as a heterogeneous population that serve as the frontline surveyors of tissue immunity. As a class, macrophages are found in almost every tissue in the body and as distinct populations within discrete microenvironments in any given tissue. During homeostasis, macrophages protect these tissues by clearing invading foreign bodies and/or mounting immune responses. In addition to varying identities regulated by transcriptional programs shaped by their respective environments, macrophage metabolism serves as an additional regulator to temper responses to extracellular stimuli. The area of research known as "immunometabolism" has been established within the last decade, owing to an increase in studies focusing on the crosstalk between altered metabolism and the regulation of cellular immune processes. From this research, macrophages have emerged as a prime focus of immunometabolic studies, although macrophage metabolism and their immune responses have been studied for centuries. During disease, the metabolic profile of the tissue and/or systemic regulators, such as endocrine factors, become increasingly dysregulated. Owing to these changes, macrophage responses can become skewed to promote further pathophysiologic changes. For instance, during diabetes, obesity, and atherosclerosis, macrophages favor a proinflammatory phenotype; whereas in the tumor microenvironment, macrophages elicit an anti-inflammatory response to enhance tumor growth. Herein we have described how macrophages respond to extracellular cues including inflammatory stimuli, nutrient availability, and endocrine factors that occur during and further promote disease progression.
Collapse
Affiliation(s)
- Adil Rasheed
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada.,Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Katey J Rayner
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada.,Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
33
|
Splichalova I, Balounová J, Vobořil M, Brabec T, Sedlacek R, Filipp D. Deletion of TLR2 + erythro-myeloid progenitors leads to embryonic lethality in mice. Eur J Immunol 2021; 51:2237-2250. [PMID: 34107067 DOI: 10.1002/eji.202049142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/29/2021] [Accepted: 06/08/2021] [Indexed: 11/05/2022]
Abstract
Early embryonic hematopoiesis in mammals is defined by three successive waves of hematopoietic progenitors which exhibit a distinct hematopoietic potential and provide continuous support for the development of the embryo and adult organism. Although the functional importance of each of these waves has been analyzed, their spatio-temporal overlap and the lack of wave-specific markers hinders the accurate separation and assessment of their functional roles during early embryogenesis. We have recently shown that TLR2, in combination with c-kit, represents the earliest signature of emerging precursors of the second hematopoietic wave, erythro-myeloid precursors (EMPs). Since the onset of Tlr2 expression distinguishes EMPs from primitive progenitors which coexist in the yolk sac from E7.5, we generated a novel transgenic "knock in" mouse model, Tlr2Dtr , suitable for inducible targeted depletion of TLR2+ EMPs. In this model, the red fluorescent protein and diphtheria toxin receptor sequences are linked via a P2A sequence and inserted into the Tlr2 locus before its stop codon. We show that a timely controlled deletion of TLR2+ EMPs in Tlr2Dtr embryos results in a marked decrease in both erythroid as well as myeloid lineages and, consequently, in embryonic lethality peaking before E13.5. These findings validate the importance of EMPs in embryonic development.
Collapse
Affiliation(s)
- Iva Splichalova
- Laboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jana Balounová
- Laboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.,Czech Centre for Phenogenomics & Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Matouš Vobořil
- Laboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tomas Brabec
- Laboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics & Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Dominik Filipp
- Laboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
34
|
Collins A, Mitchell CA, Passegué E. Inflammatory signaling regulates hematopoietic stem and progenitor cell development and homeostasis. J Exp Med 2021; 218:212383. [PMID: 34129018 PMCID: PMC8210624 DOI: 10.1084/jem.20201545] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/19/2021] [Accepted: 05/07/2021] [Indexed: 01/06/2023] Open
Abstract
Inflammation exerts multiple effects on the early hematopoietic compartment. Best studied is the role of proinflammatory cytokines in activating adult hematopoietic stem and progenitor cells to dynamically replenish myeloid lineage cells in a process known as emergency myelopoiesis. However, it is increasingly appreciated that the same proinflammatory signaling pathways are used in diverse hematopoietic scenarios. This review focuses on inflammatory signaling in the emergence of the definitive hematopoietic compartment during embryonic life, and tonic inflammatory signals derived from commensal microbiota in shaping the adult hematopoietic compartment in the absence of pathogenic insults. Insights into the unique and shared aspects of inflammatory signaling that regulate hematopoietic stem and progenitor cell function across the lifespan and health span of an individual will enable better diagnostic and therapeutic approaches to hematopoietic dysregulation and malignancies.
Collapse
Affiliation(s)
- Amélie Collins
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY.,Department of Pediatrics, Columbia University Irving Medical Center, New York, NY
| | - Carl A Mitchell
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY.,Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY
| | - Emmanuelle Passegué
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY.,Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
35
|
Jacobs SH, Dóró E, Hammond FR, Nguyen-Chi ME, Lutfalla G, Wiegertjes GF, Forlenza M. Occurrence of foamy macrophages during the innate response of zebrafish to trypanosome infections. eLife 2021; 10:64520. [PMID: 34114560 PMCID: PMC8238505 DOI: 10.7554/elife.64520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 06/09/2021] [Indexed: 12/19/2022] Open
Abstract
A tightly regulated innate immune response to trypanosome infections is critical to strike a balance between parasite control and inflammation-associated pathology. In this study, we make use of the recently established Trypanosoma carassii infection model in larval zebrafish to study the early response of macrophages and neutrophils to trypanosome infections in vivo. We consistently identified high- and low-infected individuals and were able to simultaneously characterise their differential innate response. Not only did macrophage and neutrophil number and distribution differ between the two groups, but also macrophage morphology and activation state. Exclusive to high-infected zebrafish, was the occurrence of foamy macrophages characterised by a strong pro-inflammatory profile and potentially associated with an exacerbated immune response as well as susceptibility to the infection. To our knowledge, this is the first report of the occurrence of foamy macrophages during an extracellular trypanosome infection.
Collapse
Affiliation(s)
- Sem H Jacobs
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands.,Experimental Zoology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Eva Dóró
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Ffion R Hammond
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | | | | | - Geert F Wiegertjes
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands.,Aquaculture and Fisheries Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Maria Forlenza
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
36
|
Morris AD, Kucenas S. A Novel Lysolecithin Model for Visualizing Damage in vivo in the Larval Zebrafish Spinal Cord. Front Cell Dev Biol 2021; 9:654583. [PMID: 34095120 PMCID: PMC8173112 DOI: 10.3389/fcell.2021.654583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/15/2021] [Indexed: 12/05/2022] Open
Abstract
Background: Lysolecithin is commonly used to induce demyelinating lesions in the spinal cord and corpus callosum of mammalian models. Although these models and clinical patient samples are used to study neurodegenerative diseases, such as multiple sclerosis (MS), they do not allow for direct visualization of disease-related damage in vivo. To overcome this limitation, we created and characterized a focal lysolecithin injection model in zebrafish that allows us to investigate the temporal dynamics underlying lysolecithin-induced damage in vivo. Results: We injected lysolecithin into 4-6 days post-fertilization (dpf) zebrafish larval spinal cords and, coupled with in vivo, time-lapse imaging, observed hallmarks consistent with mammalian models of lysolecithin-induced demyelination, including myelinating glial cell loss, myelin perturbations, axonal sparing, and debris clearance. Conclusion: We have developed and characterized a lysolecithin injection model in zebrafish that allows us to investigate myelin damage in a living, vertebrate organism. This model may be a useful pre-clinical screening tool for investigating the safety and efficacy of novel therapeutic compounds that reduce damage and/or promote repair in neurodegenerative disorders, such as MS.
Collapse
Affiliation(s)
- Angela D. Morris
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, United States
| | - Sarah Kucenas
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, United States
- Department of Biology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
37
|
Travnickova J, Nhim S, Abdellaoui N, Djouad F, Nguyen-Chi M, Parmeggiani A, Kissa K. Macrophage morphological plasticity and migration is Rac signalling and MMP9 dependant. Sci Rep 2021; 11:10123. [PMID: 33980872 PMCID: PMC8115330 DOI: 10.1038/s41598-021-88961-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 04/05/2021] [Indexed: 11/22/2022] Open
Abstract
In vitro, depending on extracellular matrix (ECM) architecture, macrophages migrate either in amoeboid or mesenchymal mode; while the first is a general trait of leukocytes, the latter is associated with tissue remodelling via Matrix Metalloproteinases (MMPs). To assess whether these stereotyped migrations could be also observed in a physiological context, we used the zebrafish embryo and monitored macrophage morphology, behaviour and capacity to mobilise haematopoietic stem/progenitor cells (HSPCs), as a final functional readout. Morphometric analysis identified 4 different cell shapes. Live imaging revealed that macrophages successively adopt all four shapes as they migrate through ECM. Treatment with inhibitors of MMPs or Rac GTPase to abolish mesenchymal migration, suppresses both ECM degradation and HSPC mobilisation while differently affecting macrophage behaviour. This study depicts real time macrophage behaviour in a physiological context and reveals extreme reactivity of these cells constantly adapting and switching migratory shapes to achieve HSPCs proper mobilisation.
Collapse
Affiliation(s)
- Jana Travnickova
- Emergence of Haematopoietic Stem Cells and Cancer, LPHI, CNRS, INSERM, Univ Montpellier, Montpellier, France.,Present Address: MRC Human Genetics Unit, and CRUK Edinburgh Centre, Institute of Genetics and Cancer, Western General Campus, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Sandra Nhim
- Emergence of Haematopoietic Stem Cells and Cancer, LPHI, CNRS, INSERM, Univ Montpellier, Montpellier, France
| | - Naoill Abdellaoui
- Emergence of Haematopoietic Stem Cells and Cancer, LPHI, CNRS, INSERM, Univ Montpellier, Montpellier, France
| | - Farida Djouad
- IRMB, Univ Montpellier, INSERM, Montpellier, France, Montpellier, France
| | - Maï Nguyen-Chi
- Mise en Place de L'immunité et Inflammation, LPHI, CNRS, INSERM, Univ Montpellier, Montpellier, France
| | - Andrea Parmeggiani
- Emergence of Haematopoietic Stem Cells and Cancer, LPHI, CNRS, INSERM, Univ Montpellier, Montpellier, France.,Laboratoire Charles Coulomb, CNRS, Univ Montpellier, Montpellier, France
| | - Karima Kissa
- Emergence of Haematopoietic Stem Cells and Cancer, LPHI, CNRS, INSERM, Univ Montpellier, Montpellier, France.
| |
Collapse
|
38
|
Póvoa V, Rebelo de Almeida C, Maia-Gil M, Sobral D, Domingues M, Martinez-Lopez M, de Almeida Fuzeta M, Silva C, Grosso AR, Fior R. Innate immune evasion revealed in a colorectal zebrafish xenograft model. Nat Commun 2021; 12:1156. [PMID: 33608544 PMCID: PMC7895829 DOI: 10.1038/s41467-021-21421-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 01/26/2021] [Indexed: 01/31/2023] Open
Abstract
Cancer immunoediting is a dynamic process of crosstalk between tumor cells and the immune system. Herein, we explore the fast zebrafish xenograft model to investigate the innate immune contribution to this process. Using multiple breast and colorectal cancer cell lines and zAvatars, we find that some are cleared (regressors) while others engraft (progressors) in zebrafish xenografts. We focus on two human colorectal cancer cells derived from the same patient that show contrasting engraftment/clearance profiles. Using polyclonal xenografts to mimic intra-tumor heterogeneity, we demonstrate that SW620_progressors can block clearance of SW480_regressors. SW480_regressors recruit macrophages and neutrophils more efficiently than SW620_progressors; SW620_progressors however, modulate macrophages towards a pro-tumoral phenotype. Genetic and chemical suppression of myeloid cells indicates that macrophages and neutrophils play a crucial role in clearance. Single-cell-transcriptome analysis shows a fast subclonal selection, with clearance of regressor subclones associated with IFN/Notch signaling and escaper-expanded subclones with enrichment of IL10 pathway. Overall, our work opens the possibility of using zebrafish xenografts as living biomarkers of the tumor microenvironment.
Collapse
Affiliation(s)
- Vanda Póvoa
- Champalimaud Centre for the Unknown, Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Cátia Rebelo de Almeida
- Champalimaud Centre for the Unknown, Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Mariana Maia-Gil
- Champalimaud Centre for the Unknown, Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Daniel Sobral
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Micaela Domingues
- Champalimaud Centre for the Unknown, Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Mayra Martinez-Lopez
- Champalimaud Centre for the Unknown, Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Miguel de Almeida Fuzeta
- Champalimaud Centre for the Unknown, Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Carlos Silva
- Champalimaud Centre for the Unknown, Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Ana Rita Grosso
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Rita Fior
- Champalimaud Centre for the Unknown, Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal.
| |
Collapse
|
39
|
Neo WH, Lie-A-Ling M, Fadlullah MZH, Lacaud G. Contributions of Embryonic HSC-Independent Hematopoiesis to Organogenesis and the Adult Hematopoietic System. Front Cell Dev Biol 2021; 9:631699. [PMID: 33681211 PMCID: PMC7930747 DOI: 10.3389/fcell.2021.631699] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/22/2021] [Indexed: 12/17/2022] Open
Abstract
During ontogeny, the establishment of the hematopoietic system takes place in several phases, separated both in time and location. The process is initiated extra-embryonically in the yolk sac (YS) and concludes in the main arteries of the embryo with the formation of hematopoietic stem cells (HSC). Initially, it was thought that HSC-independent hematopoietic YS cells were transient, and only required to bridge the gap to HSC activity. However, in recent years it has become clear that these cells also contribute to embryonic organogenesis, including the emergence of HSCs. Furthermore, some of these early HSC-independent YS cells persist into adulthood as distinct hematopoietic populations. These previously unrecognized abilities of embryonic HSC-independent hematopoietic cells constitute a new field of interest. Here, we aim to provide a succinct overview of the current knowledge regarding the contribution of YS-derived hematopoietic cells to the development of the embryo and the adult hematopoietic system.
Collapse
Affiliation(s)
- Wen Hao Neo
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, United Kingdom
| | - Michael Lie-A-Ling
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, United Kingdom
| | | | - Georges Lacaud
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, United Kingdom
| |
Collapse
|
40
|
Campbell CA, Fursova O, Cheng X, Snella E, McCune A, Li L, Solchenberger B, Schmid B, Sahoo D, Morton M, Traver D, Espín-Palazón R. A zebrafish model of granulin deficiency reveals essential roles in myeloid cell differentiation. Blood Adv 2021; 5:796-811. [PMID: 33560393 PMCID: PMC7876888 DOI: 10.1182/bloodadvances.2020003096] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/01/2020] [Indexed: 12/22/2022] Open
Abstract
Granulin is a pleiotropic protein involved in inflammation, wound healing, neurodegenerative disease, and tumorigenesis. These roles in human health have prompted research efforts to use granulin to treat rheumatoid arthritis and frontotemporal dementia and to enhance wound healing. But how granulin contributes to each of these diverse biological functions remains largely unknown. Here, we have uncovered a new role for granulin during myeloid cell differentiation. We have taken advantage of the tissue-specific segregation of the zebrafish granulin paralogues to assess the functional role of granulin in hematopoiesis without perturbing other tissues. By using our zebrafish model of granulin deficiency, we revealed that during normal and emergency myelopoiesis, myeloid progenitors are unable to terminally differentiate into neutrophils and macrophages in the absence of granulin a (grna), failing to express the myeloid-specific genes cebpa, rgs2, lyz, mpx, mpeg1, mfap4, and apoeb. Functionally, macrophages fail to recruit to the wound, resulting in abnormal healing. Our CUT&RUN experiments identify Pu.1, which together with Irf8, positively regulates grna expression. In vivo imaging and RNA sequencing experiments show that grna inhibits the expression of gata1, leading to the repression of the erythroid program. Importantly, we demonstrated functional conservation between the mammalian granulin and the zebrafish ortholog grna. Our findings uncover a previously unrecognized role for granulin during myeloid cell differentiation, which opens a new field of study that can potentially have an impact on different aspects of human health and expand the therapeutic options for treating myeloid disorders such as neutropenia or myeloid leukemia.
Collapse
Affiliation(s)
- Clyde A Campbell
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA
| | - Oksana Fursova
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA
| | - Xiaoyi Cheng
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA
| | - Elizabeth Snella
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA
| | - Abbigail McCune
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA
| | - Liangdao Li
- Section of Cell and Developmental Biology, University of California at San Diego, San Diego, CA
| | | | - Bettina Schmid
- German Center for Neurodegenerative Diseases, Munich, Germany
| | - Debashis Sahoo
- Department of Computer Science and Engineering, University of California at San Diego, San Diego, CA; and
| | - Mark Morton
- College of Veterinary Medicine, Iowa State University, Ames, IA
| | - David Traver
- Section of Cell and Developmental Biology, University of California at San Diego, San Diego, CA
| | - Raquel Espín-Palazón
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA
- Section of Cell and Developmental Biology, University of California at San Diego, San Diego, CA
| |
Collapse
|
41
|
Gautam DK, Chimata AV, Gutti RK, Paddibhatla I. Comparative hematopoiesis and signal transduction in model organisms. J Cell Physiol 2021; 236:5592-5619. [PMID: 33492678 DOI: 10.1002/jcp.30287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/24/2020] [Accepted: 01/08/2021] [Indexed: 12/21/2022]
Abstract
Hematopoiesis is a continuous phenomenon involving the formation of hematopoietic stem cells (HSCs) giving rise to diverse functional blood cells. This developmental process of hematopoiesis is evolutionarily conserved, yet comparably different in various model organisms. Vertebrate HSCs give rise to all types of mature cells of both the myeloid and the lymphoid lineages sequentially colonizing in different anatomical tissues. Signal transduction in HSCs facilitates their potency and specifies branching of lineages. Understanding the hematopoietic signaling pathways is crucial to gain insights into their deregulation in several blood-related disorders. The focus of the review is on hematopoiesis corresponding to different model organisms and pivotal role of indispensable hematopoietic pathways. We summarize and discuss the fundamentals of blood formation in both invertebrate and vertebrates, examining the requirement of key signaling nexus in hematopoiesis. Knowledge obtained from such comparative studies associated with developmental dynamics of hematopoiesis is beneficial to explore the therapeutic options for hematopoietic diseases.
Collapse
Affiliation(s)
- Dushyant Kumar Gautam
- Department of Biochemistry, School of Life Sciences (SLS), University of Hyderabad, Hyderabad, Telangana, India
| | | | - Ravi Kumar Gutti
- Department of Biochemistry, School of Life Sciences (SLS), University of Hyderabad, Hyderabad, Telangana, India
| | - Indira Paddibhatla
- Department of Biochemistry, School of Life Sciences (SLS), University of Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
42
|
Ju W, Lu W, Bao Y, Sun T, Adzraku SY, Fu C, Qi K, Zhang X, Li Z, Xu K, Qiao J, Zeng L. Clodronate-liposomes aggravate irradiation-induced myelosuppression by promoting myeloid differentiation. Int J Radiat Biol 2021; 97:240-248. [PMID: 33253621 DOI: 10.1080/09553002.2021.1857452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE Clodronate-liposomes (Clod-Lip) is an effective candidate drug for treating chronic myelomonocytic leukemia, autoimmune hemolytic anemia and immune thrombocytopenic purpura in mice experiments. But its role in hematopoietic recovery after acute myelosuppression is still unknown. We aim to explore the function and underlining mechanisms of Clod-Lip on hematopoietic reconstitution after sublethal dose irradiation in mice. MATERIALS AND METHODS Mice at 8-10 weeks received a total-body sublethal dose γ-irradiation (TBI) and injected with Clod-Lip or PBS-Liposomes (PBS-Lip) every 4 days after TBI. The survival rate of each group was recorded. Flow cytometry was used to analyze changes in hematopoietic stem cells and their progenies in bone marrow. ELISA and RT-qPCR were used for the analysis of hematopoietic regulatory factors. Regarding IL-1β inhibition, 25 mg/kg diacerein or an equal volume of DMSO was intraperitoneally injected into mice every day after TBI. RESULTS In sublethal dose-irradiated mice, Clod-Lip reduced the survival rate, the total number of bone marrow and hematopoietic stem cells, delayed peripheral blood recovery of red blood cells and platelets. However, it could increase the number of CMP, MEP and myeloid cells, which suggested that Clod-Lip could induce HSC to myeloid differentiation in vivo. We further verified that Clod-Lip may induce myeloid differentiation by bone marrow microenvironmental factor IL-1β. CONCLUSIONS In summary, this study suggested that Clod-Lip may aggravate inhibitor effect of hematopoietic function and promote myeloid differentiation in myelosuppression mice model.
Collapse
Affiliation(s)
- Wen Ju
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Wenyi Lu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yurong Bao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Tiantian Sun
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Pneumology, Beilun People's Hospital, Ningbo, China
| | - Seyram Yao Adzraku
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Chunling Fu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Kunming Qi
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Zhenyu Li
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jianlin Qiao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Lingyu Zeng
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW Myeloid cells contribute to immune response to infection and tissue regeneration after injury as well as to the developmental induction of the hematopoietic system overall. Here we review recent uses of zebrafish to advance the study of myeloid biology in development and disease. RECENT FINDINGS Recent studies have made use of advanced imaging and genetic strategies and have highlighted key concepts in myeloid cell behavior. These include immune-cell cross-talk and subpopulation response in infection and regeneration, and tightly regulated inflammatory and tissue remodeling behaviors in development. SUMMARY These new findings will shape our understanding of the developmental origins of immune populations as well as their specific cellular behaviors at all stages of infection, regeneration, and myeloid neoplasms.
Collapse
Affiliation(s)
- Samuel J. Wattrus
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Leonard I. Zon
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| |
Collapse
|
44
|
Janagama D, Hui SK. 3-D Cell Culture Systems in Bone Marrow Tissue and Organoid Engineering, and BM Phantoms as In Vitro Models of Hematological Cancer Therapeutics-A Review. MATERIALS 2020; 13:ma13245609. [PMID: 33316977 PMCID: PMC7763362 DOI: 10.3390/ma13245609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/24/2020] [Accepted: 10/29/2020] [Indexed: 12/15/2022]
Abstract
We review the state-of-the-art in bone and marrow tissue engineering (BMTE) and hematological cancer tissue engineering (HCTE) in light of the recent interest in bone marrow environment and pathophysiology of hematological cancers. This review focuses on engineered BM tissue and organoids as in vitro models of hematological cancer therapeutics, along with identification of BM components and their integration as synthetically engineered BM mimetic scaffolds. In addition, the review details interaction dynamics of various BM and hematologic cancer (HC) cell types in co-culture systems of engineered BM tissues/phantoms as well as their relation to drug resistance and cytotoxicity. Interaction between hematological cancer cells and their niche, and the difference with respect to the healthy niche microenvironment narrated. Future perspectives of BMTE for in vitro disease models, BM regeneration and large scale ex vivo expansion of hematopoietic and mesenchymal stem cells for transplantation and therapy are explained. We conclude by overviewing the clinical application of biomaterials in BM and HC pathophysiology and its challenges and opportunities.
Collapse
|
45
|
Seyfried AN, Maloney JM, MacNamara KC. Macrophages Orchestrate Hematopoietic Programs and Regulate HSC Function During Inflammatory Stress. Front Immunol 2020; 11:1499. [PMID: 32849512 PMCID: PMC7396643 DOI: 10.3389/fimmu.2020.01499] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022] Open
Abstract
The bone marrow contains distinct cell types that work in coordination to generate blood and immune cells, and it is the primary residence of hematopoietic stem cells (HSCs) and more committed multipotent progenitors (MPPs). Even at homeostasis the bone marrow is a dynamic environment where billions of cells are generated daily to replenish short-lived immune cells and produce the blood factors and cells essential for hemostasis and oxygenation. In response to injury or infection, the marrow rapidly adapts to produce specific cell types that are in high demand revealing key insight to the inflammatory nature of "demand-adapted" hematopoiesis. Here we focus on the role that resident and monocyte-derived macrophages play in driving these hematopoietic programs and how macrophages impact HSCs and downstream MPPs. Macrophages are exquisite sensors of inflammation and possess the capacity to adapt to the environment, both promoting and restraining inflammation. Thus, macrophages hold great potential for manipulating hematopoietic output and as potential therapeutic targets in a variety of disease states where macrophage dysfunction contributes to or is necessary for disease. We highlight essential features of bone marrow macrophages and discuss open questions regarding macrophage function, their role in orchestrating demand-adapted hematopoiesis, and mechanisms whereby they regulate HSC function.
Collapse
Affiliation(s)
- Allison N Seyfried
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Jackson M Maloney
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Katherine C MacNamara
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| |
Collapse
|
46
|
Nguyen-Chi M, Luz-Crawford P, Balas L, Sipka T, Contreras-López R, Barthelaix A, Lutfalla G, Durand T, Jorgensen C, Djouad F. Pro-resolving mediator protectin D1 promotes epimorphic regeneration by controlling immune cell function in vertebrates. Br J Pharmacol 2020; 177:4055-4073. [PMID: 32520398 DOI: 10.1111/bph.15156] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE Specialized pro-resolving mediators (SPMs) are a family of lipids controlling the resolution of inflammation and playing a role in many processes including organ protection and tissue repair. While SPMs are potent bioactive molecules in vivo, their role in epimorphic regeneration of organs in vertebrates has not been tested. Using the zebrafish larva as a robust regenerative vertebrate system, we studied the role of the SPM neuroprotectin/protectin D1 (PD1) during the caudal fin fold regeneration. EXPERIMENTAL APPROACH Regeneration of the fin fold was analysed when exposed to a synthetic PD1. The effect of PD1 on immune cell recruitment and activation was further investigated using live imaging combined with fluorescent reporter lines. Using genetic and pharmacological approaches, we dissected the role of neutrophils and macrophages on driving the pro-regenerative effect of PD1. KEY RESULTS We showed that PD1 improves fin fold regeneration. Acting in a narrow time window during regeneration, PD1 accelerates the resolution of inflammation without affecting the initial kinetic of neutrophil recruitment but instead, promotes their reverse migration potential. In addition, PD1 induces macrophage polarization switch towards non-inflammatory states in both zebrafish and mammalian system. Finally, macrophages but not neutrophils are essential for PD1-mediated regeneration. CONCLUSION AND IMPLICATIONS These results reveal the pro-regenerative action of PD1 and its role in regulating neutrophil and macrophage response in vertebrates. These findings strongly support the development of pro-resolving mediators as natural therapeutic candidates for degenerative disorders and the use of the zebrafish as a tool to investigate pro-regenerative drugs.
Collapse
Affiliation(s)
- Mai Nguyen-Chi
- IRMB, INSERM, Univ Montpellier, CHU Montpellier, Montpellier, France.,LPHI, CNRS, Univ Montpellier, Montpellier, France
| | - Patricia Luz-Crawford
- Centro de Investigación Biomédical, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Laurence Balas
- IBMM, UMR5247, CNRS, Univ Montpellier, ENSCM, Montpellier, France
| | - Tamara Sipka
- LPHI, CNRS, Univ Montpellier, Montpellier, France
| | - Rafael Contreras-López
- IRMB, INSERM, Univ Montpellier, CHU Montpellier, Montpellier, France.,Centro de Investigación Biomédical, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Audrey Barthelaix
- IRMB, INSERM, Univ Montpellier, CHU Montpellier, Montpellier, France
| | | | - Thierry Durand
- IBMM, UMR5247, CNRS, Univ Montpellier, ENSCM, Montpellier, France
| | | | - Farida Djouad
- IRMB, INSERM, Univ Montpellier, CHU Montpellier, Montpellier, France
| |
Collapse
|
47
|
Abstract
The generation of hematopoietic stem cells (HSCs) from pluripotent stem cell (PSC) sources is a long-standing goal that will require a comprehensive understanding of the molecular and cellular factors that determine HSC fate during embryogenesis. A precise interplay between niche components, such as the vascular, mesenchymal, primitive myeloid cells, and the nervous system provides the unique signaling milieu for the emergence of functional HSCs in the aorta-gonad-mesonephros (AGM) region. Over the last several years, the interrogation of these aspects in the embryo model and in the PSC differentiation system has provided valuable knowledge that will continue educating the design of more efficient protocols to enable the differentiation of PSCs into
bona fide, functionally transplantable HSCs. Herein, we provide a synopsis of early hematopoietic development, with particular focus on the recent discoveries and remaining questions concerning AGM hematopoiesis. Moreover, we acknowledge the recent advances towards the generation of HSCs
in vitro and discuss possible approaches to achieve this goal in light of the current knowledge.
Collapse
Affiliation(s)
- Ana G Freire
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, USA
| | - Jason M Butler
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, USA.,Molecular Oncology Program, Georgetown University, Washington D.C., USA
| |
Collapse
|
48
|
Ferrero G, Gomez E, Lyer S, Rovira M, Miserocchi M, Langenau DM, Bertrand JY, Wittamer V. The macrophage-expressed gene (mpeg) 1 identifies a subpopulation of B cells in the adult zebrafish. J Leukoc Biol 2020; 107:431-443. [PMID: 31909502 PMCID: PMC7064944 DOI: 10.1002/jlb.1a1119-223r] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 11/07/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022] Open
Abstract
The mononuclear phagocytic system consists of many cells, in particular macrophages, scattered throughout the body. However, there is increasing evidence for the heterogeneity of tissue-resident macrophages, leading to a pressing need for new tools to discriminate mononuclear phagocytic system subsets from other hematopoietic lineages. Macrophage-expressed gene (Mpeg)1.1 is an evolutionary conserved gene encoding perforin-2, a pore-forming protein associated with host defense against pathogens. Zebrafish mpeg1.1:GFP and mpeg1.1:mCherry reporters were originally established to specifically label macrophages. Since then more than 100 peer-reviewed publications have made use of mpeg1.1-driven transgenics for in vivo studies, providing new insights into key aspects of macrophage ontogeny, activation, and function. Whereas the macrophage-specific expression pattern of the mpeg1.1 promoter has been firmly established in the zebrafish embryo, it is currently not known whether this specificity is maintained through adulthood. Here we report direct evidence that beside macrophages, a subpopulation of B-lymphocytes is marked by mpeg1.1 reporters in most adult zebrafish organs. These mpeg1.1+ lymphoid cells endogenously express mpeg1.1 and can be separated from mpeg1.1+ macrophages by virtue of their light-scatter characteristics using FACS. Remarkably, our analyses also revealed that B-lymphocytes, rather than mononuclear phagocytes, constitute the main mpeg1.1-positive population in irf8null myeloid-defective mutants, which were previously reported to recover tissue-resident macrophages in adulthood. One notable exception is skin macrophages, whose development and maintenance appear to be independent from irf8, similar to mammals. Collectively, our findings demonstrate that irf8 functions in myelopoiesis are evolutionary conserved and highlight the need for alternative macrophage-specific markers to study the mononuclear phagocytic system in adult zebrafish.
Collapse
Affiliation(s)
- Giuliano Ferrero
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium.,ULB Institute of Neuroscience (UNI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Etienne Gomez
- Department of Pathology and Immunology, University of Geneva, School of Medicine, Geneva, Switzerland
| | - Sowmya Lyer
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital Research Institute, Boston, Massachusetts, USA
| | - Mireia Rovira
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium.,ULB Institute of Neuroscience (UNI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Magali Miserocchi
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium.,ULB Institute of Neuroscience (UNI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - David M Langenau
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital Research Institute, Boston, Massachusetts, USA
| | - Julien Y Bertrand
- Department of Pathology and Immunology, University of Geneva, School of Medicine, Geneva, Switzerland
| | - Valérie Wittamer
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium.,ULB Institute of Neuroscience (UNI), Université Libre de Bruxelles (ULB), Brussels, Belgium.,WELBIO, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
49
|
A role for macrophages in hematopoiesis in the embryonic head. Blood 2019; 134:1929-1940. [PMID: 31697805 DOI: 10.1182/blood.2018881243] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 09/21/2019] [Indexed: 12/11/2022] Open
Abstract
Along with the aorta-gonad-mesonephros region, the head is a site of hematopoietic stem and progenitor cell (HS/PC) development in the mouse embryo. Macrophages are present in both these embryonic hemogenic sites, and recent studies indicate a functional interaction of macrophages with hematopoietic cells as they are generated in the aorta. Whereas brain macrophages or "microglia" are known to affect neuronal patterning and vascular circuitry in the embryonic brain, it is unknown whether macrophages play a role in head hematopoiesis. Here, we characterize head macrophages and examine whether they affect the HS/PC output of the hindbrain-branchial arch (HBA) region of the mouse embryo. We show that HBA macrophages are CD45+F4/80+CD11b+Gr1- and express the macrophage-specific Csf1r-GFP reporter. In the HBA of chemokine receptor-deficient (Cx3cr1-/-) embryos, a reduction in erythropoiesis is concomitant with a decrease in HBA macrophage percentages. In cocultures, we show that head macrophages boost hematopoietic progenitor cell numbers from HBA endothelial cells > twofold, and that the proinflammatory factor tumor necrosis factor-α is produced by head macrophages and influences HBA hematopoiesis in vitro. Taken together, head macrophages play a positive role in HBA erythropoiesis and HS/PC expansion and/or maturation, acting as microenvironmental cellular regulators in hematopoietic development.
Collapse
|
50
|
Bennett L, Mumau M, Speck NA. Macrophages Fertilize the Soil to Promote Hematopoietic Cell Growth. Immunity 2019; 50:1342-1344. [PMID: 31216456 DOI: 10.1016/j.immuni.2019.05.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Inflammatory signals support the birth of hematopoietic stem cells in zebrafish embryos, but their cellular source in mammals is not known. In this issue, Mariani et al. (2019) report that macrophages are a primary source of pro-inflammatory signals that promote blood cell formation in mammalian embryos.
Collapse
Affiliation(s)
- Laura Bennett
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Melanie Mumau
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nancy A Speck
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|