1
|
Li WA, Efendizade A, Ding Y. The role of microRNA in neuronal inflammation and survival in the post ischemic brain: a review. Neurol Res 2023; 45:1-9. [PMID: 28552032 DOI: 10.1080/01616412.2017.1327505] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 04/15/2017] [Indexed: 12/21/2022]
Abstract
Each year, more than 790 000 people in the United States suffer from a stroke. Although progress has been made in diagnosis and treatment of ischemic stroke (IS), new therapeutic interventions to protect the brain during an ischemic insult is highly needed. MicroRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression post-transcriptionally. Growing evidence suggests that miRNAs have a profound impact on ischemic stroke progression and are potential targets of novel treatments. Notably, inflammatory pathways play an important role in the pathogenesis of ischemic stroke and its pathophysiologic progression. Experimental and clinical studies have illustrated that inflammatory molecular events collaboratively contribute to neuronal and glial cell survival, edema formation and regression, and vascular integrity. In the present review, we examine recent discoveries regarding miRNAs and their roles in post-ischemic stroke neuropathogenesis.
Collapse
Affiliation(s)
- William A Li
- Department of Neurosurgery, Wayne State University School of Medicine , Detroit, MI, USA
| | - Aslan Efendizade
- Department of Neurosurgery, Wayne State University School of Medicine , Detroit, MI, USA
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine , Detroit, MI, USA
| |
Collapse
|
2
|
Zhang L, Liu Y, Lu Y, Wang G. Targeting epigenetics as a promising therapeutic strategy for treatment of neurodegenerative diseases. Biochem Pharmacol 2022; 206:115295. [DOI: 10.1016/j.bcp.2022.115295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022]
|
3
|
Nakagawa Y, Lee J, Liu Y, Abbasi S, Hong T, Cabral H, Uchida S, Ebara M. Microglial Immunoregulation by Apoptotic Cellular Membrane Mimetic Polymeric Particles. ACS Macro Lett 2022; 11:270-275. [PMID: 35574780 DOI: 10.1021/acsmacrolett.1c00643] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Phosphatidylserine (PtdSer), one of the phospholipids that the apoptotic cell exposes, has emerged for anti-inflammatory therapy via polarizing inflammatory microglia (Mi1) to anti-inflammatory phenotype (Mi2). In this study, we report microglia polarization effect of PtdSer-exposing polymeric particles (PSPs). PSPs upregulated Mi2 microglia and suppressed Mi1 microglia through peroxisome proliferator-activated receptor gamma upregulation in vitro and in vivo. This study highlights the potential of PSPs for anti-inflammatory therapy.
Collapse
Affiliation(s)
- Yasuhiro Nakagawa
- School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kanagawa 210-0821, Japan
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1, Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Jeonggyu Lee
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1, Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Yihua Liu
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1, Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Saed Abbasi
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kanagawa 210-0821, Japan
| | - Taehun Hong
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kanagawa 210-0821, Japan
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Horacio Cabral
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kanagawa 210-0821, Japan
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Satoshi Uchida
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kanagawa 210-0821, Japan
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Graduate School of Medicine, Kyoto Prefectural University of Medicine, 1-5, Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Mitsuhiro Ebara
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1, Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- Graduate School of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 162-8601, Japan
| |
Collapse
|
4
|
Behl T, Madaan P, Sehgal A, Singh S, Sharma N, Bhatia S, Al-Harrasi A, Chigurupati S, Alrashdi I, Bungau SG. Elucidating the Neuroprotective Role of PPARs in Parkinson's Disease: A Neoteric and Prospective Target. Int J Mol Sci 2021; 22:10161. [PMID: 34576325 PMCID: PMC8467926 DOI: 10.3390/ijms221810161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 12/13/2022] Open
Abstract
One of the utmost frequently emerging neurodegenerative diseases, Parkinson's disease (PD) must be comprehended through the forfeit of dopamine (DA)-generating nerve cells in the substantia nigra pars compacta (SN-PC). The etiology and pathogenesis underlying the emergence of PD is still obscure. However, expanding corroboration encourages the involvement of genetic and environmental factors in the etiology of PD. The destruction of numerous cellular components, namely oxidative stress, ubiquitin-proteasome system (UPS) dysfunction, autophagy-lysosome system dysfunction, neuroinflammation and programmed cell death, and mitochondrial dysfunction partake in the pathogenesis of PD. Present-day pharmacotherapy can alleviate the manifestations, but no therapy has been demonstrated to cease disease progression. Peroxisome proliferator-activated receptors (PPARs) are ligand-directed transcription factors pertaining to the class of nuclear hormone receptors (NHR), and are implicated in the modulation of mitochondrial operation, inflammation, wound healing, redox equilibrium, and metabolism of blood sugar and lipids. Numerous PPAR agonists have been recognized to safeguard nerve cells from oxidative destruction, inflammation, and programmed cell death in PD and other neurodegenerative diseases. Additionally, various investigations suggest that regular administration of PPAR-activating non-steroidal anti-inflammatory drugs (NSAIDs) (ibuprofen, indomethacin), and leukotriene receptor antagonists (montelukast) were related to the de-escalated evolution of neurodegenerative diseases. The present review elucidates the emerging evidence enlightening the neuroprotective outcomes of PPAR agonists in in vivo and in vitro models experiencing PD. Existing articles up to the present were procured through PubMed, MEDLINE, etc., utilizing specific keywords spotlighted in this review. Furthermore, the authors aim to provide insight into the neuroprotective actions of PPAR agonists by outlining the pharmacological mechanism. As a conclusion, PPAR agonists exhibit neuroprotection through modulating the expression of a group of genes implicated in cellular survival pathways, and may be a propitious target in the therapy of incapacitating neurodegenerative diseases like PD.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (P.M.); (A.S.); (S.S.); (N.S.)
| | - Piyush Madaan
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (P.M.); (A.S.); (S.S.); (N.S.)
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (P.M.); (A.S.); (S.S.); (N.S.)
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (P.M.); (A.S.); (S.S.); (N.S.)
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (P.M.); (A.S.); (S.S.); (N.S.)
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz 616, Nizwa P.O. Box 33, Oman; (S.B.); (A.A.-H.)
- School of Health Science, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz 616, Nizwa P.O. Box 33, Oman; (S.B.); (A.A.-H.)
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Ibrahim Alrashdi
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK;
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410073 Oradea, Romania
| |
Collapse
|
5
|
Bernardo A, Malara M, Bertuccini L, De Nuccio C, Visentin S, Minghetti L. The Antihypertensive Drug Telmisartan Protects Oligodendrocytes from Cholesterol Accumulation and Promotes Differentiation by a PPAR-γ-Mediated Mechanism. Int J Mol Sci 2021; 22:ijms22179434. [PMID: 34502342 PMCID: PMC8431237 DOI: 10.3390/ijms22179434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 12/13/2022] Open
Abstract
Our previous studies have demonstrated that specific peroxisome proliferator-activated receptor-γ (PPAR-γ) agonists play a fundamental role in oligodendrocyte progenitor (OP) differentiation, protecting them against oxidative and inflammatory damage. The antihypertensive drug Telmisartan (TLM) was shown to act as a PPAR-γ modulator. This study investigates the TLM effect on OP differentiation and validates its capability to restore damage in a pharmacological model of Niemann-Pick type C (NPC) disease through a PPAR-γ-mediated mechanism. For the first time in purified OPs, we demonstrate that TLM-induced PPAR-γ activation downregulates the type 1 angiotensin II receptor (AT1), the level of which naturally decreases during differentiation. Like other PPAR-γ agonists, we show that TLM promotes peroxisomal proliferation and promotes OP differentiation. Furthermore, TLM can offset the OP maturation arrest induced by a lysosomal cholesterol transport inhibitor (U18666A), which reproduces an NPC1-like phenotype. In the NPC1 model, TLM also reduces cholesterol accumulation within peroxisomal and lysosomal compartments and the contacts between lysosomes and peroxisomes, revealing that TLM can regulate intracellular cholesterol transport, crucial for myelin formation. Altogether, these data indicate a new potential use of TLM in hypomyelination pathologies such as NPC1, underlining the possible repositioning of the drug already used in other pathologies.
Collapse
Affiliation(s)
- Antonietta Bernardo
- National Center for Research and Preclinical and Clinical Evaluation of Drugs, Istituto Superiore di Sanità, 00169 Rome, Italy;
- Correspondence: ; Tel.: +39-06-4990-2927
| | | | - Lucia Bertuccini
- Core Facilities, Istituto Superiore di Sanità, 00169 Rome, Italy;
| | - Chiara De Nuccio
- Research Coordination and Support Service, Istituto Superiore di Sanità, 00169 Rome, Italy; (C.D.N.); (L.M.)
| | - Sergio Visentin
- National Center for Research and Preclinical and Clinical Evaluation of Drugs, Istituto Superiore di Sanità, 00169 Rome, Italy;
| | - Luisa Minghetti
- Research Coordination and Support Service, Istituto Superiore di Sanità, 00169 Rome, Italy; (C.D.N.); (L.M.)
| |
Collapse
|
6
|
Hassanzadeh K, Rahimmi A, Moloudi MR, Maccarone R, Corbo M, Izadpanah E, Feligioni M. Effect of lobeglitazone on motor function in rat model of Parkinson's disease with diabetes co-morbidity. Brain Res Bull 2021; 173:184-192. [PMID: 34051296 DOI: 10.1016/j.brainresbull.2021.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/26/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) and diabetes mellitus share similar pathophysiological characteristics, genetic and environmental factors. It has been reported that people with diabetes mellitus appear to have a remarkable higher incidence of PD than age matched non diabetic individuals. Evidences suggest that use of antidiabetic glitazone is associated with a diminished risk of PD incidence in patients with diabetes. This study examined the effect of lobeglitazone, a member of thiazolidinedione class, in rat model of Parkinson's disease with diabetes co-morbidity. Rats received either rotenone and/or a combination of streptozocin and a high calorie diet for disease induction and they were treated with different doses of lobeglitazone or its vehicle. Behavioral tests comprising rotarod, bar test and rearing test were conducted to evaluate the motor function. Changes in the level tyrosine hydroxylase, TNF-α and NF-κB were analyzed using ELISA. In the same brain regions the possible changes in PPAR-γ receptor level were evaluated. Findings showed that although lobeglitazone tends to reverse the effect of rotenone in animals with diabetes, it was just able to prevent partly the motor defect in rearing test. Furthermore, lobeglitazone (1 mg/kg) reversed, in substantia nigra and striatum, the changes in tyrosine hydroxylase, TNF-α, NF-κB and PPAR-γ receptor content induced by rotenone in rats with diabetic condition. Although other preclinical studies are needed, these findings suggest that lobeglitazone is a promising neuroprotective candidate for clinical trials for PD patients with diabetes co-morbidity.
Collapse
Affiliation(s)
- Kambiz Hassanzadeh
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj 66177-13446, Iran; Department of Biotechnology and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy; Laboratory of Neuronal Cell Signaling, EBRI Rita Levi-Montalcini Foundation, Rome 00161, Italy
| | - Arman Rahimmi
- Department of Molecular Medicine and Genetics, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran; Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Raman Moloudi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj 66177-13446, Iran
| | - Rita Maccarone
- Department of Biotechnology and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa di Cura del Policlinico, Milan 20144, Italy
| | - Esmael Izadpanah
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj 66177-13446, Iran
| | - Marco Feligioni
- Laboratory of Neuronal Cell Signaling, EBRI Rita Levi-Montalcini Foundation, Rome 00161, Italy; Department of Neurorehabilitation Sciences, Casa di Cura del Policlinico, Milan 20144, Italy.
| |
Collapse
|
7
|
Watt G, Shang K, Zieba J, Olaya J, Li H, Garner B, Karl T. Chronic Treatment with 50 mg/kg Cannabidiol Improves Cognition and Moderately Reduces Aβ40 Levels in 12-Month-Old Male AβPPswe/PS1ΔE9 Transgenic Mice. J Alzheimers Dis 2021; 74:937-950. [PMID: 32116258 DOI: 10.3233/jad-191242] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is characterized by progressive cognitive decline and pathologically by the accumulation of amyloid-β (Aβ) and tau hyperphosphorylation causing neurodegeneration and neuroinflammation. Current AD treatments do not stop or reverse the disease progression, highlighting the need for more effective therapeutics. The phytocannabinoid cannabidiol (CBD) has demonstrated antioxidant, anti-inflammatory, and neuroprotective properties. Furthermore, chronic CBD treatment (20 mg/kg) reverses social and object recognition memory deficits in the AβPPxPS1 transgenic mouse model with only limited effects on AD-relevant brain pathology. Importantly, studies have indicated that CBD works in a dose-dependent manner. Thus, this study determined the chronic effects of 50 mg/kg CBD in male AβPPxPS1 mice. 12-month-old mice were treated with 50 mg/kg CBD or vehicle via daily intraperitoneal injections for 3 weeks prior to behavioral testing. A variety of cognitive domains including object and social recognition, spatial and fear-associated memory were evaluated. Pathological brain analyses for AD-relevant markers were conducted using ELISA and western blot. Vehicle-treated male AβPPxPS1 mice demonstrated impaired social recognition memory and reversal spatial learning. These deficits were restored after CBD treatment. Chronic CBD tended to reduce insoluble Aβ40 levels in the hippocampus of AβPPxPS1 mice but had no effect on neuroinflammation, neurodegeneration, or PPARγ markers in the cortex. This study demonstrates that therapeutic-like effects of 50 mg/kg CBD on social recognition memory and spatial learning deficits in AβPPxPS1 mice are accompanied by moderate brain region-specific reductions in insoluble Aβ40 levels. The findings emphasize the clinical relevance of CBD treatment in AD; however, the underlying mechanisms involved require further investigation.
Collapse
Affiliation(s)
- Georgia Watt
- School of Medicine, Western Sydney University, Campbelltown, Australia
| | - Kani Shang
- Neuroscience Research Australia (NeuRA), Randwick, Australia
| | - Jerzy Zieba
- Neuroscience Research Australia (NeuRA), Randwick, Australia
| | - Juan Olaya
- Neuroscience Research Australia (NeuRA), Randwick, Australia
| | - Henry Li
- University of Wollongong, Wollongong, Australia
| | | | - Tim Karl
- School of Medicine, Western Sydney University, Campbelltown, Australia.,Neuroscience Research Australia (NeuRA), Randwick, Australia
| |
Collapse
|
8
|
Zhang XB, Li J, Gu J, Zeng YQ. Roles of Cannabidiol in the treatment and prevention of Alzheimer's disease by multi-target actions. Mini Rev Med Chem 2021; 22:43-51. [PMID: 33797364 DOI: 10.2174/1389557521666210331162857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/03/2020] [Accepted: 01/04/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases with chronic, progressive, and irreversible characteristics, affecting nearly 50 million older adults worldwide. The pathogenesis of AD includes the formation of senile plaques, the abnormal aggregation of tau protein and the gradual degeneration and death of cerebral cortical cells. The main symptoms are memory loss, cognitive decline and behavioral disorders. Studies indicate that cannabidiol(CBD) possesses various pharmacological activities including anti-inflammatory, anti-oxidation and neuroprotective activities. It has been suggested as a potential multi-target medicine for treatment of AD. In this review, we aim to summarize the underlying mechanisms and protective effects of CBD on signaling pathways and central receptors involved in the pathogenesis of AD, including the endocannabinoid system(eCBs), the Transient receptor potential vanilloid type 1(TRPV1) receptor, and the Peroxisome proliferator-activated receptor (PPAR) receptor.
Collapse
Affiliation(s)
- Xiao-Bei Zhang
- Yunnan Key Laboratory of Stem Cells and Regenerative Medicine, Biomedical Engineering Research Center, Kunming Medical University, Kunming 650500. China
| | - Jintao Li
- School of Basic Medical Sciences, Kunming Medical University, Kunming 650500. China
| | - Juanhua Gu
- Yunnan Key Laboratory of Stem Cells and Regenerative Medicine, Biomedical Engineering Research Center, Kunming Medical University, Kunming 650500. China
| | - Yue-Qin Zeng
- Yunnan Key Laboratory of Stem Cells and Regenerative Medicine, Biomedical Engineering Research Center, Kunming Medical University, Kunming 650500. China
| |
Collapse
|
9
|
Cosarderelioglu C, Nidadavolu LS, George CJ, Oh ES, Bennett DA, Walston JD, Abadir PM. Brain Renin-Angiotensin System at the Intersect of Physical and Cognitive Frailty. Front Neurosci 2020; 14:586314. [PMID: 33117127 PMCID: PMC7561440 DOI: 10.3389/fnins.2020.586314] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/25/2020] [Indexed: 12/15/2022] Open
Abstract
The renin–angiotensin system (RAS) was initially considered to be part of the endocrine system regulating water and electrolyte balance, systemic vascular resistance, blood pressure, and cardiovascular homeostasis. It was later discovered that intracrine and local forms of RAS exist in the brain apart from the endocrine RAS. This brain-specific RAS plays essential roles in brain homeostasis by acting mainly through four angiotensin receptor subtypes; AT1R, AT2R, MasR, and AT4R. These receptors have opposing effects; AT1R promotes vasoconstriction, proliferation, inflammation, and oxidative stress while AT2R and MasR counteract the effects of AT1R. AT4R is critical for dopamine and acetylcholine release and mediates learning and memory consolidation. Consequently, aging-associated dysregulation of the angiotensin receptor subtypes may lead to adverse clinical outcomes such as Alzheimer’s disease and frailty via excessive oxidative stress, neuroinflammation, endothelial dysfunction, microglial polarization, and alterations in neurotransmitter secretion. In this article, we review the brain RAS from this standpoint. After discussing the functions of individual brain RAS components and their intracellular and intracranial locations, we focus on the relationships among brain RAS, aging, frailty, and specific neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, and vascular cognitive impairment, through oxidative stress, neuroinflammation, and vascular dysfunction. Finally, we discuss the effects of RAS-modulating drugs on the brain RAS and their use in novel treatment approaches.
Collapse
Affiliation(s)
- Caglar Cosarderelioglu
- Division of Geriatrics, Department of Internal Medicine, Ankara University School of Medicine, Ankara, Turkey.,Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lolita S Nidadavolu
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Claudene J George
- Division of Geriatrics, Department of Medicine, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, United States
| | - Esther S Oh
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, United States
| | - Jeremy D Walston
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Peter M Abadir
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
10
|
Das S, Li Z, Noori A, Hyman BT, Serrano-Pozo A. Meta-analysis of mouse transcriptomic studies supports a context-dependent astrocyte reaction in acute CNS injury versus neurodegeneration. J Neuroinflammation 2020; 17:227. [PMID: 32736565 PMCID: PMC7393869 DOI: 10.1186/s12974-020-01898-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
Background Neuronal damage in acute CNS injuries and chronic neurodegenerative diseases is invariably accompanied by an astrocyte reaction in both mice and humans. However, whether and how the nature of the CNS insult—acute versus chronic—influences the astrocyte response, and whether astrocyte transcriptomic changes in these mouse models faithfully recapitulate the astrocyte reaction in human diseases remains to be elucidated. We hypothesized that astrocytes set off different transcriptomic programs in response to acute versus chronic insults, besides a shared “pan-injury” signature common to both types of conditions, and investigated the presence of these mouse astrocyte signatures in transcriptomic studies from human neurodegenerative diseases. Methods We performed a meta-analysis of 15 published astrocyte transcriptomic datasets from mouse models of acute injury (n = 6) and chronic neurodegeneration (n = 9) and identified pan-injury, acute, and chronic signatures, with both upregulated (UP) and downregulated (DOWN) genes. Next, we investigated these signatures in 7 transcriptomic datasets from various human neurodegenerative diseases. Results In mouse models, the number of UP/DOWN genes per signature was 64/21 for pan-injury and 109/79 for acute injury, whereas only 13/27 for chronic neurodegeneration. The pan-injury-UP signature was represented by the classic cytoskeletal hallmarks of astrocyte reaction (Gfap and Vim), plus extracellular matrix (i.e., Cd44, Lgals1, Lgals3, Timp1), and immune response (i.e., C3, Serping1, Fas, Stat1, Stat2, Stat3). The acute injury-UP signature was enriched in protein synthesis and degradation (both ubiquitin-proteasome and autophagy systems), intracellular trafficking, and anti-oxidant defense genes, whereas the acute injury-DOWN signature included genes that regulate chromatin structure and transcriptional activity, many of which are transcriptional repressors. The chronic neurodegeneration-UP signature was further enriched in astrocyte-secreted extracellular matrix proteins (Lama4, Cyr61, Thbs4), while the DOWN signature included relevant genes such as Agl (glycogenolysis), S1pr1 (immune modulation), and Sod2 (anti-oxidant). Only the pan-injury-UP mouse signature was clearly present in some human neurodegenerative transcriptomic datasets. Conclusions Acute and chronic CNS injuries lead to distinct astrocyte gene expression programs beyond their common astrocyte reaction signature. However, caution should be taken when extrapolating astrocyte transcriptomic findings from mouse models to human diseases.
Collapse
Affiliation(s)
- Sudeshna Das
- MGH BioMedical Informatics Core (BMIC), Cambridge, MA, 02139, USA.,Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA.,Massachusetts Alzheimer's Disease Research Center, 114 16th street, Suite 2012, Charlestown, MA, 02129, USA.,Harvard Medical School, Boston, MA, 02116, USA
| | - Zhaozhi Li
- MGH BioMedical Informatics Core (BMIC), Cambridge, MA, 02139, USA.,Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Ayush Noori
- MGH BioMedical Informatics Core (BMIC), Cambridge, MA, 02139, USA.,Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA.,Massachusetts Alzheimer's Disease Research Center, 114 16th street, Suite 2012, Charlestown, MA, 02129, USA.,Harvard Medical School, Boston, MA, 02116, USA
| | - Alberto Serrano-Pozo
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA. .,Massachusetts Alzheimer's Disease Research Center, 114 16th street, Suite 2012, Charlestown, MA, 02129, USA. .,Harvard Medical School, Boston, MA, 02116, USA.
| |
Collapse
|
11
|
Pleiotropic effects of anti-diabetic drugs: A comprehensive review. Eur J Pharmacol 2020; 884:173349. [PMID: 32650008 DOI: 10.1016/j.ejphar.2020.173349] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/24/2020] [Accepted: 07/03/2020] [Indexed: 12/18/2022]
Abstract
Diabetes mellitus characterized by hyperglycaemia presents an array of comorbidities such as cardiovascular and renal failure, dyslipidemia, and cognitive impairments. Populations above the age of 60 are in an urgent need of effective therapies to deal with the complications associated with diabetes mellitus. Widely used anti-diabetic drugs have good safety profiles and multiple reports indicate their pleiotropic effects in diabetic patients or models. This review has been written with the objective of identifying the widely-marketed anti-diabetic drugs which can be efficiently repurposed for the treatment of other diseases or disorders. It is an updated, comprehensive review, describing the protective role of various classes of anti-diabetic drugs in mitigating the macro and micro vascular complications of diabetes mellitus, and differentiating these drugs on the basis of their mode of action. Notably, metformin, the anti-diabetic drug most commonly explored for cancer therapy, has also exhibited some antimicrobial effects. Unlike class specific effects, few instances of drug specific effects in managing cardiovascular complications have also been reported. A major drawback is that the pleiotropic effects of anti-diabetic drugs have been mostly investigated only in diabetic patients. Thus, for effective repurposing, more clinical trials devoted to analyse the effects of anti-diabetic drugs in patients irrespective of their diabetic condition, are required.
Collapse
|
12
|
Lebouvier T, Chen Y, Duriez P, Pasquier F, Bordet R. Antihypertensive agents in Alzheimer's disease: beyond vascular protection. Expert Rev Neurother 2019; 20:175-187. [PMID: 31869274 DOI: 10.1080/14737175.2020.1708195] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Introduction: Midlife hypertension has been consistently linked with increased risk of cognitive decline and Alzheimer's disease (AD). Observational studies and randomized trials show that the use of antihypertensive therapy is associated with a lesser incidence or prevalence of cognitive impairment and dementia. However, whether antihypertensive agents specifically target the pathological process of AD remains elusive.Areas covered: This review of literature provides an update on the clinical and preclinical arguments supporting anti-AD properties of antihypertensive drugs. The authors focused on validated all classes of antihypertensive treatments such as angiotensin-converting enzyme inhibitors (ACEi), angiotensin receptor blockers (ARB), calcium channel blockers (CCB), β-blockers, diuretics, neprilysin inhibitors, and other agents. Three main mechanisms can be advocated: action on the concurrent vascular pathology, action on the vascular component of Alzheimer's pathophysiology, and action on nonvascular targets.Expert opinion: In 2019, while there is no doubt that hypertension should be treated in primary prevention of vascular disease and in secondary prevention of stroke and mixed dementia, the place of antihypertensive agents in the secondary prevention of 'pure' AD remains an outstanding question.
Collapse
Affiliation(s)
- Thibaud Lebouvier
- Inserm URM_S1172, University of Lille, Lille, France.,DISTALZ, University of Lille, Lille, France
| | - Yaohua Chen
- DISTALZ, University of Lille, Lille, France.,Inserm, CHU Lille, University of Lille, Lille, France
| | | | - Florence Pasquier
- DISTALZ, University of Lille, Lille, France.,Inserm, CHU Lille, University of Lille, Lille, France
| | - Régis Bordet
- Inserm, CHU Lille, University of Lille, Lille, France
| |
Collapse
|
13
|
Chen X, Gumina G, Virga KG. Recent Advances in Drug Repurposing for Parkinson's Disease. Curr Med Chem 2019; 26:5340-5362. [PMID: 30027839 DOI: 10.2174/0929867325666180719144850] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 04/27/2018] [Accepted: 05/02/2018] [Indexed: 12/25/2022]
Abstract
As a long-term degenerative disorder of the central nervous system that mostly affects older people, Parkinson's disease is a growing health threat to our ever-aging population. Despite remarkable advances in our understanding of this disease, all therapeutics currently available only act to improve symptoms but cannot stop the disease progression. Therefore, it is essential that more effective drug discovery methods and approaches are developed, validated, and used for the discovery of disease-modifying treatments for Parkinson's disease. Drug repurposing, also known as drug repositioning, or the process of finding new uses for existing or abandoned pharmaceuticals, has been recognized as a cost-effective and timeefficient way to develop new drugs, being equally promising as de novo drug discovery in the field of neurodegeneration and, more specifically for Parkinson's disease. The availability of several established libraries of clinical drugs and fast evolvement in disease biology, genomics and bioinformatics has stimulated the momentums of both in silico and activity-based drug repurposing. With the successful clinical introduction of several repurposed drugs for Parkinson's disease, drug repurposing has now become a robust alternative approach to the discovery and development of novel drugs for this disease. In this review, recent advances in drug repurposing for Parkinson's disease will be discussed.
Collapse
Affiliation(s)
- Xin Chen
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, SC 29325, United States
| | - Giuseppe Gumina
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, SC 29325, United States
| | - Kristopher G Virga
- Department of Pharmaceutical Sciences, William Carey University School of Pharmacy, Biloxi, MS 39532, United States
| |
Collapse
|
14
|
Melbourne JK, Thompson KR, Peng H, Nixon K. Its complicated: The relationship between alcohol and microglia in the search for novel pharmacotherapeutic targets for alcohol use disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 167:179-221. [PMID: 31601404 DOI: 10.1016/bs.pmbts.2019.06.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alcohol use disorder (AUD) is a chronic relapsing disorder with wide-ranging health consequences. Alcohol targets the central nervous system producing neurodegeneration and subsequent cognitive and behavioral deficits, but the mechanisms behind these effects remain unclear. Recently, evidence has been mounting for the role of neuroimmune activation in the pathogenesis of AUDs, but our nascent state of knowledge about the interaction of alcohol with the neuroimmune system supports that the relationship is complicated. As the resident macrophage of the central nervous system, microglia are a central focus. Human and animal research on the interplay between microglia and alcohol in AUDs has proven to be complex, and though early research focused on a pro-inflammatory phenotype of microglia, the anti-inflammatory and homeostatic roles of microglia must be considered. How these new roles for microglia should be incorporated into our thinking about the neuroimmune system in AUDs is discussed in the context of developing novel pharmacotherapies for AUDs.
Collapse
Affiliation(s)
- Jennifer K Melbourne
- The University of Texas at Austin, College of Pharmacy, Division of Pharmacology & Toxicology, Austin, TX, United States
| | - K Ryan Thompson
- The University of Texas at Austin, College of Pharmacy, Division of Pharmacology & Toxicology, Austin, TX, United States
| | - Hui Peng
- University of Kentucky, College of Pharmacy, Department of Pharmaceutical Sciences, Lexington, KY, United States
| | - Kimberly Nixon
- The University of Texas at Austin, College of Pharmacy, Division of Pharmacology & Toxicology, Austin, TX, United States.
| |
Collapse
|
15
|
Elfawy HA, Das B. Crosstalk between mitochondrial dysfunction, oxidative stress, and age related neurodegenerative disease: Etiologies and therapeutic strategies. Life Sci 2018; 218:165-184. [PMID: 30578866 DOI: 10.1016/j.lfs.2018.12.029] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/10/2018] [Accepted: 12/15/2018] [Indexed: 12/21/2022]
Abstract
Mitochondrial function is vital for normal cellular processes. Mitochondrial damage and oxidative stress have been greatly implicated in the progression of aging, along with the pathogenesis of age-related neurodegenerative diseases (NDs), such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Although antioxidant therapy has been proposed for the prevention and treatment of age-related NDs, unraveling the molecular mechanisms of mitochondrial dysfunction can lead to significant progress in the development of effective treatments against such diseases. Aging is associated with the generation and accumulation of reactive oxygen species (ROS) that are the major contributors to oxidative stress. Oxidative stress is caused because of the imbalance between the production of ROS and their oxidation, which can affect the mitochondrial respiratory chain function, thereby altering the membrane permeability and calcium homeostasis, along with increasing the heteroplasmic mtDNA and weakening the mitochondrial defense systems. Mitochondrial dysfunction mainly affects mitochondrial biogenesis and dynamics that are prominent in several age-related NDs. Mitochondrial dysfunction has a crucial role in the pathophysiology of age-related NDs. Several mitochondria targeted strategies, such as enhancing the antioxidant bioavailability via novel delivery systems, identifying unique mitochondrial proteins as specific drug targets, investigating the signaling pathways of mitochondrial biogenesis and dynamics, and identifying effective natural products are potentially effective to counteract mitochondrial dysfunction-related NDs.
Collapse
Affiliation(s)
- Hasnaa A Elfawy
- School of Biotechnology, KIIT deemed to be University, Campus XI, Bhubaneswar 751024, Odisha, India
| | - Biswadeep Das
- School of Biotechnology, KIIT deemed to be University, Campus XI, Bhubaneswar 751024, Odisha, India.
| |
Collapse
|
16
|
Fu Y, Zhen J, Lu Z. Synergetic Neuroprotective Effect of Docosahexaenoic Acid and Aspirin in SH-Y5Y by Inhibiting miR-21 and Activating RXRα and PPARα. DNA Cell Biol 2017; 36:482-489. [PMID: 28346830 DOI: 10.1089/dna.2017.3643] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Parkinson's disease (PD) is a serious neurodegenerative disorder that lacks effective therapeutic methods. In this research, expressions of PPARα, RXRα, and miR-21 were evaluated in PD patients and normal controls. To investigate the effects of miR-21, docosahexaenoic acid (DHA) and aspirin (ASA) on PD, as well as the relationships between them, SH-Y5Y cells were treated with DHA, ASA, or both for 24 h. The assay showed that levels of miR-21 were increased and levels of PPARα were decreased in PD patients compared with normal controls. miR-21 was negatively correlated with PPARα in PD patients. DHA and ASA could activate RXRα and PPARα, respectively. Additionally, DHA upregulated PPARα expression by inhibiting miR-21 in SH-Y5Y cells. A combination of DHA and ASA efficiently enhanced heterodimer formations of PPARα and RXRα and increased the expression of neurotrophic factors PSD-95, brain-derived neurotrophic factor (BDNF), and glial cell-derived neurotrophic factor (GDNF), while inhibiting NFκB and COX2. These findings suggest that a combination of DHA and ASA could significantly improve the expression of PSD-95, BDNF, and GDNF by promoting heterodimerization of PPARα and RXRα, thus supplying a new therapeutic method for PD.
Collapse
Affiliation(s)
- Yongwang Fu
- 1 Department of Neurology, Renmin Hospital of Wuhan University, Wuhan University , Wuhan, China
| | - Jin Zhen
- 2 Department of Neurology, Inner Mongolia Autonomous Region People's Hospital , Hohhot, China
| | - Zuneng Lu
- 1 Department of Neurology, Renmin Hospital of Wuhan University, Wuhan University , Wuhan, China
| |
Collapse
|
17
|
Moreira DRM, Santos DS, Espírito Santo RFD, Santos FED, de Oliveira Filho GB, Leite ACL, Soares MBP, Villarreal CF. Structural improvement of new thiazolidinones compounds with antinociceptive activity in experimental chemotherapy-induced painful neuropathy. Chem Biol Drug Des 2017; 90:297-307. [DOI: 10.1111/cbdd.12951] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/13/2017] [Accepted: 01/17/2017] [Indexed: 01/27/2023]
Affiliation(s)
| | | | - Renan Fernandes do Espírito Santo
- Centro de Pesquisas Gonçalo Moniz; FIOCRUZ; Salvador Bahia Brazil
- Faculdade de Farmácia; Universidade Federal da Bahia; Salvador Bahia Brazil
| | | | | | - Ana Cristina Lima Leite
- Departamento de Ciências Farmacêuticas; Centro de Ciências da Saúde; Universidade Federal de Pernambuco; Recife PE Brazil
| | - Milena Botelho Pereira Soares
- Centro de Pesquisas Gonçalo Moniz; FIOCRUZ; Salvador Bahia Brazil
- Centro de Biotecnologia e Terapia Celular; Hospital São Rafael; Salvador Bahia Brazil
| | - Cristiane Flora Villarreal
- Centro de Pesquisas Gonçalo Moniz; FIOCRUZ; Salvador Bahia Brazil
- Faculdade de Farmácia; Universidade Federal da Bahia; Salvador Bahia Brazil
| |
Collapse
|
18
|
Zolezzi JM, Santos MJ, Bastías-Candia S, Pinto C, Godoy JA, Inestrosa NC. PPARs in the central nervous system: roles in neurodegeneration and neuroinflammation. Biol Rev Camb Philos Soc 2017; 92:2046-2069. [PMID: 28220655 DOI: 10.1111/brv.12320] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/21/2016] [Accepted: 01/11/2017] [Indexed: 12/20/2022]
Abstract
Over 25 years have passed since peroxisome proliferators-activated receptors (PPARs), were first described. Like other members of the nuclear receptors superfamily, PPARs have been defined as critical sensors and master regulators of cellular metabolism. Recognized as ligand-activated transcription factors, they are involved in lipid, glucose and amino acid metabolism, taking part in different cellular processes, including cellular differentiation and apoptosis, inflammatory modulation and attenuation of acute and chronic neurological damage in vivo and in vitro. Interestingly, PPAR activation can simultaneously reprogram the immune response, stimulate metabolic and mitochondrial functions, promote axonal growth, induce progenitor cells to differentiate into myelinating oligodendrocytes, and improve brain clearance of toxic molecules such as β-amyloid peptide. Although the molecular mechanisms and cross-talk with different molecular pathways are still the focus of intense research, PPARs are considered potential therapeutic targets for several neuropathological conditions, including degenerative disorders such as Alzheimer's, Parkinson's and Huntington's disease. This review considers recent advances regarding PPARs, as well as new PPAR agonists. We focus on the mechanisms behind the neuroprotective effects exerted by PPARs and summarise the roles of PPARs in different pathologies of the central nervous system, especially those associated with degenerative and inflammatory mechanisms.
Collapse
Affiliation(s)
- Juan M Zolezzi
- Centro de Envejecimiento y Regeneración (CARE-UC), P. Catholic University of Chile, PO Box 114-D, 8331150, Santiago, Chile
| | - Manuel J Santos
- Facultad de Ciencias Biológicas, Departamento de Biología Celular y Molecular, Pontificia Universidad Católica de Chile, Alameda 340, 8331150, Santiago, Chile
| | - Sussy Bastías-Candia
- Facultad de Ciencias, Departamento de Biología, Universidad de Tarapacá, Gral. Velásquez 1775, 1000007, Arica, Chile
| | - Claudio Pinto
- Centro de Envejecimiento y Regeneración (CARE-UC), P. Catholic University of Chile, PO Box 114-D, 8331150, Santiago, Chile
| | - Juan A Godoy
- Centro de Envejecimiento y Regeneración (CARE-UC), P. Catholic University of Chile, PO Box 114-D, 8331150, Santiago, Chile.,Facultad de Ciencias Biológicas, Departamento de Biología Celular y Molecular, Pontificia Universidad Católica de Chile, Alameda 340, 8331150, Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE-UC), P. Catholic University of Chile, PO Box 114-D, 8331150, Santiago, Chile.,Facultad de Ciencias Biológicas, Departamento de Biología Celular y Molecular, Pontificia Universidad Católica de Chile, Alameda 340, 8331150, Santiago, Chile.,Faculty of Medicine, Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Avoca Street Randwick NSW 2031, Sydney, Australia.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, PO Box 113-D, Avenida Bulnes 01855, 6210427, Punta Arenas, Chile
| |
Collapse
|
19
|
Golpich M, Amini E, Mohamed Z, Azman Ali R, Mohamed Ibrahim N, Ahmadiani A. Mitochondrial Dysfunction and Biogenesis in Neurodegenerative diseases: Pathogenesis and Treatment. CNS Neurosci Ther 2017; 23:5-22. [PMID: 27873462 PMCID: PMC6492703 DOI: 10.1111/cns.12655] [Citation(s) in RCA: 353] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 09/29/2016] [Accepted: 10/04/2016] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases are a heterogeneous group of disorders that are incurable and characterized by the progressive degeneration of the function and structure of the central nervous system (CNS) for reasons that are not yet understood. Neurodegeneration is the umbrella term for the progressive death of nerve cells and loss of brain tissue. Because of their high energy requirements, neurons are especially vulnerable to injury and death from dysfunctional mitochondria. Widespread damage to mitochondria causes cells to die because they can no longer produce enough energy. Several lines of pathological and physiological evidence reveal that impaired mitochondrial function and dynamics play crucial roles in aging and pathogenesis of neurodegenerative diseases. As mitochondria are the major intracellular organelles that regulate both cell survival and death, they are highly considered as a potential target for pharmacological-based therapies. The purpose of this review was to present the current status of our knowledge and understanding of the involvement of mitochondrial dysfunction in pathogenesis of neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) and the importance of mitochondrial biogenesis as a potential novel therapeutic target for their treatment. Likewise, we highlight a concise overview of the key roles of mitochondrial electron transport chain (ETC.) complexes as well as mitochondrial biogenesis regulators regarding those diseases.
Collapse
Affiliation(s)
- Mojtaba Golpich
- Department of MedicineUniversiti Kebangsaan Malaysia Medical CentreCherasKuala LumpurMalaysia
| | - Elham Amini
- Department of MedicineUniversiti Kebangsaan Malaysia Medical CentreCherasKuala LumpurMalaysia
| | - Zahurin Mohamed
- Department of PharmacologyFaculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | - Raymond Azman Ali
- Department of MedicineUniversiti Kebangsaan Malaysia Medical CentreCherasKuala LumpurMalaysia
| | | | - Abolhassan Ahmadiani
- Neuroscience Research CenterShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
20
|
Giacoppo S, Soundara Rajan T, De Nicola GR, Iori R, Bramanti P, Mazzon E. Moringin activates Wnt canonical pathway by inhibiting GSK3β in a mouse model of experimental autoimmune encephalomyelitis. Drug Des Devel Ther 2016; 10:3291-3304. [PMID: 27784989 PMCID: PMC5063603 DOI: 10.2147/dddt.s110514] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aberrant canonical Wnt-β-catenin signaling has been reported in multiple sclerosis (MS), although the results are controversial. The present study aimed to examine the role of the Wnt-β-catenin pathway in experimental MS and also to test moringin (4-[α-L-rhamnopyranosyloxy]-benzyl isothiocyanate), resulting from exogenous myrosinase hydrolysis of the natural phytochemical glucomoringin 4(α-L-rhamnosyloxy)-benzyl glucosinolate as a modulator of neuroinflammation via the β-catenin-PPARγ axis. Experimental autoimmune encephalomyelitis (EAE), the most common model of MS, was induced in C57BL/6 mice by immunization with MOG35-55. Released moringin (10 mg/kg glucomoringin +5 μL myrosinase/mouse) was administered daily for 1 week before EAE induction and continued until mice were killed on day 28 after EAE induction. Our results clearly showed that the Wnt-β-catenin pathway was downregulated in the EAE model, whereas moringin pretreatment was able to avert this. Moringin pretreatment normalizes the aberrant Wnt-β-catenin pathway, resulting in GSK3β inhibition and β-catenin upregulation, which regulates T-cell activation (CD4 and FoxP3), suppresses the main inflammatory mediators (IL-1β, IL-6, and COX2), through activation of PPARγ. In addition, moringin attenuates apoptosis by reducing the expression of the Fas ligand and cleaved caspase 9, and in parallel increases antioxidant Nrf2 expression in EAE mice. Taken together, our results provide an interesting discovery in identifying moringin as a modulator of the Wnt-β-catenin signaling cascade and as a new potential therapeutic target for MS treatment.
Collapse
Affiliation(s)
| | | | - Gina Rosalinda De Nicola
- Council for Agricultural Research and Economics, Research Centre for Industrial Crops (CREA-CIN), Bologna, Italy
| | - Renato Iori
- Council for Agricultural Research and Economics, Research Centre for Industrial Crops (CREA-CIN), Bologna, Italy
| | | | | |
Collapse
|
21
|
Andreasson KI, Bachstetter AD, Colonna M, Ginhoux F, Holmes C, Lamb B, Landreth G, Lee DC, Low D, Lynch MA, Monsonego A, O’Banion MK, Pekny M, Puschmann T, Russek-Blum N, Sandusky LA, Selenica MLB, Takata K, Teeling J, Town T, Van Eldik LJ, Russek-Blum N, Monsonego A, Low D, Takata K, Ginhoux F, Town T, O’Banion MK, Lamb B, Colonna M, Landreth G, Andreasson KI, Sandusky LA, Selenica MLB, Lee DC, Holmes C, Teeling J, Lynch MA, Van Eldik LJ, Bachstetter AD, Pekny M, Puschmann T. Targeting innate immunity for neurodegenerative disorders of the central nervous system. J Neurochem 2016; 138:653-93. [PMID: 27248001 PMCID: PMC5433264 DOI: 10.1111/jnc.13667] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/01/2016] [Accepted: 04/30/2016] [Indexed: 12/21/2022]
Abstract
Neuroinflammation is critically involved in numerous neurodegenerative diseases, and key signaling steps of innate immune activation hence represent promising therapeutic targets. This mini review series originated from the 4th Venusberg Meeting on Neuroinflammation held in Bonn, Germany, 7-9th May 2015, presenting updates on innate immunity in acute brain injury and chronic neurodegenerative disorders, such as traumatic brain injury and Alzheimer disease, on the role of astrocytes and microglia, as well as technical developments that may help elucidate neuroinflammatory mechanisms and establish clinical relevance. In this meeting report, a brief overview of physiological and pathological microglia morphology is followed by a synopsis on PGE2 receptors, insights into the role of arginine metabolism and further relevant aspects of neuroinflammation in various clinical settings, and concluded by a presentation of technical challenges and solutions when working with microglia and astrocyte cultures. Microglial ontogeny and induced pluripotent stem cell-derived microglia, advances of TREM2 signaling, and the cytokine paradox in Alzheimer's disease are further contributions to this article. Neuroinflammation is critically involved in numerous neurodegenerative diseases, and key signaling steps of innate immune activation hence represent promising therapeutic targets. This mini review series originated from the 4th Venusberg Meeting on Neuroinflammation held in Bonn, Germany, 7-9th May 2015, presenting updates on innate immunity in acute brain injury and chronic neurodegenerative disorders, such as traumatic brain injury and Alzheimer's disease, on the role of astrocytes and microglia, as well as technical developments that may help elucidate neuroinflammatory mechanisms and establish clinical relevance. In this meeting report, a brief overview on physiological and pathological microglia morphology is followed by a synopsis on PGE2 receptors, insights into the role of arginine metabolism and further relevant aspects of neuroinflammation in various clinical settings, and concluded by a presentation of technical challenges and solutions when working with microglia cultures. Microglial ontogeny and induced pluripotent stem cell-derived microglia, advances of TREM2 signaling, and the cytokine paradox in Alzheimer's disease are further contributions to this article.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Niva Russek-Blum
- The Dead Sea and Arava Science Center, Central Arava Branch, Yair Station, Hazeva, Israel
| | - Alon Monsonego
- The Shraga Segal Dept. of Microbiology, Immunology and Genetics, The Faculty of Health Sciences: The National Institute of Biotechnology in the Negev, and Zlotowski Center for Neuroscience, Ben-Gurion University, Beer-Sheva 84105, Israel
| | - Donovan Low
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Kazuyuki Takata
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Terrence Town
- Departments of Physiology and Biophysics, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089,
| | - M. Kerry O’Banion
- Departments of Neuroscience and Neurology, Del Monte Neuromedicine Institute, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642,
| | - Bruce Lamb
- Department of Neurosciences, Cleveland Clinic, Cleveland, OH 44106
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Gary Landreth
- Department of Neurosciences, Case Western Reserve University 44106
| | - Katrin I. Andreasson
- Department of Neurology and Neurological Sciences, Stanford Neuroscience Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Leslie A. Sandusky
- USF Health Byrd Alzheimer’s Institute, Tampa, FL 33613
- College of Pharmacy & Pharmaceutical Sciences, Tampa, FL 33613
| | - Maj-Linda B. Selenica
- USF Health Byrd Alzheimer’s Institute, Tampa, FL 33613
- College of Pharmacy & Pharmaceutical Sciences, Tampa, FL 33613
| | - Daniel C. Lee
- USF Health Byrd Alzheimer’s Institute, Tampa, FL 33613
- College of Pharmacy & Pharmaceutical Sciences, Tampa, FL 33613
| | - Clive Holmes
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Tremona Road, Southampton, SO16 7YD, United Kingdom
| | - Jessica Teeling
- Centre for Biological Sciences, University of Southampton, Southampton General Hospital, Tremona Road, Southampton, SO16 7YD, United Kingdom
| | | | | | | | - Milos Pekny
- Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, SE-405 30 Gothenburg, Sweden
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Hunter Medical Research Institute, University of Newcastle, New South Wales, Australia
| | - Till Puschmann
- Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, SE-405 30 Gothenburg, Sweden
| |
Collapse
|
22
|
Agarwal S, Yadav A, Chaturvedi RK. Peroxisome proliferator-activated receptors (PPARs) as therapeutic target in neurodegenerative disorders. Biochem Biophys Res Commun 2016; 483:1166-1177. [PMID: 27514452 DOI: 10.1016/j.bbrc.2016.08.043] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/21/2016] [Accepted: 08/07/2016] [Indexed: 01/06/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors and they serve to be a promising therapeutic target for several neurodegenerative disorders, which includes Parkinson disease, Alzheimer's disease, Huntington disease and Amyotrophic Lateral Sclerosis. PPARs play an important role in the downregulation of mitochondrial dysfunction, proteasomal dysfunction, oxidative stress, and neuroinflammation, which are the major causes of the pathogenesis of neurodegenerative disorders. In this review, we discuss about the role of PPARs as therapeutic targets in neurodegenerative disorders. Several experimental approaches suggest potential application of PPAR agonist as well as antagonist in the treatment of neurodegenerative disorders. Several epidemiological studies found that the regular usage of PPAR activating non-steroidal anti-inflammatory drugs is effective in decreasing the progression of neurodegenerative diseases including PD and AD. We also reviewed the neuroprotective effects of PPAR agonists and associated mechanism of action in several neurodegenerative disorders both in vitro as well as in vivo animal models.
Collapse
Affiliation(s)
- Swati Agarwal
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Lucknow Campus, Lucknow, India
| | - Anuradha Yadav
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Lucknow Campus, Lucknow, India
| | - Rajnish Kumar Chaturvedi
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Lucknow Campus, Lucknow, India.
| |
Collapse
|
23
|
Kurhe Y, Mahesh R. Pioglitazone, a PPARγ agonist rescues depression associated with obesity using chronic unpredictable mild stress model in experimental mice. Neurobiol Stress 2016; 3:114-121. [PMID: 27981184 PMCID: PMC5146196 DOI: 10.1016/j.ynstr.2016.05.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 03/19/2016] [Accepted: 05/16/2016] [Indexed: 12/13/2022] Open
Abstract
Pioglitazone, a peroxisome proliferator activated receptor gamma (PPARγ) agonist belonging to thiazolidinedione class, is mainly used in diabetes mellitus. Obese subjects are twice likely to become depressed than non-obese individuals. The biological mechanisms linking depression with obesity still remain poorly understood and there is immense need for better therapeutic intervention against such co-morbid disorders. The present study investigates the effect of pioglitazone on the chronic unpredictable mild stress (CUMS) induced depression in obese mice by using behavioral tests and biochemical estimations. Mice were fed with high fat diet (HFD) for 14 weeks and were further subjected to different stress procedures for 28 days to induce depressive behavior. Animals were administered orally with pioglitazone (30 mg/kg p.o.)/escitalopram (10 mg/kg p.o.)/vehicle (10 ml/kg p.o.) daily from day 15-28. Various behavioral paradigms such as sucrose preference test, forced swim test (FST), tail suspension test (TST) and elevated plus maze (EPM) were performed. Biochemical estimations including plasma glucose, total cholesterol, triglycerides, and total proteins were performed. The data obtained from behavioral assays and biochemical assessments indicated that obese animals exhibited severe depressive-like behavior compared to non-obese animals. Furthermore, obese animals subjected to CUMS worsen the depressive behavior compared to obese control animals. Repetitive treatment with pioglitazone reversed the CUMS induced behavioral and biochemical alterations in HFD fed obese mice which atleast in part may be mediated through improving altered plasma glucose. The study suggests that pioglitazone needs further attention with respect to molecular mechanisms that could provide a better therapeutic strategy against depression associated with obesity.
Collapse
Affiliation(s)
- Yeshwant Kurhe
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Rajasthan, 333031, India
| | | |
Collapse
|
24
|
Pinto M, Nissanka N, Peralta S, Brambilla R, Diaz F, Moraes CT. Pioglitazone ameliorates the phenotype of a novel Parkinson's disease mouse model by reducing neuroinflammation. Mol Neurodegener 2016; 11:25. [PMID: 27038906 PMCID: PMC4818913 DOI: 10.1186/s13024-016-0090-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 03/23/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by motor and non-motor symptoms. The cause of the motor symptoms is the loss of dopaminergic neurons in the substantia nigra with consequent depletion of dopamine in the striatum. Although the etiology of PD is unknown, mitochondrial dysfunctions, including cytochrome c oxidase (Complex IV) impairment in dopaminergic neurons, have been associated with the disease's pathophysiology. In order to analyze the role of Complex IV in PD, we knocked out Cox10 (essential for the maturation of COXI, a catalytic subunit of Complex IV) in dopaminergic neurons. We also tested whether the resulting phenotype was improved by stimulating the PPAR-γ pathway. RESULTS Cox10/DAT-cre mice showed decreased numbers of TH+ and DAT+ cells in the substantia nigra, early striatal dopamine depletion, motor defects reversible with L-DOPA treatment and hypersensitivity to L-DOPA with hyperkinetic behavior. We found that chronic pioglitazone (PPAR-γ agonist) treatment ameliorated the motor phenotype in Cox10/DAT-cre mice. Although neither mitochondrial function nor the number of dopaminergic neurons was improved, neuroinflammation in the midbrain and the striatum was decreased. CONCLUSIONS By triggering a mitochondrial Complex IV defect in dopaminergic neurons, we created a new mouse model resembling the late stages of PD with massive degeneration of dopaminergic neurons and striatal dopamine depletion. The motor phenotypes were improved by Pioglitazone treatment, suggesting that targetable secondary pathways can influence the development of certain forms of PD.
Collapse
Affiliation(s)
- Milena Pinto
- />Department of Neurology, University of Miami Miller School of Medicine, 1420 NW 9th Avenue, Rm.229, Miami, FL 33136 USA
| | - Nadee Nissanka
- />Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Susana Peralta
- />Department of Neurology, University of Miami Miller School of Medicine, 1420 NW 9th Avenue, Rm.229, Miami, FL 33136 USA
| | - Roberta Brambilla
- />Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL 33136 USA
- />The Miami Project To Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Francisca Diaz
- />Department of Neurology, University of Miami Miller School of Medicine, 1420 NW 9th Avenue, Rm.229, Miami, FL 33136 USA
| | - Carlos T. Moraes
- />Department of Neurology, University of Miami Miller School of Medicine, 1420 NW 9th Avenue, Rm.229, Miami, FL 33136 USA
- />Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| |
Collapse
|
25
|
Pérez-Martín M, Rivera P, Blanco E, Lorefice C, Decara J, Pavón FJ, Serrano A, Rodríguez de Fonseca F, Suárez J. Environmental Enrichment, Age, and PPARα Interact to Regulate Proliferation in Neurogenic Niches. Front Neurosci 2016; 10:89. [PMID: 27013951 PMCID: PMC4783391 DOI: 10.3389/fnins.2016.00089] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 02/22/2016] [Indexed: 11/13/2022] Open
Abstract
Peroxisome proliferator-activated receptor alpha (PPARα) ligands have been shown to modulate recovery after brain insults such as ischemia and irradiation by enhancing neurogenesis. In the present study, we investigated the effect of the genetic deletion of PPARα receptors on the proliferative rate of neural precursor cells (NPC) in the adult brain. The study was performed in aged Pparα−/− mice exposed to nutritional (treats) and environmental (games) enrichments for 20 days. We performed immunohistochemical analyses of cells containing the replicating cell DNA marker 5-bromo-2′-deoxyuridine (BrdU+) and the immature neuronal marker doublecortin (Dcx+) in the main neurogenic zones of the adult brain: subgranular zone of dentate gyrus (SGZ), subventricular zone of lateral ventricles (SVZ), and/or hypothalamus. Results indicated a reduction in the number of BrdU+ cells in the neurogenic zones analyzed as well as Dcx+ cells in the SGZ during aging (2, 6, and 18 months). Pparα deficiency alleviated the age-related reduction of NPC proliferation (BrdU+ cells) in the SVZ of the 18-months-old mice. While no genotype effect on NPC proliferation was detected in the SGZ during aging, an accentuated reduction in the number of Dcx+ cells was observed in the SGZ of the 6-months-old Pparα−/− mice. Exposing the 18-months-old mice to nutritional and environmental enrichments reversed the Pparα−/−-induced impairment of NPC proliferation in the neurogenic zones analyzed. The enriched environment did not modify the number of SGZ Dcx+ cells in the 18 months old Pparα−/− mice. These results identify PPARα receptors as a potential target to counteract the naturally observed decline in adult NPC proliferation associated with aging and impoverished environments.
Collapse
Affiliation(s)
- Margarita Pérez-Martín
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga Málaga, Spain
| | - Patricia Rivera
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga-Hospital Universitario Regional de Málaga Málaga, Spain
| | - Eduardo Blanco
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga-Hospital Universitario Regional de MálagaMálaga, Spain; Departament de Pedagogia i Psicologia, Facultat d'Educació, Psicologia i Treball Social, Universitat de LleidaLleida, Spain
| | - Clara Lorefice
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga, Universidad de MálagaMálaga, Spain; UGC Salud Mental, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga-Hospital Universitario Regional de MálagaMálaga, Spain
| | - Juan Decara
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga-Hospital Universitario Regional de Málaga Málaga, Spain
| | - Francisco J Pavón
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga-Hospital Universitario Regional de Málaga Málaga, Spain
| | - Antonia Serrano
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga-Hospital Universitario Regional de Málaga Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga-Hospital Universitario Regional de Málaga Málaga, Spain
| | - Juan Suárez
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga-Hospital Universitario Regional de Málaga Málaga, Spain
| |
Collapse
|
26
|
Aldasoro M, Guerra-Ojeda S, Aguirre-Rueda D, Mauricio MD, Vila JM, Marchio P, Iradi A, Aldasoro C, Jorda A, Obrador E, Valles SL. Effects of Ranolazine on Astrocytes and Neurons in Primary Culture. PLoS One 2016; 11:e0150619. [PMID: 26950436 PMCID: PMC4780741 DOI: 10.1371/journal.pone.0150619] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 02/17/2016] [Indexed: 12/15/2022] Open
Abstract
Ranolazine (Rn) is an antianginal agent used for the treatment of chronic angina pectoris when angina is not adequately controlled by other drugs. Rn also acts in the central nervous system and it has been proposed for the treatment of pain and epileptic disorders. Under the hypothesis that ranolazine could act as a neuroprotective drug, we studied its effects on astrocytes and neurons in primary culture. We incubated rat astrocytes and neurons in primary cultures for 24 hours with Rn (10-7, 10-6 and 10-5 M). Cell viability and proliferation were measured using trypan blue exclusion assay, MTT conversion assay and LDH release assay. Apoptosis was determined by Caspase 3 activity assay. The effects of Rn on pro-inflammatory mediators IL-β and TNF-α was determined by ELISA technique, and protein expression levels of Smac/Diablo, PPAR-γ, Mn-SOD and Cu/Zn-SOD by western blot technique. In cultured astrocytes, Rn significantly increased cell viability and proliferation at any concentration tested, and decreased LDH leakage, Smac/Diablo expression and Caspase 3 activity indicating less cell death. Rn also increased anti-inflammatory PPAR-γ protein expression and reduced pro-inflammatory proteins IL-1 β and TNFα levels. Furthermore, antioxidant proteins Cu/Zn-SOD and Mn-SOD significantly increased after Rn addition in cultured astrocytes. Conversely, Rn did not exert any effect on cultured neurons. In conclusion, Rn could act as a neuroprotective drug in the central nervous system by promoting astrocyte viability, preventing necrosis and apoptosis, inhibiting inflammatory phenomena and inducing anti-inflammatory and antioxidant agents.
Collapse
Affiliation(s)
- Martin Aldasoro
- Department of Physiology, School of Medicine, University of Valencia, Spain
| | - Sol Guerra-Ojeda
- Department of Physiology, School of Medicine, University of Valencia, Spain
| | | | | | - Jose Mª Vila
- Department of Physiology, School of Medicine, University of Valencia, Spain
| | - Patricia Marchio
- Department of Physiology, School of Medicine, University of Valencia, Spain
| | - Antonio Iradi
- Department of Physiology, School of Medicine, University of Valencia, Spain
| | - Constanza Aldasoro
- Department of Physiology, School of Medicine, University of Valencia, Spain
| | - Adrian Jorda
- Department of Physiology, School of Medicine, University of Valencia, Spain
| | - Elena Obrador
- Department of Physiology, School of Medicine, University of Valencia, Spain
| | - Soraya L. Valles
- Department of Physiology, School of Medicine, University of Valencia, Spain
- * E-mail:
| |
Collapse
|
27
|
Donma MM, Donma O. Promising link between selenium and peroxisome proliferator activated receptor gamma in the treatment protocols of obesity as well as depression. Med Hypotheses 2016; 89:79-83. [PMID: 26968915 DOI: 10.1016/j.mehy.2016.02.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/31/2016] [Accepted: 02/07/2016] [Indexed: 12/13/2022]
Abstract
Considerable interest has been given to the significance of peroxisome proliferator activated receptors (PPARs) in macronutrient metabolism, however, there is not sufficient data concerning the interactions between PPARs and micronutrients. Investigations performed on PPARγ and one of the essential micronutrients selenium (Se) have shown that both parameters may lead to alterations in obesity-related or mood disorders. Therefore, it is plausible to consider PPARγ and Se together as a powerful combination during the treatment of two associated diseases; obesity and depression. PPARγ has been shown to be involved in the antidepressant-like activity. It is also an important parameter to be considered in obesity as the master regulator of adipogenesis. The mechanism of action of PPARγ is initiated by ligand binding which induces a conformational change in the receptor. Se is capable of alleviating inflammatory signaling pathways. Obesity is associated with chronic low-grade inflammation. Depression is also defined as an inflammatory disorder. Inflammatory mediators such as tumor necrosis factor-alpha (TNFα) participate in the progression of depression. They are also obesity-associated parameters. Due to TNFα induced depressive-like behaviors and the positive association between this proinflammatory cytokine and obesity, TNFα-activated signaling pathways and those inhibiting them have recently gained importance as potential targets and therapeutic tools, respectively. More studies are necessary to develop compounds with therapeutic nature against depressive disorders and obesity. PPARγ is an important signaling pathway that occurs at the crossroads of depression and obesity. Se, aside from its anti-inflammatory, anticarcinogenic and antioxidative nature, affects also the way of PPARγ action. Se supplementation or fortification as well as the development of the partial agonists of PPARγ in which lipophilic Se compounds are used as ligand followed by experimental trials and human studies using the newly developed compounds will be promising approaches for future hope during the treatment of these diseases.
Collapse
Affiliation(s)
- M M Donma
- Namik Kemal University, Faculty of Medicine, Tekirdag, Turkey
| | - O Donma
- Istanbul University, Cerrahpasa Medical Faculty, Istanbul, Turkey
| |
Collapse
|
28
|
Esmaeili M, Ghaedi K, Shoaraye Nejati A, Nematollahi M, Shiralyian H, Nasr-Esfahani MH. Pioglitazone significantly prevented decreased rate of neural differentiation of mouse embryonic stem cells which was reduced by Pex11β knock-down. Neuroscience 2015; 312:35-47. [PMID: 26562432 DOI: 10.1016/j.neuroscience.2015.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 11/03/2015] [Accepted: 11/03/2015] [Indexed: 12/12/2022]
Abstract
Peroxisomes constitute special cellular organelles which display a variety of metabolic functions including fatty acid oxidation and free radical elimination. Abundance of these flexible organelles varies in response to different environmental stimuli. It has been demonstrated that PEX11β, a peroxisomal membrane elongation factor, is involved in the regulation of size, shape and number of peroxisomes. To investigate the role of PEX11β in neural differentiation of mouse embryonic stem cells (mESCs), we generated a stably transduced mESCs line that derives the expression of a short hairpin RNA against Pex11β gene following doxycycline (Dox) induction. Knock-down of Pex11β, during neural differentiation, significantly reduced the expression of neural progenitor cells and mature neuronal markers (p<0.05) indicating that decreased expression of PEX11β suppresses neuronal maturation. Additionally, mRNA levels of other peroxisome-related genes such as PMP70, Pex11α, Catalase, Pex19 and Pex5 were also significantly reduced by Pex11β knock-down (p<0.05). Interestingly, pretreatment of transduced mESCs with peroxisome proliferator-activated receptor γ agonist (pioglitazone (Pio)) ameliorated the inhibitory effects of Pex11β knock down on neural differentiation. Pio also significantly (p<0.05) increased the expression of neural progenitor and mature neuronal markers besides the expression of peroxisomal genes in transduced mESC. Results elucidated the importance of Pex11β expression in neural differentiation of mESCs, thereby highlighting the essential role of peroxisomes in mammalian neural differentiation. The observation that Pio recovered peroxisomal function and improved neural differentiation of Pex11β knocked-down mESCs, proposes a potential new pharmacological implication of Pio for neurogenesis in patients with peroxisomal defects.
Collapse
Affiliation(s)
- M Esmaeili
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - K Ghaedi
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran; Division of Cellular and Molecular Biology, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran.
| | - A Shoaraye Nejati
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - M Nematollahi
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - H Shiralyian
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - M H Nasr-Esfahani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
29
|
Therapeutic Actions of the Thiazolidinediones in Alzheimer's Disease. PPAR Res 2015; 2015:957248. [PMID: 26587016 PMCID: PMC4637502 DOI: 10.1155/2015/957248] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/30/2015] [Indexed: 01/21/2023] Open
Abstract
Alzheimer's disease (AD) is a multifactorial metabolic brain disorder characterized by protein aggregates, synaptic failure, and cognitive impairment. In the AD brain is common to observe the accumulation of senile plaques formed by amyloid-beta (Aβ) peptide and the neurofibrillary tangles composed of modified tau protein, which both lead to cellular damage and progressive neurodegeneration. Currently, there is no effective therapy for AD; however several studies have shown that the treatments with the peroxisome proliferators activated receptor-gamma (PPARγ) agonists known as thiazolidinedione drugs (TZDs), like rosiglitazone and pioglitazone, attenuate neurodegeneration and improve cognition in mouse models and patients with mild-to-moderate AD. Furthermore, studies on animal models have shown that TZDs inhibit neuroinflammation, facilitate amyloid-β plaque clearance, enhance mitochondrial function, improve synaptic plasticity, and, more recently, attenuate tau hyperphosphorylation. How TZDs may improve or reduce these pathologic signs of AD and what the mechanisms and the implicated pathways in which these drugs work are are questions that remain to be answered. However, in this review, we will discuss several cellular targets, in which TZDs can be acting against the neurodegeneration.
Collapse
|
30
|
Johansson JU, Woodling NS, Shi J, Andreasson KI. Inflammatory Cyclooxygenase Activity and PGE 2 Signaling in Models of Alzheimer's Disease. ACTA ACUST UNITED AC 2015; 11:125-131. [PMID: 28413375 PMCID: PMC5384338 DOI: 10.2174/1573395511666150707181414] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/03/2015] [Accepted: 04/19/2015] [Indexed: 11/28/2022]
Abstract
The inflammatory response is a fundamental driving force in the pathogenesis of Alzheimer’s disease (AD). In the setting of accumulating immunogenic Aß peptide assemblies, microglia, the innate immune cells of the brain, generate a non-resolving immune response and fail to adequately clear accumulating Aß peptides, accelerating neuronal and synaptic injury. Pathological, biomarker, and imaging studies point to a prominent role of the innate immune response in AD development, and the molecular components of this response are beginning to be unraveled. The inflammatory cyclooxygenase-PGE2 pathway is implicated in pre-clinical development of AD, both in epidemiology of normal aging populations and in transgenic mouse models of Familial AD. The cyclooxygenase-PGE2 pathway modulates the inflammatory response to accumulating Aß peptides through actions of specific E-prostanoid G-protein coupled receptors.
Collapse
Affiliation(s)
- Jenny U Johansson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.,Present address: SRI International, Menlo Park, CA, USA
| | - Nathaniel S Woodling
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.,Present address: Institute of Healthy Ageing, University College London, London, UK
| | - Ju Shi
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.,Present address: True North Therapeutics, South San Francisco, CA, USA
| | - Katrin I Andreasson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
31
|
Heneka MT, Fink A, Doblhammer G. Effect of pioglitazone medication on the incidence of dementia. Ann Neurol 2015; 78:284-94. [DOI: 10.1002/ana.24439] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 05/11/2015] [Accepted: 05/11/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Michael T. Heneka
- German Center for Neurodegenerative Diseases; Bonn Germany
- Clinical Neurosciences; Department of Neurology; University of Bonn; Bonn Germany
- Department of Medicine; University of Massachusetts Medical School; Worcester MA
| | - Anne Fink
- German Center for Neurodegenerative Diseases; Bonn Germany
- Rostock Center for the Study of Demographic Change; Rostock Germany
| | - Gabriele Doblhammer
- German Center for Neurodegenerative Diseases; Bonn Germany
- Rostock Center for the Study of Demographic Change; Rostock Germany
- Institute for Sociology and Demography, University of Rostock; Rostock Germany
- Max Planck Institute for Demographic Research; Rostock Germany
| |
Collapse
|
32
|
Colín-González AL, Ali SF, Túnez I, Santamaría A. On the antioxidant, neuroprotective and anti-inflammatory properties of S-allyl cysteine: An update. Neurochem Int 2015; 89:83-91. [PMID: 26122973 DOI: 10.1016/j.neuint.2015.06.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/11/2015] [Accepted: 06/15/2015] [Indexed: 12/25/2022]
Abstract
Therapeutic approaches based on isolated compounds obtained from natural products to handle central and peripheral disorders involving oxidative stress and inflammation are more common nowadays. The validation of nutraceutics vs. pharmaceutics as tools to induce preventive and protective profiles in human health alterations is still far of complete acceptance, but the basis to start more solid experimental and clinical protocols with natural products has already begun. S-allyl cysteine (SAC) is a promising garlic-derived organosulfur compound exhibiting a considerable number of positive actions in cell models and living systems. An update, in the form of review, is needed from time to time to get access to the state-of-the-art on this topic. In this review we visited recent and refreshing evidence of new already proven and potential targets to explain the benefits of using SAC against toxic and pathological conditions. The broad spectrum of protective actions covered by this molecule comprises antioxidant, redox modulatory and anti-inflammatory activities, accompanied by anti-apoptotic, pro-energetic and signaling capacities. Herein, we detail the evidence on these aspects to provide the reader a more complete overview on the promising aspects of SAC in research.
Collapse
Affiliation(s)
- Ana Laura Colín-González
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, SSA, Mexico City, Mexico
| | - Syed F Ali
- Neurochemistry Laboratory, Division of Neurotoxicology, National Center for Toxicological Research/FDA, Jefferson, AR, USA.
| | - Isaac Túnez
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofia/Universidad de Córdoba, Cordoba, Spain; Red Temática de Investigación Cooperativa en Envejecimiento y Fragilidad (RETICEF), Spain
| | - Abel Santamaría
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, SSA, Mexico City, Mexico.
| |
Collapse
|
33
|
Abstract
The question whether dietary habits and lifestyle have influence on the course of multiple sclerosis (MS) is still a matter of debate, and at present, MS therapy is not associated with any information on diet and lifestyle. Here we show that dietary factors and lifestyle may exacerbate or ameliorate MS symptoms by modulating the inflammatory status of the disease both in relapsing-remitting MS and in primary-progressive MS. This is achieved by controlling both the metabolic and inflammatory pathways in the human cell and the composition of commensal gut microbiota. What increases inflammation are hypercaloric Western-style diets, characterized by high salt, animal fat, red meat, sugar-sweetened drinks, fried food, low fiber, and lack of physical exercise. The persistence of this type of diet upregulates the metabolism of human cells toward biosynthetic pathways including those of proinflammatory molecules and also leads to a dysbiotic gut microbiota, alteration of intestinal immunity, and low-grade systemic inflammation. Conversely, exercise and low-calorie diets based on the assumption of vegetables, fruit, legumes, fish, prebiotics, and probiotics act on nuclear receptors and enzymes that upregulate oxidative metabolism, downregulate the synthesis of proinflammatory molecules, and restore or maintain a healthy symbiotic gut microbiota. Now that we know the molecular mechanisms by which dietary factors and exercise affect the inflammatory status in MS, we can expect that a nutritional intervention with anti-inflammatory food and dietary supplements can alleviate possible side effects of immune-modulatory drugs and the symptoms of chronic fatigue syndrome and thus favor patient wellness.
Collapse
Affiliation(s)
- Paolo Riccio
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Rocco Rossano
- Department of Sciences, University of Basilicata, Potenza, Italy
| |
Collapse
|
34
|
Johansson JU, Woodling NS, Wang Q, Panchal M, Liang X, Trueba-Saiz A, Brown HD, Mhatre SD, Loui T, Andreasson KI. Prostaglandin signaling suppresses beneficial microglial function in Alzheimer's disease models. J Clin Invest 2014; 125:350-64. [PMID: 25485684 DOI: 10.1172/jci77487] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 10/30/2014] [Indexed: 12/25/2022] Open
Abstract
Microglia, the innate immune cells of the CNS, perform critical inflammatory and noninflammatory functions that maintain normal neural function. For example, microglia clear misfolded proteins, elaborate trophic factors, and regulate and terminate toxic inflammation. In Alzheimer's disease (AD), however, beneficial microglial functions become impaired, accelerating synaptic and neuronal loss. Better understanding of the molecular mechanisms that contribute to microglial dysfunction is an important objective for identifying potential strategies to delay progression to AD. The inflammatory cyclooxygenase/prostaglandin E2 (COX/PGE2) pathway has been implicated in preclinical AD development, both in human epidemiology studies and in transgenic rodent models of AD. Here, we evaluated murine models that recapitulate microglial responses to Aβ peptides and determined that microglia-specific deletion of the gene encoding the PGE2 receptor EP2 restores microglial chemotaxis and Aβ clearance, suppresses toxic inflammation, increases cytoprotective insulin-like growth factor 1 (IGF1) signaling, and prevents synaptic injury and memory deficits. Our findings indicate that EP2 signaling suppresses beneficial microglia functions that falter during AD development and suggest that inhibition of the COX/PGE2/EP2 immune pathway has potential as a strategy to restore healthy microglial function and prevent progression to AD.
Collapse
|
35
|
Skerrett R, Malm T, Landreth G. Nuclear receptors in neurodegenerative diseases. Neurobiol Dis 2014; 72 Pt A:104-16. [PMID: 24874548 PMCID: PMC4246019 DOI: 10.1016/j.nbd.2014.05.019] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/14/2014] [Accepted: 05/17/2014] [Indexed: 01/04/2023] Open
Abstract
Nuclear receptors have generated substantial interest in the past decade as potential therapeutic targets for the treatment of neurodegenerative disorders. Despite years of effort, effective treatments for progressive neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease and ALS remain elusive, making non-classical drug targets such as nuclear receptors an attractive alternative. A substantial literature in mouse models of disease and several clinical trials have investigated the role of nuclear receptors in various neurodegenerative disorders, most prominently AD. These studies have met with mixed results, yet the majority of studies in mouse models report positive outcomes. The mechanisms by which nuclear receptor agonists affect disease pathology remain unclear. Deciphering the complex signaling underlying nuclear receptor action in neurodegenerative diseases is essential for understanding this variability in preclinical studies, and for the successful translation of nuclear receptor agonists into clinical therapies.
Collapse
Affiliation(s)
- Rebecca Skerrett
- Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.
| | - Tarja Malm
- Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA; A.I. Virtanen Institute for Molecular Sciences, Department of Neurobiology, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland.
| | - Gary Landreth
- Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
36
|
Shahsavarian A, Javadi S, Jahanabadi S, Khoshnoodi M, Shamsaee J, Shafaroodi H, Mehr SE, Dehpour A. Antidepressant-like effect of atorvastatin in the forced swimming test in mice: The role of PPAR-gamma receptor and nitric oxide pathway. Eur J Pharmacol 2014; 745:52-8. [DOI: 10.1016/j.ejphar.2014.10.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 09/29/2014] [Accepted: 10/03/2014] [Indexed: 12/22/2022]
|
37
|
Carta AR, Simuni T. Thiazolidinediones under preclinical and early clinical development for the treatment of Parkinson's disease. Expert Opin Investig Drugs 2014; 24:219-27. [PMID: 25227476 DOI: 10.1517/13543784.2015.963195] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Current treatment of Parkinson's disease (PD) is limited to symptomatic dopaminergic therapy, while no interventions have been shown to slow down disease progression. AREAS COVERED The following article highlights a group of PPAR-γ agonists called thiazolidinediones (TZDs), which are currently being tested for a putative disease-modifying benefit in PD, using pioglitazone as a prototypic compound. PPAR-γ is highly expressed in neurons of the substantia nigra and CNS immune cells. Preclinical data in rodent and primate support an effect of TZDs in preventing and/or arresting neurodegeneration and development of motor symptoms. Although no data on the neuroprotective effect of TZDs is currently available, a clinical trial is ongoing where the primary objective is to assess pioglitazone's impact on the progression of PD. The trial is also evaluating the drug's safety concerns. EXPERT OPINION The efficacy data from clinical trials must be carefully weighed against the safety concerns. However, given the solid preclinical data, and since the safety data are not yet fully conclusive and limited to the diabetic population, PPAR-γ research in PD can continue with caution. Ideally, drug discovery and development efforts will lead to the identification of new compounds with reduced risk of peripheral side effects.
Collapse
Affiliation(s)
- Anna R Carta
- University of Cagliari, Department of Biomedical Sciences , via Ospedale 72, 09124, Cagliari , Italy +39 0706758662 ; +39 0706758665 ;
| | | |
Collapse
|
38
|
Minghetti L, Salvi R, Lavinia Salvatori M, Ajmone-Cat MA, De Nuccio C, Visentin S, Bultel-Poncé V, Oger C, Guy A, Galano JM, Greco A, Bernardo A, Durand T. Nonenzymatic oxygenated metabolites of α-linolenic acid B1- and L1-phytoprostanes protect immature neurons from oxidant injury and promote differentiation of oligodendrocyte progenitors through PPAR-γ activation. Free Radic Biol Med 2014; 73:41-50. [PMID: 24794409 DOI: 10.1016/j.freeradbiomed.2014.04.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/27/2014] [Accepted: 04/23/2014] [Indexed: 10/25/2022]
Abstract
Phytoprostanes (PhytoP's) are formed in higher plants from α-linolenic acid via a nonenzymatic free radical-catalyzed pathway and act as endogenous mediators capable of protecting cells from damage under various conditions related to oxidative stress. Humans are exposed to PhytoP's, as they are present in relevant quantities in vegetable food and pollen. The uptake of PhytoP's through the olfactory epithelium of the nasal mucosa, upon pollen grain inhalation, is of interest as the intranasal pathway is regarded as a direct route of communication between the environment and the brain. On this basis, we sought to investigate the potential activities of PhytoP's on immature cells of the central nervous system, which are particularly susceptible to oxidative stress. In neuroblastoma SH-SY5Y cells, used as a model for undifferentiated neurons, B1-PhytoP's, but not F1-PhytoP's, increased cell metabolic activity and protected them from oxidant damage caused by H2O2. Moreover, B1-PhytoP's induced a moderate depolarization of the mitochondrial inner membrane potential. These effects were prevented by the PPAR-γ antagonist GW9662. When SH-SY5Y cells were induced to differentiate toward a more mature phenotype, they became resistant to B1-PhytoP activities. B1-PhytoP's also influenced immature cells of an oligodendroglial line, as they increased the metabolic activity of oligodendrocyte progenitors and strongly accelerated their differentiation to immature oligodendrocytes, through mechanisms at least partially dependent on PPAR-γ activity. However, B1-PhytoP's did not protect oligodendrocyte progenitors against oxidant injury. Taken together, these data suggest that B1-PhytoP's, through novel mechanisms involving PPAR-γ, can specifically affect immature brain cells, such as neuroblasts and oligodendrocyte progenitors, thereby conferring neuroprotection against oxidant injury and promoting myelination.
Collapse
Affiliation(s)
- Luisa Minghetti
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Rachele Salvi
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Maria Lavinia Salvatori
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, 00161 Rome, Italy
| | | | - Chiara De Nuccio
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Sergio Visentin
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Valérie Bultel-Poncé
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, UM I, UM II, ENSCM, Montpellier, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, UM I, UM II, ENSCM, Montpellier, France
| | - Alexandre Guy
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, UM I, UM II, ENSCM, Montpellier, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, UM I, UM II, ENSCM, Montpellier, France
| | - Anita Greco
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Antonietta Bernardo
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, UM I, UM II, ENSCM, Montpellier, France
| |
Collapse
|
39
|
Oxaliplatin neurotoxicity involves peroxisome alterations. PPARγ agonism as preventive pharmacological approach. PLoS One 2014; 9:e102758. [PMID: 25036594 PMCID: PMC4103888 DOI: 10.1371/journal.pone.0102758] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 06/23/2014] [Indexed: 02/07/2023] Open
Abstract
The development of neuropathic syndromes is an important, dose limiting side effect of anticancer agents like platinum derivates, taxanes and vinca alkaloids. The causes of neurotoxicity are still unclear but the impairment of the oxidative equilibrium is strictly related to pain. Two intracellular organelles, mitochondria and peroxisomes cooperate to the maintaining of the redox cellular state. Whereas a relationship between chemotherapy-dependent mitochondrial alteration and neuropathy has been established, the role of peroxisome is poor explored. In order to study the mechanisms of oxaliplatin-induced neurotoxicity, peroxisomal involvement was evaluated in vitro and in vivo. In primary rat astrocyte cell culture, oxaliplatin (10 µM for 48 h or 1 µM for 5 days) increased the number of peroxisomes, nevertheless expression and functionality of catalase, the most important antioxidant defense enzyme in mammalian peroxisomes, were significantly reduced. Five day incubation with the selective Peroxisome Proliferator Activated Receptor-γ (PPAR-γ) antagonist G3335 (30 µM) induced a similar peroxisomal impairment suggesting a relationship between PPARγ signaling and oxaliplatin neurotoxicity. The PPARγ agonist rosiglitazone (10 µM) reduced the harmful effects induced both by G3335 and oxaliplatin. In vivo, in a rat model of oxaliplatin induced neuropathy, a repeated treatment with rosiglitazone (3 and 10 mg kg−1 per os) significantly reduced neuropathic pain evoked by noxious (Paw pressure test) and non-noxious (Cold plate test) stimuli. The behavioral effect paralleled with the prevention of catalase impairment induced by oxaliplatin in dorsal root ganglia. In the spinal cord, catalase protection was showed by the lower rosiglitazone dosage without effect on the astrocyte density increase induced by oxaliplatin. Rosiglitazone did not alter the oxaliplatin-induced mortality of the human colon cancer cell line HT-29. These results highlight the role of peroxisomes in oxaliplatin-dependent nervous damage and suggest PPARγ stimulation as a candidate to counteract oxaliplatin neurotoxicity.
Collapse
|
40
|
Di Cesare Mannelli L, Zanardelli M, Micheli L, Ghelardini C. PPAR- γ impairment alters peroxisome functionality in primary astrocyte cell cultures. BIOMED RESEARCH INTERNATIONAL 2014; 2014:546453. [PMID: 24729976 PMCID: PMC3960521 DOI: 10.1155/2014/546453] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/04/2014] [Accepted: 01/07/2014] [Indexed: 12/18/2022]
Abstract
Peroxisomes provide glial cells with protective functions against the harmful effects of H2O2 on neurons and peroxisome impairment results in nervous lesions. Agonists of the γ -subtype of the Peroxisome-Proliferator-Activated-Receptors (PPAR) have been proposed as neuroprotective agents in neurodegenerative disorders. Nevertheless, the role of PPAR- γ alterations in pathophysiological mechanisms and the relevance of peroxisome functions in the PPAR- γ effects are not yet clear. In a primary cell culture of rat astrocytes, the irreversible PPAR- γ antagonist GW9662 concentration-dependently decreased the activity of catalase, the most important antioxidant defense enzyme in peroxisomes. Catalase functionality recovered in a few days and the PPAR- γ agonist rosiglitazone promoted reversal of enzymatic damage. The reversible antagonist G3335 reduced both the activity and expression of catalase in a rosiglitazone-prevented manner. G3335 reduced also the glutathione reductase expression, indicating that enzyme involved in glutathione regeneration was compromised. Neither the PPAR- α target gene Acyl-Coenzyme-A-oxidase-1 nor the mitochondrial detoxifying enzyme NADH:ubiquinone-oxidoreductase (NDFUS3) was altered by PPAR- γ inhibition. In conclusion, PPAR- γ inhibition induced impairment of catalase in astrocytes. A general decrease of the antioxidant defenses of the cell suggests that a PPAR- γ hypofunction could participate in neurodegenerative mechanisms through peroxisomal damage. This series of experiments could be a useful model for studying compounds able to restore peroxisome functionality.
Collapse
Affiliation(s)
- Lorenzo Di Cesare Mannelli
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino-(Neurofarba)-Sezione di Farmacologia e Tossicologia, Università di Firenze, Viale Pieraccini 6, 50139 Florence, Italy
| | - Matteo Zanardelli
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino-(Neurofarba)-Sezione di Farmacologia e Tossicologia, Università di Firenze, Viale Pieraccini 6, 50139 Florence, Italy
| | - Laura Micheli
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino-(Neurofarba)-Sezione di Farmacologia e Tossicologia, Università di Firenze, Viale Pieraccini 6, 50139 Florence, Italy
| | - Carla Ghelardini
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino-(Neurofarba)-Sezione di Farmacologia e Tossicologia, Università di Firenze, Viale Pieraccini 6, 50139 Florence, Italy
| |
Collapse
|
41
|
Mishra J, Chaudhary T, Kumar A. Rosiglitazone synergizes the neuroprotective effects of valproic acid against quinolinic acid-induced neurotoxicity in rats: targeting PPARγ and HDAC pathways. Neurotox Res 2014; 26:130-51. [PMID: 24566814 DOI: 10.1007/s12640-014-9458-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 02/01/2014] [Accepted: 02/04/2014] [Indexed: 12/15/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant progressive neurodegenerative disorder which affects medium spiny GABAergic neurons mainly in the striatum. Oxidative damage, neuro-inflammation, apoptosis, protein aggregation, and signaling of neurotrophic factors are some of the common cellular pathways involved in HD. Quinolinic acid (QA) causes excitotoxicity by stimulating N-methyl-D-aspartate receptors via calcium overload leading to neurodegeneration. Neuroprotective potential of peroxisome proliferator activated receptor-γ (PPARγ) agonists and histone deacetylase (HDAC) inhibitors have been well documented in experimental models of neurodegenerative disorders; however, their exact mechanisms are not clear. Therefore, present study has been designed to explore possible neuroprotective mechanism of valproic acid (VPA) and its interaction with rosiglitazone against QA induced HD-like symptoms in rats. Single bilateral intrastriatal QA (200 nmol/2 μl saline) administration significantly caused motor incoordination, memory impairment, oxidative damage, mitochondrial dysfunction (complex I, II, II and IV), cellular alterations [tumor necrosis factor-alpha (TNF-α), caspase-3, brain derived neurotrophic factor, acetylcholinesterase], and striatal neurodegeneration as compared to sham group. Treatment with rosiglitazone (5, 10 mg/kg) and VPA (100, 200 mg/kg) for 21 days significantly attenuated these behavioral, biochemical, and cellular alterations as compared to control (QA 200 nmol) group. However, VPA (100 mg/kg) treatment in combination with rosiglitazone (5 mg/kg) for 21 days synergized their neuroprotective effect, which was significant as compared to their effects per se in QA-treated animals. The present study provides an evidence of possible interplay of PPARγ agonists and HDAC inhibitors as a novel therapeutic strategy in the management of HD.
Collapse
Affiliation(s)
- Jitendriya Mishra
- Pharmacology Division, UGC Centre of Advanced Study (UGC-CAS), University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | | | | |
Collapse
|
42
|
Cyclooxygenase-1-dependent prostaglandins mediate susceptibility to systemic inflammation-induced acute cognitive dysfunction. J Neurosci 2013; 33:15248-58. [PMID: 24048854 DOI: 10.1523/jneurosci.6361-11.2013] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Systemic inflammatory events often precipitate acute cognitive dysfunction in elderly and demented populations. Delirium is a highly prevalent neuropsychiatric syndrome that is characterized by acute inattention and cognitive dysfunction, for which prior dementia is the major predisposing factor and systemic inflammation is a frequent trigger. Inflammatory mechanisms of delirium remain unclear. We have modeled aspects of delirium during dementia by exploiting progressive neurodegeneration in the ME7 mouse model of prion disease and by superimposing systemic inflammation induced by the bacterial endotoxin lipopolysaccharide (LPS). Here, we have used this model to demonstrate that the progression of underlying disease increases the incidence, severity, and duration of acute cognitive dysfunction. This increasing susceptibility is associated with increased CNS expression of cyclooxygenase (COX)-1 in microglia and perivascular macrophages. The COX-1-specific inhibitor SC-560 provided significant protection against LPS-induced cognitive deficits, and attenuated the disease-induced increase in hippocampal and thalamic prostaglandin E2, while the COX-2-specific inhibitor NS-398 was ineffective. SC-560 treatment did not alter levels of the proinflammatory cytokines interleukin (IL)-1β, tumor necrosis factor-α, IL-6, or C-X-C chemokine ligand 1 in blood or brain, but systemic IL-1RA blocked LPS-induced cognitive deficits, and systemic IL-1β was sufficient to induce similar deficits in the absence of LPS. Furthermore, the well tolerated COX inhibitor ibuprofen was protective against IL-1β-induced deficits. These data demonstrate that progressive microglial COX-1 expression and prostaglandin synthesis can underpin susceptibility to cognitive deficits, which can be triggered by systemic LPS-induced IL-1β. These data contribute to our understanding of how systemic inflammation and ongoing neurodegeneration interact to induce cognitive dysfunction and episodes of delirium.
Collapse
|
43
|
Kiss M, Czimmerer Z, Nagy L. The role of lipid-activated nuclear receptors in shaping macrophage and dendritic cell function: From physiology to pathology. J Allergy Clin Immunol 2013; 132:264-86. [PMID: 23905916 DOI: 10.1016/j.jaci.2013.05.044] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/16/2013] [Accepted: 05/30/2013] [Indexed: 02/06/2023]
Abstract
Nuclear receptors are ligand-activated transcription factors linking lipid signaling to the expression of the genome. There is increasing appreciation of the involvement of this receptor network in the metabolic programming of macrophages and dendritic cells (DCs), essential members of the innate immune system. In this review we focus on the role of retinoid X receptor, retinoic acid receptor, peroxisome proliferator-associated receptor γ, liver X receptor, and vitamin D receptor in shaping the immune and metabolic functions of macrophages and DCs. We also provide an overview of the contribution of macrophage- and DC-expressed nuclear receptors to various immunopathologic conditions, such as rheumatoid arthritis, inflammatory bowel disease, systemic lupus erythematosus, asthma, and some others. We suggest that systematic analyses of the roles of these receptors and their activating lipid ligands in immunopathologies combined with complementary and focused translational and clinical research will be crucial for the development of new therapies using the many molecules available to target nuclear receptors.
Collapse
Affiliation(s)
- Mate Kiss
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, University of Debrecen, Medical and Health Science Center, Debrecen, Hungary
| | | | | |
Collapse
|
44
|
Santin JR, Uchôa FDT, Lima MDCA, Rabello MM, Machado ID, Hernandes MZ, Amato AA, Milton FA, Webb P, Neves FDAR, Galdino SL, Pitta IR, Farsky SHP. Chemical synthesis, docking studies and biological effects of a pan peroxisome proliferator-activated receptor agonist and cyclooxygenase inhibitor. Eur J Pharm Sci 2013; 48:689-97. [PMID: 23305993 DOI: 10.1016/j.ejps.2012.12.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 12/10/2012] [Accepted: 12/21/2012] [Indexed: 12/18/2022]
Abstract
The compound (5Z)-5-[(5-bromo-1H-indol-3-yl)methylene]-3-(4-chlorobenzyl)-thiazolidine-2,4-dione (LYSO-7) was synthesised in order to obtain a new type of anti-inflammatory drug, designed with hybrid features to inhibit cyclooxygenase (COX) and also to activate peroxisome proliferator-activated receptor (PPAR). Results obtained from docking (in silico) studies corroborated with experimental data, showing the potential affinity between the studied ligand and targets. The specificity of LYSO-7 for COX-enzymes was detected by the inhibition of COX-1 and COX-2 activities by 30% and 20%, respectively. In transactivation reporter gene assays LYSO-07 showed a pan partial agonist effect on the three PPAR subtypes (PPARγ, PPARα and PPARβ/δ). The agonist action on PPARγ was also observed by a pharmacological approach, as the reduction in the Escherichia coli lipopolysaccharide (LPS)-induced interleukin 1 beta (IL-1β) secretion and nitric oxide (NO) production by mouse neutrophils was blocked by GW9962, a specific PPARγ antagonist. Additionally, the in vivo effect was measured by reduced carrageenan-induced neutrophil influx into the subcutaneous tissue of mice. Taken together, these data show that LYSO-7 displays a potent in vivo anti-inflammatory effect during the innate acute response, which is dependent on its associated COX inhibitory activities and PPAR activation.
Collapse
Affiliation(s)
- José Roberto Santin
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Lee EY, Lee JE, Park JH, Shin IC, Koh HC. Rosiglitazone, a PPAR-γ agonist, protects against striatal dopaminergic neurodegeneration induced by 6-OHDA lesions in the substantia nigra of rats. Toxicol Lett 2012; 213:332-44. [DOI: 10.1016/j.toxlet.2012.07.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 06/13/2012] [Accepted: 07/19/2012] [Indexed: 10/28/2022]
|
46
|
Benedusi V, Martorana F, Brambilla L, Maggi A, Rossi D. The peroxisome proliferator-activated receptor γ (PPARγ) controls natural protective mechanisms against lipid peroxidation in amyotrophic lateral sclerosis. J Biol Chem 2012; 287:35899-911. [PMID: 22910911 PMCID: PMC3476258 DOI: 10.1074/jbc.m112.366419] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recent evidence highlights the peroxisome proliferator-activated receptors (PPARs) as critical neuroprotective factors in several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). To gain new mechanistic insights into the role of these receptors in the context of ALS, here we investigated how PPAR transcriptional activity varies in hSOD1G93A ALS transgenic mice. We demonstrate that PPARγ-driven transcription selectively increases in the spinal cord of symptomatic hSOD1G93A mice. This phenomenon correlates with the up-regulation of target genes, such as lipoprotein lipase and glutathione S-transferase α-2, which are implicated in scavenging lipid peroxidation by-products. Such events are associated with enhanced PPARγ immunoreactivity within motor neuronal nuclei. This observation, and the fact that PPARγ displays increased responsiveness in cultured hSOD1G93A motor neurons, points to a role for this receptor in neutralizing deleterious lipoperoxidation derivatives within the motor cells. Consistently, in both motor neuron-like cultures and animal models, we report that PPARγ is activated by lipid peroxidation end products, such as 4-hydroxynonenal, whose levels are elevated in the cerebrospinal fluid and spinal cord from ALS patients. We propose that the accumulation of critical concentrations of lipid peroxidation adducts during ALS progression leads to the activation of PPARγ in motor neurons. This in turn triggers self-protective mechanisms that involve the up-regulation of lipid detoxification enzymes, such as lipoprotein lipase and glutathione S-transferase α-2. Our findings indicate that anticipating natural protective reactions by pharmacologically modulating PPARγ transcriptional activity may attenuate neurodegeneration by limiting the damage induced by lipid peroxidation derivatives.
Collapse
Affiliation(s)
- Valeria Benedusi
- Center of Excellence on Neurodegenerative Diseases and Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | | | | | | | | |
Collapse
|
47
|
Matarese G, Procaccini C, Rosa V. At the crossroad of T cells, adipose tissue, and diabetes. Immunol Rev 2012; 249:116-34. [DOI: 10.1111/j.1600-065x.2012.01154.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
48
|
Modulating Microglia Activity with PPAR-γ Agonists: A Promising Therapy for Parkinson’s Disease? Neurotox Res 2012; 23:112-23. [DOI: 10.1007/s12640-012-9342-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 06/08/2012] [Accepted: 07/18/2012] [Indexed: 12/11/2022]
|
49
|
Gray E, Ginty M, Kemp K, Scolding N, Wilkins A. The PPAR-γ agonist pioglitazone protects cortical neurons from inflammatory mediators via improvement in peroxisomal function. J Neuroinflammation 2012; 9:63. [PMID: 22480361 PMCID: PMC3368767 DOI: 10.1186/1742-2094-9-63] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 04/05/2012] [Indexed: 11/10/2022] Open
Abstract
Background Inflammation is known to play a pivotal role in mediating neuronal damage and axonal injury in a variety of neurodegenerative disorders. Among the range of inflammatory mediators, nitric oxide and hydrogen peroxide are potent neurotoxic agents. Recent evidence has suggested that oligodendrocyte peroxisomes may play an important role in protecting neurons from inflammatory damage. Methods To assess the influence of peroxisomal activation on nitric oxide mediated neurotoxicity, we investigated the effects of the peroxisomal proliferator activated receptor (PPAR) gamma agonist, pioglitazone in primary cortical neurons that were either exposed to a nitric oxide donor or co-cultured with activated microglia. Results Pioglitazone protected neurons and axons against both nitric-oxide donor-induced and microglia-derived nitric oxide-induced toxicity. Moreover, cortical neurons treated with this compound showed a significant increase in the protein and gene expression of PPAR-gamma, which was associated with a concomitant increase in the enzymatic activity of catalase. In addition, the protection of neurons and axons against hydrogen peroxide-induced toxicity afforded by pioglitazone appeared to be dependent on catalase. Conclusions Collectively, these observations provide evidence that modulation of PPAR-gamma activity and peroxisomal function by pioglitazone attenuates both NO and hydrogen peroxide-mediated neuronal and axonal damage suggesting a new therapeutic approach to protect against neurodegenerative changes associated with neuroinflammation.
Collapse
Affiliation(s)
- Elizabeth Gray
- Multiple Sclerosis and Stem Cell Group, Burden Centre, Institute of Clinical Neurosciences, Frenchay Hospital, University of Bristol, Bristol BS16 1JB, UK.
| | | | | | | | | |
Collapse
|
50
|
Peroxisome proliferator-activated receptor gamma (PPAR-γ) and neurodegenerative disorders. Mol Neurobiol 2012; 46:114-24. [PMID: 22434581 DOI: 10.1007/s12035-012-8259-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 03/06/2012] [Indexed: 10/28/2022]
Abstract
As the growth of the aging population continues to accelerate globally, increased prevalence of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and stroke, has generated substantial public concern. Unfortunately, despite of discoveries of common factors underlying these diseases, few drugs are available to effectively treat these diseases. Peroxisome proliferator-activated receptor gamma (PPAR-γ) is a ligand-activated transcriptional factor that belongs to the nuclear hormone receptor superfamily. PPAR-γ has been shown to influence the expression or activity of a large number of genes in a variety of signaling networks, including regulation of insulin sensitivity, glucose homeostasis, fatty acid oxidation, immune responses, redox balance, cardiovascular integrity, and cell fates. Recent epidemiological, preclinical animal, and clinical studies also show that PPAR-γ agonists can lower the incidence of a number of neurological disorders, despite of multiple etiological factors involved in the development of these disorders. In this manuscript, we review current knowledge on mechanisms underlying the beneficial effect of PPAR-γ in different neurodegenerative diseases, in particular, AD, PD, and stroke, and attempt to analyze common and overlapping features among these diseases. Our investigation unveiled information suggesting the ability for PPAR-γ to inhibit NF-κB-mediated inflammatory signaling at multiple sites, and conclude that PPAR-γ agonists represent a novel class of drugs for treating neuroinflammatory diseases.
Collapse
|