1
|
Chen XD, Chen Z, Wythes G, Zhang Y, Orr BC, Sun G, Chao YK, Navarro Torres A, Thao K, Vallurupalli M, Sun J, Borji M, Tkacik E, Chen H, Bernstein BE, Chen F. Helicase-assisted continuous editing for programmable mutagenesis of endogenous genomes. Science 2024; 386:eadn5876. [PMID: 39388570 DOI: 10.1126/science.adn5876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 08/14/2024] [Indexed: 10/12/2024]
Abstract
Deciphering the context-specific relationship between sequence and function is a major challenge in genomics. Existing tools for inducing locus-specific hypermutation and evolution in the native genome context are limited. Here we present a programmable platform for long-range, locus-specific hypermutation called helicase-assisted continuous editing (HACE). HACE leverages CRISPR-Cas9 to target a processive helicase-deaminase fusion that incurs mutations across large (>1000-base pair) genomic intervals. We applied HACE to identify mutations in mitogen-activated protein kinase kinase 1 (MEK1) that confer kinase inhibitor resistance, to dissect the impact of individual variants in splicing factor 3B subunit 1 (SF3B1)-dependent missplicing, and to evaluate noncoding variants in a stimulation-dependent immune enhancer of CD69. HACE provides a powerful tool for investigating coding and noncoding variants, uncovering combinatorial sequence-to-function relationships, and evolving new biological functions.
Collapse
Affiliation(s)
- Xi Dawn Chen
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Systems, Synthetic, and Quantitative Biology PhD Program, Harvard University, Cambridge, MA 02138, USA
| | - Zeyu Chen
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - George Wythes
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Yifan Zhang
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Benno C Orr
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Gary Sun
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Yu-Kai Chao
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Andrea Navarro Torres
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ka Thao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | - Jing Sun
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Mehdi Borji
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Emre Tkacik
- Systems, Synthetic, and Quantitative Biology PhD Program, Harvard University, Cambridge, MA 02138, USA
| | - Haiqi Chen
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bradley E Bernstein
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02115, USA
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Fei Chen
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
2
|
Zhang J, Ren H, Jiang Z, Chen Z, Yang Z, Matsubara Y, Sakurai Y. Strategic Multi-Omics Data Integration via Multi-Level Feature Contrasting and Matching. IEEE Trans Nanobioscience 2024; 23:579-590. [PMID: 39255078 DOI: 10.1109/tnb.2024.3456797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The analysis and comprehension of multi-omics data has emerged as a prominent topic in the field of bioinformatics and data science. However, the sparsity characteristics and high dimensionality of omics data pose difficulties in terms of extracting meaningful information. Moreover, the heterogeneity inherent in multiple omics sources makes the effective integration of multi-omics data challenging To tackle these challenges, we propose MFCC-SAtt, a multi-level feature contrast clustering model based on self-attention to extract informative features from multi-omics data. MFCC-SAtt treats each omics type as a distinct modality and employs autoencoders with self-attention for each modality to integrate and compress their respective features into a shared feature space. By utilizing a multi-level feature extraction framework along with incorporating a semantic information extractor, we mitigate optimization conflicts arising from different learning objectives. Additionally, MFCC-SAtt guides deep clustering based on multi-level features which further enhances the quality of output labels. By conducting extensive experiments on multi-omics data, we have validated the exceptional performance of MFCC-SAtt. For instance, in a pan-cancer clustering task, MFCC-SAtt achieved an accuracy of over 80.38%.
Collapse
|
3
|
Mirek J, Bal W, Olbryt M. Melanoma genomics - will we go beyond BRAF in clinics? J Cancer Res Clin Oncol 2024; 150:433. [PMID: 39340537 PMCID: PMC11438618 DOI: 10.1007/s00432-024-05957-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024]
Abstract
In the era of next-generation sequencing, the genetic background of cancer, including melanoma, appears to be thoroughly established. However, evaluating the oncogene BRAF mutation in codon V600 is still the only companion diagnostic genomic test commonly implemented in clinics for molecularly targeted treatment of advanced melanoma. Are we wasting the collected genomic data? Will we implement our current genomic knowledge of melanoma in clinics soon? This question is rather urgent because new therapeutic targets and biomarkers are needed to implement more personalized, patient-tailored therapy in clinics. Here, we provide an update on the molecular background of melanoma, including a description of four already established molecular subtypes: BRAF+, NRAS+, NF1+, and triple WT, as well as relatively new NGS-derived melanoma genes such as PREX2, ERBB4, PPP6C, FBXW7, PIK3CA, and IDH1. We also present a comparison of genomic profiles obtained in recent years with a focus on the most common melanoma genes. Finally, we propose our melanoma gene panel consisting of 22 genes that, in our opinion, are "must-have" genes in both melanoma-specific genomic tests and pan-cancer tests established to improve the treatment of melanoma further.
Collapse
Affiliation(s)
- Justyna Mirek
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, 44-101, Poland
| | - Wiesław Bal
- Chemotherapy Day Unit, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, 44-101, Poland
| | - Magdalena Olbryt
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, 44-101, Poland.
| |
Collapse
|
4
|
Davidson B, Teien Lande K, Nebdal D, Nesbakken AJ, Holth A, Lindemann K, Zahl Eriksson AG, Sørlie T. Endometrial carcinomas with ambiguous histology often harbor TP53 mutations. Virchows Arch 2024:10.1007/s00428-024-03912-7. [PMID: 39235515 DOI: 10.1007/s00428-024-03912-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/01/2024] [Accepted: 08/25/2024] [Indexed: 09/06/2024]
Abstract
The objective of the present study was to characterize the molecular features of endometrial carcinomas with ambiguous histology. Eighteen carcinomas that could not be conclusively typed based on morphology and immunohistochemistry underwent analysis of mismatch repair (MMR) status, microsatellite status, and whole-exome sequencing. None of the tumors had pathogenic POLE mutation. Twelve tumors (67%) were microsatellite stable, and 6 (33%) had microsatellite instability. Fourteen tumors (78%) harbored TP53 mutations, and 2 (11%) had mutations in MMR genes. Eleven carcinomas (61%) were classified as copy number high and 7 (39%) as MSI-hypermutated, the latter including 3 tumors with TP53 mutation who concomitantly had MSI or mutation in a MMR gene. Other mutations that were found in > 1 tumor affected MUC16 (7 tumors), PIK3CA (6 tumors), PPP2R1A (6 tumors), ARID1A (5 tumors), PTEN (5 tumors), FAT1 (4 tumors), FAT4 (3 tumors), BRCA2 (2 tumors), ERBB2 (2 tumors), FBXW7 (2 tumors), MET (2 tumors), MTOR (2 tumors), JAK1 (2 tumors), and CSMD3 (2 tumors). At the last follow-up (median = 68.6 months), 8 patients had no evidence of disease, 1 patient was alive with disease, 8 patients were dead of disease, and 1 patient died of other cause. In conclusion, based on this series, the molecular landscape of endometrial carcinomas with ambiguous histology is dominated by TP53 mutations and the absence of POLE mutations, with heterogeneous molecular profile with respect to other genes. A high proportion of these tumors is clinically aggressive.
Collapse
Affiliation(s)
- Ben Davidson
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, Montebello, N-0310, Oslo, Norway.
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, N-0316, Oslo, Norway.
| | - Karin Teien Lande
- Department of Cancer Genetics, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Montebello, N-0310, Oslo, Norway
| | - Daniel Nebdal
- Department of Cancer Genetics, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Montebello, N-0310, Oslo, Norway
| | - Anne Jorunn Nesbakken
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, Montebello, N-0310, Oslo, Norway
| | - Arild Holth
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, Montebello, N-0310, Oslo, Norway
| | - Kristina Lindemann
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, N-0316, Oslo, Norway
- Section for Gynecologic Oncology, Division of Surgical Oncology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Ane Gerda Zahl Eriksson
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, N-0316, Oslo, Norway
- Section for Gynecologic Oncology, Division of Surgical Oncology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Therese Sørlie
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, N-0316, Oslo, Norway.
- Department of Cancer Genetics, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Montebello, N-0310, Oslo, Norway.
| |
Collapse
|
5
|
Shi H, Tian H, Zhu T, Chen J, Jia S, Zong C, Liao Q, Ruan J, Ge S, Rao Y, Dong M, Jia R, Li Y, Xu S, Fan X. Genetic landscape and prognosis of conjunctival melanoma in Chinese patients. Br J Ophthalmol 2024; 108:1306-1312. [PMID: 38383070 PMCID: PMC11347268 DOI: 10.1136/bjo-2023-324306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/18/2024] [Indexed: 02/23/2024]
Abstract
AIMS Conjunctival melanoma (CoM) is a rare but highly lethal ocular melanoma and there is limited understanding of its genetic background. To update the genetic landscape of CoM, whole-exome sequencing (WES) and targeted next-generation sequencing (NGS) were performed. METHODS Among 30 patients who were diagnosed and treated at Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, from January 2018 to January 2023, WES was performed on 16 patients, while targeted NGS was conducted on 14 patients. Samples were analysed to identify the mutated genes, and the potential predictive factors for progression-free survival were evaluated. Furthermore, the expression of the mutated gene was detected and validated in a 30-patient cohort by immunofluorescence. RESULTS Mutations were verified in classic genes, such as BRAF (n=9), NRAS (n=5) and NF1 (n=6). Mutated FAT4 and BRAF were associated with an increased risk for the progression of CoM. Moreover, decreased expression of FAT4 was detected in CoM patients with a worse prognosis. CONCLUSIONS The molecular landscape of CoM in Chinese patients was updated with new findings. A relatively high frequency of mutated FAT4 was determined in Chinese CoM patients, and decreased expression of FAT4 was found in patients with worse prognoses. In addition, both BRAF mutations and FAT4 mutations could serve as predictive factors for CoM patients.
Collapse
Affiliation(s)
- Hanhan Shi
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Hao Tian
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Tianyu Zhu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Jie Chen
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Shichong Jia
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Nankai University Affiliated Eye Hospital, Tianjin Eye Institute, Tianjin, China
| | - Chunyan Zong
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Qili Liao
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Jing Ruan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Shengfang Ge
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yamin Rao
- Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mei Dong
- The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Renbing Jia
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yimin Li
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Shiqiong Xu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| |
Collapse
|
6
|
Zhao Y, Du SS, Zhao CY, Li TL, Tong SC, Zhao L. Mechanism of Abnormal Activation of MEK1 Induced by Dehydroalanine Modification. Int J Mol Sci 2024; 25:7482. [PMID: 39000589 PMCID: PMC11242638 DOI: 10.3390/ijms25137482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Mitogen-activated protein kinase kinase 1 (MAPK kinase 1, MEK1) is a key kinase in the mitogen-activated protein kinase (MAPK) signaling pathway. MEK1 mutations have been reported to lead to abnormal activation that is closely related to the malignant growth and spread of various tumors, making it an important target for cancer treatment. Targeting MEK1, four small-molecular drugs have been approved by the FDA, including Trametinib, Cobimetinib, Binimetinib, and Selumetinib. Recently, a study showed that modification with dehydroalanine (Dha) can also lead to abnormal activation of MEK1, which has the potential to promote tumor development. In this study, we used molecular dynamics simulations and metadynamics to explore the mechanism of abnormal activation of MEK1 caused by the Dha modification and predicted the inhibitory effects of four FDA-approved MEK1 inhibitors on the Dha-modified MEK1. The results showed that the mechanism of abnormal activation of MEK1 caused by the Dha modification is due to the movement of the active segment, which opens the active pocket and exposes the catalytic site, leading to sustained abnormal activation of MEK1. Among four FDA-approved inhibitors, only Selumetinib clearly blocks the active site by changing the secondary structure of the active segment from α-helix to disordered loop. Our study will help to explain the mechanism of abnormal activation of MEK1 caused by the Dha modification and provide clues for the development of corresponding inhibitors.
Collapse
Affiliation(s)
- Yue Zhao
- School of Life Sciences, Jilin University, Changchun 130118, China; (Y.Z.); (S.-S.D.); (C.-Y.Z.)
| | - Shan-Shan Du
- School of Life Sciences, Jilin University, Changchun 130118, China; (Y.Z.); (S.-S.D.); (C.-Y.Z.)
| | - Chao-Yue Zhao
- School of Life Sciences, Jilin University, Changchun 130118, China; (Y.Z.); (S.-S.D.); (C.-Y.Z.)
| | - Tian-Long Li
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China; (T.-L.L.); (S.-C.T.)
| | - Si-Cheng Tong
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China; (T.-L.L.); (S.-C.T.)
| | - Li Zhao
- School of Life Sciences, Jilin University, Changchun 130118, China; (Y.Z.); (S.-S.D.); (C.-Y.Z.)
| |
Collapse
|
7
|
Sorino C, Iezzi S, Ciuffreda L, Falcone I. Immunotherapy in melanoma: advances, pitfalls, and future perspectives. Front Mol Biosci 2024; 11:1403021. [PMID: 39086722 PMCID: PMC11289331 DOI: 10.3389/fmolb.2024.1403021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/16/2024] [Indexed: 08/02/2024] Open
Abstract
Cutaneous melanoma is the deadliest and most aggressive form of skin cancer owing to its high capacity for metastasis. Over the past few decades, the management of this type of malignancy has undergone a significant revolution with the advent of both targeted therapies and immunotherapy, which have greatly improved patient quality of life and survival. Nevertheless, the response rates are still unsatisfactory for the presence of side effects and development of resistance mechanisms. In this context, tumor microenvironment has emerged as a factor affecting the responsiveness and efficacy of immunotherapy, and the study of its interplay with the immune system has offered new promising clinical strategies. This review provides a brief overview of the currently available immunotherapeutic strategies for melanoma treatment by analyzing both the positive aspects and those that require further improvement. Indeed, a better understanding of the mechanisms involved in the immune evasion of melanoma cells, with particular attention on the role of the tumor microenvironment, could provide the basis for improving current therapies and identifying new predictive biomarkers.
Collapse
|
8
|
Bahabri A, Abla O. Advances in our understanding of genetic markers and targeted therapies for pediatric LCH. Expert Rev Hematol 2024; 17:223-231. [PMID: 38721670 DOI: 10.1080/17474086.2024.2353772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
INTRODUCTION Langerhans cell histiocytosis (LCH) is a rare myeloid neoplasm, encompassing a diverse clinical spectrum ranging from localized bone or skin lesions to a multisystemic life-threatening condition. Over the past decade, there has been an expansion in understanding the molecular biology of LCH, which translated into innovative targeted therapeutic approaches. AREAS COVERED In this article, we will review the molecular alterations observed in pediatric LCH and the relationship between these molecular changes and the clinical phenotype, as well as targeted therapies in LCH. EXPERT OPINION Mitogen-activated protein kinase (MAPK) pathway mutation is a hallmark of LCH and is identified in 80% of the cases. Notably, BRAFV600E mutation is seen in ~50-60% of the cases, ~30% has other MAPK pathway mutations, while 15-20% have no detected mutations. While the first line therapeutic approach is vinblastine and prednisone, targeted therapies - specifically BRAF/MEK inhibitors - emerged as a promising second-line salvage strategy, particularly when a mutation is identified. Most patients respond to BRAF/MEK inhibitors but at least 75% reactivate after stopping, however, most patients respond again when restarting inhibitors.
Collapse
Affiliation(s)
- Aban Bahabri
- Division of Haematology-Oncology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Division of Haematology-Oncology, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Oussama Abla
- Division of Haematology-Oncology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Schmidt VF, Kapp FG, Goldann C, Huthmann L, Cucuruz B, Brill R, Vielsmeier V, Seebauer CT, Michel A, Seidensticker M, Uller W, Weiß JBW, Sint A, Häberle B, Haehl J, Wagner A, Cordes J, Holm A, Schanze D, Ricke J, Kimm MA, Wohlgemuth WA, Zenker M, Wildgruber M. Extracranial Vascular Anomalies Driven by RAS/MAPK Variants: Spectrum and Genotype-Phenotype Correlations. J Am Heart Assoc 2024; 13:e033287. [PMID: 38563363 PMCID: PMC11262533 DOI: 10.1161/jaha.123.033287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND We aimed to correlate alterations in the rat sarcoma virus (RAS)/mitogen-activated protein kinase pathway in vascular anomalies to the clinical phenotype for improved patient and treatment stratification. METHODS AND RESULTS This retrospective multicenter cohort study included 29 patients with extracranial vascular anomalies containing mosaic pathogenic variants (PVs) in genes of the RAS/mitogen-activated protein kinase pathway. Tissue samples were collected during invasive treatment or clinically indicated biopsies. PVs were detected by the targeted sequencing of panels of genes known to be associated with vascular anomalies, performed using DNA from affected tissue. Subgroup analyses were performed according to the affected genes with regard to phenotypic characteristics in a descriptive manner. Twenty-five vascular malformations, 3 vascular tumors, and 1 patient with both a vascular malformation and vascular tumor presented the following distribution of PVs in genes: Kirsten rat sarcoma viral oncogene (n=10), neuroblastoma ras viral oncogene homolog (n=1), Harvey rat sarcoma viral oncogene homolog (n=5), V-Raf murine sarcoma viral oncogene homolog B (n=8), and mitogen-activated protein kinase kinase 1 (n=5). Patients with RAS PVs had advanced disease stages according to the Schobinger classification (stage 3-4: RAS, 9/13 versus non-RAS, 3/11) and more frequent progression after treatment (RAS, 10/13 versus non-RAS, 2/11). Lesions with Kirsten rat sarcoma viral oncogene PVs infiltrated more tissue layers compared with the other PVs including other RAS PVs (multiple tissue layers: Kirsten rat sarcoma viral oncogene, 8/10 versus other PVs, 6/19). CONCLUSIONS This comparison of patients with various PVs in genes of the RAS/MAPK pathway provides potential associations with certain morphological and clinical phenotypes. RAS variants were associated with more aggressive phenotypes, generating preliminary data and hypothesis for future larger studies.
Collapse
Affiliation(s)
- Vanessa F. Schmidt
- Department of RadiologyLMU University Hospital, LMU MunichMünchenGermany
- Interdisziplinäres Zentrum für Gefäßanomalien (IZGA)LMU University Hospital, LMU MunichMünchenGermany
| | - Friedrich G. Kapp
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent MedicineUniversity Medical Center Freiburg, University of FreiburgGermany
| | - Constantin Goldann
- Clinic and Policlinic of RadiologyMartin‐Luther University Halle‐WittenbergHalle (Saale)Germany
| | - Linda Huthmann
- Clinic and Policlinic of RadiologyMartin‐Luther University Halle‐WittenbergHalle (Saale)Germany
| | - Beatrix Cucuruz
- Clinic and Policlinic of RadiologyMartin‐Luther University Halle‐WittenbergHalle (Saale)Germany
| | - Richard Brill
- Clinic and Policlinic of RadiologyMartin‐Luther University Halle‐WittenbergHalle (Saale)Germany
| | - Veronika Vielsmeier
- Department of OtorhinolaryngologyRegensburg University Medical CenterRegensburgGermany
| | - Caroline T. Seebauer
- Department of OtorhinolaryngologyRegensburg University Medical CenterRegensburgGermany
| | - Armin‐Johannes Michel
- Department of Pediatric and Adolescent SurgeryParacelsus Medical University HospitalSalzburgAustria
| | - Max Seidensticker
- Department of RadiologyLMU University Hospital, LMU MunichMünchenGermany
- Interdisziplinäres Zentrum für Gefäßanomalien (IZGA)LMU University Hospital, LMU MunichMünchenGermany
| | - Wibke Uller
- Department of Diagnostic and Interventional RadiologyUniversity of Freiburg Medical Centre, Medical Faculty of the University of FreiburgFreiburgGermany
| | - Jakob B. W. Weiß
- Department of Plastic and Hand SurgeryUniversity of Freiburg Medical Centre, Medical Faculty of the University of FreiburgFreiburgGermany
| | - Alena Sint
- Department of RadiologyLMU University Hospital, LMU MunichMünchenGermany
- Interdisziplinäres Zentrum für Gefäßanomalien (IZGA)LMU University Hospital, LMU MunichMünchenGermany
| | - Beate Häberle
- Interdisziplinäres Zentrum für Gefäßanomalien (IZGA)LMU University Hospital, LMU MunichMünchenGermany
- Department of Pediatric Surgery, Dr. von Hauner Children’s HospitalLMU University Hospital, LMU MunichMünchenGermany
| | - Julia Haehl
- Interdisziplinäres Zentrum für Gefäßanomalien (IZGA)LMU University Hospital, LMU MunichMünchenGermany
- Department of Pediatric Surgery, Dr. von Hauner Children’s HospitalLMU University Hospital, LMU MunichMünchenGermany
| | - Alexandra Wagner
- Interdisziplinäres Zentrum für Gefäßanomalien (IZGA)LMU University Hospital, LMU MunichMünchenGermany
- Department of Pediatric Surgery, Dr. von Hauner Children’s HospitalLMU University Hospital, LMU MunichMünchenGermany
| | - Johanna Cordes
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent MedicineUniversity Medical Center Freiburg, University of FreiburgGermany
| | - Annegret Holm
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent MedicineUniversity Medical Center Freiburg, University of FreiburgGermany
| | - Denny Schanze
- Institute of Human Genetics, University Hospital MagdeburgMagdeburgGermany
| | - Jens Ricke
- Department of RadiologyLMU University Hospital, LMU MunichMünchenGermany
- Interdisziplinäres Zentrum für Gefäßanomalien (IZGA)LMU University Hospital, LMU MunichMünchenGermany
| | - Melanie A. Kimm
- Department of RadiologyLMU University Hospital, LMU MunichMünchenGermany
- Interdisziplinäres Zentrum für Gefäßanomalien (IZGA)LMU University Hospital, LMU MunichMünchenGermany
| | - Walter A. Wohlgemuth
- Clinic and Policlinic of RadiologyMartin‐Luther University Halle‐WittenbergHalle (Saale)Germany
| | - Martin Zenker
- Institute of Human Genetics, University Hospital MagdeburgMagdeburgGermany
| | - Moritz Wildgruber
- Department of RadiologyLMU University Hospital, LMU MunichMünchenGermany
- Interdisziplinäres Zentrum für Gefäßanomalien (IZGA)LMU University Hospital, LMU MunichMünchenGermany
| | | |
Collapse
|
10
|
Pudjihartono M, Golovina E, Fadason T, O'Sullivan JM, Schierding W. Links between melanoma germline risk loci, driver genes and comorbidities: insight from a tissue-specific multi-omic analysis. Mol Oncol 2024; 18:1031-1048. [PMID: 38308491 PMCID: PMC10994230 DOI: 10.1002/1878-0261.13599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/15/2023] [Accepted: 01/22/2024] [Indexed: 02/04/2024] Open
Abstract
Genome-wide association studies (GWAS) have associated 76 loci with the risk of developing melanoma. However, understanding the molecular basis of such associations has remained a challenge because most of these loci are in non-coding regions of the genome. Here, we integrated data on epigenomic markers, three-dimensional (3D) genome organization, and expression quantitative trait loci (eQTL) from melanoma-relevant tissues and cell types to gain novel insights into the mechanisms underlying melanoma risk. This integrative approach revealed a total of 151 target genes, both near and far away from the risk loci in linear sequence, with known and novel roles in the etiology of melanoma. Using protein-protein interaction networks, we identified proteins that interact-directly or indirectly-with the products of the target genes. The interacting proteins were enriched for known melanoma driver genes. Further integration of these target genes into tissue-specific gene regulatory networks revealed patterns of gene regulation that connect melanoma to its comorbidities. Our study provides novel insights into the biological implications of genetic variants associated with melanoma risk.
Collapse
Affiliation(s)
| | | | | | - Justin M. O'Sullivan
- Liggins InstituteThe University of AucklandNew Zealand
- The Maurice Wilkins CentreThe University of AucklandNew Zealand
- Australian Parkinson's MissionGarvan Institute of Medical ResearchSydneyAustralia
- MRC Lifecourse Epidemiology UnitUniversity of SouthamptonUK
- Singapore Institute for Clinical SciencesAgency for Science, Technology and Research (A*STAR)Singapore CitySingapore
| | - William Schierding
- Liggins InstituteThe University of AucklandNew Zealand
- The Maurice Wilkins CentreThe University of AucklandNew Zealand
| |
Collapse
|
11
|
Hanrahan AJ, Chen Z, Rosen N, Solit DB. BRAF - a tumour-agnostic drug target with lineage-specific dependencies. Nat Rev Clin Oncol 2024; 21:224-247. [PMID: 38278874 DOI: 10.1038/s41571-023-00852-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 01/28/2024]
Abstract
In June 2022, the FDA granted Accelerated Approval to the BRAF inhibitor dabrafenib in combination with the MEK inhibitor trametinib for the treatment of adult and paediatric patients (≥6 years of age) with unresectable or metastatic BRAFV600E-mutant solid tumours, except for BRAFV600E-mutant colorectal cancers. The histology-agnostic approval of dabrafenib plus trametinib marks the culmination of two decades of research into the landscape of BRAF mutations in human cancers, the biochemical mechanisms underlying BRAF-mediated tumorigenesis, and the clinical development of selective RAF and MEK inhibitors. Although the majority of patients with BRAFV600E-mutant tumours derive clinical benefit from BRAF inhibitor-based combinations, resistance to treatment develops in most. In this Review, we describe the biochemical basis for oncogenic BRAF-induced activation of MAPK signalling and pan-cancer and lineage-specific mechanisms of intrinsic, adaptive and acquired resistance to BRAF inhibitors. We also discuss novel RAF inhibitors and drug combinations designed to delay the emergence of treatment resistance and/or expand the population of patients with BRAF-mutant cancers who benefit from molecularly targeted therapies.
Collapse
Affiliation(s)
- Aphrothiti J Hanrahan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ziyu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Physiology, Biophysics & Systems Biology, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA
| | - Neal Rosen
- Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - David B Solit
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Cornell Medical College, Cornell University, New York, NY, USA.
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
12
|
Fumero-Velázquez M, Hagstrom M, Dhillon S, Geraminejad T, Olivares S, Donati M, Nosek D, Waldenbäck P, Kazakov D, Sheffield BS, Tron VA, Gerami P. Clinical, Morphologic, and Molecular Features of Benign and Intermediate-grade Melanocytic Tumors With Activating Mutations in MAP2K1. Am J Surg Pathol 2023; 47:1438-1448. [PMID: 37773074 DOI: 10.1097/pas.0000000000002131] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Activating mutations in MAP2K1 can be seen in benign and intermediate-grade melanocytic neoplasms with spitzoid morphology. We analyzed the clinical, histopathologic, and genetic features for 16 cases of benign and intermediate-grade melanocytic tumors harboring activating MAP2K1 mutations. We compared them to Spitz neoplasms with characteristic Spitz fusions or HRAS mutation. We also compared the mutational pattern of benign and intermediate-grade MAP2K1 -mutated neoplasms and melanomas with activating MAP2K1 mutations. Among the 16 cases, the favored morphologic diagnosis was Spitz nevus (8/16), atypical Spitz tumors (6/16), and deep penetrating nevus (2/16). The 2 most common architectural patterns seen included a plaque-like silhouette with fibroplasia around the rete reminiscent of a dysplastic nevus (n=7) or a wedge-shaped or nodular pattern with the plexiform arrangement of the nests aggregating around the adnexa or neurovascular bundle (n=8). The cases with dysplastic architecture and spitzoid cytology resembled dysplastic Spitz nevi. Compared with true Spitz neoplasms, MAP2K1 -mutated neoplasms occurred in older age groups and had more frequent pagetosis and a lower average mitotic count. The most common type of mutation in the benign and intermediate-grade cases in the literature involves an in-frame deletion, while, in melanomas, missense mutations are predominant. Benign and intermediate-grade melanocytic neoplasms with activating mutations in MAP2K1 can have morphologic overlap with Spitz neoplasms. A significant proportion of melanomas also have activating MAP2K1 mutations. In-frame deletions are predominantly seen in the benign and intermediate-grade cases, and missense mutations are predominantly seen in melanomas.
Collapse
Affiliation(s)
- Mónica Fumero-Velázquez
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Michael Hagstrom
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Soneet Dhillon
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Tara Geraminejad
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Shantel Olivares
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Michele Donati
- Department of Pathology, University Hospital Campus Bio-Medico, Rome, Italy
| | - Daniel Nosek
- Department of Pathology, Umeå University, Umeå, Sweden
| | | | - Dmitry Kazakov
- Institute for Dermatohistopathology, Pathology Institute Enge, Zürich, Switzerland
| | | | - Victor A Tron
- Department of Laboratory Medicine and Pathology, University of Toronto
- Department of Laboratory Medicine, Lifelabs LP, Toronto, ON, Canada
| | - Pedram Gerami
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
13
|
Alomari AK, Harms PW, Andea AA, Warren SJ. MAP2K1-mutated melanocytic tumors have reproducible histopathologic features and share similarities with melanocytic tumors with BRAF V600E mutations. J Cutan Pathol 2023; 50:1083-1093. [PMID: 37565534 DOI: 10.1111/cup.14502] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/12/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Melanocytic tumors driven by MAP2K1 in-frame deletions are among the most recently described class of melanocytic neoplasms. The reported range of diagnoses and associated genomic aberrations in these neoplasms is wide and includes melanomas, deep penetrating melanocytomas, and pigmented epithelioid melanocytoma. However, little is known about the characteristics of these tumors, especially in the absence of well-known second molecular "hits." Moreover, despite their frequent spitzoid cytomorphology, their potential categorization among the Spitz tumors is debatable. MATERIALS AND METHODS We conducted a retrospective search through our molecular archives to identify sequenced melanocytic tumors with MAP2K1 in-frame deletions. We reviewed the clinical and histomorphological features of these tumors and compared them to similar neoplasms reported to date. In addition, we performed single-nucleotide polymorphism (SNP) array testing to identify structural chromosomal aberrations. RESULTS Of 27 sequenced tumors, 6 (22%) showed a pathogenic MAP2K1 in-frame deletion (with or without insertion) and were included in this series. Five (83%) were females with lesions involving the upper limb. Histopathologically, all neoplasms were compounded with plaque-like or wedge-shaped silhouettes, spitzoid cytomorphology, and impaired cytologic maturation. All cases showed background actinic damage with sclerotic stroma replacing solar elastosis, variable pagetoid scatter, and occasional dermal mitotic figures (range 1-2/mm2 ). Five cases (83%) had a small component of nevic-looking melanocytes. Biologically, these tumors likely fall within the spectrum of unusual nevi. Five cases (83%) had a relatively high mutational burden and four (67%) showed an ultraviolet radiation signature. Four cases (67%) showed in-frame deletion involving the p.I103_K104del locus while two cases (33%) showed in-frame deletion involving the p.Q58_E62del locus. SNP array testing showed structural abnormalities ranging from 1 to 5 per case. Five of these cases showed a gain of chromosome 15 spanning the MAP2K1 gene locus. DISCUSSION AND CONCLUSION Melanocytic tumors with MAP2K1 in-frame deletion could represent another spectrum of melanocytic tumors with close genotypic-phenotypic correlation. They are largely characterized by a spectrum that encompasses desmoplastic Spitz nevus as shown in our series and Spitz and Clark nevus as shown by others. Evolutionary, they share many similarities with tumors with BRAF V600E mutations, suggesting they are better classified along the conventional pathway rather than the Spitz pathway despite the frequent spitzoid morphology.
Collapse
Affiliation(s)
- Ahmed K Alomari
- Department of Pathology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Paul W Harms
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
- Department of Dermatology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Aleodor A Andea
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
- Department of Dermatology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Simon J Warren
- Department of Pathology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
14
|
Lee Y, Moon S, Seok JY, Lee JH, Nam S, Chung YS. Characterization of the genomic alterations in poorly differentiated thyroid cancer. Sci Rep 2023; 13:19154. [PMID: 37932340 PMCID: PMC10628257 DOI: 10.1038/s41598-023-46466-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023] Open
Abstract
Poorly differentiated thyroid carcinoma (PDTC) is a subtype of thyroid cancer that has a high rate of metastasis or recurrence and a relatively poor prognosis. However, there are few studies that have been conducted on PDTC at the whole protein-coding gene scale. Here, we performed genomic profiling of 15 patients with PDTC originated from follicular thyroid carcinoma using whole exome sequencing and also performed gene functional enrichment analysis of differentially expressed genes (DEGs) for three patients. Further, we investigated genetic variants associated with PDTC progression and the characteristics of clinical pathology. We revealed somatic genomic alterations in the RAF1, MAP2K2, and AKT2 genes that were not reported in previous studies. We confirmed frequent occurrences in the RAS gene in patients with PDTC; the genetic alterations were associated with the RAS-RAF-MEK-ERK/JNK, PI3K-AKT-mTOR signaling pathways, and the cell cycle. DEG analysis showed that immune response was lower in cancer tissues than in normal tissues. Through the association analysis of somatic mutations and the characteristics of clinical pathology from patients with PDTC, the somatic mutations of ABCA12, CLIP1, and ATP13A3 were significantly associated with a vascular invasion phenotype. By providing molecular genetic insight on PDTC, this study may contribute to the discovery of novel therapeutic target candidates.
Collapse
Affiliation(s)
- Yeeun Lee
- Department of Genome Medicine and Science, AI Convergence Center for Medical Science, Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Gachon University College of Medicine, Dokjeom-ro 3Beon-gil, 38-13, Namdong-gu, Incheon, 21565, Republic of Korea
| | - SeongRyeol Moon
- A.I. Structural Design Team, Division of Biodrug Analysis, New Drug Development Center, OSONG Medical Innovation Foundation, Cheongju-si, 28160, Chungcheongbuk-do, Korea
| | - Jae Yeon Seok
- Department of Pathology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin Severance Hospital 363, Dongbaekjukjeon-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 16995, Korea
| | - Joon-Hyop Lee
- Department of Surgery, Gachon University Gil Medical Center, Gachon University College of Medicine, Dokjeom-ro 3Beon-gil, 38-13, Namdong-gu, Incheon, 21565, Republic of Korea
| | - Seungyoon Nam
- Department of Genome Medicine and Science, AI Convergence Center for Medical Science, Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Gachon University College of Medicine, Dokjeom-ro 3Beon-gil, 38-13, Namdong-gu, Incheon, 21565, Republic of Korea.
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon, 21999, Korea.
| | - Yoo Seung Chung
- Department of Surgery, Gachon University Gil Medical Center, Gachon University College of Medicine, Dokjeom-ro 3Beon-gil, 38-13, Namdong-gu, Incheon, 21565, Republic of Korea.
| |
Collapse
|
15
|
Shvartsman SY, McFann S, Wühr M, Rubinstein BY. Phase plane dynamics of ERK phosphorylation. J Biol Chem 2023; 299:105234. [PMID: 37690685 PMCID: PMC10616409 DOI: 10.1016/j.jbc.2023.105234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/12/2023] Open
Abstract
The extracellular signal-regulated kinase (ERK) controls multiple critical processes in the cell and is deregulated in human cancers, congenital abnormalities, immune diseases, and neurodevelopmental syndromes. Catalytic activity of ERK requires dual phosphorylation by an upstream kinase, in a mechanism that can be described by two sequential Michaelis-Menten steps. The estimation of individual reaction rate constants from kinetic data in the full mechanism has proved challenging. Here, we present an analytically tractable approach to parameter estimation that is based on the phase plane representation of ERK activation and yields two combinations of six reaction rate constants in the detailed mechanism. These combinations correspond to the ratio of the specificities of two consecutive phosphorylations and the probability that monophosphorylated substrate does not dissociate from the enzyme before the second phosphorylation. The presented approach offers a language for comparing the effects of mutations that disrupt ERK activation and function in vivo. As an illustration, we use phase plane representation to analyze dual phosphorylation under heterozygous conditions, when two enzyme variants compete for the same substrate.
Collapse
Affiliation(s)
- Stanislav Y Shvartsman
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA; Center for Computational Biology, Flatiron Institute, New York, New York, USA.
| | - Sarah McFann
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA; Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA
| | - Martin Wühr
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA
| | | |
Collapse
|
16
|
Wang X, Bi J, Yang Y, Li L, Zhang R, Li Y, Cheng M, Li W, Yang G, Lin Y, Liu J, Yin G. RACK1 promotes porcine reproductive and respiratory syndrome virus infection in Marc-145 cells through ERK1/2 activation. Virology 2023; 588:109886. [PMID: 37806007 DOI: 10.1016/j.virol.2023.109886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an acute infectious disease that spreads rapidly among pigs and seriously threatens the pig industry. Activation of ERK1/2 is a hallmark of most viral infections. RACK1 interacts with a variety of kinases and membrane receptors that closely associated with viral infections and the development and progression of cancer. However, no studies have clearly defined whether RACK1 can regulate PRRSV infection through ERK1/2 activation. In our study, using RT-qPCR, immunoblotting, indirect fluorescent staining, siRNA knockdown and protein overexpression techniques, we found that downregulation of cellular RACK1 inhibited ERK1/2 activation and subsequently suppressed PRRSV infection, while overexpression of RACK1 enhanced ERK1/2 activation and PRRSV infection. Bioinformatic and Co-immunoprecipitation experimental analysis revealed that cellular RACK1 could interact with viral N protein to exert its function. We elaborated that RACK1 promoted PRRSV replication in Marc-145 cells through ERK1/2 activation. Our study provides new insights into regulating the innate antiviral immune responses during PRRSV infection and contributes to further understanding of the molecular mechanisms underlying PRRSV replication.
Collapse
Affiliation(s)
- Xinxian Wang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Junlong Bi
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Ying Yang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Lijun Li
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Runting Zhang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Yongneng Li
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Meiling Cheng
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Wenying Li
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Guishu Yang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Yingbo Lin
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, 17176, Sweden
| | - Jianping Liu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Gefen Yin
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
| |
Collapse
|
17
|
Kim S, Kim N, Kang HM, Jang HJ, Lee AC, Na KJ. Canine Somatic Mutations from Whole-Exome Sequencing of B-Cell Lymphomas in Six Canine Breeds-A Preliminary Study. Animals (Basel) 2023; 13:2846. [PMID: 37760246 PMCID: PMC10525272 DOI: 10.3390/ani13182846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/05/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Canine lymphoma (CL) is one of the most common malignant tumors in dogs. The cause of CL remains unclear. Genetic mutations that have been suggested as possible causes of CL are not fully understood. Whole-exome sequencing (WES) is a time- and cost-effective method for detecting genetic variants targeting only the protein-coding regions (exons) that are part of the entire genome region. A total of eight patients with B-cell lymphomas were recruited, and WES analysis was performed on whole blood and lymph node aspirate samples from each patient. A total of 17 somatic variants (GOLIM4, ITM2B, STN1, UNC79, PLEKHG4, BRF1, ENSCAFG00845007156, SEMA6B, DSC1, TNFAIP1, MYLK3, WAPL, ADORA2B, LOXHD1, GP6, AZIN1, and NCSTN) with moderate to high impact were identified by WES analysis. Through a Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of 17 genes with somatic mutations, a total of 16 pathways were identified. Overall, the somatic mutations identified in this study suggest novel candidate mutations for CL, and further studies are needed to confirm the role of these mutations.
Collapse
Affiliation(s)
- Sungryong Kim
- Laboratory of Veterinary Laboratory Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea; (S.K.); (H.-M.K.)
| | - Namphil Kim
- Biophotonics and Nano Engineering Laboratory, Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea;
| | - Hyo-Min Kang
- Laboratory of Veterinary Laboratory Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea; (S.K.); (H.-M.K.)
| | - Hye-Jin Jang
- Department of Biomedical Laboratory Science, Daegu Health College, Daegu 41453, Republic of Korea;
| | | | - Ki-Jeong Na
- Laboratory of Veterinary Laboratory Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea; (S.K.); (H.-M.K.)
| |
Collapse
|
18
|
Malaina I, Gonzalez-Melero L, Martínez L, Salvador A, Sanchez-Diez A, Asumendi A, Margareto J, Carrasco-Pujante J, Legarreta L, García MA, Pérez-Pinilla MB, Izu R, Martínez de la Fuente I, Igartua M, Alonso S, Hernandez RM, Boyano MD. Computational and Experimental Evaluation of the Immune Response of Neoantigens for Personalized Vaccine Design. Int J Mol Sci 2023; 24:9024. [PMID: 37240369 PMCID: PMC10219310 DOI: 10.3390/ijms24109024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
In the last few years, the importance of neoantigens in the development of personalized antitumor vaccines has increased remarkably. In order to study whether bioinformatic tools are effective in detecting neoantigens that generate an immune response, DNA samples from patients with cutaneous melanoma in different stages were obtained, resulting in a total of 6048 potential neoantigens gathered. Thereafter, the immunological responses generated by some of those neoantigens ex vivo were tested, using a vaccine designed by a new optimization approach and encapsulated in nanoparticles. Our bioinformatic analysis indicated that no differences were found between the number of neoantigens and that of non-mutated sequences detected as potential binders by IEDB tools. However, those tools were able to highlight neoantigens over non-mutated peptides in HLA-II recognition (p-value 0.03). However, neither HLA-I binding affinity (p-value 0.08) nor Class I immunogenicity values (p-value 0.96) indicated significant differences for the latter parameters. Subsequently, the new vaccine, using aggregative functions and combinatorial optimization, was designed. The six best neoantigens were selected and formulated into two nanoparticles, with which the immune response ex vivo was evaluated, demonstrating a specific activation of the immune response. This study reinforces the use of bioinformatic tools in vaccine development, as their usefulness is proven both in silico and ex vivo.
Collapse
Affiliation(s)
- Iker Malaina
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Lorena Gonzalez-Melero
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain (R.M.H.)
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
| | - Luis Martínez
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Luis Martínez, Basque Center for Applied Mathematics BCAM, 48009 Bilbao, Spain
| | - Aiala Salvador
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain (R.M.H.)
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Institute of Health Carlos III, 28029 Madrid, Spain
| | - Ana Sanchez-Diez
- Department of Dermatology, Basurto University Hospital, 48013 Bilbao, Spain
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain (M.D.B.)
| | - Aintzane Asumendi
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain (M.D.B.)
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Javier Margareto
- Technological Services Division, Health and Quality of Life, TECNALIA, 01510 Miñano, Spain
| | - Jose Carrasco-Pujante
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Luis Martínez, Basque Center for Applied Mathematics BCAM, 48009 Bilbao, Spain
| | - Leire Legarreta
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Luis Martínez, Basque Center for Applied Mathematics BCAM, 48009 Bilbao, Spain
| | - María Asunción García
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Luis Martínez, Basque Center for Applied Mathematics BCAM, 48009 Bilbao, Spain
| | - Martín Blas Pérez-Pinilla
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Luis Martínez, Basque Center for Applied Mathematics BCAM, 48009 Bilbao, Spain
| | - Rosa Izu
- Department of Dermatology, Basurto University Hospital, 48013 Bilbao, Spain
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain (M.D.B.)
| | - Ildefonso Martínez de la Fuente
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Luis Martínez, Basque Center for Applied Mathematics BCAM, 48009 Bilbao, Spain
- CEBAS-CSIC Institute, Department of Nutrition, 30100 Murcia, Spain
| | - Manoli Igartua
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain (R.M.H.)
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Institute of Health Carlos III, 28029 Madrid, Spain
| | - Santos Alonso
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Rosa Maria Hernandez
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain (R.M.H.)
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Institute of Health Carlos III, 28029 Madrid, Spain
| | - María Dolores Boyano
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain (M.D.B.)
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| |
Collapse
|
19
|
Xiao J, Sharma U, Arab A, Miglani S, Bhalla S, Suguru S, Suter R, Mukherji R, Lippman ME, Pohlmann PR, Zeck JC, Marshall JL, Weinberg BA, He AR, Noel MS, Schlegel R, Goodarzi H, Agarwal S. Propagated Circulating Tumor Cells Uncover the Potential Role of NFκB, EMT, and TGFβ Signaling Pathways and COP1 in Metastasis. Cancers (Basel) 2023; 15:1831. [PMID: 36980717 PMCID: PMC10046547 DOI: 10.3390/cancers15061831] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Circulating tumor cells (CTCs), a population of cancer cells that represent the seeds of metastatic nodules, are a promising model system for studying metastasis. However, the expansion of patient-derived CTCs ex vivo is challenging and dependent on the collection of high numbers of CTCs, which are ultra-rare. Here we report the development of a combined CTC and cultured CTC-derived xenograft (CDX) platform for expanding and studying patient-derived CTCs from metastatic colon, lung, and pancreatic cancers. The propagated CTCs yielded a highly aggressive population of cells that could be used to routinely and robustly establish primary tumors and metastatic lesions in CDXs. Differential gene analysis of the resultant CTC models emphasized a role for NF-κB, EMT, and TGFβ signaling as pan-cancer signaling pathways involved in metastasis. Furthermore, metastatic CTCs were identified through a prospective five-gene signature (BCAR1, COL1A1, IGSF3, RRAD, and TFPI2). Whole-exome sequencing of CDX models and metastases further identified mutations in constitutive photomorphogenesis protein 1 (COP1) as a potential driver of metastasis. These findings illustrate the utility of the combined patient-derived CTC model and provide a glimpse of the promise of CTCs in identifying drivers of cancer metastasis.
Collapse
Affiliation(s)
- Jerry Xiao
- School of Medicine, Georgetown University, Washington, DC 20057, USA
- Department of Pathology, Center for Cell Reprogramming, Georgetown University, Washington, DC 20057, USA
| | - Utsav Sharma
- Lombardi Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Abolfazl Arab
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Sohit Miglani
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Sonakshi Bhalla
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Shravanthy Suguru
- Department of Pathology, Center for Cell Reprogramming, Georgetown University, Washington, DC 20057, USA
| | - Robert Suter
- Lombardi Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Reetu Mukherji
- Department of Medicine, The Ruesch Center for the Cure of Gastrointestinal Cancers, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Marc E. Lippman
- Lombardi Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Paula R. Pohlmann
- Lombardi Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Jay C. Zeck
- Department of Pathology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - John L. Marshall
- Department of Medicine, The Ruesch Center for the Cure of Gastrointestinal Cancers, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Benjamin A. Weinberg
- Department of Medicine, The Ruesch Center for the Cure of Gastrointestinal Cancers, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Aiwu Ruth He
- Department of Medicine, The Ruesch Center for the Cure of Gastrointestinal Cancers, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Marcus S. Noel
- Department of Medicine, The Ruesch Center for the Cure of Gastrointestinal Cancers, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Richard Schlegel
- Department of Pathology, Center for Cell Reprogramming, Georgetown University, Washington, DC 20057, USA
| | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Seema Agarwal
- Department of Pathology, Center for Cell Reprogramming, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
20
|
Response and Resistance to Trametinib in MAP2K1-Mutant Triple-Negative Melanoma. Int J Mol Sci 2023; 24:ijms24054520. [PMID: 36901951 PMCID: PMC10003177 DOI: 10.3390/ijms24054520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
The development of targeted therapies for non-BRAF p.Val600-mutant melanomas remains a challenge. Triple wildtype (TWT) melanomas that lack mutations in BRAF, NRAS, or NF1 form 10% of human melanomas and are heterogeneous in their genomic drivers. MAP2K1 mutations are enriched in BRAF-mutant melanoma and function as an innate or adaptive resistance mechanism to BRAF inhibition. Here we report the case of a patient with TWT melanoma with a bona fide MAP2K1 mutation without any BRAF mutations. We performed a structural analysis to validate that the MEK inhibitor trametinib could block this mutation. Although the patient initially responded to trametinib, he eventually progressed. The presence of a CDKN2A deletion prompted us to combine a CDK4/6 inhibitor, palbociclib, with trametinib but without clinical benefit. Genomic analysis at progression showed multiple novel copy number alterations. Our case illustrates the challenges of combining MEK1 and CDK4/6 inhibitors in case of resistance to MEK inhibitor monotherapy.
Collapse
|
21
|
Structure of the planar cell polarity cadherins Fat4 and Dachsous1. Nat Commun 2023; 14:891. [PMID: 36797229 PMCID: PMC9935876 DOI: 10.1038/s41467-023-36435-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
The atypical cadherins Fat and Dachsous are key regulators of cell growth and animal development. In contrast to classical cadherins, which form homophilic interactions to segregate cells, Fat and Dachsous cadherins form heterophilic interactions to induce cell polarity within tissues. Here, we determine the co-crystal structure of the human homologs Fat4 and Dachsous1 (Dchs1) to establish the molecular basis for Fat-Dachsous interactions. The binding domains of Fat4 and Dchs1 form an extended interface along extracellular cadherin (EC) domains 1-4 of each protein. Biophysical measurements indicate that Fat4-Dchs1 affinity is among the highest reported for cadherin superfamily members, which is attributed to an extensive network of salt bridges not present in structurally similar protocadherin homodimers. Furthermore, modeling suggests that unusual extracellular phosphorylation modifications directly modulate Fat-Dachsous binding by introducing charged contacts across the interface. Collectively, our analyses reveal how the molecular architecture of Fat4-Dchs1 enables them to form long-range, high-affinity interactions to maintain planar cell polarity.
Collapse
|
22
|
Mizuno S, Ikegami M, Koyama T, Sunami K, Ogata D, Kage H, Yanagaki M, Ikeuchi H, Ueno T, Tanikawa M, Oda K, Osuga Y, Mano H, Kohsaka S. High-Throughput Functional Evaluation of MAP2K1 Variants in Cancer. Mol Cancer Ther 2023; 22:227-239. [PMID: 36442478 PMCID: PMC9890140 DOI: 10.1158/1535-7163.mct-22-0302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/01/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022]
Abstract
Activating mutations in mitogen-activated protein kinase kinase 1 (MAP2K1) are involved in a variety of cancers and may be classified according to their RAF dependence. Sensitivity to combined BRAF and MEK treatments is associated with co-mutations of MAP2K1 and BRAF; however, the significance of less frequent MAP2K1 mutations is largely unknown. The transforming potential and drug sensitivity of 100 MAP2K1 variants were evaluated using individual assays and the mixed-all-nominated-in-one method. In addition, A375, a melanoma cell line harboring the BRAF V600E mutation, was used to evaluate the function of the MAP2K1 variants in combination with active RAF signaling. Among a total of 67 variants of unknown significance, 16 were evaluated as oncogenic or likely oncogenic. The drug sensitivity of the individual variants did not vary with respect to BRAF inhibitors, MEK inhibitors (MEKi), or their combination. Sensitivity to BRAF inhibitors was associated with the RAF dependency of the MAP2K1 variants, whereas resistance was higher in RAF-regulated or independent variants compared with RAF-dependent variants. Thus, the synergistic effect of BRAF and MEKis may be observed in RAF-regulated and RAF-dependent variants. MAP2K1 variants exhibit differential sensitivity to BRAF and MEKis, suggesting the importance of individual functional analysis for the selection of optimal treatments for each patient. This comprehensive evaluation reveals precise functional information and provides optimal combination treatment for individual MAP2K1 variants.
Collapse
Affiliation(s)
- Sho Mizuno
- Division of Cellular Signaling, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, Japan.,Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan.,Department of Gynecology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Honkomagome, Bunkyo-ku, Tokyo, Japan
| | - Masachika Ikegami
- Division of Cellular Signaling, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, Japan.,Department of Musculoskeletal Oncology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Honkomagome, Bunkyo-ku, Tokyo, Japan
| | - Takafumi Koyama
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tsukiji, Chuo-ku, Tokyo, Japan
| | - Kuniko Sunami
- Department of Laboratory Medicine, National Cancer Center Hospital, Tsukiji, Chuo-ku, Tokyo, Japan
| | - Dai Ogata
- Department of Dermatologic Oncology, National Cancer Center Hospital, Tsukiji, Chuo-ku, Tokyo, Japan
| | - Hidenori Kage
- Department of Next Generation Precision Medicine Development Laboratory, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Mitsuru Yanagaki
- Division of Cellular Signaling, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, Japan.,Department of Surgery, The Jikei University School of Medicine, Nishishimbashi, Minato-ku, Tokyo, Japan
| | - Hiroshi Ikeuchi
- Division of Cellular Signaling, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, Japan.,Department of General Thoracic Surgery, Juntendo University School of Medicine, Hongo, Bunkyo-Ku, Tokyo, Japan
| | - Toshihide Ueno
- Division of Cellular Signaling, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, Japan
| | - Michihiro Tanikawa
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan.,Department of Gynecology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Honkomagome, Bunkyo-ku, Tokyo, Japan
| | - Katsutoshi Oda
- Division of Integrative Genomics, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Yutaka Osuga
- Department of Gynecology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Honkomagome, Bunkyo-ku, Tokyo, Japan
| | - Hiroyuki Mano
- Division of Cellular Signaling, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, Japan
| | - Shinji Kohsaka
- Division of Cellular Signaling, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, Japan.,Corresponding Author: Shinji Kohsaka, Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan. Phone: 81-3-3547-5201; Fax: 81-3-5565-0727; E-mail:
| |
Collapse
|
23
|
Lee J, Han JH, Lee CH, Park HS, Min SK, Lee H, Cho U, Yoon SE, Kim SJ, Kim WS, Cho J. Comparison of histological and molecular features of pediatric-type follicular lymphoma and pediatric nodal marginal zone lymphoma. Virchows Arch 2023; 482:849-858. [PMID: 36656392 DOI: 10.1007/s00428-023-03493-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/20/2023]
Abstract
Pediatric-type follicular lymphoma and pediatric nodal marginal zone lymphoma are pediatric B cell lymphomas with similar clinical characteristics but distinct histological features. We investigated the differences between pediatric-type follicular lymphoma and pediatric nodal marginal zone lymphoma by comparing their histological and molecular characteristics. A total of 5 pediatric-type follicular lymphoma and 11 pediatric nodal marginal zone lymphoma patients were included in the study. In the histological review, 5 of the 16 cases showed overlapping morphological features of pediatric-type follicular lymphoma and pediatric nodal marginal zone lymphoma; hence, they were reclassified as "mixed type." In molecular analysis, using panel-based massively parallel sequencing, MAP2K1, TNFRSF14, and IRF8 mutations were found in 6, 3, and 2 of the 11 pediatric nodal marginal zone lymphoma patients, respectively, and IRF8 mutation was found in one of the five pediatric-type follicular lymphoma patients. There were no significant differences in genetic alterations established from the histologically reclassified diagnosis as well as the initial diagnosis. Pediatric-type follicular lymphoma and pediatric nodal marginal zone lymphoma showed morphological overlap in some cases, and no difference between the two was found upon molecular analysis. These findings suggest the possibility that pediatric-type follicular lymphoma and pediatric nodal marginal zone lymphoma are single entity pediatric B-cell lymphoma with broad morphological spectrum.
Collapse
Affiliation(s)
- Jiyeon Lee
- Department of Pathology, Korea University Guro Hospital, Seoul, Korea.,Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, #81, Irwon-ro, Gangnam-Gu, Seoul, 06351, Korea
| | - Jae-Ho Han
- Department of Pathology, Ajou University School of Medicine, Suwon, Korea
| | - Chang Hun Lee
- Department of Pathology, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea
| | - Ho-Sung Park
- Department of Pathology, Jeonbuk National University Hospital, Jeonbuk National University Medical School, Jeonju, Korea
| | - Soo Kee Min
- Department of Pathology, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - Hojung Lee
- Department of Pathology, Nowon Eulji Medical Center, Eulji University, Seoul, Korea
| | - Uiju Cho
- Department of Pathology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sang Eun Yoon
- Division of Hematology and Oncology, Department of Medicine Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seok Jin Kim
- Division of Hematology and Oncology, Department of Medicine Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won Seog Kim
- Division of Hematology and Oncology, Department of Medicine Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Junhun Cho
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, #81, Irwon-ro, Gangnam-Gu, Seoul, 06351, Korea.
| |
Collapse
|
24
|
Zob DL, Augustin I, Caba L, Panzaru MC, Popa S, Popa AD, Florea L, Gorduza EV. Genomics and Epigenomics in the Molecular Biology of Melanoma-A Prerequisite for Biomarkers Studies. Int J Mol Sci 2022; 24:ijms24010716. [PMID: 36614156 PMCID: PMC9821083 DOI: 10.3390/ijms24010716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Melanoma is a common and aggressive tumor originating from melanocytes. The increasing incidence of cutaneous melanoma in recent last decades highlights the need for predictive biomarkers studies. Melanoma development is a complex process, involving the interplay of genetic, epigenetic, and environmental factors. Genetic aberrations include BRAF, NRAS, NF1, MAP2K1/MAP2K2, KIT, GNAQ, GNA11, CDKN2A, TERT mutations, and translocations of kinases. Epigenetic alterations involve microRNAs, non-coding RNAs, histones modifications, and abnormal DNA methylations. Genetic aberrations and epigenetic marks are important as biomarkers for the diagnosis, prognosis, and prediction of disease recurrence, and for therapeutic targets. This review summarizes our current knowledge of the genomic and epigenetic changes in melanoma and discusses the latest scientific information.
Collapse
Affiliation(s)
- Daniela Luminita Zob
- Department of Medical Oncology, AI. Trestioreanu Institute of Oncology, 022328 Bucharest, Romania
| | - Iolanda Augustin
- Department of Medical Oncology, AI. Trestioreanu Institute of Oncology, 022328 Bucharest, Romania
- Correspondence: (I.A.); (L.C.)
| | - Lavinia Caba
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
- Correspondence: (I.A.); (L.C.)
| | - Monica-Cristina Panzaru
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| | - Setalia Popa
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| | - Alina Delia Popa
- Nursing Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| | - Laura Florea
- Department of Nephrology-Internal Medicine, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| | - Eusebiu Vlad Gorduza
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| |
Collapse
|
25
|
Wang H, Tran TT, Duong KT, Nguyen T, Le UM. Options of Therapeutics and Novel Delivery Systems of Drugs for the Treatment of Melanoma. Mol Pharm 2022; 19:4487-4505. [PMID: 36305753 DOI: 10.1021/acs.molpharmaceut.2c00775] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Melanoma is one of the most severe cancerous diseases. The cells employ multiple signaling pathways, such as ERK, HGF/c-MET, WNT, and COX-2 to cause the cell proliferation, survival, and metastasis. Treatment of melanoma, including surgery, chemotherapy, immunotherapy, radiation, and targeted therapy, is based on 4 major or 11 substages of the disease. Fourteen drugs, including dacarbazine, interferon α-2b, interleukin-12, ipilimumab, peginterferon α-2b, vemurafenib, trametinib, talimogene laherparepvec, cobimetinib, pembrolizumab, dabrafenib, binimetinib, encorafenib, and nivolumab, have been approved by the FDA for the treatment of melanoma. All of them are in conventional dosage forms of injection solutions, suspensions, oral tablets, or capsules. Major drawbacks of the treatment are side effects of the drugs and patients' incompliance to them. These are consequences of high doses and long-term treatments for the diseases. Currently more than 350 NCI-registered clinical trials are being carried out to treat advanced and/or metastatic melanoma using novel treatment methods, such as immune cell therapy, cancer vaccines, and new therapeutic targets. In addition, novel delivery systems using biomaterials of the approved drugs have been developed attempting to increase the drug delivery, targeting, stability, bioavailability, thus potentially reducing the toxicity and increasing the treatment effectiveness. Nanoparticles and liposomes have been emerging as advanced delivery systems which can improve drug stability and systemic circulation time. In this review, the most recent findings in the options for treatment and development of novel drug delivery systems for the treatment of melanoma are comprehensively discussed.
Collapse
Affiliation(s)
- Hongbin Wang
- College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, California 95757, United States.,Master of Pharmaceutical Sciences College of Graduate Study, California Northstate University, 9700 West Taron Drive, Elk Grove, California 95757, United States
| | - Tuan T Tran
- College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, California 95757, United States
| | - Katherine T Duong
- CVS Pharmacy, 18872 Beach Boulevard, Huntington Beach, California 92648, United States
| | - Trieu Nguyen
- College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, California 95757, United States
| | - Uyen M Le
- College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, California 95757, United States
| |
Collapse
|
26
|
Newell F, Johansson PA, Wilmott JS, Nones K, Lakis V, Pritchard AL, Lo SN, Rawson RV, Kazakoff SH, Colebatch AJ, Koufariotis LT, Ferguson PM, Wood S, Leonard C, Law MH, Brooks KM, Broit N, Palmer JM, Couts KL, Vergara IA, Long GV, Barbour AP, Nieweg OE, Shivalingam B, Robinson WA, Stretch JR, Spillane AJ, Saw RP, Shannon KF, Thompson JF, Mann GJ, Pearson JV, Scolyer RA, Waddell N, Hayward NK. Comparative Genomics Provides Etiologic and Biological Insight into Melanoma Subtypes. Cancer Discov 2022; 12:2856-2879. [PMID: 36098958 PMCID: PMC9716259 DOI: 10.1158/2159-8290.cd-22-0603] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/01/2022] [Accepted: 09/02/2022] [Indexed: 01/12/2023]
Abstract
Melanoma is a cancer of melanocytes, with multiple subtypes based on body site location. Cutaneous melanoma is associated with skin exposed to ultraviolet radiation; uveal melanoma occurs in the eyes; mucosal melanoma occurs in internal mucous membranes; and acral melanoma occurs on the palms, soles, and nail beds. Here, we present the largest whole-genome sequencing study of melanoma to date, with 570 tumors profiled, as well as methylation and RNA sequencing for subsets of tumors. Uveal melanoma is genomically distinct from other melanoma subtypes, harboring the lowest tumor mutation burden and with significantly mutated genes in the G-protein signaling pathway. Most cutaneous, acral, and mucosal melanomas share alterations in components of the MAPK, PI3K, p53, p16, and telomere pathways. However, the mechanism by which these pathways are activated or inactivated varies between melanoma subtypes. Additionally, we identify potential novel germline predisposition genes for some of the less common melanoma subtypes. SIGNIFICANCE This is the largest whole-genome analysis of melanoma to date, comprehensively comparing the genomics of the four major melanoma subtypes. This study highlights both similarities and differences between the subtypes, providing insights into the etiology and biology of melanoma. This article is highlighted in the In This Issue feature, p. 2711.
Collapse
Affiliation(s)
- Felicity Newell
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,Corresponding Authors: Felicity Newell, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia. Phone: 61-7-3845-3965; E-mail: ; Richard A. Scolyer, Melanoma Institute Australia, 40 Rockland Road, Wollstonecraft, Sydney, NSW 2065, Australia. Phone: 61-2-9515-7011; E-mail: ; and Nicola Waddell, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia. Phone: 61-7-3845-3538;
| | - Peter A. Johansson
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - James S. Wilmott
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Katia Nones
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Vanessa Lakis
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Antonia L. Pritchard
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,Department of Genetics and Immunology, Division of Biomedical Science, University of the Highlands and Islands, Inverness, Scotland, United Kingdom
| | - Serigne N. Lo
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
| | - Robert V. Rawson
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, New South Wales, Australia
| | | | - Andrew J. Colebatch
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, New South Wales, Australia
| | | | - Peter M. Ferguson
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, New South Wales, Australia
| | - Scott Wood
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Conrad Leonard
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Matthew H. Law
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Kelly M. Brooks
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Natasa Broit
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.,Q-Gen Cell Therapeutics, Brisbane, Queensland, Australia
| | - Jane M. Palmer
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Kasey L. Couts
- Center for Rare Melanomas, University of Colorado Cancer Center, Aurora, Colorado
| | - Ismael A. Vergara
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Georgina V. Long
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia.,Mater Hospital, North Sydney, New South Wales, Australia.,Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Andrew P. Barbour
- Diamantina Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Omgo E. Nieweg
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Brindha Shivalingam
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Mater Hospital, North Sydney, New South Wales, Australia.,Department of Neurosurgery, Chris O'Brien Lifehouse, Camperdown, New South Wales, Australia.,Department of Neurosurgery, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - William A. Robinson
- Center for Rare Melanomas, University of Colorado Cancer Center, Aurora, Colorado
| | - Jonathan R. Stretch
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Mater Hospital, North Sydney, New South Wales, Australia.,Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Andrew J. Spillane
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Mater Hospital, North Sydney, New South Wales, Australia.,Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Robyn P.M. Saw
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Mater Hospital, North Sydney, New South Wales, Australia.,Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Kerwin F. Shannon
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - John F. Thompson
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Mater Hospital, North Sydney, New South Wales, Australia.,Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Graham J. Mann
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Centre for Cancer Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia.,John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - John V. Pearson
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Richard A. Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia.,Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, New South Wales, Australia.,Corresponding Authors: Felicity Newell, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia. Phone: 61-7-3845-3965; E-mail: ; Richard A. Scolyer, Melanoma Institute Australia, 40 Rockland Road, Wollstonecraft, Sydney, NSW 2065, Australia. Phone: 61-2-9515-7011; E-mail: ; and Nicola Waddell, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia. Phone: 61-7-3845-3538;
| | - Nicola Waddell
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,Corresponding Authors: Felicity Newell, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia. Phone: 61-7-3845-3965; E-mail: ; Richard A. Scolyer, Melanoma Institute Australia, 40 Rockland Road, Wollstonecraft, Sydney, NSW 2065, Australia. Phone: 61-2-9515-7011; E-mail: ; and Nicola Waddell, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia. Phone: 61-7-3845-3538;
| | | |
Collapse
|
27
|
Islam SA, Díaz-Gay M, Wu Y, Barnes M, Vangara R, Bergstrom EN, He Y, Vella M, Wang J, Teague JW, Clapham P, Moody S, Senkin S, Li YR, Riva L, Zhang T, Gruber AJ, Steele CD, Otlu B, Khandekar A, Abbasi A, Humphreys L, Syulyukina N, Brady SW, Alexandrov BS, Pillay N, Zhang J, Adams DJ, Martincorena I, Wedge DC, Landi MT, Brennan P, Stratton MR, Rozen SG, Alexandrov LB. Uncovering novel mutational signatures by de novo extraction with SigProfilerExtractor. CELL GENOMICS 2022; 2:None. [PMID: 36388765 PMCID: PMC9646490 DOI: 10.1016/j.xgen.2022.100179] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 04/10/2022] [Accepted: 08/31/2022] [Indexed: 12/09/2022]
Abstract
Mutational signature analysis is commonly performed in cancer genomic studies. Here, we present SigProfilerExtractor, an automated tool for de novo extraction of mutational signatures, and benchmark it against another 13 bioinformatics tools by using 34 scenarios encompassing 2,500 simulated signatures found in 60,000 synthetic genomes and 20,000 synthetic exomes. For simulations with 5% noise, reflecting high-quality datasets, SigProfilerExtractor outperforms other approaches by elucidating between 20% and 50% more true-positive signatures while yielding 5-fold less false-positive signatures. Applying SigProfilerExtractor to 4,643 whole-genome- and 19,184 whole-exome-sequenced cancers reveals four novel signatures. Two of the signatures are confirmed in independent cohorts, and one of these signatures is associated with tobacco smoking. In summary, this report provides a reference tool for analysis of mutational signatures, a comprehensive benchmarking of bioinformatics tools for extracting signatures, and several novel mutational signatures, including one putatively attributed to direct tobacco smoking mutagenesis in bladder tissues.
Collapse
Affiliation(s)
- S.M. Ashiqul Islam
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Marcos Díaz-Gay
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Yang Wu
- Centre for Computational Biology and Programme in Cancer & Stem Cell Biology, Duke NUS Medical School, Singapore 169857, Singapore
| | - Mark Barnes
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Raviteja Vangara
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Erik N. Bergstrom
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Yudou He
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Mike Vella
- NVIDIA Corporation, 2788 San Tomas Expressway, Santa Clara, CA 95051, USA
| | - Jingwei Wang
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Jon W. Teague
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Peter Clapham
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Sarah Moody
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Sergey Senkin
- Genetic Epidemiology Group, International Agency for Research on Cancer, Cedex 08, 69372 Lyon, France
| | - Yun Rose Li
- Departments of Radiation Oncology and Cancer Genetics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Laura Riva
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Andreas J. Gruber
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LF, UK
- Manchester Cancer Research Centre, The University of Manchester, Manchester M20 4GJ, UK
- Department of Biology, University of Konstanz, Universitaetsstrasse 10, D-78464 Konstanz, Germany
| | - Christopher D. Steele
- Research Department of Pathology, Cancer Institute, University College London, London WC1E 6BT, UK
| | - Burçak Otlu
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Azhar Khandekar
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Ammal Abbasi
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| | - Laura Humphreys
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | | | - Samuel W. Brady
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Boian S. Alexandrov
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Nischalan Pillay
- Research Department of Pathology, Cancer Institute, University College London, London WC1E 6BT, UK
- Department of Cellular and Molecular Pathology, Royal National Orthopaedic Hospital NHS Trust, Stanmore, Middlesex HA7 4LP, UK
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - David J. Adams
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Iñigo Martincorena
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - David C. Wedge
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LF, UK
- Manchester Cancer Research Centre, The University of Manchester, Manchester M20 4GJ, UK
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Paul Brennan
- Genetic Epidemiology Group, International Agency for Research on Cancer, Cedex 08, 69372 Lyon, France
| | - Michael R. Stratton
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Steven G. Rozen
- Centre for Computational Biology and Programme in Cancer & Stem Cell Biology, Duke NUS Medical School, Singapore 169857, Singapore
| | - Ludmil B. Alexandrov
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
28
|
Bousset L, Gil J. Targeting senescence as an anticancer therapy. Mol Oncol 2022; 16:3855-3880. [PMID: 36065138 PMCID: PMC9627790 DOI: 10.1002/1878-0261.13312] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/12/2022] [Accepted: 08/21/2022] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a stress response elicited by different molecular insults. Senescence results in cell cycle exit and is characterised by multiple phenotypic changes such as the production of a bioactive secretome. Senescent cells accumulate during ageing and are present in cancerous and fibrotic lesions. Drugs that selectively kill senescent cells (senolytics) have shown great promise for the treatment of age-related diseases. Senescence plays paradoxical roles in cancer. Induction of senescence limits cancer progression and contributes to therapy success, but lingering senescent cells fuel progression, recurrence, and metastasis. In this review, we describe the intricate relation between senescence and cancer. Moreover, we enumerate how current anticancer therapies induce senescence in tumour cells and how senolytic agents could be deployed to complement anticancer therapies. "One-two punch" therapies aim to first induce senescence in the tumour followed by senolytic treatment to target newly exposed vulnerabilities in senescent tumour cells. "One-two punch" represents an emerging and promising new strategy in cancer treatment. Future challenges of "one-two punch" approaches include how to best monitor senescence in cancer patients to effectively survey their efficacy.
Collapse
Affiliation(s)
- Laura Bousset
- MRC London Institute of Medical Sciences (LMS)UK
- Faculty of Medicine, Institute of Clinical Sciences (ICS)Imperial College LondonUK
| | - Jesús Gil
- MRC London Institute of Medical Sciences (LMS)UK
- Faculty of Medicine, Institute of Clinical Sciences (ICS)Imperial College LondonUK
| |
Collapse
|
29
|
Lucas RM, Luo L, Stow JL. ERK1/2 in immune signalling. Biochem Soc Trans 2022; 50:1341-1352. [PMID: 36281999 PMCID: PMC9704528 DOI: 10.1042/bst20220271] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 07/30/2023]
Abstract
Extracellular signal-related kinases 1 and 2 (ERK1/2) are the final components of the mitogen-activated protein kinase (MAPK) phosphorylation cascade, an integral module in a diverse array of signalling pathways for shaping cell behaviour and fate. More recently, studies have shown that ERK1/2 plays an essential role downstream of immune receptors to elicit inflammatory gene expression in response to infection and cell or tissue damage. Much of this work has studied ERK1/2 activation in Toll-like receptor (TLR) pathways, providing mechanistic insights into its recruitment, compartmentalisation and activation in cells of the innate immune system. In this review, we summarise the typical activation of ERK1/2 in growth factor receptor pathways before discussing its known roles in immune cell signalling with a focus downstream of TLRs. We examine emerging research uncovering evidence of dysfunctional ERK1/2 signalling in inflammatory diseases and discuss the potential therapeutic benefit of targeting ERK1/2 pathways in inflammation.
Collapse
Affiliation(s)
- Richard M. Lucas
- Institute for Molecular Bioscience (IMB) and Centre for Inflammation and Disease Research, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Lin Luo
- Institute for Molecular Bioscience (IMB) and Centre for Inflammation and Disease Research, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Jennifer L. Stow
- Institute for Molecular Bioscience (IMB) and Centre for Inflammation and Disease Research, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
30
|
Wang LL, Zheng W, Liu XL, Yin F. Somatic mutations in FAT cadherin family members constitute an underrecognized subtype of colorectal adenocarcinoma with unique clinicopathologic features. World J Clin Oncol 2022; 13:779-788. [PMID: 36337316 PMCID: PMC9630991 DOI: 10.5306/wjco.v13.i10.779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/25/2022] [Accepted: 09/16/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The FAT cadherin family members (FAT1, FAT2, FAT3 and FAT4) are conserved tumor suppressors that are recurrently mutated in several types of human cancers, including colorectal carcinoma (CRC).
AIM To characterize the clinicopathologic features of CRC patients with somatic mutations in FAT cadherin family members.
METHODS We analyzed 526 CRC cases from The Cancer Genome Atlas PanCancer Atlas dataset. CRC samples were subclassified into 2 groups based on the presence or absence of somatic mutations in FAT1, FAT2, FAT3 and FAT4. Individual clinicopathological data were collected after digital slide review. Statistical analysis was performed using t tests and chi-square tests.
RESULTS This CRC study cohort had frequent mutations in the FAT1 (10.5%), FAT2 (11.2%), FAT3 (15.4%) and FAT4 (23.4%) genes. Two hundred CRC patients (38.0%) harbored somatic mutations in one or more of the FAT family genes and were grouped into the FAT mutated CRC subtype. The FAT-mutated CRC subtype was more commonly located on the right side of the colon (51.0%) than in the rest of the cohort (30.1%, P < 0.001). It showed favorable clinicopathologic features, including a lower rate of positive lymph nodes (pN1-2: 33.5% vs 46.4%, P = 0.005), a lower rate of metastasis to another site or organ (pM1: 7.5% vs 16.3%, P = 0.006), and a trend toward an early tumor stage (pT1-2: 25.0% vs 18.7%, P = 0.093). FAT somatic mutations were significantly enriched in microsatellite instability CRC (28.0% vs 2.1%, P < 0.001). However, FAT somatic mutations in microsatellite stable CRC demonstrated similar clinicopathologic behaviors, as well as a trend of a better disease-free survival rate (hazard ratio = 0.539; 95% confidence interval: 0.301-0.967; log-rank P = 0.073).
CONCLUSION FAT cadherin family genes are frequently mutated in CRC, and their mutation profile defines a subtype of CRC with favorable clinicopathologic characteristics.
Collapse
Affiliation(s)
- Liang-Li Wang
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, United States
| | - Wei Zheng
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Xiu-Li Liu
- Department of Pathology and Immunology, Washington University, St. Louis, MO 63110, United States
| | - Feng Yin
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, United States
| |
Collapse
|
31
|
Insight into the potential candidate genes and signaling pathways involved in lymphoma disease in dogs using a comprehensive whole blood transcriptome analysis. Gene 2022; 838:146735. [PMID: 35835403 DOI: 10.1016/j.gene.2022.146735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/20/2022] [Accepted: 07/08/2022] [Indexed: 11/04/2022]
Abstract
Lymphoma is one of the most prevalent hematological cancers, accounting for 15-20 % of new cancer diagnoses in dogs. Therefore, this study aims to explore the important genes and pathways involved in canine lymphoma progression and understand the underlying molecular mechanisms using RNA sequencing. In this study, RNAs acquired from seven pairs of lymphoma and non-lymphoma blood samples were sequenced from different breeds of dogs. Sequencing reads were preprocessed, aligned with the reference genome, assembled and expressions were estimated through bioinformatics approaches. At a false discovery rate (FDR) < 0.05 and fold change (FC) ≥ 1.5, a total of 625 differentially expressed genes (DEGs) were identified between lymphoma and non-lymphoma samples, including 347 up-regulated DEGs such as SLC38A11, SCN3A, ZIC5 etc. and 278 down-regulated DEGs such as LOC475937, CSMD1, KRT14 etc. GO enrichment analysis showed that these DEGs were highly enriched for molecular function of ATP binding and calcium ion binding, cellular process of focal adhesion, and biological process of immune response, and defense response to virus. Similarly, KEGG pathways analysis revealed 11 significantly enriched pathways such as ECM-receptor interaction, cell cycle, PI3K-Akt signaling pathway, ABC transporters etc. In the protein-protein interaction (PPI) network, CDK1 was found to be a top hub gene with highest degree of connectivity. Three modules selected from the PPI network showed that canine lymphoma was highly associated with cell cycle, ECM-receptor interaction, hypertrophic cardiomyopathy, dilated cardiomyopathy and RIG-I-like receptor signaling pathway. Overall, our findings highlighted new candidate therapeutic targets for further testing in canine lymphoma and facilitate the understanding of molecular mechanism of lymphoma's progression in dogs.
Collapse
|
32
|
Yeh SJ, Chen BS. Systems Medicine Design based on Systems Biology Approaches and Deep Neural Network for Gastric Cancer. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:3019-3031. [PMID: 34232888 DOI: 10.1109/tcbb.2021.3095369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Gastric cancer (GC) is the third leading cause of cancer death in the world. It is associated with the stimulation of microenvironment, aberrant epigenetic modification, and chronic inflammation. However, few researches discuss the GC molecular progression mechanisms from the perspective of the system level. In this study, we proposed a systems medicine design procedure to identify essential biomarkers and find corresponding drugs for GC. At first, we did big database mining to construct candidate protein-protein interaction network (PPIN) and candidate gene regulation network (GRN). Second, by leveraging the next-generation sequencing (NGS) data, we performed system modeling and applied system identification and model selection to obtain real genome-wide genetic and epigenetic networks (GWGENs). To make the real GWGENs easy to analyze, the principal network projection method was used to extract the core signaling pathways denoted by KEGG pathways. Subsequently, based on the identified biomarkers, we trained a deep neural network of drug-target interaction (DeepDTI) with supervised learning and filtered our candidate drugs considering drug regulation ability and drug sensitivity. With the proposed systematic strategy, we not only shed the light on the progression of GC but also suggested potential multiple-molecule drugs efficiently.
Collapse
|
33
|
Sahoo OS, Pethusamy K, Srivastava TP, Talukdar J, Alqahtani MS, Abbas M, Dhar R, Karmakar S. The metabolic addiction of cancer stem cells. Front Oncol 2022; 12:955892. [PMID: 35957877 PMCID: PMC9357939 DOI: 10.3389/fonc.2022.955892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer stem cells (CSC) are the minor population of cancer originating cells that have the capacity of self-renewal, differentiation, and tumorigenicity (when transplanted into an immunocompromised animal). These low-copy number cell populations are believed to be resistant to conventional chemo and radiotherapy. It was reported that metabolic adaptation of these elusive cell populations is to a large extent responsible for their survival and distant metastasis. Warburg effect is a hallmark of most cancer in which the cancer cells prefer to metabolize glucose anaerobically, even under normoxic conditions. Warburg's aerobic glycolysis produces ATP efficiently promoting cell proliferation by reprogramming metabolism to increase glucose uptake and stimulating lactate production. This metabolic adaptation also seems to contribute to chemoresistance and immune evasion, a prerequisite for cancer cell survival and proliferation. Though we know a lot about metabolic fine-tuning in cancer, what is still in shadow is the identity of upstream regulators that orchestrates this process. Epigenetic modification of key metabolic enzymes seems to play a decisive role in this. By altering the metabolic flux, cancer cells polarize the biochemical reactions to selectively generate "onco-metabolites" that provide an added advantage for cell proliferation and survival. In this review, we explored the metabolic-epigenetic circuity in relation to cancer growth and proliferation and establish the fact how cancer cells may be addicted to specific metabolic pathways to meet their needs. Interestingly, even the immune system is re-calibrated to adapt to this altered scenario. Knowing the details is crucial for selective targeting of cancer stem cells by choking the rate-limiting stems and crucial branch points, preventing the formation of onco-metabolites.
Collapse
Affiliation(s)
- Om Saswat Sahoo
- Department of Biotechnology, National Institute of technology, Durgapur, India
| | - Karthikeyan Pethusamy
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | | | - Joyeeta Talukdar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, United Kingdom
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, Saudi Arabia
- Computers and communications Department, College of Engineering, Delta University for Science and Technology, Gamasa, Egypt
| | - Ruby Dhar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
34
|
Strobel K, Maurus K, Hamm H, Roth S, Goebeler M, Rosenwald A, Wobser M. Recurrent Alterations in the MAPK pathway in Sporadic Pyogenic Granuloma of Childhood. Acta Derm Venereol 2022; 102:adv00715. [DOI: 10.2340/actadv.v102.1119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Pyogenic granuloma is one of the most common vascular tumours. The cause of pyogenic granuloma was previously thought to be an inflammatory reaction with consecutive stimulation of endothelial cell proliferation. However, recent studies suggest that pyogenic granuloma may be driven by constitutive activation of the mitogen-activated protein kinase pathway. The aim of this study was to investigate the molecular profile of sporadic pyogenic granuloma of childhood, using a systematic approach scrutinizing potential aberrations within different oncogenic pathways. Within a retrospective setting pyogenic granuloma of 15 patients was analysed by targeted next generation sequencing using the Oncomine Focus Assay, which includes genes of key tumorigenic signalling pathways. Activating mutations were found in 4 out of 15 cases (27%). Two HRAS hotspot mutations (p.Gly13Arg, p.Ala59Thr), 1 BRAF (p.Val600Glu) mutation and a novel, previously not reported, MAP2K1 hotspot mutation (p.Glu203Lys) were identified. It is notable that all of these genes are involved in constitutive mitogen- activated protein kinase signalling. This study increases the range of underlying genetic alterations in pyogenic granuloma by identifying novel oncogenic mutations in crucial mitogen-activated protein kinase pathway genes. The results provide supporting evidence that activated mitogen-activated protein kinase signalling is a key driver in the pathogenesis of pyogenic granuloma, which might be exploited by targeted treatment approaches for selected cases.
Collapse
|
35
|
Evangelou Z, Linos K. Nevus, melanoma or something else? Mesenchymal neoplasms with melanocytic differentiation. J Cutan Pathol 2022; 49:747-759. [PMID: 35338512 DOI: 10.1111/cup.14232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 03/13/2022] [Accepted: 03/20/2022] [Indexed: 11/30/2022]
Abstract
The overwhelming majority of cutaneous neoplasms with melanocytic differentiation are nevi, melanomas and more rarely melanocytomas. Nevertheless, there is also a group of mesenchymal neoplasms with genuine melanocytic differentiation which can create diagnostic difficulties with significant repercussions. These can rarely present as primary or metastatic cutaneous lesions. Theones that are relevant to a dermatopathologist include malignant melanotic nerve sheath tumor, perivascular epithelioid cell neoplasm and clear cell sarcoma. This work will provide a thorough review of clinical presentation, morphologic and immunohistochemical features as well as molecular pathogenesis of these tumors. We hope to familiarize the general dermatopathology readership with a group of neoplasms of mesenchymal lineage exhibiting melanocytic differentiation and ultimately avoid diagnostic misadventures. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zoi Evangelou
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Konstantinos Linos
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire, USA.,Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
36
|
Lee SY, Lee M, Yu DS, Lee YB. Identification of genetic mutations of cutaneous squamous cell carcinoma using whole exome sequencing in non-Caucasian population. J Dermatol Sci 2022; 106:70-77. [DOI: 10.1016/j.jdermsci.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 03/08/2022] [Accepted: 03/21/2022] [Indexed: 11/25/2022]
|
37
|
Ye T, Zhang JY, Liu XY, Zhou YH, Yuan SY, Yang MM, Xie WZ, Gao C, Chen YX, Huang ML, Ye CZ, Chen J. The Predictive Value of MAP2K1/2 Mutations on Efficiency of Immunotherapy in Melanoma. Front Immunol 2022; 12:785526. [PMID: 35069558 PMCID: PMC8770828 DOI: 10.3389/fimmu.2021.785526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/07/2021] [Indexed: 01/10/2023] Open
Abstract
Background MAP2K1/2 genes are mutated in approximately 8% of melanoma patients; however, the impact of MAP2K1/2 gene alterations on the efficiency of immunotherapy has not been clarified. This study focused on the correlation between MAP2K1/2 gene mutations and the treatment response. Methods Six metastatic melanoma clinical cohorts treated with immune checkpoint inhibitors [anti-cytotoxic T lymphocyte antigen-4 (CTLA-4) or anti-programmed cell death-1 (PD-1)] were recruited in this study. RNA expression profiling results from each of these six cohorts and the Cancer Genome Atlas (TCGA) melanoma cohort were analysed to explore the mechanism related to immune activation. Results Compared to patients with wild-type MAP2K1/2, those with MAP2K1/2 mutations in an independent anti-CTLA-4-treated cohort had higher objective response rates, longer progression-free survival, and longer overall survival (OS). These findings were further validated in a pooled anti-CTLA-4-treated cohort in terms of the OS. However, there was no correlation between MAP2K1/2 mutations and OS in the anti-PD-1-treated cohort. Subgroup Cox regression analysis suggested that patients with MAP2K1/2 mutations received fewer benefits from anti-PD-1 monotherapy than from anti-CTLA-4 treatment. Furthermore, transcriptome profiling analysis revealed that melanoma tumours with MAP2K mutation was enriched in CD8+ T cells, B cells, and neutrophil cells, also expressed high levels of CD33 and IL10, implying a potential mechanism underlying the benefit of melanoma patients with MAP2K1/2 mutations from anti-CTLA-4 treatment. Conclusions MAP2K1/2 mutations were identified as an independent predictive factor for anti-CTLA-4 therapy in melanoma patients. Anti-CTLA-4 treatment might be more effective than anti-PD-1 therapy for patients with MAP2K1/2-mutated melanoma.
Collapse
Affiliation(s)
- Ting Ye
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie-Ying Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin-Yi Liu
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Yu-Han Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Si-Yue Yuan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng-Mei Yang
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Wen-Zhuan Xie
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Chan Gao
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Yao-Xu Chen
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Meng-Li Huang
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Cheng-Zhi Ye
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jing Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
38
|
Poddutoori R, Aardalen K, Aithal K, Barahagar SS, Belliappa C, Bock M, Chelur S, Gerken A, Gopinath S, Gruenenfelder B, Kiffe M, Krishnaswami M, Langowski J, Madapa S, Narayanan K, Pandit C, Panigrahi SK, Perrone M, Potakamuri RK, Ramachandra M, Ramanathan A, Ramos R, Sager E, Samajdar S, Subramanya HS, Thimmasandra DS, Venetsanakos E, Möbitz H. Discovery of MAP855, an Efficacious and Selective MEK1/2 Inhibitor with an ATP-Competitive Mode of Action. J Med Chem 2022; 65:4350-4366. [PMID: 35195996 DOI: 10.1021/acs.jmedchem.1c02192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mutations in MEK1/2 have been described as a resistance mechanism to BRAF/MEK inhibitor treatment. We report the discovery of a novel ATP-competitive MEK1/2 inhibitor with efficacy in wildtype (WT) and mutant MEK12 models. Starting from a HTS hit, we obtained selective, cellularly active compounds that showed equipotent inhibition of WT MEK1/2 and a panel of MEK1/2 mutant cell lines. Using a structure-based approach, the optimization addressed the liabilities by systematic analysis of molecular matched pairs (MMPs) and ligand conformation. Addition of only three heavy atoms to early tool compound 6 removed Cyp3A4 liabilities and increased the cellular potency by 100-fold, while reducing log P by 5 units. Profiling of MAP855, compound 30, in pharmacokinetic-pharmacodynamic and efficacy studies in BRAF-mutant models showed comparable efficacy to clinical MEK1/2 inhibitors. Compound 30 is a novel highly potent and selective MEK1/2 kinase inhibitor with equipotent inhibition of WT and mutant MEK1/2, whose drug-like properties allow further investigation in the mutant MEK setting upon BRAF/MEK therapy.
Collapse
Affiliation(s)
- Ramulu Poddutoori
- Aurigene Discovery Technologies Ltd, 39-40 KIADB Industrial Area, Electronic City Phase II, Bengaluru 560100, India
| | - Kimberly Aardalen
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Kiran Aithal
- Aurigene Discovery Technologies Ltd, 39-40 KIADB Industrial Area, Electronic City Phase II, Bengaluru 560100, India
| | | | - Charamanna Belliappa
- Aurigene Discovery Technologies Ltd, 39-40 KIADB Industrial Area, Electronic City Phase II, Bengaluru 560100, India
| | - Mark Bock
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Shekar Chelur
- Aurigene Discovery Technologies Ltd, 39-40 KIADB Industrial Area, Electronic City Phase II, Bengaluru 560100, India
| | - Andrea Gerken
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Sreevalsam Gopinath
- Aurigene Discovery Technologies Ltd, 39-40 KIADB Industrial Area, Electronic City Phase II, Bengaluru 560100, India
| | | | - Michael Kiffe
- Novartis Institutes for BioMedical Research, Basel 4002, Switzerland
| | - Maithreyi Krishnaswami
- Aurigene Discovery Technologies Ltd, 39-40 KIADB Industrial Area, Electronic City Phase II, Bengaluru 560100, India
| | - John Langowski
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Sudharshan Madapa
- Aurigene Discovery Technologies Ltd, 39-40 KIADB Industrial Area, Electronic City Phase II, Bengaluru 560100, India
| | - Kishore Narayanan
- Aurigene Discovery Technologies Ltd, 39-40 KIADB Industrial Area, Electronic City Phase II, Bengaluru 560100, India
| | - Chetan Pandit
- Aurigene Discovery Technologies Ltd, 39-40 KIADB Industrial Area, Electronic City Phase II, Bengaluru 560100, India
| | - Sunil Kumar Panigrahi
- Aurigene Discovery Technologies Ltd, 39-40 KIADB Industrial Area, Electronic City Phase II, Bengaluru 560100, India
| | - Mark Perrone
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Ravi Kumar Potakamuri
- Aurigene Discovery Technologies Ltd, 39-40 KIADB Industrial Area, Electronic City Phase II, Bengaluru 560100, India
| | - Murali Ramachandra
- Aurigene Discovery Technologies Ltd, 39-40 KIADB Industrial Area, Electronic City Phase II, Bengaluru 560100, India
| | - Anuradha Ramanathan
- Aurigene Discovery Technologies Ltd, 39-40 KIADB Industrial Area, Electronic City Phase II, Bengaluru 560100, India
| | - Rita Ramos
- Global Drug Discovery, Novartis Pharma AG, Basel 4002, Switzerland
| | - Emine Sager
- Novartis Institutes for BioMedical Research, Basel 4002, Switzerland
| | - Susanta Samajdar
- Aurigene Discovery Technologies Ltd, 39-40 KIADB Industrial Area, Electronic City Phase II, Bengaluru 560100, India
| | - Hosahalli S Subramanya
- Aurigene Discovery Technologies Ltd, 39-40 KIADB Industrial Area, Electronic City Phase II, Bengaluru 560100, India
| | | | - Eleni Venetsanakos
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Henrik Möbitz
- Novartis Institutes for BioMedical Research, Basel 4002, Switzerland
| |
Collapse
|
39
|
Remenár É, Dóczi R, Dirner A, Sipos A, Perjési A, Tihanyi D, Vodicska B, Lakatos D, Horváth K, Kajáry K, Schwáb R, Déri J, Lengyel CG, Várkondi E, Vályi-Nagy I, Peták I. Lasting Complete Clinical Response of a Recurring Cutaneous Squamous Cell Carcinoma With MEK Mutation and PIK3CA Amplification Achieved by Dual Trametinib and Metformin Therapy. JCO Precis Oncol 2022; 6:e2100344. [PMID: 35005996 DOI: 10.1200/po.21.00344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Éva Remenár
- Buda Hospitaller Order of St John of God, Budapest, Hungary
| | - Róbert Dóczi
- Oncompass Medicine Hungary Ltd, Budapest, Hungary
| | - Anna Dirner
- Oncompass Medicine Hungary Ltd, Budapest, Hungary
| | - Anna Sipos
- Oncompass Medicine Hungary Ltd, Budapest, Hungary
| | | | - Dóra Tihanyi
- Oncompass Medicine Hungary Ltd, Budapest, Hungary
| | | | - Dóra Lakatos
- Oncompass Medicine Hungary Ltd, Budapest, Hungary
| | | | | | - Richárd Schwáb
- Oncompass Medicine Hungary Ltd, Budapest, Hungary.,MiND Klinika Kft, Budapest, Hungary
| | - Júlia Déri
- Oncompass Medicine Hungary Ltd, Budapest, Hungary
| | | | | | - István Vályi-Nagy
- Centrum Hospital of Southern Pest, National Hematology and Infectology Institute, Budapest, Hungary
| | - István Peták
- Oncompass Medicine Hungary Ltd, Budapest, Hungary.,Department of Pharmacology, Semmelweis University, Budapest, Hungary.,Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
40
|
Cherepakhin OS, Argenyi ZB, Moshiri AS. Genomic and Transcriptomic Underpinnings of Melanoma Genesis, Progression, and Metastasis. Cancers (Basel) 2021; 14:123. [PMID: 35008286 PMCID: PMC8750021 DOI: 10.3390/cancers14010123] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022] Open
Abstract
Melanoma is a deadly skin cancer with rapidly increasing incidence worldwide. The discovery of the genetic drivers of melanomagenesis in the last decade has led the World Health Organization to reclassify melanoma subtypes by their molecular pathways rather than traditional clinical and histopathologic features. Despite this significant advance, the genomic and transcriptomic drivers of metastatic progression are less well characterized. This review describes the known molecular pathways of cutaneous and uveal melanoma progression, highlights recently identified pathways and mediators of metastasis, and touches on the influence of the tumor microenvironment on metastatic progression and treatment resistance. While targeted therapies and immune checkpoint blockade have significantly aided in the treatment of advanced disease, acquired drug resistance remains an unfortunately common problem, and there is still a great need to identify potential prognostic markers and novel therapeutic targets to aid in such cases.
Collapse
Affiliation(s)
| | - Zsolt B. Argenyi
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA;
| | - Ata S. Moshiri
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA;
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
41
|
Pigmented Epithelioid Melanocytomas and Their Mimics; Focus on Their Novel Molecular Findings. BIOLOGY 2021; 10:biology10121290. [PMID: 34943205 PMCID: PMC8698474 DOI: 10.3390/biology10121290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Pigmented epithelioid melanocytoma (PEM) is a rare entity with a controversial biological behavior. Some of these tumors behave in an indolent manners while others can locally spread. Herein, we review the clinical presentations, the pathological features as well as the genomic signatures associated with this rare entity. We also report an example of a challenging case of PEM that we encountered and show how usage of novel molecular diagnostic techniques focusing helps addressing this diagnostic conundrum. Abstract Pigmented epithelioid melanocytoma (PEM) is a unique tumor with significantly pigmented appearance and indolent behavior; however, it can demonstrate cytological atypia and metastasize to local lymph nodes. Clinical and histomorphological overlap between PEM and its lower or higher-grade mimics can make it difficult to distinguish in certain cases. Genomic, transcriptomic and epigenetic data indicate that PEMs are molecularly distinct entities from other melanocytic neoplasms and melanomas. In addition, methylation studies are emerging as a tool that can be useful in difficult cases. In this review, we focus on the clinical, histopathologic and recent insights in the molecular features of pigmented epithelioid melanocytic melanocytomas and their mimics. We also present a challenging case that was resolved using methylation analysis providing a proof of concept for using epigenetic studies for similar challenging cases.
Collapse
|
42
|
Sun Q, Zhou Y, Xiong M, Chen Y, Tan WS, Cai H. MEK1 activation enhances the ex vivo proliferation of haematopoietic stem/progenitor cell. Cell Biochem Funct 2021; 40:79-89. [PMID: 34855220 DOI: 10.1002/cbf.3677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 11/11/2022]
Abstract
Haematopoietic stem/progenitor cell (HSPC) integrates intracellular signal network from growth factors (GFs) and utilizes its proliferation feature to generate high yields of transplantable cells upon ex vivo culture. However, the molecular basis for HSPC activation and proliferation is not completely understood. The goal of this study was to investigate proliferation regulator in the downstream of GFs and develop HSPC expansion strategy. Microarray and Ingenuity Pathway Analysis were performed to evaluate differentially expressed genes in cytokine-induced CD34+ cells after ex vivo culture. We identified that MEK1 was a potential HSPC proliferation regulator, which represented indispensable roles and MEK1 silence attenuated the proliferation of HSPC. Notably, 500 nM MEK1 agonist, PAF C-16, increased the numbers of phenotypic HSPC and induced cell cycling of HSPC. The PAF C-16 expanded HSPC demonstrated comparative clonal formation ability and secondary expansion capacity compared to the vehicle control. Our results provide insights into regulating the balance between proliferation and commitment of HSPC by targeting the HSPC proliferation-controlling network. This study demonstrates that MEK1 critically regulates HSPC proliferation and cell production in the ex vivo condition for transplantation.
Collapse
Affiliation(s)
- Qihao Sun
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yiran Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Minghao Xiong
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yuying Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Haibo Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
43
|
Genetic and epigenetic characterization of posterior pituitary tumors. Acta Neuropathol 2021; 142:1025-1043. [PMID: 34661724 PMCID: PMC8568760 DOI: 10.1007/s00401-021-02377-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022]
Abstract
Pituicytoma (PITUI), granular cell tumor (GCT), and spindle cell oncocytoma (SCO) are rare tumors of the posterior pituitary. Histologically, they may be challenging to distinguish and have been proposed to represent a histological spectrum of a single entity. We performed targeted next-generation sequencing, DNA methylation profiling, and copy number analysis on 47 tumors (14 PITUI; 12 GCT; 21 SCO) to investigate molecular features and explore possibilities of clinically meaningful tumor subclassification. We detected two main epigenomic subgroups by unsupervised clustering of DNA methylation data, though the overall methylation differences were subtle. The largest group (n = 23) contained most PITUIs and a subset of SCOs and was enriched for pathogenic mutations within genes in the MAPK/PI3K pathways (12/17 [71%] of sequenced tumors: FGFR1 (3), HRAS (3), BRAF (2), NF1 (2), CBL (1), MAP2K2 (1), PTEN (1)) and two with accompanying TERT promoter mutation. The second group (n = 16) contained most GCTs and a subset of SCOs, all of which mostly lacked identifiable genetic drivers. Outcome analysis demonstrated that the presence of chromosomal imbalances was significantly associated with reduced progression-free survival especially within the combined PITUI and SCO group (p = 0.031). In summary, we observed only subtle DNA methylation differences between posterior pituitary tumors, indicating that these tumors may be best classified as subtypes of a single entity. Nevertheless, our data indicate differences in mutation patterns and clinical outcome. For a clinically meaningful subclassification, we propose a combined histo-molecular approach into three subtypes: one subtype is defined by granular cell histology, scarcity of identifiable oncogenic mutations, and favorable outcome. The other two subtypes have either SCO or PITUI histology but are segregated by chromosomal copy number profile into a favorable group (no copy number changes) and a less favorable group (copy number imbalances present). Both of the latter groups have recurrent MAPK/PI3K genetic alterations that represent potential therapeutic targets.
Collapse
|
44
|
Fan X, Song J, Fan Y, Li J, Chen Y, Zhu H, Zhang Z. CSMD1 Mutation Related to Immunity Can Be Used as a Marker to Evaluate the Clinical Therapeutic Effect and Prognosis of Patients with Esophageal Cancer. Int J Gen Med 2021; 14:8689-8710. [PMID: 34849012 PMCID: PMC8627272 DOI: 10.2147/ijgm.s338284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/18/2021] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION As a highly aggressive tumor with a poor prognosis, esophageal cancer (ESCA)'s relationship with gene mutations is unclear. Therefore, we tried to explore the role of gene mutation in ESCA progression and its relationship with immune response, clinical treatment, and prognosis. METHODS In addition to copy number variation (CNV) situations of common genes obtained from 2 public databases, the relationship between mutations and prognosis/tumor mutational burden (TMB) was also analyzed. Kaplan-Meier survival and Cox regression analysis were used to identify the CSMD1 mutation status as an independent predictor of prognosis. We also enriched related functions and pathways. Next, the relationship between 22 immune cells and CSMD1 mutation status was analyzed. In addition to the differences in the expression levels of immune checkpoint inhibitors (ICIs)-related genes between the high TMB and low TMB groups, the differences in the expression levels of ICIs/m6a/multi-drug resistance-related genes and the sensitivity of three chemotherapeutic drugs between CSMD1 mutant and the wild group were also compared. In addition to differences and prognostic analysis of CSMD1 expression, the correlation analysis between the expression of these genes/immune cells and the expression of CSMD1 was also performed. Finally, a nomogram that could efficiently and conveniently predict the survival probability of ESCA patients was constructed and verified. RESULTS We obtained 17 frequently mutated genes distribution. Mutation and loss of CSMD1 are frequent in ESCA. Only CSMD1 mutation can be used as an independent predictor of poor prognosis. Patients in the high TMB group have a lower survival probability. Wild CSMD1 may be involved in immune-related pathways. More helper T cells and fewer resting state dendritic cells were found in the CSMD1 mutant group. The PD-1 expression in the high TMB group showed higher. Paclitaxel sensitivity and ABCC1 expression were higher in the wild CSMD1 group. Most cancers show differential expression of CSMD1. Except for the prognosis of ESCA, the expression of CSMD1 is related to immune cell content and the expression of ICIs/m6a/multi-drug resistance related genes. DISCUSSION CSMD1 mutation could be used as an immune-related biomarker to predict prognosis and treatment effect of paclitaxel. Mutation and loss of CSMD1 may promote the progression of ESCA.
Collapse
Affiliation(s)
- Xin Fan
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, The First Clinical Medical College of Nanchang University, Nanchang, 330000, People’s Republic of China
| | - Jianxiong Song
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, The First Clinical Medical College of Nanchang University, Nanchang, 330000, People’s Republic of China
| | - Yating Fan
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, The First Clinical Medical College of Nanchang University, Nanchang, 330000, People’s Republic of China
| | - Jiaqi Li
- School of Stomatology, Nanchang University, Nanchang, 330000, People’s Republic of China
| | - Yutao Chen
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, The First Clinical Medical College of Nanchang University, Nanchang, 330000, People’s Republic of China
| | - Huanhuan Zhu
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, The First Clinical Medical College of Nanchang University, Nanchang, 330000, People’s Republic of China
| | - Zhiyuan Zhang
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, The First Clinical Medical College of Nanchang University, Nanchang, 330000, People’s Republic of China
| |
Collapse
|
45
|
Abstract
Neoplasia occurs as a result of genetic mutations. Research evaluating the association between gene mutations and skin cancer is limited and has produced inconsistent results. There are no established guidelines for screening skin cancer at molecular level. It should also be noted that the combinations of some mutations may play a role in skin tumors’ biology and immune response. There are three major types of skin cancer, and the originality of this study comes from its approach of each of them.
Collapse
|
46
|
Motwani J, Eccles MR. Genetic and Genomic Pathways of Melanoma Development, Invasion and Metastasis. Genes (Basel) 2021; 12:1543. [PMID: 34680938 PMCID: PMC8535311 DOI: 10.3390/genes12101543] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 12/21/2022] Open
Abstract
Melanoma is a serious form of skin cancer that accounts for 80% of skin cancer deaths. Recent studies have suggested that melanoma invasiveness is attributed to phenotype switching, which is a reversible type of cell behaviour with similarities to epithelial to mesenchymal transition. Phenotype switching in melanoma is reported to be independent of genetic alterations, whereas changes in gene transcription, and epigenetic alterations have been associated with invasiveness in melanoma cell lines. Here, we review mutational, transcriptional, and epigenomic alterations that contribute to tumour heterogeneity in melanoma, and their potential to drive melanoma invasion and metastasis. We also discuss three models that are hypothesized to contribute towards aspects of tumour heterogeneity and tumour progression in melanoma, namely the clonal evolution model, the cancer stem cell model, and the phenotype switching model. We discuss the merits and disadvantages of each model in explaining tumour heterogeneity in melanoma, as a precursor to invasion and metastasis.
Collapse
Affiliation(s)
- Jyoti Motwani
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand;
| | - Michael R. Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand;
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1010, New Zealand
| |
Collapse
|
47
|
Huang F, Santinon F, Flores González RE, del Rincón SV. Melanoma Plasticity: Promoter of Metastasis and Resistance to Therapy. Front Oncol 2021; 11:756001. [PMID: 34604096 PMCID: PMC8481945 DOI: 10.3389/fonc.2021.756001] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 08/30/2021] [Indexed: 12/14/2022] Open
Abstract
Melanoma is the deadliest form of skin cancer. Although targeted therapies and immunotherapies have revolutionized the treatment of metastatic melanoma, most patients are not cured. Therapy resistance remains a significant clinical challenge. Melanoma comprises phenotypically distinct subpopulations of cells, exhibiting distinct gene signatures leading to tumor heterogeneity and favoring therapeutic resistance. Cellular plasticity in melanoma is referred to as phenotype switching. Regardless of their genomic classification, melanomas switch from a proliferative and differentiated phenotype to an invasive, dedifferentiated and often therapy-resistant state. In this review we discuss potential mechanisms underpinning melanoma phenotype switching, how this cellular plasticity contributes to resistance to both targeted therapies and immunotherapies. Finally, we highlight novel strategies to target plasticity and their potential clinical impact in melanoma.
Collapse
Affiliation(s)
- Fan Huang
- Lady Davis Institute, McGill University, Montréal, QC, Canada
- Department of Experimental Medicine, McGill University, Montréal, QC, Canada
| | - François Santinon
- Lady Davis Institute, McGill University, Montréal, QC, Canada
- Department of Experimental Medicine, McGill University, Montréal, QC, Canada
| | - Raúl Ernesto Flores González
- Lady Davis Institute, McGill University, Montréal, QC, Canada
- Department of Experimental Medicine, McGill University, Montréal, QC, Canada
| | - Sonia V. del Rincón
- Lady Davis Institute, McGill University, Montréal, QC, Canada
- Department of Experimental Medicine, McGill University, Montréal, QC, Canada
- Department of Oncology, McGill University, Montréal, QC, Canada
| |
Collapse
|
48
|
Sun L, Arbesman J. Canonical Signaling Pathways in Melanoma. Clin Plast Surg 2021; 48:551-560. [PMID: 34503716 DOI: 10.1016/j.cps.2021.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Melanoma is the most lethal type of skin cancer, originating from the uncontrolled proliferation of melanocytes. The transformation of normal melanocytes into malignant tumor cells has been a focus of research seeking to better understand melanoma's pathogenesis and develop new therapeutic targets. Over the past few decades, a conglomeration of studies has pinpointed several driver mutations and their associated signaling pathways. In this review, we summarize the key signaling pathways and the driver mutations involved in melanoma tumorigenesis and also discuss the potential underlying mechanisms.
Collapse
Affiliation(s)
- Lillian Sun
- Cleveland Clinic, Lerner College of Medicine at Case Western Reserve University, 9501 Euclid Avenue, Cleveland, OH 44106, USA
| | - Joshua Arbesman
- Department of Dermatology, Cleveland Clinic, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| |
Collapse
|
49
|
Hong JY, Cho HJ, Kim ST, Park YS, Shin SH, Han IW, Lee J, Heo JS, Park JO. Comprehensive molecular profiling to predict clinical outcomes in pancreatic cancer. Ther Adv Med Oncol 2021; 13:17588359211038478. [PMID: 34471425 PMCID: PMC8404641 DOI: 10.1177/17588359211038478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/22/2021] [Indexed: 12/27/2022] Open
Abstract
Background: Pancreatic ductal adenocarcinoma (PDAC) has the worst prognosis among common cancers. The genomic landscape of PDAC is defined by four mutational pathways: kirsten rat sarcoma virus (KRAS), cellular tumor antigen p53 (TP53), cyclin dependent kinase inhibitor 2A (CDKN2A), and SMAD family member 4 (SMAD4). However, there is a paucity of data on the molecular features associated with clinical outcomes after surgery or chemotherapy. Methods: We performed comprehensive molecular characterization of tumor specimens from 83 patients with PDAC who received surgery, using whole-exome sequencing and ribonucleic acid sequencing on tumor and matched normal tissues derived from patients. We also systematically performed integrative analysis, combining genomic, transcriptomic, and clinical features to identify biomarkers and possible therapeutic targets. Results: KRAS (75%), TP53 (67%), CDKN2A (12%), SMAD4 (20%), and ring finger protein 43 (RNF43) (13%) were identified as significantly mutated genes. The tumor-specific transcriptome was classified into two clusters (tumor S1 and tumor S2), which resembled the Moffitt tumor classification. Tumor S1 displayed two distinct subclusters (S1-1 and S1-2). The transcriptome of tumor S1-1 overlapped with the exocrine-like (Collisson)/ADEX (Bailey) subtype, while tumor S1-2 mostly consisted of the classical (Collisson)/progenitor (Bailey) subtype. In the analysis of combinatorial gene alterations, concomitant mutations of KRAS with low-density lipoprotein receptor related protein 1B (LRP1B) were associated with significantly worse disease-free survival after surgery (p = 0.034). One patient (1.2%) was an ultrahypermutant with microsatellite instability. We also identified high protein kinase C lota (PRKCI) expression as an overlapping, poor prognostic marker between our dataset and the TCGA dataset. Conclusion: We identified potential prognostic biomarkers and therapeutic targets of patients with PDAC. Understanding these molecular aberrations that determine patient outcomes after surgery and chemotherapy has the potential to improve the treatment outcomes of PDAC patients.
Collapse
Affiliation(s)
- Jung Yong Hong
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hee Jin Cho
- Innovative Therapeutic Research Center, Precision Medicine Research Institute, Samsung Medical Center, Seoul, Korea
| | - Seung Tae Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young Suk Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sang Hyun Shin
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - In Woong Han
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeeyun Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jin Seok Heo
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Joon Oh Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea
| |
Collapse
|
50
|
Príncipe C, Dionísio de Sousa IJ, Prazeres H, Soares P, Lima RT. LRP1B: A Giant Lost in Cancer Translation. Pharmaceuticals (Basel) 2021; 14:836. [PMID: 34577535 PMCID: PMC8469001 DOI: 10.3390/ph14090836] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 12/23/2022] Open
Abstract
Low-density lipoprotein receptor-related protein 1B (LRP1B) is a giant member of the LDLR protein family, which includes several structurally homologous cell surface receptors with a wide range of biological functions from cargo transport to cell signaling. LRP1B is among the most altered genes in human cancer overall. Found frequently inactivated by several genetic and epigenetic mechanisms, it has mostly been regarded as a putative tumor suppressor. Still, limitations in LRP1B studies exist, in particular associated with its huge size. Therefore, LRP1B expression and function in cancer remains to be fully unveiled. This review addresses the current understanding of LRP1B and the studies that shed a light on the LRP1B structure and ligands. It goes further in presenting increasing knowledge brought by technical and methodological advances that allow to better manipulate LRP1B expression in cells and to more thoroughly explore its expression and mutation status. New evidence is pushing towards the increased relevance of LRP1B in cancer as a potential target or translational prognosis and response to therapy biomarker.
Collapse
Affiliation(s)
- Catarina Príncipe
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.P.); (H.P.); (P.S.)
- Cancer Signalling and Metabolism Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
| | - Isabel J. Dionísio de Sousa
- Department of Oncology, Centro Hospitalar Universitário de São João, 4200-450 Porto, Portugal;
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Hugo Prazeres
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.P.); (H.P.); (P.S.)
- IPO-Coimbra, Portuguese Oncology Institute of Coimbra, 3000-075 Coimbra, Portugal
| | - Paula Soares
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.P.); (H.P.); (P.S.)
- Cancer Signalling and Metabolism Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Raquel T. Lima
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (C.P.); (H.P.); (P.S.)
- Cancer Signalling and Metabolism Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|