1
|
Shi Y, Xu Y, Shen H, Jin J, Tong H, Xie W. Advances in biology, diagnosis and treatment of DLBCL. Ann Hematol 2024; 103:3315-3334. [PMID: 39017945 PMCID: PMC11358236 DOI: 10.1007/s00277-024-05880-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 07/03/2024] [Indexed: 07/18/2024]
Abstract
Diffuse large B-cell lymphoma (DLBCL), with approximately 150,000 new cases worldwide each year, represent nearly 30% of all cases of non-Hodgkin lymphoma (NHL) and are phenotypically and genetically heterogeneous. A gene-expression profile (GEP) has identified at least three major subtypes of DLBCL, each of which has distinct clinical, biological, and genetic features: activated B-cell (ABC)-like DLBCL, germinal-center B-cell (GCB)-like DLBCL, and unclassified. Different origins are associated with different responses to chemotherapy and targeted agents. Despite DLBCL being a highly heterogeneous disease, more than 60% of patients with DLBCL can be cured after using rituximab combined with cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) to inhibit the growth of cancer cells while targeting the CD20 receptor. In recent decades, the improvement of diagnostic levels has led to a refinement classification of DLBCL and the development of new therapeutic approaches. The objective of this review was to summarize the latest studies examining genetic lesions and therapies for DLBCL.
Collapse
Affiliation(s)
- Yuanfei Shi
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Yi Xu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Huafei Shen
- International Health Care Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Hongyan Tong
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Wanzhuo Xie
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
2
|
Bendale YN, Birari‐Gawande P, Patil A, Kadam A. Ayurveda Rasayana Therapy (ART) leads to tumor regression and increased survival in chemo-intolerance high-grade stage IV follicular lymphoma: A case study. Clin Case Rep 2024; 12:e8076. [PMID: 38827936 PMCID: PMC11139640 DOI: 10.1002/ccr3.8076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/03/2023] [Accepted: 10/07/2023] [Indexed: 06/05/2024] Open
Abstract
Key clinical message Ayurveda Rasayana Therapy (ART) may serve as a safe and effective alternative treatment option for chemo-intolerance high-grade stage IV follicular lymphoma patients for increasing survival and tumor regression. Abstract Follicular lymphoma (FL), also called follicle center lymphoma/nodular lymphoma, observed in the B lymphocytes (B-cells). Available therapeutic options for follicular lymphoma are associated with various side effects and, patients with co-morbidities can seldom tolerate the chemotherapy regimens. Rasayana therapy not only resulted in tumor regression and improved survival but also dealt with the adverse effects of previous chemotherapy drugs. Herein, we present a case of a 74-year-old female diagnosed with Follicular lymphoma who had undergone three cycles of chemotherapy with unresolved disease outcome and serious adverse events. The patient refused to undergo further cycles of chemotherapy. Her family decided to start Ayurveda treatment for her as an alternative therapy for cancer care. On thorough case taking considering the Ayurveda parameters personalized Rasayana therapy as planned for the patient with an aim for improvement in Quality of Life (QoL), increasing survival, and optimizing body's immune response to fight the tumor. After treatment of 8 months, this case demonstrated partial tumor response as evidenced by PET-CT-scan. Quality of Life as evaluated using FACT-G was also seen improved besides significant improvement in physical performance status evaluated using ECOG. The patient showed a survival of 3.5 years after starting Ayurveda Rasayana Therapy (ART). Rasayana therapy was well tolerated by the patient. This case report indicates the potential role of ART as a therapeutic option in geriatric cancer patients who are not eligible for cytotoxic interventions. Case warrants further systematic investigation to evaluate the potential role of ART in the treatment of geriatric cancer patients.
Collapse
|
3
|
Wang SS. Epidemiology and etiology of diffuse large B-cell lymphoma. Semin Hematol 2023; 60:255-266. [PMID: 38242772 PMCID: PMC10962251 DOI: 10.1053/j.seminhematol.2023.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 01/21/2024]
Abstract
As the most common non-Hodgkin lymphoma subtype, diffuse large B-cell lymphoma (DLBCL) incidence patterns generally parallel that for NHL overall. Globally, DLBCL accounts for a third of all NHLs, ranging between 20% and 50% by country. Based on United States (U.S.) cancer registry data, age-standardized incidence rate for DLBCL was 7.2 per 100,000. DLBCL incidence rises with age and is generally higher in males than females; in the U.S., incidence is highest among non-Hispanic whites (9.2/100,000). Like NHL incidence, DLBCL incidence rose in the first half of the 20th century but has largely plateaued. However, there is some evidence that incidence rates are rising in areas of historically low rates, such as Asia; there are also estimates for rising DLBCL incidence in the near future due to the changing demographics in developed countries whose aging population is growing. Established risk factors for DLBCL include those that result in severe immune deficiency such as HIV/AIDS, inherited immunodeficiency syndromes, and organ transplant recipients. Factors that lead to chronic immune dysregulations are also established risk factors, and include a number of autoimmune conditions (eg, Sjögren syndrome, systemic lupus erythematosus, rheumatoid arthritis), viral infections (eg, HIV, KSHV/HHV8, HCV, EBV), and obesity. Family history of NHL/DLBCL, personal history of cancer, and multiple genetic susceptibility loci are also well-established risk factors for DLBCL. There is strong evidence for multiple environmental exposures in DLBCL etiology, including exposure to trichloroethylene, benzene, and pesticides and herbicides, with recent associations noted with glyphosate. There is also strong evidence for associations with other viruses, such as HBV. Recent estimates suggest that obesity accounts for nearly a quarter of DLBCLs that develop, but despite recent gains in the understanding of DLBCL etiology, the majority of disease remain unexplained. An understanding of the host and environmental contributions to disease etiology, and concerted efforts to expand our understanding to multiple race/ethnic groups, will be essential for constructing clinically relevant risk prediction models and develop effective strategies for disease prevention.
Collapse
Affiliation(s)
- Sophia S Wang
- City of Hope Comprehensive Cancer Center, Duarte, CA.
| |
Collapse
|
4
|
Haycock PC, Borges MC, Burrows K, Lemaitre RN, Harrison S, Burgess S, Chang X, Westra J, Khankari NK, Tsilidis KK, Gaunt T, Hemani G, Zheng J, Truong T, O’Mara TA, Spurdle AB, Law MH, Slager SL, Birmann BM, Saberi Hosnijeh F, Mariosa D, Amos CI, Hung RJ, Zheng W, Gunter MJ, Davey Smith G, Relton C, Martin RM. Design and quality control of large-scale two-sample Mendelian randomization studies. Int J Epidemiol 2023; 52:1498-1521. [PMID: 38587501 PMCID: PMC10555669 DOI: 10.1093/ije/dyad018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 02/10/2023] [Indexed: 03/27/2024] Open
Abstract
Background Mendelian randomization (MR) studies are susceptible to metadata errors (e.g. incorrect specification of the effect allele column) and other analytical issues that can introduce substantial bias into analyses. We developed a quality control (QC) pipeline for the Fatty Acids in Cancer Mendelian Randomization Collaboration (FAMRC) that can be used to identify and correct for such errors. Methods We collated summary association statistics from fatty acid and cancer genome-wide association studies (GWAS) and subjected the collated data to a comprehensive QC pipeline. We identified metadata errors through comparison of study-specific statistics to external reference data sets (the National Human Genome Research Institute-European Bioinformatics Institute GWAS catalogue and 1000 genome super populations) and other analytical issues through comparison of reported to expected genetic effect sizes. Comparisons were based on three sets of genetic variants: (i) GWAS hits for fatty acids, (ii) GWAS hits for cancer and (iii) a 1000 genomes reference set. Results We collated summary data from 6 fatty acid and 54 cancer GWAS. Metadata errors and analytical issues with the potential to introduce substantial bias were identified in seven studies (11.6%). After resolving metadata errors and analytical issues, we created a data set of 219 842 genetic associations with 90 cancer types, generated in analyses of 566 665 cancer cases and 1 622 374 controls. Conclusions In this large MR collaboration, 11.6% of included studies were affected by a substantial metadata error or analytical issue. By increasing the integrity of collated summary data prior to their analysis, our protocol can be used to increase the reliability of downstream MR analyses. Our pipeline is available to other researchers via the CheckSumStats package (https://github.com/MRCIEU/CheckSumStats).
Collapse
Affiliation(s)
- Philip C Haycock
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Maria Carolina Borges
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Kimberley Burrows
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | | | - Sean Harrison
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Stephen Burgess
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
| | - Xuling Chang
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Khoo Teck Puat—National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Jason Westra
- Department of Mathematics, Statistics, and Computer Science, Dordt College, Sioux Center, IA, USA
| | - Nikhil K Khankari
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kostas K Tsilidis
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Tom Gaunt
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Gibran Hemani
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Jie Zheng
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Therese Truong
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, Team “Exposome, Heredity, Cancer and Health”, CESP, Villejuif, France
| | - Tracy A O’Mara
- Genetics and Computational Biology Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Medicine, Faculty of Health Sciences, University of Queensland, Brisbane, Australia
| | - Amanda B Spurdle
- Genetics and Computational Biology Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Medicine, Faculty of Health Sciences, University of Queensland, Brisbane, Australia
| | - Matthew H Law
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Health, and Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Susan L Slager
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Brenda M Birmann
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Daniela Mariosa
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC), Lyon, France
| | - Christopher I Amos
- Dan L Duncan Comprehensive Cancer Center Baylor College of Medicine, Houston, USA
| | - Rayjean J Hung
- Lunenfeld-Tanenbaum Research Institute, Sinai Health and University of Toronto, Toronto, Canada
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Marc J Gunter
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC), Lyon, France
| | - George Davey Smith
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Caroline Relton
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Richard M Martin
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- NIHR Biomedical Research Centre at University Hospitals Bristol and Weston NHS Foundation Trust and the University of Bristol, Bristol, UK
| |
Collapse
|
5
|
Berndt SI, Vijai J, Benavente Y, Camp NJ, Nieters A, Wang Z, Smedby KE, Kleinstern G, Hjalgrim H, Besson C, Skibola CF, Morton LM, Brooks-Wilson AR, Teras LR, Breeze C, Arias J, Adami HO, Albanes D, Anderson KC, Ansell SM, Bassig B, Becker N, Bhatti P, Birmann BM, Boffetta P, Bracci PM, Brennan P, Brown EE, Burdett L, Cannon-Albright LA, Chang ET, Chiu BCH, Chung CC, Clavel J, Cocco P, Colditz G, Conde L, Conti DV, Cox DG, Curtin K, Casabonne D, De Vivo I, Diepstra A, Diver WR, Dogan A, Edlund CK, Foretova L, Fraumeni JF, Gabbas A, Ghesquières H, Giles GG, Glaser S, Glenn M, Glimelius B, Gu J, Habermann TM, Haiman CA, Haioun C, Hofmann JN, Holford TR, Holly EA, Hutchinson A, Izhar A, Jackson RD, Jarrett RF, Kaaks R, Kane E, Kolonel LN, Kong Y, Kraft P, Kricker A, Lake A, Lan Q, Lawrence C, Li D, Liebow M, Link BK, Magnani C, Maynadie M, McKay J, Melbye M, Miligi L, Milne RL, Molina TJ, Monnereau A, Montalvan R, North KE, Novak AJ, Onel K, Purdue MP, Rand KA, Riboli E, Riby J, Roman E, Salles G, Sborov DW, Severson RK, Shanafelt TD, Smith MT, Smith A, Song KW, Song L, Southey MC, Spinelli JJ, Staines A, Stephens D, Sutherland HJ, Tkachuk K, Thompson CA, Tilly H, Tinker LF, Travis RC, Turner J, Vachon CM, Vajdic CM, Van Den Berg A, Van Den Berg DJ, Vermeulen RCH, Vineis P, Wang SS, Weiderpass E, Weiner GJ, Weinstein S, Doo NW, Ye Y, Yeager M, Yu K, Zeleniuch-Jacquotte A, Zhang Y, Zheng T, Ziv E, Sampson J, Chatterjee N, Offit K, Cozen W, Wu X, Cerhan JR, Chanock SJ, Slager SL, Rothman N. Distinct germline genetic susceptibility profiles identified for common non-Hodgkin lymphoma subtypes. Leukemia 2022; 36:2835-2844. [PMID: 36273105 PMCID: PMC10337695 DOI: 10.1038/s41375-022-01711-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/22/2022] [Accepted: 09/15/2022] [Indexed: 11/08/2022]
Abstract
Lymphoma risk is elevated for relatives with common non-Hodgkin lymphoma (NHL) subtypes, suggesting shared genetic susceptibility across subtypes. To evaluate the extent of mutual heritability among NHL subtypes and discover novel loci shared among subtypes, we analyzed data from eight genome-wide association studies within the InterLymph Consortium, including 10,629 cases and 9505 controls. We utilized Association analysis based on SubSETs (ASSET) to discover loci for subsets of NHL subtypes and evaluated shared heritability across the genome using Genome-wide Complex Trait Analysis (GCTA) and polygenic risk scores. We discovered 17 genome-wide significant loci (P < 5 × 10-8) for subsets of NHL subtypes, including a novel locus at 10q23.33 (HHEX) (P = 3.27 × 10-9). Most subset associations were driven primarily by only one subtype. Genome-wide genetic correlations between pairs of subtypes varied broadly from 0.20 to 0.86, suggesting substantial heterogeneity in the extent of shared heritability among subtypes. Polygenic risk score analyses of established loci for different lymphoid malignancies identified strong associations with some NHL subtypes (P < 5 × 10-8), but weak or null associations with others. Although our analyses suggest partially shared heritability and biological pathways, they reveal substantial heterogeneity among NHL subtypes with each having its own distinct germline genetic architecture.
Collapse
Affiliation(s)
- Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Md, USA.
| | - Joseph Vijai
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yolanda Benavente
- Cancer Epidemiology Research Programme, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Nicola J Camp
- Department of Internal Medicine and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Alexandra Nieters
- Institute for Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - Zhaoming Wang
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, USA
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Karin E Smedby
- Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Hematology Center, Karolinska University Hospital, Stockholm, Sweden
| | | | - Henrik Hjalgrim
- Department of Epidemiology Research, Division of Health Surveillance and Research, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Haematology, Rigshospitalet, Copenhagen, Denmark
- Danish Cancer Society Research Center, Danish Cancer Society, Copenhagen, Denmark
| | - Caroline Besson
- Centre Hospitalier de Versailles, Le Chesnay, France
- Université Paris-Saclay, UVSQ, Inserm, Équipe "Exposome et Hérédité", CESP, Villejuif, France
| | - Christine F Skibola
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Lindsay M Morton
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Md, USA
| | - Angela R Brooks-Wilson
- Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Lauren R Teras
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - Charles Breeze
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Md, USA
| | - Joshua Arias
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Md, USA
| | - Hans-Olov Adami
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Institute of Health and Society, Clinical Effectiveness Research Group, University of Oslo, Oslo, Norway
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Md, USA
| | - Kenneth C Anderson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Stephen M Ansell
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Bryan Bassig
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Md, USA
| | - Nikolaus Becker
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Baden-Württemberg, Germany
| | - Parveen Bhatti
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Brenda M Birmann
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Paolo Boffetta
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York, 11794, NY, USA
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, 41026, Italy
| | - Paige M Bracci
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Paul Brennan
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Elizabeth E Brown
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Laurie Burdett
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Gaithersburg, MA, USA
| | - Lisa A Cannon-Albright
- Department of Internal Medicine and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Ellen T Chang
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
- Center for Health Sciences, Exponent, Inc., Menlo Park, CA, USA
| | - Brian C H Chiu
- Department of Public Health Sciences University of Chicago, Chicago, IL, USA
| | - Charles C Chung
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Md, USA
| | - Jacqueline Clavel
- CRESS, UMR1153, INSERM, Villejuif, France
- Université de Paris-Cité, Villejuif, France
| | - Pierluigi Cocco
- Centre for Occupational and Environmental Health, Division of Population Science, Health Services Research & Primary Care, University of Manchester, Manchester, United Kingdom
| | - Graham Colditz
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Lucia Conde
- Bill Lyons Informatics Centre, UCL Cancer Institute, University College London, London, United Kingdom
| | - David V Conti
- Department of Population and Public Health Sciences, USC Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - David G Cox
- INSERM U1052, Cancer Research Center of Lyon, Centre Léon Bérard, Lyon, France
| | - Karen Curtin
- Department of Internal Medicine and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Delphine Casabonne
- Cancer Epidemiology Research Programme, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Immaculata De Vivo
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Arjan Diepstra
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - W Ryan Diver
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - Ahmet Dogan
- Departments of Laboratory Medicine and Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christopher K Edlund
- Department of Population and Public Health Sciences, USC Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Lenka Foretova
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Joseph F Fraumeni
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Md, USA
| | - Attilio Gabbas
- Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Monserrato, Cagliari, Italy
| | - Hervé Ghesquières
- Department of Hematology, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre Benite, France
- CIRI, Centre International de Recherche en Infectiologie, Team Lymphoma Immuno-Biology, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VC, Australia
| | - Sally Glaser
- Cancer Prevention Institute of California, Fremont, CA, USA
- Stanford Cancer Institute, Stanford, CA, USA
| | - Martha Glenn
- Department of Internal Medicine and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Bengt Glimelius
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Jian Gu
- Department of Epidemiology, MD Anderson Cancer Center, Houston, TX, USA
| | | | - Christopher A Haiman
- Department of Population and Public Health Sciences, USC Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Corinne Haioun
- Lymphoid Malignancies Unit, Henri Mondor Hospital and University Paris Est, Créteil, France
| | - Jonathan N Hofmann
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Md, USA
| | - Theodore R Holford
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Elizabeth A Holly
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Amy Hutchinson
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Gaithersburg, MA, USA
| | - Aalin Izhar
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rebecca D Jackson
- Division of Endocrinology, Diabetes and Metabolism, The Ohio State University, Columbus, OH, USA
| | - Ruth F Jarrett
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Rudolph Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Baden-Württemberg, Germany
| | - Eleanor Kane
- Department of Health Sciences, University of York, York, United Kingdom
| | - Laurence N Kolonel
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Yinfei Kong
- Information Systems and Decision Sciences, California State University, Fullerton, Fullerton, CA, USA
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Anne Kricker
- Sydney School of Public Health, The University of Sydney, Sydney, NSW, Australia
| | - Annette Lake
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Md, USA
| | | | - Dalin Li
- F. Widjaja Family Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mark Liebow
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Brian K Link
- Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Corrado Magnani
- CPO-Piemonte and Unit of Medical Statistics and Epidemiology, Department Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Marc Maynadie
- INSERM U1231, EA 4184, Registre des Hémopathies Malignes de Côte d'Or, University of Burgundy and Dijon University Hospital, Dijon, France
| | - James McKay
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Mads Melbye
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Jebsen Center for Genetic epidemiology, NTNU, Trondheim, Norway
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Genetics, Stanford University Medical School, Stanford, CA, USA
| | - Lucia Miligi
- Environmental and Occupational Epidemiology Unit, Cancer Prevention and Research Institute (ISPO), Florence, Italy
| | - Roger L Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VC, Australia
| | - Thierry J Molina
- Department of Pathology, APHP, Necker and Robert Debré, Université Paris Cité, Institut Imagine, INSERM U1163, Paris, France
| | - Alain Monnereau
- CRESS, UMR1153, INSERM, Villejuif, France
- Registre des hémopathies malignes de la Gironde, Institut Bergonié, Bordeaux, Cedex, France
| | | | - Kari E North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anne J Novak
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Kenan Onel
- Donald and Barbara Zucker School of Medicine, Hofstra/Northwell, Hempstead, New York, NY, USA
| | - Mark P Purdue
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Md, USA
| | - Kristin A Rand
- Department of Population and Public Health Sciences, USC Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Elio Riboli
- School of Public Health, Imperial College London, London, United Kingdom
| | - Jacques Riby
- Department of Epidemiology, School of Public Health and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
- Division of Environmental Health Sciences, University of California Berkeley School of Public Health, Berkeley, CA, USA
| | - Eve Roman
- Department of Health Sciences, University of York, York, United Kingdom
| | - Gilles Salles
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Douglas W Sborov
- Department of Internal Medicine and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Richard K Severson
- Department of Family Medicine and Public Health Sciences, Wayne State University, Detroit, MI, USA
| | - Tait D Shanafelt
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Martyn T Smith
- Division of Environmental Health Sciences, University of California Berkeley School of Public Health, Berkeley, CA, USA
| | - Alexandra Smith
- Department of Health Sciences, University of York, York, United Kingdom
| | - Kevin W Song
- Leukemia/Bone Marrow Transplantation Program, BC Cancer Agency, Vancouver, BC, Canada
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Lei Song
- Center for Cancer Research, National Cancer Institute, Frederick, MA, USA
| | - Melissa C Southey
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VC, Australia
- Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, VC, 3010, Australia
| | - John J Spinelli
- Cancer Control Research, BC Cancer Agency, Vancouver, BC, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Anthony Staines
- School of Nursing, Psychotherapy and Community Health, Dublin City University, Dublin, Ireland
| | - Deborah Stephens
- Department of Internal Medicine and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Heather J Sutherland
- Leukemia/Bone Marrow Transplantation Program, BC Cancer Agency, Vancouver, BC, Canada
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Kaitlyn Tkachuk
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Hervé Tilly
- Centre Henri Becquerel, Université de Rouen, Rouen, France
| | - Lesley F Tinker
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Ruth C Travis
- Cancer Epidemiology Unit, University of Oxford, Oxford, United Kingdom
| | - Jenny Turner
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
- Department of Histopathology, Douglass Hanly Moir Pathology, Sydney, NSW, Australia
| | - Celine M Vachon
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Claire M Vajdic
- The Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Anke Van Den Berg
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - David J Van Den Berg
- Department of Population and Public Health Sciences, USC Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Roel C H Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Paolo Vineis
- MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
- Human Genetics Foundation, Turin, Italy
| | - Sophia S Wang
- Division of Health Analytics, City of Hope Beckman Research Institute, Duarte, CA, USA
| | | | - George J Weiner
- Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Stephanie Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Md, USA
| | - Nicole Wong Doo
- Concord Clinical School, University of Sydney, Concord, NSW, Australia
| | - Yuanqing Ye
- Department of Epidemiology, MD Anderson Cancer Center, Houston, TX, USA
| | - Meredith Yeager
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Md, USA
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Gaithersburg, MA, USA
| | - Kai Yu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Md, USA
| | - Anne Zeleniuch-Jacquotte
- Department of Population Health, New York University School of Medicine, New York, NY, USA
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY, USA
| | - Yawei Zhang
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Tongzhang Zheng
- Department of Epidemiology, Brown University, Providence, RI, USA
| | - Elad Ziv
- Division of General Internal Medicine, Department of Medicine, Institute of Human Genetics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Joshua Sampson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Md, USA
| | - Nilanjan Chatterjee
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Md, USA
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MA, USA
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MA, USA
| | - Kenneth Offit
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wendy Cozen
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, USA
| | - Xifeng Wu
- Department of Epidemiology, MD Anderson Cancer Center, Houston, TX, USA
| | - James R Cerhan
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Md, USA
| | - Susan L Slager
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Md, USA
| |
Collapse
|
6
|
Luo J, Craver A, Bahl K, Stepniak L, Moore K, King J, Zhang Y, Aschebrook-Kilfoy B. Etiology of non-Hodgkin lymphoma: A review from epidemiologic studies. JOURNAL OF THE NATIONAL CANCER CENTER 2022; 2:226-234. [PMID: 39036553 PMCID: PMC11256700 DOI: 10.1016/j.jncc.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/20/2022] [Accepted: 08/07/2022] [Indexed: 11/24/2022] Open
Abstract
Non-Hodgkin lymphoma (NHL) contributes to significant cancer burden and mortality globally. In recent years, much insight into the causes of NHL has been gained by evaluating global differences through international collaboration and data pooling. NHL comprises different subtypes that are known to behave differently, exhibit different prognoses, and start in distinct cell types (B-cell, T-cell, and NK-cell, predominantly), and there is increasing evidence that NHL subtypes have different etiologies. Classification of NHL can be complex, with varying subtype frequencies, and is a consideration when evaluating geographic differences. Because of this, international pooling of well-executed epidemiologic studies has conferred power to evaluate NHL by subtype and confidence with minimal misclassification. Given the decreasing burden in some regions while cases rise in Asia, and especially China, this report focuses on a review of the established etiology of NHL from the epidemiologic literature in recent decades, highlighting work from China. Topics covered include demographic patterns and genetic determinants including family history of NHL, as well as infection and immunosuppression, lifestyle, environment, and certain occupational exposures contributing to increased disease risk.
Collapse
Affiliation(s)
- Jiajun Luo
- Institute for Population and Precision Health, University of Chicago, Chicago, United States of America
- Comprehensive Cancer Center, University of Chicago, Chicago, United States of America
| | - Andrew Craver
- Institute for Population and Precision Health, University of Chicago, Chicago, United States of America
| | - Kendall Bahl
- Institute for Population and Precision Health, University of Chicago, Chicago, United States of America
| | - Liz Stepniak
- Institute for Population and Precision Health, University of Chicago, Chicago, United States of America
| | - Kayla Moore
- Institute for Population and Precision Health, University of Chicago, Chicago, United States of America
| | - Jaime King
- Institute for Population and Precision Health, University of Chicago, Chicago, United States of America
| | - Yawei Zhang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Briseis Aschebrook-Kilfoy
- Institute for Population and Precision Health, University of Chicago, Chicago, United States of America
- Comprehensive Cancer Center, University of Chicago, Chicago, United States of America
- Department of Public Health Sciences, University of Chicago, Chicago, United States of America
| |
Collapse
|
7
|
Metabolomics and the Multi-Omics View of Cancer. Metabolites 2022; 12:metabo12020154. [PMID: 35208228 PMCID: PMC8880085 DOI: 10.3390/metabo12020154] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 11/17/2022] Open
Abstract
Cancer is widely regarded to be a genetic disease. Indeed, over the past five decades, the genomic perspective on cancer has come to almost completely dominate the field. However, this genome-only view is incomplete and tends to portray cancer as a disease that is highly heritable, driven by hundreds of complex genetic interactions and, consequently, difficult to prevent or treat. New evidence suggests that cancer is not as heritable or purely genetic as once thought and that it really is a multi-omics disease. As highlighted in this review, the genome, the exposome, and the metabolome all play roles in cancer’s development and manifestation. The data presented here show that >90% of cancers are initiated by environmental exposures (the exposome) which lead to cancer-inducing genetic changes. The resulting genetic changes are, then, propagated through the altered DNA of the proliferating cancer cells (the genome). Finally, the dividing cancer cells are nourished and sustained by genetically reprogrammed, cancer-specific metabolism (the metabolome). As shown in this review, all three “omes” play roles in initiating cancer. Likewise, all three “omes” interact closely, often providing feedback to each other to sustain or enhance tumor development. Thanks to metabolomics, these multi-omics feedback loops are now much more evident and their roles in explaining the hallmarks of cancer are much better understood. Importantly, this more holistic, multi-omics view portrays cancer as a disease that is much more preventable, easier to understand, and potentially, far more treatable.
Collapse
|
8
|
Thorball CW, Oudot-Mellakh T, Ehsan N, Hammer C, Santoni FA, Niay J, Costagliola D, Goujard C, Meyer L, Wang SS, Hussain SK, Theodorou I, Cavassini M, Rauch A, Battegay M, Hoffmann M, Schmid P, Bernasconi E, Günthard HF, Mohammadi P, McLaren PJ, Rabkin CS, Besson C, Fellay J. Genetic variation near CXCL12 is associated with susceptibility to HIV-related non-Hodgkin lymphoma. Haematologica 2021; 106:2233-2241. [PMID: 32675224 PMCID: PMC8327743 DOI: 10.3324/haematol.2020.247023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Indexed: 11/14/2022] Open
Abstract
Human immunodeficiency virus (HIV) infection is associated with an increased risk of non-Hodgkin lymphoma (NHL). Even in the era of suppressive antiretroviral treatment, HIV-infected individuals remain at higher risk of developing NHL compared to the general population. In order to identify potential genetic risk loci, we performed case-control genome-wide association studies and a meta-analysis across three cohorts of HIV-infected patients of European ancestry, including a total of 278 cases and 1,924 matched controls. We observed a significant association with NHL susceptibility in the C-X-C motif chemokine ligand 12 (CXCL12) region on chromosome 10. A fine mapping analysis identified rs7919208 as the most likely causal variant (P=4.77e-11), with the G>A polymorphism creating a new transcription factor binding site for BATF and JUND. These results suggest a modulatory role of CXCL12 regulation in the increased susceptibility to NHL observed in the HIV-infected population.
Collapse
Affiliation(s)
- Christian W Thorball
- Ecole Polytechnique Federale de Lausanne, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Tiphaine Oudot-Mellakh
- Centre de genetique moleculaire et chromosomique, GH La Pitié Salpetriere, Paris, France
| | - Nava Ehsan
- Scripps Research Translational Institute, La Jolla, CA, USA
| | - Christian Hammer
- Dept. of Cancer Immunology and Human Genetics, Genentech, South San Francisco, CA, USA
| | - Federico A Santoni
- Dept. of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, Switzerland
| | - Jonathan Niay
- Centre de genetique moleculaire et chromosomique, GH La Pitié Salpetriere, Paris, France
| | | | - Cécile Goujard
- Paris-Sud University and Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | | | - Sophia S Wang
- Division of Health Analytics, City of Hope Beckman Research Institute, Duarte, CA, USA
| | - Shehnaz K Hussain
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ioannis Theodorou
- Centre de genetique moleculaire et chromosomique, GH La Pitié Salpetriere, Paris, France
| | - Matthias Cavassini
- Service of Infectious Diseases, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Andri Rauch
- Dept. of Infectious Diseases, Bern University Hospital, University of Bern, Switzerland
| | - Manuel Battegay
- Dept. of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Switzerland
| | - Matthias Hoffmann
- Division of Infectious Diseases and Hospital Epidemiology, Kantonsspital Olten, Switzerland
| | - Patrick Schmid
- Division of Infectious Diseases, Cantonal Hospital of St. Gallen, St. Gallen, Switzerland
| | - Enos Bernasconi
- Division of Infectious Diseases, Regional Hospital of Lugano, Lugano, Switzerland
| | | | | | - Paul J McLaren
- JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, Canada
| | - Charles S Rabkin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Caroline Besson
- Department of Hematology and Oncology, Hospital of Versailles, Le Chesnay, France
| | - Jacques Fellay
- Ecole Polytechnique Federale de Lausanne and University of Lausanne, Switzerland
| |
Collapse
|
9
|
Smith-Graziani D, Flowers CR. Understanding and Addressing Disparities in Patients With Hematologic Malignancies: Approaches for Clinicians. Am Soc Clin Oncol Educ Book 2021; 41:1-7. [PMID: 33793311 DOI: 10.1200/edbk_320079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Approximately 185,840 individuals will be diagnosed with hematologic malignancies in the United States in 2020. Disparities in disease incidence, prevalence, burden, mortality, and survivorship have been identified among this patient population. Contributing factors include genetic ancestry, race/ethnicity, sex, socioeconomic status, and geographic region. Historically, these inequities have been understudied. Addressing these disparities requires a systems-level approach, improving access to care and reducing biases in the clinical setting. Additional research is needed to construct comprehensive, multilevel models to explore systematic observational studies and perform strategic intervention trials to overcome these disparities.
Collapse
Affiliation(s)
| | - Christopher R Flowers
- Department of Lymphoma/Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer, Houston, TX
| |
Collapse
|
10
|
Tracking the Genetic Susceptibility Background of B-Cell Non-Hodgkin's Lymphomas from Genome-Wide Association Studies. Int J Mol Sci 2020; 22:ijms22010122. [PMID: 33374413 PMCID: PMC7795678 DOI: 10.3390/ijms22010122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/10/2020] [Accepted: 12/18/2020] [Indexed: 12/31/2022] Open
Abstract
B-cell non-Hodgkin’s lymphoma (NHL) risk associations had been mainly attributed to family history of the disease, inflammation, and immune components including human leukocyte antigen (HLA) genetic variations. Nevertheless, a broad range of genome-wide association studies (GWAS) have shed light into the identification of several genetic variants presumptively associated with B-cell NHL etiologies, survival or shared genetic risk with other diseases. The present review aims to overview HLA structure and diversity and summarize the evidence of genetic variations, by GWAS, on five NHL subtypes (diffuse large B-cell lymphoma DLBCL, follicular lymphoma FL, chronic lymphocytic leukemia CLL, marginal zone lymphoma MZL, and primary central nervous system lymphoma PCNSL). Evidence indicates that the HLA zygosity status in B-cell NHL might promote immune escape and that genome-wide significance variants can give biological insight but also potential therapeutic markers such as WEE1 in DLBCL. However, additional studies are needed, especially for non-DLBCL, to replicate the associations found to date.
Collapse
|
11
|
Srivastava A, Giangiobbe S, Kumar A, Paramasivam N, Dymerska D, Behnisch W, Witzens-Harig M, Lubinski J, Hemminki K, Försti A, Bandapalli OR. Identification of Familial Hodgkin Lymphoma Predisposing Genes Using Whole Genome Sequencing. Front Bioeng Biotechnol 2020; 8:179. [PMID: 32211398 PMCID: PMC7067901 DOI: 10.3389/fbioe.2020.00179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/21/2020] [Indexed: 12/18/2022] Open
Abstract
Hodgkin lymphoma (HL) is a lymphoproliferative malignancy of B-cell origin that accounts for 10% of all lymphomas. Despite evidence suggesting strong familial clustering of HL, there is no clear understanding of the contribution of genes predisposing to HL. In this study, whole genome sequencing (WGS) was performed on 7 affected and 9 unaffected family members from three HL-prone families and variants were prioritized using our Familial Cancer Variant Prioritization Pipeline (FCVPPv2). WGS identified a total of 98,564, 170,550, and 113,654 variants which were reduced by pedigree-based filtering to 18,158, 465, and 26,465 in families I, II, and III, respectively. In addition to variants affecting amino acid sequences, variants in promoters, enhancers, transcription factors binding sites, and microRNA seed sequences were identified from upstream, downstream, 5′ and 3′ untranslated regions. A panel of 565 cancer predisposing and other cancer-related genes and of 2,383 potential candidate HL genes were also screened in these families to aid further prioritization. Pathway analysis of segregating genes with Combined Annotation Dependent Depletion Tool (CADD) scores >20 was performed using Ingenuity Pathway Analysis software which implicated several candidate genes in pathways involved in B-cell activation and proliferation and in the network of “Cancer, Hematological disease and Immunological Disease.” We used the FCVPPv2 for further in silico analyses and prioritized 45 coding and 79 non-coding variants from the three families. Further literature-based analysis allowed us to constrict this list to one rare germline variant each in families I and II and two in family III. Functional studies were conducted on the candidate from family I in a previous study, resulting in the identification and functional validation of a novel heterozygous missense variant in the tumor suppressor gene DICER1 as potential HL predisposition factor. We aim to identify the individual genes responsible for predisposition in the remaining two families and will functionally validate these in further studies.
Collapse
Affiliation(s)
- Aayushi Srivastava
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany.,Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Sara Giangiobbe
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Abhishek Kumar
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nagarajan Paramasivam
- Computational Oncology, Molecular Diagnostics Program, National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Dagmara Dymerska
- Department of Genetics and Pathology, International Hereditary Cancer Centre, Pomeranian Medical University, Szczecin, Poland
| | - Wolfgang Behnisch
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany
| | | | - Jan Lubinski
- Department of Genetics and Pathology, International Hereditary Cancer Centre, Pomeranian Medical University, Szczecin, Poland
| | - Kari Hemminki
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, Pilsen, Czechia
| | - Asta Försti
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Obul Reddy Bandapalli
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany.,Medical Faculty, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
12
|
Zhong C, Cozen W, Bolanos R, Song J, Wang SS. The role of HLA variation in lymphoma aetiology and survival. J Intern Med 2019; 286:154-180. [PMID: 31155783 DOI: 10.1111/joim.12911] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Epidemiologic and laboratory evidence has consistently supported a strong inflammatory and immune component for lymphoma aetiology. These studies have consistently implicated variation in the immune gene, human leucocyte antigen (HLA), to be associated with lymphoma risk. In this review, we summarize the historical and recent evidence of HLA in both lymphoma aetiology and survival. The recent momentum in uncovering HLA associations has been propelled by the conduct of genome-wide association studies (GWAS), which has permitted the evaluation of imputed HLA alleles in much larger sample sizes than historically feasible with allelotyping studies. Based on the culmination of smaller HLA typing studies and larger GWAS, we now recognize several HLA associations with Hodgkin (HL) and non-Hodgkin lymphomas (NHLs) and their subtypes. Although other genetic variants have also been implicated with lymphoma risk, it is notable that HLA associations have been reported in every NHL and HL subtype evaluated to date. Both HLA class I and class II alleles have been linked with NHL and HL risk. It is notable that the associations identified are largely specific to each lymphoma subtype. However, pleiotropic HLA associations have also been observed. For example, rs10484561, which is in linkage disequilibrium with HLA-DRB1*01:01˜DQA1*01:01˜DQB1*05:01, has been implicated in increased FL and DLBCL risk. Opposing HLA associations across subtypes have also been reported, such as for HLA-A*01:01 which is associated with increased risk of EBV-positive cHL but decreased risk of EBV-negative cHL and chronic lymphocytic leukaemia/small cell lymphoma. Due to extensive linkage disequilibrium and allele/haplotypic variation across race/ethnicities, identification of causal alleles/haplotypes remains challenging. Follow-up functional studies are needed to identify the specific immunological pathways responsible in the multifactorial aetiology of HL and NHL. Correlative studies linking HLA alleles with known molecular subtypes and HLA expression in the tumours are also needed. Finally, additional association studies investigating HLA diversity and lymphoma survival are also required to replicate initial associations reported to date.
Collapse
Affiliation(s)
- C Zhong
- Division of Health Analytics, Department of Computational and Quantitative Medicine, Beckman Research Institute and Comprehensive Cancer Center, City of Hope, Duarte, CA, USA
| | - W Cozen
- Genetic Epidemiology Center, Department of Preventive Medicine, Keck School of Medicine of USC, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - R Bolanos
- Genetic Epidemiology Center, Department of Preventive Medicine, Keck School of Medicine of USC, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - J Song
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, USA
| | - S S Wang
- Division of Health Analytics, Department of Computational and Quantitative Medicine, Beckman Research Institute and Comprehensive Cancer Center, City of Hope, Duarte, CA, USA
| |
Collapse
|
13
|
Le M, Ghazawi FM, Alakel A, Netchiporouk E, Rahme E, Zubarev A, Powell M, Moreau L, Roshdy O, Glassman SJ, Sasseville D, Popradi G, Litvinov IV. Incidence and mortality trends and geographic patterns of follicular lymphoma in Canada. ACTA ACUST UNITED AC 2019; 26:e473-e481. [PMID: 31548815 DOI: 10.3747/co.26.4625] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background Follicular lymphoma (fl) is the most common indolent lymphoma and the 2nd most common non-Hodgkin lymphoma, accounting for 10%-20% of all lymphomas in the Western world. Epidemiologic and geographic trends of fl in Canada have not been investigated. Our study's objective was to analyze incidence and mortality rates and the geographic distribution of fl patients in Canada for 1992-2010. Methods Demographic and geographic patient data for fl cases were obtained using the Canadian Cancer Registry, the Registre québécois du cancer, and the Canadian Vital Statistics database. Incidence and mortality rates and 95% confidence intervals were calculated per year and per geographic area. Rates were plotted using linear regression models to assess trends over time. Overall data were mapped using Microsoft Excel mapping software (Redmond, WA, U.S.A.) to identify case clusters across Canada. Results Approximately 22,625 patients were diagnosed with fl during 1992-2010. The age-standardized incidence rate of this malignancy in Canada was 38.3 cases per million individuals per year. Geographic analysis demonstrated that a number of Maritime provinces and Manitoba had the highest incidence rates, and that the provinces of Nova Scotia and Quebec had the highest mortality rates in the nation. Regional data demonstrated clustering of fl within cities or regions with high herbicide use, primary mining, and a strong manufacturing presence. Conclusions Our study provides a comprehensive overview of the fl burden and its geographic distribution in Canada. Regional clustering of this disease in concentrated industrial zones strongly suggests that multiple environmental factors might play a crucial role in the development of this lymphoma.
Collapse
Affiliation(s)
- M Le
- Division of Dermatology, McGill University, Montreal, QC
| | - F M Ghazawi
- Division of Dermatology, University of Ottawa, Ottawa, ON
| | - A Alakel
- The Ottawa Hospital Research Institute, Ottawa, ON
| | - E Netchiporouk
- Division of Dermatology, McGill University, Montreal, QC
| | - E Rahme
- Division of Clinical Epidemiology, McGill University, Montreal, QC
| | - A Zubarev
- Division of Dermatology, McGill University, Montreal, QC
| | - M Powell
- Division of Dermatology, McGill University, Montreal, QC
| | - L Moreau
- Division of Dermatology, McGill University, Montreal, QC
| | - O Roshdy
- Division of Dermatology, McGill University, Montreal, QC
| | - S J Glassman
- Division of Dermatology, University of Ottawa, Ottawa, ON
| | - D Sasseville
- Division of Dermatology, McGill University, Montreal, QC
| | - G Popradi
- Division of Hematology, McGill University, Montreal, QC
| | - I V Litvinov
- Division of Dermatology, McGill University, Montreal, QC.,Division of Dermatology, University of Ottawa, Ottawa, ON
| |
Collapse
|
14
|
Ye X, Zhao K, Wu C, Hu P, Fu H. Associations between genetic variants in immunoregulatory genes and risk of non-Hodgkin lymphoma in a Chinese population. Oncotarget 2018; 8:10450-10457. [PMID: 28060727 PMCID: PMC5354671 DOI: 10.18632/oncotarget.14426] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 12/13/2016] [Indexed: 11/25/2022] Open
Abstract
We undertook a hospital-based case-control study to examine the associations between single nucleotide polymorphisms (SNPs) in selected immunoregulatory genes and non-Hodgkin lymphoma (NHL) risk in a Chinese population. One hundred and sixty-nine NHL patients diagnosed according to the World Health Organization (WHO) 2001 standard and 421 controls were recruited. Nine SNPs in three genes (IL-10, IL-1RN, and TNF-α) were selected based on predicted functions and previous study findings. Genetic association analysis was performed using the Cochran-Armitage trend test and multiple logistic regression. Four SNPs were associated with an increased risk of overall NHL: odds ratio per minor allele [ORper-minor-allele] and 95% confidence interval [CI] were 2.64 (1.75-3.98) for IL-10 rs1800893, 2.67 (1.72-4.16) for IL-1RN rs4251961, 1.80 (1.24-2.63) for TNF- α rs1800630, and 1.55 (1.02-2.37) for TNF- α rs2229094. These SNPs were also associated with an increased risk of diffuse large B-cell lymphoma (DLBCL). In addition, another SNP (TNF- α rs1041981) was associated with an increased risk of DLBCL (ORper-minor-allele=1.73, 95% CI 1.14-2.61). The findings provide evidence on the role of these immunoregulatory gene variants in NHL etiology.
Collapse
Affiliation(s)
- Xibiao Ye
- Department of Community Health Sciences, College of Medicine, Faculty of Health Sciences, University of Manitoba, Canada.,Vaccine and Drug Evaluation Centre, University of Manitoba, Canada.,Centre for Healthcare Innovation, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kaiqiong Zhao
- Centre for Healthcare Innovation, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Biochemistry and Medical Genetics, College of Medicine, Faculty of Health Sciences, University of Manitoba, Canada
| | - Cuie Wu
- School of Public Health, Fudan University, Shanghai, China
| | - Pingzhao Hu
- Centre for Healthcare Innovation, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Biochemistry and Medical Genetics, College of Medicine, Faculty of Health Sciences, University of Manitoba, Canada
| | - Hua Fu
- School of Public Health, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Park SL, Cheng I, Haiman CA. Genome-Wide Association Studies of Cancer in Diverse Populations. Cancer Epidemiol Biomarkers Prev 2017. [PMID: 28637795 DOI: 10.1158/1055-9965.epi-17-0169] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Genome-wide association studies (GWAS) of cancer have identified more than 700 risk loci, of which approximately 80% were first discovered in European ancestry populations, approximately 15% in East Asians, 3% in multiethnic scans, and less than 1% in African and Latin American populations. These percentages closely mirror the distribution of samples included in the discovery phase of cancer GWAS to date (84% European, 11% East Asian, 4% African, and 1% Latin American ancestry). GWAS in non-European ancestry populations have provided insight into ancestry-specific variation in cancer and have pointed to regions of susceptibility that are of particular importance in certain populations. Uncovering and characterizing cancer risk loci in diverse populations is critical for understanding underlying biological mechanisms and developing future genetic risk prediction models in non-European ancestry populations. New GWAS and continued collaborations will be required to eliminate population inequalities in the number of studies, sample sizes, and variant content on GWAS arrays, and to better align genetic research in cancer to the global distribution of race/ethnicity Cancer Epidemiol Biomarkers Prev; 27(4); 405-17. ©2018 AACRSee all articles in this CEBP Focus section, "Genome-Wide Association Studies in Cancer."
Collapse
Affiliation(s)
- Sungshim L Park
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Iona Cheng
- Cancer Prevention Institute of California, Fremont, California.,Stanford Cancer Institute, Palo Alto, California
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California.
| |
Collapse
|
16
|
Zhai K, Chang J, Hu J, Wu C, Lin D. Germline variation in the 3'-untranslated region of the POU2AF1 gene is associated with susceptibility to lymphoma. Mol Carcinog 2017; 56:1945-1952. [PMID: 28345816 DOI: 10.1002/mc.22652] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 03/05/2017] [Accepted: 03/23/2017] [Indexed: 01/06/2023]
Abstract
Genetic variations in certain genes may alter the susceptibility to lymphoma. We searched electronic databases and selected candidate single-nucleotide polymorphisms (SNPs) located within 3'-untranslated regions (3'-UTRs) that might affect miRNA-binding ability in the 50 most dysregulated genes in lymphoma for further study. We found that rs1042752-located in the 3'-UTR of POU2AF1, which plays a vital role in lymphomagenesis-was significantly associated with lymphoma risk in a case-control study with 793 patients and 939 controls. Compared with individuals with the rs1042752TT genotype, those with the rs1042752CC genotype had a higher risk of lymphoma (OR = 2.14, 95% CI: 1.55-2.95, P < 0.001), even in stratified analysis for non-Hodgkin lymphoma (OR = 4.58, 95% CI: 2.38-8.81, P < 0.001), B-cell lymphoma (OR = 4.89, 95% CI: 2.46-9.73, P < 0.001), T-cell lymphoma (OR = 4.20, 95% CI: 1.76-10.05, P = 0.001), and Hodgkin lymphoma (OR = 3.62, 95% CI: 1.25-10.46, P = 0.018). Similar results were also observed in a recessive genetic model. Database findings suggested that rs1042752 might affect the interaction of POU2AF1 mRNA with hsa-miR-633. Functional assays confirmed that rs1042752C altered the binding site of hsa-miR-633 and increased POU2AF1 expression in Ramos, HuT 102, and Jurkat E6-1 cell lines. These findings demonstrate for the first time that functional polymorphism in the 3'-UTR of POU2AF1 is associated with susceptibility, and that SNP interaction with hsa-miR-633 affects gene expression and increases the risk of lymphoma.
Collapse
Affiliation(s)
- Kan Zhai
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jiang Chang
- State Key Laboratory of Environment Health (Incubation), MOE (Ministry of Education) Key Laboratory of Environment and Health, Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan) and School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinlong Hu
- Department of Oncology, People's Hospital of Zhengzhou University and Henan Provincial People's Hospital, Zhengzhou, China
| | - Chen Wu
- Department of Etiology and Carcinogenesis, Chinese Academy of Medical Science and Peking Union Medical College, Cancer Institute and Hospital, Beijing, China
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, Chinese Academy of Medical Science and Peking Union Medical College, Cancer Institute and Hospital, Beijing, China
| |
Collapse
|
17
|
Ten LC, Chin YM, Tai MC, Chin EFM, Lim YY, Suthandiram S, Chang KM, Ong TC, Bee PC, Mohamed Z, Gan GG, Ng CC. SNP variants associated with non-Hodgkin lymphoma (NHL) correlate with human leukocyte antigen (HLA) class II expression. Sci Rep 2017; 7:41400. [PMID: 28139690 PMCID: PMC5282517 DOI: 10.1038/srep41400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/19/2016] [Indexed: 12/20/2022] Open
Abstract
Large consortia efforts and genome-wide association studies (GWASs) have linked a number of genetic variants within the 6p21 chromosomal region to non-Hodgkin lymphoma (NHL). Complementing these efforts, we genotyped previously reported SNPs in the human leukocyte antigen (HLA) class I (rs6457327) and class II (rs9271100, rs2647012 and rs10484561) regions in a total of 1,145 subjects (567 NHL cases and 578 healthy controls) from two major ethnic groups in Malaysia, the Malays and the Chinese. We identified a NHL-associated (PNHL_add = 0.0008; ORNHL_add = 0.54; 95% CI = 0.37–0.77) and B-cell associated (PBcell_add = 0.0007; ORBcell_add = 0.51; 95% CI = 0.35–0.76) SNP rs2647012 in the Malaysian Malays. In silico cis-eQTL analysis of rs2647012 suggests potential regulatory function of nearby HLA class II molecules. Minor allele rs2647012-T is linked to higher expression of HLA-DQB1, rendering a protective effect to NHL risk. Our findings suggest that the HLA class II region plays an important role in NHL etiology.
Collapse
Affiliation(s)
- Lik-Chin Ten
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Yoon-Ming Chin
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Mei-Chee Tai
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Edmund Fui-Min Chin
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yat-Yuen Lim
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Sujatha Suthandiram
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Tee-Chuan Ong
- Hematology Unit, Ampang Hospital, Kuala Lumpur, Malaysia
| | - Ping-Chong Bee
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Zahurin Mohamed
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Gin-Gin Gan
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ching-Ching Ng
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Li Z, Xia Y, Feng LN, Chen JR, Li HM, Cui J, Cai QQ, Sim KS, Nairismägi ML, Laurensia Y, Meah WY, Liu WS, Guo YM, Chen LZ, Feng QS, Pang CP, Chen LJ, Chew SH, Ebstein RP, Foo JN, Liu J, Ha J, Khoo LP, Chin ST, Zeng YX, Aung T, Chowbay B, Diong CP, Zhang F, Liu YH, Tang T, Tao M, Quek R, Mohamad F, Tan SY, Teh BT, Ng SB, Chng WJ, Ong CK, Okada Y, Raychaudhuri S, Lim ST, Tan W, Peng RJ, Khor CC, Bei JX. Genetic risk of extranodal natural killer T-cell lymphoma: a genome-wide association study. Lancet Oncol 2016; 17:1240-7. [PMID: 27470079 DOI: 10.1016/s1470-2045(16)30148-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/05/2016] [Accepted: 05/05/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Extranodal natural killer T-cell lymphoma (NKTCL), nasal type, is a rare and aggressive malignancy that occurs predominantly in Asian and Latin American populations. Although Epstein-Barr virus infection is a known risk factor, other risk factors and the pathogenesis of NKTCL are not well understood. We aimed to identify common genetic variants affecting individual risk of NKTCL. METHODS We did a genome-wide association study of 189 patients with extranodal NKTCL, nasal type (WHO classification criteria; cases) and 957 controls from Guangdong province, southern China. We validated our findings in four independent case-control series, including 75 cases from Guangdong province and 296 controls from Hong Kong, 65 cases and 983 controls from Guangdong province, 125 cases and 1110 controls from Beijing (northern China), and 60 cases and 2476 controls from Singapore. We used imputation and conditional logistic regression analyses to fine-map the associations. We also did a meta-analysis of the replication series and of the entire dataset. FINDINGS Associations exceeding the genome-wide significance threshold (p<5 × 10(-8)) were seen at 51 single-nucleotide polymorphisms (SNPs) mapping to the class II MHC region on chromosome 6, with rs9277378 (located in HLA-DPB1) having the strongest association with NKTCL susceptibility (p=4·21 × 10(-19), odds ratio [OR] 1·84 [95% CI 1·61-2·11] in meta-analysis of entire dataset). Imputation-based fine-mapping across the class II MHC region suggests that four aminoacid residues (Gly84-Gly85-Pro86-Met87) in near-complete linkage disequilibrium at the edge of the peptide-binding groove of HLA-DPB1 could account for most of the association between the rs9277378*A risk allele and NKTCL susceptibility (OR 2·38, p value for haplotype 2·32 × 10(-14)). This association is distinct from MHC associations with Epstein-Barr virus infection. INTERPRETATION To our knowledge, this is the first time that a genetic variant conferring an NKTCL risk is noted at genome-wide significance. This finding underlines the importance of HLA-DP antigen presentation in the pathogenesis of NKTCL. FUNDING Top-Notch Young Talents Program of China, Special Support Program of Guangdong, Specialized Research Fund for the Doctoral Program of Higher Education (20110171120099), Program for New Century Excellent Talents in University (NCET-11-0529), National Medical Research Council of Singapore (TCR12DEC005), Tanoto Foundation Professorship in Medical Oncology, New Century Foundation Limited, Ling Foundation, Singapore National Cancer Centre Research Fund, and the US National Institutes of Health (1R01AR062886, 5U01GM092691-04, and 1R01AR063759-01A1).
Collapse
Affiliation(s)
- Zheng Li
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China; Genome Institute of Singapore, Singapore
| | - Yi Xia
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Li-Na Feng
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jie-Rong Chen
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Hong-Min Li
- State Key Laboratory of Molecular Oncology, Beijing, China; Department of Etiology and Carcinogenesis, Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, Beijing, China; Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Cui
- Division of Rheumatology, Immunology, and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Qing-Qing Cai
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | | | - Maarja-Liisa Nairismägi
- Lymphoma Genomic Translational Research Laboratory, National Cancer Centre Singapore, Singapore
| | - Yurike Laurensia
- Lymphoma Genomic Translational Research Laboratory, National Cancer Centre Singapore, Singapore
| | | | - Wen-Sheng Liu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yun-Miao Guo
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Li-Zhen Chen
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Qi-Sheng Feng
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Li Jia Chen
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Soo Hong Chew
- Department of Economics, National University of Singapore, Singapore
| | - Richard P Ebstein
- Department of Psychology, National University of Singapore, Singapore
| | | | | | - Jeslin Ha
- Lymphoma Genomic Translational Research Laboratory, National Cancer Centre Singapore, Singapore
| | - Lay Poh Khoo
- Lymphoma Genomic Translational Research Laboratory, National Cancer Centre Singapore, Singapore
| | - Suk Teng Chin
- Lymphoma Genomic Translational Research Laboratory, National Cancer Centre Singapore, Singapore
| | - Yi-Xin Zeng
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China; Beijing Hospital, Beijing, China
| | - Tin Aung
- Singapore Eye Research Institute, Singapore
| | - Balram Chowbay
- Laboratory of Clinical Pharmacology, Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore; Clinical Pharmacology, SingHealth, Singapore; Office of Clinical Sciences, Duke-National University of Singapore Medical School, Singapore
| | | | - Fen Zhang
- Department of Pathology, Guangdong General Hospital, Guangzhou, China
| | - Yan-Hui Liu
- Department of Pathology, Guangdong General Hospital, Guangzhou, China
| | - Tiffany Tang
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Miriam Tao
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Richard Quek
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Farid Mohamad
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Soo Yong Tan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore; Department of Pathology, Singapore General Hospital, Singapore; Institute of Molecular and Cell Biology, A*STAR, Singapore; Department of Pathology, University of Malaya, Kuala Lumpur, Malaysia; Department of Pathology, National University of Singapore, Singapore
| | - Bin Tean Teh
- Program in Cancer and Stem Cell Biology, Duke-National University of Singapore Medical School, Singapore; Institute of Molecular and Cell Biology, A*STAR, Singapore; Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Siok Bian Ng
- Department of Pathology, National University of Singapore, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Pathology, National University Hospital, National University Health System, Singapore
| | - Wee Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore
| | - Choon Kiat Ong
- Lymphoma Genomic Translational Research Laboratory, National Cancer Centre Singapore, Singapore
| | - Yukinori Okada
- Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Soumya Raychaudhuri
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Division of Rheumatology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Partners Center for Personalized Genetic Medicine, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Institute of Inflammation and Repair, University of Manchester, Manchester, UK; Rheumatology Unit, Department of Medicine, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden
| | - Soon Thye Lim
- Lymphoma Genomic Translational Research Laboratory, National Cancer Centre Singapore, Singapore; Division of Medical Oncology, National Cancer Centre Singapore, Singapore; Office of Education, Duke-National University of Singapore Medical School, Singapore
| | - Wen Tan
- State Key Laboratory of Molecular Oncology, Beijing, China; Department of Etiology and Carcinogenesis, Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, Beijing, China; Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rou-Jun Peng
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Chiea Chuen Khor
- Genome Institute of Singapore, Singapore; Singapore Eye Research Institute, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jin-Xin Bei
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China; Genome Institute of Singapore, Singapore; Center for Precision Medicine, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
19
|
Cui Q, Feng QS, Mo HY, Sun J, Xia YF, Zhang H, Foo JN, Guo YM, Chen LZ, Li M, Liu WS, Xu M, Zhou G, He F, Yu X, Jia WH, Liu J, Zeng YX, Bei JX. An extended genome-wide association study identifies novel susceptibility loci for nasopharyngeal carcinoma. Hum Mol Genet 2016; 25:3626-3634. [DOI: 10.1093/hmg/ddw200] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 11/13/2022] Open
|
20
|
Wang YW, Zhang SD, Xue WJ, Zhu ML, Zheng LZ. SHMT1 C1420T polymorphism contributes to the risk of non-Hodgkin lymphoma: evidence from 7309 patients. CHINESE JOURNAL OF CANCER 2015; 34:573-82. [PMID: 26666829 PMCID: PMC4699293 DOI: 10.1186/s40880-015-0065-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 11/21/2015] [Indexed: 12/28/2022]
Abstract
Background Serine hydroxymethyltransferase 1 (SHMT1) is a key enzyme in the folate metabolic pathway that plays an important role in biosynthesis by providing one carbon unit. SHMT1 C1420T may lead to the abnormal biosynthesis involved in DNA synthesis and methylation, and it may eventually increase cancer susceptibility. Many epidemiologic studies have explored the association between C1420T polymorphism and the risk of non-Hodgkin lymphoma (NHL), but the results have been contradictory. Therefore, we performed this meta-analysis to evaluate the relationship. Methods The meta-analyses were conducted to evaluate the effect of SHMT1 C1420T polymorphism on NHL risk. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to measure the strength of the association. Results Eight studies encompassing 3232 cases and 4077 controls were included. A statistically significant association was found between SHMT1 C1420T polymorphism and NHL risk under the allelic comparison (T vs. C: OR = 1.09, 95% CI 1.01–1.17); a borderline association was found between SHMT1 C1420T polymorphism and NHL risk under the homozygote model (TT vs. CC: OR = 1.18, 95% CI 1.00–1.39) and the dominant model (CT+TT vs. CC: OR = 1.10, 95% CI 1.00–1.21). Conclusion SHMT1 C1420T polymorphism may be associated with NHL risk, which needs to be validated in large, prospective studies.
Collapse
Affiliation(s)
- Yi-Wei Wang
- Department of Oncology, Xin Hua Hospital Affiliated To Shanghai Jiaotong University School of Medicine, NO. 1665, Kong Jiang Road, Shanghai, 200092, P.R. China.
| | - Shao-Dan Zhang
- Department of Experimental Research, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, P.R. China.
| | - Wen-Ji Xue
- Department of Oncology, Xin Hua Hospital Affiliated To Shanghai Jiaotong University School of Medicine, NO. 1665, Kong Jiang Road, Shanghai, 200092, P.R. China.
| | - Mei-Ling Zhu
- Department of Oncology, Xin Hua Hospital Affiliated To Shanghai Jiaotong University School of Medicine, NO. 1665, Kong Jiang Road, Shanghai, 200092, P.R. China.
| | - Lei-Zhen Zheng
- Department of Oncology, Xin Hua Hospital Affiliated To Shanghai Jiaotong University School of Medicine, NO. 1665, Kong Jiang Road, Shanghai, 200092, P.R. China.
| |
Collapse
|
21
|
Camicia R, Winkler HC, Hassa PO. Novel drug targets for personalized precision medicine in relapsed/refractory diffuse large B-cell lymphoma: a comprehensive review. Mol Cancer 2015; 14:207. [PMID: 26654227 PMCID: PMC4676894 DOI: 10.1186/s12943-015-0474-2] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 08/26/2015] [Indexed: 02/07/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a clinically heterogeneous lymphoid malignancy and the most common subtype of non-Hodgkin's lymphoma in adults, with one of the highest mortality rates in most developed areas of the world. More than half of DLBLC patients can be cured with standard R-CHOP regimens, however approximately 30 to 40 % of patients will develop relapsed/refractory disease that remains a major cause of morbidity and mortality due to the limited therapeutic options.Recent advances in gene expression profiling have led to the identification of at least three distinct molecular subtypes of DLBCL: a germinal center B cell-like subtype, an activated B cell-like subtype, and a primary mediastinal B-cell lymphoma subtype. Moreover, recent findings have not only increased our understanding of the molecular basis of chemotherapy resistance but have also helped identify molecular subsets of DLBCL and rational targets for drug interventions that may allow for subtype/subset-specific molecularly targeted precision medicine and personalized combinations to both prevent and treat relapsed/refractory DLBCL. Novel agents such as lenalidomide, ibrutinib, bortezomib, CC-122, epratuzumab or pidilizumab used as single-agent or in combination with (rituximab-based) chemotherapy have already demonstrated promising activity in patients with relapsed/refractory DLBCL. Several novel potential drug targets have been recently identified such as the BET bromodomain protein (BRD)-4, phosphoribosyl-pyrophosphate synthetase (PRPS)-2, macrodomain-containing mono-ADP-ribosyltransferase (ARTD)-9 (also known as PARP9), deltex-3-like E3 ubiquitin ligase (DTX3L) (also known as BBAP), NF-kappaB inducing kinase (NIK) and transforming growth factor beta receptor (TGFβR).This review highlights the new insights into the molecular basis of relapsed/refractory DLBCL and summarizes the most promising drug targets and experimental treatments for relapsed/refractory DLBCL, including the use of novel agents such as lenalidomide, ibrutinib, bortezomib, pidilizumab, epratuzumab, brentuximab-vedotin or CAR T cells, dual inhibitors, as well as mechanism-based combinatorial experimental therapies. We also provide a comprehensive and updated list of current drugs, drug targets and preclinical and clinical experimental studies in DLBCL. A special focus is given on STAT1, ARTD9, DTX3L and ARTD8 (also known as PARP14) as novel potential drug targets in distinct molecular subsets of DLBCL.
Collapse
Affiliation(s)
- Rosalba Camicia
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Stem Cell Research Laboratory, NHS Blood and Transplant, Nuffield Division of Clinical, Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK.,MRC-UCL Laboratory for Molecular Cell Biology Unit, University College London, Gower Street, London, WC1E6BT, UK
| | - Hans C Winkler
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Institute of Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057, Zurich, Switzerland
| | - Paul O Hassa
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
22
|
Bassig BA, Cerhan JR, Au WY, Kim HN, Sangrajrang S, Hu W, Tse J, Berndt S, Zheng T, Zhang H, Pornsopone P, Lee JJ, Kim HJ, Skibola CF, Vijai J, Burdette L, Yeager M, Brennan P, Shin MH, Liang R, Chanock S, Lan Q, Rothman N. Genetic susceptibility to diffuse large B-cell lymphoma in a pooled study of three Eastern Asian populations. Eur J Haematol 2015; 95:442-8. [PMID: 25611436 DOI: 10.1111/ejh.12513] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2014] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Diffuse large B-cell lymphoma (DLBCL) is an aggressive subtype of non-Hodgkin lymphoma (NHL) and is the most common NHL subtype diagnosed worldwide. The first large-scale genome-wide association study (GWAS) of DLBCL with over 4000 cases conducted among individuals of European ancestry recently identified five independent SNPs that achieved genome-wide significance, and two SNPs that showed a suggestive association with DLBCL risk. METHODS To evaluate whether Eastern Asians and individuals of European ancestry share similar genetic risk factors for this disease, we attempted to replicate these GWAS findings in a pooled series of 1124 DLBCL cases and 3596 controls from Hong Kong, South Korea, and Thailand. RESULTS Three of the five genome-wide significant SNPs from the DLBCL GWAS were significantly associated with DLBCL in our study population, including the top finding from the GWAS, EXOC2 rs116446171, which achieved genome-wide significance in our data (per allele OR = 2.04, 95% CI = 1.63-2.56; ptrend = 3.9 × 10(-10)). Additionally, we observed a significant association with PVT1 rs13255292 (per allele OR = 1.34, 95% CI = 1.19-1.52; ptrend = 2.1 × 10(-6)), which was the second strongest finding in the GWAS, and with HLA-B rs2523607 (per allele OR = 3.05, 95% CI = 1.32-7.05; ptrend = 0.009). CONCLUSIONS Our study, which provides the first evaluation in Eastern Asians of SNPs definitively associated with DLBCL risk in individuals of European ancestry, indicates that at least some of the genetic factors associated with risk of DLBCL are similar between these populations.
Collapse
Affiliation(s)
- Bryan A Bassig
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - James R Cerhan
- Division of Epidemiology, Mayo Clinic, Rochester, MN, USA
| | - Wing-Yan Au
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| | - Hee Nam Kim
- Genome Research Center for Hematopoietic Diseases, Chonnam National University Hwasun Hospital, Hwasun, Jeollanam-do, South Korea
- Center for Creative Biomedical Scientists, Chonnam National University, Gwangju, South Korea
| | | | - Wei Hu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Jovic Tse
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| | - Sonja Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | | | - Heping Zhang
- Yale University School of Public Health, New Haven, CT, USA
| | | | - Je-Jung Lee
- Department of Hematology/Oncology, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju, South Korea
| | - Hyeoung-Joon Kim
- Genome Research Center for Hematopoietic Diseases, Chonnam National University Hwasun Hospital, Hwasun, Jeollanam-do, South Korea
- Department of Hematology/Oncology, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju, South Korea
| | - Christine F Skibola
- Department of Epidemiology, The University of Alabama at Birmingham School of Public Health, Birmingham, AL, USA
| | - Joseph Vijai
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Laurie Burdette
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, National Cancer Institute, NIH, DHHS, Gaithersburg, MD, USA
| | - Meredith Yeager
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, National Cancer Institute, NIH, DHHS, Gaithersburg, MD, USA
| | - Paul Brennan
- Genetic Epidemiology Group, International Agency for Research on Cancer (IARC), Lyon, France
| | - Min-Ho Shin
- Center for Creative Biomedical Scientists, Chonnam National University, Gwangju, South Korea
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Raymond Liang
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| | - Stephen Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| |
Collapse
|
23
|
Familial predisposition and genetic risk factors for lymphoma. Blood 2015; 126:2265-73. [PMID: 26405224 DOI: 10.1182/blood-2015-04-537498] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 09/11/2015] [Indexed: 02/06/2023] Open
Abstract
Our understanding of familial predisposition to lymphoma (collectively defined as non-Hodgkin lymphoma [NHL], Hodgkin lymphoma [HL], and chronic lymphocytic leukemia [CLL]) outside of rare hereditary syndromes has progressed rapidly during the last decade. First-degree relatives of NHL, HL, and CLL patients have an ∼1.7-fold, 3.1-fold, and 8.5-fold elevated risk of developing NHL, HL, and CLL, respectively. These familial risks are elevated for multiple lymphoma subtypes and do not appear to be confounded by nongenetic risk factors, suggesting at least some shared genetic etiology across the lymphoma subtypes. However, a family history of a specific subtype is most strongly associated with risk for that subtype, supporting subtype-specific genetic factors. Although candidate gene studies have had limited success in identifying susceptibility loci, genome-wide association studies (GWAS) have successfully identified 67 single nucleotide polymorphisms from 41 loci, predominately associated with specific subtypes. In general, these GWAS-discovered loci are common (minor allele frequency >5%), have small effect sizes (odds ratios, 0.60-2.0), and are of largely unknown function. The relatively low incidence of lymphoma, modest familial risk, and the lack of a screening test and associated intervention, all argue against active clinical surveillance for lymphoma in affected families at this time.
Collapse
|
24
|
Koff JL, Chihara D, Phan A, Nastoupil LJ, Williams JN, Flowers CR. To Each Its Own: Linking the Biology and Epidemiology of NHL Subtypes. Curr Hematol Malig Rep 2015; 10:244-55. [PMID: 26104907 PMCID: PMC5738916 DOI: 10.1007/s11899-015-0267-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Non-Hodgkin lymphoma (NHL) constitutes a diverse group of more than 40 subtypes, each characterized by distinct biologic and clinical features. Until recently, pinpointing genetic and epidemiologic risk factors for individual subtypes has been limited by the relative rarity of each. However, several large pooled case-control studies have provided sufficient statistical power for detecting etiologic differences and commonalities between subtypes and thus yield new insight into their unique epidemiologic backgrounds. Here, we review the subtype-specific medical, lifestyle, and biologic components identified in these studies, which suggest that a complex interplay between host genetics, autoimmune disorders, modifiable risk factors, and occupation contributes to lymphomagenesis.
Collapse
Affiliation(s)
- Jean L Koff
- Winship Cancer Institute, Emory University School of Medicine, 1365 Clifton Rd NE, Building B, Suite 4302, Atlanta, GA, USA,
| | | | | | | | | | | |
Collapse
|
25
|
Chang ET, Boffetta P, Adami HO, Mandel JS. A critical review of the epidemiology of Agent Orange or 2,3,7,8-tetrachlorodibenzo-p-dioxin and lymphoid malignancies. Ann Epidemiol 2015; 25:275-292.e30. [DOI: 10.1016/j.annepidem.2015.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 01/06/2015] [Accepted: 01/09/2015] [Indexed: 12/20/2022]
|
26
|
Wang SS, Vajdic CM, Linet MS, Slager SL, Voutsinas J, Nieters A, de Sanjose S, Cozen W, Alarcón GS, Martinez-Maza O, Brown EE, Bracci PM, Lightfoot T, Turner J, Hjalgrim H, Spinelli JJ, Zheng T, Morton LM, Birmann BM, Flowers CR, Paltiel O, Becker N, Holly EA, Kane E, Weisenburger D, Maynadie M, Cocco P, Foretova L, Staines A, Davis S, Severson R, Cerhan JR, Breen EC, Lan Q, Brooks-Wilson A, De Roos AJ, Smith MT, Roman E, Boffetta P, Kricker A, Zhang Y, Skibola C, Chanock SJ, Rothman N, Benavente Y, Hartge P, Smedby KE. Associations of non-Hodgkin Lymphoma (NHL) risk with autoimmune conditions according to putative NHL loci. Am J Epidemiol 2015; 181:406-21. [PMID: 25713336 DOI: 10.1093/aje/kwu290] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Autoimmune conditions and immune system-related genetic variations are associated with risk of non-Hodgkin lymphoma (NHL). In a pooled analysis of 8,692 NHL cases and 9,260 controls from 14 studies (1988-2007) within the International Lymphoma Epidemiology Consortium, we evaluated the interaction between immune system genetic variants and autoimmune conditions in NHL risk. We evaluated the immunity-related single nucleotide polymorphisms rs1800629 (tumor necrosis factor gene (TNF) G308A), rs1800890 (interleukin-10 gene (IL10) T3575A), rs6457327 (human leukocyte antigen gene (HLA) class I), rs10484561 (HLA class II), and rs2647012 (HLA class II)) and categorized autoimmune conditions as primarily mediated by B-cell or T-cell responses. We constructed unconditional logistic regression models to measure associations between autoimmune conditions and NHL with stratification by genotype. Autoimmune conditions mediated by B-cell responses were associated with increased NHL risk, specifically diffuse large B-cell lymphoma (odds ratio (OR) = 3.11, 95% confidence interval (CI): 2.25, 4.30) and marginal zone lymphoma (OR = 5.80, 95% CI: 3.82, 8.80); those mediated by T-cell responses were associated with peripheral T-cell lymphoma (OR = 2.14, 95% CI: 1.35, 3.38). In the presence of the rs1800629 AG/AA genotype, B-cell-mediated autoimmune conditions increased NHL risk (OR = 3.27, 95% CI: 2.07, 5.16; P-interaction = 0.03) in comparison with the GG genotype (OR = 1.82, 95% CI: 1.31, 2.53). This interaction was consistent across major B-cell NHL subtypes, including marginal zone lymphoma (P-interaction = 0.02) and follicular lymphoma (P-interaction = 0.04).
Collapse
|
27
|
Genome-wide association study identifies shared risk loci common to two malignancies in golden retrievers. PLoS Genet 2015; 11:e1004922. [PMID: 25642983 PMCID: PMC4333733 DOI: 10.1371/journal.pgen.1004922] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 11/25/2014] [Indexed: 12/18/2022] Open
Abstract
Dogs, with their breed-determined limited genetic background, are great models of human disease including cancer. Canine B-cell lymphoma and hemangiosarcoma are both malignancies of the hematologic system that are clinically and histologically similar to human B-cell non-Hodgkin lymphoma and angiosarcoma, respectively. Golden retrievers in the US show significantly elevated lifetime risk for both B-cell lymphoma (6%) and hemangiosarcoma (20%). We conducted genome-wide association studies for hemangiosarcoma and B-cell lymphoma, identifying two shared predisposing loci. The two associated loci are located on chromosome 5, and together contribute ~20% of the risk of developing these cancers. Genome-wide p-values for the top SNP of each locus are 4.6×10-7 and 2.7×10-6, respectively. Whole genome resequencing of nine cases and controls followed by genotyping and detailed analysis identified three shared and one B-cell lymphoma specific risk haplotypes within the two loci, but no coding changes were associated with the risk haplotypes. Gene expression analysis of B-cell lymphoma tumors revealed that carrying the risk haplotypes at the first locus is associated with down-regulation of several nearby genes including the proximal gene TRPC6, a transient receptor Ca2+-channel involved in T-cell activation, among other functions. The shared risk haplotype in the second locus overlaps the vesicle transport and release gene STX8. Carrying the shared risk haplotype is associated with gene expression changes of 100 genes enriched for pathways involved in immune cell activation. Thus, the predisposing germ-line mutations in B-cell lymphoma and hemangiosarcoma appear to be regulatory, and affect pathways involved in T-cell mediated immune response in the tumor. This suggests that the interaction between the immune system and malignant cells plays a common role in the tumorigenesis of these relatively different cancers. To shed light on the genetic predisposition to cancers of the hematologic system, we performed genome-wide association analysis of affected and non-affected pet dogs. Dogs naturally develop the same diseases as humans, including cancer, and the relatively limited genetic diversity within different breeds makes genetic studies easier compared to in humans. By doing genome-wide association, we identified loci predisposing to hemangiosarcoma and B-cell lymphoma. To our surprise, we found two shared loci predisposing to both diseases. Within these two regions we identified several partially overlapping haplotypes, predisposing somewhat differently to the two cancers. We found no coding mutations that followed the risk or non-risk haplotypes suggesting that regulatory mutations exert the effect on disease. We also looked at gene expression in B-cell lymphomas, comparing samples from individuals with risk or non-risk haplotypes. This analysis showed differential expression associated with the haplotypes at both loci, suggesting the risk haplotypes are associated with an effect on T-cell response.
Collapse
|
28
|
He YQ, Zhu JH, Huang SY, Cui Z, He J, Jia WH. The association between the polymorphisms of TNF-α and non-Hodgkin lymphoma: a meta-analysis. Tumour Biol 2014; 35:12509-17. [PMID: 25204673 DOI: 10.1007/s13277-014-2569-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 08/28/2014] [Indexed: 02/07/2023] Open
Abstract
Many genetic variations in the promoter region of tumor necrosis factor alpha (TNF-α) may confer host susceptibility to cancer by influencing TNF-α expression. Nevertheless, the results remain inconclusive. The current meta-analysis was performed to investigate the association between three common TNF-α promoter polymorphisms and the risk of non-Hodgkin lymphoma (NHL). A literature search was conducted mainly from PubMed for all eligible studies. The pooled odds ratios (ORs) and corresponding 95 % confidence intervals (CIs) were used to assess the association of TNF-α polymorphisms with the risk of NHL. TNF-α -308 A allele showed a statistically significant increased risk for NHL under the homozygous (AA vs. GG, OR = 1.51, 95 % CI = 1.26-1.80) and recessive (OR = 1.47, 95 % CI = 1.23-1.75) models, respectively. The stratified analyses showed an increased risk of NHL with the presence of TNF-α -308 A allele among Africans and Caucasians, but a decreased risk among Asians. No association was observed between -238 G/A polymorphism and NHL risk either in the overall analysis or in the stratified analysis. Similarly, pooled analysis did not reveal an altered risk of NHL with -857 C/T polymorphism. Nonetheless, a statistically significant association was observed among Asians when stratified by ethnicity. Among the three genetic variations of interest, TNF-α -308 G/A polymorphism was significantly associated with the risk of NHL; neither -238 G/A nor -857 C/T polymorphism was shown to alter the overall NHL risk; however, stratified analysis by ethnicity observed a statistically significant association between -857 C/T polymorphism and the risk of NHL among Asians.
Collapse
Affiliation(s)
- Yong-Qiao He
- State Key Laboratory of Oncology in South China, Department of Experimental Research, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, China
| | | | | | | | | | | |
Collapse
|
29
|
Cerhan JR, Berndt SI, Vijai J, Ghesquières H, McKay J, Wang SS, Wang Z, Yeager M, Conde L, de Bakker PIW, Nieters A, Cox D, Burdett L, Monnereau A, Flowers CR, De Roos AJ, Brooks-Wilson AR, Lan Q, Severi G, Melbye M, Gu J, Jackson RD, Kane E, Teras LR, Purdue MP, Vajdic CM, Spinelli JJ, Giles GG, Albanes D, Kelly RS, Zucca M, Bertrand KA, Zeleniuch-Jacquotte A, Lawrence C, Hutchinson A, Zhi D, Habermann TM, Link BK, Novak AJ, Dogan A, Asmann YW, Liebow M, Thompson CA, Ansell SM, Witzig TE, Weiner GJ, Veron AS, Zelenika D, Tilly H, Haioun C, Molina TJ, Hjalgrim H, Glimelius B, Adami HO, Bracci PM, Riby J, Smith MT, Holly EA, Cozen W, Hartge P, Morton LM, Severson RK, Tinker LF, North KE, Becker N, Benavente Y, Boffetta P, Brennan P, Foretova L, Maynadie M, Staines A, Lightfoot T, Crouch S, Smith A, Roman E, Diver WR, Offit K, Zelenetz A, Klein RJ, Villano DJ, Zheng T, Zhang Y, Holford TR, Kricker A, Turner J, Southey MC, Clavel J, Virtamo J, Weinstein S, Riboli E, Vineis P, Kaaks R, Trichopoulos D, Vermeulen RCH, Boeing H, Tjonneland A, Angelucci E, Di Lollo S, Rais M, Birmann BM, Laden F, Giovannucci E, Kraft P, Huang J, Ma B, Ye Y, Chiu BCH, Sampson J, Liang L, Park JH, Chung CC, Weisenburger DD, Chatterjee N, Fraumeni JF, Slager SL, Wu X, de Sanjose S, Smedby KE, Salles G, Skibola CF, Rothman N, Chanock SJ. Genome-wide association study identifies multiple susceptibility loci for diffuse large B cell lymphoma. Nat Genet 2014; 46:1233-8. [PMID: 25261932 PMCID: PMC4213349 DOI: 10.1038/ng.3105] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 09/04/2014] [Indexed: 12/14/2022]
Abstract
Diffuse large B cell lymphoma (DLBCL) is the most common lymphoma subtype and is clinically aggressive. To identify genetic susceptibility loci for DLBCL, we conducted a meta-analysis of 3 new genome-wide association studies (GWAS) and 1 previous scan, totaling 3,857 cases and 7,666 controls of European ancestry, with additional genotyping of 9 promising SNPs in 1,359 cases and 4,557 controls. In our multi-stage analysis, five independent SNPs in four loci achieved genome-wide significance marked by rs116446171 at 6p25.3 (EXOC2; P = 2.33 × 10(-21)), rs2523607 at 6p21.33 (HLA-B; P = 2.40 × 10(-10)), rs79480871 at 2p23.3 (NCOA1; P = 4.23 × 10(-8)) and two independent SNPs, rs13255292 and rs4733601, at 8q24.21 (PVT1; P = 9.98 × 10(-13) and 3.63 × 10(-11), respectively). These data provide substantial new evidence for genetic susceptibility to this B cell malignancy and point to pathways involved in immune recognition and immune function in the pathogenesis of DLBCL.
Collapse
Affiliation(s)
- James R Cerhan
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Joseph Vijai
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Hervé Ghesquières
- 1] Department of Hematology, Centre Léon Bérard, Lyon, France. [2] Laboratoire de Biologie Moléculaire de la Cellule, UMR 5239, CNRS, Pierre-Benite, France
| | - James McKay
- Genetic Cancer Susceptibility Group, Section of Genetics, International Agency for Research on Cancer, Lyon, France
| | - Sophia S Wang
- Department of Cancer Etiology, City of Hope Beckman Research Institute, Duarte, California, USA
| | - Zhaoming Wang
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Gaithersburg, Maryland, USA
| | - Meredith Yeager
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Gaithersburg, Maryland, USA
| | - Lucia Conde
- 1] Department of Epidemiology, School of Public Health and Comprehensive Cancer Center, Birmingham, Alabama, USA. [2] Division of Environmental Health Sciences, University of California Berkeley School of Public Health, Berkeley, California, USA
| | - Paul I W de Bakker
- 1] Department of Medical Genetics and of Epidemiology, University Medical Center Utrecht, Utrecht, the Netherlands. [2] Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Alexandra Nieters
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | | | - Laurie Burdett
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Gaithersburg, Maryland, USA
| | - Alain Monnereau
- 1] Environmental Epidemiology of Cancer Group, INSERM, Centre for Research in Epidemiology and Population Health (CESP), Villejuif, France. [2] UMRS 1018, Université Paris Sud, Villejuif, France. [3] Registre des Hémopathies Malignes de la Gironde, Institut Bergonié, Bordeaux, France
| | - Christopher R Flowers
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Anneclaire J De Roos
- 1] Department of Environmental and Occupational Health, Drexel University School of Public Health, Philadelphia, Pennsylvania, USA. [2] Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Angela R Brooks-Wilson
- 1] Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada. [2] Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Gianluca Severi
- 1] Human Genetics Foundation, Turin, Italy. [2] Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Victoria, Australia. [3] Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Carlton, Victoria, Australia
| | - Mads Melbye
- 1] Department of Epidemiology Research, Division of Health Surveillance and Research, Statens Serum Institut, Copenhagen, Denmark. [2] Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Jian Gu
- Department of Epidemiology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Rebecca D Jackson
- Division of Endocrinology, Diabetes and Metabolism, Ohio State University, Columbus, Ohio, USA
| | - Eleanor Kane
- Department of Health Sciences, University of York, York, UK
| | - Lauren R Teras
- Epidemiology Research Program, American Cancer Society, Atlanta, Georgia, USA
| | - Mark P Purdue
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Claire M Vajdic
- Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - John J Spinelli
- 1] Cancer Control Research, BC Cancer Agency, Vancouver, British Columbia, Canada. [2] School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Graham G Giles
- 1] Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Victoria, Australia. [2] Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Carlton, Victoria, Australia
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Rachel S Kelly
- 1] Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA. [2] Medical Research Council (MRC)-Public Health England (PHE) Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Mariagrazia Zucca
- Department of Biomedical Science, University of Cagliari, Monserrato, Italy
| | - Kimberly A Bertrand
- 1] Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA. [2] Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Anne Zeleniuch-Jacquotte
- 1] Department of Population Health, New York University School of Medicine, New York, New York, USA. [2] Cancer Institute, New York University School of Medicine, New York, New York, USA
| | | | - Amy Hutchinson
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Gaithersburg, Maryland, USA
| | - Degui Zhi
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Brian K Link
- Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Anne J Novak
- Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Ahmet Dogan
- Department of Laboratory Medicine and Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Yan W Asmann
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, Florida, USA
| | - Mark Liebow
- Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Thomas E Witzig
- Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - George J Weiner
- Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | | | | | | | - Corinne Haioun
- Department of Hematology, Centre Hospitalier Universitaire (CHU) Henri Mondor, Creteil, France
| | - Thierry Jo Molina
- Department of Pathology, Necker Enfants Malades, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Henrik Hjalgrim
- Department of Epidemiology Research, Division of Health Surveillance and Research, Statens Serum Institut, Copenhagen, Denmark
| | - Bengt Glimelius
- 1] Department of Oncology and Pathology, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden. [2] Department of Radiology, Oncology and Radiation Science, Uppsala University, Uppsala, Sweden
| | - Hans-Olov Adami
- 1] Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA. [2] Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Paige M Bracci
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California, USA
| | - Jacques Riby
- 1] Department of Epidemiology, School of Public Health and Comprehensive Cancer Center, Birmingham, Alabama, USA. [2] Division of Environmental Health Sciences, University of California Berkeley School of Public Health, Berkeley, California, USA
| | - Martyn T Smith
- Division of Environmental Health Sciences, University of California Berkeley School of Public Health, Berkeley, California, USA
| | - Elizabeth A Holly
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California, USA
| | - Wendy Cozen
- 1] Department of Preventive Medicine, University of Southern California Keck School of Medicine, University of Southern California, Los Angeles, California, USA. [2] Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Patricia Hartge
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Lindsay M Morton
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Richard K Severson
- Department of Family Medicine and Public Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Lesley F Tinker
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Kari E North
- 1] Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. [2] Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nikolaus Becker
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Yolanda Benavente
- 1] Unit of Infections and Cancer (UNIC), Cancer Epidemiology Research Programme, Institut Catala d'Oncologia, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain. [2] Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Paolo Boffetta
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Paul Brennan
- Group of Genetic Epidemiology, Section of Genetics, International Agency for Research on Cancer, Lyon, France
| | - Lenka Foretova
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute and Masaryk University, Brno, Czech Republic
| | - Marc Maynadie
- Registre des Hémopathies Malignes de Côte d'Or, University of Burgundy and Dijon University Hospital, Dijon, France
| | - Anthony Staines
- School of Nursing and Human Sciences, Dublin City University, Dublin, Ireland
| | | | - Simon Crouch
- Department of Health Sciences, University of York, York, UK
| | - Alex Smith
- Department of Health Sciences, University of York, York, UK
| | - Eve Roman
- Department of Health Sciences, University of York, York, UK
| | - W Ryan Diver
- Epidemiology Research Program, American Cancer Society, Atlanta, Georgia, USA
| | - Kenneth Offit
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Andrew Zelenetz
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Robert J Klein
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Danylo J Villano
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Tongzhang Zheng
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | - Yawei Zhang
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | - Theodore R Holford
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, USA
| | - Anne Kricker
- Sydney School of Public Health, University of Sydney, Sydney, New South Wales, Australia
| | - Jenny Turner
- 1] Pathology, Australian School of Advanced Medicine, Macquarie University, Sydney, New South Wales, Australia. [2] Department of Histopathology, Douglass Hanly Moir Pathology, Macquarie Park, New South Wales, Australia
| | - Melissa C Southey
- Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
| | - Jacqueline Clavel
- 1] Environmental Epidemiology of Cancer Group, INSERM, Centre for Research in Epidemiology and Population Health (CESP), Villejuif, France. [2] UMRS 1018, Université Paris Sud, Villejuif, France
| | - Jarmo Virtamo
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
| | - Stephanie Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Elio Riboli
- School of Public Health, Imperial College London, London, UK
| | - Paolo Vineis
- 1] Human Genetics Foundation, Turin, Italy. [2] Medical Research Council (MRC)-Public Health England (PHE) Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Rudolph Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dimitrios Trichopoulos
- 1] Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA. [2] Bureau of Epidemiologic Research, Academy of Athens, Athens, Greece. [3] Hellenic Health Foundation, Athens, Greece
| | - Roel C H Vermeulen
- 1] Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands. [2] Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Heiner Boeing
- Department of Epidemiology, German Institute for Human Nutrition, Potsdam, Germany
| | | | - Emanuele Angelucci
- Hematology Unit, Ospedale Oncologico di Riferimento Regionale A. Businco, Cagliari, Italy
| | - Simonetta Di Lollo
- Department of Surgery and Translational Medicine, Section of Anatomo-Pathology, University of Florence, Florence, Italy
| | - Marco Rais
- Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Monserrato, Italy
| | - Brenda M Birmann
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Francine Laden
- 1] Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA. [2] Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA. [3] Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Edward Giovannucci
- 1] Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA. [2] Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA. [3] Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Peter Kraft
- 1] Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA. [2] Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Jinyan Huang
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Baoshan Ma
- 1] Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA. [2] College of Information Science and Technology, Dalian Maritime University, Dalian, China
| | - Yuanqing Ye
- Department of Epidemiology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Brian C H Chiu
- Department of Health Studies, University of Chicago, Chicago, Illinois, USA
| | - Joshua Sampson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Liming Liang
- 1] Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA. [2] Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, USA
| | | | - Charles C Chung
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Dennis D Weisenburger
- Department of Pathology, City of Hope National Medical Center, Duarte, California, USA
| | - Nilanjan Chatterjee
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Joseph F Fraumeni
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Susan L Slager
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Xifeng Wu
- Department of Epidemiology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Silvia de Sanjose
- 1] Unit of Infections and Cancer (UNIC), Cancer Epidemiology Research Programme, Institut Catala d'Oncologia, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain. [2] Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Karin E Smedby
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Gilles Salles
- 1] Laboratoire de Biologie Moléculaire de la Cellule, UMR 5239, CNRS, Pierre-Benite, France. [2] Department of Hematology, Hospices Civils de Lyon, Pierre-Benite, France. [3] Department of Hematology, Université Lyon 1, Pierre-Benite, France
| | - Christine F Skibola
- 1] Department of Epidemiology, School of Public Health and Comprehensive Cancer Center, Birmingham, Alabama, USA. [2] Division of Environmental Health Sciences, University of California Berkeley School of Public Health, Berkeley, California, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
30
|
Laursen MB, Falgreen S, Bødker JS, Schmitz A, Kjeldsen MK, Sørensen S, Madsen J, El-Galaly TC, Bøgsted M, Dybkær K, Johnsen HE. Human B-cell cancer cell lines as a preclinical model for studies of drug effect in diffuse large B-cell lymphoma and multiple myeloma. Exp Hematol 2014; 42:927-38. [DOI: 10.1016/j.exphem.2014.07.263] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/04/2014] [Accepted: 07/14/2014] [Indexed: 12/22/2022]
|
31
|
He J, Liao XY, Zhu JH, Xue WQ, Shen GP, Huang SY, Chen W, Jia WH. Association of MTHFR C677T and A1298C polymorphisms with non-Hodgkin lymphoma susceptibility: evidence from a meta-analysis. Sci Rep 2014; 4:6159. [PMID: 25146845 PMCID: PMC5381410 DOI: 10.1038/srep06159] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 07/07/2014] [Indexed: 02/07/2023] Open
Abstract
Methylenetetrahydrofolate reductase (MTHFR) is an important enzyme involved in folate metabolism and DNA synthesis. A number of studies have examined the association of MTHFR C677T and A1298C polymorphisms with non-Hodgkin lymphoma (NHL) susceptibility; however, the conclusions were contradictory. We searched available publications assessing the polymorphisms of MTHFR and NHL susceptibility from MEDLINE, EMBASE and CBM. Genotype-based mRNA expression analysis was performed using data from 270 individuals with three different ethnicities. Ultimately, a total of 7448 cases and 11146 controls from 25 studies were included for the C677T polymorphism, 6173 cases and 9725 controls from 19 studies for the A1298C polymorphism. Pooled results indicated that neither C677T nor A1298C polymorphism was associated with NHL susceptibility. However, C677T polymorphism showed a statistically significantly increased risk for Caucasians, but a decreased risk for Asians in the subgroup analysis by ethnicity. The same variants may confer increased susceptibility to develop follicular lymphoma (FL). Moreover, A1298C polymorphism was associated with increased NHL risk for Asians. This meta-analysis indicated that C677T polymorphism was associated with altered NHL susceptibility for Caucasians, Asians and FL. Increased NHL risk was also shown for A1298C among Asians. These findings warrant validation in large and well-designed prospective studies.
Collapse
Affiliation(s)
- Jing He
- State Key Laboratory of Oncology in South China, Department of Experimental Research, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Xiao-Yu Liao
- State Key Laboratory of Oncology in South China, Department of Experimental Research, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Jin-Hong Zhu
- Molecular Epidemiology Laboratory and Laboratory Medicine, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150040, China
| | - Wen-Qiong Xue
- State Key Laboratory of Oncology in South China, Department of Experimental Research, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Guo-Ping Shen
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Shao-Yi Huang
- State Key Laboratory of Oncology in South China, Department of Experimental Research, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Wei Chen
- Department of Neurosurgery, The Second Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Wei-Hua Jia
- State Key Laboratory of Oncology in South China, Department of Experimental Research, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, China
| |
Collapse
|
32
|
Rendleman J, Antipin Y, Reva B, Adaniel C, Przybylo JA, Dutra-Clarke A, Hansen N, Heguy A, Huberman K, Borsu L, Paltiel O, Ben-Yehuda D, Brown JR, Freedman AS, Sander C, Zelenetz A, Klein RJ, Shao Y, Lacher M, Vijai J, Offit K, Kirchhoff T. Genetic variation in DNA repair pathways and risk of non-Hodgkin's lymphoma. PLoS One 2014; 9:e101685. [PMID: 25010664 PMCID: PMC4092067 DOI: 10.1371/journal.pone.0101685] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 06/10/2014] [Indexed: 01/27/2023] Open
Abstract
Molecular and genetic evidence suggests that DNA repair pathways may contribute to lymphoma susceptibility. Several studies have examined the association of DNA repair genes with lymphoma risk, but the findings from these reports have been inconsistent. Here we provide the results of a focused analysis of genetic variation in DNA repair genes and their association with the risk of non-Hodgkin's lymphoma (NHL). With a population of 1,297 NHL cases and 1,946 controls, we have performed a two-stage case/control association analysis of 446 single nucleotide polymorphisms (SNPs) tagging the genetic variation in 81 DNA repair genes. We found the most significant association with NHL risk in the ATM locus for rs227060 (OR = 1.27, 95% CI: 1.13-1.43, p = 6.77×10(-5)), which remained significant after adjustment for multiple testing. In a subtype-specific analysis, associations were also observed for the ATM locus among both diffuse large B-cell lymphomas (DLBCL) and small lymphocytic lymphomas (SLL), however there was no association observed among follicular lymphomas (FL). In addition, our study provides suggestive evidence of an interaction between SNPs in MRE11A and NBS1 associated with NHL risk (OR = 0.51, 95% CI: 0.34-0.77, p = 0.0002). Finally, an imputation analysis using the 1,000 Genomes Project data combined with a functional prediction analysis revealed the presence of biologically relevant variants that correlate with the observed association signals. While the findings generated here warrant independent validation, the results of our large study suggest that ATM may be a novel locus associated with the risk of multiple subtypes of NHL.
Collapse
Affiliation(s)
- Justin Rendleman
- NYU School of Medicine, New York University, New York, New York, United States of America
| | - Yevgeniy Antipin
- Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Boris Reva
- Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Christina Adaniel
- NYU School of Medicine, New York University, New York, New York, United States of America
| | - Jennifer A. Przybylo
- Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Ana Dutra-Clarke
- Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Nichole Hansen
- Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Adriana Heguy
- Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Kety Huberman
- Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Laetitia Borsu
- Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Ora Paltiel
- Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Dina Ben-Yehuda
- Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Jennifer R. Brown
- Dana Farber Cancer Center, Harvard University, Boston, Massachusetts, United States of America
| | - Arnold S. Freedman
- Dana Farber Cancer Center, Harvard University, Boston, Massachusetts, United States of America
| | - Chris Sander
- Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Andrew Zelenetz
- Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Robert J. Klein
- Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Yongzhao Shao
- NYU School of Medicine, New York University, New York, New York, United States of America
| | - Mortimer Lacher
- Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Joseph Vijai
- Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Kenneth Offit
- Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Tomas Kirchhoff
- NYU School of Medicine, New York University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
33
|
Different role of tumor necrosis factor-α polymorphism in non-Hodgkin lymphomas among Caucasian and Asian populations: a meta-analysis. Int J Mol Sci 2014; 15:7684-98. [PMID: 24857911 PMCID: PMC4057699 DOI: 10.3390/ijms15057684] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 04/15/2014] [Accepted: 04/23/2014] [Indexed: 01/26/2023] Open
Abstract
Tumor necrosis factor-α (TNF-α) is an immunoregulatory cytokine involved in B- and T-cell function, and also plays an important role in inflammation and cancer. TNF-α-308G>A has been associated with constitutively elevated TNF-α expression. Several studies have reported the association between the TNF-α-308G>A polymorphism and non-Hodgkin lymphomas (NHL) risk, however, results are still inconsistent. To solve these conflicts, we conducted the first meta-analysis to assess the effect of TNF-α-308G>A polymorphism on the risk of NHL and various subtypes (additive model) including 10,619 cases and 12,977 controls in Caucasian and Asian populations. Our meta-analysis indicated that TNF-α-308G>A polymorphism is not associated with NHL risk when pooling all studies together (OR=1.06, 95% CI: 0.92-1.23, p=0.413). In stratified analyses, we found TNF-α-308A allele was significantly associated with higher risk of NHL, B-cell lymphomas (BCL), T-cell lymphomas (TCL) and diffuse large B-cell lymphomas (DLBCL) in Caucasians (OR=1.22, 95% CI: 1.06-1.40, p=0.007; OR=1.18, 95% CI: 1.03-1.34, p=0.014; OR=1.20, 95% CI: 1.01-1.42, p=0.040; OR=1.21, 95% CI: 1.11-1.32, p<0.001, respectively). Interestingly, it was associated with decreased risk of NHL, BCL and DLBCL in Asians (OR=0.75, 95% CI: 0.66-0.86, p<0.001; OR=0.70, 95% CI: 0.52-0.94, p=0.018; OR=0.70, 95% CI: 0.57-0.86, p=0.001). These findings also suggest TNF-α might play a distinct role in pathogenesis of NHL in different populations.
Collapse
|
34
|
Hatzi K, Melnick A. Breaking bad in the germinal center: how deregulation of BCL6 contributes to lymphomagenesis. Trends Mol Med 2014; 20:343-52. [PMID: 24698494 DOI: 10.1016/j.molmed.2014.03.001] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 02/28/2014] [Accepted: 03/04/2014] [Indexed: 01/06/2023]
Abstract
The B cell lymphoma 6 (BCL6) transcriptional repressor is a master regulator of the germinal center (GC) B cell program, required for their unique proliferative and stress tolerant phenotype. Most B cell lymphomas arise from GC B cells and are dependent on the continued or deregulated expression of BCL6 to maintain their survival. The actions of BCL6 in B cells involve formation of distinct chromatin modifying complexes that silence specific promoter and enhancer networks, respectively. The same biochemical mechanisms are maintained in malignant lymphoma cells. Targeted inhibition of these BCL6 functions has emerged as the basis for rational design of lymphoma therapies and combinatorial regimens. In this review, we summarize recent advances on BCL6 mechanisms of action and the deregulation of its target gene networks in lymphoma.
Collapse
Affiliation(s)
- Katerina Hatzi
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Ari Melnick
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
35
|
Tan D, Tan SY, Lim ST, Kim SJ, Kim WS, Advani R, Kwong YL. Management of B-cell non-Hodgkin lymphoma in Asia: resource-stratified guidelines. Lancet Oncol 2013; 14:e548-61. [PMID: 24176573 DOI: 10.1016/s1470-2045(13)70450-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Treatment of B-cell non-Hodgkin lymphomas has undergone substantial developments in the past 10 years. The introduction of rituximab has greatly improved survival outcomes in patients. Clinical practice guidelines based on current evidence have been developed to provide recommendations for standard treatment approaches. However, guidelines do not take into account resource limitations in resource-poor countries. The huge disparities in economy, health-care infrastructure, and access to novel drugs between Asian countries can hinder the delivery of optimum care to patients with lymphoma in Asia. We outline guidelines appropriate to different levels of health-care resources and expertise, aiming to provide advice on diagnosis and treatment, unify interpretation of results, and allow the design of future studies in Asia. In this resource-adapted consensus, we summarise recommendations for diagnosis, staging, risk stratification, and treatment of common B-cell non-Hodgkin lymphomas in Asia.
Collapse
Affiliation(s)
- Daryl Tan
- Raffles Cancer Center, Raffles Hospital, Singapore, Singapore; Department of Haematology, Singapore General Hospital, Singapore, Singapore.
| | | | | | | | | | | | | |
Collapse
|