1
|
Kwantwi LB, Rosen ST, Querfeld C. The Tumor Microenvironment as a Therapeutic Target in Cutaneous T Cell Lymphoma. Cancers (Basel) 2024; 16:3368. [PMID: 39409988 PMCID: PMC11482616 DOI: 10.3390/cancers16193368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/19/2024] Open
Abstract
Cutaneous T cell lymphomas (CTCLs) are a heterogeneous group of non-Hodgkin lymphomas, with mycosis fungoides and Sézary syndrome being the two common subtypes. Despite the substantial improvement in early-stage diagnosis and treatments, some patients still progress to the advanced stage with an elusive underpinning mechanism. While this unsubstantiated disease mechanism coupled with diverse clinical outcomes poses challenges in disease management, emerging evidence has implicated the tumor microenvironment in the disease process, thus revealing a promising therapeutic potential of targeting the tumor microenvironment. Notably, malignant T cells can shape their microenvironment to dampen antitumor immunity, leading to Th2-dominated responses that promote tumor progression. This is largely orchestrated by alterations in cytokines expression patterns, genetic dysregulations, inhibitory effects of immune checkpoint molecules, and immunosuppressive cells. Herein, the recent insights into the determining factors in the CTCL tumor microenvironment that support their progression have been highlighted. Also, recent advances in strategies to target the CTCL tumor micromovement with the rationale of improving treatment efficacy have been discussed.
Collapse
Affiliation(s)
- Louis Boafo Kwantwi
- Department of Pathology, City of Hope Medical Center, Duarte, CA 91010, USA
- Beckman Research Institute, Duarte, CA 91010, USA
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Steven T Rosen
- Beckman Research Institute, Duarte, CA 91010, USA
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Christiane Querfeld
- Department of Pathology, City of Hope Medical Center, Duarte, CA 91010, USA
- Beckman Research Institute, Duarte, CA 91010, USA
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, CA 91010, USA
- Division of Dermatology, City of Hope Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
2
|
Shrestha S, Newsom K, Chaffin JM, Seifert RP. Pathogenic variants of mycosis fungoides identified using next-generation sequencing. J Hematop 2024:10.1007/s12308-024-00607-5. [PMID: 39298006 DOI: 10.1007/s12308-024-00607-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/12/2024] [Indexed: 09/21/2024] Open
Abstract
Mycosis fungoides (MF), the predominant form of cutaneous T-cell lymphoma (CTCL), poses diagnostic challenges due to its clinical and histological resemblance to benign skin disorders. Delayed diagnosis contributes to therapeutic delays, prompting exploration of advanced diagnostics tools. Next-generation sequencing (NGS) may enhance disease detection by identifying pathogenic variants common to CTCL but absent in benign inflammatory disorders. We aim to discuss novel and common pathogenic variants in CTCL to enhance the utility of NGS as a diagnostic adjunct. This pilot study employed (NGS) to identify pathogenic variants in 10 MF cases. Cases were selected based on PCR-confirmed T-cell receptor clonality, with adequate DNA for NGS. GatorSeq NGS Panel, Illumina NextSeq500, and QIAGEN Clinical Insight QCI software facilitated sequencing, analysis, and variant interpretation. NGS revealed eight novel mutations in genes including HLA-DRB1, AK2, ITPKB, HLA-B, TYRO3, and CHD2. Additionally, previously reported MF-associated mutations such as DNMT3A, STAT5B, and SOCS1 (mouse study only) were detected as well. Detected variants were involved in apoptotic, NF-kB, JAK-STAT, and TCR signaling pathways, providing insights into MF pathogenesis. Mutations in genes like APC, AK2, TYRO3, and ITPKB that regulate tumor proliferation and apoptosis were noted. MF cases were associated with HLA gene mutations. NGS may enhance MF diagnosis, as the detection of pathogenic variants, particularly those known to occur in MF, favors a neoplastic diagnosis over an inflammatory diagnosis. Continuing this work may lead to the discovery of therapeutic targets.
Collapse
Affiliation(s)
- Sunaina Shrestha
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | - Kimberly Newsom
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | - Joanna Melody Chaffin
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | - Robert P Seifert
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, USA.
| |
Collapse
|
3
|
O'Connor OA, Ma H, Chan JYS, Kim SJ, Yoon SE, Kim WS. Peripheral T-cell lymphoma: From biology to practice to the future. Cancer Treat Rev 2024; 129:102793. [PMID: 39002211 DOI: 10.1016/j.ctrv.2024.102793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/15/2024]
Abstract
Recent advancements in comprehending peripheral T-cell lymphomas (PTCLs) validate and broaden our perspective, highlighting their diverse nature and the varying molecular mechanisms underlying the entities. Based on a comprehensive accumulated understanding, the PTCLs currently overcome the most challenging features of any disease: rarity, incredible heterogeneity, and a lack of any established standard of care. The treatments deployed in the front-line are extrapolated from regimens developed for other diseases. The recent approval of the three drugs brentuximab vedotin (BV), pralatrexate, and belinostat for patients with relapsed or refractory disease has provided clues about pathophysiology and future directions, though challenges satisfying post-marketing requirements (PMR) for those accelerated approvals have led to one of those drugs being withdrawn and put the other two in jeopardy. Edits of the front-line regimens, often called CHOP (cyclophosphamide, doxorubicin, vincristine, and prednisone)-plus approaches, look more like CHOP-minus strategies, as the toxicity of five-drug regimens often reduces the dose intensity of the added 'novel' drug, nullifying any hope of an advance. The turmoil in the field produced by the aforementioned, coupled with an ever-changing classification, has left the field uncertain about the path forward. Despite these challenges, empiric findings from studies of novel drug approaches, coupled with a logic emerging from studies of PTCL lymphomagenesis, have begun to illuminate, albeit faintly for some, a potential direction. The empiric finding that drugs targeting the discrete components of the PTCL epigenome, coupled with the description of multiple mutations in genes that govern epigenetic biology, offers, at the very least, an opportunity to finally be hypothesis-driven. The most recent recognition that the only combination of drugs shown to markedly improve progression-free survival (PFS) in patients with relapsed disease is one based on dual targeting of different and discrete components of that epigenetic biology has established a possibility that circumnavigating chemotherapy addition studies is both plausible, feasible, and likely the best prospect for a quantum advance in this disease. Herein, we analyze PTCL through a 2025 lens, highlighting and underscoring walls that have impeded progress. We will critically explore all the clues and the panoramic view of PTCL research.
Collapse
Affiliation(s)
- Owen A O'Connor
- University of Virginia Comprehensive Cancer Center, Charlottesville, VA, United States
| | - Helen Ma
- VA Long Beach Healthcare System, Long Beach, CA, United States; University of California-Irvine, Orange, CA, United States
| | | | - Seok Jin Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sang Eun Yoon
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Won Seog Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Licht P, Dominelli N, Kleemann J, Pastore S, Müller ES, Haist M, Hartmann KS, Stege H, Bros M, Meissner M, Grabbe S, Heermann R, Mailänder V. The skin microbiome stratifies patients with cutaneous T cell lymphoma and determines event-free survival. NPJ Biofilms Microbiomes 2024; 10:74. [PMID: 39198450 PMCID: PMC11358159 DOI: 10.1038/s41522-024-00542-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 07/31/2024] [Indexed: 09/01/2024] Open
Abstract
Mycosis fungoides (MF) is the most common entity of Cutaneous T cell lymphomas (CTCL) and is characterized by the presence of clonal malignant T cells in the skin. The role of the skin microbiome for MF development and progression are currently poorly understood. Using shotgun metagenomic profiling, real-time qPCR, and T cell receptor sequencing, we compared lesional and nonlesional skin of 20 MF patients with early and advanced MF. Additionally, we isolated Staphylococcus aureus and other bacteria from MF skin for functional profiling and to study the S. aureus virulence factor spa. We identified a subgroup of MF patients with substantial dysbiosis on MF lesions and concomitant outgrowth of S. aureus on plaque-staged lesions, while the other MF patients had a balanced microbiome on lesional skin. Dysbiosis and S. aureus outgrowth were accompanied by ectopic levels of cutaneous antimicrobial peptides (AMPs), including adaptation of the plaque-derived S. aureus strain. Furthermore, the plaque-derived S. aureus strain showed a reduced susceptibility towards antibiotics and an upregulation of the virulence factor spa, which may activate the NF-κB pathway. Remarkably, patients with dysbiosis on MF lesions had a restricted T cell receptor repertoire and significantly lower event-free survival. Our study highlights the potential for microbiome-modulating treatments targeting S. aureus to prevent MF progression.
Collapse
Affiliation(s)
- Philipp Licht
- University Medical Centre Mainz, Department of Dermatology, Mainz, Germany.
| | - Nazzareno Dominelli
- Johannes Gutenberg-University, Institute of Molecular Physiology (imP), Biocenter II, Microbiology and Biotechnology, Mainz, Germany
| | - Johannes Kleemann
- University Hospital Frankfurt, Department of Dermatology, Venerology and Allergology, Frankfurt am Main, Germany
| | - Stefan Pastore
- University Medical Centre Mainz, Institute of Human Genetics, Mainz, Germany
- Johannes Gutenberg-University, Institute of Pharmaceutical and Biomedical Sciences, Mainz, Germany
| | - Elena-Sophia Müller
- Johannes Gutenberg-University, Institute of Molecular Physiology (imP), Biocenter II, Microbiology and Biotechnology, Mainz, Germany
| | - Maximilian Haist
- University Medical Centre Mainz, Department of Dermatology, Mainz, Germany
| | | | - Henner Stege
- University Medical Centre Mainz, Department of Dermatology, Mainz, Germany
| | - Matthias Bros
- University Medical Centre Mainz, Department of Dermatology, Mainz, Germany
| | - Markus Meissner
- University Hospital Frankfurt, Department of Dermatology, Venerology and Allergology, Frankfurt am Main, Germany
| | - Stephan Grabbe
- University Medical Centre Mainz, Department of Dermatology, Mainz, Germany
| | - Ralf Heermann
- Johannes Gutenberg-University, Institute of Molecular Physiology (imP), Biocenter II, Microbiology and Biotechnology, Mainz, Germany
| | - Volker Mailänder
- University Medical Centre Mainz, Department of Dermatology, Mainz, Germany.
- Max Planck Institute for Polymer Research, Mainz, Germany.
| |
Collapse
|
5
|
Melchers S, Albrecht JD, Kempf W, Nicolay JP. The fifth edition of the WHO-Classification - what is new for cutaneous lymphomas? J Dtsch Dermatol Ges 2024. [PMID: 39087385 DOI: 10.1111/ddg.15361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 01/06/2024] [Indexed: 08/02/2024]
Abstract
The recently published 5th edition of the "World Health Organization classification of hematolymphoid tumors: lymphoid neoplasms" provides a hierarchical reorganization. In general, new (definitive) entities as well as tumor-like lesions were included. Primary cutaneous B-cell lymphomas (CBCL) received a thorough review. A new class/family of cutaneous follicle center lymphomas was defined. Primary cutaneous marginal zone lymphoma is now presented as a separate entity independent from extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue. In primary cutaneous T-cell lymphoma, former provisional entities were upgraded to definite entities. Sézary Syndrome was sorted into the class/family of mature T-cell and NK-cell leukemias. Additionally, a newly formed entity of primary cutaneous peripheral T-cell lymphoma, NOS was created for CTCL entities that do not fit into the already described CTCL entities. The increasing importance of genomic and molecular data has already been recognized in classifying leukemias and systemic lymphomas. However, in PCL the genomic landscape has not yet been fully described and validated. Therefore, future research is necessary to describe the genomic and molecular mechanisms underlying the disease entities more clearly. This would both meet a diagnostic need and valuably contribute to future classification schemes.
Collapse
Affiliation(s)
- Susanne Melchers
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim/University of Heidelberg, Mannheim, Germany
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Section of Clinical and Experimental Dermatology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Jana D Albrecht
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim/University of Heidelberg, Mannheim, Germany
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Section of Clinical and Experimental Dermatology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Werner Kempf
- Kempf und Pfaltz Histologische Diagnostik Zurich, and Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Jan P Nicolay
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim/University of Heidelberg, Mannheim, Germany
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Section of Clinical and Experimental Dermatology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
6
|
Goel RR, Rook AH. Immunobiology and treatment of cutaneous T-cell lymphoma. Expert Rev Clin Immunol 2024; 20:985-996. [PMID: 38450476 DOI: 10.1080/1744666x.2024.2326035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
INTRODUCTION Primary cutaneous T cell lymphomas (CTCL) are a heterogenous group of non-Hodgkin lymphomas derived from skin-homing T cells. These include mycosis fungoides and its leukemic variant Sezary syndrome, as well as the CD30+ lymphoproliferative disorders. AREAS COVERED In this review, we provide a summary of the current literature on CTCL, with a focus on the immunopathogenesis and treatment of mycosis fungoides and Sezary syndrome. EXPERT OPINION Recent advances in immunology have provided new insights into the biology of malignant T cells. This in turn has led to the development of new therapies that modulate the immune system to facilitate tumor clearance or target specific aspects of tumor biology.
Collapse
Affiliation(s)
- Rishi R Goel
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health (I3H), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alain H Rook
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
7
|
Renz PF, Ghoshdastider U, Baghai Sain S, Valdivia-Francia F, Khandekar A, Ormiston M, Bernasconi M, Duré C, Kretz JA, Lee M, Hyams K, Forny M, Pohly M, Ficht X, Ellis SJ, Moor AE, Sendoel A. In vivo single-cell CRISPR uncovers distinct TNF programmes in tumour evolution. Nature 2024; 632:419-428. [PMID: 39020166 PMCID: PMC11306103 DOI: 10.1038/s41586-024-07663-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 06/04/2024] [Indexed: 07/19/2024]
Abstract
The tumour evolution model posits that malignant transformation is preceded by randomly distributed driver mutations in cancer genes, which cause clonal expansions in phenotypically normal tissues. Although clonal expansions can remodel entire tissues1-3, the mechanisms that result in only a small number of clones transforming into malignant tumours remain unknown. Here we develop an in vivo single-cell CRISPR strategy to systematically investigate tissue-wide clonal dynamics of the 150 most frequently mutated squamous cell carcinoma genes. We couple ultrasound-guided in utero lentiviral microinjections, single-cell RNA sequencing and guide capture to longitudinally monitor clonal expansions and document their underlying gene programmes at single-cell transcriptomic resolution. We uncover a tumour necrosis factor (TNF) signalling module, which is dependent on TNF receptor 1 and involving macrophages, that acts as a generalizable driver of clonal expansions in epithelial tissues. Conversely, during tumorigenesis, the TNF signalling module is downregulated. Instead, we identify a subpopulation of invasive cancer cells that switch to an autocrine TNF gene programme associated with epithelial-mesenchymal transition. Finally, we provide in vivo evidence that the autocrine TNF gene programme is sufficient to mediate invasive properties and show that the TNF signature correlates with shorter overall survival of patients with squamous cell carcinoma. Collectively, our study demonstrates the power of applying in vivo single-cell CRISPR screening to mammalian tissues, unveils distinct TNF programmes in tumour evolution and highlights the importance of understanding the relationship between clonal expansions in epithelia and tumorigenesis.
Collapse
Affiliation(s)
- Peter F Renz
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren-Zurich, Switzerland
| | - Umesh Ghoshdastider
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren-Zurich, Switzerland
| | - Simona Baghai Sain
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Fabiola Valdivia-Francia
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren-Zurich, Switzerland
- Life Science Zurich Graduate School, Molecular Life Science Program, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Ameya Khandekar
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Vienna, Austria
- Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
| | - Mark Ormiston
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren-Zurich, Switzerland
| | - Martino Bernasconi
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren-Zurich, Switzerland
| | - Clara Duré
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren-Zurich, Switzerland
- Life Science Zurich Graduate School, Molecular Life Science Program, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Jonas A Kretz
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Minkyoung Lee
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Katie Hyams
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren-Zurich, Switzerland
| | - Merima Forny
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren-Zurich, Switzerland
| | - Marcel Pohly
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Xenia Ficht
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Stephanie J Ellis
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Vienna, Austria
- Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
| | - Andreas E Moor
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| | - Ataman Sendoel
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren-Zurich, Switzerland.
| |
Collapse
|
8
|
Shih BB, Ma C, Cortes JR, Reglero C, Miller H, Quinn SA, Albero R, Laurent AP, Mackey A, Ferrando AA, Geskin L, Palomero T. Romidepsin and Afatinib Abrogate Jak-Signal Transducer and Activator of Transcription Signaling and Elicit Synergistic Antitumor Effects in Cutaneous T-Cell Lymphoma. J Invest Dermatol 2024; 144:1579-1589.e8. [PMID: 38219917 PMCID: PMC11193653 DOI: 10.1016/j.jid.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/20/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024]
Abstract
Cutaneous T-cell lymphomas are mature lymphoid neoplasias resulting from the malignant transformation of skin-resident T-cells. A distinctive clinical feature of cutaneous T-cell lymphomas is their sensitivity to treatment with histone deacetylase inhibitors. However, responses to histone deacetylase inhibitor therapy are universally transient and noncurative, highlighting the need for effective and durable drug combinations. In this study, we demonstrate that the combination of romidepsin, a selective class I histone deacetylase inhibitor, with afatinib, an EGFR family inhibitor, induces strongly synergistic antitumor effects in cutaneous T-cell lymphoma models in vitro and in vivo through abrogation of Jak-signal transducer and activator of transcription signaling. These results support a previously unrecognized potential role for histone deacetylase inhibitor plus afatinib combination in the treatment of cutaneous T-cell lymphomas.
Collapse
Affiliation(s)
- Bobby B Shih
- Institute for Cancer Genetics, Columbia University, New York, New York, USA
| | - Cindy Ma
- Institute for Cancer Genetics, Columbia University, New York, New York, USA
| | - Jose R Cortes
- Institute for Cancer Genetics, Columbia University, New York, New York, USA; Regeneron Pharmaceuticals, Tarrytown, New York, USA
| | - Clara Reglero
- Institute for Cancer Genetics, Columbia University, New York, New York, USA
| | - Hannah Miller
- Institute for Cancer Genetics, Columbia University, New York, New York, USA
| | - S Aidan Quinn
- Institute for Cancer Genetics, Columbia University, New York, New York, USA
| | - Robert Albero
- Institute for Cancer Genetics, Columbia University, New York, New York, USA; Biomedical Research Institute August Pi y Sunyer (IDIBAPS), Barcelona, Spain
| | - Anouchka P Laurent
- Institute for Cancer Genetics, Columbia University, New York, New York, USA
| | - Adam Mackey
- Institute for Cancer Genetics, Columbia University, New York, New York, USA
| | - Adolfo A Ferrando
- Institute for Cancer Genetics, Columbia University, New York, New York, USA; Regeneron Pharmaceuticals, Tarrytown, New York, USA; Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA; Department of Pediatrics, Columbia University Medical Center, New York, New York, USA; Department of Systems Biology, Columbia University Medical Center, New York, New York, USA
| | - Larisa Geskin
- Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Teresa Palomero
- Institute for Cancer Genetics, Columbia University, New York, New York, USA; Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA.
| |
Collapse
|
9
|
Fléchon L, Arib I, Dutta AK, Hasan Bou Issa L, Sklavenitis-Pistofidis R, Tilmont R, Stewart C, Dubois R, Poulain S, Copin MC, Javed S, Nudel M, Cavalieri D, Escure G, Gower N, Chauvet P, Gazeau N, Saade C, Thiam MB, Ouelkite-Oumouchal A, Gaggero S, Cailliau É, Faiz S, Carpentier O, Duployez N, Idziorek T, Mortier L, Figeac M, Preudhomme C, Quesnel B, Mitra S, Morschhauser F, Getz G, Ghobrial IM, Manier S. Genomic profiling of mycosis fungoides identifies patients at high risk of disease progression. Blood Adv 2024; 8:3109-3119. [PMID: 38513135 PMCID: PMC11222946 DOI: 10.1182/bloodadvances.2023012125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 03/23/2024] Open
Abstract
ABSTRACT Mycosis fungoides (MF) is the most prevalent primary cutaneous T-cell lymphoma, with an indolent or aggressive course and poor survival. The pathogenesis of MF remains unclear, and prognostic factors in the early stages are not well established. Here, we characterized the most recurrent genomic alterations using whole-exome sequencing of 67 samples from 48 patients from Lille University Hospital (France), including 18 sequential samples drawn across stages of the malignancy. Genomic data were analyzed on the Broad Institute's Terra bioinformatics platform. We found that gain7q, gain10p15.1 (IL2RA and IL15RA), del10p11.22 (ZEB1), or mutations in JUNB and TET2 are associated with high-risk disease stages. Furthermore, gain7q, gain10p15.1 (IL2RA and IL15RA), del10p11.22 (ZEB1), and del6q16.3 (TNFAIP3) are coupled with shorter survival. Del6q16.3 (TNFAIP3) was a risk factor for progression in patients at low risk. By analyzing the clonal heterogeneity and the clonal evolution of the cohort, we defined different phylogenetic pathways of the disease with acquisition of JUNB, gain10p15.1 (IL2RA and IL15RA), or del12p13.1 (CDKN1B) at progression. These results establish the genomics and clonality of MF and identify potential patients at risk of progression, independent of their clinical stage.
Collapse
Affiliation(s)
- Léa Fléchon
- Canther, ONCOLille, INSERM UMR-S1277, CNRS UMR9020, Lille University, Lille, France
| | - Inès Arib
- Department of Hematology, Lille Hospital, Lille, France
| | - Ankit K. Dutta
- Center for Prevention of Progression of Blood Cancers, Dana-Farber Cancer Institute, Boston, MA
- Department of Medical Oncology, Harvard Medical School, Boston, MA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Lama Hasan Bou Issa
- Canther, ONCOLille, INSERM UMR-S1277, CNRS UMR9020, Lille University, Lille, France
| | - Romanos Sklavenitis-Pistofidis
- Center for Prevention of Progression of Blood Cancers, Dana-Farber Cancer Institute, Boston, MA
- Department of Medical Oncology, Harvard Medical School, Boston, MA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Rémi Tilmont
- Department of Hematology, Lille Hospital, Lille, France
| | - Chip Stewart
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Romain Dubois
- Department of Pathology, Lille Hospital, Lille, France
| | - Stéphanie Poulain
- Canther, ONCOLille, INSERM UMR-S1277, CNRS UMR9020, Lille University, Lille, France
- Department of Hematology, Biology and Pathology Center, Lille Hospital, Lille, France
| | - Marie-Christine Copin
- Department of Pathology, Angers University, Angers Hospital, INSERM, CRCI2NA, Angers, France
| | - Sahir Javed
- Department of Medical Oncology, Valenciennes Hospital, Valenciennes, France
| | - Morgane Nudel
- Department of Hematology, Lille Hospital, Lille, France
| | | | | | - Nicolas Gower
- Department of Hematology, Lille Hospital, Lille, France
| | - Paul Chauvet
- Department of Hematology, Lille Hospital, Lille, France
| | | | - Cynthia Saade
- Department of Hematology, Lille Hospital, Lille, France
| | | | | | - Silvia Gaggero
- Canther, ONCOLille, INSERM UMR-S1277, CNRS UMR9020, Lille University, Lille, France
| | | | - Sarah Faiz
- Department of Pathology and Dermatology, Lille Hospital, Lille, France
| | | | - Nicolas Duployez
- Canther, ONCOLille, INSERM UMR-S1277, CNRS UMR9020, Lille University, Lille, France
- Department of Hematology, Biology and Pathology Center, Lille Hospital, Lille, France
| | - Thierry Idziorek
- Canther, ONCOLille, INSERM UMR-S1277, CNRS UMR9020, Lille University, Lille, France
| | - Laurent Mortier
- Department of Pathology and Dermatology, Lille Hospital, Lille, France
- OncoThai unit, INSERM UMR-S1189, Lille University, Lille, France
| | - Martin Figeac
- Lille University, Lille Hospital, CNRS, INSERM, Institut Pasteur de Lille, US 41 – UAR 2014 - PLBS, Lille, France
| | - Claude Preudhomme
- Canther, ONCOLille, INSERM UMR-S1277, CNRS UMR9020, Lille University, Lille, France
- Department of Hematology, Biology and Pathology Center, Lille Hospital, Lille, France
| | - Bruno Quesnel
- Canther, ONCOLille, INSERM UMR-S1277, CNRS UMR9020, Lille University, Lille, France
- Department of Hematology, Lille Hospital, Lille, France
| | - Suman Mitra
- Canther, ONCOLille, INSERM UMR-S1277, CNRS UMR9020, Lille University, Lille, France
| | | | - Gad Getz
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA
- Cancer Center and Department of Pathology, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Irene M. Ghobrial
- Center for Prevention of Progression of Blood Cancers, Dana-Farber Cancer Institute, Boston, MA
- Department of Medical Oncology, Harvard Medical School, Boston, MA
- Harvard Medical School, Boston, MA
| | - Salomon Manier
- Canther, ONCOLille, INSERM UMR-S1277, CNRS UMR9020, Lille University, Lille, France
- Department of Hematology, Lille Hospital, Lille, France
| |
Collapse
|
10
|
Jiang TT, Kruglov O, Akilov OE. Unleashed monocytic engagement in Sézary syndrome during the combination of anti-CCR4 antibody with type I interferon. Blood Adv 2024; 8:2384-2397. [PMID: 38489234 PMCID: PMC11127216 DOI: 10.1182/bloodadvances.2023010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 01/22/2024] [Accepted: 02/06/2024] [Indexed: 03/17/2024] Open
Abstract
ABSTRACT Sézary syndrome (SS) is an aggressive leukemic expansion of skin-derived malignant CD4+ T cells. Drug monotherapy often results in disease relapse because of the heterogenous nature of malignant CD4+ T cells, but how therapies can be optimally combined remains unclear because of limitations in understanding the disease pathogenesis. We identified immunologic transitions that interlink mycosis fungoides with SS using single-cell transcriptome analysis in parallel with high-throughput T-cell receptor sequencing. Nascent peripheral CD4+ T cells acquired a distinct profile of transcription factors and trafficking receptors that gave rise to antigenically mature Sézary cells. The emergence of malignant CD4+ T cells coincided with the accumulation of dysfunctional monocytes with impaired fragment crystallizable γ-dependent phagocytosis, decreased responsiveness to cytokine stimulation, and limited repertoire of intercellular interactions with Sézary cells. Type I interferon supplementation when combined with a monoclonal antibody targeting the chemokine receptor type 4 (CCR4), unleashed monocyte induced phagocytosis and eradication of Sézary cells in vitro. In turn, coadministration of interferon-α with the US Food and Drug Administration-approved anti-CCR4 antibody, mogamulizumab, in patients with SS induced marked depletion of peripheral malignant CD4+ T cells. Importantly, residual CD4+ T cells after Sézary cell ablation lacked any immunologic shifts. These findings collectively unveil an auxiliary role for augmenting monocytic activity during mogamulizumab therapy in the treatment of SS and underscore the importance of targeted combination therapy in this disease.
Collapse
Affiliation(s)
- Tony T. Jiang
- Department of Dermatology, Cutaneous Lymphoma Program, University of Pittsburgh, Pittsburgh, PA
| | - Oleg Kruglov
- Department of Dermatology, Cutaneous Lymphoma Program, University of Pittsburgh, Pittsburgh, PA
| | - Oleg E. Akilov
- Department of Dermatology, Cutaneous Lymphoma Program, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
11
|
Zeng Z, Vadivel CK, Gluud M, Namini MRJ, Yan L, Ahmad S, Hansen MB, Coquet J, Mustelin T, Koralov SB, Bonefeld CM, Woetmann A, Geisler C, Guenova E, Kamstrup MR, Litman T, Gjerdrum LMR, Buus TB, Ødum N. Keratinocytes Present Staphylococcus aureus Enterotoxins and Promote Malignant and Nonmalignant T Cell Proliferation in Cutaneous T-Cell Lymphoma. J Invest Dermatol 2024:S0022-202X(24)00377-4. [PMID: 38762064 DOI: 10.1016/j.jid.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 05/20/2024]
Abstract
Cutaneous T-cell lymphoma is characterized by malignant T cells proliferating in a unique tumor microenvironment dominated by keratinocytes (KCs). Skin colonization and infection by Staphylococcus aureus are a common cause of morbidity and are suspected of fueling disease activity. In this study, we show that expression of HLA-DRs, high-affinity receptors for staphylococcal enterotoxins (SEs), by KCs correlates with IFN-γ expression in the tumor microenvironment. Importantly, IFN-γ induces HLA-DR, SE binding, and SE presentation by KCs to malignant T cells from patients with Sézary syndrome and malignant and nonmalignant T-cell lines derived from patients with Sézary syndrome and mycosis fungoides. Likewise, preincubation of KCs with supernatant from patient-derived SE-producing S aureus triggers proliferation in malignant T cells and cytokine release (including IL-2), when cultured with nonmalignant T cells. This is inhibited by pretreatment with engineered bacteriophage S aureus-specific endolysins. Furthermore, alteration in the HLA-DR-binding sites of SE type A and small interfering RNA-mediated knockdown of Jak3 and IL-2Rγ block induction of malignant T-cell proliferation. In conclusion, we show that upon exposure to patient-derived S aureus and SE, KCs stimulate IL-2Rγ/Jak3-dependent proliferation of malignant and nonmalignant T cells in an environment with nonmalignant T cells. These findings suggest that KCs in the tumor microenvironment play a key role in S aureus-mediated disease activity in cutaneous T-cell lymphoma.
Collapse
Affiliation(s)
- Ziao Zeng
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Chella Krishna Vadivel
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Maria Gluud
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Martin R J Namini
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Lang Yan
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Sana Ahmad
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Morten Bagge Hansen
- Blood Bank, Department of Clinical Immunology, State University Hospital (Rigshospitalet), Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonathan Coquet
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Tomas Mustelin
- Department of Rheumatology, University of Washington, Seattle, Washington, USA
| | - Sergei B Koralov
- Department of Pathology, New York University School of Medicine, New York, New York, USA
| | - Charlotte Menne Bonefeld
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Anders Woetmann
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Carsten Geisler
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Emmanuella Guenova
- University Hospital Lausanne (CHUV), Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Maria R Kamstrup
- Department of Dermatology, Bispebjerg and Frederiksberg University Hospital, Copenhagen, Denmark
| | - Thomas Litman
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Lise-Mette R Gjerdrum
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Pathology, Zealand University Hospital, Roskilde, Roskilde, Denmark
| | - Terkild B Buus
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| | - Niels Ødum
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
12
|
Rafic E, Ma C, Shih BB, Miller H, Yuste R, Palomero T, Etchenique R. RuBi-Ruxolitinib: A Photoreleasable Antitumor JAK Inhibitor. J Am Chem Soc 2024; 146:13317-13325. [PMID: 38700457 DOI: 10.1021/jacs.4c01720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
We describe the synthesis and biological testing of ruthenium-bipyridine ruxolitinib (RuBiRuxo), a photoreleasable form of ruxolitinib, a JAK inhibitor used as an antitumoral agent in cutaneous T-cell lymphomas (CTCL). This novel caged compound is synthesized efficiently, is stable in aqueous solution at room temperature, and is photoreleased rapidly by visible light. Irradiation of RuBiRuxo reduces cell proliferation and induces apoptosis in a light- and time-dependent manner in a CTCL cell line. This effect is specific and is mediated by a decreased phosphorylation of STAT proteins. Our results demonstrate the potential of ruthenium-based photocompounds and light-based therapeutic approaches for the potential treatment of cutaneous lymphomas and other pathologies.
Collapse
Affiliation(s)
- Estefania Rafic
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIMAE, CONICET, Buenos Aires C1428EHA, Argentina
| | - Cindy Ma
- Institute for Cancer Genetics, Columbia University, New York, New York 10032, United States
| | - Bobby B Shih
- Institute for Cancer Genetics, Columbia University, New York, New York 10032, United States
| | - Hannah Miller
- Institute for Cancer Genetics, Columbia University, New York, New York 10032, United States
| | - Rafael Yuste
- Department of Biological Sciences, Columbia University, New York, New York 10027, United States
| | - Teresa Palomero
- Institute for Cancer Genetics, Columbia University, New York, New York 10032, United States
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Roberto Etchenique
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIMAE, CONICET, Buenos Aires C1428EHA, Argentina
| |
Collapse
|
13
|
Jiang TT, Cao S, Kruglov O, Virmani A, Geskin LJ, Falo LD, Akilov OE. Deciphering Tumor Cell Evolution in Cutaneous T-Cell Lymphomas: Distinct Differentiation Trajectories in Mycosis Fungoides and Sézary Syndrome. J Invest Dermatol 2024; 144:1088-1098. [PMID: 38036289 PMCID: PMC11034798 DOI: 10.1016/j.jid.2023.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/08/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023]
Abstract
Cutaneous T-cell lymphomas are a heterogeneous group of neoplasms originating in the skin, with mycosis fungoides (MF) and Sézary syndrome (SS) representing the most common variants. The cellular origin of cutaneous lymphomas has remained controversial owing to their immense phenotypic heterogeneity that obfuscates lineage reconstruction on the basis of classical surface biomarkers. To overcome this heterogeneity and reconstruct the differentiation trajectory of malignant cells in MF and SS, TCR sequencing was performed in parallel with targeted transcriptomics at the single-cell resolution among cutaneous samples in MF and SS. Unsupervised lineage reconstruction showed that Sézary cells exist as a population of CD4+ T cells distinct from those in patch, plaque, and tumor MF. Further investigation of malignant cell heterogeneity in SS showed that Sézary cells phenotypically comprised at least 3 subsets on the basis of differential proliferation potentials and expression of exhaustion markers. A T helper 1-polarized cell type, intermediate cell type, and exhausted T helper 2-polarized cell type were identified, with T helper 1- and T helper 2-polarized cells displaying divergent proliferation potentials. Collectively, these findings provide evidence to clarify the relationship between MF and SS and reveal cell subsets in SS that suggest a possible mechanism for therapeutic resistance.
Collapse
Affiliation(s)
- Tony T Jiang
- Department of Dermatology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Simon Cao
- Department of Dermatology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Oleg Kruglov
- Department of Dermatology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Aman Virmani
- School of Art and Science, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Larisa J Geskin
- Department of Dermatology, Columbia University, New York, New York, USA
| | - Louis D Falo
- Department of Dermatology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Oleg E Akilov
- Department of Dermatology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
14
|
Sánchez-Beato M, Méndez M, Guirado M, Pedrosa L, Sequero S, Yanguas-Casás N, de la Cruz-Merino L, Gálvez L, Llanos M, García JF, Provencio M. A genetic profiling guideline to support diagnosis and clinical management of lymphomas. Clin Transl Oncol 2024; 26:1043-1062. [PMID: 37672206 PMCID: PMC11026206 DOI: 10.1007/s12094-023-03307-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/09/2023] [Indexed: 09/07/2023]
Abstract
The new lymphoma classifications (International Consensus Classification of Mature Lymphoid Neoplasms, and 5th World Health Organization Classification of Lymphoid Neoplasms) include genetics as an integral part of lymphoma diagnosis, allowing better lymphoma subclassification, patient risk stratification, and prediction of treatment response. Lymphomas are characterized by very few recurrent and disease-specific mutations, and most entities have a heterogenous genetic landscape with a long tail of recurrently mutated genes. Most of these occur at low frequencies, reflecting the clinical heterogeneity of lymphomas. Multiple studies have identified genetic markers that improve diagnostics and prognostication, and next-generation sequencing is becoming an essential tool in the clinical laboratory. This review provides a "next-generation sequencing" guide for lymphomas. It discusses the genetic alterations of the most frequent mature lymphoma entities with diagnostic, prognostic, and predictive potential and proposes targeted sequencing panels to detect mutations and copy-number alterations for B- and NK/T-cell lymphomas.
Collapse
Affiliation(s)
- Margarita Sánchez-Beato
- Servicio de Oncología Médica, Grupo de Investigación en Linfomas, Hospital Universitario Puerta de Hierro-Majadahonda, IDIPHISA, Madrid, Spain.
- Grupo Oncológico para el Tratamiento y Estudio de los Linfomas-GOTEL, Madrid, Spain.
| | - Miriam Méndez
- Servicio de Oncología Médica, Grupo de Investigación en Linfomas, Hospital Universitario Puerta de Hierro-Majadahonda, IDIPHISA, Madrid, Spain
- Grupo Oncológico para el Tratamiento y Estudio de los Linfomas-GOTEL, Madrid, Spain
- Servicio de Oncología Médica, Hospital Universitario Puerta de Hierro-Majadahonda, IDIPHISA, Madrid, Spain
| | - María Guirado
- Grupo Oncológico para el Tratamiento y Estudio de los Linfomas-GOTEL, Madrid, Spain
- Servicio de Oncología Médica, Hospital General Universitario de Elche, Alicante, Spain
| | - Lucía Pedrosa
- Servicio de Oncología Médica, Grupo de Investigación en Linfomas, Hospital Universitario Puerta de Hierro-Majadahonda, IDIPHISA, Madrid, Spain
| | - Silvia Sequero
- Grupo Oncológico para el Tratamiento y Estudio de los Linfomas-GOTEL, Madrid, Spain
- Servicio de Oncología Médica, Hospital Universitario San Cecilio, Granada, Spain
| | - Natalia Yanguas-Casás
- Servicio de Oncología Médica, Grupo de Investigación en Linfomas, Hospital Universitario Puerta de Hierro-Majadahonda, IDIPHISA, Madrid, Spain
| | - Luis de la Cruz-Merino
- Grupo Oncológico para el Tratamiento y Estudio de los Linfomas-GOTEL, Madrid, Spain
- Servicio de Oncología Médica, Facultad de Medicina, Hospital Universitario Virgen Macarena, Universidad de Sevilla, Instituto de Biomedicina de Sevilla (IBID)/CSIC, Seville, Spain
| | - Laura Gálvez
- Grupo Oncológico para el Tratamiento y Estudio de los Linfomas-GOTEL, Madrid, Spain
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria, Málaga, Spain
| | - Marta Llanos
- Grupo Oncológico para el Tratamiento y Estudio de los Linfomas-GOTEL, Madrid, Spain
- Servicio de Oncología Médica, Hospital Universitario de Canarias, La Laguna, Sta. Cruz de Tenerife, Spain
| | - Juan Fernando García
- Servicio de Anatomía Patológica, Hospital MD Anderson Cancer Center, Madrid, Spain
| | - Mariano Provencio
- Servicio de Oncología Médica, Grupo de Investigación en Linfomas, Hospital Universitario Puerta de Hierro-Majadahonda, IDIPHISA, Madrid, Spain
- Grupo Oncológico para el Tratamiento y Estudio de los Linfomas-GOTEL, Madrid, Spain
- Servicio de Oncología Médica, Departamento de Medicina, Facultad de Medicina, Hospital Universitario Puerta de Hierro-Majadahonda, Universidad Autónoma de Madrid, IDIPHISA, Madrid, Spain
| |
Collapse
|
15
|
Ødum AWF, Geisler C. Vitamin D in Cutaneous T-Cell Lymphoma. Cells 2024; 13:503. [PMID: 38534347 DOI: 10.3390/cells13060503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Cutaneous T-cell lymphoma (CTCL) is characterized by the proliferation of malignant T cells in inflamed skin lesions. Mycosis fungoides (MF)-the most common variant of CTCL-often presents with skin lesions around the abdomen and buttocks ("bathing suit" distribution), i.e., in skin areas devoid of sun-induced vitamin D. For decades, sunlight and vitamin D have been connected to CTCL. Thus, vitamin D induces apoptosis and inhibits the expression of cytokines in malignant T cells. Furthermore, CTCL patients often display vitamin D deficiency, whereas phototherapy induces vitamin D and has beneficial effects in CTCL, suggesting that light and vitamin D have beneficial/protective effects in CTCL. Inversely, vitamin D promotes T helper 2 (Th2) cell specific cytokine production, regulatory T cells, tolerogenic dendritic cells, as well as the expression of immune checkpoint molecules, all of which may have disease-promoting effects by stimulating malignant T-cell proliferation and inhibiting anticancer immunity. Studies on vitamin D treatment in CTCL patients showed conflicting results. Some studies found positive effects, others negative effects, while the largest study showed no apparent clinical effect. Taken together, vitamin D may have both pro- and anticancer effects in CTCL. The balance between the opposing effects of vitamin D in CTCL is likely influenced by treatment and may change during the disease course. Therefore, it remains to be discovered whether and how the effect of vitamin D can be tilted toward an anticancer response in CTCL.
Collapse
Affiliation(s)
- August-Witte Feentved Ødum
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Carsten Geisler
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
16
|
Iorgulescu JB, Medeiros LJ, Patel KP. Predictive and prognostic molecular biomarkers in lymphomas. Pathology 2024; 56:239-258. [PMID: 38216400 DOI: 10.1016/j.pathol.2023.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/14/2024]
Abstract
Recent advances in molecular diagnostics have markedly expanded our understanding of the genetic underpinnings of lymphomas and catalysed a transformation in not just how we classify lymphomas, but also how we treat, target, and monitor affected patients. Reflecting these advances, the World Health Organization Classification, International Consensus Classification, and National Comprehensive Cancer Network guidelines were recently updated to better integrate these molecular insights into clinical practice. We summarise here the molecular biomarkers of lymphomas with an emphasis on biomarkers that have well-supported prognostic and predictive utility, as well as emerging biomarkers that show promise for clinical practice. These biomarkers include: (1) diagnostic entity-defining genetic abnormalities [e.g., B-cell acute lymphoblastic leukaemia (B-ALL) with KMT2A rearrangement]; (2) molecular alterations that guide patients' prognoses (e.g., TP53 loss frequently conferring worse prognosis); (3) mutations that serve as the targets of, and often a source of acquired resistance to, small molecular inhibitors (e.g., ABL1 tyrosine kinase inhibitors for B-ALL BCR::ABL1, hindered by ABL1 kinase domain resistance mutations); (4) the growing incorporation of molecular measurable residual disease (MRD) in the management of lymphoma patients (e.g., molecular complete response and sequencing MRD-negative criteria in multiple myeloma). Altogether, our review spans the spectrum of lymphoma types, from the genetically defined subclasses of precursor B-cell lymphomas to the highly heterogeneous categories of small and large cell mature B-cell lymphomas, Hodgkin lymphomas, plasma cell neoplasms, and T/NK-cell lymphomas, and provides an expansive summary of our current understanding of their molecular pathology.
Collapse
Affiliation(s)
- J Bryan Iorgulescu
- Molecular Diagnostics Laboratory, Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - L Jeffrey Medeiros
- Molecular Diagnostics Laboratory, Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Keyur P Patel
- Molecular Diagnostics Laboratory, Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
17
|
Bordeaux ZA, Reddy SV, Choi J, Braun G, McKeel J, Lu W, Yossef SM, Ma EZ, West CE, Kwatra SG, Kwatra MM. Transcriptomic and proteomic analysis of tumor suppressive effects of GZ17-6.02 against mycosis fungoides. Sci Rep 2024; 14:1955. [PMID: 38263212 PMCID: PMC10805783 DOI: 10.1038/s41598-024-52544-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/19/2024] [Indexed: 01/25/2024] Open
Abstract
Mycosis fungoides (MF) is the most common form of cutaneous T-cell lymphoma (CTCL). Despite having a wide variety of therapeutic agents available for the treatment of MF, patients often suffer from a significant decrease in quality of life and rarely achieve long-term remission or complete cure, highlighting a need to develop novel therapeutic agents for this disease. The present study was undertaken to evaluate the efficacy of a novel anti-tumor agent, GZ17-6.02, which is composed of curcumin, harmine, and isovanillin, against MF in vitro and in murine models. Treatment of HH and MyLa cells with GZ17-6.02 inhibited the growth of both cell lines with IC50 ± standard errors for growth inhibition of 14.37 ± 1.19 µg/mL and 14.56 ± 1.35 µg/mL, respectively, and increased the percentage of cells in late apoptosis (p = .0304 for HH; p = .0301 for MyLa). Transcriptomic and proteomic analyses revealed that GZ17-6.02 suppressed several pathways, including tumor necrosis factor (TNF)-ɑ signaling via nuclear factor (NF)-kB, mammalian target of rapamycin complex (mTORC)1, and Pi3K/Akt/mTOR signaling. In a subcutaneous tumor model, GZ17-6.02 decreased tumor volume (p = .002) and weight (p = .009) compared to control conditions. Proteomic analysis of tumor samples showed that GZ17-6.02 suppressed the expression of several proteins that may promote CTCL growth, including mitogen-activated protein kinase (MAPK)1, MAPK3, Growth factor receptor bound protein (GRB)2, and Mediator of RAP80 interactions and targeting subunit of 40 kDa (MERIT)40.
Collapse
Affiliation(s)
- Zachary A Bordeaux
- Department of Dermatology, Johns Hopkins University School of Medicine, Cancer Research Building II, Suite 206 1550 Orleans Street, Baltimore, MD, 21231, USA
- Department of Anesthesiology, Duke University School of Medicine, Durham, USA
| | - Sriya V Reddy
- Department of Dermatology, Johns Hopkins University School of Medicine, Cancer Research Building II, Suite 206 1550 Orleans Street, Baltimore, MD, 21231, USA
- Department of Anesthesiology, Duke University School of Medicine, Durham, USA
| | - Justin Choi
- Department of Dermatology, Johns Hopkins University School of Medicine, Cancer Research Building II, Suite 206 1550 Orleans Street, Baltimore, MD, 21231, USA
- Department of Anesthesiology, Duke University School of Medicine, Durham, USA
| | - Gabriella Braun
- Department of Anesthesiology, Duke University School of Medicine, Durham, USA
| | - Jaimie McKeel
- Department of Anesthesiology, Duke University School of Medicine, Durham, USA
| | - Weiying Lu
- Department of Dermatology, Johns Hopkins University School of Medicine, Cancer Research Building II, Suite 206 1550 Orleans Street, Baltimore, MD, 21231, USA
- Department of Anesthesiology, Duke University School of Medicine, Durham, USA
| | - Selina M Yossef
- Department of Dermatology, Johns Hopkins University School of Medicine, Cancer Research Building II, Suite 206 1550 Orleans Street, Baltimore, MD, 21231, USA
- Department of Anesthesiology, Duke University School of Medicine, Durham, USA
| | - Emily Z Ma
- Department of Dermatology, Johns Hopkins University School of Medicine, Cancer Research Building II, Suite 206 1550 Orleans Street, Baltimore, MD, 21231, USA
| | - Cameron E West
- Genzada Pharmaceuticals, Hutchinson, USA
- US Dermatology Partners, Wichita, USA
| | - Shawn G Kwatra
- Department of Dermatology, Johns Hopkins University School of Medicine, Cancer Research Building II, Suite 206 1550 Orleans Street, Baltimore, MD, 21231, USA.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, USA.
| | - Madan M Kwatra
- Department of Anesthesiology, Duke University School of Medicine, Durham, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, USA
| |
Collapse
|
18
|
Zhang Y, Cheng K, Choi J. TCR Pathway Mutations in Mature T Cell Lymphomas. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1450-1458. [PMID: 37931208 PMCID: PMC10715708 DOI: 10.4049/jimmunol.2200682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 06/06/2023] [Indexed: 11/08/2023]
Abstract
Mature T cell lymphomas are heterogeneous neoplasms that are aggressive and resistant to treatment. Many of these cancers retain immunological properties of their cell of origin. They express cytokines, cytotoxic enzymes, and cell surface ligands normally induced by TCR signaling in untransformed T cells. Until recently, their molecular mechanisms were unclear. Recently, high-dimensional studies have transformed our understanding of their cellular and genetic characteristics. Somatic mutations in the TCR signaling pathway drive lymphomagenesis by disrupting autoinhibitory domains, increasing affinity to ligands, and/or inducing TCR-independent signaling. Collectively, most of these mutations augment signaling pathways downstream of the TCR. Emerging data suggest that these mutations not only drive proliferation but also determine lymphoma immunophenotypes. For example, RHOA mutations are sufficient to induce disease-relevant CD4+ T follicular helper cell phenotypes. In this review, we describe how mutations in the TCR signaling pathway elucidate lymphoma pathophysiology but also provide insights into broader T cell biology.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kathleen Cheng
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jaehyuk Choi
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
19
|
Tigu AB, Bancos A. The Role of Epigenetic Modifier Mutations in Peripheral T-Cell Lymphomas. Curr Issues Mol Biol 2023; 45:8974-8988. [PMID: 37998740 PMCID: PMC10670124 DOI: 10.3390/cimb45110563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/27/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
Peripheral T-cell lymphomas (PTCLs) are a group of diseases with a low incidence, high degree of heterogeneity, and a dismal prognosis in most cases. Because of the low incidence of these diseases, there have been few therapeutic novelties developed over time. Nevertheless, this fact is changing presently as epigenetic modifiers have been shown to be recurrently mutated in some types of PTCLs, especially in the cases of PTCLs not otherwise specified (PTCL-NOS), T follicular helper (TFH), and angioimmunoblastic T-cell lymphoma (AITL). These have brought about more insight into PTCL biology, especially in the case of PTCLs arising from TFH lymphocytes. From a biological perspective, it has been observed that ten-eleven translocators (TET2) mutated T lymphocytes tend to polarize to TFH, while Tregs lose their inhibitory properties. IDH2 R172 was shown to have inhibitory effects on TET2, mimicking the effects of TET2 mutations, as well as having effects on histone methylation. DNA methyltransferase 3A (DNMT3A) loss-of-function, although it was shown to have opposite effects to TET2 from an inflammatory perspective, was also shown to increase the number of T lymphocyte progenitors. Aside from bringing about more knowledge of PTCL biology, these mutations were shown to increase the sensitivity of PTCLs to certain epigenetic therapies, like hypomethylating agents (HMAs) and histone deacetylase inhibitors (HDACis). Thus, to answer the question from the title of this review: We found the Achilles heel, but only for one of the Achilles.
Collapse
Affiliation(s)
- Adrian-Bogdan Tigu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania;
- Academy of Romanian Scientists, Ilfov 3, 050044 Bucharest, Romania
| | - Anamaria Bancos
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania;
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
20
|
Bauman BM, Dorjbal B, Pittaluga S, Zhang Y, Niemela JE, Stoddard JL, Rosenzweig SD, Anderson R, Guilcher GMT, Auer I, Perrier R, Campbell M, Bhandal SK, Alba C, Sukumar G, Dalgard CL, Schelotto M, Wright NAM, Su HC, Snow AL. Subcutaneous panniculitis-like T-cell lymphoma in two unrelated individuals with BENTA disease. Clin Immunol 2023; 255:109732. [PMID: 37562721 PMCID: PMC10551883 DOI: 10.1016/j.clim.2023.109732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/12/2023] [Accepted: 07/19/2023] [Indexed: 08/12/2023]
Abstract
Subcutaneous panniculitis-like T-cell lymphoma (SPTCL) is a rare primary cutaneous non-Hodgkin lymphoma involving CD8+ T cells, the genetic underpinnings of which remain incompletely understood. Here we report two unrelated patients with B cell Expansion with NF-κB and T cell Anergy (BENTA) disease and a novel presentation of SPTCL. Patient 1 presented early in life with recurrent infections and B cell lymphocytosis, linked to a novel gain-of-function (GOF) CARD11 mutation (p.Lys238del). He developed SPTCL-like lesions and membranoproliferative glomerulonephritis by age 2, treated successfully with cyclosporine. Patient 2 presented at 13 months with splenomegaly, lymphadenopathy, and SPTCL with evidence of hemophagocytic lymphohistiocytosis. Genetic analysis revealed two in cis germline GOF CARD11 variants (p.Glu121Asp/p.Gly126Ser). Autologous bone marrow transplant resulted in SPTCL remission despite persistent B cell lymphocytosis. These cases illuminate an unusual pathological manifestation for BENTA disease, suggesting that CARD11 GOF mutations can manifest in cutaneous CD4+and CD8+ T cell malignancies.
Collapse
Affiliation(s)
- Bradly M Bauman
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Batsukh Dorjbal
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Stefania Pittaluga
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yu Zhang
- Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA; NIAID Clinical Genomics Program, National Institutes of Health, Bethesda, MD, USA
| | - Julie E Niemela
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Jennifer L Stoddard
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Ronald Anderson
- Department of Pediatrics, Alberta Children's Hospital, University of Calgary, Calgary, AB, Canada
| | - Gregory M T Guilcher
- Department of Pediatrics, Alberta Children's Hospital, University of Calgary, Calgary, AB, Canada
| | - Iwona Auer
- Alberta Precision Laboratories, University of Calgary, Calgary, AB, Canada
| | - Renee Perrier
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada
| | | | | | - Camille Alba
- The American Genome Center, Precision Medicine Initiative for Military Medical Education and Research (PRIMER), Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Gauthaman Sukumar
- The American Genome Center, Precision Medicine Initiative for Military Medical Education and Research (PRIMER), Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Clifton L Dalgard
- The American Genome Center, Precision Medicine Initiative for Military Medical Education and Research (PRIMER), Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Magdalena Schelotto
- Department of Pediatric Hematology and Oncology, Fundación Pérez Scremini, Hospital Pereira Rossell, Montevideo, Uruguay
| | - Nicola A M Wright
- Department of Pediatrics, Alberta Children's Hospital, University of Calgary, Calgary, AB, Canada
| | - Helen C Su
- Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA; NIAID Clinical Genomics Program, National Institutes of Health, Bethesda, MD, USA
| | - Andrew L Snow
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
21
|
Gaillard JB, Chapiro E, Daudignon A, Nadal N, Penther D, Chauzeix J, Nguyen-Khac F, Veronese L, Lefebvre C. Cytogenetics in the management of mature T-cell and NK-cell neoplasms: Guidelines from the Groupe Francophone de Cytogénétique Hématologique (GFCH). Curr Res Transl Med 2023; 71:103428. [PMID: 38016421 DOI: 10.1016/j.retram.2023.103428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/30/2023]
Abstract
Mature T-cell and natural killer (NK)-cell neoplasms (MTNKNs) are a highly heterogeneous group of lymphomas that represent 10-15 % of lymphoid neoplasms and have usually an aggressive behavior. Diagnosis can be challenging due to their overlapping clinical, histological and immunophenotypic features. Genetic data are not a routine component of the diagnostic algorithm for most MTNKNs. Indeed, unlike B-cell lymphomas, the genomic landscape of MTNKNs is not fully understood. Only few characteristic rearrangements can be easily identified with conventional cytogenetic methods and are an integral part of the diagnostic criteria, for instance the t(14;14)/inv(14) or t(X;14) abnormality harbored by 95 % of patients with T-cell prolymphocytic leukemia, or the ALK gene translocation observed in some forms of anaplastic large cell lymphoma. However, advances in molecular and cytogenetic techniques have brought new insights into MTNKN pathogenesis. Several recurrent genetic alterations have been identified, such as chromosomal losses involving tumor suppressor genes (SETD2, CDKN2A, TP53) and gains involving oncogenes (MYC), activating mutations in signaling pathways (JAK-STAT, RAS), and epigenetic dysregulation, that have improved our understanding of these pathologies. This work provides an overview of the cytogenetics knowledge in MTNKNs in the context of the new World Health Organization classification and the International Consensus Classification of hematolymphoid tumors. It describes key genetic alterations and their clinical implications. It also proposes recommendations on cytogenetic methods for MTNKN diagnosis.
Collapse
Affiliation(s)
- Jean-Baptiste Gaillard
- Unité de Génétique Chromosomique, Service de Génétique moléculaire et cytogénomique, CHU Montpellier, Montpellier, France.
| | - Elise Chapiro
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS_1138, Drug Resistance in Hematological Malignancies Team, F-75006 Paris, France; Sorbonne Université, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Service d'Hématologie Biologique, F-75013 Paris, France
| | - Agnès Daudignon
- Institut de Génétique Médicale - Hôpital Jeanne de Flandre - CHRU de Lille, France
| | - Nathalie Nadal
- Service de génétique chromosomique et moléculaire, CHU Dijon, Dijon, France
| | - Dominique Penther
- Laboratoire de Génétique Oncologique, Centre Henri Becquerel, Rouen, France
| | - Jasmine Chauzeix
- Service d'Hématologie biologique CHU de Limoges - CRIBL, UMR CNRS 7276/INSERM 1262, Limoges, France
| | - Florence Nguyen-Khac
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS_1138, Drug Resistance in Hematological Malignancies Team, F-75006 Paris, France; Sorbonne Université, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Service d'Hématologie Biologique, F-75013 Paris, France
| | - Lauren Veronese
- Service de Cytogénétique Médicale, CHU Estaing, 1 place Lucie et Raymond Aubrac, 63003 Clermont-Ferrand; EA7453 CHELTER, Université Clermont Auvergne, France
| | - Christine Lefebvre
- Unité de Génétique des Hémopathies, Service d'Hématologie Biologique, CHU Grenoble Alpes, Grenoble, France
| |
Collapse
|
22
|
Carty SA. Biological insights into the role of TET2 in T cell lymphomas. Front Oncol 2023; 13:1199108. [PMID: 37841428 PMCID: PMC10570544 DOI: 10.3389/fonc.2023.1199108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
Peripheral T cell lymphomas (PTCL) are a heterogenous group of mature T cell lymphomas with an overall poor prognosis. Understanding the molecular heterogeneity in PTCL subtypes may lead to improved understanding of the underlying biological mechanisms driving these diseases. Mutations in the epigenetic regulator TET2 are among the most frequent mutations identified in PTCL, with the highest frequency in angioimmunoblastic T cell lymphomas and other nodal T follicular helper (TFH) lymphomas. This review dissects the role of TET2 in nodal TFH cell lymphomas with a focus on emerging biological insights into the molecular mechanism promoting lymphomagenesis and the potential for epigenetic therapies to improve clinical outcomes.
Collapse
Affiliation(s)
- Shannon A. Carty
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
23
|
Velatooru LR, Hu CH, Bijani P, Wang X, Bojaxhi P, Chen H, Duvic M, Ni X. New JAK3-INSL3 Fusion Transcript-An Oncogenic Event in Cutaneous T-Cell Lymphoma. Cells 2023; 12:2381. [PMID: 37830594 PMCID: PMC10572011 DOI: 10.3390/cells12192381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023] Open
Abstract
Constitutively activated tyrosine kinase JAK3 is implicated in the pathogenesis of cutaneous T-cell lymphomas (CTCL). The mechanisms of constitutive JAK3 activation are unknown although a JAK3 mutation was reported in a small portion of CTCL patients. In this study, we assessed the oncogenic roles of a newly identified JAK3-INSL3 fusion transcript in CTCL. Total RNA from malignant T-cells in 33 patients with Sézary syndrome (SS), a leukemic form of CTCL, was examined for the new JAK3-INSL3 fusion transcript by RT-PCR followed by Sanger sequencing. The expression levels were assessed by qPCR and correlated with patient survivals. Knockdown and/or knockout assays were conducted in two CTCL cell lines (MJ cells and HH cells) by RNA interference and/or CRISPR/Cas9 gene editing. SS patients expressed heterogeneous levels of a new JAK3-INSL3 fusion transcript. Patients with high-level expression of JAK3-INSL3 showed poorer 5-year survival (n = 19, 42.1%) than patients with low-level expression (n = 14, 78.6%). CTCL cells transduced with specific shRNAs or sgRNAs had decreased new JAK3-INSL3 fusion transcript expression, reduced cell proliferation, and decreased colony formation. In NSG xenograft mice, smaller tumor sizes were observed in MJ cells transduced with specific shRNAs than cells transduced with controls. Our results suggest that the newly identified JAK3-INSL3 fusion transcript confers an oncogenic event in CTCL.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiao Ni
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (L.R.V.); (C.H.H.); (P.B.); (X.W.); (P.B.); (H.C.); (M.D.)
| |
Collapse
|
24
|
Harro CM, Sprenger KB, Chaurio RA, Powers JJ, Innamarato P, Anadon CM, Zhang Y, Biswas S, Mandal G, Mine JA, Cortina C, Nagy MZ, Martin AL, Handley KF, Borjas GJ, Chen PL, Pinilla-Ibarz J, Sokol L, Yu X, Conejo-Garcia JR. Sézary syndrome originates from heavily mutated hematopoietic progenitors. Blood Adv 2023; 7:5586-5602. [PMID: 37531660 PMCID: PMC10514084 DOI: 10.1182/bloodadvances.2022008562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/04/2023] Open
Abstract
The pathogenesis of cutaneous T-cell lymphoma (CTCL) remains unclear. Using single-cell RNA or T-cell receptor (TCR) sequencing of 32 619 CD3+CD4+ and CD26+/CD7+ and 29 932 CD3+CD4+ and CD26-/CD7- lymphocytes from the peripheral blood of 7 patients with CTCL, coupled to single-cell ATAC-sequencing of 26,411 CD3+CD4+ and CD26+/CD7+ and 33 841 CD3+CD4+ and CD26-/CD7- lymphocytes, we show that tumor cells in Sézary syndrome and mycosis fungoides (MF) exhibit different phenotypes and trajectories of differentiation. When compared to MF, Sézary cells exhibit narrower repertoires of TCRs and exhibit clonal enrichment. Surprisingly, we identified ≥200 mutations in hematopoietic stem cells from multiple patients with Sézary syndrome. Mutations in key oncogenes were also present in peripheral Sézary cells, which also showed the hallmarks of recent thymic egression. Together our data suggest that CTCL arises from mutated lymphocyte progenitors that acquire TCRs in the thymus, which complete their malignant transformation in the periphery.
Collapse
Affiliation(s)
- Carly M. Harro
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL
- Cancer Biology PhD Program, College of Arts and Sciences, University of South Florida, Tampa, FL
| | - Kimberly B. Sprenger
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Ricardo A. Chaurio
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
- Department of Immunology, Duke School of Medicine, Durham, NC
| | - John J. Powers
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Patrick Innamarato
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Carmen M. Anadon
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
- Department of Immunology, Duke School of Medicine, Durham, NC
| | - Yumeng Zhang
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Subir Biswas
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, India
| | - Gunjan Mandal
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
- Department of Biotechnology, Institute of Life Sciences, Bhubaneswar, India
| | - Jessica A. Mine
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
- Department of Immunology, Duke School of Medicine, Durham, NC
| | - Carla Cortina
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Mate Z. Nagy
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Alexandra L. Martin
- Department of Gynecologic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Katelyn F. Handley
- Department of Gynecologic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Gustavo J. Borjas
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Pei-Ling Chen
- Department of Pathology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Javier Pinilla-Ibarz
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Lubomir Sokol
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Xiaoqing Yu
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Jose R. Conejo-Garcia
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
- Department of Immunology, Duke School of Medicine, Durham, NC
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
- Department of Gynecologic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| |
Collapse
|
25
|
Soh PXY, Khatkar MS, Williamson P. Lymphoma in Border Collies: Genome-Wide Association and Pedigree Analysis. Vet Sci 2023; 10:581. [PMID: 37756103 PMCID: PMC10536503 DOI: 10.3390/vetsci10090581] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
There has been considerable interest in studying cancer in dogs and its potential as a model system for humans. One area of research has been the search for genetic risk variants in canine lymphoma, which is amongst the most common canine cancers. Previous studies have focused on a limited number of breeds, but none have included Border Collies. The aims of this study were to identify relationships between Border Collie lymphoma cases through an extensive pedigree investigation and to utilise relationship information to conduct genome-wide association study (GWAS) analyses to identify risk regions associated with lymphoma. The expanded pedigree analysis included 83,000 Border Collies, with 71 identified lymphoma cases. The analysis identified affected close relatives, and a common ancestor was identified for 54 cases. For the genomic study, a GWAS was designed to incorporate lymphoma cases, putative "carriers", and controls. A case-control GWAS was also conducted as a comparison. Both analyses showed significant SNPs in regions on chromosomes 18 and 27. Putative top candidate genes from these regions included DLA-79, WNT10B, LMBR1L, KMT2D, and CCNT1.
Collapse
Affiliation(s)
- Pamela Xing Yi Soh
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia;
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Mehar Singh Khatkar
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia;
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371, Australia
| | - Peter Williamson
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia;
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia;
| |
Collapse
|
26
|
Yadav M, Uikey BN, Rathore SS, Gupta P, Kashyap D, Kumar C, Shukla D, Vijayamahantesh, Chandel AS, Ahirwar B, Singh AK, Suman SS, Priyadarshi A, Amit A. Role of cytokine in malignant T-cell metabolism and subsequent alternation in T-cell tumor microenvironment. Front Oncol 2023; 13:1235711. [PMID: 37746258 PMCID: PMC10513393 DOI: 10.3389/fonc.2023.1235711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023] Open
Abstract
T cells are an important component of adaptive immunity and T-cell-derived lymphomas are very complex due to many functional sub-types and functional elasticity of T-cells. As with other tumors, tissues specific factors are crucial in the development of T-cell lymphomas. In addition to neoplastic cells, T- cell lymphomas consist of a tumor micro-environment composed of normal cells and stroma. Numerous studies established the qualitative and quantitative differences between the tumor microenvironment and normal cell surroundings. Interaction between the various component of the tumor microenvironment is crucial since tumor cells can change the microenvironment and vice versa. In normal T-cell development, T-cells must respond to various stimulants deferentially and during these courses of adaptation. T-cells undergo various metabolic alterations. From the stage of quiescence to attention of fully active form T-cells undergoes various stage in terms of metabolic activity. Predominantly quiescent T-cells have ATP-generating metabolism while during the proliferative stage, their metabolism tilted towards the growth-promoting pathways. In addition to this, a functionally different subset of T-cells requires to activate the different metabolic pathways, and consequently, this regulation of the metabolic pathway control activation and function of T-cells. So, it is obvious that dynamic, and well-regulated metabolic pathways are important for the normal functioning of T-cells and their interaction with the microenvironment. There are various cell signaling mechanisms of metabolism are involved in this regulation and more and more studies have suggested the involvement of additional signaling in the development of the overall metabolic phenotype of T cells. These important signaling mediators include cytokines and hormones. The impact and role of these mediators especially the cytokines on the interplay between T-cell metabolism and the interaction of T-cells with their micro-environments in the context of T-cells lymphomas are discussed in this review article.
Collapse
Affiliation(s)
- Megha Yadav
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Blessi N. Uikey
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | | | - Priyanka Gupta
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Diksha Kashyap
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Chanchal Kumar
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Dhananjay Shukla
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Vijayamahantesh
- Department of Immunology and Microbiology, University of Missouri, Columbia, SC, United States
| | - Arvind Singh Chandel
- Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo, Japan
| | - Bharti Ahirwar
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | | | - Shashi Shekhar Suman
- Department of Zoology, Udayana Charya (UR) College, Lalit Narayan Mithila University, Darbhanga, India
| | - Amit Priyadarshi
- Department of Zoology, Veer Kunwar Singh University, Arrah, India
| | - Ajay Amit
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| |
Collapse
|
27
|
Cutaneous Lymphoma and Antibody-Directed Therapies. Antibodies (Basel) 2023; 12:antib12010021. [PMID: 36975368 PMCID: PMC10045448 DOI: 10.3390/antib12010021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The introduction of monoclonal antibodies such as rituximab to the treatment of cancer has greatly advanced the treatment scenario in onco-hematology. However, the response to these agents may be limited by insufficient efficacy or resistance. Antibody–drug conjugates are an attractive strategy to deliver payloads of toxicity or radiation with high selectivity toward malignant targets and limited unwanted effects. Primary cutaneous lymphomas are a heterogeneous group of disorders and a current area of unmet need in dermato-oncology due to the limited options available for advanced cases. This review briefly summarizes our current understanding of T and B cell lymphomagenesis, with a focus on recognized molecular alterations that may provide investigative therapeutic targets. The authors reviewed antibody-directed therapies investigated in the setting of lymphoma: this term includes a broad spectrum of approaches, from antibody–drug conjugates such as brentuximab vedotin, to bi-specific antibodies, antibody combinations, antibody-conjugated nanotherapeutics, radioimmunotherapy and, finally, photoimmunotherapy with specific antibody–photoadsorber conjugates, as an attractive strategy in development for the future management of cutaneous lymphoma.
Collapse
|
28
|
Schaefer L, Comfere N, Sokumbi O. Development of Cutaneous T-Cell Lymphoma Following Biologic Treatment: A Systematic Review. Am J Clin Dermatol 2023; 24:153-164. [PMID: 36627479 DOI: 10.1007/s40257-022-00749-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Cutaneous T-cell lymphoma following biologic therapy is extremely rare. OBJECTIVE The aim of this systematic review was to investigate the development of cutaneous T-cell lymphoma (CTCL) following treatment with a biologic agent. METHODS A systematic literature review was performed for patients who developed CTCL after exposure to biologic therapy. Works were limited to English language and excluded animal studies, guidelines, and protocols. Potentially eligible titles were identified using controlled vocabulary in tandem with key words. The search strategy was peer-reviewed prior to execution. RESULTS Twenty-eight total studies revealed sixty-two patients who developed CTCL following exposure to a biologic agent. Of these, 44% were Caucasian, and the median age at diagnosis was 56 years. Seventy-six percent of patients received biologic therapy for a primary inflammatory skin condition. Dupilumab was the most reported (42%) agent amongst the cohort. The median time from initiation of the biologic agent to diagnosis of CTCL in these cases was 4 months (range: 0-84). Mycosis fungoides (65%) and Sézary syndrome (10%) were the most common subtypes of CTCL diagnosed. Twenty-one (34%) patients were reported to be alive with disease, outcome was not reported in 21 patients (34%), ten patients (16%) were alive and in complete remission, eight patients (13%) died of disease and two patients (3%) died due to other causes. CONCLUSION While biologic agents may have a role in the development of CTCL, in order to definitively elucidate their role, more methodologically robust studies (such as those that utilize population databases) would need to occur.
Collapse
Affiliation(s)
| | - Nneka Comfere
- Department of Dermatology, Mayo Clinic, Rochester, MN, USA.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Olayemi Sokumbi
- Department of Dermatology, Mayo Clinic, Jacksonville, FL, USA. .,Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
29
|
Andrades A, Peinado P, Alvarez-Perez JC, Sanjuan-Hidalgo J, García DJ, Arenas AM, Matia-González AM, Medina PP. SWI/SNF complexes in hematological malignancies: biological implications and therapeutic opportunities. Mol Cancer 2023; 22:39. [PMID: 36810086 PMCID: PMC9942420 DOI: 10.1186/s12943-023-01736-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/30/2023] [Indexed: 02/23/2023] Open
Abstract
Hematological malignancies are a highly heterogeneous group of diseases with varied molecular and phenotypical characteristics. SWI/SNF (SWItch/Sucrose Non-Fermentable) chromatin remodeling complexes play significant roles in the regulation of gene expression, being essential for processes such as cell maintenance and differentiation in hematopoietic stem cells. Furthermore, alterations in SWI/SNF complex subunits, especially in ARID1A/1B/2, SMARCA2/4, and BCL7A, are highly recurrent across a wide variety of lymphoid and myeloid malignancies. Most genetic alterations cause a loss of function of the subunit, suggesting a tumor suppressor role. However, SWI/SNF subunits can also be required for tumor maintenance or even play an oncogenic role in certain disease contexts. The recurrent alterations of SWI/SNF subunits highlight not only the biological relevance of SWI/SNF complexes in hematological malignancies but also their clinical potential. In particular, increasing evidence has shown that mutations in SWI/SNF complex subunits confer resistance to several antineoplastic agents routinely used for the treatment of hematological malignancies. Furthermore, mutations in SWI/SNF subunits often create synthetic lethality relationships with other SWI/SNF or non-SWI/SNF proteins that could be exploited therapeutically. In conclusion, SWI/SNF complexes are recurrently altered in hematological malignancies and some SWI/SNF subunits may be essential for tumor maintenance. These alterations, as well as their synthetic lethal relationships with SWI/SNF and non-SWI/SNF proteins, may be pharmacologically exploited for the treatment of diverse hematological cancers.
Collapse
Affiliation(s)
- Alvaro Andrades
- grid.4489.10000000121678994Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain ,grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Paola Peinado
- grid.4489.10000000121678994Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain ,grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain ,grid.451388.30000 0004 1795 1830Present Address: The Francis Crick Institute, London, UK
| | - Juan Carlos Alvarez-Perez
- grid.4489.10000000121678994Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain ,grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Juan Sanjuan-Hidalgo
- grid.4489.10000000121678994Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain ,grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain
| | - Daniel J. García
- grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain ,grid.4489.10000000121678994Department of Biochemistry and Molecular Biology III and Immunology, University of Granada, Granada, Spain
| | - Alberto M. Arenas
- grid.4489.10000000121678994Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain ,grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Ana M. Matia-González
- grid.4489.10000000121678994Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain ,grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Pedro P. Medina
- grid.4489.10000000121678994Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain ,grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| |
Collapse
|
30
|
Khodadoust MS, Mou E, Kim YH. Integrating novel agents into the treatment of advanced mycosis fungoides and Sézary syndrome. Blood 2023; 141:695-703. [PMID: 36379025 DOI: 10.1182/blood.2020008241] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/04/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022] Open
Abstract
Agents targeting the unique biology of mycosis fungoides and Sézary syndrome are quickly being incorporated into clinical management. With these new therapies, we are now capable of inducing more durable responses and even complete remissions in advanced disease, outcomes which were exceedingly rare with prior therapies. Yet, even this new generation of therapies typically produce objective responses in only a minority of patients. As our therapeutic options increase, we are now challenged with selecting treatments from a growing list of options. To gain the full benefit of these novel agents, we must develop strategies to match treatments for the patients most likely to benefit from them. Here, we consider both the current approaches to treatment selection based on clinical features and the future of molecular biomarker-guided therapy for patients with this heterogeneous disease.
Collapse
Affiliation(s)
- Michael S Khodadoust
- Division of Oncology, Stanford University, Stanford, CA
- Department of Dermatology, Stanford University, Stanford, CA
| | - Eric Mou
- Division of Hematology, Oncology, and Blood & Marrow Transplantation, University of Iowa, Iowa City, IA
| | - Youn H Kim
- Division of Oncology, Stanford University, Stanford, CA
- Department of Dermatology, Stanford University, Stanford, CA
| |
Collapse
|
31
|
Ren J, Qu R, Rahman NT, Lewis JM, King ALO, Liao X, Mirza FN, Carlson KR, Huang Y, Gigante S, Evans B, Rajendran BK, Xu S, Wang G, Foss FM, Damsky W, Kluger Y, Krishnaswamy S, Girardi M. Integrated transcriptome and trajectory analysis of cutaneous T-cell lymphoma identifies putative precancer populations. Blood Adv 2023; 7:445-457. [PMID: 35947128 PMCID: PMC9979716 DOI: 10.1182/bloodadvances.2022008168] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/05/2022] [Accepted: 07/20/2022] [Indexed: 02/07/2023] Open
Abstract
The incidence of cutaneous T-cell lymphoma (CTCL) increases with age, and blood involvement portends a worse prognosis. To advance our understanding of the development of CTCL and identify potential therapeutic targets, we performed integrative analyses of paired single-cell RNA and T-cell receptor (TCR) sequencing of peripheral blood CD4+ T cells from patients with CTCL to reveal disease-unifying features. The malignant CD4+ T cells of CTCL showed highly diverse transcriptomic profiles across patients, with most displaying a mature Th2 differentiation and T-cell exhaustion phenotype. TCR-CDR3 peptide prediction analysis suggested limited diversity between CTCL samples, consistent with a role for a common antigenic stimulus. Potential of heat diffusion for affinity-based trajectory embedding transition analysis identified putative precancerous circulating populations characterized by an intermediate stage of gene expression and mutation level between the normal CD4+ T cells and malignant CTCL cells. We further revealed the therapeutic potential of targeting CD82 and JAK that endow the malignant CTCL cells with survival and proliferation advantages.
Collapse
Affiliation(s)
- Jingjing Ren
- Department of Dermatology, Yale School of Medicine, New Haven, CT
| | - Rihao Qu
- Department of Immunobiology, Yale School of Medicine, New Haven, CT
- Department of Pathology, Yale School of Medicine, New Haven, CT
| | - Nur-Taz Rahman
- Bioinformatics Support Program, Cushing/Whitney Medical Library, Yale School of Medicine, New Haven, CT
| | - Julia M. Lewis
- Department of Dermatology, Yale School of Medicine, New Haven, CT
| | | | - Xiaofeng Liao
- Department of Pharmacology, Yale School of Medicine, Yale University, New Haven, CT
| | - Fatima N. Mirza
- Department of Dermatology, Yale School of Medicine, New Haven, CT
| | - Kacie R. Carlson
- Department of Dermatology, Yale School of Medicine, New Haven, CT
| | - Yaqing Huang
- Department of Pathology, Yale School of Medicine, New Haven, CT
| | - Scott Gigante
- Computational Biology and Bioinformatics Program, Yale University, New Haven, CT
| | - Benjamin Evans
- Yale Center for Research Computing, Yale University, New Haven, CT
| | | | - Suzanne Xu
- Department of Dermatology, Yale School of Medicine, New Haven, CT
| | - Guilin Wang
- Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT
| | - Francine M. Foss
- Section of Medical Oncology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - William Damsky
- Department of Dermatology, Yale School of Medicine, New Haven, CT
- Department of Pathology, Yale School of Medicine, New Haven, CT
| | - Yuval Kluger
- Department of Pathology, Yale School of Medicine, New Haven, CT
| | | | - Michael Girardi
- Department of Dermatology, Yale School of Medicine, New Haven, CT
- Correspondence: Michael Girardi, Department of Dermatology, Yale University School of Medicine, 333 Cedar St, PO Box 208059, New Haven, CT 06520;
| |
Collapse
|
32
|
Lampson BL, Gupta A, Tyekucheva S, Mashima K, Petráčková A, Wang Z, Wojciechowska N, Shaughnessy CJ, Baker PO, Fernandes SM, Shupe S, Machado JH, Fardoun R, Kim AS, Brown JR. Rare Germline ATM Variants Influence the Development of Chronic Lymphocytic Leukemia. J Clin Oncol 2023; 41:1116-1128. [PMID: 36315919 PMCID: PMC9928739 DOI: 10.1200/jco.22.00269] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Germline missense variants of unknown significance in cancer-related genes are increasingly being identified with the expanding use of next-generation sequencing. The ataxia telangiectasia-mutated (ATM) gene on chromosome 11 has more than 1,000 germline missense variants of unknown significance and is a tumor suppressor. We aimed to determine if rare germline ATM variants are more frequent in chronic lymphocytic leukemia (CLL) compared with other hematologic malignancies and if they influence the clinical characteristics of CLL. METHODS We identified 3,128 patients (including 825 patients with CLL) in our hematologic malignancy clinic who had received clinical-grade sequencing of the entire coding region of ATM. We ascertained the comparative frequencies of germline ATM variants in categories of hematologic neoplasms, and, in patients with CLL, we determined whether these variants affected CLL-associated characteristics such as somatic 11q deletion. RESULTS Rare germline ATM variants are present in 24% of patients with CLL, significantly greater than that in patients with other lymphoid malignancies (16% prevalence), myeloid disease (15%), or no hematologic neoplasm (14%). Patients with CLL with germline ATM variants are younger at diagnosis and twice as likely to have 11q deletion. The ATM variant p.L2307F is present in 3% of patients with CLL, is associated with a three-fold increase in rates of somatic 11q deletion, and is a hypomorph in cell-based assays. CONCLUSION Germline ATM variants cluster within CLL and affect the phenotype of CLL that develops, implying that some of these variants (such as ATM p.L2307F) have functional significance and should not be ignored. Further studies are needed to determine whether these variants affect the response to therapy or account for some of the inherited risk of CLL.
Collapse
Affiliation(s)
- Benjamin L. Lampson
- Division of Hematologic Malignancies and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Aditi Gupta
- Division of Hematologic Malignancies and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | | | - Kiyomi Mashima
- Division of Hematologic Malignancies and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Anna Petráčková
- Department of Immunology, Palacký University, Olomouc, Czech Republic
| | - Zixu Wang
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
| | - Natalia Wojciechowska
- Department of Pathology, Brigham and Women's Hospital, Boston, MA
- Current Address: Wrocław Medical University, Wrocław, Poland
| | - Conner J. Shaughnessy
- Division of Hematologic Malignancies and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Peter O. Baker
- Division of Hematologic Malignancies and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Stacey M. Fernandes
- Division of Hematologic Malignancies and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Samantha Shupe
- Division of Hematologic Malignancies and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - John-Hanson Machado
- Division of Hematologic Malignancies and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Rayan Fardoun
- Division of Hematologic Malignancies and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Annette S. Kim
- Department of Pathology, Brigham and Women's Hospital, Boston, MA
| | - Jennifer R. Brown
- Division of Hematologic Malignancies and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|
33
|
Prawiro C, Bunney TD, Kampyli C, Yaguchi H, Katan M, Bangham CRM. A frequent PLCγ1 mutation in adult T-cell leukemia/lymphoma determines functional properties of the malignant cells. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166601. [PMID: 36442790 DOI: 10.1016/j.bbadis.2022.166601] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/27/2022] [Accepted: 11/08/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Development of adult T-cell leukemia/lymphoma (ATL) involves human T-cell leukemia virus type 1 (HTLV-1) infection and accumulation of somatic mutations. The most frequently mutated gene in ATL (36 % of cases) is phospholipase C gamma1 (PLCG1). PLCG1 is also frequently mutated in other T-cell lymphomas. However, the functional consequences of the PLCG1 mutations in cancer cells have not been characterized. METHODS We compared the activity of the wild-type PLCγ1 with that of a mutant carrying a hot-spot mutation of PLCγ1 (S345F) observed in ATL, both in cells and in cell-free assays. To analyse the impact of the mutation on cellular properties, we quantified cellular proliferation, aggregation, chemotaxis and apoptosis by live cell-imaging in an S345F+ ATL-derived cell line (KK1) and a KK1 cell line in which we reverted the mutation to the wild-type sequence using CRISPR/Cas9 and homology-directed repair. FINDINGS The PLCγ1 S345F mutation results in an increase of basal PLC activity in vitro and in different cell types. This higher basal activity is further enhanced by upstream signalling. Reversion of the S345F mutation in the KK1 cell line resulted in reduction of the PLC activity, lower rates of proliferation and aggregation, and a marked reduction in chemotaxis towards CCL22. The PLCγ1-pathway inhibitors ibrutinib and ritonavir reduced both the PLC activity and the tested functions of KK1 cells. INTERPRETATION Consistent with observations from clinical studies, our data provide direct evidence that activated variants of the PLCγ1 enzyme contribute to the properties of the malignant T-cell clone in ATL. FUNDING MRC (UK) Project Grant (P028160).
Collapse
Affiliation(s)
- Christy Prawiro
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Tom D Bunney
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
| | - Charis Kampyli
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
| | - Hiroko Yaguchi
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Matilda Katan
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK.
| | - Charles R M Bangham
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
34
|
Targeting Pim kinases in hematological cancers: molecular and clinical review. Mol Cancer 2023; 22:18. [PMID: 36694243 PMCID: PMC9875428 DOI: 10.1186/s12943-023-01721-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/13/2023] [Indexed: 01/26/2023] Open
Abstract
Decades of research has recognized a solid role for Pim kinases in lymphoproliferative disorders. Often up-regulated following JAK/STAT and tyrosine kinase receptor signaling, Pim kinases regulate cell proliferation, survival, metabolism, cellular trafficking and signaling. Targeting Pim kinases represents an interesting approach since knock-down of Pim kinases leads to non-fatal phenotypes in vivo suggesting clinical inhibition of Pim may have less side effects. In addition, the ATP binding site offers unique characteristics that can be used for the development of small inhibitors targeting one or all Pim isoforms. This review takes a closer look at Pim kinase expression and involvement in hematopoietic cancers. Current and past clinical trials and in vitro characterization of Pim kinase inhibitors are examined and future directions are discussed. Current studies suggest that Pim kinase inhibition may be most valuable when accompanied by multi-drug targeting therapy.
Collapse
|
35
|
Fay CJ, Awh KC, LeBoeuf NR, Larocca CA. Harnessing the immune system in the treatment of cutaneous T cell lymphomas. Front Oncol 2023; 12:1071171. [PMID: 36713518 PMCID: PMC9878398 DOI: 10.3389/fonc.2022.1071171] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/01/2022] [Indexed: 01/15/2023] Open
Abstract
Cutaneous T cell lymphomas are a rare subset of non-Hodgkin's lymphomas with predilection for the skin with immunosuppressive effects that drive morbidity and mortality. We are now appreciating that suppression of the immune system is an important step in the progression of disease. It should come as no surprise that therapies historically and currently being used to treat these cancers have immune modulating functions that impact disease outcomes. By understanding the immune effects of our therapies, we may better develop new agents that target the immune system and improve combinatorial treatment strategies to limit morbidity and mortality of these cancers. The immune modulating effect of therapeutic drugs in use and under development for cutaneous T cell lymphomas will be reviewed.
Collapse
|
36
|
Masle-Farquhar E, Jeelall Y, White J, Bier J, Deenick EK, Brink R, Horikawa K, Goodnow CC. CARD11 gain-of-function mutation drives cell-autonomous accumulation of PD-1 + ICOS high activated T cells, T-follicular, T-regulatory and T-follicular regulatory cells. Front Immunol 2023; 14:1095257. [PMID: 36960072 PMCID: PMC10028194 DOI: 10.3389/fimmu.2023.1095257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/23/2023] [Indexed: 03/09/2023] Open
Abstract
Introduction Germline CARD11 gain-of-function (GOF) mutations cause B cell Expansion with NF-κB and T cell Anergy (BENTA) disease, whilst somatic GOF CARD11 mutations recur in diffuse large B cell lymphoma (DLBCL) and in up to 30% of the peripheral T cell lymphomas (PTCL) adult T cell leukemia/lymphoma (ATL), cutaneous T cell lymphoma (CTCL) and Sezary Syndrome. Despite their frequent acquisition by PTCL, the T cell-intrinsic effects of CARD11 GOF mutations are poorly understood. Methods Here, we studied B and T lymphocytes in mice with a germline Nethyl-N-nitrosourea (ENU)-induced Card11M365K mutation identical to a mutation identified in DLBCL and modifying a conserved region of the CARD11 coiled-coil domain recurrently mutated in DLBCL and PTCL. Results and discussion Our results demonstrate that CARD11.M365K is a GOF protein that increases B and T lymphocyte activation and proliferation following antigen receptor stimulation. Germline Card11M365K mutation was insufficient alone to cause B or T-lymphoma, but increased accumulation of germinal center (GC) B cells in unimmunized and immunized mice. Card11M365K mutation caused cell-intrinsic over-accumulation of activated T cells, T regulatory (TREG), T follicular (TFH) and T follicular regulatory (TFR) cells expressing increased levels of ICOS, CTLA-4 and PD-1 checkpoint molecules. Our results reveal CARD11 as an important, cell-autonomous positive regulator of TFH, TREG and TFR cells. They highlight T cell-intrinsic effects of a GOF mutation in the CARD11 gene, which is recurrently mutated in T cell malignancies that are often aggressive and associated with variable clinical outcomes.
Collapse
Affiliation(s)
- Etienne Masle-Farquhar
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Clinical Medicine, St Vincent’s Healthcare Clinical, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- *Correspondence: Etienne Masle-Farquhar, ; Yogesh Jeelall,
| | - Yogesh Jeelall
- John Curtin School of Medical Research, Immunology Department, The Australian National University, Canberra, ACT, Australia
- *Correspondence: Etienne Masle-Farquhar, ; Yogesh Jeelall,
| | - Jacqueline White
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Clinical Medicine, St Vincent’s Healthcare Clinical, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Julia Bier
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Clinical Medicine, St Vincent’s Healthcare Clinical, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Elissa K. Deenick
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Clinical Medicine, St Vincent’s Healthcare Clinical, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Robert Brink
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Clinical Medicine, St Vincent’s Healthcare Clinical, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Keisuke Horikawa
- John Curtin School of Medical Research, Immunology Department, The Australian National University, Canberra, ACT, Australia
| | - Christopher Carl Goodnow
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- Cellular Genomics Futures Institute, University of New South Wales, Sydney, Australia
| |
Collapse
|
37
|
Du Y, Cai Y, Lv Y, Zhang L, Yang H, Liu Q, Hong M, Teng Y, Tang W, Ma R, Wu J, Wu J, Wang Q, Chen H, Li K, Feng J. Single-cell RNA sequencing unveils the communications between malignant T and myeloid cells contributing to tumor growth and immunosuppression in cutaneous T-cell lymphoma. Cancer Lett 2022; 551:215972. [PMID: 36265653 DOI: 10.1016/j.canlet.2022.215972] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/23/2022] [Accepted: 10/13/2022] [Indexed: 11/30/2022]
Abstract
Cutaneous T cell lymphoma (CTCL) is characterized by the accumulation of malignant T cells in the skin. However, advanced CTCL pathophysiology remains elusive and therapeutic options are limited due to the high intratumoral heterogeneity and complicated tumor microenvironment (TME). By comparing the single-cell RNA-seq (scRNA-seq) data from advanced CTCL patients and healthy controls (HCs), we showed that CTCL had a higher enrichment of T/NK and myeloid cells. Subpopulations of T cells (CXCR3+, GNLY+, CREM+, and MKI67+ T cells), with high proliferation, stemness, and copy number variation (CNV) levels, contribute to the malignancy of CTCL. Besides, CCL13+ monocytes/macrophages and LAMP3+ cDC cells were enriched and mediated the immunosuppression via inhibitory interactions with malignant T cells, such as CD47-SIRPA, MIF-CD74, and CCR1-CCL18. Notably, elevated expressions of S100A9 and its receptor TLR4, as well as the activation of downstream toll-like receptor and NF-κB pathway were observed in both malignant cells and myeloid cells in CTCL. Cell co-culture experiments further confirmed that the interaction between malignant CTCL cells and macrophages contributed to tumor growth via S100A9 upregulation and NF-kb activation. Our results showed that blocking the S100A9-TLR4 interaction using tasquinimod could inactivate the NF-κB pathway and inhibit the growth of CTCL tumor cells, and trigger cell apoptosis. Collectively, our study revealed a landscape of immunosuppressive TME mediated by interactions between malignant T cells and myeloid cells, and provided novel targets and potential treatment strategies for advanced CTCL patients.
Collapse
Affiliation(s)
- Yuxin Du
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 42 Baiziting, Nanjing, 210009, China
| | - Yun Cai
- Center for Global Health, School of Public Health, Nanjing Medical University, 211166, Nanjing, Jiangsu, China; Department of Bioinformatics, Nanjing Medical University, 211166, Nanjing, China
| | - Yan Lv
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 42 Baiziting, Nanjing, 210009, China
| | - Lishen Zhang
- Department of Bioinformatics, Nanjing Medical University, 211166, Nanjing, China; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Hao Yang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Road, Shanghai, 200433, China
| | - Quanzhong Liu
- Center for Global Health, School of Public Health, Nanjing Medical University, 211166, Nanjing, Jiangsu, China; Department of Bioinformatics, Nanjing Medical University, 211166, Nanjing, China
| | - Ming Hong
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China
| | - Yue Teng
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 42 Baiziting, Nanjing, 210009, China
| | - Weiyan Tang
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 42 Baiziting, Nanjing, 210009, China
| | - Rong Ma
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 42 Baiziting, Nanjing, 210009, China
| | - Jianqiu Wu
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 42 Baiziting, Nanjing, 210009, China
| | - Jianzhong Wu
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 42 Baiziting, Nanjing, 210009, China
| | - Qianghu Wang
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 42 Baiziting, Nanjing, 210009, China; Center for Global Health, School of Public Health, Nanjing Medical University, 211166, Nanjing, Jiangsu, China; Department of Bioinformatics, Nanjing Medical University, 211166, Nanjing, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, 210029, China; Biomedical Big Data Center, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Hongshan Chen
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China; Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China.
| | - Kening Li
- Center for Global Health, School of Public Health, Nanjing Medical University, 211166, Nanjing, Jiangsu, China; Department of Bioinformatics, Nanjing Medical University, 211166, Nanjing, China.
| | - Jifeng Feng
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, 42 Baiziting, Nanjing, 210009, China.
| |
Collapse
|
38
|
Sorger H, Dey S, Vieyra‐Garcia PA, Pölöske D, Teufelberger AR, de Araujo ED, Sedighi A, Graf R, Spiegl B, Lazzeri I, Braun T, Garces de los Fayos Alonso I, Schlederer M, Timelthaler G, Kodajova P, Pirker C, Surbek M, Machtinger M, Graier T, Perchthaler I, Pan Y, Fink‐Puches R, Cerroni L, Ober J, Otte M, Albrecht JD, Tin G, Abdeldayem A, Manaswiyoungkul P, Olaoye OO, Metzelder ML, Orlova A, Berger W, Wobser M, Nicolay JP, André F, Nguyen VA, Neubauer HA, Fleck R, Merkel O, Herling M, Heitzer E, Gunning PT, Kenner L, Moriggl R, Wolf P. Blocking STAT3/5 through direct or upstream kinase targeting in leukemic cutaneous T-cell lymphoma. EMBO Mol Med 2022; 14:e15200. [PMID: 36341492 PMCID: PMC9727928 DOI: 10.15252/emmm.202115200] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 09/26/2022] [Accepted: 10/02/2022] [Indexed: 11/09/2022] Open
Abstract
Leukemic cutaneous T-cell lymphomas (L-CTCL) are lymphoproliferative disorders of skin-homing mature T-cells causing severe symptoms and high mortality through chronic inflammation, tissue destruction, and serious infections. Despite numerous genomic sequencing efforts, recurrent driver mutations have not been identified, but chromosomal losses and gains are frequent and dominant. We integrated genomic landscape analyses with innovative pharmacologic interference studies to identify key vulnerable nodes in L-CTCL. We detected copy number gains of loci containing the STAT3/5 oncogenes in 74% (n = 17/23) of L-CTCL, which correlated with the increased clonal T-cell count in the blood. Dual inhibition of STAT3/5 using small-molecule degraders and multi-kinase blockers abolished L-CTCL cell growth in vitro and ex vivo, whereby PAK kinase inhibition was specifically selective for L-CTCL patient cells carrying STAT3/5 gains. Importantly, the PAK inhibitor FRAx597 demonstrated encouraging anti-leukemic activity in vivo by inhibiting tumor growth and disease dissemination in intradermally xenografted mice. We conclude that STAT3/5 and PAK kinase interaction represents a new therapeutic node to be further explored in L-CTCL.
Collapse
Affiliation(s)
- Helena Sorger
- Unit of Functional Cancer Genomics, Institute of Animal Breeding and GeneticsUniversity of Veterinary MedicineViennaAustria
- Department of Pediatric and Adolescent Surgery, Vienna General HospitalMedical University of ViennaViennaAustria
| | - Saptaswa Dey
- Department of Dermatology and VenereologyMedical University of GrazGrazAustria
- Department of PathologyMedical University of ViennaViennaAustria
| | | | - Daniel Pölöske
- Unit of Functional Cancer Genomics, Institute of Animal Breeding and GeneticsUniversity of Veterinary MedicineViennaAustria
| | | | - Elvin D de Araujo
- Department of Chemical and Physical SciencesUniversity of Toronto MississaugaMississaugaONCanada
- Centre for Medicinal ChemistryUniversity of Toronto MississaugaMississaugaONCanada
| | - Abootaleb Sedighi
- Department of Chemical and Physical SciencesUniversity of Toronto MississaugaMississaugaONCanada
- Centre for Medicinal ChemistryUniversity of Toronto MississaugaMississaugaONCanada
| | - Ricarda Graf
- Diagnostic & Research Center for Molecular Bio‐Medicine, Institute of Human GeneticsMedical University of GrazGrazAustria
| | - Benjamin Spiegl
- Diagnostic & Research Center for Molecular Bio‐Medicine, Institute of Human GeneticsMedical University of GrazGrazAustria
| | - Isaac Lazzeri
- Diagnostic & Research Center for Molecular Bio‐Medicine, Institute of Human GeneticsMedical University of GrazGrazAustria
| | - Till Braun
- Department of Medicine ICIO‐ABCD, CECAD and CMMC Cologne UniversityCologneGermany
| | - Ines Garces de los Fayos Alonso
- Department of PathologyMedical University of ViennaViennaAustria
- Unit of Laboratory Animal PathologyUniversity of Veterinary Medicine ViennaViennaAustria
| | | | | | - Petra Kodajova
- Unit of Laboratory Animal PathologyUniversity of Veterinary Medicine ViennaViennaAustria
| | - Christine Pirker
- Centre for Cancer ResearchMedical University of ViennaViennaAustria
- Comprehensive Cancer CenterMedical University of ViennaViennaAustria
| | - Marta Surbek
- Unit of Functional Cancer Genomics, Institute of Animal Breeding and GeneticsUniversity of Veterinary MedicineViennaAustria
| | - Michael Machtinger
- Unit of Functional Cancer Genomics, Institute of Animal Breeding and GeneticsUniversity of Veterinary MedicineViennaAustria
| | - Thomas Graier
- Department of Dermatology and VenereologyMedical University of GrazGrazAustria
| | | | - Yi Pan
- Department of Dermatology and VenereologyMedical University of GrazGrazAustria
| | - Regina Fink‐Puches
- Department of Dermatology and VenereologyMedical University of GrazGrazAustria
| | - Lorenzo Cerroni
- Department of Dermatology and VenereologyMedical University of GrazGrazAustria
| | - Jennifer Ober
- Core Facility Flow Cytometry, Center for Medical Research (ZMF)Medical University of GrazGrazAustria
| | - Moritz Otte
- Department of Medicine ICIO‐ABCD, CECAD and CMMC Cologne UniversityCologneGermany
| | - Jana D Albrecht
- Department of DermatologyUniversity Hospital MannheimMannheimGermany
| | - Gary Tin
- Department of Chemical and Physical SciencesUniversity of Toronto MississaugaMississaugaONCanada
- Centre for Medicinal ChemistryUniversity of Toronto MississaugaMississaugaONCanada
| | - Ayah Abdeldayem
- Department of Chemical and Physical SciencesUniversity of Toronto MississaugaMississaugaONCanada
- Centre for Medicinal ChemistryUniversity of Toronto MississaugaMississaugaONCanada
| | - Pimyupa Manaswiyoungkul
- Department of Chemical and Physical SciencesUniversity of Toronto MississaugaMississaugaONCanada
- Centre for Medicinal ChemistryUniversity of Toronto MississaugaMississaugaONCanada
| | - Olasunkanmi O Olaoye
- Department of Chemical and Physical SciencesUniversity of Toronto MississaugaMississaugaONCanada
- Centre for Medicinal ChemistryUniversity of Toronto MississaugaMississaugaONCanada
| | - Martin L Metzelder
- Department of Pediatric and Adolescent Surgery, Vienna General HospitalMedical University of ViennaViennaAustria
| | - Anna Orlova
- Unit of Functional Cancer Genomics, Institute of Animal Breeding and GeneticsUniversity of Veterinary MedicineViennaAustria
| | - Walter Berger
- Centre for Cancer ResearchMedical University of ViennaViennaAustria
- Comprehensive Cancer CenterMedical University of ViennaViennaAustria
| | - Marion Wobser
- Department of DermatologyUniversity Hospital WuerzburgWuerzburgGermany
| | - Jan P Nicolay
- Department of DermatologyUniversity Hospital MannheimMannheimGermany
| | - Fiona André
- University Clinic for Dermatology, Venereology and Allergology InnsbruckMedical University of InnsbruckInnsbruckAustria
| | - Van Anh Nguyen
- University Clinic for Dermatology, Venereology and Allergology InnsbruckMedical University of InnsbruckInnsbruckAustria
| | - Heidi A Neubauer
- Unit of Functional Cancer Genomics, Institute of Animal Breeding and GeneticsUniversity of Veterinary MedicineViennaAustria
| | | | - Olaf Merkel
- Department of PathologyMedical University of ViennaViennaAustria
| | - Marco Herling
- Department of Medicine ICIO‐ABCD, CECAD and CMMC Cologne UniversityCologneGermany
- Department of Hematology, Cellular Therapy, and HemostaseologyUniversity of LeipzigLeipzigGermany
| | - Ellen Heitzer
- Diagnostic & Research Center for Molecular Bio‐Medicine, Institute of Human GeneticsMedical University of GrazGrazAustria
| | - Patrick T Gunning
- Department of Chemical and Physical SciencesUniversity of Toronto MississaugaMississaugaONCanada
- Centre for Medicinal ChemistryUniversity of Toronto MississaugaMississaugaONCanada
- Janpix, a Centessa CompanyLondonUK
| | - Lukas Kenner
- Department of PathologyMedical University of ViennaViennaAustria
- Unit of Laboratory Animal PathologyUniversity of Veterinary Medicine ViennaViennaAustria
- Comprehensive Cancer CenterMedical University of ViennaViennaAustria
- Christian Doppler Laboratory for Applied Metabolomics (CDL‐AM), Division of Nuclear MedicineMedical University of ViennaViennaAustria
- CBmed GmbH Center for Biomarker Research in MedicineGrazAustria
| | - Richard Moriggl
- Unit of Functional Cancer Genomics, Institute of Animal Breeding and GeneticsUniversity of Veterinary MedicineViennaAustria
| | - Peter Wolf
- Department of Dermatology and VenereologyMedical University of GrazGrazAustria
- BioTechMed GrazGrazAustria
| |
Collapse
|
39
|
Gao X, Kady N, Wang C, Abdelrahman S, Gann P, Sverdlov M, Wolfe A, Brown N, Reneau J, Robida AM, Murga-Zamalloa C, Wilcox RA. Targeting Lymphoma-associated Macrophage Expansion via CSF1R/JAK Inhibition is a Therapeutic Vulnerability in Peripheral T-cell Lymphomas. CANCER RESEARCH COMMUNICATIONS 2022; 2:1727-1737. [PMID: 36970721 PMCID: PMC10035520 DOI: 10.1158/2767-9764.crc-22-0336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/25/2022] [Accepted: 12/08/2022] [Indexed: 12/16/2022]
Abstract
The reciprocal relationship between malignant T cells and lymphoma-associated macrophages (LAM) within the tumor microenvironment (TME) is unique, as LAMs are well poised to provide ligands for antigen, costimulatory, and cytokine receptors that promote T-cell lymphoma growth. Conversely, malignant T cells promote the functional polarization and homeostatic survival of LAM. Therefore, we sought to determine the extent to which LAMs are a therapeutic vulnerability in these lymphomas, and to identify effective therapeutic strategies for their depletion. We utilized complementary genetically engineered mouse models and primary peripheral T-cell lymphoma (PTCL) specimens to quantify LAM expansion and proliferation. A high-throughput screen was performed to identify targeted agents that effectively deplete LAM within the context of PTCL. We observed that LAMs are dominant constituents of the TME in PTCL. Furthermore, their dominance was explained, at least in part, by their proliferation and expansion in response to PTCL-derived cytokines. Importantly, LAMs are a true dependency in these lymphomas, as their depletion significantly impaired PTCL progression. These findings were extrapolated to a large cohort of human PTCL specimens where LAM proliferation was observed. A high-throughput screen demonstrated that PTCL-derived cytokines led to relative resistance to CSF1R selective inhibitors, and culminated in the identification of dual CSF1R/JAK inhibition as a novel therapeutic strategy to deplete LAM in these aggressive lymphomas. Malignant T cells promote the expansion and proliferation of LAM, which are a bone fide dependency in these lymphomas, and are effectively depleted with a dual CSF1R/JAK inhibitor. Significance LAMs are a therapeutic vulnerability, as their depletion impairs T-cell lymphoma disease progression. Pacritinib, a dual CSF1R/JAK inhibitor, effectively impaired LAM viability and expansion, prolonged survival in preclinical T-cell lymphoma models, and is currently being investigated as a novel therapeutic approach in these lymphomas.
Collapse
Affiliation(s)
- Xin Gao
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, Michigan
| | - Nermin Kady
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, Michigan
| | - Chenguang Wang
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, Michigan
| | - Suhaib Abdelrahman
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, Michigan
| | - Peter Gann
- Department of Pathology, University of Illinois Chicago, Chicago, Michigan
| | - Maria Sverdlov
- Department of Pathology, University of Illinois Chicago, Chicago, Michigan
| | - Ashley Wolfe
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, Michigan
| | - Noah Brown
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - John Reneau
- Department of Medicine, Division of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Aaron M. Robida
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| | | | - Ryan A. Wilcox
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
40
|
Wang L, Rocas D, Dalle S, Sako N, Pelletier L, Martin N, Dupuy A, Tazi N, Balme B, Vergier B, Beylot-Barry M, Carlotti A, Bagot M, Battistella M, Chaby G, Ingen-Housz-Oro S, Gaulard P, Ortonne N. Primary cutaneous peripheral T-cell lymphomas with a T-follicular helper phenotype: an integrative clinical, pathological and molecular case series study. Br J Dermatol 2022; 187:970-980. [PMID: 35895386 PMCID: PMC10087773 DOI: 10.1111/bjd.21791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/04/2022] [Accepted: 07/22/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Primary cutaneous peripheral T-cell lymphomas with a T-follicular helper phenotype (pcTFH-PTCL) are poorly characterized, and often compared to, but not corresponding with, mycosis fungoides (MF), Sézary syndrome, primary cutaneous CD4+ lymphoproliferative disorder, and skin manifestations of angioimmunoblastic T-cell lymphomas (AITL). OBJECTIVES We describe the clinicopathological features of pcTFH-PTCL in this original series of 23 patients, and also characterize these cases molecularly. METHODS Clinical and histopathological data of the selected patients were reviewed. Patient biopsy samples were also analysed by targeted next-generation sequencing. RESULTS All patients (15 men, eight women; median age 66 years) presented with skin lesions, without systemic disease. Most were stage T3b, with nodular (n = 16), papular (n = 6) or plaque (atypical for MF, n = 1) lesions. Three (13%) developed systemic disease and died of lymphoma. Nine (39%) patients received more than one line of chemotherapy. Histologically, the lymphomas were CD4+ T-cell proliferations, usually dense and located in the deep dermis (n = 14, 61%), with the expression of at least two TFH markers (CD10, CXCL13, PD1, ICOS, BCL6), including three markers in 16 cases (70%). They were associated with a variable proportion of B cells. Eight patients were diagnosed with an associated B-cell lymphoproliferative disorder (LPD) on biopsy, including Epstein-Barr virus (EBV)-positive diffuse large B-cell lymphoma (n = 3), EBV+ LPD (n = 1) and monotypic plasma cell LPD (n = 4). Targeted sequencing showed four patients to have a mutated TET2-RHOAG17V association (as frequently seen in AITL) and another a TET2/DNMT3A/PLCG1/SETD2 mutational profile. The latter patient, one with a TET2-RHOA association, and one with no detected mutations, developed systemic disease and died. Five other patients showed isolated mutations in TET2 (n = 1), PLCG1 (n = 2), SETD2 (n = 1) or STAT5B (n = 1). CONCLUSIONS Patients with pcTFH-PTCL have pathological and genetic features that overlap with those of systemic lymphoma of TFH derivation. Clinically, most remained confined to the skin, with only three patients showing systemic spread and death. Whether pcTFH-PTCL should be integrated as a new subgroup of TFH lymphomas in future classifications is still a matter of debate. What is already known about this topic? There is a group of cutaneous lymphomas that express T-follicular helper (TFH) markers that do not appear to correspond to existing World Health Organization diagnostic entities. These include mycosis fungoides, Sézary syndrome, or primary cutaneous CD4+ small/medium-sized T-cell lymphoproliferative disorder or cutaneous extensions of systemic peripheral T-cell lymphomas (PTCL) with TFH phenotype. What does this study add? This is the first large original series of patients with a diagnosis of primary cutaneous PTCL with a TFH phenotype (pcTFH-PTCL) to be molecularly characterized. pcTFH-PTCL may be a standalone group of cutaneous lymphomas with clinicopathological and molecular characteristics that overlap with those of systemic TFH lymphomas, such as angioimmunoblastic T-cell lymphoma, and does not belong to known diagnostic groups of cutaneous lymphoma. This has an impact on the treatment and follow-up of patients; the clinical behaviour needs to be better clarified in further studies to tailor patient management.
Collapse
Affiliation(s)
- Luojun Wang
- Department of Pathology, Assistance Publique - Hôpitaux de Paris, Henri-Mondor Hospital, 94010, Créteil, France.,INSERM U955 Institut Mondor de Recherche Biomédicale (IMRB), Paris Est Créteil University, 94010, Créteil, France
| | - Delphine Rocas
- Department of Pathology, Lyon Sud, Pierre-Bénite Hospital, 69495, Lyon, France
| | - Stéphane Dalle
- Department of Dermatology, Lyon Sud, Pierre-Bénite Hospital, 69495, Lyon, France
| | - Nouhoum Sako
- INSERM U955 Institut Mondor de Recherche Biomédicale (IMRB), Paris Est Créteil University, 94010, Créteil, France
| | - Laura Pelletier
- INSERM U955 Institut Mondor de Recherche Biomédicale (IMRB), Paris Est Créteil University, 94010, Créteil, France
| | - Nadine Martin
- INSERM U955 Institut Mondor de Recherche Biomédicale (IMRB), Paris Est Créteil University, 94010, Créteil, France
| | - Aurélie Dupuy
- INSERM U955 Institut Mondor de Recherche Biomédicale (IMRB), Paris Est Créteil University, 94010, Créteil, France
| | - Nadia Tazi
- Department of Pathology, Assistance Publique - Hôpitaux de Paris, Henri-Mondor Hospital, 94010, Créteil, France
| | - Brigitte Balme
- Department of Pathology, Lyon Sud, Pierre-Bénite Hospital, 69495, Lyon, France
| | - Béatrice Vergier
- Department of Pathology, CHU de Bordeaux, Haut-Lévêque Hospital, 33600, Pessac, France.,INSERM, U1312, Université de Bordeaux, 33000, Bordeaux, France
| | - Marie Beylot-Barry
- INSERM, U1312, Université de Bordeaux, 33000, Bordeaux, France.,Department of Dermatology, CHU de Bordeaux, Saint-André Hospital, 33000, Bordeaux, France
| | - Agnès Carlotti
- Department of Pathology, Assistance Publique - Hôpitaux de Paris, Cochin Hospital, 75014, Paris, France
| | - Martine Bagot
- Department of Dermatology, Assistance Publique - Hôpitaux de Paris, Saint-Louis Hospital, 75010, Université Paris Cité, Paris, France
| | - Maxime Battistella
- Department of Pathology, Assistance Publique - Hôpitaux de Paris, Saint-Louis Hospital, 75010, Université Paris Cité, Paris, France
| | - Guillaume Chaby
- Department of Dermatology, CHU d'Amiens-Picardie, Hôpital Sud, 80054, Amiens, France
| | - Saskia Ingen-Housz-Oro
- Department of Dermatology, Assistance Publique - Hôpitaux de Paris, Henri-Mondor Hospital, 94010, Créteil, France
| | - Philippe Gaulard
- Department of Pathology, Assistance Publique - Hôpitaux de Paris, Henri-Mondor Hospital, 94010, Créteil, France.,INSERM U955 Institut Mondor de Recherche Biomédicale (IMRB), Paris Est Créteil University, 94010, Créteil, France
| | - Nicolas Ortonne
- Department of Pathology, Assistance Publique - Hôpitaux de Paris, Henri-Mondor Hospital, 94010, Créteil, France.,INSERM U955 Institut Mondor de Recherche Biomédicale (IMRB), Paris Est Créteil University, 94010, Créteil, France
| |
Collapse
|
41
|
Bakr FS, Whittaker SJ. Advances in the understanding and treatment of Cutaneous T-cell Lymphoma. Front Oncol 2022; 12:1043254. [PMID: 36505788 PMCID: PMC9729763 DOI: 10.3389/fonc.2022.1043254] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/19/2022] [Indexed: 11/25/2022] Open
Abstract
Cutaneous T-cell lymphomas (CTCL) are a heterogeneous group of non-Hodgkin's lymphomas (NHL) characterised by the clonal proliferation of malignant, skin homing T-cells. Recent advances have been made in understanding the molecular pathogenesis of CTCL. Multiple deep sequencing studies have revealed a complex genomic landscape with large numbers of novel single nucleotide variants (SNVs) and copy number variations (CNVs). Commonly perturbed genes include those involved in T-cell receptor signalling, T-cell proliferation, differentiation and survival, epigenetic regulators as well as genes involved in genome maintenance and DNA repair. In addition, studies in CTCL have identified a dominant UV mutational signature in contrast to systemic T-cell lymphomas and this likely contributes to the high tumour mutational burden. As current treatment options for advanced stages of CTCL are associated with short-lived responses, targeting these deregulated pathways could provide novel therapeutic approaches for patients. In this review article we summarise the key pathways disrupted in CTCL and discuss the potential therapeutic implications of these findings.
Collapse
|
42
|
Markouli M, Strepkos D, Piperi C. Impact of Histone Modifications and Their Therapeutic Targeting in Hematological Malignancies. Int J Mol Sci 2022; 23:13657. [PMID: 36362442 PMCID: PMC9654260 DOI: 10.3390/ijms232113657] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Hematologic malignancies are a large and heterogeneous group of neoplasms characterized by complex pathogenetic mechanisms. The abnormal regulation of epigenetic mechanisms and specifically, histone modifications, has been demonstrated to play a central role in hematological cancer pathogenesis and progression. A variety of epigenetic enzymes that affect the state of histones have been detected as deregulated, being either over- or underexpressed, which induces changes in chromatin compaction and, subsequently, affects gene expression. Recent advances in the field of epigenetics have revealed novel therapeutic targets, with many epigenetic drugs being investigated in clinical trials. The present review focuses on the biological impact of histone modifications in the pathogenesis of hematologic malignancies, describing a wide range of therapeutic agents that have been discovered to target these alterations and are currently under investigation in clinical trials.
Collapse
Affiliation(s)
| | | | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.M.); (D.S.)
| |
Collapse
|
43
|
Molecular pathogenesis of Cutaneous T cell Lymphoma: Role of chemokines, cytokines, and dysregulated signaling pathways. Semin Cancer Biol 2022; 86:382-399. [PMID: 34906723 DOI: 10.1016/j.semcancer.2021.12.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 01/27/2023]
Abstract
Cutaneous T cell lymphomas (CTCLs) are a heterogeneous group of lymphoproliferative neoplasms that exhibit a wide spectrum of immune-phenotypical, clinical, and histopathological features. The biology of CTCL is complex and remains elusive. In recent years, the application of next-generation sequencing (NGS) has evolved our understanding of the pathogenetic mechanisms, including genetic aberrations and epigenetic abnormalities that shape the mutational landscape of CTCL and represent one of the important pro-tumorigenic principles in CTCL initiation and progression. Still, identification of the major pathophysiological pathways including genetic and epigenetic components that mediate malignant clonal T cell expansion has not been achieved. This is of prime importance given the role of malignant T cell clones in fostering T helper 2 (Th2)-bias tumor microenvironment and fueling progressive immune dysregulation and tumor cell growth in CTCL patients, manifested by the secretion of Th2-associated cytokines and chemokines. Alterations in malignant cytokine and chemokine expression patterns orchestrate the inflammatory milieu and influence the migration dynamics of malignant clonal T cells. Here, we highlight recent insights about the molecular mechanisms of CTCL pathogenesis, emphasizing the role of cytokines, chemokines, and associated downstream signaling networks in driving immune defects, malignant transformation, and disease progression. In-depth characterization of the CTCL immunophenotype and tumoral microenvironment offers a facile opportunity to expand the therapeutic armamentarium of CTCL, an intractable malignant skin disease with poor prognosis and in dire need of curative treatment approaches.
Collapse
|
44
|
Immanuel T, Li J, Green TN, Bogdanova A, Kalev-Zylinska ML. Deregulated calcium signaling in blood cancer: Underlying mechanisms and therapeutic potential. Front Oncol 2022; 12:1010506. [PMID: 36330491 PMCID: PMC9623116 DOI: 10.3389/fonc.2022.1010506] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/21/2022] [Indexed: 02/05/2023] Open
Abstract
Intracellular calcium signaling regulates diverse physiological and pathological processes. In solid tumors, changes to calcium channels and effectors via mutations or changes in expression affect all cancer hallmarks. Such changes often disrupt transport of calcium ions (Ca2+) in the endoplasmic reticulum (ER) or mitochondria, impacting apoptosis. Evidence rapidly accumulates that this is similar in blood cancer. Principles of intracellular Ca2+ signaling are outlined in the introduction. We describe different Ca2+-toolkit components and summarize the unique relationship between extracellular Ca2+ in the endosteal niche and hematopoietic stem cells. The foundational data on Ca2+ homeostasis in red blood cells is discussed, with the demonstration of changes in red blood cell disorders. This leads to the role of Ca2+ in neoplastic erythropoiesis. Then we expand onto the neoplastic impact of deregulated plasma membrane Ca2+ channels, ER Ca2+ channels, Ca2+ pumps and exchangers, as well as Ca2+ sensor and effector proteins across all types of hematologic neoplasms. This includes an overview of genetic variants in the Ca2+-toolkit encoding genes in lymphoid and myeloid cancers as recorded in publically available cancer databases. The data we compiled demonstrate that multiple Ca2+ homeostatic mechanisms and Ca2+ responsive pathways are altered in hematologic cancers. Some of these alterations may have genetic basis but this requires further investigation. Most changes in the Ca2+-toolkit do not appear to define/associate with specific disease entities but may influence disease grade, prognosis, treatment response, and certain complications. Further elucidation of the underlying mechanisms may lead to novel treatments, with the aim to tailor drugs to different patterns of deregulation. To our knowledge this is the first review of its type in the published literature. We hope that the evidence we compiled increases awareness of the calcium signaling deregulation in hematologic neoplasms and triggers more clinical studies to help advance this field.
Collapse
Affiliation(s)
- Tracey Immanuel
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Jixia Li
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Department of Laboratory Medicine, School of Medicine, Foshan University, Foshan City, China
| | - Taryn N. Green
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Anna Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland
| | - Maggie L. Kalev-Zylinska
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Haematology Laboratory, Department of Pathology and Laboratory Medicine, Auckland City Hospital, Auckland, New Zealand
| |
Collapse
|
45
|
Gao X, Wang C, Abdelrahman S, Kady N, Murga-Zamalloa C, Gann P, Sverdlov M, Wolfe A, Polk A, Brown N, Bailey NG, Inamdar K, Casavilca S, Montes J, Barrionuevo C, Taxa L, Reneau J, Siebel CW, Maillard I, Wilcox RA. Notch Signaling Promotes Mature T-Cell Lymphomagenesis. Cancer Res 2022; 82:3763-3773. [PMID: 36006995 PMCID: PMC9588752 DOI: 10.1158/0008-5472.can-22-1215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/15/2022] [Accepted: 08/22/2022] [Indexed: 01/26/2023]
Abstract
Peripheral T-cell lymphomas (PTCL) are agressive lymphomas that develop from mature T cells. The most common PTCLs are genetically, molecularly, and clinically diverse and are generally associated with dismal outcomes. While Notch signaling plays a critically important role in both the development of immature T cells and their malignant transformation, its role in PTCL is poorly understood, despite the increasingly appreciated function of Notch in regulating the proliferation and differentiation of mature T cells. Here, we demonstrate that Notch receptors and their Delta-like family ligands (DLL1/DLL4) play a pathogenic role in PTCL. Notch1 activation was observed in common PTCL subtypes, including PTCL-not otherwise specified (NOS). In a large cohort of PTCL-NOS biopsies, Notch1 activation was significantly associated with surrogate markers of proliferation. Complementary genetically engineered mouse models and spontaneous PTCL models were used to functionally examine the role of Notch signaling, and Notch1/Notch2 blockade and pan-Notch blockade using dominant-negative MAML significantly impaired the proliferation of malignant T cells and PTCL progression in these models. Treatment with DLL1/DLL4 blocking antibodies established that Notch signaling is ligand-dependent. Together, these findings reveal a role for ligand-dependent Notch signaling in driving peripheral T-cell lymphomagenesis. SIGNIFICANCE This work demonstrates that ligand-dependent Notch activation promotes the growth and proliferation of mature T-cell lymphomas, providing new therapeutic strategies for this group of aggressive lymphomas.
Collapse
Affiliation(s)
- Xin Gao
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI
| | - Chenguang Wang
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI
| | - Suhaib Abdelrahman
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI
| | - Nermin Kady
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI
| | | | - Peter Gann
- Department of Pathology, University of Illinois Chicago, Chicago, IL
| | - Maria Sverdlov
- Department of Pathology, University of Illinois Chicago, Chicago, IL
| | - Ashley Wolfe
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI
| | - Avery Polk
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI
| | - Noah Brown
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | | | - Kedar Inamdar
- Department of Pathology, Henry Ford Hospital, Detroit, MI
| | - Sandro Casavilca
- Department of Pathology, Instituto Nacional de Enfermedades Neoplasicas (INEN), Lima, Peru
| | - Jaime Montes
- Department of Pathology, Instituto Nacional de Enfermedades Neoplasicas (INEN), Lima, Peru
| | - Carlos Barrionuevo
- Department of Pathology, Instituto Nacional de Enfermedades Neoplasicas (INEN), Lima, Peru
| | - Luis Taxa
- Department of Pathology, Instituto Nacional de Enfermedades Neoplasicas (INEN), Lima, Peru
| | - John Reneau
- Department of Medicine, Division of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | | | - Ivan Maillard
- Department of Medicine, Division of Hematology/Oncology, University of Pennsylvania, Philadelphia, PA
| | - Ryan A. Wilcox
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
46
|
Genetics Abnormalities with Clinical Impact in Primary Cutaneous Lymphomas. Cancers (Basel) 2022; 14:cancers14204972. [PMID: 36291756 PMCID: PMC9599538 DOI: 10.3390/cancers14204972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/04/2022] [Accepted: 10/04/2022] [Indexed: 11/18/2022] Open
Abstract
Simple Summary The genetic landscape of cutaneous T-cell lymphomas analyzed by sequencing high throughput techniques shows a heterogeneous somatic mutational profile and genomic copy number variations in the TCR signaling effectors, the NF-κB elements, DNA damage/repair elements, JAK/STAT pathway elements and epigenetic modifiers. A mutational and genomic stratification of these patients provides new opportunities for the development or repurposing of (personalized) therapeutic strategies. The genetic heterogeneity in cutaneous B-cell lymphoma parallels with the specific subtype. Damaging mutations in primary cutaneous diffuse large B-cell lymphoma of the leg type, involving MYD88 gene, or BCL6 and MYC translocations or CDKN2A deletions are useful for diagnostic purposes. The more indolent forms, as the primary cutaneous lymphoma of follicle center cell (somatic mutations in TNFRSF14 and 1p36 deletions) and the cutaneous lymphoproliferative disorder of the marginal zone cells (FAS gene), present with a more restricted pattern of genetic alterations. Abstract Primary cutaneous lymphomas comprise a heterogeneous group of extranodal non-Hodgkin lymphomas (NHL) that arise from skin resident lymphoid cells and are manifested by specific lymphomatous cutaneous lesions with no evidence of extracutaneous disease at the time of diagnosis. They may originate from mature T-lymphocytes (70% of all cases), mature B-lymphocytes (25–30%) or, rarely, NK cells. Cutaneous T-cell lymphomas (CTCL) comprise a heterogeneous group of T-cell malignancies including Mycosis Fungoides (MF) the most frequent subtype, accounting for approximately half of CTCL, and Sézary syndrome (SS), which is an erythrodermic and leukemic subtype characterized by significant blood involvement. The mutational landscape of MF and SS by NGS include recurrent genomic alterations in the TCR signaling effectors (i.e., PLCG1), the NF-κB elements (i.e., CARD11), DNA damage/repair elements (TP53 or ATM), JAK/STAT pathway elements or epigenetic modifiers (DNMT3). Genomic copy number variations appeared to be more prevalent than somatic mutations. Other CTCL subtypes such as primary cutaneous anaplastic large cell lymphoma also harbor genetic alterations of the JAK/STAT pathway in up to 50% of cases. Recently, primary cutaneous aggressive epidermotropic T-cell lymphoma, a rare fatal subtype, was found to contain a specific profile of JAK2 rearrangements. Other aggressive cytotoxic CTCL (primary cutaneous γδ T-cell lymphomas) also show genetic alterations in the JAK/STAT pathway in a large proportion of patients. Thus, CTCL patients have a heterogeneous genetic/transcriptional and epigenetic background, and there is no uniform treatment for these patients. In this scenario, a pathway-based personalized management is required. Cutaneous B-cell lymphoma (CBCL) subtypes present a variable genetic profile. The genetic heterogeneity parallels the multiple types of specialized B-cells and their specific tissue distribution. Particularly, many recurrent hotspot and damaging mutations in primary cutaneous diffuse large B-cell lymphoma of the leg type, involving MYD88 gene, or BCL6 and MYC translocations and BLIMP1 or CDKN2A deletions are useful for diagnostic and prognostic purposes for this aggressive subtype from other indolent CBCL forms.
Collapse
|
47
|
Mempel TR, Krappmann D. Combining precision oncology and immunotherapy by targeting the MALT1 protease. J Immunother Cancer 2022; 10:e005442. [PMID: 36270731 PMCID: PMC9594517 DOI: 10.1136/jitc-2022-005442] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2022] [Indexed: 11/30/2022] Open
Abstract
An innovative strategy for cancer therapy is to combine the inhibition of cancer cell-intrinsic oncogenic signaling with cancer cell-extrinsic immunological activation of the tumor microenvironment (TME). In general, such approaches will focus on two or more distinct molecular targets in the malignant cells and in cells of the surrounding TME. In contrast, the protease Mucosa-associated lymphoid tissue protein 1 (MALT1) represents a candidate to enable such a dual approach by engaging only a single target. Originally identified and now in clinical trials as a lymphoma drug target based on its role in the survival and proliferation of malignant lymphomas addicted to chronic B cell receptor signaling, MALT1 proteolytic activity has recently gained additional attention through reports describing its tumor-promoting roles in several types of non-hematological solid cancer, such as breast cancer and glioblastoma. Besides cancer cells, regulatory T (Treg) cells in the TME are particularly dependent on MALT1 to sustain their immune-suppressive functions, and MALT1 inhibition can selectively reprogram tumor-infiltrating Treg cells into Foxp3-expressing proinflammatory antitumor effector cells. Thereby, MALT1 inhibition induces local inflammation in the TME and synergizes with anti-PD-1 checkpoint blockade to induce antitumor immunity and facilitate tumor control or rejection. This new concept of boosting tumor immunotherapy in solid cancer by MALT1 precision targeting in the TME has now entered clinical evaluation. The dual effects of MALT1 inhibitors on cancer cells and immune cells therefore offer a unique opportunity for combining precision oncology and immunotherapy to simultaneously impair cancer cell growth and neutralize immunosuppression in the TME. Further, MALT1 targeting may provide a proof of concept that modulation of Treg cell function in the TME represents a feasible strategy to augment the efficacy of cancer immunotherapy. Here, we review the role of MALT1 protease in physiological and oncogenic signaling, summarize the landscape of tumor indications for which MALT1 is emerging as a therapeutic target, and consider strategies to increase the chances for safe and successful use of MALT1 inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Thorsten R Mempel
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel Krappmann
- Research Unit Cellular Signal Integration, Molecular Targets and Therapeutics Center, Helmholtz Center Munich - German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
48
|
Stadler R, Hain C. [New insights into the pathogenesis and molecular understanding of cutaneous T-cell lymphomas]. DERMATOLOGIE (HEIDELBERG, GERMANY) 2022; 73:765-771. [PMID: 35960311 DOI: 10.1007/s00105-022-05047-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
The pathogenesis of cutaneous T‑cell lymphomas (CTCL) is still an enigma. Therefore, extensive translational research efforts have been undertaken in recent years to gain further clinical and molecular insights. There is increasing evidence that the different clinical appearance of the CTCL subtypes derives from the assumption that they develop from different skin subpopulations of T cells. Detection and quantification of the malignant T‑cell clones is crucial for the diagnosis and prognosis of CTCL. Numerous recurrent mutant cellular signalling pathways have been found in recent years. This includes the JAK-STAT, NFκB, T‑cell receptor and MAP kinase signalling pathways, as well as cell cycle control and epigenetics. The most recent analyses imply a tumour evolution model with initial copy number variation, like amplification or deletions of specific DNA fragments (CNVs) and only subsequent later single nucleotide variations (SNVs). The crucial question, however, is which CNVs are sufficient to initiate general tumourigenesis? The challenge is to identify possible driver genes. Increasing molecular understanding in CTCL will include new breakthrough therapeutic options in the near future.
Collapse
Affiliation(s)
- Rudolf Stadler
- Universitätsklinik für Dermatologie, Johannes Wesling Klinikum Minden, UK RUB, Hans-Nolte-Str. 1, 32429, Minden, Deutschland.
| | - Carsten Hain
- Zentrum für Biotechnologie (CeBiTec), Universität Bielefeld, Bielefeld, Deutschland
| |
Collapse
|
49
|
Hain C, Stadler R, Kalinowski J. Unraveling the Structural Variations of Early-Stage Mycosis Fungoides-CD3 Based Purification and Third Generation Sequencing as Novel Tools for the Genomic Landscape in CTCL. Cancers (Basel) 2022; 14:4466. [PMID: 36139626 PMCID: PMC9497107 DOI: 10.3390/cancers14184466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Mycosis fungoides (MF) is the most common cutaneous T-cell lymphoma (CTCL). At present, knowledge of genetic changes in early-stage MF is insufficient. Additionally, low tumor cell fraction renders calling of copy-number variations as the predominant mutations in MF challenging, thereby impeding further investigations. We show that enrichment of T cells from a biopsy of a stage I MF patient greatly increases tumor fraction. This improvement enables accurate calling of recurrent MF copy-number variants such as ARID1A and CDKN2A deletion and STAT5 amplification, undetected in the unprocessed biopsy. Furthermore, we demonstrate that application of long-read nanopore sequencing is especially useful for the structural variant rich CTCL. We detect the structural variants underlying recurrent MF copy-number variants and show phasing of multiple breakpoints into complex structural variant haplotypes. Additionally, we record multiple occurrences of templated insertion structural variants in this sample. Taken together, this study suggests a workflow to make the early stages of MF accessible for genetic analysis, and indicates long-read sequencing as a major tool for genetic analysis for MF.
Collapse
Affiliation(s)
- Carsten Hain
- Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - Rudolf Stadler
- University Clinic for Dermatology, Johannes Wesling Medical Centre, UKRUB, University of Bochum, 32429 Minden, Germany
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
50
|
Passaniti A, Kim MS, Polster BM, Shapiro P. Targeting mitochondrial metabolism for metastatic cancer therapy. Mol Carcinog 2022; 61:827-838. [PMID: 35723497 PMCID: PMC9378505 DOI: 10.1002/mc.23436] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 05/18/2022] [Accepted: 05/27/2022] [Indexed: 02/06/2023]
Abstract
Primary tumors evolve metabolic mechanisms favoring glycolysis for adenosine triphosphate (ATP) generation and antioxidant defenses. In contrast, metastatic cells frequently depend on mitochondrial respiration and oxidative phosphorylation (OxPhos). This reliance of metastatic cells on OxPhos can be exploited using drugs that target mitochondrial metabolism. Therefore, therapeutic agents that act via diverse mechanisms, including the activation of signaling pathways that promote the production of reactive oxygen species (ROS) and/or a reduction in antioxidant defenses may elevate oxidative stress and inhibit tumor cell survival. In this review, we will provide (1) a mechanistic analysis of function-selective extracellular signal-regulated kinase-1/2 (ERK1/2) inhibitors that inhibit cancer cells through enhanced ROS, (2) a review of the role of mitochondrial ATP synthase in redox regulation and drug resistance, (3) a rationale for inhibiting ERK signaling and mitochondrial OxPhos toward the therapeutic goal of reducing tumor metastasis and treatment resistance. Recent reports from our laboratories using metastatic melanoma and breast cancer models have shown the preclinical efficacy of novel and rationally designed therapeutic agents that target ERK1/2 signaling and mitochondrial ATP synthase, which modulate ROS events that may prevent or treat metastatic cancer. These findings and those of others suggest that targeting a tumor's metabolic requirements and vulnerabilities may inhibit metastatic pathways and tumor growth. Approaches that exploit the ability of therapeutic agents to alter oxidative balance in tumor cells may be selective for cancer cells and may ultimately have an impact on clinical efficacy and safety. Elucidating the translational potential of metabolic targeting could lead to the discovery of new approaches for treatment of metastatic cancer.
Collapse
Affiliation(s)
- Antonino Passaniti
- Research Health Scientist, The Veteran's Health Administration Research & Development Service (VAMHCS), VA Maryland Health Care System (VAMHCS), Baltimore VA Medical Center, Baltimore, Maryland, USA
- Department of Pathology and Department of Biochemistry & Molecular Biology, the Program in Molecular Medicine and the Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland USA
| | - Myoung Sook Kim
- Department of Pathology and Department of Biochemistry & Molecular Biology, the Program in Molecular Medicine and the Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland USA
| | - Brian M. Polster
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Paul Shapiro
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore Maryland, USA
| |
Collapse
|