1
|
de Lima LG, Guarracino A, Koren S, Potapova T, McKinney S, Rhie A, Solar SJ, Seidel C, Fagen B, Walenz BP, Bouffard GG, Brooks SY, Peterson M, Hall K, Crawford J, Young AC, Pickett BD, Garrison E, Phillippy AM, Gerton JL. The formation and propagation of human Robertsonian chromosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614821. [PMID: 39386535 PMCID: PMC11463614 DOI: 10.1101/2024.09.24.614821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Robertsonian chromosomes are a type of variant chromosome found commonly in nature. Present in one in 800 humans, these chromosomes can underlie infertility, trisomies, and increased cancer incidence. Recognized cytogenetically for more than a century, their origins have remained mysterious. Recent advances in genomics allowed us to assemble three human Robertsonian chromosomes completely. We identify a common breakpoint and epigenetic changes in centromeres that provide insight into the formation and propagation of common Robertsonian translocations. Further investigation of the assembled genomes of chimpanzee and bonobo highlights the structural features of the human genome that uniquely enable the specific crossover event that creates these chromosomes. Resolving the structure and epigenetic features of human Robertsonian chromosomes at a molecular level paves the way to understanding how chromosomal structural variation occurs more generally, and how chromosomes evolve.
Collapse
Affiliation(s)
| | - Andrea Guarracino
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sergey Koren
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tamara Potapova
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Sean McKinney
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Arang Rhie
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Steven J Solar
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chris Seidel
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Brandon Fagen
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Brian P Walenz
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gerard G Bouffard
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shelise Y Brooks
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Kate Hall
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Juyun Crawford
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alice C Young
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Brandon D Pickett
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Erik Garrison
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Adam M Phillippy
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
2
|
Sereshki S, Lonardi S. Predicting Differentially Methylated Cytosines in TET and DNMT3 Knockout Mutants via a Large Language Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.592257. [PMID: 39282350 PMCID: PMC11398415 DOI: 10.1101/2024.05.02.592257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
DNA cytosine methylation is an epigenetic marker which regulates many cellular processes. Mammalian genomes typically maintain consistent methylation patterns over time, except in specific regulatory regions like promoters and certain types of enhancers. The dynamics of DNA methylation is controlled by a complex cellular machinery, in which the enzymes DNMT3 and TET play a major role. This study explores the identification of differentially methylated cytosines (DMCs) in TET and DNMT3 knockout mutants in mice and human embryonic stem cells. We investigate (i) whether a large language model can be trained to recognize DMCs in human and mouse from the sequence surrounding the cytosine of interest, (ii) whether a classifier trained on human knockout data can predict DMCs in the mouse genome (and vice versa), (iii) whether a classifier trained on DNMT3 knockout can predict DMCs for TET knockout (and vice versa). Our study identifies statistically significant motifs associated with the prediction of DMCs each mutant, casting a new light on the understanding of DNA methylation dynamics in stem cells. Our software tool is available at https://github.com/ucrbioinfo/dmc_prediction.
Collapse
Affiliation(s)
- Saleh Sereshki
- Department of Computer Science and Engineering, University of California, Riverside, 900 University Ave, Riverside, 92521, CA, United States
| | - Stefano Lonardi
- Department of Computer Science and Engineering, University of California, Riverside, 900 University Ave, Riverside, 92521, CA, United States
| |
Collapse
|
3
|
Ohadi M, Arabfard M, Khamse S, Alizadeh S, Vafadar S, Bayat H, Tajeddin N, Maddi AMA, Delbari A, Khorram Khorshid HR. Novel crossover and recombination hotspots massively spread across primate genomes. Biol Direct 2024; 19:70. [PMID: 39169390 PMCID: PMC11340189 DOI: 10.1186/s13062-024-00508-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND The recombination landscape and subsequent natural selection have vast consequences forevolution and speciation. However, most of the crossover and recombination hotspots are yet to be discovered. We previously reported the relevance of C and G trinucleotide two-repeat units (CG-TTUs) in crossovers and recombination. METHODS On a genome-wide scale, here we mapped all combinations of A and T trinucleotide two-repeat units (AT-TTUs) in human, consisting of AATAAT, ATAATA, ATTATT, TTATTA, TATTAT, and TAATAA. We also compared a number of the colonies formed by the AT-TTUs (distance between consecutive AT-TTUs < 500 bp) in several other primates and mouse. RESULTS We found that the majority of the AT-TTUs (> 96%) resided in approximately 1.4 million colonies, spread throughout the human genome. In comparison to the CG-TTU colonies, the AT-TTU colonies were significantly more abundant and larger in size. Pure units and overlapping units of the pure units were readily detectable in the same colonies, signifying that the units were the sites of unequal crossover. We discovered dynamic sharedness of several of the colonies across the primate species studied, which mainly reached maximum complexity and size in human. CONCLUSIONS We report novel crossover and recombination hotspots of the finest molecular resolution, massively spread and shared across the genomes of human and several other primates. With respect to crossovers and recombination, these genomes are far more dynamic than previously envisioned.
Collapse
Affiliation(s)
- Mina Ohadi
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| | - Masoud Arabfard
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Safoura Khamse
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Samira Alizadeh
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Sara Vafadar
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hadi Bayat
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
- Biochemical Neuroendocrinology, Montreal Clinical and Research Institute (IRCM, affiliated to the McGill University, Montreal, QC, H2W 1R7, Canada
| | - Nahid Tajeddin
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ali M A Maddi
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Ahmad Delbari
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hamid R Khorram Khorshid
- Personalized Medicine and Genometabolomics Research Center, Hope Generation Foundation, Tehran, Iran
| |
Collapse
|
4
|
Johnston SE. Understanding the Genetic Basis of Variation in Meiotic Recombination: Past, Present, and Future. Mol Biol Evol 2024; 41:msae112. [PMID: 38959451 PMCID: PMC11221659 DOI: 10.1093/molbev/msae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 07/05/2024] Open
Abstract
Meiotic recombination is a fundamental feature of sexually reproducing species. It is often required for proper chromosome segregation and plays important role in adaptation and the maintenance of genetic diversity. The molecular mechanisms of recombination are remarkably conserved across eukaryotes, yet meiotic genes and proteins show substantial variation in their sequence and function, even between closely related species. Furthermore, the rate and distribution of recombination shows a huge diversity within and between chromosomes, individuals, sexes, populations, and species. This variation has implications for many molecular and evolutionary processes, yet how and why this diversity has evolved is not well understood. A key step in understanding trait evolution is to determine its genetic basis-that is, the number, effect sizes, and distribution of loci underpinning variation. In this perspective, I discuss past and current knowledge on the genetic basis of variation in recombination rate and distribution, explore its evolutionary implications, and present open questions for future research.
Collapse
Affiliation(s)
- Susan E Johnston
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
5
|
Marín-García C, Álvarez-González L, Marín-Gual L, Casillas S, Picón J, Yam K, Garcias-Ramis MM, Vara C, Ventura J, Ruiz-Herrera A. Multiple Genomic Landscapes of Recombination and Genomic Divergence in Wild Populations of House Mice-The Role of Chromosomal Fusions and Prdm9. Mol Biol Evol 2024; 41:msae063. [PMID: 38513632 PMCID: PMC10991077 DOI: 10.1093/molbev/msae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/21/2024] [Accepted: 03/14/2024] [Indexed: 03/23/2024] Open
Abstract
Chromosomal fusions represent one of the most common types of chromosomal rearrangements found in nature. Yet, their role in shaping the genomic landscape of recombination and hence genome evolution remains largely unexplored. Here, we take advantage of wild mice populations with chromosomal fusions to evaluate the effect of this type of structural variant on genomic landscapes of recombination and divergence. To this aim, we combined cytological analysis of meiotic crossovers in primary spermatocytes with inferred analysis of recombination rates based on linkage disequilibrium using single nucleotide polymorphisms. Our results suggest the presence of a combined effect of Robertsonian fusions and Prdm9 allelic background, a gene involved in the formation of meiotic double strand breaks and postzygotic reproductive isolation, in reshaping genomic landscapes of recombination. We detected a chromosomal redistribution of meiotic recombination toward telomeric regions in metacentric chromosomes in mice with Robertsonian fusions when compared to nonfused mice. This repatterning was accompanied by increased levels of crossover interference and reduced levels of estimated recombination rates between populations, together with high levels of genomic divergence. Interestingly, we detected that Prdm9 allelic background was a major determinant of recombination rates at the population level, whereas Robertsonian fusions showed limited effects, restricted to centromeric regions of fused chromosomes. Altogether, our results provide new insights into the effect of Robertsonian fusions and Prdm9 background on meiotic recombination.
Collapse
Affiliation(s)
- Cristina Marín-García
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Lucía Álvarez-González
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Laia Marín-Gual
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Sònia Casillas
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Judith Picón
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Keren Yam
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - María Magdalena Garcias-Ramis
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Covadonga Vara
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Jacint Ventura
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
- Small Mammals Research Unit, Granollers Museum of Natural Sciences, Granollers 08402, Barcelona, Spain
| | - Aurora Ruiz-Herrera
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| |
Collapse
|
6
|
AbuAlia KFN, Damm E, Ullrich KK, Mukaj A, Parvanov E, Forejt J, Odenthal-Hesse L. Natural variation in the zinc-finger-encoding exon of Prdm9 affects hybrid sterility phenotypes in mice. Genetics 2024; 226:iyae004. [PMID: 38217871 PMCID: PMC10917509 DOI: 10.1093/genetics/iyae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/15/2024] Open
Abstract
PRDM9-mediated reproductive isolation was first described in the progeny of Mus musculus musculus (MUS) PWD/Ph and Mus musculus domesticus (DOM) C57BL/6J inbred strains. These male F1 hybrids fail to complete chromosome synapsis and arrest meiosis at prophase I, due to incompatibilities between the Prdm9 gene and hybrid sterility locus Hstx2. We identified 14 alleles of Prdm9 in exon 12, encoding the DNA-binding domain of the PRDM9 protein in outcrossed wild mouse populations from Europe, Asia, and the Middle East, 8 of which are novel. The same allele was found in all mice bearing introgressed t-haplotypes encompassing Prdm9. We asked whether 7 novel Prdm9 alleles in MUS populations and the t-haplotype allele in 1 MUS and 3 DOM populations induce Prdm9-mediated reproductive isolation. The results show that only combinations of the dom2 allele of DOM origin and the MUS msc1 allele ensure complete infertility of intersubspecific hybrids in outcrossed wild populations and inbred mouse strains examined so far. The results further indicate that MUS mice may share the erasure of PRDM9msc1 binding motifs in populations with different Prdm9 alleles, which implies that erased PRDM9 binding motifs may be uncoupled from their corresponding Prdm9 alleles at the population level. Our data corroborate the model of Prdm9-mediated hybrid sterility beyond inbred strains of mice and suggest that sterility alleles of Prdm9 may be rare.
Collapse
Affiliation(s)
- Khawla F N AbuAlia
- Research Group Meiotic Recombination and Genome Instability, Max Planck Institute for Evolutionary Biology, Plön D-24306, Germany
| | - Elena Damm
- Research Group Meiotic Recombination and Genome Instability, Max Planck Institute for Evolutionary Biology, Plön D-24306, Germany
| | - Kristian K Ullrich
- Research Group Meiotic Recombination and Genome Instability, Max Planck Institute for Evolutionary Biology, Plön D-24306, Germany
| | - Amisa Mukaj
- Laboratory of Mouse Molecular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec CZ-25250, Czech Republic
| | - Emil Parvanov
- Laboratory of Mouse Molecular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec CZ-25250, Czech Republic
- Department of Translational Stem Cell Biology, Research Institute of the Medical University of Varna, 9002 Varna, Bulgaria
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, 1090 Vienna, Austria
| | - Jiri Forejt
- Laboratory of Mouse Molecular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec CZ-25250, Czech Republic
| | - Linda Odenthal-Hesse
- Research Group Meiotic Recombination and Genome Instability, Max Planck Institute for Evolutionary Biology, Plön D-24306, Germany
| |
Collapse
|
7
|
Yeadon PJ, Bowring FJ, Catcheside DEA. Recombination hotspots in Neurospora crassa controlled by idiomorphic sequences and meiotic silencing. Genetics 2024; 226:iyad213. [PMID: 38124387 DOI: 10.1093/genetics/iyad213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Genes regulating recombination in specific chromosomal intervals of Neurospora crassa were described in the 1960s, but the mechanism is still unknown. For each of the rec-1, rec-2, and rec-3 genes, a single copy of the putative dominant allele, for example, rec-2SL found in St Lawrence OR74 A wild type, reduces recombination in chromosomal regions specific to that gene. However, when we sequenced the recessive allele, rec-2LG (derived from the Lindegren 1A wild type), we found that a 10 kb region in rec-2SL strains was replaced by a 2.7 kb unrelated sequence, making the "alleles" idiomorphs. When we introduced sad-1, a mutant lacking the RNA-dependent RNA polymerase that silences unpaired coding regions during meiosis into crosses heterozygous rec-2SL/rec-2LG, it increased recombination, indicating that meiotic silencing of a gene promoting recombination is responsible for dominant suppression of recombination. Consistent with this, mutation of rec-2LG by Repeat-Induced Point mutation generated an allele with multiple stop codons in the predicted rec-2 gene, which does not promote recombination and is recessive to rec-2LG. Sad-1 also relieves suppression of recombination in relevant target regions, in crosses heterozygous for rec-1 alleles and in crosses heterozygous for rec-3 alleles. We conclude that for all 3 known rec genes, 1 allele appears dominant only because meiotic silencing prevents the product of the active, "recessive," allele from stimulating recombination during meiosis. In addition, the proposed amino acid sequence of REC-2 suggests that regulation of recombination in Neurospora differs from any currently known mechanism.
Collapse
Affiliation(s)
- Patricia Jane Yeadon
- College of Science and Engineering, Flinders University, Sturt Road, Bedford Park, South Australia 5042, Australia
| | - Frederick J Bowring
- College of Science and Engineering, Flinders University, Sturt Road, Bedford Park, South Australia 5042, Australia
| | | |
Collapse
|
8
|
Versoza CJ, Weiss S, Johal R, La Rosa B, Jensen JD, Pfeifer SP. Novel Insights into the Landscape of Crossover and Noncrossover Events in Rhesus Macaques (Macaca mulatta). Genome Biol Evol 2024; 16:evad223. [PMID: 38051960 PMCID: PMC10773715 DOI: 10.1093/gbe/evad223] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/04/2023] [Accepted: 11/28/2023] [Indexed: 12/07/2023] Open
Abstract
Meiotic recombination landscapes differ greatly between distantly and closely related taxa, populations, individuals, sexes, and even within genomes; however, the factors driving this variation are yet to be well elucidated. Here, we directly estimate contemporary crossover rates and, for the first time, noncrossover rates in rhesus macaques (Macaca mulatta) from four three-generation pedigrees comprising 32 individuals. We further compare these results with historical, demography-aware, linkage disequilibrium-based recombination rate estimates. From paternal meioses in the pedigrees, 165 crossover events with a median resolution of 22.3 kb were observed, corresponding to a male autosomal map length of 2,357 cM-approximately 15% longer than an existing linkage map based on human microsatellite loci. In addition, 85 noncrossover events with a mean tract length of 155 bp were identified-similar to the tract lengths observed in the only other two primates in which noncrossovers have been studied to date, humans and baboons. Consistent with observations in other placental mammals with PRDM9-directed recombination, crossover (and to a lesser extent noncrossover) events in rhesus macaques clustered in intergenic regions and toward the chromosomal ends in males-a pattern in broad agreement with the historical, sex-averaged recombination rate estimates-and evidence of GC-biased gene conversion was observed at noncrossover sites.
Collapse
Affiliation(s)
- Cyril J Versoza
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
| | - Sarah Weiss
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Ravneet Johal
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Bruno La Rosa
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Jeffrey D Jensen
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
| | - Susanne P Pfeifer
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
9
|
Hinch R, Donnelly P, Hinch AG. Meiotic DNA breaks drive multifaceted mutagenesis in the human germ line. Science 2023; 382:eadh2531. [PMID: 38033082 PMCID: PMC7615360 DOI: 10.1126/science.adh2531] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 09/29/2023] [Indexed: 12/02/2023]
Abstract
Meiotic recombination commences with hundreds of programmed DNA breaks; however, the degree to which they are accurately repaired remains poorly understood. We report that meiotic break repair is eightfold more mutagenic for single-base substitutions than was previously understood, leading to de novo mutation in one in four sperm and one in 12 eggs. Its impact on indels and structural variants is even higher, with 100- to 1300-fold increases in rates per break. We uncovered new mutational signatures and footprints relative to break sites, which implicate unexpected biochemical processes and error-prone DNA repair mechanisms, including translesion synthesis and end joining in meiotic break repair. We provide evidence that these mechanisms drive mutagenesis in human germ lines and lead to disruption of hundreds of genes genome wide.
Collapse
Affiliation(s)
- Robert Hinch
- Big Data Institute, University of Oxford; Oxford, UK
| | - Peter Donnelly
- Wellcome Centre for Human Genetics, University of Oxford; Oxford, UK
- Genomics plc; Oxford, UK
| | | |
Collapse
|
10
|
Baudat F, de Massy B. Mutation hotspots during meiosis. Science 2023; 382:997-998. [PMID: 38033058 DOI: 10.1126/science.adl2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Multiple pathways generate mutations at sites of meiotic recombination in humans.
Collapse
Affiliation(s)
- Frédéric Baudat
- Institut de Génétique Humaine, Université de Montpellier, Centre National de la Recherche Scientifique, Montpellier, France
| | - Bernard de Massy
- Institut de Génétique Humaine, Université de Montpellier, Centre National de la Recherche Scientifique, Montpellier, France
| |
Collapse
|
11
|
Klussmeier A, Putke K, Klasberg S, Kohler M, Sauter J, Schefzyk D, Schöfl G, Massalski C, Schäfer G, Schmidt AH, Roers A, Lange V. High population frequencies of MICA copy number variations originate from independent recombination events. Front Immunol 2023; 14:1297589. [PMID: 38035108 PMCID: PMC10684724 DOI: 10.3389/fimmu.2023.1297589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023] Open
Abstract
MICA is a stress-induced ligand of the NKG2D receptor that stimulates NK and T cell responses and was identified as a key determinant of anti-tumor immunity. The MICA gene is located inside the MHC complex and is in strong linkage disequilibrium with HLA-B. While an HLA-B*48-linked MICA deletion-haplotype was previously described in Asian populations, little is known about other MICA copy number variations. Here, we report the genotyping of more than two million individuals revealing high frequencies of MICA duplications (1%) and MICA deletions (0.4%). Their prevalence differs between ethnic groups and can rise to 2.8% (Croatia) and 9.2% (Mexico), respectively. Targeted sequencing of more than 70 samples indicates that these copy number variations originate from independent nonallelic homologous recombination events between segmental duplications upstream of MICA and MICB. Overall, our data warrant further investigation of disease associations and consideration of MICA copy number data in oncological study protocols.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Axel Roers
- Institute for Immunology, Medical Faculty Carl Gustav Carus, University of Technology (TU) Dresden, Dresden, Germany
- Institute for Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
12
|
Baker Z, Przeworski M, Sella G. Down the Penrose stairs, or how selection for fewer recombination hotspots maintains their existence. eLife 2023; 12:e83769. [PMID: 37830496 PMCID: PMC10703446 DOI: 10.7554/elife.83769] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/12/2023] [Indexed: 10/14/2023] Open
Abstract
In many species, meiotic recombination events tend to occur in narrow intervals of the genome, known as hotspots. In humans and mice, double strand break (DSB) hotspot locations are determined by the DNA-binding specificity of the zinc finger array of the PRDM9 protein, which is rapidly evolving at residues in contact with DNA. Previous models explained this rapid evolution in terms of the need to restore PRDM9 binding sites lost to gene conversion over time, under the assumption that more PRDM9 binding always leads to more DSBs. This assumption, however, does not align with current evidence. Recent experimental work indicates that PRDM9 binding on both homologs facilitates DSB repair, and that the absence of sufficient symmetric binding disrupts meiosis. We therefore consider an alternative hypothesis: that rapid PRDM9 evolution is driven by the need to restore symmetric binding because of its role in coupling DSB formation and efficient repair. To this end, we model the evolution of PRDM9 from first principles: from its binding dynamics to the population genetic processes that govern the evolution of the zinc finger array and its binding sites. We show that the loss of a small number of strong binding sites leads to the use of a greater number of weaker ones, resulting in a sharp reduction in symmetric binding and favoring new PRDM9 alleles that restore the use of a smaller set of strong binding sites. This decrease, in turn, drives rapid PRDM9 evolutionary turnover. Our results therefore suggest that the advantage of new PRDM9 alleles is in limiting the number of binding sites used effectively, rather than in increasing net PRDM9 binding. By extension, our model suggests that the evolutionary advantage of hotspots may have been to increase the efficiency of DSB repair and/or homolog pairing.
Collapse
Affiliation(s)
- Zachary Baker
- Department of Systems Biology, Columbia UniversityNew YorkUnited States
- Department of Biological Sciences, Columbia UniversityNew YorkUnited States
| | - Molly Przeworski
- Department of Systems Biology, Columbia UniversityNew YorkUnited States
- Department of Biological Sciences, Columbia UniversityNew YorkUnited States
- Program for Mathematical Genomics, Columbia UniversityNew YorkUnited States
| | - Guy Sella
- Department of Biological Sciences, Columbia UniversityNew YorkUnited States
- Program for Mathematical Genomics, Columbia UniversityNew YorkUnited States
| |
Collapse
|
13
|
Weinstock JS, Laurie CA, Broome JG, Taylor KD, Guo X, Shuldiner AR, O’Connell JR, Lewis JP, Boerwinkle E, Barnes KC, Chami N, Kenny EE, Loos RJ, Fornage M, Redline S, Cade BE, Gilliland FD, Chen Z, Gauderman WJ, Kumar R, Grammer L, Schleimer RP, Psaty BM, Bis JC, Brody JA, Silverman EK, Yun JH, Qiao D, Weiss ST, Lasky-Su J, DeMeo DL, Palmer ND, Freedman BI, Bowden DW, Cho MH, Vasan RS, Johnson AD, Yanek LR, Becker LC, Kardia S, He J, Kaplan R, Heckbert SR, Smith NL, Wiggins KL, Arnett DK, Irvin MR, Tiwari H, Correa A, Raffield LM, Gao Y, de Andrade M, Rotter JI, Rich SS, Manichaikul AW, Konkle BA, Johnsen JM, Wheeler MM, Custer BS, Duggirala R, Curran JE, Blangero J, Gui H, Xiao S, Williams LK, Meyers DA, Li X, Ortega V, McGarvey S, Gu CC, Chen YDI, Lee WJ, Shoemaker MB, Darbar D, Roden D, Albert C, Kooperberg C, Desai P, Blackwell TW, Abecasis GR, Smith AV, Kang HM, Mathias R, Natarajan P, Jaiswal S, Reiner AP, Bick AG. The genetic determinants of recurrent somatic mutations in 43,693 blood genomes. SCIENCE ADVANCES 2023; 9:eabm4945. [PMID: 37126548 PMCID: PMC10132750 DOI: 10.1126/sciadv.abm4945] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
Nononcogenic somatic mutations are thought to be uncommon and inconsequential. To test this, we analyzed 43,693 National Heart, Lung and Blood Institute Trans-Omics for Precision Medicine blood whole genomes from 37 cohorts and identified 7131 non-missense somatic mutations that are recurrently mutated in at least 50 individuals. These recurrent non-missense somatic mutations (RNMSMs) are not clearly explained by other clonal phenomena such as clonal hematopoiesis. RNMSM prevalence increased with age, with an average 50-year-old having 27 RNMSMs. Inherited germline variation associated with RNMSM acquisition. These variants were found in genes involved in adaptive immune function, proinflammatory cytokine production, and lymphoid lineage commitment. In addition, the presence of eight specific RNMSMs associated with blood cell traits at effect sizes comparable to Mendelian genetic mutations. Overall, we found that somatic mutations in blood are an unexpectedly common phenomenon with ancestry-specific determinants and human health consequences.
Collapse
Affiliation(s)
- Joshua S. Weinstock
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Cecelia A. Laurie
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Jai G. Broome
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Kent D. Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Alan R. Shuldiner
- Department of Medicine, University of Maryland, Baltimore, Baltimore, MD 21201, USA
| | - Jeffrey R. O’Connell
- Department of Medicine, University of Maryland, Baltimore, Baltimore, MD 21201, USA
| | - Joshua P. Lewis
- Department of Medicine, University of Maryland, Baltimore, Baltimore, MD 21201, USA
| | - Eric Boerwinkle
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kathleen C. Barnes
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Nathalie Chami
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Eimear E. Kenny
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ruth J. F. Loos
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Susan Redline
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Brian E. Cade
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Frank D. Gilliland
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Zhanghua Chen
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - W. James Gauderman
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Rajesh Kumar
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
- Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Leslie Grammer
- Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98195, USA
- Department of Epidemiology, University of Washington, Seattle, WA 98195, USA
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Joshua C. Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Jennifer A. Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Edwin K. Silverman
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Jeong H. Yun
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Dandi Qiao
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Scott T. Weiss
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Jessica Lasky-Su
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Dawn L. DeMeo
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Nicholette D. Palmer
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Barry I. Freedman
- Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Donald W. Bowden
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Michael H. Cho
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Ramachandran S. Vasan
- National Heart, Lung, and Blood Institute’s, Boston University’s Framingham Heart Study, Framingham, MA 01701, USA
| | - Andrew D. Johnson
- National Heart, Lung, and Blood Institute’s, Boston University’s Framingham Heart Study, Framingham, MA 01701, USA
- National Heart, Lung and Blood Institute, Population Sciences Branch, Framingham, MA 01701, USA
| | - Lisa R. Yanek
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lewis C. Becker
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sharon Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Robert Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Susan R. Heckbert
- Department of Epidemiology, University of Washington, Seattle, WA 98195, USA
- Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, WA 98101, USA
| | - Nicholas L. Smith
- Department of Epidemiology, University of Washington, Seattle, WA 98195, USA
- Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, WA 98101, USA
- Seattle Epidemiologic Research and Information Center, Department of Veterans Affairs Office of Research and Development, Seattle, WA 98108, USA
| | - Kerri L. Wiggins
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98101, USA
| | - Donna K. Arnett
- Dean’s Office, College of Public Health, University of Kentucky, Lexington, KY 40506, USA
| | | | - Hemant Tiwari
- University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Adolfo Correa
- Department of Medicine, Jackson Heart Study, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Laura M. Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yan Gao
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Mariza de Andrade
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Stephen S. Rich
- Department of Public Health Sciences, Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22903, USA
| | - Ani W. Manichaikul
- Department of Public Health Sciences, Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22903, USA
| | - Barbara A. Konkle
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Jill M. Johnsen
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
- Research Institute, Bloodworks Northwest, Seattle, WA 98102, USA
| | | | | | - Ravindranath Duggirala
- Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA
| | - Joanne E. Curran
- Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA
| | - John Blangero
- Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA
| | - Hongsheng Gui
- Center for Individualized and Genomic Medicine Research (CIGMA), Henry Ford Health System, Detroit, MI 48202, USA
- Department of Medicine, Henry Ford Health System, Detroit, MI 48202, USA
| | - Shujie Xiao
- Center for Individualized and Genomic Medicine Research (CIGMA), Henry Ford Health System, Detroit, MI 48202, USA
- Department of Medicine, Henry Ford Health System, Detroit, MI 48202, USA
| | - L. Keoki Williams
- Center for Individualized and Genomic Medicine Research (CIGMA), Henry Ford Health System, Detroit, MI 48202, USA
- Department of Medicine, Henry Ford Health System, Detroit, MI 48202, USA
| | - Deborah A. Meyers
- Division of Genetics, Genomics, and Precision Medicine, University of Arizona, Tucson, AZ 85721, USA
| | - Xingnan Li
- Department of Medicine, University of Arizona, Tucson, AZ 85721, USA
| | - Victor Ortega
- Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| | - Stephen McGarvey
- Department of Epidemiology and International Health Institute, Brown University School of Public Health, Providence, RI 02903, USA
| | - C. Charles Gu
- Division of Biostatistics, Washington University School of Medicine, Campus Box 8067, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Wen-Jane Lee
- Department of Medical Research, Taichung Veterans General Hospital, 1650, Sec. 4, Taiwan Boulevard, Taichung City, Taiwan
| | - M. Benjamin Shoemaker
- Division of Cardiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Dawood Darbar
- Division of Cardiology, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Dan Roden
- Departments of Medicine, Pharmacology, and Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Christine Albert
- Department of Cardiology, Cedars-Sinai, Los Angeles, CA 90048, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Pinkal Desai
- Division of Hematology and Oncology, Weill Cornell Medicine, New York, NY 10065, USA
- Englander Institute of Precision Medicine, Weill Cornell Medicine, New York 10065, NY, USA
| | - Thomas W. Blackwell
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Goncalo R. Abecasis
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Albert V. Smith
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Hyun M. Kang
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Rasika Mathias
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Pradeep Natarajan
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | | | - Alexander P. Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Epidemiology, University of Washington, Seattle, WA 98195, USA
| | - Alexander G. Bick
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | - NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
- Department of Medicine, University of Maryland, Baltimore, Baltimore, MD 21201, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA 90089, USA
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
- Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98195, USA
- Department of Epidemiology, University of Washington, Seattle, WA 98195, USA
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
- Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- National Heart, Lung, and Blood Institute’s, Boston University’s Framingham Heart Study, Framingham, MA 01701, USA
- National Heart, Lung and Blood Institute, Population Sciences Branch, Framingham, MA 01701, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Epidemiology, University of Washington, Seattle, WA 98195, USA
- Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, WA 98101, USA
- Seattle Epidemiologic Research and Information Center, Department of Veterans Affairs Office of Research and Development, Seattle, WA 98108, USA
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98101, USA
- Dean’s Office, College of Public Health, University of Kentucky, Lexington, KY 40506, USA
- University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Medicine, Jackson Heart Study, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
- Department of Public Health Sciences, Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22903, USA
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
- Research Institute, Bloodworks Northwest, Seattle, WA 98102, USA
- Genome Science, University of Washington, Seattle, WA 98195, USA
- Vitalant Research Institute, San Francisco, CA 94105, USA
- Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520, USA
- Center for Individualized and Genomic Medicine Research (CIGMA), Henry Ford Health System, Detroit, MI 48202, USA
- Department of Medicine, Henry Ford Health System, Detroit, MI 48202, USA
- Division of Genetics, Genomics, and Precision Medicine, University of Arizona, Tucson, AZ 85721, USA
- Department of Medicine, University of Arizona, Tucson, AZ 85721, USA
- Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
- Department of Epidemiology and International Health Institute, Brown University School of Public Health, Providence, RI 02903, USA
- Division of Biostatistics, Washington University School of Medicine, Campus Box 8067, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
- Department of Medical Research, Taichung Veterans General Hospital, 1650, Sec. 4, Taiwan Boulevard, Taichung City, Taiwan
- Division of Cardiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Division of Cardiology, University of Illinois at Chicago, Chicago, IL 60607, USA
- Departments of Medicine, Pharmacology, and Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Cardiology, Cedars-Sinai, Los Angeles, CA 90048, USA
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Division of Hematology and Oncology, Weill Cornell Medicine, New York, NY 10065, USA
- Englander Institute of Precision Medicine, Weill Cornell Medicine, New York 10065, NY, USA
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
- Department of Epidemiology, University of Washington, Seattle, WA 98195, USA
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
14
|
Wooldridge LK, Dumont BL. Rapid Evolution of the Fine-scale Recombination Landscape in Wild House Mouse (Mus musculus) Populations. Mol Biol Evol 2022; 40:6889355. [PMID: 36508360 PMCID: PMC9825251 DOI: 10.1093/molbev/msac267] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
Meiotic recombination is an important evolutionary force and an essential meiotic process. In many species, recombination events concentrate into hotspots defined by the site-specific binding of PRMD9. Rapid evolution of Prdm9's zinc finger DNA-binding array leads to remarkably abrupt shifts in the genomic distribution of hotspots between species, but the question of how Prdm9 allelic variation shapes the landscape of recombination between populations remains less well understood. Wild house mice (Mus musculus) harbor exceptional Prdm9 diversity, with >150 alleles identified to date, and pose a particularly powerful system for addressing this open question. We employed a coalescent-based approach to construct broad- and fine-scale sex-averaged recombination maps from contemporary patterns of linkage disequilibrium in nine geographically isolated wild house mouse populations, including multiple populations from each of three subspecies. Comparing maps between wild mouse populations and subspecies reveals several themes. First, we report weak fine- and broad-scale recombination map conservation across subspecies and populations, with genetic divergence offering no clear prediction for recombination map divergence. Second, most hotspots are unique to one population, an outcome consistent with minimal sharing of Prdm9 alleles between surveyed populations. Finally, by contrasting aggregate hotspot activity on the X versus autosomes, we uncover evidence for population-specific differences in the degree and direction of sex dimorphism for recombination. Overall, our findings illuminate the variability of both the broad- and fine-scale recombination landscape in M. musculus and underscore the functional impact of Prdm9 allelic variation in wild mouse populations.
Collapse
|
15
|
Sun Y, Yuan F, Wang L, Dai D, Zhang Z, Liang F, Liu N, Long J, Zhao X, Xi Y. Recombination and mutation shape variations in the major histocompatibility complex. J Genet Genomics 2022; 49:1151-1161. [PMID: 35358716 DOI: 10.1016/j.jgg.2022.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 01/14/2023]
Abstract
The major histocompatibility complex (MHC) is closely associated with numerous diseases, but its high degree of polymorphism complicates the discovery of disease-associated variants. In principle, recombination and de novo mutations are two critical factors responsible for MHC polymorphisms. However, direct evidence for this hypothesis is lacking. Here, we report the generation of fine-scale MHC recombination and de novo mutation maps of ∼5 Mb by deep sequencing (> 100×) of the MHC genome for 17 MHC recombination and 30 non-recombination Han Chinese families (a total of 190 individuals). Recombination hotspots and Han-specific breakpoints are located in close proximity at haplotype block boundaries. The average MHC de novo mutation rate is higher than the genome-wide de novo mutation rate, particularly in MHC recombinant individuals. Notably, mutation and recombination generated polymorphisms are located within and outside linkage disequilibrium regions of the MHC, respectively, and evolution of the MHC locus was mainly controlled by positive selection. These findings provide insights on the evolutionary causes of the MHC diversity and may facilitate the identification of disease-associated genetic variants.
Collapse
Affiliation(s)
- Yuying Sun
- Department of Immunology and National Immunoassay Laboratory, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China; Institute of Beijing 307 Hospital, Anhui Medical University, Hefei, Anhui 230032, China.
| | - Fang Yuan
- Department of Immunology and National Immunoassay Laboratory, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Ling Wang
- Department of Immunology and National Immunoassay Laboratory, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China; Institute of Beijing 307 Hospital, Anhui Medical University, Hefei, Anhui 230032, China
| | - Dongfa Dai
- Department of Immunology and National Immunoassay Laboratory, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China; Institute of Beijing 307 Hospital, Anhui Medical University, Hefei, Anhui 230032, China
| | - Zhijian Zhang
- Department of Immunology and National Immunoassay Laboratory, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China; Institute of Beijing 307 Hospital, Anhui Medical University, Hefei, Anhui 230032, China
| | - Fei Liang
- Department of Immunology and National Immunoassay Laboratory, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Nan Liu
- Department of Immunology and National Immunoassay Laboratory, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Juan Long
- Department of Immunology and National Immunoassay Laboratory, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Xiao Zhao
- Department of Immunology and National Immunoassay Laboratory, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Yongzhi Xi
- Department of Immunology and National Immunoassay Laboratory, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China.
| |
Collapse
|
16
|
Yuan B, Schulze KV, Assia Batzir N, Sinson J, Dai H, Zhu W, Bocanegra F, Fong CT, Holder J, Nguyen J, Schaaf CP, Yang Y, Bi W, Eng C, Shaw C, Lupski JR, Liu P. Sequencing individual genomes with recurrent genomic disorder deletions: an approach to characterize genes for autosomal recessive rare disease traits. Genome Med 2022; 14:113. [PMID: 36180924 PMCID: PMC9526336 DOI: 10.1186/s13073-022-01113-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 09/02/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND In medical genetics, discovery and characterization of disease trait contributory genes and alleles depends on genetic reasoning, study design, and patient ascertainment; we suggest a segmental haploid genetics approach to enhance gene discovery and molecular diagnostics. METHODS We constructed a genome-wide map for nonallelic homologous recombination (NAHR)-mediated recurrent genomic deletions and used this map to estimate population frequencies of NAHR deletions based on large-scale population cohorts and region-specific studies. We calculated recessive disease carrier burden using high-quality pathogenic or likely pathogenic variants from ClinVar and gnomAD. We developed a NIRD (NAHR deletion Impact to Recessive Disease) score for recessive disorders by quantifying the contribution of NAHR deletion to the overall allele load that enumerated all pairwise combinations of disease-causing alleles; we used a Punnett square approach based on an assumption of random mating. Literature mining was conducted to identify all reported patients with defects in a gene with a high NIRD score; meta-analysis was performed on these patients to estimate the representation of NAHR deletions in recessive traits from contemporary human genomics studies. Retrospective analyses of extant clinical exome sequencing (cES) were performed for novel rare recessive disease trait gene and allele discovery from individuals with NAHR deletions. RESULTS We present novel genomic insights regarding the genome-wide impact of NAHR recurrent segmental variants on recessive disease burden; we demonstrate the utility of NAHR recurrent deletions to enhance discovery in the challenging context of autosomal recessive (AR) traits and biallelic variation. Computational results demonstrate new mutations mediated by NAHR, involving recurrent deletions at 30 genomic regions, likely drive recessive disease burden for over 74% of loci within these segmental deletions or at least 2% of loci genome-wide. Meta-analyses on 170 literature-reported patients implicate that NAHR deletions are depleted from the ascertained pool of AR trait alleles. Exome reanalysis of personal genomes from subjects harboring recurrent deletions uncovered new disease-contributing variants in genes including COX10, ERCC6, PRRT2, and OTUD7A. CONCLUSIONS Our results demonstrate that genomic sequencing of personal genomes with NAHR deletions could dramatically improve allele and gene discovery and enhance clinical molecular diagnosis. Moreover, results suggest NAHR events could potentially enable human haploid genetic screens as an approach to experimental inquiry into disease biology.
Collapse
Affiliation(s)
- Bo Yuan
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA ,grid.39382.330000 0001 2160 926XHuman Genome Sequencing Center, Baylor College of Medicine, Houston, TX USA
| | - Katharina V. Schulze
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA ,grid.510928.7Baylor Genetics, Houston, TX USA
| | - Nurit Assia Batzir
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Jefferson Sinson
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Hongzheng Dai
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA ,grid.510928.7Baylor Genetics, Houston, TX USA
| | - Wenmiao Zhu
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA ,grid.510928.7Baylor Genetics, Houston, TX USA
| | | | - Chin-To Fong
- grid.412750.50000 0004 1936 9166Department of Pediatrics, University of Rochester Medical Center, Rochester, NY USA
| | - Jimmy Holder
- grid.39382.330000 0001 2160 926XDepartment of Pediatrics, Baylor College of Medicine, Houston, TX USA
| | - Joanne Nguyen
- grid.267308.80000 0000 9206 2401Department of Pediatrics, University of Texas Health Science Center, Houston, TX USA
| | - Christian P. Schaaf
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA ,grid.7700.00000 0001 2190 4373Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Yaping Yang
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Weimin Bi
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA ,grid.510928.7Baylor Genetics, Houston, TX USA
| | - Christine Eng
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA ,grid.510928.7Baylor Genetics, Houston, TX USA
| | - Chad Shaw
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA ,grid.21940.3e0000 0004 1936 8278Department of Statistics, Rice University, Houston, TX USA
| | - James R. Lupski
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA ,grid.39382.330000 0001 2160 926XHuman Genome Sequencing Center, Baylor College of Medicine, Houston, TX USA ,grid.39382.330000 0001 2160 926XDepartment of Pediatrics, Baylor College of Medicine, Houston, TX USA ,grid.416975.80000 0001 2200 2638Texas Children’s Hospital, Houston, TX USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA. .,Baylor Genetics, Houston, TX, USA.
| |
Collapse
|
17
|
Mohiuddin M, Kooy RF, Pearson CE. De novo mutations, genetic mosaicism and human disease. Front Genet 2022; 13:983668. [PMID: 36226191 PMCID: PMC9550265 DOI: 10.3389/fgene.2022.983668] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022] Open
Abstract
Mosaicism—the existence of genetically distinct populations of cells in a particular organism—is an important cause of genetic disease. Mosaicism can appear as de novo DNA mutations, epigenetic alterations of DNA, and chromosomal abnormalities. Neurodevelopmental or neuropsychiatric diseases, including autism—often arise by de novo mutations that usually not present in either of the parents. De novo mutations might occur as early as in the parental germline, during embryonic, fetal development, and/or post-natally, through ageing and life. Mutation timing could lead to mutation burden of less than heterozygosity to approaching homozygosity. Developmental timing of somatic mutation attainment will affect the mutation load and distribution throughout the body. In this review, we discuss the timing of de novo mutations, spanning from mutations in the germ lineage (all ages), to post-zygotic, embryonic, fetal, and post-natal events, through aging to death. These factors can determine the tissue specific distribution and load of de novo mutations, which can affect disease. The disease threshold burden of somatic de novo mutations of a particular gene in any tissue will be important to define.
Collapse
Affiliation(s)
- Mohiuddin Mohiuddin
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- *Correspondence: Mohiuddin Mohiuddin, ; Christopher E. Pearson,
| | - R. Frank Kooy
- Department of Medical Genetics, University of Antwerp, Edegem, Belgium
| | - Christopher E. Pearson
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- *Correspondence: Mohiuddin Mohiuddin, ; Christopher E. Pearson,
| |
Collapse
|
18
|
Lee B, Cyrill SL, Lee W, Melchiotti R, Andiappan AK, Poidinger M, Rötzschke O. Analysis of archaic human haplotypes suggests that 5hmC acts as an epigenetic guide for NCO recombination. BMC Biol 2022; 20:173. [PMID: 35927700 PMCID: PMC9354366 DOI: 10.1186/s12915-022-01353-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
Background Non-crossover (NCO) refers to a mechanism of homologous recombination in which short tracks of DNA are copied between homologue chromatids. The allelic changes are typically restricted to one or few SNPs, which potentially allow for the gradual adaptation and maturation of haplotypes. It is assumed to be a stochastic process but the analysis of archaic and modern human haplotypes revealed a striking variability in local NCO recombination rates. Methods NCO recombination rates of 1.9 million archaic SNPs shared with Denisovan hominids were defined by a linkage study and correlated with functional and genomic annotations as well as ChIP-Seq data from modern humans. Results We detected a strong correlation between NCO recombination rates and the function of the respective region: low NCO rates were evident in introns and quiescent intergenic regions but high rates in splice sites, exons, 5′- and 3′-UTRs, as well as CpG islands. Correlations with ChIP-Seq data from ENCODE and other public sources further identified epigenetic modifications that associated directly with these recombination events. A particularly strong association was observed for 5-hydroxymethylcytosine marks (5hmC), which were enriched in virtually all of the functional regions associated with elevated NCO rates, including CpG islands and ‘poised’ bivalent regions. Conclusion Our results suggest that 5hmC marks may guide the NCO machinery specifically towards functionally relevant regions and, as an intermediate of oxidative demethylation, may open a pathway for environmental influence by specifically targeting recently opened gene loci. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01353-9.
Collapse
Affiliation(s)
- Bernett Lee
- Singapore Immunology Network (SIgN), Agency of Science Technology and Research (A*STAR), 8A Biomedical Drive, Singapore, 138648, Singapore.,Present address: Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Samantha Leeanne Cyrill
- Singapore Immunology Network (SIgN), Agency of Science Technology and Research (A*STAR), 8A Biomedical Drive, Singapore, 138648, Singapore.,Present address: Cold Spring Harbor Laboratory, One Bungtown Road, NY, 11724, Cold Spring Harbor, USA
| | - Wendy Lee
- Singapore Immunology Network (SIgN), Agency of Science Technology and Research (A*STAR), 8A Biomedical Drive, Singapore, 138648, Singapore
| | - Rossella Melchiotti
- Singapore Immunology Network (SIgN), Agency of Science Technology and Research (A*STAR), 8A Biomedical Drive, Singapore, 138648, Singapore
| | - Anand Kumar Andiappan
- Singapore Immunology Network (SIgN), Agency of Science Technology and Research (A*STAR), 8A Biomedical Drive, Singapore, 138648, Singapore
| | - Michael Poidinger
- Singapore Immunology Network (SIgN), Agency of Science Technology and Research (A*STAR), 8A Biomedical Drive, Singapore, 138648, Singapore.,Present address: Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Victoria, 3052, Australia
| | - Olaf Rötzschke
- Singapore Immunology Network (SIgN), Agency of Science Technology and Research (A*STAR), 8A Biomedical Drive, Singapore, 138648, Singapore.
| |
Collapse
|
19
|
Mouse oocytes carrying metacentric Robertsonian chromosomes have fewer crossover sites and higher aneuploidy rates than oocytes carrying acrocentric chromosomes alone. Sci Rep 2022; 12:12028. [PMID: 35835815 PMCID: PMC9283534 DOI: 10.1038/s41598-022-16175-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 07/06/2022] [Indexed: 12/03/2022] Open
Abstract
Meiotic homologous recombination during fetal development dictates proper chromosome segregation in adult mammalian oocytes. Successful homologous synapsis and recombination during Meiotic Prophase I (MPI) depends on telomere-led chromosome movement along the nuclear envelope. In mice, all chromosomes are acrocentric, while other mammalian species carry a mixture of acrocentric and metacentric chromosomes. Such differences in telomeric structures may explain the exceptionally low aneuploidy rates in mice. Here, we tested whether the presence of metacentric chromosomes carrying Robertsonian translocations (RbT) affects the rate of homologous recombination or aneuploidy. We found a delay in MPI progression in RbT-carrier vs. wild-type (WT) fetal ovaries. Furthermore, resolution of distal telomere clusters, associated with synapsis initiation, was delayed and centromeric telomere clusters persisted until later MPI substages in RbT-carrier oocytes compared to WT oocytes. When chromosomes fully synapsed, higher percentages of RbT-carrier oocytes harbored at least one chromosome pair lacking MLH1 foci, which indicate crossover sites, compared to WT oocytes. Aneuploidy rates in ovulated eggs were also higher in RbT-carrier females than in WT females. In conclusion, the presence of metacentric chromosomes among acrocentric chromosomes in mouse oocytes delays MPI progression and reduces the efficiency of homologous crossover, resulting in a higher frequency of aneuploidy.
Collapse
|
20
|
Pettit RW, Amos CI. Linkage Disequilibrium Score Statistic Regression for Identifying Novel Trait Associations. CURR EPIDEMIOL REP 2022. [DOI: 10.1007/s40471-022-00297-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
21
|
Li Y, Chen S, Rapakoulia T, Kuwahara H, Yip KY, Gao X. Deep learning identifies and quantifies recombination hotspot determinants. Bioinformatics 2022; 38:2683-2691. [PMID: 35561158 PMCID: PMC9113300 DOI: 10.1093/bioinformatics/btac234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/08/2022] [Accepted: 04/08/2022] [Indexed: 11/30/2022] Open
Abstract
MOTIVATION Recombination is one of the essential genetic processes for sexually reproducing organisms, which can happen more frequently in some regions, called recombination hotspots. Although several factors, such as PRDM9 binding motifs, are known to be related to the hotspots, their contributions to the recombination hotspots have not been quantified, and other determinants are yet to be elucidated. Here, we propose a computational method, RHSNet, based on deep learning and signal processing, to identify and quantify the hotspot determinants in a purely data-driven manner, utilizing datasets from various studies, populations, sexes and species. RESULTS RHSNet can significantly outperform other sequence-based methods on multiple datasets across different species, sexes and studies. In addition to being able to identify hotspot regions and the well-known determinants accurately, more importantly, RHSNet can quantify the determinants that contribute significantly to the recombination hotspot formation in the relation between PRDM9 binding motif, histone modification and GC content. Further cross-sex, cross-population and cross-species studies suggest that the proposed method has the generalization power and potential to identify and quantify the evolutionary determinant motifs. AVAILABILITY AND IMPLEMENTATION https://github.com/frankchen121212/RHSNet. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yu Li
- To whom correspondence should be addressed. or
| | | | | | - Hiroyuki Kuwahara
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- KAUST Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Kevin Y Yip
- Department of Computer Science and Engineering (CSE), The Chinese University of Hong Kong (CUHK), 999077, Hong Kong SAR, China
| | - Xin Gao
- To whom correspondence should be addressed. or
| |
Collapse
|
22
|
Damm E, Ullrich KK, Amos WB, Odenthal-Hesse L. Evolution of the recombination regulator PRDM9 in minke whales. BMC Genomics 2022; 23:212. [PMID: 35296233 PMCID: PMC8925151 DOI: 10.1186/s12864-022-08305-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 01/11/2022] [Indexed: 11/16/2022] Open
Abstract
Background PRDM9 is a key regulator of meiotic recombination in most metazoans, responsible for reshuffling parental genomes. During meiosis, the PRDM9 protein recognizes and binds specific target motifs via its array of C2H2 zinc-fingers encoded by a rapidly evolving minisatellite. The gene coding for PRDM9 is the only speciation gene identified in vertebrates to date and shows high variation, particularly in the DNA-recognizing positions of the zinc-finger array, within and between species. Across all vertebrate genomes studied for PRDM9 evolution, only one genome lacks variability between repeat types – that of the North Pacific minke whale. This study aims to understand the evolution and diversity of Prdm9 in minke whales, which display the most unusual genome reference allele of Prdm9 so far discovered in mammals. Results Minke whales possess all the features characteristic of PRDM9-directed recombination, including complete KRAB, SSXRD and SET domains and a rapidly evolving array of C2H2-type-Zincfingers (ZnF) with evidence of rapid evolution, particularly at DNA-recognizing positions that evolve under positive diversifying selection. Seventeen novel PRDM9 variants were identified within the Antarctic minke whale species, plus a single distinct PRDM9 variant in Common minke whales – shared across North Atlantic and North Pacific minke whale subspecies boundaries. Conclusion The PRDM9 ZnF array evolves rapidly, in minke whales, with at least one DNA-recognizing position under positive selection. Extensive PRDM9 diversity is observed, particularly in the Antarctic in minke whales. Common minke whales shared a specific Prdm9 allele across subspecies boundaries, suggesting incomplete speciation by the mechanisms associated with PRDM9 hybrid sterility. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08305-1.
Collapse
Affiliation(s)
- Elena Damm
- Department Evolutionary Genetics, Research Group Meiotic Recombination and Genome Instability, Max Planck Institute for Evolutionary Biology, August-Thienemann Str. 2, D-24306, Plön, Germany
| | - Kristian K Ullrich
- Department Evolutionary Genetics, Research Group Meiotic Recombination and Genome Instability, Max Planck Institute for Evolutionary Biology, August-Thienemann Str. 2, D-24306, Plön, Germany
| | - William B Amos
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Linda Odenthal-Hesse
- Department Evolutionary Genetics, Research Group Meiotic Recombination and Genome Instability, Max Planck Institute for Evolutionary Biology, August-Thienemann Str. 2, D-24306, Plön, Germany.
| |
Collapse
|
23
|
Yang L, Gao Y, Li M, Park KE, Liu S, Kang X, Liu M, Oswalt A, Fang L, Telugu BP, Sattler CG, Li CJ, Cole JB, Seroussi E, Xu L, Yang L, Zhou Y, Li L, Zhang H, Rosen BD, Van Tassell CP, Ma L, Liu GE. Genome-wide recombination map construction from single sperm sequencing in cattle. BMC Genomics 2022; 23:181. [PMID: 35247961 PMCID: PMC8898482 DOI: 10.1186/s12864-022-08415-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/24/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Meiotic recombination is one of the important phenomena contributing to gamete genome diversity. However, except for human and a few model organisms, it is not well studied in livestock, including cattle. RESULTS To investigate their distributions in the cattle sperm genome, we sequenced 143 single sperms from two Holstein bulls. We mapped meiotic recombination events at high resolution based on phased heterozygous single nucleotide polymorphism (SNP). In the absence of evolutionary selection pressure in fertilization and survival, recombination events in sperm are enriched near distal chromosomal ends, revealing that such a pattern is intrinsic to the molecular mechanism of meiosis. Furthermore, we further validated these findings in single sperms with results derived from sequencing its family trio of diploid genomes and our previous studies of recombination in cattle. CONCLUSIONS To our knowledge, this is the first large-scale single sperm whole-genome sequencing effort in livestock, which provided useful information for future studies of recombination, genome instability, and male infertility.
Collapse
Affiliation(s)
- Liu Yang
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Yahui Gao
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742 USA
| | - Mingxun Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 China
| | - Ki-Eun Park
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742 USA
| | - Shuli Liu
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Xiaolong Kang
- College of Agriculture, Ningxia University, Yinchuan, 750021 China
| | - Mei Liu
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128 China
| | - Adam Oswalt
- Select Sires Inc, 11740 U.S. 42 North, Plain City, OH 43064 USA
| | - Lingzhao Fang
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, EH25 9RG UK
| | - Bhanu P. Telugu
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742 USA
- Division of Animal Sciences, University of Missouri, Columbia, MO 65201 USA
| | | | - Cong-jun Li
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
| | - John B. Cole
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
| | - Eyal Seroussi
- Agricultural Research Organization (ARO), Volcani Center, Institute of Animal Science, P.O.B 15159, HaMaccabim Road, 7528809 Rishon LeTsiyon, Israel
| | - Lingyang Xu
- Innovation Team of Cattle Genetic Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Lv Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Li Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Hongping Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Benjamin D. Rosen
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
| | - Curtis P. Van Tassell
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
| | - Li Ma
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742 USA
| | - George E. Liu
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
| |
Collapse
|
24
|
Lingg L, Rottenberg S, Francica P. Meiotic Genes and DNA Double Strand Break Repair in Cancer. Front Genet 2022; 13:831620. [PMID: 35251135 PMCID: PMC8895043 DOI: 10.3389/fgene.2022.831620] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/02/2022] [Indexed: 12/16/2022] Open
Abstract
Tumor cells show widespread genetic alterations that change the expression of genes driving tumor progression, including genes that maintain genomic integrity. In recent years, it has become clear that tumors frequently reactivate genes whose expression is typically restricted to germ cells. As germ cells have specialized pathways to facilitate the exchange of genetic information between homologous chromosomes, their aberrant regulation influences how cancer cells repair DNA double strand breaks (DSB). This drives genomic instability and affects the response of tumor cells to anticancer therapies. Since meiotic genes are usually transcriptionally repressed in somatic cells of healthy tissues, targeting aberrantly expressed meiotic genes may provide a unique opportunity to specifically kill cancer cells whilst sparing the non-transformed somatic cells. In this review, we highlight meiotic genes that have been reported to affect DSB repair in cancers derived from somatic cells. A better understanding of their mechanistic role in the context of homology-directed DNA repair in somatic cancers may provide useful insights to find novel vulnerabilities that can be targeted.
Collapse
Affiliation(s)
- Lea Lingg
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Cancer Therapy Resistance Cluster, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Sven Rottenberg
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Cancer Therapy Resistance Cluster, Department for BioMedical Research, University of Bern, Bern, Switzerland
- Bern Center for Precision Medicine, University of Bern, Bern, Switzerland
- *Correspondence: Sven Rottenberg, ; Paola Francica,
| | - Paola Francica
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Cancer Therapy Resistance Cluster, Department for BioMedical Research, University of Bern, Bern, Switzerland
- *Correspondence: Sven Rottenberg, ; Paola Francica,
| |
Collapse
|
25
|
Suszynska M, Ratajska M, Galka-Marciniak P, Ryszkowska A, Wydra D, Debniak J, Jasiak A, Wasag B, Cybulski C, Kozlowski P. Variant identification in BARD1, PRDM9, RCC1, and RECQL in patients with ovarian cancer by targeted next-generation sequencing of DNA pools. Cancer Prev Res (Phila) 2021; 15:151-160. [PMID: 34906988 DOI: 10.1158/1940-6207.capr-21-0295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/27/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022]
Abstract
Several ovarian cancer susceptibility genes have been discovered, but more are likely to exist. In this study, we aimed to analyze knowledge-based selected genes, i.e., BARD1, PRDM9, RCC1, and RECQL, in which pathogenic germline variants have been reported in patients with breast and/or ovarian cancer. As deep sequencing of DNA samples remains costly, targeted next-generation sequencing of DNA pools was utilized to screen the exons of BARD1, PRDM9, RCC1, and RECQL in ~400 Polish ovarian cancer cases. 25 pools of 16 samples (including several duplicated samples with known variants) were sequenced on the NovaSeq6000 and analyzed with SureCall (Agilent) application. The set of variants was filtrated to exclude spurious variants, and, subsequently, the identified rare genetic variants were validated using Sanger sequencing. No pathogenic mutation was found within the analyzed cohort of ovarian cancer patients. Validation genotyping of filtered rare silent and missense variants revealed that the majority of them were true alterations, especially those with a higher mutation quality value. The high concordance (R2=0.95) of population allele frequency for 44 common SNPs in the European control population (gnomAD) and our experiment confirmed the reliability of pooled sequencing. Mutations in BARD1, PRDM9, RCC1, and RECQL do not contribute substantially to the risk of ovarian cancer. Pooled DNA sequencing is a cost-effective and reliable method for the initial screening of candidate genes; however, it still requires validation of identified rare variants.
Collapse
Affiliation(s)
- Malwina Suszynska
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Magdalena Ratajska
- Department of Pathology, Dunedin School of Medicine, University of Otago
| | - Paulina Galka-Marciniak
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Aleksandra Ryszkowska
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Dariusz Wydra
- Department of Gynaecology, Oncologic Gynaecology and Gynaecological Endocrinology, Medical University of Gdansk
| | - Jaroslaw Debniak
- Department of Gynaecology, Oncologic Gynaecology and Gynaecological Endocrinology, Medical University of Gdansk
| | - Anna Jasiak
- Department of Biology and Medical Genetics, Medical University of Gdansk
| | - Bartosz Wasag
- Department of Biology and Medical Genetics, Medical University of Gdansk
| | | | - Piotr Kozlowski
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
26
|
Alleva B, Brick K, Pratto F, Huang M, Camerini-Otero RD. Cataloging Human PRDM9 Allelic Variation Using Long-Read Sequencing Reveals PRDM9 Population Specificity and Two Distinct Groupings of Related Alleles. Front Cell Dev Biol 2021; 9:675286. [PMID: 34805134 PMCID: PMC8600002 DOI: 10.3389/fcell.2021.675286] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 10/11/2021] [Indexed: 11/29/2022] Open
Abstract
The PRDM9 protein determines sites of meiotic recombination in humans by directing meiotic DNA double-strand breaks to specific loci. Targeting specificity is encoded by a long array of C2H2 zinc fingers that bind to DNA. This zinc finger array is hypervariable, and the resulting alleles each have a potentially different DNA binding preference. The assessment of PRDM9 diversity is important for understanding the complexity of human population genetics, inheritance linkage patterns, and predisposition to genetic disease. Due to the repetitive nature of the PRDM9 zinc finger array, the large-scale sequencing of human PRDM9 is challenging. We, therefore, developed a long-read sequencing strategy to infer the diploid PRDM9 zinc finger array genotype in a high-throughput manner. From an unbiased study of PRDM9 allelic diversity in 720 individuals from seven human populations, we detected 69 PRDM9 alleles. Several alleles differ in frequency among human populations, and 32 alleles had not been identified by previous studies, which were heavily biased to European populations. PRDM9 alleles are distinguished by their DNA binding site preferences and fall into two major categories related to the most common PRDM9-A and PRDM9-C alleles. We also found that it is likely that inter-conversion between allele types is rare. By mapping meiotic double-strand breaks (DSBs) in the testis, we found that small variations in PRDM9 can substantially alter the meiotic recombination landscape, demonstrating that minor PRDM9 variants may play an under-appreciated role in shaping patterns of human recombination. In summary, our data greatly expands knowledge of PRDM9 diversity in humans.
Collapse
Affiliation(s)
- Benjamin Alleva
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Kevin Brick
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Florencia Pratto
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Mini Huang
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Rafael Daniel Camerini-Otero
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
27
|
Lupski JR. Clan genomics: From OMIM phenotypic traits to genes and biology. Am J Med Genet A 2021; 185:3294-3313. [PMID: 34405553 PMCID: PMC8530976 DOI: 10.1002/ajmg.a.62434] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/29/2021] [Accepted: 07/04/2021] [Indexed: 12/20/2022]
Abstract
Clinical characterization of a patient phenotype has been the quintessential approach for elucidating a differential diagnosis and a hypothesis to explore a potential clinical diagnosis. This has resulted in a language of medicine and a semantic ontology, with both specialty- and subspecialty-specific lexicons, that can be challenging to translate and interpret. There is no 'Rosetta Stone' of clinical medicine such as the genetic code that can assist translation and interpretation of the language of genetics. Nevertheless, the information content embodied within a clinical diagnosis can guide management, therapeutic intervention, and potentially prognostic outlook of disease enabling anticipatory guidance for patients and families. Clinical genomics is now established firmly in medical practice. The granularity and informative content of a personal genome is immense. Yet, we are limited in our utility of much of that personal genome information by the lack of functional characterization of the overwhelming majority of computationally annotated genes in the haploid human reference genome sequence. Whereas DNA and the genetic code have provided a 'Rosetta Stone' to translate genetic variant information, clinical medicine, and clinical genomics provide the context to understand human biology and disease. A path forward will integrate deep phenotyping, such as available in a clinical synopsis in the Online Mendelian Inheritance in Man (OMIM) entries, with personal genome analyses.
Collapse
Affiliation(s)
- James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
- Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
28
|
Kaiser VB, Talmane L, Kumar Y, Semple F, MacLennan M, FitzPatrick DR, Taylor MS, Semple CA. Mutational bias in spermatogonia impacts the anatomy of regulatory sites in the human genome. Genome Res 2021; 31:1994-2007. [PMID: 34417209 PMCID: PMC8559717 DOI: 10.1101/gr.275407.121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/19/2021] [Indexed: 12/03/2022]
Abstract
Mutation in the germline is the ultimate source of genetic variation, but little is known about the influence of germline chromatin structure on mutational processes. Using ATAC-seq, we profile the open chromatin landscape of human spermatogonia, the most proliferative cell type of the germline, identifying transcription factor binding sites (TFBSs) and PRDM9 binding sites, a subset of which will initiate meiotic recombination. We observe an increase in rare structural variant (SV) breakpoints at PRDM9-bound sites, implicating meiotic recombination in the generation of structural variation. Many germline TFBSs, such as NRF1, are also associated with increased rates of SV breakpoints, apparently independent of recombination. Singleton short insertions (≥5 bp) are highly enriched at TFBSs, particularly at sites bound by testis active TFs, and their rates correlate with those of structural variant breakpoints. Short insertions often duplicate the TFBS motif, leading to clustering of motif sites near regulatory regions in this male-driven evolutionary process. Increased mutation loads at germline TFBSs disproportionately affect neural enhancers with activity in spermatogonia, potentially altering neurodevelopmental regulatory architecture. Local chromatin structure in spermatogonia is thus pervasive in shaping both evolution and disease.
Collapse
Affiliation(s)
- Vera B Kaiser
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - Lana Talmane
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - Yatendra Kumar
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - Fiona Semple
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - Marie MacLennan
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - David R FitzPatrick
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - Martin S Taylor
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - Colin A Semple
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| |
Collapse
|
29
|
Powers NR, Billings T, Paigen K, Petkov PM. Differential effects of two catalytic mutations on full-length PRDM9 and its isolated PR/SET domain reveal a case of pseudomodularity. Genetics 2021; 219:6385243. [PMID: 34747456 DOI: 10.1093/genetics/iyab172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/30/2021] [Indexed: 11/14/2022] Open
Abstract
PRDM9 is a DNA-binding histone methyltransferase that designates and activates recombination hotspots in mammals by locally trimethylating lysines 4 and 36 of histone H3. In mice, we recently reported two independently produced point mutations at the same residue, Glu360Pro (Prdm9EP) and Glu360Lys (Prdm9EK), which severely reduce its H3K4 and H3K36 methyltransferase activities in vivo. Prdm9EP is slightly less hypomorphic than Prdm9EK, but both mutations reduce both the number and amplitude of PRDM9-dependent H3K4me3 and H3K36me3 peaks in spermatocytes. While both mutations cause infertility with complete meiotic arrest in males, Prdm9EP, but not Prdm9EK, is compatible with some female fertility. When we tested the effects of these mutations in vitro, both Prdm9EP and Prdm9EK abolished H3K4 and H3K36 methyltransferase activity in full-length PRDM9. However, in the isolated PRDM9 PR/SET domain, these mutations selectively compromised H3K36 methyltransferase activity, while leaving H3K4 methyltransferase activity intact. The difference in these effects on the PR/SET domain vs the full-length protein shows that PRDM9 is not an intrinsically modular enzyme; its catalytic domain is influenced by its tertiary structure and possibly by its interactions with DNA and other proteins in vivo. These two informative mutations illuminate the enzymatic chemistry of PRDM9, and potentially of PR/SET domains in general, reveal the minimal threshold of PRDM9-dependent catalytic activity for female fertility, and potentially have some practical utility for genetic mapping and genomics.
Collapse
|
30
|
Further evidence for lack of association of PRDM9 polymorphisms and 22q11.2 deletion syndrome. Meta Gene 2021. [DOI: 10.1016/j.mgene.2021.100927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
31
|
Course MM, Sulovari A, Gudsnuk K, Eichler EE, Valdmanis PN. Characterizing nucleotide variation and expansion dynamics in human-specific variable number tandem repeats. Genome Res 2021; 31:1313-1324. [PMID: 34244228 PMCID: PMC8327921 DOI: 10.1101/gr.275560.121] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/25/2021] [Indexed: 12/14/2022]
Abstract
There are more than 55,000 variable number tandem repeats (VNTRs) in the human genome, notable for both their striking polymorphism and mutability. Despite their role in human evolution and genomic variation, they have yet to be studied collectively and in detail, partially owing to their large size, variability, and predominant location in noncoding regions. Here, we examine 467 VNTRs that are human-specific expansions, unique to one location in the genome, and not associated with retrotransposons. We leverage publicly available long-read genomes, including from the Human Genome Structural Variant Consortium, to ascertain the exact nucleotide composition of these VNTRs and compare their composition of alleles. We then confirm repeat unit composition in more than 3000 short-read samples from the 1000 Genomes Project. Our analysis reveals that these VNTRs contain highly structured repeat motif organization, modified by frequent deletion and duplication events. Although overall VNTR compositions tend to remain similar between 1000 Genomes Project superpopulations, we describe a notable exception with substantial differences in repeat composition (in PCBP3), as well as several VNTRs that are significantly different in length between superpopulations (in ART1, PROP1, DYNC2I1, and LOC102723906). We also observe that most of these VNTRs are expanded in archaic human genomes, yet remain stable in length between single generations. Collectively, our findings indicate that repeat motif variability, repeat composition, and repeat length are all informative modalities to consider when characterizing VNTRs and their contribution to genomic variation.
Collapse
Affiliation(s)
- Meredith M Course
- Division of Medical Genetics, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Arvis Sulovari
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Kathryn Gudsnuk
- Division of Medical Genetics, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA
| | - Paul N Valdmanis
- Division of Medical Genetics, University of Washington School of Medicine, Seattle, Washington 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
32
|
Meiotic recombination mirrors patterns of germline replication in mice and humans. Cell 2021; 184:4251-4267.e20. [PMID: 34260899 DOI: 10.1016/j.cell.2021.06.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 04/02/2021] [Accepted: 06/21/2021] [Indexed: 12/29/2022]
Abstract
Genetic recombination generates novel trait combinations, and understanding how recombination is distributed across the genome is key to modern genetics. The PRDM9 protein defines recombination hotspots; however, megabase-scale recombination patterning is independent of PRDM9. The single round of DNA replication, which precedes recombination in meiosis, may establish these patterns; therefore, we devised an approach to study meiotic replication that includes robust and sensitive mapping of replication origins. We find that meiotic DNA replication is distinct; reduced origin firing slows replication in meiosis, and a distinctive replication pattern in human males underlies the subtelomeric increase in recombination. We detected a robust correlation between replication and both contemporary and historical recombination and found that replication origin density coupled with chromosome size determines the recombination potential of individual chromosomes. Our findings and methods have implications for understanding the mechanisms underlying DNA replication, genetic recombination, and the landscape of mammalian germline variation.
Collapse
|
33
|
Mhaskar AN, Koornneef L, Zelensky AN, Houtsmuller AB, Baarends WM. High Resolution View on the Regulation of Recombinase Accumulation in Mammalian Meiosis. Front Cell Dev Biol 2021; 9:672191. [PMID: 34109178 PMCID: PMC8181746 DOI: 10.3389/fcell.2021.672191] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/19/2021] [Indexed: 11/19/2022] Open
Abstract
A distinguishing feature of meiotic DNA double-strand breaks (DSBs), compared to DSBs in somatic cells, is the fact that they are induced in a programmed and specifically orchestrated manner, which includes chromatin remodeling prior to DSB induction. In addition, the meiotic homologous recombination (HR) repair process that follows, is different from HR repair of accidental DSBs in somatic cells. For instance, meiotic HR involves preferred use of the homolog instead of the sister chromatid as a repair template and subsequent formation of crossovers and non-crossovers in a tightly regulated manner. An important outcome of this distinct repair pathway is the pairing of homologous chromosomes. Central to the initial steps in homology recognition during meiotic HR is the cooperation between the strand exchange proteins (recombinases) RAD51 and its meiosis-specific paralog DMC1. Despite our understanding of their enzymatic activity, details on the regulation of their assembly and subsequent molecular organization at meiotic DSBs in mammals have remained largely enigmatic. In this review, we summarize recent mouse data on recombinase regulation via meiosis-specific factors. Also, we reflect on bulk “omics” studies of initial meiotic DSB processing, compare these with studies using super-resolution microscopy in single cells, at single DSB sites, and explore the implications of these findings for our understanding of the molecular mechanisms underlying meiotic HR regulation.
Collapse
Affiliation(s)
- Aditya N Mhaskar
- Department of Developmental Biology, Erasmus MC, Rotterdam, Netherlands
| | - Lieke Koornneef
- Department of Developmental Biology, Erasmus MC, Rotterdam, Netherlands.,Oncode Institute, Utrecht, Netherlands
| | - Alex N Zelensky
- Department of Molecular Genetics, Erasmus MC, Rotterdam, Netherlands
| | - Adriaan B Houtsmuller
- Erasmus Optical Imaging Centre, Department of Pathology, Erasmus MC, Rotterdam, Netherlands.,Department of Pathology, Erasmus MC, Rotterdam, Netherlands
| | - Willy M Baarends
- Department of Developmental Biology, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
34
|
Lyu R, Tsui V, McCarthy DJ, Crismani W. Personalized genome structure via single gamete sequencing. Genome Biol 2021; 22:112. [PMID: 33874978 PMCID: PMC8054432 DOI: 10.1186/s13059-021-02327-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/25/2021] [Indexed: 12/13/2022] Open
Abstract
Genetic maps have been fundamental to building our understanding of disease genetics and evolutionary processes. The gametes of an individual contain all of the information required to perform a de novo chromosome-scale assembly of an individual's genome, which historically has been performed with populations and pedigrees. Here, we discuss how single-cell gamete sequencing offers the potential to merge the advantages of short-read sequencing with the ability to build personalized genetic maps and open up an entirely new space in personalized genetics.
Collapse
Affiliation(s)
- Ruqian Lyu
- Bioinformatics and Cellular Genomics, St. Vincent's Institute of Medical Research, Melbourne, Australia
- Melbourne Integrative Genomics, Faculty of Science, The University of Melbourne, Melbourne, Australia
| | - Vanessa Tsui
- DNA Repair and Recombination Laboratory, St. Vincent's Institute of Medical Research, Melbourne, Australia
- The Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Melbourne, Australia
| | - Davis J McCarthy
- Bioinformatics and Cellular Genomics, St. Vincent's Institute of Medical Research, Melbourne, Australia.
- Melbourne Integrative Genomics, Faculty of Science, The University of Melbourne, Melbourne, Australia.
| | - Wayne Crismani
- DNA Repair and Recombination Laboratory, St. Vincent's Institute of Medical Research, Melbourne, Australia.
- The Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
35
|
Pal U, Halder P, Ray A, Sarkar S, Datta S, Ghosh P, Ghosh S. The etiology of Down syndrome: Maternal MCM9 polymorphisms increase risk of reduced recombination and nondisjunction of chromosome 21 during meiosis I within oocyte. PLoS Genet 2021; 17:e1009462. [PMID: 33750944 PMCID: PMC8021012 DOI: 10.1371/journal.pgen.1009462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/01/2021] [Accepted: 03/03/2021] [Indexed: 11/21/2022] Open
Abstract
Altered patterns of recombination on 21q have long been associated with the nondisjunction chromosome 21 within oocytes and the increased risk of having a child with Down syndrome. Unfortunately the genetic etiology of these altered patterns of recombination have yet to be elucidated. We for the first time genotyped the gene MCM9, a candidate gene for recombination regulation and DNA repair in mothers with or without children with Down syndrome. In our approach, we identified the location of recombination on the maternal chromosome 21 using short tandem repeat markers, then stratified our population by the origin of meiotic error and age at conception. We observed that twenty-five out of forty-one single nucleotide polymorphic sites within MCM9 exhibited an association with meiosis I error (N = 700), but not with meiosis II error (N = 125). This association was maternal age-independent. Several variants exhibited aprotective association with MI error, some were neutral. Maternal age stratified characterization of cases revealed that MCM9 risk variants were associated with an increased chance of reduced recombination on 21q within oocytes. The spatial distribution of single observed recombination events revealed no significant change in the location of recombination among women harbouring MCM9 risk, protective, or neutral variant. Additionally, we identified a total of six novel polymorphic variants and two novel alleles that were either risk imparting or protective against meiosis I nondisjunction. In silico analyses using five different programs suggest the risk variants either cause a change in protein function or may alter the splicing pattern of transcripts and disrupt the proportion of different isoforms of MCM9 products within oocytes. These observations bring us a significant step closer to understanding the molecular basis of recombination errors in chromosome 21 nondisjunction within oocytes that leads to birth of child with Down syndrome. We studied MCM9 variations in the genome of women with a Down syndrome child by stratifying the women based on MCM9 genotypes, meiotic error group, and their age of conception. We identified polymorphisms are associated with reduced recombination and nondisjunction of chromosome 21 at the meiosis I stage of oogenesis in a maternal age-independent manner. But these variants do not affect the position of chiasma formation. In Silico analyses revealed the presence of MCM9 variants that may cause alteration in protein function due to amino acid substitution. We also identified splice variants in MCM9. We hypothesize that the polymorphisms in MCM9 predispose women to experience reduced recombination on chromosome 21 in oocytes at meiosis I, which ultimately leads to the birth of a child with Down syndrome.
Collapse
Affiliation(s)
- Upamanyu Pal
- Cytogenetics and Genomics Research Unit, Department of Zoology, University of Calcutta, Taraknath Palit Siksha Prangan (Ballygunge Science College Campus), Kolkata, West Bengal, India
| | - Pinku Halder
- Cytogenetics and Genomics Research Unit, Department of Zoology, University of Calcutta, Taraknath Palit Siksha Prangan (Ballygunge Science College Campus), Kolkata, West Bengal, India
| | - Anirban Ray
- Department of Zoology, Bangabasi Morning College (affiliated to University of Calcutta), Kolkata, West Bengal, India
| | - Sumantra Sarkar
- Department of Paediatric Medicine, Institute of Post Graduate Medical Education and Research (IPGMER), Bhowanipore, Kolkata, West Bengal, India
- Department of Paediatric Medicine, Diamond Harbour Government Medical College & Hospital, Diamond Harbour, West Bengal, India
| | - Supratim Datta
- Department of Paediatric Medicine, Institute of Post Graduate Medical Education and Research (IPGMER), Bhowanipore, Kolkata, West Bengal, India
| | - Papiya Ghosh
- Department of Zoology, Bijoykrishna Girls’ College (Affiliated to University of Calcutta), Howrah, West Bengal, India
| | - Sujay Ghosh
- Cytogenetics and Genomics Research Unit, Department of Zoology, University of Calcutta, Taraknath Palit Siksha Prangan (Ballygunge Science College Campus), Kolkata, West Bengal, India
- * E-mail:
| |
Collapse
|
36
|
Schield DR, Pasquesi GIM, Perry BW, Adams RH, Nikolakis ZL, Westfall AK, Orton RW, Meik JM, Mackessy SP, Castoe TA. Snake Recombination Landscapes Are Concentrated in Functional Regions despite PRDM9. Mol Biol Evol 2021; 37:1272-1294. [PMID: 31926008 DOI: 10.1093/molbev/msaa003] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Meiotic recombination in vertebrates is concentrated in hotspots throughout the genome. The location and stability of hotspots have been linked to the presence or absence of PRDM9, leading to two primary models for hotspot evolution derived from mammals and birds. Species with PRDM9-directed recombination have rapid turnover of hotspots concentrated in intergenic regions (i.e., mammals), whereas hotspots in species lacking PRDM9 are concentrated in functional regions and have greater stability over time (i.e., birds). Snakes possess PRDM9, yet virtually nothing is known about snake recombination. Here, we examine the recombination landscape and test hypotheses about the roles of PRDM9 in rattlesnakes. We find substantial variation in recombination rate within and among snake chromosomes, and positive correlations between recombination rate and gene density, GC content, and genetic diversity. Like mammals, snakes appear to have a functional and active PRDM9, but rather than being directed away from genes, snake hotspots are concentrated in promoters and functional regions-a pattern previously associated only with species that lack a functional PRDM9. Snakes therefore provide a unique example of recombination landscapes in which PRDM9 is functional, yet recombination hotspots are associated with functional genic regions-a combination of features that defy existing paradigms for recombination landscapes in vertebrates. Our findings also provide evidence that high recombination rates are a shared feature of vertebrate microchromosomes. Our results challenge previous assumptions about the adaptive role of PRDM9 and highlight the diversity of recombination landscape features among vertebrate lineages.
Collapse
Affiliation(s)
- Drew R Schield
- Department of Biology, University of Texas at Arlington, Arlington, TX
| | | | - Blair W Perry
- Department of Biology, University of Texas at Arlington, Arlington, TX
| | - Richard H Adams
- Department of Biology, University of Texas at Arlington, Arlington, TX.,Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL
| | | | | | - Richard W Orton
- Department of Biology, University of Texas at Arlington, Arlington, TX
| | - Jesse M Meik
- Department of Biological Sciences, Tarleton State University, Stephenville, TX
| | - Stephen P Mackessy
- School of Biological Sciences, University of Northern Colorado, Greeley, CO
| | - Todd A Castoe
- Department of Biology, University of Texas at Arlington, Arlington, TX
| |
Collapse
|
37
|
Wu X, Lu M, Yun D, Gao S, Chen S, Hu L, Wu Y, Wang X, Duan E, Cheng CY, Sun F. Single cell ATAC-Seq reveals cell type-specific transcriptional regulation and unique chromatin accessibility in human spermatogenesis. Hum Mol Genet 2021; 31:321-333. [PMID: 33438010 DOI: 10.1093/hmg/ddab006] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/25/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022] Open
Abstract
During human spermatogenesis, germ cells undergo dynamic changes in chromatin organization/re-packaging and in transcriptomes. In order to better understand the underlying mechanism(s), scATAC-Seq of 5376 testicular cells from 3 normal men were performed. Data were analyzed in parallel with the scRNA-Seq data of human testicular cells. Ten germ cell types associated with spermatogenesis and 6 testicular somatic cell types were identified, along with 142 024 peaks located in promoter, genebody and CpG Island. We had examined chromatin accessibility of all chromosomes, with chromosomes 19 and 17 emerged as the leading chromosomes that displayed high chromatin accessibility. In accessible chromatin regions, transcription factor (TF)-binding sites were identified and specific motifs with high frequencies at different spermatogenesis stages were detected, including CTCF, BORIS, NFY, DMRT6, EN1, ISL1 and GLI3. Two most notable observations were noted. First, TLE3 was specifically expressed in differentiating spermatogonia. Second, PFN4 was found to be involved in actin cytoskeletal organization during meiosis. More important, unique regions upstream of PFN4 and TLE3 were shown to display high accessibility, illustrating their significance in supporting human spermatogenesis.
Collapse
Affiliation(s)
- Xiaolong Wu
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong 226001, Jiangsu, China
| | - Mujun Lu
- International Peace Maternity and Child Health Hospital, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiaotong University, Shanghai 200030, China
| | - Damin Yun
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong 226001, Jiangsu, China
| | - Sheng Gao
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong 226001, Jiangsu, China
| | - Shitao Chen
- Department of Urology and Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Longfei Hu
- Singleron Biotechnologies Ltd., 211 Pubin Road, Nanjing, Jiangsu, China
| | - Yunhao Wu
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong 226001, Jiangsu, China
| | - Xiaorong Wang
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong 226001, Jiangsu, China
| | - Enkui Duan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065
| | - Fei Sun
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong 226001, Jiangsu, China
| |
Collapse
|
38
|
Tian H, Billings T, Petkov PM. EWSR1 affects PRDM9-dependent histone 3 methylation and provides a link between recombination hotspots and the chromosome axis protein REC8. Mol Biol Cell 2021; 32:1-14. [PMID: 33175657 PMCID: PMC8098819 DOI: 10.1091/mbc.e20-09-0604] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 12/12/2022] Open
Abstract
Meiotic recombination in most mammals requires recombination hotspot activation through the action of the histone 3 Lys-4 and Lys-36 methyltransferase PRDM9 to ensure successful double-strand-break initiation and repair. Here we show that EWSR1, a protein whose role in meiosis was not previously clarified in detail, binds to both PRDM9 and pREC8, a phosphorylated meiosis-specific cohesin, in male meiotic cells. We created a Ewsr1 conditional knockout mouse model to deplete EWSR1 before the onset of meiosis and found that absence of EWSR1 causes meiotic arrest with decreased histone trimethylation at meiotic hotspots, impaired DNA double-strand-break repair, and reduced crossover number. Our results demonstrate that EWSR1 is essential for promoting PRDM9-dependent histone methylation and normal meiotic progress, possibly by facilitating the linking between PRDM9-bound hotspots and the nascent chromosome axis through its component cohesin pREC8.
Collapse
Affiliation(s)
- Hui Tian
- The Jackson Laboratory, Bar Harbor, ME 04609
| | | | | |
Collapse
|
39
|
Abstract
Mutation of the human genome results in three classes of genomic variation: single nucleotide variants; short insertions or deletions; and large structural variants (SVs). Some mutations occur during normal processes, such as meiotic recombination or B cell development, and others result from DNA replication or aberrant repair of breaks in sequence-specific contexts. Regardless of mechanism, mutations are subject to selection, and some hotspots can manifest in disease. Here, we discuss genomic regions prone to mutation, mechanisms contributing to mutation susceptibility, and the processes leading to their accumulation in normal and somatic genomes. With further, more accurate human genome sequencing, additional mutation hotspots, mechanistic details of their formation, and the relevance of hotspots to evolution and disease are likely to be discovered.
Collapse
|
40
|
Powers NR, Dumont BL, Emori C, Lawal RA, Brunton C, Paigen K, Handel MA, Bolcun-Filas E, Petkov PM, Bhattacharyya T. Sexual dimorphism in the meiotic requirement for PRDM9: A mammalian evolutionary safeguard. SCIENCE ADVANCES 2020; 6:6/43/eabb6606. [PMID: 33097538 PMCID: PMC7608834 DOI: 10.1126/sciadv.abb6606] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 09/03/2020] [Indexed: 05/14/2023]
Abstract
In many mammals, genomic sites for recombination are determined by the histone methyltransferase PRMD9. Some mouse strains lacking PRDM9 are infertile, but instances of fertility or semifertility in the absence of PRDM9 have been reported in mice, canines, and a human female. Such findings raise the question of how the loss of PRDM9 is circumvented to maintain fertility. We show that genetic background and sex-specific modifiers can obviate the requirement for PRDM9 in mice. Specifically, the meiotic DNA damage checkpoint protein CHK2 acts as a modifier allowing female-specific fertility in the absence of PRDM9. We also report that, in the absence of PRDM9, a PRDM9-independent recombination system is compatible with female meiosis and fertility, suggesting sex-specific regulation of meiotic recombination, a finding with implications for speciation.
Collapse
Affiliation(s)
- Natalie R Powers
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Beth L Dumont
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Chihiro Emori
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | | | | | - Kenneth Paigen
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Mary Ann Handel
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | | | - Petko M Petkov
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | | |
Collapse
|
41
|
Zhou Y, Browning BL, Browning SR. Population-Specific Recombination Maps from Segments of Identity by Descent. Am J Hum Genet 2020; 107:137-148. [PMID: 32533945 PMCID: PMC7332656 DOI: 10.1016/j.ajhg.2020.05.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/20/2020] [Indexed: 12/26/2022] Open
Abstract
Recombination rates vary significantly across the genome, and estimates of recombination rates are needed for downstream analyses such as haplotype phasing and genotype imputation. Existing methods for recombination rate estimation are limited by insufficient amounts of informative genetic data or by high computational cost. We present a method and software, called IBDrecomb, for using segments of identity by descent to infer recombination rates. IBDrecomb can be applied to sequenced population cohorts to obtain high-resolution, population-specific recombination maps. In simulated admixed data, IBDrecomb obtains higher accuracy than admixture-based estimation of recombination rates. When applied to 2,500 simulated individuals, IBDrecomb obtains similar accuracy to a linkage-disequilibrium (LD)-based method applied to 96 individuals (the largest number for which computation is tractable). Compared to LD-based maps, our IBD-based maps have the advantage of estimating recombination rates in the recent past rather than the distant past. We used IBDrecomb to generate new recombination maps for European Americans and for African Americans from TOPMed sequence data from the Framingham Heart Study (1,626 unrelated individuals) and the Jackson Heart Study (2,046 unrelated individuals), and we compare them to LD-based, admixture-based, and family-based maps.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA.
| | - Brian L Browning
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Sharon R Browning
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
42
|
Bell AD, Mello CJ, Nemesh J, Brumbaugh SA, Wysoker A, McCarroll SA. Insights into variation in meiosis from 31,228 human sperm genomes. Nature 2020; 583:259-264. [PMID: 32494014 PMCID: PMC7351608 DOI: 10.1038/s41586-020-2347-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 03/23/2020] [Indexed: 01/23/2023]
Abstract
Meiosis, although essential for reproduction, is also variable and error-prone: rates of chromosome crossover vary among gametes, between the sexes, and among humans of the same sex, and chromosome missegregation leads to abnormal chromosome numbers (aneuploidy)1-8. To study diverse meiotic outcomes and how they covary across chromosomes, gametes and humans, we developed Sperm-seq, a way of simultaneously analysing the genomes of thousands of individual sperm. Here we analyse the genomes of 31,228 human gametes from 20 sperm donors, identifying 813,122 crossovers and 787 aneuploid chromosomes. Sperm donors had aneuploidy rates ranging from 0.01 to 0.05 aneuploidies per gamete; crossovers partially protected chromosomes from nondisjunction at the meiosis I cell division. Some chromosomes and donors underwent more-frequent nondisjunction during meiosis I, and others showed more meiosis II segregation failures. Sperm genomes also manifested many genomic anomalies that could not be explained by simple nondisjunction. Diverse recombination phenotypes-from crossover rates to crossover location and separation, a measure of crossover interference-covaried strongly across individuals and cells. Our results can be incorporated with earlier observations into a unified model in which a core mechanism, the variable physical compaction of meiotic chromosomes, generates interindividual and cell-to-cell variation in diverse meiotic phenotypes.
Collapse
Affiliation(s)
- Avery Davis Bell
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Curtis J Mello
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - James Nemesh
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sara A Brumbaugh
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alec Wysoker
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Steven A McCarroll
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
43
|
Jiang Y, Zhang HY, Lin Z, Zhu YZ, Yu C, Sha QQ, Tong MH, Shen L, Fan HY. CXXC finger protein 1-mediated histone H3 lysine-4 trimethylation is essential for proper meiotic crossover formation in mice. Development 2020; 147:dev183764. [PMID: 32094118 DOI: 10.1242/dev.183764] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 02/14/2020] [Indexed: 12/20/2022]
Abstract
The most significant feature of meiosis is the recombination process during prophase I. CXXC finger protein 1 (CXXC1) binds to CpG islands and mediates the deposition of H3K4me3 by the SETD1 complex. CXXC1 is also predicted to recruit H3K4me3-marked regions to the chromosome axis for the generation of double-strand breaks (DSBs) in the prophase of meiosis. Therefore, we deleted Cxxc1 before the onset of meiosis with Stra8-Cre The conditional knockout mice were completely sterile with spermatogenesis arrested at MII. Knockout of Cxxc1 led to a decrease in the H3K4me3 level from the pachytene to the MII stage and caused transcriptional disorder. Many spermatogenesis pathway genes were expressed early leading to abnormal acrosome formation in arrested MII cells. In meiotic prophase, deletion of Cxxc1 caused delayed DSB repair and improper crossover formation in cells at the pachytene stage, and more than half of the diplotene cells exhibited precocious homologous chromosome segregation in both male and female meiosis. Cxxc1 deletion also led to a significant decrease of H3K4me3 enrichment at DMC1-binding sites, which might compromise DSB generation. Taken together, our results show that CXXC1 is essential for proper meiotic crossover formation in mice and suggest that CXXC1-mediated H3K4me3 plays an essential role in meiotic prophase of spermatogenesis and oogenesis.
Collapse
Affiliation(s)
- Yu Jiang
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Hui-Ying Zhang
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Zhen Lin
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Ye-Zhang Zhu
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Chao Yu
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Qian-Qian Sha
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Ming-Han Tong
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Li Shen
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Heng-Yu Fan
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| |
Collapse
|
44
|
Sycp2 is essential for synaptonemal complex assembly, early meiotic recombination and homologous pairing in zebrafish spermatocytes. PLoS Genet 2020; 16:e1008640. [PMID: 32092049 PMCID: PMC7062287 DOI: 10.1371/journal.pgen.1008640] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 03/09/2020] [Accepted: 01/29/2020] [Indexed: 12/16/2022] Open
Abstract
Meiotic recombination is essential for faithful segregation of homologous chromosomes during gametogenesis. The progression of recombination is associated with dynamic changes in meiotic chromatin structures. However, whether Sycp2, a key structural component of meiotic chromatin, is required for the initiation of meiotic recombination is still unclear in vertebrates. Here, we describe that Sycp2 is required for assembly of the synaptonemal complex and early meiotic events in zebrafish spermatocytes. Our genetic screening by N-ethyl-N-nitrosourea mutagenesis revealed that ietsugu (its), a mutant zebrafish line with an aberrant splice site in the sycp2 gene, showed a defect during meiotic prophase I. The its mutation appeared to be a hypomorphic mutation compared to sycp2 knockout mutations generated by TALEN mutagenesis. Taking advantage of these sycp2 hypomorphic and knockout mutant lines, we demonstrated that Sycp2 is required for the assembly of the synaptonemal complex that is initiated in the vicinity of telomeres in wild-type zebrafish spermatocytes. Accordingly, homologous pairing, the foci of the meiotic recombinases Dmc1/Rad51 and RPA, and γH2AX signals were largely diminished in sycp2 knockout spermatocytes. Taken together, our data indicate that Sycp2 plays a critical role in not only the assembly of the synaptonemal complex, but also early meiotic recombination and homologous pairing, in vertebrates.
Collapse
|
45
|
Vara C, Capilla L, Ferretti L, Ledda A, Sánchez-Guillén RA, Gabriel SI, Albert-Lizandra G, Florit-Sabater B, Bello-Rodríguez J, Ventura J, Searle JB, Mathias ML, Ruiz-Herrera A. PRDM9 Diversity at Fine Geographical Scale Reveals Contrasting Evolutionary Patterns and Functional Constraints in Natural Populations of House Mice. Mol Biol Evol 2020; 36:1686-1700. [PMID: 31004162 PMCID: PMC6657731 DOI: 10.1093/molbev/msz091] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
One of the major challenges in evolutionary biology is the identification of the genetic basis of postzygotic reproductive isolation. Given its pivotal role in this process, here we explore the drivers that may account for the evolutionary dynamics of the PRDM9 gene between continental and island systems of chromosomal variation in house mice. Using a data set of nearly 400 wild-caught mice of Robertsonian systems, we identify the extent of PRDM9 diversity in natural house mouse populations, determine the phylogeography of PRDM9 at a local and global scale based on a new measure of pairwise genetic divergence, and analyze selective constraints. We find 57 newly described PRDM9 variants, this diversity being especially high on Madeira Island, a result that is contrary to the expectations of reduced variation for island populations. Our analysis suggest that the PRDM9 allelic variability observed in Madeira mice might be influenced by the presence of distinct chromosomal fusions resulting from a complex pattern of introgression or multiple colonization events onto the island. Importantly, we detect a significant reduction in the proportion of PRDM9 heterozygotes in Robertsonian mice, which showed a high degree of similarity in the amino acids responsible for protein–DNA binding. Our results suggest that despite the rapid evolution of PRDM9 and the variability detected in natural populations, functional constraints could facilitate the accumulation of allelic combinations that maintain recombination hotspot symmetry. We anticipate that our study will provide the basis for examining the role of different PRDM9 genetic backgrounds in reproductive isolation in natural populations.
Collapse
Affiliation(s)
- Covadonga Vara
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laia Capilla
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Luca Ferretti
- Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Alice Ledda
- Department for Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Rosa A Sánchez-Guillén
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Instituto de Ecología AC (INECOL), Red de Biología Evolutiva, Xalapa, Veracruz, Mexico
| | - Sofia I Gabriel
- CESAM - Centre for Environmental and Marine Studies, Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Guillermo Albert-Lizandra
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Beatriu Florit-Sabater
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Judith Bello-Rodríguez
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jacint Ventura
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jeremy B Searle
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY
| | - Maria L Mathias
- CESAM - Centre for Environmental and Marine Studies, Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Aurora Ruiz-Herrera
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
46
|
Abstract
Sex differences in overall recombination rates are well known, but little theoretical or empirical attention has been given to how and why sexes differ in their recombination landscapes: the patterns of recombination along chromosomes. In the first scientific review of this phenomenon, we find that recombination is biased toward telomeres in males and more uniformly distributed in females in most vertebrates and many other eukaryotes. Notable exceptions to this pattern exist, however. Fine-scale recombination patterns also frequently differ between males and females. The molecular mechanisms responsible for sex differences remain unclear, but chromatin landscapes play a role. Why these sex differences evolve also is unclear. Hypotheses suggest that they may result from sexually antagonistic selection acting on coding genes and their regulatory elements, meiotic drive in females, selection during the haploid phase of the life cycle, selection against aneuploidy, or mechanistic constraints. No single hypothesis, however, can adequately explain the evolution of sex differences in all cases. Sex-specific recombination landscapes have important consequences for population differentiation and sex chromosome evolution.
Collapse
Affiliation(s)
- Jason M. Sardell
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712
| | - Mark Kirkpatrick
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
47
|
Abstract
Mice (Mus musculus) and rats (Rattus norvegicus) have long served as model systems for biomedical research. However, they are also excellent models for studying the evolution of populations, subspecies, and species. Within the past million years, they have spread in various waves across large parts of the globe, with the most recent spread in the wake of human civilization. They have developed into commensal species, but have also been able to colonize extreme environments on islands free of human civilization. Given that ample genomic and genetic resources are available for these species, they have thus also become ideal mammalian systems for evolutionary studies on adaptation and speciation, particularly in the combination with the rapid developments in population genomics. The chapter provides an overview of the systems and their history, as well as of available resources.
Collapse
Affiliation(s)
- Kristian K Ullrich
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany.
| | - Diethard Tautz
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
48
|
Heft IE, Mostovoy Y, Levy-Sakin M, Ma W, Stevens AJ, Pastor S, McCaffrey J, Boffelli D, Martin DI, Xiao M, Kennedy MA, Kwok PY, Sikela JM. The Driver of Extreme Human-Specific Olduvai Repeat Expansion Remains Highly Active in the Human Genome. Genetics 2020; 214:179-191. [PMID: 31754017 PMCID: PMC6944415 DOI: 10.1534/genetics.119.302782] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/05/2019] [Indexed: 11/18/2022] Open
Abstract
Sequences encoding Olduvai protein domains (formerly DUF1220) show the greatest human lineage-specific increase in copy number of any coding region in the genome and have been associated, in a dosage-dependent manner, with brain size, cognitive aptitude, autism, and schizophrenia. Tandem intragenic duplications of a three-domain block, termed the Olduvai triplet, in four NBPF genes in the chromosomal 1q21.1-0.2 region, are primarily responsible for the striking human-specific copy number increase. Interestingly, most of the Olduvai triplets are adjacent to, and transcriptionally coregulated with, three human-specific NOTCH2NL genes that have been shown to promote cortical neurogenesis. Until now, the underlying genomic events that drove the Olduvai hyperamplification in humans have remained unexplained. Here, we show that the presence or absence of an alternative first exon of the Olduvai triplet perfectly discriminates between amplified (58/58) and unamplified (0/12) triplets. We provide sequence and breakpoint analyses that suggest the alternative exon was produced by an nonallelic homologous recombination-based mechanism involving the duplicative transposition of an existing Olduvai exon found in the CON3 domain, which typically occurs at the C-terminal end of NBPF genes. We also provide suggestive in vitro evidence that the alternative exon may promote instability through a putative G-quadraplex (pG4)-based mechanism. Lastly, we use single-molecule optical mapping to characterize the intragenic structural variation observed in NBPF genes in 154 unrelated individuals and 52 related individuals from 16 families and show that the presence of pG4-containing Olduvai triplets is strongly correlated with high levels of Olduvai copy number variation. These results suggest that the same driver of genomic instability that allowed the evolutionarily recent, rapid, and extreme human-specific Olduvai expansion remains highly active in the human genome.
Collapse
Affiliation(s)
- Ilea E Heft
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045
- Human Medical Genetics and Genomics Program, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Yulia Mostovoy
- Cardiovascular Research Institute, University of California, San Francisco, California
| | - Michal Levy-Sakin
- Cardiovascular Research Institute, University of California, San Francisco, California
| | - Walfred Ma
- Cardiovascular Research Institute, University of California, San Francisco, California
| | - Aaron J Stevens
- Department of Pathology, University of Otago, Christchurch, New Zealand 8140
| | - Steven Pastor
- School of Biomedical Engineering, Drexel University, Philadelphia, Pennsylvania 19104
| | - Jennifer McCaffrey
- School of Biomedical Engineering, Drexel University, Philadelphia, Pennsylvania 19104
| | - Dario Boffelli
- Children's Hospital Oakland Research Institute, Oakland, California 94609
| | - David I Martin
- Children's Hospital Oakland Research Institute, Oakland, California 94609
| | - Ming Xiao
- School of Biomedical Engineering, Drexel University, Philadelphia, Pennsylvania 19104
| | - Martin A Kennedy
- Department of Pathology, University of Otago, Christchurch, New Zealand 8140
| | - Pui-Yan Kwok
- Cardiovascular Research Institute, University of California, San Francisco, California
- Department of Dermatology, University of California, San Francisco, California
- Institute for Human Genetics, University of California, San Francisco, California
| | - James M Sikela
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045
- Human Medical Genetics and Genomics Program, University of Colorado School of Medicine, Aurora, Colorado 80045
| |
Collapse
|
49
|
Kinoshita T, Mikami M, Ayabe T, Matsubara K, Ono H, Ohki K, Fukami M, Katoh-Fukui Y. Frequency of Common Copy-Number Variations at 15q11.2q13 in Sperm of Healthy Men. Cytogenet Genome Res 2019; 159:66-73. [PMID: 31639787 DOI: 10.1159/000503267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2019] [Indexed: 11/19/2022] Open
Abstract
The genomic region at 15q11.2q13 represents a hotspot for copy-number variations (CNVs) due to nonallelic homologous recombination. Previous studies have suggested that the development of 15q11.2q13 deletions in sperm may be affected by seasonal factors because patients with Prader-Willi syndrome resulting from 15q11.2q13 deletions on paternally derived chromosomes showed autumn-dominant birth seasonality. The present study aimed to determine the frequency of 15q11.2q13 CNVs in sperm of healthy men and clarify the effects of various environmental factors, i.e., age, smoking status, alcohol intake, and season, on the frequency. Thirty volunteers were asked to provide semen samples and clinical information once in each season of a year. The rates of 15q11.2q13 CNVs were examined using 2-color FISH. The results were statistically analyzed using a generalized estimating equation with negative binomial distribution and a log link function. Consequently, informative data were obtained from 83 samples of 26 individuals. The rates of deletions and duplications ranged from 0.04 to 0.48% and from 0.08 to 0.30%, respectively. The rates were not correlated with the age, smoking status, or alcohol intake. Sperm produced in winter showed 1.2 to 1.4-fold high rates for both deletions and duplications as compared with sperm produced in the other seasons; however, there was no significant difference. These results demonstrate high and variable CNV rates at 15q11.2q13 in sperm of healthy men. These CNVs appear to occur independent of the age, smoking status, or alcohol intake, while the effect of season remains inconclusive. Our results merit further validation.
Collapse
|
50
|
Spence JP, Song YS. Inference and analysis of population-specific fine-scale recombination maps across 26 diverse human populations. SCIENCE ADVANCES 2019; 5:eaaw9206. [PMID: 31681842 PMCID: PMC6810367 DOI: 10.1126/sciadv.aaw9206] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 09/13/2019] [Indexed: 05/28/2023]
Abstract
Fine-scale rates of meiotic recombination vary by orders of magnitude across the genome and differ between species and even populations. Studying cross-population differences has been stymied by the confounding effects of demographic history. To address this problem, we developed a demography-aware method to infer fine-scale recombination rates and applied it to 26 diverse human populations, inferring population-specific recombination maps. These maps recapitulate many aspects of the history of these populations including signatures of the trans-Atlantic slave trade and the Iberian colonization of the Americas. We also investigated modulators of the local recombination rate, finding further evidence that Polycomb group proteins and the trimethylation of H3K27 elevate recombination rates. Further differences in the recombination landscape across the genome and between populations are driven by variation in the gene that encodes the DNA binding protein PRDM9, and we quantify the weak effect of meiotic drive acting to remove its binding sites.
Collapse
Affiliation(s)
- Jeffrey P. Spence
- Graduate Group in Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Yun S. Song
- Computer Science Division and Department of Statistics, University of California, Berkeley, Berkeley, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|