1
|
Carpini-Dantas S, Guerra-Junior G, Maciel-Guerra AT, Marmo DB, Vieira TP, Lopes CP, Baptista MTM, Morcillo AM, de Lemos-Marini SHV. Growth charts of Brazilian girls with Turner syndrome without the use of GH or oxandrolone. J Pediatr (Rio J) 2024:S0021-7557(24)00129-3. [PMID: 39489927 DOI: 10.1016/j.jped.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 11/05/2024] Open
Abstract
OBJECTIVE The development of specific growth charts for Turner Syndrome (TS) promotes adequate assessment of growth and weight gain, and earlier diagnosis of comorbidities, and may help to analyze the effectiveness of treatments to promote growth and puberty. The aim of this study was to construct a growth chart with the largest possible series of patients with a cytogenetic diagnosis of TS from a Brazilian reference center. METHODS This is a longitudinal study, with 259 cases of TS born between 1957 and 2014 and followed between 1975 and 2019, without the use of GH or oxandrolone. 3,160 height measurements and 2,918 wt measurements were used, with subsequent calculation of the Body Mass Index (BMI). For data analysis, the "GAMLSS" package of the "R" software was used. RESULTS The mean target height was 157.8 cm (standard deviation 5.2; median 160.4 cm). The mean height of patients with TS at 20 years of age was 145.6 cm (standard deviation 5.9; median 146.7 cm). Height, weight, and BMI by age graphs were developed for TS girls between 2 and 20 years. CONCLUSION These growth charts may be used to monitor the growth of girls with TS and to verify the effect of adjuvant treatments on promoting growth.
Collapse
Affiliation(s)
- Stela Carpini-Dantas
- Departamento de Pediatria da Divisão de Endocrinologia Pediátrica, Universidade Estadual de Campinas (UNICAMP), Faculdade de Ciências Médicas (FCM), Campinas, São Paulo, Brazil
| | - Gil Guerra-Junior
- Departamento de Pediatria da Divisão de Endocrinologia Pediátrica, Universidade Estadual de Campinas (UNICAMP), Faculdade de Ciências Médicas (FCM), Campinas, São Paulo, Brazil.
| | - Andréa Trevas Maciel-Guerra
- Departamento de Medicina Translacional, Divisão de Genética Médica e Medicina Genômica, Universidade Estadual de Campinas (UNICAMP), Faculdade de Ciências Médicas (FCM), Campinas, São Paulo, Brazil
| | - Denise Barbieri Marmo
- Departamento de Pediatria da Divisão de Endocrinologia Pediátrica, Universidade Estadual de Campinas (UNICAMP), Faculdade de Ciências Médicas (FCM), Campinas, São Paulo, Brazil
| | - Tarsis Paiva Vieira
- Departamento de Medicina Translacional, Divisão de Genética Médica e Medicina Genômica, Universidade Estadual de Campinas (UNICAMP), Faculdade de Ciências Médicas (FCM), Campinas, São Paulo, Brazil
| | - Carolina Paniago Lopes
- Departamento de Pediatria da Divisão de Endocrinologia Pediátrica, Universidade Estadual de Campinas (UNICAMP), Faculdade de Ciências Médicas (FCM), Campinas, São Paulo, Brazil
| | - Maria Tereza Matias Baptista
- Departamento de Medicina Clínica, Divisão de Endocrinologia, Universidade Estadual de Campinas (UNICAMP), Faculdade de Ciências Médicas (FCM), Campinas, São Paulo, Brazil
| | - André Moreno Morcillo
- Departamento de Pediatria da Divisão de Endocrinologia Pediátrica, Universidade Estadual de Campinas (UNICAMP), Faculdade de Ciências Médicas (FCM), Campinas, São Paulo, Brazil
| | - Sofia Helena Valente de Lemos-Marini
- Departamento de Pediatria da Divisão de Endocrinologia Pediátrica, Universidade Estadual de Campinas (UNICAMP), Faculdade de Ciências Médicas (FCM), Campinas, São Paulo, Brazil
| |
Collapse
|
2
|
Zhang Q, Chen X, Cao Y, Zhou Y, Liu Y, Liu L, Liu L, Cui X. 45,X[2]/46,X,der(Y).ish Psu idic(Y)(q11.2)[38] mosaic karyotype in mixed gonadal dysgenesis: a case report and literature review. Front Pediatr 2024; 12:1460174. [PMID: 39479377 PMCID: PMC11521797 DOI: 10.3389/fped.2024.1460174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/26/2024] [Indexed: 11/02/2024] Open
Abstract
Mixed gonadal dysgenesis is caused by a variety of chromosome abnormalities, most commonly Y chromosome mosaicism. An 8-year-old boy presented with short stature for possible treatment with recombinant growth hormone. He had a history of mixed gonadal dysgenesis (hypospadias, bilateral cryptorchidism, processus vaginalis, and dysplastic immature uterus) and a series of corrective surgeries. At 14 months of age, chromosomal karyotyping revealed 46,X,+mar. Upon presentation, lab testing was consistent with the male phenotype at prepuberty. Fluorescence in situ hybridization revealed 45,X[2]/46,X,der(Y).ish psu idic(Y)(q11.2)(SRY++,DYZ3++)[38] karyotype. A literature review identified eight case reports of mixed gonadal dysgenesis associated with 45,X/46,X,idic(Y)(q11.2). Neither sex phenotype nor short stature correlated with the 46,X,idic(Y)(q11.2) mosaic ratio.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Endocrinology, Genetics and Metabolism, Children’s Hospital of Hebei Province, Shijiazhuang, Hebei, China
| | - Xiaoxiao Chen
- Department of Endocrinology, Genetics and Metabolism, Children’s Hospital of Hebei Province, Shijiazhuang, Hebei, China
| | - Yanyan Cao
- Pediatric Clinical Research Centre of Hebei Province, Children’s Hospital of Hebei Province, Shijiazhuang, Hebei, China
- Institute of Pediatric Research, Children’s Hospital of Hebei Province, Shijiazhuang, Hebei, China
| | - Yun Zhou
- Department of Urology, Children’s Hospital of Hebei Province, Shijiazhuang, Hebei, China
| | - Yingye Liu
- Pediatric Clinical Research Centre of Hebei Province, Children’s Hospital of Hebei Province, Shijiazhuang, Hebei, China
| | - Lijun Liu
- Department of Endocrinology, Genetics and Metabolism, Children’s Hospital of Hebei Province, Shijiazhuang, Hebei, China
| | - Lei Liu
- Department of Ultrasonography, Children’s Hospital of Hebei Province, Shijiazhuang, Hebei, China
| | - Xiaowei Cui
- Pediatric Clinical Research Centre of Hebei Province, Children’s Hospital of Hebei Province, Shijiazhuang, Hebei, China
| |
Collapse
|
3
|
Nicholls J, Harris M, Hughes I, Huynh T, McMahon SK. Growth During Pubertal Induction in Girls With Turner Syndrome: A Retrospective Cohort Analysis. J Clin Endocrinol Metab 2024; 109:e1992-e2000. [PMID: 38332670 DOI: 10.1210/clinem/dgae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/24/2024] [Accepted: 02/02/2024] [Indexed: 02/10/2024]
Abstract
CONTEXT Patients with Turner syndrome (TS) often present with short stature and ovarian insufficiency. The optimal method of pubertal induction to maximize adult height (AH) is unknown. OBJECTIVE To identify variables related to pubertal induction that are associated with growth and AH. METHODS This retrospective cohort analysis of patients attending a specialized TS clinic at a quaternary children's hospital included patients with TS (n = 107) who attended the clinic between 2015 and 2021. Among them, 51 received estradiol for pubertal induction. Main outcome measures were changes in height SD score (ΔHeightSDS) during pubertal induction and AH. Age at pubertal induction, bone age delay, mid-parental height (MPH), growth hormone treatment, and karyotype were assessed as predictors of AH and ΔHeightSDS. Associations between karyotype and comorbidities were also assessed. RESULTS AH was predicted by MPH (0.8 cm/cm, P = .0001) and bone age delay (-1.84 cm/year, P = .006). ΔHeightSDS was predicted by growth hormone dose (0.09 SDS/mg/m2/week; P = .017), bone age delay (-1.37 SDS/year; P = .003), and age at pubertal induction (0.44 SDS/year; P = .001). There was an interaction between bone age delay and pubertal induction age (P = .013), with the combination of younger age at pubertal induction and a less-delayed bone age associated with a lower ΔHeightSDS. Karyotype did not influence AH or ΔHeightSDS but did affect rates of other comorbidities. CONCLUSION Decisions around timing of pubertal induction in patients with TS should be tailored to the individual. The current approach to estrogen supplementation needs to be refined in order to facilitate pubertal induction in a physiological manner without compromising height.
Collapse
Affiliation(s)
- Joshua Nicholls
- Department of Paediatrics, Queensland Children's Hospital, South Brisbane 4101, Queensland, Australia
- Children's Health Queensland Clinical Unit, Faculty of Medicine, The University of Queensland, South Brisbane 4101, Queensland, Australia
| | - Mark Harris
- Children's Health Queensland Clinical Unit, Faculty of Medicine, The University of Queensland, South Brisbane 4101, Queensland, Australia
- Department of Endocrinology and Diabetes, Queensland Children's Hospital, South Brisbane 4101, Queensland, Australia
| | - Ian Hughes
- Office for Research Governance and Development, Gold Coast University Hospital, Southport 4215, Queensland, Australia
| | - Tony Huynh
- Department of Endocrinology and Diabetes, Queensland Children's Hospital, South Brisbane 4101, Queensland, Australia
- Children's Health Research Centre, Faculty of Medicine, The University of Queensland, South Brisbane 4101, Queensland, Australia
- Department of Chemical Pathology, Mater Pathology, South Brisbane 4101, Queensland, Australia
| | - Sarah K McMahon
- Children's Health Queensland Clinical Unit, Faculty of Medicine, The University of Queensland, South Brisbane 4101, Queensland, Australia
- Department of Endocrinology and Diabetes, Queensland Children's Hospital, South Brisbane 4101, Queensland, Australia
| |
Collapse
|
4
|
Abassah-Oppong S, Zoia M, Mannion BJ, Rouco R, Tissières V, Spurrell CH, Roland V, Darbellay F, Itum A, Gamart J, Festa-Daroux TA, Sullivan CS, Kosicki M, Rodríguez-Carballo E, Fukuda-Yuzawa Y, Hunter RD, Novak CS, Plajzer-Frick I, Tran S, Akiyama JA, Dickel DE, Lopez-Rios J, Barozzi I, Andrey G, Visel A, Pennacchio LA, Cobb J, Osterwalder M. A gene desert required for regulatory control of pleiotropic Shox2 expression and embryonic survival. Nat Commun 2024; 15:8793. [PMID: 39389973 PMCID: PMC11467299 DOI: 10.1038/s41467-024-53009-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 09/26/2024] [Indexed: 10/12/2024] Open
Abstract
Approximately a quarter of the human genome consists of gene deserts, large regions devoid of genes often located adjacent to developmental genes and thought to contribute to their regulation. However, defining the regulatory functions embedded within these deserts is challenging due to their large size. Here, we explore the cis-regulatory architecture of a gene desert flanking the Shox2 gene, which encodes a transcription factor indispensable for proximal limb, craniofacial, and cardiac pacemaker development. We identify the gene desert as a regulatory hub containing more than 15 distinct enhancers recapitulating anatomical subdomains of Shox2 expression. Ablation of the gene desert leads to embryonic lethality due to Shox2 depletion in the cardiac sinus venosus, caused in part by the loss of a specific distal enhancer. The gene desert is also required for stylopod morphogenesis, mediated via distributed proximal limb enhancers. In summary, our study establishes a multi-layered role of the Shox2 gene desert in orchestrating pleiotropic developmental expression through modular arrangement and coordinated dynamics of tissue-specific enhancers.
Collapse
Affiliation(s)
- Samuel Abassah-Oppong
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, AB, T2N 1N4, Canada
- Department of Biological Sciences, Fort Hays State University, Hays, KS, 67601, USA
| | - Matteo Zoia
- Department for BioMedical Research (DBMR), University of Bern, 3008, Bern, Switzerland
| | - Brandon J Mannion
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Comparative Biochemistry Program, University of California, Berkeley, CA, 94720, USA
| | - Raquel Rouco
- Department of Genetic Medicine and Development and iGE3, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Virginie Tissières
- Department for BioMedical Research (DBMR), University of Bern, 3008, Bern, Switzerland
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, 41013, Seville, Spain
- Department of Cardiology, Bern University Hospital, 3010, Bern, Switzerland
| | - Cailyn H Spurrell
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Virginia Roland
- Department for BioMedical Research (DBMR), University of Bern, 3008, Bern, Switzerland
| | - Fabrice Darbellay
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Genetic Medicine and Development and iGE3, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Anja Itum
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, AB, T2N 1N4, Canada
| | - Julie Gamart
- Department for BioMedical Research (DBMR), University of Bern, 3008, Bern, Switzerland
- Department of Cardiology, Bern University Hospital, 3010, Bern, Switzerland
| | - Tabitha A Festa-Daroux
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, AB, T2N 1N4, Canada
| | - Carly S Sullivan
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, AB, T2N 1N4, Canada
| | - Michael Kosicki
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Eddie Rodríguez-Carballo
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
| | - Yoko Fukuda-Yuzawa
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Riana D Hunter
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Catherine S Novak
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Ingrid Plajzer-Frick
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Stella Tran
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jennifer A Akiyama
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Diane E Dickel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Javier Lopez-Rios
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, 41013, Seville, Spain
- School of Health Sciences, Universidad Loyola Andalucía, Seville, Spain
| | - Iros Barozzi
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Guillaume Andrey
- Department of Genetic Medicine and Development and iGE3, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- School of Natural Sciences, University of California, Merced, Merced, CA, 95343, USA
| | - Len A Pennacchio
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Comparative Biochemistry Program, University of California, Berkeley, CA, 94720, USA
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - John Cobb
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, AB, T2N 1N4, Canada.
| | - Marco Osterwalder
- Department for BioMedical Research (DBMR), University of Bern, 3008, Bern, Switzerland.
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Department of Cardiology, Bern University Hospital, 3010, Bern, Switzerland.
| |
Collapse
|
5
|
Karibe J, Takeshima T, Takamoto D, Kawahara T, Osaka K, Teranishi JI, Makiyama K, Uemura H, Yumura Y. Clinical case of 45,X/46,XY mosaic male with ejaculatory disorder associated with seminal vesicle dysplasia: a case report. Sex Med 2024; 12:qfae066. [PMID: 39360231 PMCID: PMC11443022 DOI: 10.1093/sexmed/qfae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/08/2024] [Accepted: 09/15/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction 45,X/46,XY mosaicism is a rare anomaly in sexual differentiation, presenting with diverse phenotypes and often leading to infertility due to abnormal gonadal development. Aims This report aims to present a case study of a 45,X/46,XY mosaic male patient with an ejaculatory disorder attributed to seminal vesicle dysplasia. Methods In this case study, diagnostic procedures encompassed blood tests, semen analysis, chromosomal examination, and imaging studies to assess gonadal morphology. Treatment strategies included attempted varicocelectomy, pharmacological intervention with amoxapine, and surgical testicular sperm extraction. Additionally, the patient underwent assisted reproductive techniques, specifically intracytoplasmic sperm injection (ICSI), to facilitate pregnancy for his wife. Results A 32-year-old man could not ejaculate, with post-orgasmic urinalysis revealing minimal sperm presence. Chromosomal analysis confirmed 45,X/46,XY mosaicism. Despite undergoing microsurgical varicocelectomy for clinical varicocele and receiving tricyclic antidepressants, no improvement in semen volume occurred. Imaging studies indicated ejaculatory disorder due to prostate and seminal vesicle aplasia. Consequently, surgical retrieval of testicular sperm was performed, leading to successful pregnancy via ICSI for his wife. Conclusion Our approach has effectively addressed ejaculatory disorder in 45,X/46,XY mosaic men, resulting in successful pregnancy.
Collapse
Affiliation(s)
- Jurii Karibe
- Department of Urology, Reproduction Center, Yokohama City University Medical Center, Yokohama, 232-0024, Japan
- Department of Urology and Renal Transplantation, Yokohama City University Medical Center, Yokohama, 232-0024, Japan
| | - Teppei Takeshima
- Department of Urology, Reproduction Center, Yokohama City University Medical Center, Yokohama, 232-0024, Japan
- Department of Urology and Renal Transplantation, Yokohama City University Medical Center, Yokohama, 232-0024, Japan
| | - Daiji Takamoto
- Department of Urology and Renal Transplantation, Yokohama City University Medical Center, Yokohama, 232-0024, Japan
| | - Takashi Kawahara
- Department of Urology and Renal Transplantation, Yokohama City University Medical Center, Yokohama, 232-0024, Japan
| | - Kimito Osaka
- Department of Urology and Renal Transplantation, Yokohama City University Medical Center, Yokohama, 232-0024, Japan
| | - Jun-Ichi Teranishi
- Department of Urology and Renal Transplantation, Yokohama City University Medical Center, Yokohama, 232-0024, Japan
| | - Kazuhide Makiyama
- Department of Urology, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Hiroji Uemura
- Department of Urology and Renal Transplantation, Yokohama City University Medical Center, Yokohama, 232-0024, Japan
| | - Yasushi Yumura
- Department of Urology, Reproduction Center, Yokohama City University Medical Center, Yokohama, 232-0024, Japan
| |
Collapse
|
6
|
Kanno J, Miura A, Kawashima S, Shima H, Suzuki D, Kamimura M, Fujiwara I, Kamimura M, Uematsu M, Kudo M, Kikuchi A. A case of 49,XXXYY followed-up from infancy to adulthood with review of literature. Endocr J 2024; 71:721-727. [PMID: 38684424 DOI: 10.1507/endocrj.ej24-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
49,XXXYY is an extremely rare sex chromosomal aneuploidy (SCA), with only seven cases reported worldwide to date. Among these cases, only three have been documented into adulthood. Moreover, no cases of 49,XXXYY have been reported in Japan. This SCA has been identified in two scenarios: in vitro fertilization and abortion. Similar to 47,XXY, this aneuploidy is a type of Klinefelter syndrome. Aneuploidy of the X chromosome can lead to various progressive complications due to excess X chromosomes. Herein, we present the case of a Japanese man with 49,XXXYY. He exhibited developmental delays and external genitalia abnormalities since early infancy but was not closely monitored for these symptoms until the age of 3 years old. At that time, a chromosome test revealed his karyotype to be 49,XXXYY. Subsequent examinations were conducted due to various symptoms, including delayed motor development, intellectual disability, facial dysmorphisms, forearm deformities, hip dysplasia, cryptorchidism, micropenis, primary hypogonadism, and essential tremor. Since reaching puberty, he has undergone testosterone replacement therapy for primary hypogonadism, experiencing no complications related to androgen deficiency to date. He has maintained normal lipid and glucose metabolism, as well as bone density, for a prolonged period. There are no other reports on the long-term effects of testosterone treatment for the SCA. Appropriate testosterone replacement therapy is recommended for individuals with 49,XXXYY to prevent complications. This report will contribute to an enhanced understanding of the 49,XXXYY phenotype, aiding in the diagnosis, treatment, and genetic counseling of future cases.
Collapse
Affiliation(s)
- Junko Kanno
- Department of Pediatrics, Tohoku University School of Medicine, Sendai 980-8574, Japan
- Department of Pediatrics, Tome City Maiya Hospital, Tome 987-0500, Japan
| | - Akinobu Miura
- Department of Pediatrics, Tohoku University School of Medicine, Sendai 980-8574, Japan
| | - Sayaka Kawashima
- Department of Pediatrics, Tohoku University School of Medicine, Sendai 980-8574, Japan
| | - Hirohito Shima
- Department of Pediatrics, Tohoku University School of Medicine, Sendai 980-8574, Japan
| | - Dai Suzuki
- Department of Pediatrics, Tohoku University School of Medicine, Sendai 980-8574, Japan
| | - Miki Kamimura
- Department of Pediatrics, Tohoku University School of Medicine, Sendai 980-8574, Japan
- Department of Pediatrics, National Hospital Organization Sendai Medical Center, Sendai 983-0045, Japan
| | - Ikuma Fujiwara
- Department of Pediatrics, Tohoku University School of Medicine, Sendai 980-8574, Japan
- Department of Pediatrics, Sendai City Hospital, Sendai 982-8502, Japan
| | - Masayuki Kamimura
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, Sendai 980-8574, Japan
| | - Mitsugu Uematsu
- Department of Pediatrics, Tohoku University School of Medicine, Sendai 980-8574, Japan
| | - Masataka Kudo
- Department of Nephrology and Endocrinology, Osaki Citizen Hospital, Osaki 989-6136, Japan
| | - Atsuo Kikuchi
- Department of Pediatrics, Tohoku University School of Medicine, Sendai 980-8574, Japan
| |
Collapse
|
7
|
Shahid MM, Ferdousi S. A Man with Klinefelter's Syndrome having Normal Stature. Indian J Endocrinol Metab 2024; 28:429-431. [PMID: 39371661 PMCID: PMC11451955 DOI: 10.4103/ijem.ijem_33_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 10/08/2024] Open
Affiliation(s)
- Mohammad M. Shahid
- Department of Endocrinology, AD-DIN Women’s Medical College and Hospital, Mogbazar, Dhaka, Bangladesh
| | - Sharmin Ferdousi
- Department of Pathology, Dhaka Community Medical College and Hospital, Mogbazar, Dhaka, Bangladesh
| |
Collapse
|
8
|
Gravholt CH, Andersen NH, Christin-Maitre S, Davis SM, Duijnhouwer A, Gawlik A, Maciel-Guerra AT, Gutmark-Little I, Fleischer K, Hong D, Klein KO, Prakash SK, Shankar RK, Sandberg DE, Sas TCJ, Skakkebæk A, Stochholm K, van der Velden JA, Backeljauw PF. Clinical practice guidelines for the care of girls and women with Turner syndrome. Eur J Endocrinol 2024; 190:G53-G151. [PMID: 38748847 DOI: 10.1093/ejendo/lvae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/19/2024] [Indexed: 06/16/2024]
Abstract
Turner syndrome (TS) affects 50 per 100 000 females. TS affects multiple organs through all stages of life, necessitating multidisciplinary care. This guideline extends previous ones and includes important new advances, within diagnostics and genetics, estrogen treatment, fertility, co-morbidities, and neurocognition and neuropsychology. Exploratory meetings were held in 2021 in Europe and United States culminating with a consensus meeting in Aarhus, Denmark in June 2023. Prior to this, eight groups addressed important areas in TS care: (1) diagnosis and genetics, (2) growth, (3) puberty and estrogen treatment, (4) cardiovascular health, (5) transition, (6) fertility assessment, monitoring, and counselling, (7) health surveillance for comorbidities throughout the lifespan, and (8) neurocognition and its implications for mental health and well-being. Each group produced proposals for the present guidelines, which were meticulously discussed by the entire group. Four pertinent questions were submitted for formal GRADE (Grading of Recommendations, Assessment, Development and Evaluation) evaluation with systematic review of the literature. The guidelines project was initiated by the European Society for Endocrinology and the Pediatric Endocrine Society, in collaboration with members from the European Society for Pediatric Endocrinology, the European Society of Human Reproduction and Embryology, the European Reference Network on Rare Endocrine Conditions, the Society for Endocrinology, and the European Society of Cardiology, Japanese Society for Pediatric Endocrinology, Australia and New Zealand Society for Pediatric Endocrinology and Diabetes, Latin American Society for Pediatric Endocrinology, Arab Society for Pediatric Endocrinology and Diabetes, and the Asia Pacific Pediatric Endocrine Society. Advocacy groups appointed representatives for pre-meeting discussions and the consensus meeting.
Collapse
Affiliation(s)
- Claus H Gravholt
- Department of Endocrinology, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Molecular Medicine, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark
| | - Niels H Andersen
- Department of Cardiology, Aalborg University Hospital, 9000 Aalborg, Denmark
| | - Sophie Christin-Maitre
- Endocrine and Reproductive Medicine Unit, Center of Rare Endocrine Diseases of Growth and Development (CMERCD), FIRENDO, Endo ERN Hôpital Saint-Antoine, Sorbonne University, Assistance Publique-Hôpitaux de Paris, 75012 Paris, France
| | - Shanlee M Davis
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, United States
- eXtraOrdinarY Kids Clinic, Children's Hospital Colorado, Aurora, CO 80045, United States
| | - Anthonie Duijnhouwer
- Department of Cardiology, Radboud University Medical Center, Nijmegen 6500 HB, The Netherlands
| | - Aneta Gawlik
- Departments of Pediatrics and Pediatric Endocrinology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Andrea T Maciel-Guerra
- Area of Medical Genetics, Department of Translational Medicine, School of Medical Sciences, State University of Campinas, 13083-888 São Paulo, Brazil
| | - Iris Gutmark-Little
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio 45229, United States
| | - Kathrin Fleischer
- Department of Reproductive Medicine, Nij Geertgen Center for Fertility, Ripseweg 9, 5424 SM Elsendorp, The Netherlands
| | - David Hong
- Division of Interdisciplinary Brain Sciences, Stanford University School of Medicine, Stanford, CA 94304, United States
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94304, United States
| | - Karen O Klein
- Rady Children's Hospital, University of California, San Diego, CA 92123, United States
| | - Siddharth K Prakash
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, United States
| | - Roopa Kanakatti Shankar
- Division of Endocrinology, Children's National Hospital, The George Washington University School of Medicine, Washington, DC 20010, United States
| | - David E Sandberg
- Susan B. Meister Child Health Evaluation and Research Center, Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109-2800, United States
- Division of Pediatric Psychology, Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109-2800, United States
| | - Theo C J Sas
- Department the Pediatric Endocrinology, Sophia Children's Hospital, Rotterdam 3015 CN, The Netherlands
- Department of Pediatrics, Centre for Pediatric and Adult Diabetes Care and Research, Rotterdam 3015 CN, The Netherlands
| | - Anne Skakkebæk
- Department of Molecular Medicine, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark
- Department of Clinical Genetics, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Kirstine Stochholm
- Department of Endocrinology, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Center for Rare Diseases, Department of Pediatrics, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Janielle A van der Velden
- Department of Pediatric Endocrinology, Radboud University Medical Center, Amalia Children's Hospital, Nijmegen 6500 HB, The Netherlands
| | - Philippe F Backeljauw
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio 45229, United States
| |
Collapse
|
9
|
Ahern DT, Bansal P, Faustino IV, Glatt-Deeley HR, Massey R, Kondaveeti Y, Banda EC, Pinter SF. Isogenic hiPSC models of Turner syndrome development reveal shared roles of inactive X and Y in the human cranial neural crest network. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.08.531747. [PMID: 36945647 PMCID: PMC10028916 DOI: 10.1101/2023.03.08.531747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Abstract
Modeling the developmental etiology of viable human aneuploidy can be challenging in rodents due to syntenic boundaries, or primate-specific biology. In humans, monosomy-X (45,X) causes Turner syndrome (TS), altering craniofacial, skeletal, endocrine, and cardiovascular development, which in contrast remain unaffected in 39,X-mice. To learn how human monosomy-X may impact early embryonic development, we turned to human 45,X and isogenic euploid induced pluripotent stem cells (hiPSCs) from male and female mosaic donors. Because neural crest (NC) derived cell types are hypothesized to underpin craniofacial and cardiovascular changes in TS, we performed a highly-powered differential expression study on hiPSC-derived anterior neural crest cells (NCCs). Across three independent isogenic panels, 45,X NCCs show impaired acquisition of PAX7+SOX10+ markers, and disrupted expression of other NCC-specific genes, relative to their isogenic euploid controls. In particular, 45,X NCCs increase cholesterol biosynthesis genes while reducing transcripts that feature 5' terminal oligopyrimidine (TOP) motifs, including those of ribosomal protein and nuclear-encoded mitochondrial genes. Such metabolic pathways are also over-represented in weighted co-expression gene modules that are preserved in monogenic neurocristopathy. Importantly, these gene modules are also significantly enriched in 28% of all TS-associated terms of the human phenotype ontology. Our analysis identifies specific sex-linked genes that are expressed from two copies in euploid males and females alike and qualify as candidate haploinsufficient drivers of TS phenotypes in NC-derived lineages. This study demonstrates that isogenic hiPSC-derived NCC panels representing monosomy-X can serve as a powerful model of early NC development in TS and inform new hypotheses towards its etiology.
Collapse
Affiliation(s)
- Darcy T. Ahern
- Graduate Program in Genetics and Developmental Biology, UCONN Health, University of Connecticut, Farmington, CT, United States
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, United States
| | - Prakhar Bansal
- Graduate Program in Genetics and Developmental Biology, UCONN Health, University of Connecticut, Farmington, CT, United States
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, United States
| | - Isaac V. Faustino
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, United States
| | - Heather R. Glatt-Deeley
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, United States
| | - Rachael Massey
- Graduate Program in Genetics and Developmental Biology, UCONN Health, University of Connecticut, Farmington, CT, United States
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, United States
- Institute for Systems Genomics, University of Connecticut, Farmington, CT, United States
| | - Yuvabharath Kondaveeti
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, United States
| | - Erin C. Banda
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, United States
| | - Stefan F. Pinter
- Graduate Program in Genetics and Developmental Biology, UCONN Health, University of Connecticut, Farmington, CT, United States
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, United States
- Institute for Systems Genomics, University of Connecticut, Farmington, CT, United States
| |
Collapse
|
10
|
Hattori A, Seki A, Inaba N, Nakabayashi K, Takeda K, Tatsusmi K, Naiki Y, Nakamura A, Ishiwata K, Matsumoto K, Nasu M, Okamura K, Michigami T, Katoh-Fukui Y, Umezawa A, Ogata T, Kagami M, Fukami M. Expression levels and DNA methylation profiles of the growth gene SHOX in cartilage tissues and chondrocytes. Sci Rep 2024; 14:8069. [PMID: 38580675 PMCID: PMC10997625 DOI: 10.1038/s41598-024-58530-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 04/01/2024] [Indexed: 04/07/2024] Open
Abstract
All attempts to identify male-specific growth genes in humans have failed. This study aimed to clarify why men are taller than women. Microarray-based transcriptome analysis of the cartilage tissues of four adults and chondrocytes of 12 children showed that the median expression levels of SHOX, a growth gene in the pseudoautosomal region (PAR), were higher in male samples than in female samples. Male-dominant SHOX expression was confirmed by quantitative RT-PCR for 36 cartilage samples. Reduced representation bisulfite sequencing of four cartilage samples revealed sex-biased DNA methylation in the SHOX-flanking regions, and pyrosequencing of 22 cartilage samples confirmed male-dominant DNA methylation at the CpG sites in the SHOX upstream region and exon 6a. DNA methylation indexes of these regions were positively correlated with SHOX expression levels. These results, together with prior findings that PAR genes often exhibit male-dominant expression, imply that the relatively low SHOX expression in female cartilage tissues reflects the partial spread of X chromosome inactivation into PAR. Altogether, this study provides the first indication that sex differences in height are ascribed, at least in part, to the sex-dependent epigenetic regulation of SHOX. Our findings deserve further validation.
Collapse
Affiliation(s)
- Atsushi Hattori
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
- Division of Diversity Research, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Atsuhito Seki
- Department of Orthopaedic Surgery, National Medical Center for Children and Mothers, Tokyo, 157-8535, Japan
| | - Naoto Inaba
- Department of Orthopaedic Surgery, National Medical Center for Children and Mothers, Tokyo, 157-8535, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Kazue Takeda
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Kuniko Tatsusmi
- Center for Regenerative Medicine, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Yasuhiro Naiki
- Division of Endocrinology and Metabolism, National Medical Center for Children and Mothers, Tokyo, 157-8535, Japan
| | - Akie Nakamura
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Keisuke Ishiwata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Michiyo Nasu
- Center for Regenerative Medicine, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Kohji Okamura
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Toshimi Michigami
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Izumi, 594-1101, Japan
| | - Yuko Katoh-Fukui
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Akihiro Umezawa
- Center for Regenerative Medicine, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Tsutomu Ogata
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, 431-3192, Japan
- Department of Pediatrics, Hamamatsu Medical Center, Hamamatsu, 432-8580, Japan
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan.
- Division of Diversity Research, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan.
| |
Collapse
|
11
|
Aversa T, Li Pomi A, Pepe G, Corica D, Messina MF, Coco R, Sippelli F, Ferraloro C, Luppino G, Valenzise M, Wasniewska MG. Growth Hormone Treatment to Final Height in Turner Syndrome: Systematic Review. Clin Ther 2024; 46:146-153. [PMID: 38151406 DOI: 10.1016/j.clinthera.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/29/2023]
Abstract
PURPOSE Turner syndrome (TS) is the most common sex chromosomal abnormality found in female subjects. It is a result of a partial or complete loss of one of the X chromosomes. Short stature is a hallmark of TS. Attainment of adult height (AH) within the normal range for height within the general female population represents the usual long-term goal of growth hormone (GH) treatment. The aim of this systematic review was to understand the efficacy of GH therapy on AH of patients with TS. METHODS The literature review yielded for analysis 9 articles published from 2010 to 2021. Using the data from this literature search, the goal was to answer 5 questions: (1) What is the efficacy of GH on AH of girls with TS?; (2) Is AH influenced by the age at initiation of GH treatment?; (3) What is the optimal dose of GH to improve AH?; (4) Can the timing of either spontaneous or induced puberty influence AH?; and (5) Can the karyotype influence AH in patients with TS? FINDINGS GH therapy and adequate dose could enable patients with TS to achieve appropriate AH compared with the possible final height without therapy. The greatest increase in height during GH therapy occurs in the prepubertal years, and if therapy is continued to AH, there is no further increase. Furthermore, karyotype did not show a predictive value on height prognosis and did not affect the outcome of GH administration or the height gain in girls with TS. IMPLICATIONS Even if GH therapy is safe, close monitoring is indicated and recommended. Further evidence is needed to understand what other parameters may influence AH in patients undergoing GH therapy.
Collapse
Affiliation(s)
- Tommaso Aversa
- Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy; Pediatric Unit, "G. Martino" University Hospital, Messina, Italy
| | - Alessandra Li Pomi
- Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy; Pediatric Unit, "G. Martino" University Hospital, Messina, Italy
| | - Giorgia Pepe
- Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy; Pediatric Unit, "G. Martino" University Hospital, Messina, Italy
| | - Domenico Corica
- Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy; Pediatric Unit, "G. Martino" University Hospital, Messina, Italy
| | - Maria Francesca Messina
- Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy; Pediatric Unit, "G. Martino" University Hospital, Messina, Italy
| | - Roberto Coco
- Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy; Pediatric Unit, "G. Martino" University Hospital, Messina, Italy
| | - Fabio Sippelli
- Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy; Pediatric Unit, "G. Martino" University Hospital, Messina, Italy
| | - Chiara Ferraloro
- Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy; Pediatric Unit, "G. Martino" University Hospital, Messina, Italy
| | - Giovanni Luppino
- Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy; Pediatric Unit, "G. Martino" University Hospital, Messina, Italy
| | - Mariella Valenzise
- Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy; Pediatric Unit, "G. Martino" University Hospital, Messina, Italy
| | - Malgorzata Gabriela Wasniewska
- Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy; Pediatric Unit, "G. Martino" University Hospital, Messina, Italy.
| |
Collapse
|
12
|
Hanson C, Blumenthal J, Clasen L, Guma E, Raznahan A. Influences of sex chromosome aneuploidy on height, weight, and body mass index in human childhood and adolescence. Am J Med Genet A 2024; 194:150-159. [PMID: 37768018 DOI: 10.1002/ajmg.a.63398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/21/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023]
Abstract
Sex chromosome aneuploidies (SCAs) are collectively common conditions caused by carriage of a sex chromosome dosage other than XX for females and XY for males. Increases in sex chromosome dosage (SCD) have been shown to have an inverted-U association with height, but we lack combined studies of SCA effects on height and weight, and it is not known if any such effects vary with age. Here, we study norm-derived height and weight z-scores in 177 youth spanning 8 SCA karyotypes (XXX, XXY, XYY, XXXX, XXXY, XXYY, XXXXX, and XXXXY). We replicate a previously described inverted-U association between mounting SCD and height, and further show that there is also a muted version of this effect for weight: both phenotypes are elevated until SCD reaches 4 for females and 5 for males but decrease thereafter. We next use 266 longitudinal measures available from a subset of karyotypes (XXX, XXY, XYY, and XXYY) to show that mean height in these SCAs diverges further from norms with increasing age. As weight does not diverge from norms with increasing age, BMI decreases with increasing age. These findings extend our understanding of growth as an important clinical outcome in SCA, and as a key context for known effects of SCA on diverse organ systems that scale with body size.
Collapse
Affiliation(s)
- Claire Hanson
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, Maryland, USA
| | - Jonathan Blumenthal
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, Maryland, USA
| | - Liv Clasen
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, Maryland, USA
| | - Elisa Guma
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, Maryland, USA
| | - Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, Maryland, USA
| |
Collapse
|
13
|
Cai M, Chen X, Li Y, Lin N, Huang H, Xu L. Genetic analysis, ultrasound phenotype, and pregnancy outcomes of fetuses with Xp22.33 or Yp11.32 microdeletions. J Perinat Med 2024; 52:96-101. [PMID: 37846158 DOI: 10.1515/jpm-2023-0190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/27/2023] [Indexed: 10/18/2023]
Abstract
OBJECTIVES The phenotypes of Xp22.33 or Yp11.32 microdeletions comprising the short-stature homeobox (SHOX) gene have been extensively described in adults and children. Herein, the prenatal ultrasound phenotype and pregnancy outcomes of fetuses with Xp22.33/Yp11.32 microdeletions were analyzed to improve our understanding, diagnosis, and monitoring of this genetic condition in the fetal stage. METHODS A total of 9,100 pregnant women referred to tertiary units for prenatal diagnosis were evaluated by chromosomal microarray analysis(CMA). RESULTS Seven (0.08 %) fetuses had Xp22.33/Yp11.32 microdeletions, ranging from 243 kb to 1.1 Mb, that comprised SHOX. The ultrasonic phenotypes differed among these fetuses, with three fetuses presenting abnormal bone development, one had labial-palatal deformity and strawberry head, two had an abnormal ultrasonic soft marker, and one had no abnormalities. After genetic counseling, only one couple underwent pedigree assessment, which confirmed the paternal origin of the microdeletion. This infant presented delayed speech development, whereas other three infants showed a typical postnatal development. In three cases, the parents chose to terminate the pregnancy. CONCLUSIONS The ultrasonic phenotype of fetuses with Xp22.33/Yp11.32 microdeletions resulting in SHOX heterozygosity loss is variable. Prenatal CMA can quickly and effectively diagnose Xp22.33/Yp11.32 microdeletions and SHOX loss, which may help prenatal counseling.
Collapse
Affiliation(s)
- Meiying Cai
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, P.R. China
| | - Xuemei Chen
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, P.R. China
| | - Ying Li
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, P.R. China
| | - Na Lin
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, P.R. China
| | - Hailong Huang
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, P.R. China
| | - Liangpu Xu
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, P.R. China
| |
Collapse
|
14
|
Ogata T, Fukami M, Tanizawa K, Yamamoto T, Sato Y, Hirai H, Takasao N, Ibaraki R, Noda M. Efficacy and safety of GH treatment in Japanese children with short stature due to SHOX deficiency: a randomized phase 3 study. Clin Pediatr Endocrinol 2024; 33:43-49. [PMID: 38572386 PMCID: PMC10985015 DOI: 10.1297/cpe.2023-0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/25/2023] [Indexed: 04/05/2024] Open
Abstract
We conducted a randomized phase 3 study to investigate the efficacy and safety of GH treatment in prepubertal Japanese patients with short stature due to SHOX deficiency. The patients were randomly allocated to the GH-GH group (n = 10), in which the patients were treated with GH (0.35 mg/kg/wk) subcutaneously once daily for 24 mo, or the no-treatment (NT)-GH group (n = 9), in which the patients were untreated for the first 12 mo and then administered the same dosage of GH for the next 12 mo. At month 12, the ∆height standard deviation score (SDS) for chronological age (CA) and serum IGF-1 level were significantly higher in the GH-GH group than those in the NT-GH group. In contrast, bone age (BA) and ΔBA/ΔCA were numerically higher in the GH-GH group but were not statistically significant. At month 24, these parameters were comparable between the two groups. The height velocity was significantly larger in the GH-GH group during the first year and in the NT-GH group during the second year. No serious adverse drug reactions were observed; however, one patient in the GH-GH group exhibited increased insulin resistance at month 24. These results indicated that GH is a promising treatment option for short stature in patients with SHOX deficiency.
Collapse
Affiliation(s)
- Tsutomu Ogata
- Department of Pediatrics and Biochemistry, Hamamatsu
University School of Medicine, Hamamatsu, Japan
- Department of Pediatrics, Hamamatsu Medical Center,
Hamamatsu, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research
Institute for Child Health and Development, Tokyo, Japan
| | | | | | - Yuji Sato
- Development Division, JCR Pharmaceuticals, Ashiya,
Japan
| | - Hideaki Hirai
- Development Division, JCR Pharmaceuticals, Ashiya,
Japan
| | - Naoko Takasao
- Development Division, JCR Pharmaceuticals, Ashiya,
Japan
| | - Ryo Ibaraki
- Development Division, JCR Pharmaceuticals, Ashiya,
Japan
| | - Marin Noda
- Development Division, JCR Pharmaceuticals, Ashiya,
Japan
| |
Collapse
|
15
|
Zhang X, Jiang S, Zhang R, Guo S, Sheng Q, Wang K, Shan Y, Liao L, Dong J. Review of published 467 achondroplasia patients: clinical and mutational spectrum. Orphanet J Rare Dis 2024; 19:29. [PMID: 38281003 PMCID: PMC10822181 DOI: 10.1186/s13023-024-03031-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/19/2024] [Indexed: 01/29/2024] Open
Abstract
AIM Achondroplasia is the most common of the skeletal dysplasias that cause fatal and disabling growth and developmental disorders in children, and is caused by a mutation in the fibroblast growth factor receptor, type 3 gene(FGFR3). This study aims to analyse the clinical characteristics and gene mutations of ACH to accurately determine whether a patient has ACH and to raise public awareness of the disease. METHODS The database of Pubmed, Cochrane Library, Wanfang and CNKI were searched with terms of "Achondroplasias" or "Skeleton-Skin-Brain Syndrome" or "Skeleton Skin Brain Syndrome" or "ACH" and "Receptor, Fibroblast Growth Factor, Type 3" or "FGFR3". RESULTS Finally, four hundred and sixty-seven patients with different FGFR3 mutations were enrolled. Of the 138 patients with available gender information, 55(55/138, 40%) were female and 83(83/138, 60%) were male. Among the patients with available family history, 47(47/385, 12%) had a family history and 338(338/385, 88%) patients were sporadic. The age of the patients ranged from newborn babies to 36 years old. The mean age of their fathers was 37 ± 7 years (range 31-53 years). Patients came from 12 countries and 2 continents, with the majority being Asian (383/432, 89%), followed by European (49/432, 11%). Short stature with shortened arms and legs was found in 112(112/112) patients, the abnormalities of macrocephaly in 94(94/112) patients, frontal bossing in 89(89/112) patients, genu valgum in 64(64/112) patients and trident hand were found in 51(51/112) patients. The most common mutation was p.Gly380Arg of the FGFR3 gene, which contained two different base changes, c.1138G > A and c.1138G > C. Ten rare pathogenic mutations were found, including c.831A > C, c.1031C > G, c.1043C > G, c.375G > T, c.1133A > G, c.1130T > G, c.833A > G, c.649A > T, c.1180A > T and c.970_971insTCTCCT. CONCLUSION ACH was caused by FGFR3 gene mutation, and c.1138G > A was the most common mutation type. This study demonstrates the feasibility of molecular genetic testing for the early detection of ACH in adolescents with short stature, trident hand, frontal bossing, macrocephaly and genu valgum.
Collapse
Affiliation(s)
- XinZhong Zhang
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Shan Jiang
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Rui Zhang
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Siyi Guo
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Qiqi Sheng
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Kaili Wang
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yuanyuan Shan
- Department of Endocrinology and Metabology, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Nephrology, Jinan, China
| | - Lin Liao
- Department of Endocrinology and Metabology, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Nephrology, Jinan, China.
- Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Jianjun Dong
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| |
Collapse
|
16
|
Luo Y, Chen Y, Ge L, Zhou G, Chen Y, Zhu D. Competing endogenous RNA network analysis of Turner syndrome patient-specific iPSC-derived cardiomyocytes reveals dysregulation of autosomal heart development genes by altered dosages of X-inactivation escaping non-coding RNAs. Stem Cell Res Ther 2023; 14:376. [PMID: 38124119 PMCID: PMC10734062 DOI: 10.1186/s13287-023-03601-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND A 45,X monosomy (Turner syndrome, TS) is the only chromosome haploinsufficiency compatible with life. Nevertheless, the surviving TS patients still suffer from increased morbidity and mortality, with around one-third of them subjecting to heart abnormalities. How loss of one X chromosome drive these conditions remains largely unknown. METHODS Here, we have generated cardiomyocytes (CMs) from wild-type and TS patient-specific induced pluripotent stem cells and profiled the mRNA, lncRNA and circRNA expression in these cells. RESULTS We observed lower beating frequencies and higher mitochondrial DNA copies per nucleus in TS-CMs. Moreover, we have identified a global transcriptome dysregulation of both coding and non-coding RNAs in TS-CMs. The differentially expressed mRNAs were enriched of heart development genes. Further competing endogenous RNA network analysis revealed putative regulatory circuit of autosomal genes relevant with mitochondrial respiratory chain and heart development, such as COQ10A, RARB and WNT2, mediated by X-inactivation escaping lnc/circRNAs, such as lnc-KDM5C-4:1, hsa_circ_0090421 and hsa_circ_0090392. The aberrant expressions of these genes in TS-CMs were verified by qPCR. Further knockdown of lnc-KDM5C-4:1 in wild-type CMs exhibited significantly reduced beating frequencies. CONCLUSIONS Our study has revealed a genomewide ripple effect of X chromosome halpoinsufficiency at post-transcriptional level and provided insights into the molecular mechanisms underlying heart abnormalities in TS patients.
Collapse
Affiliation(s)
- Yumei Luo
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
- Biologics Test and Evaluation Center, Guangzhou Laboratory, Guangzhou, 510005, China.
| | - Yapei Chen
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Lingxia Ge
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Guanqing Zhou
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Yaoyong Chen
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Detu Zhu
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
- Biologics Test and Evaluation Center, Guangzhou Laboratory, Guangzhou, 510005, China.
| |
Collapse
|
17
|
Ibarra-Ramírez M, Campos-Acevedo LD, Martínez de Villarreal LE. Chromosomal Abnormalities of Interest in Turner Syndrome: An Update. J Pediatr Genet 2023; 12:263-272. [PMID: 38162151 PMCID: PMC10756729 DOI: 10.1055/s-0043-1770982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/01/2023] [Indexed: 01/03/2024]
Abstract
Turner syndrome (TS) is caused by the total or partial loss of the second sex chromosome; it occurs in 1 every 2,500-3,000 live births. The clinical phenotype is highly variable and includes short stature and gonadal dysgenesis. In 1959, the chromosomal origin of the syndrome was recognized; patients had 45 chromosomes with a single X chromosome. TS presents numerical and structural abnormalities in the sex chromosomes, interestingly only 40% have a 45, X karyotype. The rest of the chromosomal abnormalities include mosaics, deletions of the short and long arms of the X chromosome, rings, and isochromosomes. Despite multiple studies to establish a relationship between the clinical characteristics and the different chromosomal variants in TS, a clear association cannot yet be established. Currently, different mechanisms involved in the phenotype have been explored. This review focuses to analyze the different chromosomal abnormalities and phenotypes in TS and discusses the possible mechanisms that lead to these abnormalities.
Collapse
Affiliation(s)
- Marisol Ibarra-Ramírez
- Department of Genetics, “Dr. José Eleuterio González” University Hospital of the Autonomous University of Nuevo León, Monterrey, México
| | - Luis Daniel Campos-Acevedo
- Department of Genetics, “Dr. José Eleuterio González” University Hospital of the Autonomous University of Nuevo León, Monterrey, México
| | - Laura E. Martínez de Villarreal
- Department of Genetics, “Dr. José Eleuterio González” University Hospital of the Autonomous University of Nuevo León, Monterrey, México
| |
Collapse
|
18
|
Dantas NCB, Funari MFA, Lerário AM, Andrade NLM, Rezende RC, Cellin LP, Alves C, Crisostomo LG, Arnhold IJP, Mendonca B, Scalco RC, Jorge AAL. Identification of a second genetic alteration in patients with SHOX deficiency individuals: a potential explanation for phenotype variability. Eur J Endocrinol 2023; 189:387-395. [PMID: 37695807 DOI: 10.1093/ejendo/lvad128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 09/13/2023]
Abstract
OBJECTIVE Our study aimed to assess the impact of genetic modifiers on the significant variation in phenotype that is observed in individuals with SHOX deficiency, which is the most prevalent monogenic cause of short stature. DESIGN AND METHODS We performed a genetic analysis in 98 individuals from 48 families with SHOX deficiency with a target panel designed to capture the entire SHOX genomic region and 114 other genes that modulate growth and/or SHOX action. We prioritized rare potentially deleterious variants. RESULTS We did not identify potential deleterious variants in the promoter or intronic regions of the SHOX genomic locus. In contrast, we found eight heterozygous variants in 11 individuals from nine families in genes with a potential role as genetic modifiers. In addition to a previously described likely pathogenic (LP) variant in CYP26C1 observed in two families, we identified LP variants in PTHLH and ACAN, and variants of uncertain significance in NPR2, RUNX2, and TP53 in more affected individuals from families with SHOX deficiency. Families with a SHOX alteration restricted to the regulatory region had a higher prevalence of a second likely pathogenic variant (27%) than families with an alteration compromising the SHOX coding region (2.9%, P = .04). CONCLUSION In conclusion, variants in genes related to the growth plate have a potential role as genetic modifiers of the phenotype in individuals with SHOX deficiency. In individuals with SHOX alterations restricted to the regulatory region, a second alteration could be critical to determine the penetrance and expression of the phenotype.
Collapse
Affiliation(s)
- Naiara C B Dantas
- Unidade de Endocrinologia Genetica, Laboratorio de Endocrinologia Celular e Molecular LIM/25, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de Sao Paulo, 01246-903 Sao Paulo, SP, Brazil
| | - Mariana F A Funari
- Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular LIM/42, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de Sao Paulo, 05403-900 Sao Paulo, SP, Brazil
| | - Antonio M Lerário
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Michigan, Ann Arbor, MI 48105, United States
| | - Nathalia L M Andrade
- Unidade de Endocrinologia Genetica, Laboratorio de Endocrinologia Celular e Molecular LIM/25, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de Sao Paulo, 01246-903 Sao Paulo, SP, Brazil
| | - Raíssa C Rezende
- Unidade de Endocrinologia Genetica, Laboratorio de Endocrinologia Celular e Molecular LIM/25, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de Sao Paulo, 01246-903 Sao Paulo, SP, Brazil
| | - Laurana P Cellin
- Unidade de Endocrinologia Genetica, Laboratorio de Endocrinologia Celular e Molecular LIM/25, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de Sao Paulo, 01246-903 Sao Paulo, SP, Brazil
| | - Crésio Alves
- Pediatric Endocrinology Unit, Hospital Universitario Prof. Edgard Santos, Faculdade de Medicina, Universidade Federal da Bahia, 40026-010 Salvador, BA, Brazil
| | - Lindiane G Crisostomo
- Department of Pediatrics, Centro Universitário Sao Camilo, 04263-200 Sao Paulo SP, Brazil
| | - Ivo J P Arnhold
- Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular LIM/42, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de Sao Paulo, 05403-900 Sao Paulo, SP, Brazil
| | - Berenice Mendonca
- Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular LIM/42, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de Sao Paulo, 05403-900 Sao Paulo, SP, Brazil
| | - Renata C Scalco
- Unidade de Endocrinologia Genetica, Laboratorio de Endocrinologia Celular e Molecular LIM/25, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de Sao Paulo, 01246-903 Sao Paulo, SP, Brazil
- Disciplina de Endocrinologia, Faculdade de Ciencias Medicas da Santa Casa de Sao Paulo, 01221-020 Sao Paulo SP, Brazil
| | - Alexander A L Jorge
- Unidade de Endocrinologia Genetica, Laboratorio de Endocrinologia Celular e Molecular LIM/25, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de Sao Paulo, 01246-903 Sao Paulo, SP, Brazil
| |
Collapse
|
19
|
Kuroki Y, Fukami M. Y Chromosome Genomic Variations and Biological Significance in Human Diseases and Health. Cytogenet Genome Res 2023; 163:5-13. [PMID: 37562362 DOI: 10.1159/000531933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
The Y chromosome is a haploid genome unique to males with no genes essential for life. It is easily transmitted to the next generation without being repaired by recombination, even if a major genomic structural alteration occurs. On the other hand, the Y chromosome genome is basically a region transmitted only from father to son, reflecting a male-specific inheritance between generations. The Y chromosome exhibits genomic structural differences among different ethnic groups and individuals. The Y chromosome was previously thought to affect only male-specific phenotypes, but recent studies have revealed associations between the Y chromosomes and phenotypes common to both males and females, such as certain types of cancer and neuropsychiatric disorders. This evidence was discovered with the finding of the mosaic loss of the Y chromosome in somatic cells. This phenomenon is also affected by environmental factors, such as smoking and aging. In the past, functional analysis of the Y chromosome has been elucidated by assessing the function of Y chromosome-specific genes and the association between Y chromosome haplogroups and human phenotypes. These studies are currently being conducted intensively. Additionally, the recent advance of large-scale genome cohort studies has increased the amount of Y chromosome genomic information available for analysis, making it possible to conduct more precise studies of the relationship between genome structures and phenotypes. In this review, we will introduce recent analyses using large-scale genome cohort data and previously reported association studies between Y chromosome haplogroups and human phenotypes, such as male infertility, cancer, cardiovascular system traits, and neuropsychiatric disorders. The function and biological role of the Y chromosome in human phenotypes will also be discussed.
Collapse
Affiliation(s)
- Yoko Kuroki
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo, Japan
- Division of Collaborative Research, National Center for Child Health and Development, Tokyo, Japan
- Division of Diversity Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Maki Fukami
- Division of Diversity Research, National Research Institute for Child Health and Development, Tokyo, Japan
- Department of Molecular Endocrinology, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
20
|
Yoon SH, Kim GY, Choi GT, Do JT. Organ Abnormalities Caused by Turner Syndrome. Cells 2023; 12:1365. [PMID: 37408200 DOI: 10.3390/cells12101365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/22/2023] [Accepted: 05/10/2023] [Indexed: 07/07/2023] Open
Abstract
Turner syndrome (TS), a genetic disorder due to incomplete dosage compensation of X-linked genes, affects multiple organ systems, leading to hypogonadotropic hypogonadism, short stature, cardiovascular and vascular abnormalities, liver disease, renal abnormalities, brain abnormalities, and skeletal problems. Patients with TS experience premature ovarian failure with a rapid decline in ovarian function caused by germ cell depletion, and pregnancies carry a high risk of adverse maternal and fetal outcomes. Aortic abnormalities, heart defects, obesity, hypertension, and liver abnormalities, such as steatosis, steatohepatitis, biliary involvement, liver cirrhosis, and nodular regenerative hyperplasia, are commonly observed in patients with TS. The SHOX gene plays a crucial role in short stature and abnormal skeletal phenotype in patients with TS. Abnormal structure formation of the ureter and kidney is also common in patients with TS, and a non-mosaic 45,X karyotype is significantly associated with horseshoe kidneys. TS also affects brain structure and function. In this review, we explore various phenotypic and disease manifestations of TS in different organs, including the reproductive system, cardiovascular system, liver, kidneys, brain, and skeletal system.
Collapse
Affiliation(s)
- Sang Hoon Yoon
- Department of Stem Cell and Regenerative Biotechnology, KU Institute of Technology, Konkuk University, Seoul 05029, Republic of Korea
| | - Ga Yeon Kim
- Department of Stem Cell and Regenerative Biotechnology, KU Institute of Technology, Konkuk University, Seoul 05029, Republic of Korea
| | - Gyu Tae Choi
- Department of Stem Cell and Regenerative Biotechnology, KU Institute of Technology, Konkuk University, Seoul 05029, Republic of Korea
| | - Jeong Tae Do
- Department of Stem Cell and Regenerative Biotechnology, KU Institute of Technology, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
21
|
Vodopiutz J, Steurer LM, Haufler F, Laccone F, Garczarczyk-Asim D, Hilkenmeier M, Steinbauer P, Janecke AR. Leri-Weill Dyschondrosteosis Caused by a Leaky Homozygous SHOX Splice-Site Variant. Genes (Basel) 2023; 14:genes14040877. [PMID: 37107635 PMCID: PMC10138022 DOI: 10.3390/genes14040877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
SHOX deficiency is a common genetic cause of short stature of variable degree. SHOX haploinsufficiency causes Leri-Weill dyschondrosteosis (LWD) as well as nonspecific short stature. SHOX haploinsufficiency is known to result from heterozygous loss-of-function variants with pseudo-autosomal dominant inheritance, while biallelic SHOX loss-of-function variants cause the more severe skeletal dysplasia, Langer mesomelic dyschondrosteosis (LMD). Here we report for the first time the pseudo-autosomal recessive inheritance of LWD in two siblings caused by a novel homozygous non-canonical, leaky splice-site variant in intron 3 of SHOX: c.544+5G>C. Transcript analyses in patient-derived fibroblasts showed homozygous patients to produce approximately equal amounts of normally spliced mRNA and mRNA with the abnormal retention of intron 3 and containing a premature stop codon (p.Val183Glyfs*31). The aberrant transcript was shown to undergo nonsense-mediated mRNA decay, and thus resulting in SHOX haploinsufficiency in the homozygous patient. Six healthy relatives who are of normal height are heterozygous for this variant and fibroblasts from a heterozygote for the c.544+5G>C variant produced wild-type transcript amounts comparable to healthy control. The unique situation reported here highlights the fact that the dosage of SHOX determines the clinical phenotype rather than the Mendelian inheritance pattern of SHOX variants. This study extends the molecular and inheritance spectrum of SHOX deficiency disorder and highlights the importance of functional testing of SHOX variants of unknown significance in order to allow appropriate counseling and precision medicine for each family individual.
Collapse
Affiliation(s)
- Julia Vodopiutz
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Pulmonology, Allergology and Endocrinology, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
- Vienna Bone and Growth Center, 1130 Vienna, Austria
| | - Lisa-Maria Steurer
- Vienna Bone and Growth Center, 1130 Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
| | - Florentina Haufler
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Pulmonology, Allergology and Endocrinology, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
| | - Franco Laccone
- Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Matthias Hilkenmeier
- Department of Pediatrics I, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Philipp Steinbauer
- Department of Pediatrics and Adolescent Medicine, Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
| | - Andreas R Janecke
- Department of Pediatrics I, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Division of Human Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
22
|
Viuff M, Skakkebæk A, Johannsen EB, Chang S, Pedersen SB, Lauritsen KM, Pedersen MGB, Trolle C, Just J, Gravholt CH. X chromosome dosage and the genetic impact across human tissues. Genome Med 2023; 15:21. [PMID: 36978128 PMCID: PMC10053618 DOI: 10.1186/s13073-023-01169-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Sex chromosome aneuploidies (SCAs) give rise to a broad range of phenotypic traits and diseases. Previous studies based on peripheral blood samples have suggested the presence of ripple effects, caused by altered X chromosome number, affecting the methylome and transcriptome. Whether these alterations can be connected to disease-specific tissues, and thereby having clinical implication for the phenotype, remains to be elucidated. METHODS We performed a comprehensive analysis of X chromosome number on the transcriptome and methylome in blood, fat, and muscle tissue from individuals with 45,X, 46,XX, 46,XY, and 47,XXY. RESULTS X chromosome number affected the transcriptome and methylome globally across all chromosomes in a tissue-specific manner. Furthermore, 45,X and 47,XXY demonstrated a divergent pattern of gene expression and methylation, with overall gene downregulation and hypomethylation in 45,X and gene upregulation and hypermethylation in 47,XXY. In fat and muscle, a pronounced effect of sex was observed. We identified X chromosomal genes with an expression pattern different from what would be expected based on the number of X and Y chromosomes. Our data also indicate a regulatory function of Y chromosomal genes on X chromosomal genes. Fourteen X chromosomal genes were downregulated in 45,X and upregulated in 47,XXY, respectively, in all three tissues (AKAP17A, CD99, DHRSX, EIF2S3, GTPBP6, JPX, KDM6A, PP2R3B, PUDP, SLC25A6, TSIX, XIST, ZBED1, ZFX). These genes may be central in the epigenetic and genomic regulation of sex chromosome aneuploidies. CONCLUSION We highlight a tissue-specific and complex effect of X chromosome number on the transcriptome and methylome, elucidating both shared and non-shared gene-regulatory mechanism between SCAs.
Collapse
Affiliation(s)
- Mette Viuff
- Department of Molecular Medicine, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark.
- Department of Gynecology and Obstetrics, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark.
- Department of Clinical Medicine, Aarhus University, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark.
| | - Anne Skakkebæk
- Department of Molecular Medicine, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark.
- Department of Clinical Medicine, Aarhus University, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark.
- Department of Clinical Genetics, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark.
| | - Emma B Johannsen
- Department of Molecular Medicine, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark
- Department of Clinical Medicine, Aarhus University, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark
| | - Simon Chang
- Department of Endocrinology and Internal Medicine and Medical Research Laboratories, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark
| | - Steen Bønlykke Pedersen
- Department of Endocrinology and Internal Medicine and Medical Research Laboratories, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark
| | - Katrine Meyer Lauritsen
- Department of Endocrinology and Internal Medicine and Medical Research Laboratories, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark
| | - Mette Glavind Bülow Pedersen
- Department of Endocrinology and Internal Medicine and Medical Research Laboratories, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark
| | - Christian Trolle
- Department of Endocrinology and Internal Medicine and Medical Research Laboratories, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark
| | - Jesper Just
- Department of Molecular Medicine, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark
- Department of Clinical Medicine, Aarhus University, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark
| | - Claus H Gravholt
- Department of Molecular Medicine, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark
- Department of Clinical Medicine, Aarhus University, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark
- Department of Endocrinology and Internal Medicine and Medical Research Laboratories, Aarhus University Hospital, Palle-Juul Jensens Boulevard 99, Aarhus N, 8200, Denmark
| |
Collapse
|
23
|
Perchard R, Murray PG, Clayton PE. Approach to the Patient With Short Stature: Genetic Testing. J Clin Endocrinol Metab 2023; 108:1007-1017. [PMID: 36355576 DOI: 10.1210/clinem/dgac637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/24/2022] [Indexed: 11/12/2022]
Abstract
The first step in the evaluation of the short child is to decide whether growth parameters in the context of the history are abnormal or a variant of normal. If growth is considered abnormal, system and hormonal tests are likely to be required, followed by more directed testing, such as skeletal survey and/or genetic screening with karyotype or microarray. In a small percentage of short children in whom a diagnosis has not been reached, this will need to be followed by detailed genetic analysis; currently, exome sequencing using targeted panels relevant to the phenotype is the commonly used test. Clinical scenarios are presented that illustrate how such genetic testing can be used to establish a molecular diagnosis, and how that diagnosis contributes to the management of the short child. New genetic causes for short stature are being recognized on a frequent basis, while the clinical spectrum for known genes is being extended. We recommend that an international repository for short stature conditions is established for new findings to aid dissemination of knowledge, but also to help in the definition of the clinical spectrum both for new and established conditions.
Collapse
Affiliation(s)
- Reena Perchard
- Department of Developmental Biology and Medicine, University of Manchester, Manchester M13 9PL, UK
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester M13 9WL, UK
- Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - Philip George Murray
- Department of Developmental Biology and Medicine, University of Manchester, Manchester M13 9PL, UK
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester M13 9WL, UK
- Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - Peter Ellis Clayton
- Department of Developmental Biology and Medicine, University of Manchester, Manchester M13 9PL, UK
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester M13 9WL, UK
- Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| |
Collapse
|
24
|
San Roman AK, Godfrey AK, Skaletsky H, Bellott DW, Groff AF, Harris HL, Blanton LV, Hughes JF, Brown L, Phou S, Buscetta A, Kruszka P, Banks N, Dutra A, Pak E, Lasutschinkow PC, Keen C, Davis SM, Tartaglia NR, Samango-Sprouse C, Muenke M, Page DC. The human inactive X chromosome modulates expression of the active X chromosome. CELL GENOMICS 2023; 3:100259. [PMID: 36819663 PMCID: PMC9932992 DOI: 10.1016/j.xgen.2023.100259] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/12/2022] [Accepted: 01/06/2023] [Indexed: 02/11/2023]
Abstract
The "inactive" X chromosome (Xi) has been assumed to have little impact, in trans, on the "active" X (Xa). To test this, we quantified Xi and Xa gene expression in individuals with one Xa and zero to three Xis. Our linear modeling revealed modular Xi and Xa transcriptomes and significant Xi-driven expression changes for 38% (162/423) of expressed X chromosome genes. By integrating allele-specific analyses, we found that modulation of Xa transcript levels by Xi contributes to many of these Xi-driven changes (≥121 genes). By incorporating metrics of evolutionary constraint, we identified 10 X chromosome genes most likely to drive sex differences in common disease and sex chromosome aneuploidy syndromes. We conclude that human X chromosomes are regulated both in cis, through Xi-wide transcriptional attenuation, and in trans, through positive or negative modulation of individual Xa genes by Xi. The sum of these cis and trans effects differs widely among genes.
Collapse
Affiliation(s)
| | - Alexander K. Godfrey
- Whitehead Institute, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Helen Skaletsky
- Whitehead Institute, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA 02142, USA
| | | | | | - Hannah L. Harris
- Whitehead Institute, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | - Laura Brown
- Whitehead Institute, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA 02142, USA
| | - Sidaly Phou
- Whitehead Institute, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA 02142, USA
| | - Ashley Buscetta
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paul Kruszka
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole Banks
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amalia Dutra
- Cytogenetics and Microscopy Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Evgenia Pak
- Cytogenetics and Microscopy Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | - Shanlee M. Davis
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Nicole R. Tartaglia
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Developmental Pediatrics, eXtraOrdinarY Kids Program, Children’s Hospital Colorado, Aurora, CO 80011, USA
| | - Carole Samango-Sprouse
- Focus Foundation, Davidsonville, MD 21035, USA
- Department of Pediatrics, George Washington University, Washington, DC 20052, USA
- Department of Human and Molecular Genetics, Florida International University, Miami, FL 33199, USA
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David C. Page
- Whitehead Institute, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA 02142, USA
| |
Collapse
|
25
|
Conery M, Grant SFA. Human height: a model common complex trait. Ann Hum Biol 2023; 50:258-266. [PMID: 37343163 PMCID: PMC10368389 DOI: 10.1080/03014460.2023.2215546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/10/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023]
Abstract
CONTEXT Like other complex phenotypes, human height reflects a combination of environmental and genetic factors, but is notable for being exceptionally easy to measure. Height has therefore been commonly used to make observations later generalised to other phenotypes though the appropriateness of such generalisations is not always considered. OBJECTIVES We aimed to assess height's suitability as a model for other complex phenotypes and review recent advances in height genetics with regard to their implications for complex phenotypes more broadly. METHODS We conducted a comprehensive literature search in PubMed and Google Scholar for articles relevant to the genetics of height and its comparatibility to other phenotypes. RESULTS Height is broadly similar to other phenotypes apart from its high heritability and ease of measurment. Recent genome-wide association studies (GWAS) have identified over 12,000 independent signals associated with height and saturated height's common single nucleotide polymorphism based heritability of height within a subset of the genome in individuals similar to European reference populations. CONCLUSIONS Given the similarity of height to other complex traits, the saturation of GWAS's ability to discover additional height-associated variants signals potential limitations to the omnigenic model of complex-phenotype inheritance, indicating the likely future power of polygenic scores and risk scores, and highlights the increasing need for large-scale variant-to-gene mapping efforts.
Collapse
Affiliation(s)
- Mitchell Conery
- Division of Human Genetics, Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of PA, Philadelphia, PA, USA
- Department of Pharmacology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Struan F A Grant
- Division of Human Genetics, Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of PA, Philadelphia, PA, USA
- Division of Diabetes and Endocrinology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
26
|
Gravholt CH, Viuff M, Just J, Sandahl K, Brun S, van der Velden J, Andersen NH, Skakkebaek A. The Changing Face of Turner Syndrome. Endocr Rev 2023; 44:33-69. [PMID: 35695701 DOI: 10.1210/endrev/bnac016] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Indexed: 01/20/2023]
Abstract
Turner syndrome (TS) is a condition in females missing the second sex chromosome (45,X) or parts thereof. It is considered a rare genetic condition and is associated with a wide range of clinical stigmata, such as short stature, ovarian dysgenesis, delayed puberty and infertility, congenital malformations, endocrine disorders, including a range of autoimmune conditions and type 2 diabetes, and neurocognitive deficits. Morbidity and mortality are clearly increased compared with the general population and the average age at diagnosis is quite delayed. During recent years it has become clear that a multidisciplinary approach is necessary toward the patient with TS. A number of clinical advances has been implemented, and these are reviewed. Our understanding of the genomic architecture of TS is advancing rapidly, and these latest developments are reviewed and discussed. Several candidate genes, genomic pathways and mechanisms, including an altered transcriptome and epigenome, are also presented.
Collapse
Affiliation(s)
- Claus H Gravholt
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus 8200 N, Denmark.,Department of Molecular Medicine, Aarhus University Hospital, Aarhus 8200 N, Denmark
| | - Mette Viuff
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus 8200 N, Denmark.,Department of Molecular Medicine, Aarhus University Hospital, Aarhus 8200 N, Denmark
| | - Jesper Just
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus 8200 N, Denmark
| | - Kristian Sandahl
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus 8200 N, Denmark
| | - Sara Brun
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus 8200 N, Denmark
| | - Janielle van der Velden
- Department of Pediatrics, Radboud University Medical Centre, Amalia Children's Hospital, 6525 Nijmegen, the Netherlands
| | - Niels H Andersen
- Department of Cardiology, Aalborg University Hospital, Aalborg 9000, Denmark
| | - Anne Skakkebaek
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus 8200 N, Denmark.,Department of Clinical Genetics, Aarhus University Hospital, Aarhus 8200 N, Denmark
| |
Collapse
|
27
|
Idiopathic Short Stature: What to Expect from Genomic Investigations. ENDOCRINES 2023. [DOI: 10.3390/endocrines4010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Short stature is a common concern for physicians caring for children. In traditional investigations, about 70% of children are healthy, without producing clinical and laboratory findings that justify their growth disorder, being classified as having constitutional short stature or idiopathic short stature (ISS). In such scenarios, the genetic approach has emerged as a great potential method to understand ISS. Over the last 30 years, several genes have been identified as being responsible for isolated short stature, with almost all of them being inherited in an autosomal-dominant pattern. Most of these defects are in genes related to the growth plate, followed by genes related to the growth hormone (GH)–insulin-like growth factor 1 (IGF1) axis and RAS-MAPK pathway. These patients usually do not have a specific phenotype, which hinders the use of a candidate gene approach. Through multigene sequencing analyses, it has been possible to provide an answer for short stature in 10–30% of these cases, with great impacts on treatment and follow-up, allowing the application of the concept of precision medicine in patients with ISS. This review highlights the historic aspects and provides an update on the monogenic causes of idiopathic short stature and suggests what to expect from genomic investigations in this field.
Collapse
|
28
|
Nagata K, Shimada T, Eishi C, Nishi M, Murakami T, Ohashi K, Kajimura I, Miura K. Dysgerminoma of the Left Ovary in a Patient with Balanced Translocation 46X, t(X:1) (q22;q21): A Case Report. Int Med Case Rep J 2023; 16:117-122. [PMID: 36915667 PMCID: PMC10008024 DOI: 10.2147/imcrj.s395511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/28/2023] [Indexed: 03/09/2023] Open
Abstract
We report a case of dysgerminoma in a 22-year-old woman diagnosed with chromosomal abnormality, balanced translocation 46X,t(X:1)(q22;q21). She had received hormone replacement therapy for 7 years for primary amenorrhea. She visited a primary care physician because of lower abdominal distension, and a large tumor in the pelvis was discovered. She was admitted to our hospital for further examination of the pelvic tumor. She underwent laparotomy and was diagnosed with stage IIIA1 dysgerminoma (pT3apN0pM0) of the left ovary. Young female patients without the Y chromosome who are treated for primary amenorrhea may also develop malignant germ cell tumors; therefore, gynecologists should provide hormone replacement therapy and periodic pelvic evaluation.
Collapse
Affiliation(s)
- Koh Nagata
- Obstetrics and Gynecology, Nagasaki University Hospital, Nagasaki, Japan
| | - Takako Shimada
- Obstetrics and Gynecology, Nagasaki University Hospital, Nagasaki, Japan
| | - Chiaki Eishi
- Obstetrics and Gynecology, Nagasaki University Hospital, Nagasaki, Japan
| | - Masaki Nishi
- Obstetrics and Gynecology, Nagasaki University Hospital, Nagasaki, Japan
| | - Toru Murakami
- Obstetrics and Gynecology, Nagasaki University Hospital, Nagasaki, Japan
| | - Kazuaki Ohashi
- Obstetrics and Gynecology, Nagasaki University Hospital, Nagasaki, Japan
| | - Itsuki Kajimura
- Obstetrics and Gynecology, Nagasaki University Hospital, Nagasaki, Japan
| | - Kiyonori Miura
- Obstetrics and Gynecology, Nagasaki University Hospital, Nagasaki, Japan
| |
Collapse
|
29
|
Fukami M. Ovarian dysfunction in women with Turner syndrome. Front Endocrinol (Lausanne) 2023; 14:1160258. [PMID: 37033245 PMCID: PMC10076527 DOI: 10.3389/fendo.2023.1160258] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/09/2023] [Indexed: 04/11/2023] Open
Abstract
Ovarian dysfunction is one of the most common features of women with Turner syndrome. In these women, oocyte apoptosis is markedly accelerated from the early stage of fetal life. Reduction in the number of germ cells disturbs primordial follicle development and thereby leads to the formation of streak gonads. There are three possible causes of accelerated germ cell loss in 45,X ovaries. First, chromosomal pairing failure due to X chromosomal aneuploidy is believed to induce meiotic arrest. Indeed, it has been suggested that the dosage of the X chromosome is more critical for the survival of the oocytes than for other cells in the ovary. Second, impaired coupling between oocytes and granulosa cells may also contribute to germ cell apoptosis. Previous studies have shown that 45,X ovaries may tend to lose tight junctions which are essential for intercellular interactions. Lastly, ovarian dysfunction in women with Turner syndrome is partly attributable to the reduced dosage of several genes on the X chromosome. Specifically, BMP15, PGRMC1, and some other genes on the X chromosome have been implicated in ovarian function. Further studies on the mechanisms of ovarian dysfunction are necessary to improve the reproductive outcomes of women with Turner syndrome.
Collapse
|
30
|
Leung AOW, Yiu TC, Liu L, Tam HY, Gu S, Tu J, Pei D, Cheung HH. Targeting G-quadruplex for rescuing impaired chondrogenesis in WRN-deficient stem cells. Cell Biosci 2022; 12:212. [PMID: 36587229 PMCID: PMC9805690 DOI: 10.1186/s13578-022-00939-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 12/08/2022] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Pathogenic mutations in WRN are a cause of premature aging disease Werner syndrome (WS). Besides accelerated aging phenotypes and cancer predisposition, patients with WS also display underdevelopment in the skeletal system, characterized by short stature, light body weight and unusually thin extremities. The reasons for these developmental defects are not completely understood and the underlying molecular mechanism remains to be elucidated. RESULTS In this study, WRN was found to modulate transcription of short stature homeobox gene SHOX. Loss of WRN resulted in insufficient expression of SHOX, the gene dose of which is critical for driving chondrocyte differentiation. WRN could bind the G-quadruplex (G4) structures in the SHOX promoter and stimulate transcription. Aberrant formation of G4 structures in WRN-deficient cells impeded normal transcription of SHOX, thus resulting in impaired chondrogenesis. Chondrogenesis could be rescued by overexpression of WRN helicase or SHOX, suggesting that SHOX is a downstream target of WRN. Gene editing of the G4 structures in the SHOX promoter could increase SHOX expression, therefore rescuing the impaired chondrogenesis in WRN-deficient cells. CONCLUSIONS Our data suggest that dysgenesis of the developing bone in WS might be caused by SHOX insufficiency. Aberrant formation of G4 structures in SHOX promoter suppresses SHOX expression and impairs chondrogenesis. Targeted mutagenesis in the G4 structures enhances SHOX expression and thus providing an opportunity to rescue the chondrogenic defect.
Collapse
Affiliation(s)
- Adrian On-Wah Leung
- grid.10784.3a0000 0004 1937 0482Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China ,grid.9227.e0000000119573309Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Tsz-Ching Yiu
- grid.10784.3a0000 0004 1937 0482Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lingxiao Liu
- grid.10784.3a0000 0004 1937 0482Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China ,grid.9227.e0000000119573309Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Hei-Yin Tam
- grid.10784.3a0000 0004 1937 0482Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shen Gu
- grid.10784.3a0000 0004 1937 0482Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jiajie Tu
- grid.186775.a0000 0000 9490 772XInstitute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Duanqing Pei
- grid.9227.e0000000119573309Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong SAR, China ,grid.494629.40000 0004 8008 9315Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, 310024 Hangzhou, China
| | - Hoi-Hung Cheung
- grid.10784.3a0000 0004 1937 0482Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
31
|
Shang D, Lan T, Wang Y, Li X, Liu Q, Dong H, Xu B, Cheng H, Zhou R. PGCLCs of human 45,XO reveal pathogenetic pathways of neurocognitive and psychosocial disorders. Cell Biosci 2022; 12:194. [DOI: 10.1186/s13578-022-00925-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/03/2022] [Indexed: 12/03/2022] Open
Abstract
Abstract
Background
Neurocognitive disorders and psychosocial difficulties are common in patients with Turner syndrome and multiple neurodegenerative diseases, yet there is no effective cure. Human primordial germ cells (hPGCs) are pluripotent germline stem cells in early embryo, which pass genetic information from one generation to the next, whereas all somatic cells will die along with the end of life. However, it is not known whether patient hPGCs with Turner syndrome contain information of neurocognitive and psychosocial illness.
Results
In this report, we used a high-density of culture system of embryoids derived from iPSCs of a patient with Turner syndrome to ask how pathogenetic pathways are associated with onset of neurocognitive and psychosocial disorders. The hPGC-Like Cells (hPGCLCs) were in vitro specified from iPSCs of 45,XO, 46,XX and 46,XY by the high-density induction of embryoids. Amazingly, we found that the specification process of the hPGCLCs in 45,XO, compared to those in 46,XX and 46,XY, enriched several common pathogenetic pathways regulating neurocognitive and psychosocial disorders, that shared among multiple neurodegenerative diseases and Turner syndrome. The downregulated chemical synaptic transmission pathways, including glutamatergic, GABAergic, and nicotine cholinergic synapses, indicated synaptic dysfunctions, while upregulated pathways that were associated with imbalance of mitochondrial respiratory chain complexes and apoptosis, may contribute to neuronal dysfunctions. Notably, downregulation of three types of ubiquitin ligases E1-E2-E3 and lysosome-associated sulfatases and RAB9A, owing to haploinsufficiency and parental preference of the X chromosome expression, indicated that two pathways of cellular degradation, lysosome and ubiquitin–proteasome, were impaired in the specification process of 45,XO hPGCLCs. This would lead to accumulation of undesired proteins and aggregates, which is a typically pathological hallmark in neurodegenerative diseases.
Conclusions
Our data suggest that the specification process of the hPGCLCs in 45,XO, compared to those in 46,XX and 46,XY, enriched pathogenetic pathways that are associated with the onset of neurocognitive and psychosocial disorders.
Collapse
|
32
|
Du Z, Yuan J, Wu Z, Chen Q, Liu X, Jia J. Circulating Exosomal circRNA_0063476 Impairs Expression of Markers of Bone Growth Via the miR-518c-3p/DDX6 Axis in ISS. Endocrinology 2022; 163:6668858. [PMID: 35974445 DOI: 10.1210/endocr/bqac138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Indexed: 11/19/2022]
Abstract
OBJECTIVES Idiopathic short stature (ISS), a disorder of unknown cause, accounts for approximately 80% of the clinical diagnoses of children with short stature. Exosomal circular RNA in plasma has been implicated in various disease processes. However, the role of exosome-derived circRNA in ISS has not been elucidated yet. METHODS Plasma exosomes of ISS and normal children were cocultured with human chondrocytes. Microarray analysis and RT-PCR identified the differential expression of circRNA in exosomes between ISS and normal children. Hsa_circ_0063476 was upregulated or downregulated in human chondrocytes. Subsequently, overexpression rats of hsa_circ_0063476 was constructed via adenoviral vector to further validate the role of hsa_circ_0063476 on longitudinal bone growth via in vivo experiment. RESULTS The plasma exosome of ISS children suppressed the expression of markers of chondrocyte hypertrophy and endochondral ossification. Subsequently, upregulation of hsa_circ_0063476 in ISS exosome was identified. In vitro experiments demonstrated that chondrocyte proliferation, cell cycle and endochondral ossification were suppressed, and apoptosis was increased following hsa_circ_0063476 overexpression in human chondrocytes. Conversely, silencing hsa_circ_0063476 in human chondrocytes can show opposite outcomes. Our study further revealed hsa_circ_0063476 overexpression in vitro can enhance chondrocyte apoptosis and inhibit the expression of markers of chondrocyte proliferation and endochondral ossification via miR-518c-3p/DDX6 axis. Additionally, the rats with hsa_circ_0063476 overexpression showed a short stature phenotype. CONCLUSIONS The authors identified a novel pathogenesis in ISS that exosome-derived hsa_circ_0063476 retards the expression of markers of endochondral ossification and impairs longitudinal bone growth via miR-518c-3p/DDX6 axis, which may provide a unique therapeutic avenue for ISS.
Collapse
Affiliation(s)
- Zhi Du
- Departments of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, China
| | - Jinghong Yuan
- Departments of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, China
| | - Zhiwen Wu
- Departments of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, China
| | - Qi Chen
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, China
| | - Xijuan Liu
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, China
| | - Jingyu Jia
- Departments of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, China
| |
Collapse
|
33
|
Howarth S, Quinton R. Missed opportunities in the treatment of Turner syndrome: a case discussion and review of the guidelines. BMJ Case Rep 2022; 15:e250870. [PMID: 35977751 PMCID: PMC9389125 DOI: 10.1136/bcr-2022-250870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2022] [Indexed: 11/04/2022] Open
Abstract
A woman in her 50s with Turner syndrome was referred to the endocrine clinic, having been unaware of her diagnosis until she received a shielding letter from the UK government during the COVID-19 pandemic. Despite a neonatal diagnosis of Turner syndrome on her general practitioner record and despite having undergone laparoscopic examination for absent puberty and primary amenorrhoea aged 18 years, she had not received any prior hormone treatment or cardiovascular screening.Though Turner syndrome is rare, recent data from the UK Biobank suggest that it may be underdiagnosed. Clinicians should be aware of the clinical features and associated complications of Turner syndrome to avoid delayed diagnosis and missed opportunities for treatment.In this report, we discuss the clinical features of this rare syndrome and current guidelines for screening and treatment. We stress the importance of peer-to-peer support and information sharing through patient-led groups, such as the Turner Syndrome Support Society.
Collapse
Affiliation(s)
- Sophie Howarth
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Endocrinology, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Richard Quinton
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Endocrinology, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
34
|
Abstract
Turner syndrome is the most common sex chromosome abnormality in women. Infertility and short stature are the most striking findings seen in these patients. Unfortunately, many girls are still being diagnosed too late and therefore early diagnosis and treatment key. Turner syndrome affects many systems of the body; therefore, a comprehensive approach is key for therapeutic intervention.
Collapse
Affiliation(s)
- Margaret Steiner
- NYU Langone Health-Long Island, 101 Mineola Boulevard, Mineola, NY 11501, USA.
| | - Paul Saenger
- NYU Langone Health-Long Island, 101 Mineola Boulevard, Mineola, NY 11501, USA
| |
Collapse
|
35
|
Tassanakijpanich N, Wright R, Tassone F, Shankar SP, Hagerman R. Fragile X syndrome in a girl with variant Turner syndrome and an isodicentric X chromosome. BMJ Case Rep 2022; 15:e247901. [PMID: 35882436 PMCID: PMC9330300 DOI: 10.1136/bcr-2021-247901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2022] [Indexed: 11/03/2022] Open
Abstract
Fragile X (FXS) and Turner (TS) syndromes are X-chromosome-associated disorders. Herein, we report the case of a girl in middle childhood with bicuspid aortic valve in infancy, growth failure, global developmental delay (GDD), visual problems, and coexisting attention-deficit/hyperactivity and anxiety disorders. A high-resolution karyotype in 20 cells revealed 46,X,Idic(X)(p11.21)[19]/45,X[1], suggestive of variant TS. Given her atypical phenotype, subsequent DNA testing was performed. Four FMR1 cytosine-guanine-guanine repeats (30, 410, 580 and 800) were identified, confirming the additional FXS diagnosis. This case study highlights the importance of additional genetic testing in individuals with atypical variant TS, such as unexplained GDD and distinct facial characteristics. The additional FXS diagnosis prompted new therapeutic development for the patient to advance precision healthcare.
Collapse
Affiliation(s)
- Nattaporn Tassanakijpanich
- Pediatrics, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- UC Davis MIND Institute, UC Davis Health, Sacramento, California, USA
| | - Rachel Wright
- Biology, Texas A&M University, College Station, Texas, USA
| | - Flora Tassone
- UC Davis MIND Institute, UC Davis Health, Sacramento, California, USA
- Biochemistry and Molecular Medicine, UC Davis, School of Medicine, Davis, California, USA
| | - Suma P Shankar
- UC Davis MIND Institute, UC Davis Health, Sacramento, California, USA
- Pediatrics, UC Davis, School of Medicine, Sacramento, California, USA
| | - Randi Hagerman
- UC Davis MIND Institute, UC Davis Health, Sacramento, California, USA
- Pediatrics, UC Davis, School of Medicine, Sacramento, California, USA
| |
Collapse
|
36
|
Johannsen EB, Just J, Viuff MH, Okholm TLH, Pedersen SB, Meyer Lauritsen K, Trolle C, Pedersen MGB, Chang S, Fedder J, Skakkebæk A, Gravholt CH. Sex chromosome aneuploidies give rise to changes in the circular RNA profile: A circular transcriptome-wide study of Turner and Klinefelter syndrome across different tissues. Front Genet 2022; 13:928874. [PMID: 35938026 PMCID: PMC9355307 DOI: 10.3389/fgene.2022.928874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose: The landscape of circular RNAs (circRNAs), an important class of non-coding RNAs that regulate gene expression, has never been described in human disorders of sex chromosome aneuploidies. We profiled circRNAs in Turner syndrome females (45,X; TS) and Klinefelter syndrome males (47,XXY; KS) to investigate how circRNAs respond to a missing or an extra X chromosome. Methods: Samples of blood, muscle and fat were collected from individuals with TS (n = 33) and KS (n = 22) and from male (n = 16) and female (n = 44) controls. CircRNAs were identified using a combination of circRNA identification pipelines (CIRI2, CIRCexplorer2 and circRNA_finder). Results: Differential expression of circRNAs was observed throughout the genome in TS and KS, in all tissues. The host-genes from which several of these circRNAs were derived, were associated with known phenotypic traits. Furthermore, several differentially expressed circRNAs had the potential to capture micro RNAs that targeted protein-coding genes with altered expression in TS and KS. Conclusion: Sex chromosome aneuploidies introduce changes in the circRNA transcriptome, demonstrating that the genomic changes in these syndromes are more complex than hitherto thought. CircRNAs may help explain some of the genomic and phenotypic traits observed in these syndromes.
Collapse
Affiliation(s)
- Emma B. Johannsen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Departments of Clinical Medicine, Aarhus University, Aarhus, Denmark
- *Correspondence: Emma B. Johannsen,
| | - Jesper Just
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Departments of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mette H. Viuff
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Trine Line Hauge Okholm
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Otolaryngology-Head and Neck Surgery and Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, United States
| | | | - Katrine Meyer Lauritsen
- Steno Diabetes Center, Aarhus University Hospital, Aarhus, Denmark
- Department of Endocrinology, Aarhus University Hospital, Aarhus, Denmark
| | - Christian Trolle
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Endocrinology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Simon Chang
- Department of Endocrinology, Aarhus University Hospital, Aarhus, Denmark
| | - Jens Fedder
- Centre of Andrology and Fertility Clinic, Department D, Odense University Hospital, Odense, Denmark
- Research Unit of Human Reproduction, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Anne Skakkebæk
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - Claus H. Gravholt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Endocrinology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
37
|
Giordano M, Stuppia L. Editorial: Novel Insights Into the Genetics of Growth Disorders. Front Genet 2022; 13:920469. [PMID: 35754806 PMCID: PMC9214029 DOI: 10.3389/fgene.2022.920469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 04/27/2022] [Indexed: 11/21/2022] Open
Affiliation(s)
- Mara Giordano
- Laboratory of Genetics, SCDU Clinical Biochemistry, University Hospital "Maggiore della Carità", Novara and Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Liborio Stuppia
- Department of Psychological, Health and Territorial Sciences and Center for Advanced Sciences and Technology (CAST), G. d'Annunzio University, Chieti-Pescara, Italy
| |
Collapse
|
38
|
Álvarez-Nava F, Soto-Quintana M. The Hypothesis of the Prolonged Cell Cycle in Turner Syndrome. J Dev Biol 2022; 10:16. [PMID: 35645292 PMCID: PMC9149809 DOI: 10.3390/jdb10020016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/13/2022] [Indexed: 01/27/2023] Open
Abstract
Turner syndrome (TS) is a chromosomal disorder that is caused by a missing or structurally abnormal second sex chromosome. Subjects with TS are at an increased risk of developing intrauterine growth retardation, low birth weight, short stature, congenital heart diseases, infertility, obesity, dyslipidemia, hypertension, insulin resistance, type 2 diabetes mellitus, metabolic syndrome, and cardiovascular diseases (stroke and myocardial infarction). The underlying pathogenetic mechanism of TS is unknown. The assumption that X chromosome-linked gene haploinsufficiency is associated with the TS phenotype is questioned since such genes have not been identified. Thus, other pathogenic mechanisms have been suggested to explain this phenotype. Morphogenesis encompasses a series of events that includes cell division, the production of migratory precursors and their progeny, differentiation, programmed cell death, and integration into organs and systems. The precise control of the growth and differentiation of cells is essential for normal development. The cell cycle frequency and the number of proliferating cells are essential in cell growth. 45,X cells have a failure to proliferate at a normal rate, leading to a decreased cell number in a given tissue during organogenesis. A convergence of data indicates an association between a prolonged cell cycle and the phenotypical features in Turner syndrome. This review aims to examine old and new findings concerning the relationship between a prolonged cell cycle and TS phenotype. These studies reveal a diversity of phenotypic features in TS that could be explained by reduced cell proliferation. The implications of this hypothesis for our understanding of the TS phenotype and its pathogenesis are discussed. It is not surprising that 45,X monosomy leads to cellular growth pathway dysregulation with profound deleterious effects on both embryonic and later stages of development. The prolonged cell cycle could represent the beginning of the pathogenesis of TS, leading to a series of phenotypic consequences in embryonic/fetal, neonatal, pediatric, adolescence, and adulthood life.
Collapse
Affiliation(s)
- Francisco Álvarez-Nava
- Biological Sciences School, Faculty of Biological Sciences, Central University of Ecuador, Quito 170113, Ecuador
| | | |
Collapse
|
39
|
Spurna Z, Capkova P, Srovnal J, Duchoslavova J, Punova L, Aleksijevic D, Vrtel R. Clinical impact of variants in non-coding regions of SHOX - Current knowledge. Gene 2022; 818:146238. [PMID: 35074420 DOI: 10.1016/j.gene.2022.146238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 01/21/2023]
Abstract
The short stature homeobox-containing (SHOX) is the most frequently analysed gene in patients classified as short stature patients (ISS) or diagnosed with Leri-Weill dyschondrosteosis (LWD), Langer mesomelic dysplasia (LMD), or Madelung deformity (MD). However, clinical testing of this gene focuses primarily on single nucleotide variants (SNV) in its coding sequences and copy number variants (CNV) overlapping SHOX gene. This review summarizes the clinical impact of variants in noncoding regions of SHOX. RECENT FINDINGS: CNV extending exclusively into the regulatory elements (i.e., not interrupting the coding sequence) are found more frequently in downstream regulatory elements of SHOX. Further, duplications are more frequent than deletions. Interestingly, downstream duplications are more common than deletions in patients with ISS or LWD but no such differences exist for upstream CNV. Moreover, the presence of specific CNVs in the patient population suggests the involvement of additional unknown factors. Some of its intronic variants, notably NM_000451.3(SHOX):c.-9delG and c.-65C>A in the 5'UTR, have unclear clinical roles. However, these intronic SNV may increase the probability that other CNV will arise de novo in the SHOX gene based on homologous recombination or incorrect splicing of mRNA. SUMMARY: This review highlights the clinical impact of noncoding changes in the SHOX gene and the need to apply new technologies and genotype-phenotype correlation in their analysis.
Collapse
Affiliation(s)
- Zuzana Spurna
- Department of Medical Genetics, University Hospital Olomouc, Olomouc, Czech Republic; Department of Medical Genetics, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic.
| | - Pavlina Capkova
- Department of Medical Genetics, University Hospital Olomouc, Olomouc, Czech Republic; Department of Medical Genetics, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic
| | - Josef Srovnal
- Department of Medical Genetics, University Hospital Olomouc, Olomouc, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic
| | - Jana Duchoslavova
- Department of Medical Genetics, University Hospital Olomouc, Olomouc, Czech Republic; Department of Medical Genetics, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic
| | - Lucia Punova
- Department of Medical Genetics, University Hospital Olomouc, Olomouc, Czech Republic; Department of Medical Genetics, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic
| | - Darina Aleksijevic
- Department of Paediatrics, University Hospital Olomouc, Olomouc, Czech Republic
| | - Radek Vrtel
- Department of Medical Genetics, University Hospital Olomouc, Olomouc, Czech Republic; Department of Medical Genetics, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
40
|
Auwerx C, Lepamets M, Sadler MC, Patxot M, Stojanov M, Baud D, Mägi R, Porcu E, Reymond A, Kutalik Z. The individual and global impact of copy-number variants on complex human traits. Am J Hum Genet 2022; 109:647-668. [PMID: 35240056 PMCID: PMC9069145 DOI: 10.1016/j.ajhg.2022.02.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/09/2022] [Indexed: 12/25/2022] Open
Abstract
The impact of copy-number variations (CNVs) on complex human traits remains understudied. We called CNVs in 331,522 UK Biobank participants and performed genome-wide association studies (GWASs) between the copy number of CNV-proxy probes and 57 continuous traits, revealing 131 signals spanning 47 phenotypes. Our analysis recapitulated well-known associations (e.g., 1q21 and height), revealed the pleiotropy of recurrent CNVs (e.g., 26 and 16 traits for 16p11.2-BP4-BP5 and 22q11.21, respectively), and suggested gene functionalities (e.g., MARF1 in female reproduction). Forty-eight CNV signals (38%) overlapped with single-nucleotide polymorphism (SNP)-GWASs signals for the same trait. For instance, deletion of PDZK1, which encodes a urate transporter scaffold protein, decreased serum urate levels, while deletion of RHD, which encodes the Rhesus blood group D antigen, associated with hematological traits. Other signals overlapped Mendelian disorder regions, suggesting variable expressivity and broad impact of these loci, as illustrated by signals mapping to Rotor syndrome (SLCO1B1/3), renal cysts and diabetes syndrome (HNF1B), or Charcot-Marie-Tooth (PMP22) loci. Total CNV burden negatively impacted 35 traits, leading to increased adiposity, liver/kidney damage, and decreased intelligence and physical capacity. Thirty traits remained burden associated after correcting for CNV-GWAS signals, pointing to a polygenic CNV architecture. The burden negatively correlated with socio-economic indicators, parental lifespan, and age (survivorship proxy), suggesting a contribution to decreased longevity. Together, our results showcase how studying CNVs can expand biological insights, emphasizing the critical role of this mutational class in shaping human traits and arguing in favor of a continuum between Mendelian and complex diseases.
Collapse
Affiliation(s)
- Chiara Auwerx
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland; Department of Computational Biology, University of Lausanne, Lausanne 1015, Switzerland; Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland; University Center for Primary Care and Public Health, Lausanne 1010, Switzerland
| | - Maarja Lepamets
- Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia; Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Marie C Sadler
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland; University Center for Primary Care and Public Health, Lausanne 1010, Switzerland
| | - Marion Patxot
- Department of Computational Biology, University of Lausanne, Lausanne 1015, Switzerland
| | - Miloš Stojanov
- Materno-fetal and Obstetrics Research Unit, Department Woman-Mother-Child, CHUV, Lausanne 1011, Switzerland
| | - David Baud
- Materno-fetal and Obstetrics Research Unit, Department Woman-Mother-Child, CHUV, Lausanne 1011, Switzerland
| | - Reedik Mägi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Eleonora Porcu
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland; Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland; University Center for Primary Care and Public Health, Lausanne 1010, Switzerland
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland.
| | - Zoltán Kutalik
- Department of Computational Biology, University of Lausanne, Lausanne 1015, Switzerland; Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland; University Center for Primary Care and Public Health, Lausanne 1010, Switzerland.
| |
Collapse
|
41
|
X-Chromosome Inactivation and Related Diseases. Genet Res (Camb) 2022; 2022:1391807. [PMID: 35387179 PMCID: PMC8977309 DOI: 10.1155/2022/1391807] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/02/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
X-chromosome inactivation (XCI) is the form of dosage compensation in mammalian female cells to balance X-linked gene expression levels of the two sexes. Many diseases are related to XCI due to inactivation escape and skewing, and the symptoms and severity of these diseases also largely depend on the status of XCI. They can be divided into 3 types: X-linked diseases, diseases that are affected by XCI escape, and X-chromosome aneuploidy. Here, we review representative diseases in terms of their definition, symptoms, and XCI’s role in the pathogenesis of these diseases.
Collapse
|
42
|
Fukami M, Shindo J, Ogata T, Kageyama I, Kamimaki T. SHOX far-downstream deletion in a patient with nonsyndromic short stature. Am J Med Genet A 2022; 188:2173-2177. [PMID: 35319168 DOI: 10.1002/ajmg.a.62734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/20/2022] [Accepted: 03/04/2022] [Indexed: 11/08/2022]
Abstract
Haploinsufficiency of SHOX represents one of the major genetic causes of nonsyndromic short stature. To date, eight DNA elements around SHOX exons have been proposed as putative enhancer regions. Although six copy-number variations (CNVs) downstream to the known enhancer regions have recently been identified in patients with short stature, the pathogenicity of these CNVs remains uncertain. Here, we identified a paternally derived SHOX far-downstream deletion in a boy. The deletion involved a ~100 kb genomic interval at a position >60 kb away from the known enhancer regions. The boy exhibited moderate short stature with nonspecific skeletal changes. The height of the father was within the normal range but lower than the mid-parental height. The deletion of the boy and the six previously reported CNVs mostly overlapped; however, all CNVs had unique breakpoints. The deletion of our case encompassed a ~30 kb genomic interval that has previously been associated with a 4C-seq peak, as well as several SHOX-regulatory SNPs/indels. These results indicate that the SHOX far-downstream region contains a novel cis-acting enhancer, whose deletion leads to nonsyndromic short stature of various degree. In addition, our data highlight genomic instability of SHOX-flanking regions that underlies diverse nonrecurrent CNVs.
Collapse
Affiliation(s)
- Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Junya Shindo
- Department of Pediatrics, Shizuoka City Shimizu Hospital, Shizuoka, Japan
| | - Tsutomu Ogata
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Hamamatsu Medical Center, Hamamatsu, Japan
| | - Ikuko Kageyama
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Tsutomu Kamimaki
- Department of Pediatrics, Shizuoka City Shimizu Hospital, Shizuoka, Japan
| |
Collapse
|
43
|
Orso M, Polistena B, Granato S, Novelli G, Di Virgilio R, La Torre D, d’Angela D, Spandonaro F. Pediatric growth hormone treatment in Italy: A systematic review of epidemiology, quality of life, treatment adherence, and economic impact. PLoS One 2022; 17:e0264403. [PMID: 35213607 PMCID: PMC8880399 DOI: 10.1371/journal.pone.0264403] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/09/2022] [Indexed: 11/18/2022] Open
Abstract
Objectives This systematic review aims to describe 1) the epidemiology of the diseases indicated for treatment with growth hormone (GH) in Italy; 2) the adherence to the GH treatment in Italy and factors associated with non-adherence; 3) the economic impact of GH treatment in Italy; 4) the quality of life of patients treated with GH and their caregivers in Italy. Methods Systematic literature searches were performed in PubMed, Embase and Web of Science from January 2010 to March 2021. Literature selection process, data extraction and quality assessment were performed by two independent reviewers. Study protocol has been registered in PROSPERO (CRD42021240455). Results We included 25 studies in the qualitative synthesis. The estimated prevalence of growth hormone deficiency (GHD) was 1/4,000–10,000 in the general population of children; the prevalence of Short Stature HOmeoboX Containing gene deficiency (SHOX-D) was 1/1,000–2,000 in the general population of children; the birth prevalence of Turner syndrome was 1/2,500; the birth prevalence of Prader-Willi syndrome (PWS) was 1/15,000. Treatment adherence was suboptimal, with a range of non-adherent patients of 10–30%. The main reasons for suboptimal adherence were forgetfulness, being away from home, pain/discomfort caused by the injection. Economic studies reported a total cost for a complete multi-year course of GH treatment of almost 100,000 euros. A study showed that drug wastage can amount up to 15% of consumption, and that in some Italian regions there could be a considerable over- or under-prescribing. In general, patients and caregivers considered the GH treatment acceptable. There was a general satisfaction among patients with regard to social and school life and GH treatment outcomes, while there was a certain level of intolerance to GH treatment among adolescents. Studies on PWS patients and their caregivers showed a lower quality of life compared to the general population, and that social stigma persists. Conclusion Growth failure conditions with approved GH treatment in Italy constitute a significant burden of disease in clinical, social, and economic terms. GH treatment is generally considered acceptable by patients and caregivers. The total cost of the GH treatment is considerable; there are margins for improving efficiency, by increasing adherence, reducing drug wastage and promoting prescriptive appropriateness.
Collapse
Affiliation(s)
- Massimiliano Orso
- C.R.E.A. Sanità (Centre for Applied Economic Research in Healthcare), Rome, Italy
- * E-mail:
| | - Barbara Polistena
- C.R.E.A. Sanità (Centre for Applied Economic Research in Healthcare), Rome, Italy
- University of Rome Tor Vergata, Rome, Italy
| | | | - Giuseppe Novelli
- Health Economics & Outcomes Research, Pfizer Italia, Rome, Italy
| | | | - Daria La Torre
- Global Medical Affairs, Pfizer Rare Disease, Rome, Italy
| | - Daniela d’Angela
- C.R.E.A. Sanità (Centre for Applied Economic Research in Healthcare), Rome, Italy
- University of Rome Tor Vergata, Rome, Italy
| | - Federico Spandonaro
- C.R.E.A. Sanità (Centre for Applied Economic Research in Healthcare), Rome, Italy
- San Raffaele University, Rome, Italy
| |
Collapse
|
44
|
Saxena A, Sharma V, Muthuirulan P, Neufeld SJ, Tran MP, Gutierrez HL, Chen KD, Erberich JM, Birmingham A, Capellini TD, Cobb J, Hiller M, Cooper KL. Interspecies transcriptomics identify genes that underlie disproportionate foot growth in jerboas. Curr Biol 2022; 32:289-303.e6. [PMID: 34793695 PMCID: PMC8792248 DOI: 10.1016/j.cub.2021.10.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 07/16/2021] [Accepted: 10/28/2021] [Indexed: 01/26/2023]
Abstract
Despite the great diversity of vertebrate limb proportion and our deep understanding of the genetic mechanisms that drive skeletal elongation, little is known about how individual bones reach different lengths in any species. Here, we directly compare the transcriptomes of homologous growth cartilages of the mouse (Mus musculus) and bipedal jerboa (Jaculus jaculus), the latter of which has "mouse-like" arms but extremely long metatarsals of the feet. Intersecting gene-expression differences in metatarsals and forearms of the two species revealed that about 10% of orthologous genes are associated with the disproportionately rapid elongation of neonatal jerboa feet. These include genes and enriched pathways not previously associated with endochondral elongation as well as those that might diversify skeletal proportion in addition to their known requirements for bone growth throughout the skeleton. We also identified transcription regulators that might act as "nodes" for sweeping differences in genome expression between species. Among these, Shox2, which is necessary for proximal limb elongation, has gained expression in jerboa metatarsals where it has not been detected in other vertebrates. We show that Shox2 is sufficient to increase mouse distal limb length, and a nearby putative cis-regulatory region is preferentially accessible in jerboa metatarsals. In addition to mechanisms that might directly promote growth, we found evidence that jerboa foot elongation may occur in part by de-repressing latent growth potential. The genes and pathways that we identified here provide a framework to understand the modular genetic control of skeletal growth and the remarkable malleability of vertebrate limb proportion.
Collapse
Affiliation(s)
- Aditya Saxena
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Virag Sharma
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, Dresden 01307, Germany; Max Planck Institute for the Physics of Complex Systems, Nothnitzerstraße 38, Dresden 01187, Germany
| | - Pushpanathan Muthuirulan
- Department of Human Evolutionary Biology, Harvard University, 11 Divinity Avenue, Cambridge, MA 02138, USA
| | - Stanley J Neufeld
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Mai P Tran
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Haydee L Gutierrez
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Kevin D Chen
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Joel M Erberich
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Amanda Birmingham
- Center for Computational Biology and Bioinformatics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Terence D Capellini
- Department of Human Evolutionary Biology, Harvard University, 11 Divinity Avenue, Cambridge, MA 02138, USA
| | - John Cobb
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, Dresden 01307, Germany; Max Planck Institute for the Physics of Complex Systems, Nothnitzerstraße 38, Dresden 01187, Germany
| | - Kimberly L Cooper
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
45
|
The lncRNAs at X Chromosome Inactivation Center: Not Just a Matter of Sex Dosage Compensation. Int J Mol Sci 2022; 23:ijms23020611. [PMID: 35054794 PMCID: PMC8775829 DOI: 10.3390/ijms23020611] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Abstract
Non-coding RNAs (ncRNAs) constitute the majority of the transcriptome, as the result of pervasive transcription of the mammalian genome. Different RNA species, such as lncRNAs, miRNAs, circRNA, mRNAs, engage in regulatory networks based on their reciprocal interactions, often in a competitive manner, in a way denominated “competing endogenous RNA (ceRNA) networks” (“ceRNET”): miRNAs and other ncRNAs modulate each other, since miRNAs can regulate the expression of lncRNAs, which in turn regulate miRNAs, titrating their availability and thus competing with the binding to other RNA targets. The unbalancing of any network component can derail the entire regulatory circuit acting as a driving force for human diseases, thus assigning “new” functions to “old” molecules. This is the case of XIST, the lncRNA characterized in the early 1990s and well known as the essential molecule for X chromosome inactivation in mammalian females, thus preventing an imbalance of X-linked gene expression between females and males. Currently, literature concerning XIST biology is becoming dominated by miRNA associations and they are also gaining prominence for other lncRNAs produced by the X-inactivation center. This review discusses the available literature to explore possible novel functions related to ceRNA activity of lncRNAs produced by the X-inactivation center, beyond their role in dosage compensation, with prospective implications for emerging gender-biased functions and pathological mechanisms.
Collapse
|
46
|
Kumar S, Devi R. Clinical spectrum and Cytogenetic characterization of patients with Turner Syndrome – Twin case report. JOURNAL OF CURRENT RESEARCH IN SCIENTIFIC MEDICINE 2022. [DOI: 10.4103/jcrsm.jcrsm_71_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
47
|
Fukami M, Miyado M. Mosaic loss of the Y chromosome and men's health. Reprod Med Biol 2022; 21:e12445. [PMID: 35386373 PMCID: PMC8967293 DOI: 10.1002/rmb2.12445] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 11/08/2022] Open
Abstract
Background Although Y chromosomal genes are involved in male sex development, spermatogenesis, and height growth, these genes play no role in the survival or mitosis of somatic cells. Therefore, somatic cells lacking the Y chromosome can stay and proliferate in the body. Methods Several molecular technologies, including next-generation sequencing and multiplex PCR-based assays, are used to detect mosaic loss of the Y chromosome (mLOY) in the blood of men. Main findings Accumulating evidence suggests that mLOY represents the most common acquired chromosomal alteration in humans, affecting >40% of men over 70 years of age. Advanced age, tobacco smoking, and some SNPs in cell cycle genes are known to increase the frequency of mLOY. The developmental process of mLOY in elderly men remains to be clarified, but it possibly reflects recurrent mitotic elimination of Y chromosomes or clonal expansion of 45,X cell lineages. In rare cases, mLOY also occurs in young men and fetuses. MLOY has been associated with early death, cancers, and other disorders in elderly men, infertility in reproductive-aged men, and developmental defects in children. Conclusion Y chromosomes in men can be lost at every life stage and Y chromosomal loss is associated with various health problems.
Collapse
Affiliation(s)
- Maki Fukami
- Department of Molecular EndocrinologyNational Research Institute for Child Health and DevelopmentTokyoJapan
| | - Mami Miyado
- Department of Molecular EndocrinologyNational Research Institute for Child Health and DevelopmentTokyoJapan
| |
Collapse
|
48
|
Dantas NCB, Braz AF, Malaquias A, Lemos-Marini S, Arnhold IJP, Silveira ER, Antonini SR, Guerra-Junior G, Mendonca B, Jorge A, Scalco RC. Adult Height in 299 Patients with Turner Syndrome with or without Growth Hormone Therapy: Results and Literature Review. Horm Res Paediatr 2021; 94:63-70. [PMID: 34134112 DOI: 10.1159/000516869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/21/2021] [Indexed: 11/19/2022] Open
Abstract
CONTEXT Treatment with growth hormone (GH) is considered effective in improving adult height (AH) in Turner syndrome (TS). However, there are few studies comparing AH between treated patients and a concurrent untreated group. OBJECTIVE To assess the efficacy of GH treatment in improving AH in TS and to review previous published studies with treated and untreated groups. PARTICIPANTS AND METHODS We retrospectively analyzed clinical data and AH of a large cohort of GH-treated (n = 168) and untreated (n = 131) patients with TS. Data are shown as median and interquartile range (IQR). We assessed pretreatment variables related with AH and compared our results with 16 studies that also included an untreated group. RESULTS The GH-treated group was 6.2 cm taller than the untreated group (AH = 149 cm [IQR 144.5-152.5 cm] vs. 142.8 cm [IQR 139-148 cm], p < 0.001) after 4.9 years of GH treatment with a dose of 0.35 mg/kg/week. AH SDS corrected for target height (TH) was 7.2 cm higher in GH-treated patients. AH SDS ≥-2 was more frequent in GH-treated patients (43%) than in untreated patients (16%, p < 0.001). AH SDS was also more frequently within the TH range in the GH-treated group (52%) than in the untreated group (15%, p < 0.001). Height SDS at start of GH therapy and TH SDS were positively correlated with AH (p < 0.001; R2 = 0.375). Considering the current result together with previous similar publications, a mean AH gain of 5.7 cm was observed in GH-treated (n = 696) versus untreated (n = 633) patients. CONCLUSIONS Our study strengthens the evidence for efficacy of GH therapy in patients with TS from different populations.
Collapse
Affiliation(s)
- Naiara C B Dantas
- Unidade de Endocrinologia Genetica, Laboratorio de Endocrinologia Celular e Molecular LIM/25, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Adriana F Braz
- Unidade Academica de Medicina, Faculdade de Medicina, Universidade Federal de Campina Grande, Campina Grande, Brazil
| | - Alexsandra Malaquias
- Departamento de Pediatria, Faculdade de Ciencias Medicas da Santa Casa de Sao Paulo, Sao Paulo, Brazil
| | - Sofia Lemos-Marini
- Departamento de Pediatria, Faculdade de Ciencias Medicas, Universidade Estadual de Campinas, Campinas, Brazil
| | - Ivo J P Arnhold
- Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular LIM/42, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Ester R Silveira
- Departamento de Genética, Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Brazil
| | - Sonir R Antonini
- Departamento de Pediatria, Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Brazil
| | - Gil Guerra-Junior
- Departamento de Pediatria, Faculdade de Ciencias Medicas, Universidade Estadual de Campinas, Campinas, Brazil
| | - Berenice Mendonca
- Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular LIM/42, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Alexander Jorge
- Unidade de Endocrinologia Genetica, Laboratorio de Endocrinologia Celular e Molecular LIM/25, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Renata C Scalco
- Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular LIM/42, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil.,Departamento de Medicina, Faculdade de Ciencias Medicas da Santa Casa de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
49
|
Quigley CA, Fechner PY, Geffner ME, Eugster EA, Ross JL, Habiby RL, Ugrasbul F, Rubin K, Travers S, Antalis CJ, Patel HN, Davenport ML. Prevention of Growth Failure in Turner Syndrome: Long-Term Results of Early Growth Hormone Treatment in the "Toddler Turner" Cohort. Horm Res Paediatr 2021; 94:18-35. [PMID: 34111870 DOI: 10.1159/000513788] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/15/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION In the randomized "Toddler Turner" study, girls who received growth hormone (GH) starting at ages 9 months to 4 years (early-treated [ET] group) had marked catch-up growth and were 1.6 ± 0.6 SD taller than untreated (early-untreated [EUT]) control girls after 2 years. However, whether the early catch-up growth would result in greater near-adult height (NAH) was unknown. Therefore, this extension study examined the long-term effects of toddler-age GH treatment on height, pubertal development, and safety parameters. METHODS Toddler Turner study participants were invited to enroll in a 10-year observational extension study for annual assessments of growth, pubertal status, and safety during long-term GH treatment to NAH for both ET and EUT groups. RESULTS The ET group was taller than the EUT group at all time points from preschool to maturity and was significantly taller at the onset of puberty (p = 0.016), however, the difference was not significant at NAH. For the full cohort (ET + EUT combined, n = 50) mean (± SD) NAH was 151.2 ± 7.1 cm at age 15.0 ± 1.3 years. NAH standard deviation score (SDS) was within the normal range (>-2.0) for 76% of ET and 60% of EUT subjects (68% overall) and correlated strongly with height SDS at GH start (r = 0.78; p < 0.01), which in turn had a modest inverse correlation with age at GH start (i.e., height SDS declined with increasing age in untreated girls [r = -0.30; p = 0.016]). No new safety concerns arose. CONCLUSION Although the ET group was taller throughout, height SDS at NAH was not significantly different between groups due to catch-down growth of ET girls during lapses in GH treatment after the Toddler study and similar long-term GH exposure overall. Early initiation of GH by age 6 years, followed by uninterrupted treatment during childhood, can prevent ongoing growth failure and enable attainment of height within the normal range during childhood, adolescence, and adulthood.
Collapse
Affiliation(s)
| | - Patricia Y Fechner
- Division of Endocrinology, Seattle Children's Hospital, University of Seattle, Seattle, Washington, USA
| | - Mitchell E Geffner
- Center for Diabetes, Endocrinology and Metabolism, The Saban Research Institute, Children's Hospital of Los Angeles, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
| | - Erica A Eugster
- Riley Hospital for Children at IU Health, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Judith L Ross
- Department of Pediatric Endocrinology, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, USA
| | - Reema L Habiby
- Division of Pediatric Endocrinology, Ann & Robert H. Lurie Children's Hospital of Chicago, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Figen Ugrasbul
- Pediatric Endocrinology, Children's Mercy Hospital, Kansas City, Missouri, USA
| | - Karen Rubin
- Connecticut Children's Medical Center, Hartford, Connecticut, USA
| | - Sharon Travers
- Endocrinology, Children's Hospital Denver, Denver, Colorado, USA.,Department of Pediatrics, University of Colorado School of Medicine, Denver, Colorado, USA
| | - Caryl J Antalis
- Lilly Corporate Center, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Hiren N Patel
- Lilly Corporate Center, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Marsha L Davenport
- Pediatric Endocrinology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
50
|
Purwar N, Tiwari P, Mathur N, Sharma H, Sahlot R, Garg U, Sharma B, Saxena A, Mathur SK. Higher CNV Frequencies in Chromosome 14 of Girls With Turner Syndrome Phenotype. J Clin Endocrinol Metab 2021; 106:e4935-e4955. [PMID: 34333639 DOI: 10.1210/clinem/dgab572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Precise genotype-phenotype correlations in Turner syndrome (TS) have not yet been deciphered. The chromosomal basis of the clinical TS phenotype in the absence of X chromosome aberrations on conventional karyotyping remains more and less unexplored. OBJECTIVE To elucidate the high-resolution chromosomal picture and analyze the genotype-phenotype associations in girls with clinical phenotype of TS by chromosomal microarray. DESIGN AND PATIENTS Cross sectional observational study conducted between October 2018 and January 2020 on 47 girls presenting the clinical TS phenotype and fulfilling the criteria for chromosomal analysis. SETTING Outpatient department at Department of Endocrinology and the Molecular Research Lab at tertiary care teaching institution. RESULTS The copy number variation (CNV) polymorphs were more frequent on autosomes than X chromosomes, and they were detected in 89.3%, 61.7%, and 92.8% of patients, respectively, on chromosome 14 or X or both. A total 445 and 64 CNV polymorphs were discovered on chromosome X and 14, respectively. The latter exhibited either gain at 14q32.33, loss at 14q11.2, or both. Karyotype was available for 27 patients; 55.6% of cases displayed X chromosome abnormalities while 44.4% cases had a normal karyotype. Functional interactomes of the genes that were present in chromosome 14 CNVs and those known to be associated with TS showed an overlap of 67% and enriched various development-related cellular pathways underlying TS phenotype. CONCLUSIONS On high-resolution karyotype analysis, clinical phenotype of TS can be associated with CNV defects in autosomes, specifically chromosome 14 or X chromosome or both. The syndrome of chromosome 14 CNV defects with and without X-chromosomal defects clinically mimics TS and shares a common genomic network that deserves further investigations.
Collapse
Affiliation(s)
- Naincy Purwar
- Department of Endocrinology, Sawai Man Singh Medical College and Hospital, Jaipur 302004, India
| | - Pradeep Tiwari
- Department of Endocrinology, Sawai Man Singh Medical College and Hospital, Jaipur 302004, India
- Department of Chemistry, School of Basic Sciences, Manipal University Jaipur, Jaipur, India
| | - Nitish Mathur
- Department of Endocrinology, Sawai Man Singh Medical College and Hospital, Jaipur 302004, India
| | - Himanshu Sharma
- Department of Endocrinology, Sawai Man Singh Medical College and Hospital, Jaipur 302004, India
| | - Rahul Sahlot
- Department of Endocrinology, Sawai Man Singh Medical College and Hospital, Jaipur 302004, India
| | - Umesh Garg
- Department of Endocrinology, Sawai Man Singh Medical College and Hospital, Jaipur 302004, India
| | - Balram Sharma
- Department of Endocrinology, Sawai Man Singh Medical College and Hospital, Jaipur 302004, India
| | - Aditya Saxena
- Department of Computer Engineering & Applications, Institute of Engineering & Technology, GLA University, Mathura, India
| | - Sandeep K Mathur
- Department of Endocrinology, Sawai Man Singh Medical College and Hospital, Jaipur 302004, India
| |
Collapse
|