1
|
Chen SW, Chu Y, Chu CH, Pham XDT, Ng HP, Guo CL, Cheng PL. ECM29/proteasome-mediated self-antigen generation by CNS-resident neuroglia promotes regulatory T cell activation. Cell Rep 2025; 44:115161. [PMID: 39786996 DOI: 10.1016/j.celrep.2024.115161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 11/08/2024] [Accepted: 12/16/2024] [Indexed: 01/12/2025] Open
Abstract
Proteasomes generate antigenic peptides presented on cell surfaces-a process that, in neuroglia, is highly responsive to external stimuli. However, the function of the self-antigens presented by CNS parenchymal cells remains unclear. Here, we report that the fidelity of neuroglial self-antigens is crucial to suppress encephalitogenic T cell responses by elevating regulatory T (Treg) cell populations. We demonstrate that loss of the proteasome adaptor protein Ecm29 alters the efficacy and accuracy of antigen generation. Inducible oligodendroglia- or microglia-conditional Ecm29 knockout mice exhibit higher susceptibility to experimental autoimmune encephalomyelitis (EAE) than control counterparts do, coincident with reduced Treg cell populations in the spinal cord. Immunopeptidome profiling identifies self-antigens that modulate myelin-reactive T cell responses. Intraspinal adeno-associated virus (AAV)/Olig001-mediated expression of the self-antigen NDUFA1p ameliorates EAE and expands NDUFA1p-recognizing CD103+CD8+CD122+ Treg cells. Thus, Ecm29/proteasome-controlled, neuroglia-derived self-antigens modulate CNS immune tolerance.
Collapse
Affiliation(s)
- Sheng-Wen Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Ying Chu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chien-Hsin Chu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | | | - Hang Pong Ng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chin-Lin Guo
- Institute of Physics, Academia Sinica, Taipei, Taiwan
| | - Pei-Lin Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
2
|
Baldwin I, Robey EA. Adjusting to self in the thymus: CD4 versus CD8 lineage commitment and regulatory T cell development. J Exp Med 2024; 221:e20230896. [PMID: 38980291 PMCID: PMC11232887 DOI: 10.1084/jem.20230896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/22/2024] [Accepted: 06/27/2024] [Indexed: 07/10/2024] Open
Abstract
During thymic development, thymocytes adjust their TCR response based on the strength of their reactivity to self-peptide MHC complexes. This tuning process allows thymocytes with a range of self-reactivities to survive positive selection and contribute to a diverse T cell pool. In this review, we will discuss recent advances in our understanding of how thymocytes tune their responsiveness during positive selection, and we present a "sequential selection" model to explain how MHC specificity influences lineage choice. We also discuss recent evidence for cell type diversity in the medulla and discuss how this heterogeneity may contribute to medullary niches for negative selection and regulatory T cell development.
Collapse
Affiliation(s)
- Isabel Baldwin
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Ellen A. Robey
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
3
|
Burton OT, Bricard O, Tareen S, Gergelits V, Andrews S, Biggins L, Roca CP, Whyte C, Junius S, Brajic A, Pasciuto E, Ali M, Lemaitre P, Schlenner SM, Ishigame H, Brown BD, Dooley J, Liston A. The tissue-resident regulatory T cell pool is shaped by transient multi-tissue migration and a conserved residency program. Immunity 2024; 57:1586-1602.e10. [PMID: 38897202 DOI: 10.1016/j.immuni.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/27/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024]
Abstract
The tissues are the site of many important immunological reactions, yet how the immune system is controlled at these sites remains opaque. Recent studies have identified Foxp3+ regulatory T (Treg) cells in non-lymphoid tissues with unique characteristics compared with lymphoid Treg cells. However, tissue Treg cells have not been considered holistically across tissues. Here, we performed a systematic analysis of the Treg cell population residing in non-lymphoid organs throughout the body, revealing shared phenotypes, transient residency, and common molecular dependencies. Tissue Treg cells from different non-lymphoid organs shared T cell receptor (TCR) sequences, with functional capacity to drive multi-tissue Treg cell entry and were tissue-agnostic on tissue homing. Together, these results demonstrate that the tissue-resident Treg cell pool in most non-lymphoid organs, other than the gut, is largely constituted by broadly self-reactive Treg cells, characterized by transient multi-tissue migration. This work suggests common regulatory mechanisms may allow pan-tissue Treg cells to safeguard homeostasis across the body.
Collapse
Affiliation(s)
- Oliver T Burton
- Department of Pathology, University of Cambridge, Cambridge, UK; VIB Center for Brain and Disease Research, Leuven, Belgium; KU Leuven, University of Leuven, Department of Microbiology and Immunology, Leuven, Belgium; Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Orian Bricard
- Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Samar Tareen
- Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Vaclav Gergelits
- Department of Pathology, University of Cambridge, Cambridge, UK; Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Simon Andrews
- Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Laura Biggins
- Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Carlos P Roca
- Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Carly Whyte
- Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Steffie Junius
- VIB Center for Brain and Disease Research, Leuven, Belgium; KU Leuven, University of Leuven, Department of Microbiology and Immunology, Leuven, Belgium
| | - Aleksandra Brajic
- VIB Center for Brain and Disease Research, Leuven, Belgium; KU Leuven, University of Leuven, Department of Microbiology and Immunology, Leuven, Belgium
| | - Emanuela Pasciuto
- VIB Center for Brain and Disease Research, Leuven, Belgium; KU Leuven, University of Leuven, Department of Microbiology and Immunology, Leuven, Belgium; University of Antwerp, Center of Molecular Neurology, Antwerp, Belgium
| | - Magda Ali
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Pierre Lemaitre
- VIB Center for Brain and Disease Research, Leuven, Belgium; KU Leuven, University of Leuven, Department of Microbiology and Immunology, Leuven, Belgium
| | - Susan M Schlenner
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Leuven, Belgium
| | - Harumichi Ishigame
- Laboratory for Tissue Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan; Near-InfraRed Photo-Immunotherapy Research Institute, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Brian D Brown
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James Dooley
- Department of Pathology, University of Cambridge, Cambridge, UK; VIB Center for Brain and Disease Research, Leuven, Belgium; KU Leuven, University of Leuven, Department of Microbiology and Immunology, Leuven, Belgium; Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Adrian Liston
- Department of Pathology, University of Cambridge, Cambridge, UK; VIB Center for Brain and Disease Research, Leuven, Belgium; KU Leuven, University of Leuven, Department of Microbiology and Immunology, Leuven, Belgium; Babraham Institute, Babraham Research Campus, Cambridge, UK.
| |
Collapse
|
4
|
Lui VG, Hoenig M, Cabrera-Martinez B, Baxter RM, Garcia-Perez JE, Bailey O, Acharya A, Lundquist K, Capera J, Matusewicz P, Hartl FA, D’Abramo M, Alba J, Jacobsen EM, Niewolik D, Lorenz M, Pannicke U, Schulz AS, Debatin KM, Schamel WW, Minguet S, Gumbart JC, Dustin ML, Cambier JC, Schwarz K, Hsieh EW. A partial human LCK defect causes a T cell immunodeficiency with intestinal inflammation. J Exp Med 2024; 221:e20230927. [PMID: 37962568 PMCID: PMC10644909 DOI: 10.1084/jem.20230927] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/09/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Lymphocyte-specific protein tyrosine kinase (LCK) is essential for T cell antigen receptor (TCR)-mediated signal transduction. Here, we report two siblings homozygous for a novel LCK variant (c.1318C>T; P440S) characterized by T cell lymphopenia with skewed memory phenotype, infant-onset recurrent infections, failure to thrive, and protracted diarrhea. The patients' T cells show residual TCR signal transduction and proliferation following anti-CD3/CD28 and phytohemagglutinin (PHA) stimulation. We demonstrate in mouse models that complete (Lck-/-) versus partial (LckP440S/P440S) loss-of-function LCK causes disease with differing phenotypes. While both Lck-/- and LckP440S/P440S mice exhibit arrested thymic T cell development and profound T cell lymphopenia, only LckP440S/P440S mice show residual T cell proliferation, cytokine production, and intestinal inflammation. Furthermore, the intestinal disease in the LckP440S/P440S mice is prevented by CD4+ T cell depletion or regulatory T cell transfer. These findings demonstrate that P440S LCK spares sufficient T cell function to allow the maturation of some conventional T cells but not regulatory T cells-leading to intestinal inflammation.
Collapse
Affiliation(s)
- Victor G. Lui
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Manfred Hoenig
- Department of Pediatrics, University Medical Center Ulm, Ulm, Germany
| | - Berenice Cabrera-Martinez
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ryan M. Baxter
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Josselyn E. Garcia-Perez
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Olivia Bailey
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Atanu Acharya
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
- BioInspired Syracuse and Department of Chemistry, Syracuse University, Syracuse, NY, USA
| | - Karl Lundquist
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jesusa Capera
- Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Paul Matusewicz
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies and CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency, University Clinics and Medical Faculty, University, Freiburg, Germany
| | - Frederike A. Hartl
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies and CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency, University Clinics and Medical Faculty, University, Freiburg, Germany
| | - Marco D’Abramo
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | - Josephine Alba
- Department of Biology, Université de Fribourg, Fribourg, Switzerland
| | | | - Doris Niewolik
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Myriam Lorenz
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Ulrich Pannicke
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Ansgar S. Schulz
- Department of Pediatrics, University Medical Center Ulm, Ulm, Germany
| | | | - Wolfgang W. Schamel
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies and CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency, University Clinics and Medical Faculty, University, Freiburg, Germany
| | - Susana Minguet
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies and CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency, University Clinics and Medical Faculty, University, Freiburg, Germany
| | - James C. Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Michael L. Dustin
- Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - John C. Cambier
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Human Immunology and Immunotherapy Initiative, University of Colorado Anschutz School of Medicine, Aurora, CO, USA
| | - Klaus Schwarz
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Wuerttemberg-Hessen, Ulm, Germany
| | - Elena W.Y. Hsieh
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Human Immunology and Immunotherapy Initiative, University of Colorado Anschutz School of Medicine, Aurora, CO, USA
- Department of Pediatrics, Section of Allergy and Immunology, Children’s Hospital Colorado, University of Colorado Anschutz School of Medicine, Aurora, CO, USA
| |
Collapse
|
5
|
Yilmazer A, Zevla DM, Malmkvist R, Rodríguez CAB, Undurraga P, Kirgin E, Boernert M, Voehringer D, Kershaw O, Schlenner S, Kretschmer K. Selective ablation of thymic and peripheral Foxp3 + regulatory T cell development. Front Immunol 2023; 14:1298938. [PMID: 38164128 PMCID: PMC10757929 DOI: 10.3389/fimmu.2023.1298938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Foxp3+ regulatory T (Treg) cells of thymic (tTreg) and peripheral (pTreg) developmental origin are thought to synergistically act to ensure immune homeostasis, with self-reactive tTreg cells primarily constraining autoimmune responses. Here we exploited a Foxp3-dependent reporter with thymus-specific GFP/Cre activity to selectively ablate either tTreg (ΔtTreg) or pTreg (ΔpTreg) cell development, while sparing the respective sister populations. We found that, in contrast to the tTreg cell behavior in ΔpTreg mice, pTreg cells acquired a highly activated suppressor phenotype and replenished the Treg cell pool of ΔtTreg mice on a non-autoimmune C57BL/6 background. Despite the absence of tTreg cells, pTreg cells prevented early mortality and fatal autoimmunity commonly observed in Foxp3-deficient models of complete Treg cell deficiency, and largely maintained immune tolerance even as the ΔtTreg mice aged. However, only two generations of backcrossing to the autoimmune-prone non-obese diabetic (NOD) background were sufficient to cause severe disease lethality associated with different, partially overlapping patterns of organ-specific autoimmunity. This included a particularly severe form of autoimmune diabetes characterized by an early onset and abrogation of the sex bias usually observed in the NOD mouse model of human type 1 diabetes. Genetic association studies further allowed us to define a small set of autoimmune risk loci sufficient to promote β cell autoimmunity, including genes known to impinge on Treg cell biology. Overall, these studies show an unexpectedly high functional adaptability of pTreg cells, emphasizing their important role as mediators of bystander effects to ensure self-tolerance.
Collapse
Affiliation(s)
- Acelya Yilmazer
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Dimitra Maria Zevla
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Rikke Malmkvist
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Carlos Alejandro Bello Rodríguez
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Pablo Undurraga
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Emre Kirgin
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Marie Boernert
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - David Voehringer
- Department of Infection Biology, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Olivia Kershaw
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Susan Schlenner
- KU Leuven-University of Leuven, Department of Microbiology, Immunology and Transplantation, Leuven, Belgium
| | - Karsten Kretschmer
- Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| |
Collapse
|
6
|
Tremain AC, Wallace RP, Lorentz KM, Thornley TB, Antane JT, Raczy MR, Reda JW, Alpar AT, Slezak AJ, Watkins EA, Maulloo CD, Budina E, Solanki A, Nguyen M, Bischoff DJ, Harrington JL, Mishra R, Conley GP, Marlin R, Dereuddre-Bosquet N, Gallouët AS, LeGrand R, Wilson DS, Kontos S, Hubbell JA. Synthetically glycosylated antigens for the antigen-specific suppression of established immune responses. Nat Biomed Eng 2023; 7:1142-1155. [PMID: 37679570 DOI: 10.1038/s41551-023-01086-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 08/02/2023] [Indexed: 09/09/2023]
Abstract
Inducing antigen-specific tolerance during an established immune response typically requires non-specific immunosuppressive signalling molecules. Hence, standard treatments for autoimmunity trigger global immunosuppression. Here we show that established antigen-specific responses in effector T cells and memory T cells can be suppressed by a polymer glycosylated with N-acetylgalactosamine (pGal) and conjugated to the antigen via a self-immolative linker that allows for the dissociation of the antigen on endocytosis and its presentation in the immunoregulatory environment. We show that pGal-antigen therapy induces antigen-specific tolerance in a mouse model of experimental autoimmune encephalomyelitis (with programmed cell-death-1 and the co-inhibitory ligand CD276 driving the tolerogenic responses), as well as the suppression of antigen-specific responses to vaccination against a DNA-based simian immunodeficiency virus in non-human primates. Our findings show that pGal-antigen therapy invokes mechanisms of immune tolerance to resolve antigen-specific inflammatory T-cell responses and suggest that the therapy may be applicable across autoimmune diseases.
Collapse
Affiliation(s)
- Andrew C Tremain
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Rachel P Wallace
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL, USA
| | | | | | - Jennifer T Antane
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Michal R Raczy
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Joseph W Reda
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Aaron T Alpar
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Anna J Slezak
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Elyse A Watkins
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Chitavi D Maulloo
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Erica Budina
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Ani Solanki
- Animal Resources Center, University of Chicago, Chicago, IL, USA
| | - Mindy Nguyen
- Animal Resources Center, University of Chicago, Chicago, IL, USA
| | | | | | | | | | - Romain Marlin
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, INSERM, CEA, Fontenay-aux-Roses, France
| | - Nathalie Dereuddre-Bosquet
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, INSERM, CEA, Fontenay-aux-Roses, France
| | - Anne-Sophie Gallouët
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, INSERM, CEA, Fontenay-aux-Roses, France
| | - Roger LeGrand
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, INSERM, CEA, Fontenay-aux-Roses, France
| | - D Scott Wilson
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL, USA.
- Biomedical Engineering Department, Johns Hopkins University, Baltimore, MD, USA.
| | | | - Jeffrey A Hubbell
- Committee on Immunology, University of Chicago, Chicago, IL, USA.
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL, USA.
- Committee on Cancer Biology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
7
|
Pereira JA, Lanzar Z, Clark JT, Hart AP, Douglas BB, Shallberg L, O’Dea K, Christian DA, Hunter CA. PD-1 and CTLA-4 exert additive control of effector regulatory T cells at homeostasis. Front Immunol 2023; 14:997376. [PMID: 36960049 PMCID: PMC10028286 DOI: 10.3389/fimmu.2023.997376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 02/10/2023] [Indexed: 03/09/2023] Open
Abstract
At homeostasis, a substantial proportion of Foxp3+ T regulatory cells (Tregs) have an activated phenotype associated with enhanced TCR signals and these effector Treg cells (eTregs) co-express elevated levels of PD-1 and CTLA-4. Short term in vivo blockade of the PD-1 or CTLA-4 pathways results in increased eTreg populations, while combination blockade of both pathways had an additive effect. Mechanistically, combination blockade resulted in a reduction of suppressive phospho-SHP2 Y580 in eTreg cells which was associated with increased proliferation, enhanced production of IL-10, and reduced dendritic cell and macrophage expression of CD80 and MHC-II. Thus, at homeostasis, PD-1 and CTLA-4 function additively to regulate eTreg function and the ability to target these pathways in Treg cells may be useful to modulate inflammation.
Collapse
Affiliation(s)
- Joseph A. Pereira
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA, United States
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Zachary Lanzar
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Joseph T. Clark
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Andrew P. Hart
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Bonnie B. Douglas
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Lindsey Shallberg
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Keenan O’Dea
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA, United States
| | - David A. Christian
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Christopher A. Hunter
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
8
|
Lee V, Rodriguez DM, Ganci NK, Zeng S, Ai J, Chao JL, Walker MT, Miller CH, Klawon DEJ, Schoenbach MH, Kennedy DE, Maienschein-Cline M, Socci ND, Clark MR, Savage PA. The endogenous repertoire harbors self-reactive CD4 + T cell clones that adopt a follicular helper T cell-like phenotype at steady state. Nat Immunol 2023; 24:487-500. [PMID: 36759711 PMCID: PMC9992328 DOI: 10.1038/s41590-023-01425-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/04/2023] [Indexed: 02/11/2023]
Abstract
The T cell repertoire of healthy mice and humans harbors self-reactive CD4+ conventional T (Tconv) cells capable of inducing autoimmunity. Using T cell receptor profiling paired with in vivo clonal analysis of T cell differentiation, we identified Tconv cell clones that are recurrently enriched in non-lymphoid organs following ablation of Foxp3+ regulatory T (Treg) cells. A subset of these clones was highly proliferative in the lymphoid organs at steady state and exhibited overt reactivity to self-ligands displayed by dendritic cells, yet were not purged by clonal deletion. These clones spontaneously adopted numerous hallmarks of follicular helper T (TFH) cells, including expression of Bcl6 and PD-1, exhibited an elevated propensity to localize within B cell follicles at steady state, and produced interferon-γ in non-lymphoid organs following sustained Treg cell depletion. Our work identifies a naturally occurring population of self-reactive TFH-like cells and delineates a previously unappreciated fate for self-specific Tconv cells.
Collapse
Affiliation(s)
- Victoria Lee
- Interdisciplinary Scientist Training Program, University of Chicago, Chicago, IL, USA
| | - Donald M Rodriguez
- Interdisciplinary Scientist Training Program, University of Chicago, Chicago, IL, USA
| | - Nicole K Ganci
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Sharon Zeng
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Junting Ai
- Section of Rheumatology, Department of Medicine and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, USA
| | - Jaime L Chao
- Committee on Immunology, University of Chicago, Chicago, IL, USA
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Matthew T Walker
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Christine H Miller
- Interdisciplinary Scientist Training Program, University of Chicago, Chicago, IL, USA
| | - David E J Klawon
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | | | - Domenick E Kennedy
- Section of Rheumatology, Department of Medicine and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, USA
- Drug Discovery Science and Technology, AbbVie, North Chicago, IL, USA
| | - Mark Maienschein-Cline
- Research Informatics Core, Research Resources Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Nicholas D Socci
- Bioinformatics Core, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Marcus R Clark
- Section of Rheumatology, Department of Medicine and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, USA
| | - Peter A Savage
- Department of Pathology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
9
|
Jing Y, Kong Y, Allard D, Liu B, Kolawole E, Sprouse M, Evavold B, Bettini M, Bettini M. Increased TCR signaling in regulatory T cells is disengaged from TCR affinity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.17.523999. [PMID: 36711832 PMCID: PMC9882247 DOI: 10.1101/2023.01.17.523999] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Foxp3+ regulatory T cells (Tregs) are capable suppressors of aberrant self-reactivity. However, TCR affinity and specificities that support Treg function, and how these compare to autoimmune T cells remain unresolved. In this study, we used antigen agnostic and epitope-focused analyses to compare TCR repertoires of regulatory and effector T cells that spontaneously infiltrate pancreatic islets of non-obese diabetic mice. We show that effector and regulatory T cell-derived TCRs possess similar wide-ranging reactivity for self-antigen. Treg-derived TCRs varied in their capacity to confer optimal protective function, and Treg suppressive capacity was in part determined by effector TCR affinity. Interestingly, when expressing the same TCR, Tregs showed higher Nur77-GFP expression than Teffs, suggesting Treg-intrinsic ability to compete for antigen. Our findings provide a new insight into TCR-dependent and independent mechanisms that regulate Treg function and indicate a TCR-intrinsic insufficiency in tissue-specific Tregs that may contribute to the pathogenesis of type 1 diabetes.
Collapse
|
10
|
Breed ER, Vobořil M, Ashby KM, Martinez RJ, Qian L, Wang H, Salgado OC, O'Connor CH, Hogquist KA. Type 2 cytokines in the thymus activate Sirpα + dendritic cells to promote clonal deletion. Nat Immunol 2022; 23:1042-1051. [PMID: 35637352 PMCID: PMC10037932 DOI: 10.1038/s41590-022-01218-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 04/18/2022] [Indexed: 12/30/2022]
Abstract
The thymus contains a diversity of dendritic cells (DCs) that exist in defined locations and have different antigen-processing and -presenting features. This suggests that they play nonredundant roles in mediating thymocyte selection. In an effort to eliminate SIRPα+ classic DC2 subsets, we discovered that a substantial proportion expresses the surface lectin, CD301b, in the thymus. These cells resemble the CD301b+ type 2 immune response promoting DCs that are present in the skin-draining lymph nodes. Transcriptional and phenotypic comparison to other DC subsets in the thymus revealed that thymic CD301b+ cDCs represent an activated state that exhibits enhanced antigen processing and presentation. Furthermore, a CD301b+ cDC2 subset demonstrated a type 2 cytokine signature and required steady-state interleukin-4 receptor signaling. Selective ablation of CD301b+ cDC2 subsets impaired clonal deletion without affecting regulatory T cells (Treg cells). The T cell receptor α repertoire sequencing confirmed that a cDC2 subset promotes deletion of conventional T cells with minimal effect on Treg cell selection. Together, these findings suggest that cytokine-induced activation of DCs in the thymus substantially enforces central tolerance.
Collapse
Affiliation(s)
- Elise R Breed
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Matouš Vobořil
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Katherine M Ashby
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Ryan J Martinez
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Lily Qian
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Haiguang Wang
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Oscar C Salgado
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Christine H O'Connor
- Research Informatics Solutions, Laboratory Medicine and Pathology Group, Minnesota Supercomputing Institute, Minneapolis, MN, USA
| | - Kristin A Hogquist
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA.
| |
Collapse
|
11
|
Wang C, Daley SR. How Thymocyte Deletion in the Cortex May Curtail Antigen-Specific T-Regulatory Cell Development in the Medulla. Front Immunol 2022; 13:892498. [PMID: 35693793 PMCID: PMC9176388 DOI: 10.3389/fimmu.2022.892498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
CD4+ T cell responses to self-antigens are pivotal for immunological self-tolerance. Activation of Foxp3– T-conventional (T-conv) cells can precipitate autoimmune disease, whereas activation of Foxp3+ T-regulatory (T-reg) cells is essential to prevent autoimmune disease. This distinction indicates the importance of the thymus in controlling the differentiation of self-reactive CD4+ T cells. Thymocytes and thymic antigen-presenting cells (APC) depend on each other for normal maturation and differentiation. In this Hypothesis and Theory article, we propose this mutual dependence dictates which self-antigens induce T-reg cell development in the thymic medulla. We postulate self-reactive CD4+ CD8– thymocytes deliver signals that stabilize and amplify the presentation of their cognate self-antigen by APC in the thymic medulla, thereby seeding a niche for the development of T-reg cells specific for the same self-antigen. By limiting the number of antigen-specific CD4+ thymocytes in the medulla, thymocyte deletion in the cortex may impede the formation of medullary T-reg niches containing certain self-antigens. Susceptibility to autoimmune disease may arise from cortical deletion creating a “hole” in the self-antigen repertoire recognized by T-reg cells.
Collapse
Affiliation(s)
- Chenglong Wang
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Stephen R Daley
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
12
|
Huseby ES, Teixeiro E. The perception and response of T cells to a changing environment are based on the law of initial value. Sci Signal 2022; 15:eabj9842. [PMID: 35639856 PMCID: PMC9290192 DOI: 10.1126/scisignal.abj9842] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
αβ T cells are critical components of the adaptive immune system and are capable of inducing sterilizing immunity after pathogen infection and eliminating transformed tumor cells. The development and function of T cells are controlled through the T cell antigen receptor, which recognizes peptides displayed on major histocompatibility complex (MHC) molecules. Here, we review how T cells generate the ability to recognize self-peptide-bound MHC molecules and use signals derived from these interactions to instruct cellular development, activation thresholds, and functional specialization in the steady state and during immune responses. We argue that the basic tenants of T cell development and function follow Weber-Fetcher's law of just noticeable differences and Wilder's law of initial value. Together, these laws argue that the ability of a system to respond and the quality of that response are scalable to the basal state of that system. Manifestation of these laws in T cells generates clone-specific activation thresholds that are based on perceivable differences between homeostasis and pathogen encounter (self versus nonself discrimination), as well as poised states for subsequent differentiation into specific effector cell lineages.
Collapse
Affiliation(s)
- Eric S. Huseby
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Emma Teixeiro
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
13
|
A fresh look at a neglected regulatory lineage: CD8+Foxp3+ Regulatory T Cells. Immunol Lett 2022; 247:22-26. [DOI: 10.1016/j.imlet.2022.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 12/20/2022]
|
14
|
Abstract
A high diversity of αβ T cell receptors (TCRs), capable of recognizing virtually any pathogen but also self-antigens, is generated during T cell development in the thymus. Nevertheless, a strict developmental program supports the selection of a self-tolerant T cell repertoire capable of responding to foreign antigens. The steps of T cell selection are controlled by cortical and medullary stromal niches, mainly composed of thymic epithelial cells and dendritic cells. The integration of important cues provided by these specialized niches, including (a) the TCR signal strength induced by the recognition of self-peptide-MHC complexes, (b) costimulatory signals, and (c) cytokine signals, critically controls T cell repertoire selection. This review discusses our current understanding of the signals that coordinate positive selection, negative selection, and agonist selection of Foxp3+ regulatory T cells. It also highlights recent advances that have unraveled the functional diversity of thymic antigen-presenting cell subsets implicated in T cell selection.
Collapse
Affiliation(s)
- Magali Irla
- Centre d'Immunologie de Marseille-Luminy (CIML), CNRS, INSERM, Aix-Marseille Université, Marseille, France;
| |
Collapse
|
15
|
Naqvi RA, Datta M, Khan SH, Naqvi AR. Regulatory roles of MicroRNA in shaping T cell function, differentiation and polarization. Semin Cell Dev Biol 2022; 124:34-47. [PMID: 34446356 PMCID: PMC11661912 DOI: 10.1016/j.semcdb.2021.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/09/2021] [Accepted: 08/07/2021] [Indexed: 12/12/2022]
Abstract
T lymphocytes are an integral component of adaptive immunity with pleotropic effector functions. Impairment of T cell activity is implicated in various immune pathologies including autoimmune diseases, AIDS, carcinogenesis, and periodontitis. Evidently, T cell differentiation and function are under robust regulation by various endogenous factors that orchestrate underlying molecular pathways. MicroRNAs (miRNA) are a class of noncoding, regulatory RNAs that post-transcriptionally control multiple mRNA targets by sequence-specific interaction. In this article, we will review the recent progress in our understanding of miRNA-gene networks that are uniquely required by specific T cell effector functions and provide miRNA-mediated mechanisms that govern the fate of T cells. A subset of miRNAs may act in a synergistic or antagonistic manner to exert functional suppression of genes and regulate pathways that control T cell activation and differentiation. Significance of T cell-specific miRNAs and their dysregulation in immune-mediated diseases is discussed. Exosome-mediated horizontal transfer of miRNAs from antigen presenting cells (APCs) to T cells and from one T cell to another T cell subset and their impact on recipient cell functions is summarized.
Collapse
Affiliation(s)
- Raza Ali Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago 60612, IL, USA.
| | - Manali Datta
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Samia Haseeb Khan
- Graduate School of Medicine, Science and Technology, Shinshu University, 8304 Minami-Minowa, Kami-Ina, Nagano 399-4598, Japan
| | - Afsar R Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago 60612, IL, USA.
| |
Collapse
|
16
|
K 2P18.1 translates T cell receptor signals into thymic regulatory T cell development. Cell Res 2022; 32:72-88. [PMID: 34702947 PMCID: PMC8547300 DOI: 10.1038/s41422-021-00580-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 08/25/2021] [Indexed: 02/07/2023] Open
Abstract
It remains largely unclear how thymocytes translate relative differences in T cell receptor (TCR) signal strength into distinct developmental programs that drive the cell fate decisions towards conventional (Tconv) or regulatory T cells (Treg). Following TCR activation, intracellular calcium (Ca2+) is the most important second messenger, for which the potassium channel K2P18.1 is a relevant regulator. Here, we identify K2P18.1 as a central translator of the TCR signal into the thymus-derived Treg (tTreg) selection process. TCR signal was coupled to NF-κB-mediated K2P18.1 upregulation in tTreg progenitors. K2P18.1 provided the driving force for sustained Ca2+ influx that facilitated NF-κB- and NFAT-dependent expression of FoxP3, the master transcription factor for Treg development and function. Loss of K2P18.1 ion-current function induced a mild lymphoproliferative phenotype in mice, with reduced Treg numbers that led to aggravated experimental autoimmune encephalomyelitis, while a gain-of-function mutation in K2P18.1 resulted in increased Treg numbers in mice. Our findings in human thymus, recent thymic emigrants and multiple sclerosis patients with a dominant-negative missense K2P18.1 variant that is associated with poor clinical outcomes indicate that K2P18.1 also plays a role in human Treg development. Pharmacological modulation of K2P18.1 specifically modulated Treg numbers in vitro and in vivo. Finally, we identified nitroxoline as a K2P18.1 activator that led to rapid and reversible Treg increase in patients with urinary tract infections. Conclusively, our findings reveal how K2P18.1 translates TCR signals into thymic T cell fate decisions and Treg development, and provide a basis for the therapeutic utilization of Treg in several human disorders.
Collapse
|
17
|
Herppich S, Beckstette M, Huehn J. The thymic microenvironment gradually modulates the phenotype of thymus-homing peripheral conventional dendritic cells. IMMUNITY INFLAMMATION AND DISEASE 2021; 10:175-188. [PMID: 34748687 PMCID: PMC8767516 DOI: 10.1002/iid3.559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 11/11/2022]
Abstract
Background & Aims Thymic conventional dendritic cells (t‑DCs) are crucial for the development of T cells. A substantial fraction of t‑DCs originates extrathymically and migrates to the thymus. Here, these cells contribute to key processes of central tolerance like the clonal deletion of self‑reactive thymocytes and the generation of regulatory T (Treg) cells. So far, it is only incompletely understood which impact the thymic microenvironment has on thymus‑homing conventional DCs (cDCs), which phenotypic changes occur after the entry of peripheral cDCs into the thymus and which functional properties these modulated cells acquire. Materials & Methods In the present study, we mimicked the thymus‑homing of peripheral cDCs by introducing ex vivo isolated splenic cDCs (sp‑DCs) into reaggregated thymic organ cultures (RTOCs). Results Already after two days of culture, the transcriptomic profile of sp‑DCs was modulated and had acquired certain key signatures of t‑DCs. The regulated genes included immunomodulatory cytokines and chemokines as well as costimulatory molecules. After four days of culture, sp‑DCs appeared to have at least partially acquired the peculiar Treg cell‐inducing capacity characteristic of t‑DCs. Discussion & Conclusion Taken together, our findings indicate that peripheral cDCs possess a high degree of plasticity enabling them to quickly adapt to the thymus‐specific microenvironment. We further provide indirect evidence that thymus‐specific properties such as the efficient induction of Treg cells under homeostatic conditions can be partially transferred to thymus‑homing peripheral cDC subsets.
Collapse
Affiliation(s)
- Susanne Herppich
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Beckstette
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine, Helmholtz Centre for Infection Research and Hannover Medical School, Hannover, Germany
| | - Jochen Huehn
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
18
|
Zong X, Hao X, Xu B, Crawford JC, Wright S, Li J, Zhang Y, Bai L, He M, Jiang M, Fan Y, Connelly JP, Pruett-Miller SM, Berns H, Janke L, Li C, Feng Y. Foxp3 enhancers synergize to maximize regulatory T cell suppressive capacity. J Exp Med 2021; 218:e20202415. [PMID: 34086055 PMCID: PMC8185987 DOI: 10.1084/jem.20202415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/05/2021] [Accepted: 05/12/2021] [Indexed: 12/22/2022] Open
Abstract
T reg cells bearing a diverse antigen receptor repertoire suppress pathogenic T cells and maintain immune homeostasis during their long lifespan. How their robust function is determined genetically remains elusive. Here, we investigate the regulatory space of the cis-regulatory elements of T reg lineage-specifying factor Foxp3. Foxp3 enhancers are known as distinct readers of environmental cues controlling T reg cell induction or lineage stability. However, their single deficiencies cause mild, if any, immune dysregulation, leaving the key transcriptional mechanisms determining Foxp3 expression and thereby T reg cell suppressive capacity uncertain. We examined the collective activities of Foxp3 enhancers and found that they coordinate to maximize T reg cell induction, Foxp3 expression level, or lineage stability through distinct modes and that ablation of synergistic enhancers leads to lethal autoimmunity in young mice. Thus, the induction and maintenance of a diverse, stable T reg cell repertoire rely on combinatorial Foxp3 enhancers, suggesting broad, stage-specific, synergistic activities of cell-intrinsic factors and cell-extrinsic cues in determining T reg cell suppressive capacity.
Collapse
Affiliation(s)
- Xinying Zong
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Xiaolei Hao
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN
| | | | - Shaela Wright
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Jun Li
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Yang Zhang
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Lu Bai
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Minghong He
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Menglin Jiang
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN
- College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN
| | - Yiping Fan
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Jon P. Connelly
- Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital, Memphis, TN
| | | | - Hartmut Berns
- Transgenic Gene Knockout Shared Resource, St. Jude Children’s Research Hospital, Memphis, TN
| | - Laura Janke
- Veterinary Pathology Core, St. Jude Children’s Research Hospital, Memphis, TN
| | - Chunliang Li
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Yongqiang Feng
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN
| |
Collapse
|
19
|
Morello G, Cancila V, La Rosa M, Germano G, Lecis D, Amodio V, Zanardi F, Iannelli F, Greco D, La Paglia L, Fiannaca A, Urso AM, Graziano G, Ferrari F, Pupa SM, Sangaletti S, Chiodoni C, Pruneri G, Bardelli A, Colombo MP, Tripodo C. T Cells Expressing Receptor Recombination/Revision Machinery Are Detected in the Tumor Microenvironment and Expanded in Genomically Over-unstable Models. Cancer Immunol Res 2021; 9:825-837. [PMID: 33941587 DOI: 10.1158/2326-6066.cir-20-0645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/08/2021] [Accepted: 04/29/2021] [Indexed: 11/16/2022]
Abstract
Tumors undergo dynamic immunoediting as part of a process that balances immunologic sensing of emerging neoantigens and evasion from immune responses. Tumor-infiltrating lymphocytes (TIL) comprise heterogeneous subsets of peripheral T cells characterized by diverse functional differentiation states and dependence on T-cell receptor (TCR) specificity gained through recombination events during their development. We hypothesized that within the tumor microenvironment (TME), an antigenic milieu and immunologic interface, tumor-infiltrating peripheral T cells could reexpress key elements of the TCR recombination machinery, namely, Rag1 and Rag2 recombinases and Tdt polymerase, as a potential mechanism involved in the revision of TCR specificity. Using two syngeneic invasive breast cancer transplantable models, 4T1 and TS/A, we observed that Rag1, Rag2, and Dntt in situ mRNA expression characterized rare tumor-infiltrating T cells. In situ expression of the transcripts was increased in coisogenic Mlh1-deficient tumors, characterized by genomic overinstability, and was also modulated by PD-1 immune-checkpoint blockade. Through immunolocalization and mRNA hybridization analyses, we detected the presence of rare TDT+RAG1/2+ cells populating primary tumors and draining lymph nodes in human invasive breast cancer. Analysis of harmonized single-cell RNA-sequencing data sets of human cancers identified a very small fraction of tumor-associated T cells, characterized by the expression of recombination/revision machinery transcripts, which on pseudotemporal ordering corresponded to differentiated effector T cells. We offer thought-provoking evidence of a TIL microniche marked by rare transcripts involved in TCR shaping.
Collapse
Affiliation(s)
- Gaia Morello
- Tumor Immunology Unit, University of Palermo, Palermo, Italy
| | - Valeria Cancila
- Tumor Immunology Unit, University of Palermo, Palermo, Italy
| | - Massimo La Rosa
- National Research Council of Italy, ICAR-CNR, Palermo, Italy
| | - Giovanni Germano
- Department of Oncology, University of Torino, Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Daniele Lecis
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Vito Amodio
- Department of Oncology, University of Torino, Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Federica Zanardi
- Bioinformatics Core Unit IFOM-The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Fabio Iannelli
- Bioinformatics Core Unit IFOM-The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Daniele Greco
- Tumor Immunology Unit, University of Palermo, Palermo, Italy
| | - Laura La Paglia
- National Research Council of Italy, ICAR-CNR, Palermo, Italy
| | | | - Alfonso M Urso
- National Research Council of Italy, ICAR-CNR, Palermo, Italy
| | - Giulia Graziano
- Computational Genomics Laboratory, IFOM-The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Francesco Ferrari
- Computational Genomics Laboratory, IFOM-The FIRC Institute of Molecular Oncology, Milan, Italy
- Institute of Molecular Genetics "Luigi Luca Cavalli Sforza," National Research Council; IFOM-The FIRC Institute of Molecular Oncology, Pavia, Italy
| | - Serenella M Pupa
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Sabina Sangaletti
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Claudia Chiodoni
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Giancarlo Pruneri
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Alberto Bardelli
- Department of Oncology, University of Torino, Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Mario P Colombo
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy.
| | - Claudio Tripodo
- Tumor Immunology Unit, University of Palermo, Palermo, Italy.
| |
Collapse
|
20
|
Klawon DEJ, Gilmore DC, Leonard JD, Miller CH, Chao JL, Walker MT, Duncombe RK, Tung KS, Adams EJ, Savage PA. Altered selection on a single self-ligand promotes susceptibility to organ-specific T cell infiltration. J Exp Med 2021; 218:212038. [PMID: 33914024 PMCID: PMC8091134 DOI: 10.1084/jem.20200701] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 12/17/2020] [Accepted: 03/29/2021] [Indexed: 12/19/2022] Open
Abstract
For the large array of self-peptide/MHC class II (pMHC-II) complexes displayed in the body, it is unclear whether CD4+ T cell tolerance must be imparted for each individual complex or whether pMHC-II–nonspecific bystander mechanisms are sufficient to confer tolerance by acting broadly on T cells reactive to multiple self-pMHC-II ligands. Here, via reconstitution of T cell–deficient mice, we demonstrate that altered T cell selection on a single prostate-specific self-pMHC-II ligand renders recipient mice susceptible to prostate-specific T cell infiltration. Mechanistically, this self-pMHC-II complex is required for directing antigen-specific cells into the Foxp3+ regulatory T cell lineage but does not induce clonal deletion to a measurable extent. Thus, our data demonstrate that polyclonal T reg cells are unable to functionally compensate for a breach in tolerance to a single self-pMHC-II complex in this setting, revealing vulnerabilities in antigen-nonspecific bystander mechanisms of immune tolerance.
Collapse
Affiliation(s)
| | - Dana C Gilmore
- Department of Pathology, University of Chicago, Chicago, IL
| | - John D Leonard
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL
| | | | - Jaime L Chao
- Department of Pathology, University of Chicago, Chicago, IL
| | | | - Ryan K Duncombe
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL
| | - Kenneth S Tung
- Department of Pathology, University of Virginia, Charlottesville, VA
| | - Erin J Adams
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL
| | - Peter A Savage
- Department of Pathology, University of Chicago, Chicago, IL
| |
Collapse
|
21
|
Srinivasan J, Lancaster JN, Singarapu N, Hale LP, Ehrlich LIR, Richie ER. Age-Related Changes in Thymic Central Tolerance. Front Immunol 2021; 12:676236. [PMID: 33968086 PMCID: PMC8100025 DOI: 10.3389/fimmu.2021.676236] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/06/2021] [Indexed: 01/03/2023] Open
Abstract
Thymic epithelial cells (TECs) and hematopoietic antigen presenting cells (HAPCs) in the thymus microenvironment provide essential signals to self-reactive thymocytes that induce either negative selection or generation of regulatory T cells (Treg), both of which are required to establish and maintain central tolerance throughout life. HAPCs and TECs are comprised of multiple subsets that play distinct and overlapping roles in central tolerance. Changes that occur in the composition and function of TEC and HAPC subsets across the lifespan have potential consequences for central tolerance. In keeping with this possibility, there are age-associated changes in the cellular composition and function of T cells and Treg. This review summarizes changes in T cell and Treg function during the perinatal to adult transition and in the course of normal aging, and relates these changes to age-associated alterations in thymic HAPC and TEC subsets.
Collapse
Affiliation(s)
- Jayashree Srinivasan
- Department of Molecular Biosciences, Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
| | | | - Nandini Singarapu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Smithville, TX, United States
| | - Laura P Hale
- Department of Pathology, Duke University School of Medicine, Durham, NC, United States
| | - Lauren I R Ehrlich
- Department of Molecular Biosciences, Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States.,Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Ellen R Richie
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Smithville, TX, United States
| |
Collapse
|
22
|
Machiyama H, Yamaguchi T, Watanabe TM, Yanagida T, Fujita H. Activation probability of a single naïve T cell upon TCR ligation is controlled by T cells interacting with the same antigen-presenting cell. FEBS Lett 2021; 595:1512-1524. [PMID: 33826750 DOI: 10.1002/1873-3468.14082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 11/07/2022]
Abstract
Accurate recognition of antigens by specific T cells is crucial for adaptive immunity to work properly. The activation of a T-cell antigen-specific response by an antigen-presenting cell (APC) has not been clearly measured at a single T-cell level. It is also unknown whether the cell-extrinsic environment alters antigen recognition by a T cell. To measure the activation probability of a single T cell by an APC, we performed a single-cell live imaging assay and found that the activation probability changes depending not only on the antigens but also on the interactions of other T cells with the APC. We found that the specific reactivity of single naïve T cells was poor. However, their antigen-specific reactivity increased drastically when attached to an APC interacting with activated T cells. Activation of T cells was suppressed when regulatory T cells interacted with the APC. These findings suggest that although the ability of APCs to activate an antigen-specific naïve T cell is low at a single-cell level, the surrounding environment of APCs improves the specificity of the bulk response.
Collapse
Affiliation(s)
- Hiroaki Machiyama
- Immunology Frontier Research Center, Osaka University, Suita, Japan.,Department of Immunology, Tokyo Medical University, Japan
| | - Tomoyuki Yamaguchi
- Immunology Frontier Research Center, Osaka University, Suita, Japan.,Research Institute, Nozaki Tokushukai Hospital, Daito, Japan
| | - Tomonobu M Watanabe
- RIKEN Center for Biosystems Dynamics Research, Laboratory for Comprehensive Bioimaging, Kobe, Japan.,Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Japan
| | - Toshio Yanagida
- Immunology Frontier Research Center, Osaka University, Suita, Japan.,RIKEN Center for Biosystems Dynamics Research, Laboratory for Comprehensive Bioimaging, Kobe, Japan.,Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita, Japan
| | - Hideaki Fujita
- Immunology Frontier Research Center, Osaka University, Suita, Japan.,RIKEN Center for Biosystems Dynamics Research, Laboratory for Comprehensive Bioimaging, Kobe, Japan.,Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Japan
| |
Collapse
|
23
|
Thomas R, Oh J, Wang W, Su DM. Thymic atrophy creates holes in Treg-mediated immuno-regulation via impairment of an antigen-specific clone. Immunology 2021; 163:478-492. [PMID: 33786850 DOI: 10.1111/imm.13333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/14/2022] Open
Abstract
Age-related thymic atrophy results in reduced output of naïve conventional T (Tcon) cells. However, its impact on regulatory T (Treg) cells is insufficiently understood. Given evidence that thymic Treg (tTreg) cell generation is enhanced in the aged, atrophy thymus and that the aged periphery accumulates peripheral Treg (pTreg) cells, we asked why these Treg cells are unable to effectively attenuate increased autoreactivity-induced chronic inflammation in the elderly. We designed a mock-self-antigen chimera mouse model, in which membrane-bound ovalbumin (mOVA) transgenic mice, bearing a FoxN1-floxed gene for induction of conditional thymic atrophy, received OVA-specific (OT-II) T-cell receptor (TCR) transgenic progenitor cells. The chimeric mice with thymic atrophy exhibited a significant decrease in OVA-specific tTreg and pTreg cells but not polyclonal (pan)-Treg cells. These OVA-specific pTreg cells were significantly less able to suppress OVA-specific stimulation-induced proliferation in vitro and exhibited lower FoxP3 expression. Additionally, we conducted preliminary TCR repertoire diversity sequencing for Treg cells among recent thymic emigrants (RTEs) from RagGFP -FoxP3RFP dual-reporter mice and observed a trend for decreased diversity in mice with thymic atrophy compared to littermates with normal thymus. These data indicate that although the effects of age-related thymic atrophy do not affect pan-Treg generation, certain tissue-specific Treg clones may experience abnormal agonist selection. This, combined with enhanced pan-pTreg cells, may greatly contribute to age-related chronic inflammation, even in the absence of acute autoimmune disease in the elderly.
Collapse
Affiliation(s)
- Rachel Thomas
- Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Jiyoung Oh
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Weikan Wang
- Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Dong-Ming Su
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
24
|
Salou M, Legoux F, Lantz O. MAIT cell development in mice and humans. Mol Immunol 2020; 130:31-36. [PMID: 33352411 DOI: 10.1016/j.molimm.2020.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/02/2020] [Indexed: 01/11/2023]
Abstract
MAIT cells arise in the thymus following rearrangement of a T cell receptor (TCR) reactive against microbial vitamin B2-derived metabolites presented by the MHC-Ib molecule, MR1. Mechanisms that are conserved in mammals ensure the frequent production of MR1-restricted TCRs and the intra-thymic differentiation of MR1-restricted thymocytes into effector cells. Upon thymic egress and migration into non-lymphoid tissues, additional signals modulate MAIT cell functions according to each local tissue environment. Here, we review the recent progress made towards a better understanding of the establishment of this major immune cell subset.
Collapse
Affiliation(s)
- Marion Salou
- INSERM U932, PSL University, Institut Curie, Paris, 75005, France
| | - François Legoux
- INSERM U932, PSL University, Institut Curie, Paris, 75005, France
| | - Olivier Lantz
- INSERM U932, PSL University, Institut Curie, Paris, 75005, France; Laboratoire d'immunologie clinique, Institut Curie, Paris, 75005, France; Centre d'investigation Clinique en Biothérapie, Institut Curie (CIC-BT1428), Paris, 75005, France.
| |
Collapse
|
25
|
Patey D, Mushnikov N, Bowman G, Liu R. Mathematical modeling of population structure in bioreactors seeded with light-controllable microbial stem cells. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2020; 17:8182-8201. [PMID: 33378939 PMCID: PMC9714318 DOI: 10.3934/mbe.2020415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Industrial bioreactors use microbial organisms as living factories to produce a wide range of commercial products. For most applications, yields eventually become limited by the proliferation of "escape mutants" that acquire a growth advantage by losing the ability to make product. The goal of this work is to use mathematical models to determine whether this problem could be addressed in continuous flow bioreactors that include a "stem cell" population that multiplies rapidly and could be used to compete against the emergence of cheater mutants. In this system, external stimuli can be used to induce stem cell multiplication through symmetric cell division, or to limit stem cell multiplication and induce higher production through an asymmetric cell division that produces one stem cell and one new product-producing "factory cell". Our results show product yields from bioreactors with microbial stem cells can be increased by 18% to 127% over conventional methods, and sensitivity analysis shows that yields could be improved over a broad range of parameter space.
Collapse
Affiliation(s)
- Dane Patey
- Department of Mathematics and Statisitics, University of Wyoming, 1000 E. University, Laramie, WY 82071, USA
| | - Nikolai Mushnikov
- Department of Molecular Biology, University of Wyoming, 1000 E. University, Laramie, WY 82071, USA
| | - Grant Bowman
- Department of Molecular Biology, University of Wyoming, 1000 E. University, Laramie, WY 82071, USA
| | - Rongsong Liu
- Department of Mathematics and Statisitics, University of Wyoming, 1000 E. University, Laramie, WY 82071, USA
| |
Collapse
|
26
|
The contribution of thymic tolerance to central nervous system autoimmunity. Semin Immunopathol 2020; 43:135-157. [PMID: 33108502 PMCID: PMC7925481 DOI: 10.1007/s00281-020-00822-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/09/2020] [Indexed: 12/15/2022]
Abstract
Autoimmune diseases of the central nervous system (CNS) are associated with high levels of morbidity and economic cost. Research efforts have previously focused on the contribution of the peripheral adaptive and innate immune systems to CNS autoimmunity. However, a failure of thymic negative selection is a necessary step in CNS-reactive T cells escaping into the periphery. Even with defective thymic or peripheral tolerance, the development of CNS inflammation is rare. The reasons underlying this are currently poorly understood. In this review, we examine evidence implicating thymic selection in the pathogenesis of CNS autoimmunity. Animal models suggest that thymic negative selection is an important factor in determining susceptibility to and severity of CNS inflammation. There are indirect clinical data that suggest thymic function is also important in human CNS autoimmune diseases. Specifically, the association between thymoma and paraneoplastic encephalitis and changes in T cell receptor excision circles in multiple sclerosis implicate thymic tolerance in these diseases. We identify potential associations between CNS autoimmunity susceptibility factors and thymic tolerance. The therapeutic manipulation of thymopoiesis has the potential to open up new treatment modalities, but a better understanding of thymic tolerance in CNS autoimmunity is required before this can be realised.
Collapse
|
27
|
Usharauli D, Kamala T. Could cross-reactivity rescue Foxp3+ regulatory T cell precursors from thymic deletion? Scand J Immunol 2020; 93:e12940. [PMID: 32776320 DOI: 10.1111/sji.12940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/06/2020] [Accepted: 07/17/2020] [Indexed: 11/28/2022]
Abstract
Thymocytes that bind with high affinity to peptides displayed by MHC class II (pMHC-II) are deleted while low-affinity binders differentiate into naive CD4+ T cells. However, Foxp3+ regulatory T cells (Tregs) seem to defy this binary choice as their precursors require high-affinity interaction with pMHC-II for maturation in the thymus. Here, we rely on the antigen-specific interpretive framework, SPIRAL (Specific ImmunoRegulatory Algorithm), to propose that Tregs escape thymic deletion by forming dyads with IL-2-producing T cells via antigen cross-reactivity. This interpretation reconciles contradictions related to Treg ontogeny in the thymus and their role in modulating antigen-specific immune responses.
Collapse
|
28
|
Ashby KM, Hogquist KA. Instructing Memory in CD8 + Thymocytes. Trends Immunol 2020; 41:556-558. [PMID: 32518054 DOI: 10.1016/j.it.2020.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 05/20/2020] [Indexed: 11/16/2022]
Abstract
T cells can sometimes acquire properties of a memory cell without encountering foreign antigen. Miller et al. now show that development of such 'memory phenotype' (MP) CD8+ T cells starts with recognition of self-ligands in the thymus, and finishes in peripheral tissues. These cells respond rapidly during infection, and infiltrate tumors, where they express high amounts of PD-1.
Collapse
Affiliation(s)
- Katherine Maude Ashby
- Center for Immunology and Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kristin Ann Hogquist
- Center for Immunology and Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
29
|
Miller CH, Klawon DEJ, Zeng S, Lee V, Socci ND, Savage PA. Eomes identifies thymic precursors of self-specific memory-phenotype CD8 + T cells. Nat Immunol 2020; 21:567-577. [PMID: 32284593 PMCID: PMC7193531 DOI: 10.1038/s41590-020-0653-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 03/03/2020] [Indexed: 12/15/2022]
Abstract
Unprimed mice harbor a substantial population of "memory-phenotype" CD8+ T cells (CD8-MP cells) that exhibit hallmarks of activation and innate-like functional properties. Due to the lack of faithful markers to distinguish CD8-MP cells from bona fide CD8+ memory T cells, the developmental origins and antigen specificities of CD8-MP cells remain incompletely defined. Using deep T cell antigen receptor (TCR) sequencing, we found that the TCRs expressed by CD8-MP cells are highly recurrent and distinct from the TCRs expressed by naive-phenotype CD8+ T cells. CD8-MP clones exhibited reactivity to widely expressed self-ligands. T cell precursors expressing CD8-MP TCRs upregulated the transcription factor Eomes during maturation in the thymus, prior to induction of the full memory phenotype, suggestive of a unique program triggered by recognition of self-ligands. Moreover, CD8-MP cells infiltrate oncogene-driven prostate tumors and express high densities of PD-1, suggesting a potential role in anti-tumor immunity and response to immunotherapy.
Collapse
Affiliation(s)
| | - David E J Klawon
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Sharon Zeng
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Victoria Lee
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Nicholas D Socci
- Bioinformatics Core, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Peter A Savage
- Department of Pathology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
30
|
Ko A, Watanabe M, Nguyen T, Shi A, Achour A, Zhang B, Sun X, Wang Q, Zhuang Y, Weng NP, Hodes RJ. TCR Repertoires of Thymic Conventional and Regulatory T Cells: Identification and Characterization of Both Unique and Shared TCR Sequences. THE JOURNAL OF IMMUNOLOGY 2020; 204:858-867. [PMID: 31924652 DOI: 10.4049/jimmunol.1901006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/10/2019] [Indexed: 11/19/2022]
Abstract
Thymic regulatory T cells (tTreg) are critical in the maintenance of normal T cell immunity and tolerance. The role of TCR in tTreg selection remains incompletely understood. In this study, we assessed TCRα and TCRβ sequences of mouse tTreg and thymic conventional CD4+ T cells (Tconv) by high-throughput sequencing. We identified αβ TCR sequences that were unique to either tTreg or Tconv and found that these were distinct as recognized by machine learning algorithm and by preferentially used amino acid trimers in αβ CDR3 of tTreg. In addition, a proportion of αβ TCR sequences expressed by tTreg were also found in Tconv, and machine learning classified the great majority of these shared αβ TCR sequences as characteristic of Tconv and not tTreg. These findings identify two populations of tTreg, one in which the regulatory T cell fate is associated with unique properties of the TCR and another with TCR properties characteristic of Tconv for which tTreg fate is determined by factors beyond TCR sequence.
Collapse
Affiliation(s)
- Annette Ko
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Bethesda, MD 21224
| | - Masashi Watanabe
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Thomas Nguyen
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Bethesda, MD 21224
| | - Alvin Shi
- Department of Systems and Computational Biology, Massachusetts Institute of Technology, Cambridge, MA 02139; and
| | - Achouak Achour
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Bethesda, MD 21224
| | - Baojun Zhang
- Department of Immunology, Duke University, Durham, NC 27710
| | - Xiaoping Sun
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Bethesda, MD 21224
| | - Qun Wang
- Department of Immunology, Duke University, Durham, NC 27710
| | - Yuan Zhuang
- Department of Immunology, Duke University, Durham, NC 27710
| | - Nan-Ping Weng
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Bethesda, MD 21224;
| | - Richard J Hodes
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
31
|
Abstract
Foxp3-expressing CD4+ regulatory T (Treg) cells play key roles in the prevention of autoimmunity and the maintenance of immune homeostasis and represent a major barrier to the induction of robust antitumor immune responses. Thus, a clear understanding of the mechanisms coordinating Treg cell differentiation is crucial for understanding numerous facets of health and disease and for developing approaches to modulate Treg cells for clinical benefit. Here, we discuss current knowledge of the signals that coordinate Treg cell development, the antigen-presenting cell types that direct Treg cell selection, and the nature of endogenous Treg cell ligands, focusing on evidence from studies in mice. We also highlight recent advances in this area and identify key unanswered questions.
Collapse
Affiliation(s)
- Peter A Savage
- Department of Pathology, University of Chicago, Chicago, Illinois 60637, USA; , ,
| | - David E J Klawon
- Department of Pathology, University of Chicago, Chicago, Illinois 60637, USA; , ,
| | - Christine H Miller
- Department of Pathology, University of Chicago, Chicago, Illinois 60637, USA; , ,
| |
Collapse
|
32
|
Yeola AP, Ignatius Arokia Doss PM, Baillargeon J, Akbar I, Mailhot B, Balood M, Talbot S, Anderson AC, Lacroix S, Rangachari M. Endogenous T Cell Receptor Rearrangement Represses Aggressive Central Nervous System Autoimmunity in a TcR-Transgenic Model on the Non-Obese Diabetic Background. Front Immunol 2020; 10:3115. [PMID: 32010149 PMCID: PMC6974510 DOI: 10.3389/fimmu.2019.03115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 12/20/2019] [Indexed: 12/16/2022] Open
Abstract
The T cell response to central nervous system (CNS) antigen in experimental autoimmune encephalomyelitis (EAE) permits one to model the immune aspects of multiple sclerosis. 1C6 transgenic mice on the non-obese diabetic (NOD) background possess a class II-restricted T cell receptor (TcR; Vα5-Vβ7) specific for the encephalitogenic peptide myelin oligodendrocyte glycoprotein (MOG)[35−55]. It remains to be determined what role is played by allelic inclusion in shaping the TcR repertoire of these mice. Here, we show that 1C6 T cells display substantial promiscuity in their expression of non-transgenically derived Vα chains. Further, enforced expression of the transgenic TcR in 1C6 × Rag1−/− mice profoundly disrupted thymic negative selection and led to a sharp decrease in the number of mature peripheral T cells. 1C6 × Rag1−/− mice developed spontaneous EAE at a significant frequency and rapidly developed fatal EAE upon immunization with myelin oligodendrocyte glycoprotein (MOG)[35−55]. Passive transfer of 1C6 × Rag1+/+ CD4+ T cells, but not CD8+ T cells or B cells, partially rescued 1C6 × Rag1−/− mice from severe EAE. FoxP3+ CD4+ Treg cells were present in the CNS of immunized 1C6 mice, as well as immunized 1C6 × Rag1−/− that had been supplemented with 1C6 CD4+ T cells. However, they were not observed in 1C6 × Rag1−/− that did not receive Rag1-sufficient 1C6 CD4+. Further, in vivo blockade of Treg accelerated the onset of symptoms in 1C6 mice immunized with MOG[35−55], indicating the pertinence of Treg-mediated control of autoimmune inflammation in this model. Thus, TcR allelic inclusion is crucial to the generation of FoxP3+ CD4+ T cells necessary for the suppression of severe CNS autoimmunity.
Collapse
Affiliation(s)
- Asmita Pradeep Yeola
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada
| | | | - Joanie Baillargeon
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada
| | - Irshad Akbar
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada
| | - Benoit Mailhot
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada
| | - Mohammad Balood
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada.,Department of Physiology and Pharmacology, Université de Montréal, Montréal, QC, Canada
| | - Sébastien Talbot
- Department of Physiology and Pharmacology, Université de Montréal, Montréal, QC, Canada
| | - Ana Carrizosa Anderson
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, United States
| | - Steve Lacroix
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada.,Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| | - Manu Rangachari
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC, Canada.,Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| |
Collapse
|
33
|
Czaja AJ. Examining pathogenic concepts of autoimmune hepatitis for cues to future investigations and interventions. World J Gastroenterol 2019; 25:6579-6606. [PMID: 31832000 PMCID: PMC6906207 DOI: 10.3748/wjg.v25.i45.6579] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/25/2019] [Accepted: 11/29/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Multiple pathogenic mechanisms have been implicated in autoimmune hepatitis, but they have not fully explained susceptibility, triggering events, and maintenance or escalation of the disease. Furthermore, they have not identified a critical defect that can be targeted. The goals of this review are to examine the diverse pathogenic mechanisms that have been considered in autoimmune hepatitis, indicate investigational opportunities to validate their contribution, and suggest interventions that might evolve to modify their impact. English abstracts were identified in PubMed by multiple search terms. Full length articles were selected for review, and secondary and tertiary bibliographies were developed. Genetic and epigenetic factors can affect susceptibility by influencing the expression of immune regulatory genes. Thymic dysfunction, possibly related to deficient production of programmed cell death protein-1, can allow autoreactive T cells to escape deletion, and alterations in the intestinal microbiome may help overcome immune tolerance and affect gender bias. Environmental factors may trigger the disease or induce epigenetic changes in gene function. Molecular mimicry, epitope spread, bystander activation, neo-antigen production, lymphocytic polyspecificity, and disturbances in immune inhibitory mechanisms may maintain or escalate the disease. Interventions that modify epigenetic effects on gene expression, alter intestinal dysbiosis, eliminate deleterious environmental factors, and target critical pathogenic mechanisms are therapeutic possibilities that might reduce risk, individualize management, and improve outcome. In conclusion, diverse pathogenic mechanisms have been implicated in autoimmune hepatitis, and they may identify a critical factor or sequence that can be validated and used to direct future management and preventive strategies.
Collapse
Affiliation(s)
- Albert J Czaja
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, United States
| |
Collapse
|
34
|
Owen DL, Sjaastad LE, Farrar MA. Regulatory T Cell Development in the Thymus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:2031-2041. [PMID: 31591259 PMCID: PMC6910132 DOI: 10.4049/jimmunol.1900662] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/23/2019] [Indexed: 12/19/2022]
Abstract
Development of a comprehensive regulatory T (Treg) cell compartment in the thymus is required to maintain immune homeostasis and prevent autoimmunity. In this study, we review cellular and molecular determinants of Treg cell development in the thymus. We focus on the evidence for a self-antigen-focused Treg cell repertoire as well as the APCs responsible for presenting self-antigens to developing thymocytes. We also cover the contribution of different cytokines to thymic Treg development and the cellular populations that produce these cytokines. Finally, we update the originally proposed "two-step" model of thymic Treg differentiation by incorporating new evidence demonstrating that Treg cells develop from two Treg progenitor populations and discuss the functional importance of Treg cells generated via either progenitor pathway.
Collapse
Affiliation(s)
- David L Owen
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455; and Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455
| | - Louisa E Sjaastad
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455; and Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455
| | - Michael A Farrar
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455; and Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
35
|
Abstract
The contributions of the peripheral adaptive and innate immune systems to CNS autoimmunity have been extensively studied. However, the role of thymic selection in these conditions is much less well understood. The thymus is the primary lymphoid organ for the generation of T cells; thymic mechanisms ensure that cells with an overt autoreactive specificity are eliminated before they emigrate to the periphery and control the generation of thymic regulatory T cells. Evidence from animal studies demonstrates that thymic T cell selection is important for establishing tolerance to autoantigens. However, there is a considerable knowledge gap regarding the role of thymic selection in autoimmune conditions of the human CNS. In this Review, we critically examine the current body of experimental evidence for the contribution of thymic tolerance to CNS autoimmune diseases. An understanding of why dysfunction of either thymic or peripheral tolerance mechanisms rarely leads to CNS inflammation is currently lacking. We examine the potential of de novo T cell formation and thymic selection as novel therapeutic avenues and highlight areas for future study that are likely to make these targets the focus of future treatments.
Collapse
|
36
|
Inventories of naive and tolerant mouse CD4 T cell repertoires reveal a hierarchy of deleted and diverted T cell receptors. Proc Natl Acad Sci U S A 2019; 116:18537-18543. [PMID: 31451631 PMCID: PMC6744931 DOI: 10.1073/pnas.1907615116] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Deletion or Treg cell differentiation are alternative fates of autoreactive MHCII-restricted thymocytes. How these different modes of tolerance determine the size and composition of polyclonal cohorts of autoreactive T cells with shared specificity is poorly understood. We addressed how tolerance to a naturally expressed autoantigen of the central nervous system shapes the CD4 T cell repertoire. Specific cells in the tolerant peripheral repertoire either were Foxp3+ or displayed anergy hallmarks and, surprisingly, were at least as frequent as in the nontolerant repertoire. Despite this apparent lack of deletional tolerance, repertoire inventories uncovered that some T cell receptors (TCRs) were lost from the CD4 T cell pool, whereas others mediated Treg cell differentiation. The antigen responsiveness of these TCRs supported an affinity model of central tolerance. Importantly, the contribution of different diverter TCRs to the nascent thymic Treg cell population reflected their antigen reactivity rather than their frequency among precursors. This reveals a multilayered TCR hierarchy in CD4 T cell tolerance that separates deleted and diverted TCRs and assures that the Treg cell compartment is filled with cells of maximal permissive antigen reactivity.
Collapse
|
37
|
Czaja AJ. Immune inhibitory proteins and their pathogenic and therapeutic implications in autoimmunity and autoimmune hepatitis. Autoimmunity 2019; 52:144-160. [PMID: 31298041 DOI: 10.1080/08916934.2019.1641200] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Key inhibitory proteins can blunt immune responses to self-antigens, and deficiencies in this repertoire may promote autoimmunity. The goals of this review are to describe the key immune inhibitory proteins, indicate their possible impact on the development of autoimmune disease, especially autoimmune hepatitis, and encourage studies to clarify their pathogenic role and candidacy as therapeutic targets. English abstracts were identified in PubMed by multiple search terms. Full length articles were selected for review, and secondary and tertiary bibliographies were developed. Cytotoxic T lymphocyte antigen-4 impairs ligation of CD28 to B7 ligands on antigen presenting cells and inhibits the adaptive immune response by increasing anti-inflammatory cytokines, generating regulatory T cells, and reducing T cell activation and proliferation. Programed cell death antigen-1 inhibits T cell selection, activation, and proliferation by binding with two ligands at different phases and locations of the immune response. A soluble alternatively spliced variant of this protein can dampen the inhibitory signal. Autoimmune hepatitis has been associated with polymorphisms of the cytotoxic T lymphocyte antigen-4 gene, reduced hepatic expression of a ligand of programed cell death antigen-1, an interfering soluble variant of this key inhibitory protein, and antibodies against it. Findings have been associated with laboratory indices of liver injury and suboptimal treatment response. Abatacept, belatacept, CD28 blockade, and induction of T cell exhaustion are management considerations that require scrutiny. In conclusion, deficiencies in key immune inhibitory proteins may promote the occurrence of autoimmune diseases, such as autoimmune hepatitis, and emerging interventions may overcome these deficiencies. Investigations should define the nature, impact and management of these inhibitory disturbances in autoimmune hepatitis.
Collapse
Affiliation(s)
- Albert J Czaja
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science , Rochester , MN , USA
| |
Collapse
|
38
|
A temporal thymic selection switch and ligand binding kinetics constrain neonatal Foxp3 + T reg cell development. Nat Immunol 2019; 20:1046-1058. [PMID: 31209405 DOI: 10.1038/s41590-019-0414-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 04/29/2019] [Indexed: 12/21/2022]
Abstract
The neonatal thymus generates Foxp3+ regulatory T (tTreg) cells that are critical in controlling immune homeostasis and preventing multiorgan autoimmunity. The role of antigen specificity on neonatal tTreg cell selection is unresolved. Here we identify 17 self-peptides recognized by neonatal tTreg cells, and reveal ligand specificity patterns that include self-antigens presented in an age- and inflammation-dependent manner. Fate-mapping studies of neonatal peptidyl arginine deiminase type IV (Padi4)-specific thymocytes reveal disparate fate choices. Neonatal thymocytes expressing T cell receptors that engage IAb-Padi4 with moderate dwell times within a conventional docking orientation are exported as tTreg cells. In contrast, Padi4-specific T cell receptors with short dwell times are expressed on CD4+ T cells, while long dwell times induce negative selection. Temporally, Padi4-specific thymocytes are subject to a developmental stage-specific change in negative selection, which precludes tTreg cell development. Thus, a temporal switch in negative selection and ligand binding kinetics constrains the neonatal tTreg selection window.
Collapse
|
39
|
Abstract
Neuroblastoma (NB) is a common and deadly malignancy mostly observed in children. Evolution of therapeutic options for NB led to the addition of immunotherapeutic modalities to the previously recruited chemotherapeutic options. Molecular studies of the NB cells resulted in the discovery of many tumor-associated genes and antigens such as MYCN gene and GD2. MYCN gene and GD2 surface antigen are two of the most practical discoveries regarding immunotherapy of neuroblastoma. The GD2 antigen has been targeted in many animal and human studies including Phase III clinical trials. Even though these antigens have changed the face of pediatric neuroblastoma, they do not take as much credit in immunotherapy of adult-onset neuroblastoma. Monoclonal antibodies have been designed to detect this antigen on the surface of NB tumor cells. Despite bettering the outcomes for NB patients, current therapies still fail in many cases. Studies are underway to discover more specific tumor-associated antigens and more effective treatment options. In the current narrative, immunotherapy of NB - from emerging of this therapeutic backbone in NB to the latest discoveries regarding this malignancy - has been reviewed.
Collapse
Affiliation(s)
- Parnian Jabbari
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran.,Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Sara Hanaei
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran.,Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.,Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| |
Collapse
|
40
|
Breed ER, Watanabe M, Hogquist KA. Measuring Thymic Clonal Deletion at the Population Level. THE JOURNAL OF IMMUNOLOGY 2019; 202:3226-3233. [PMID: 31010850 DOI: 10.4049/jimmunol.1900191] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 03/25/2019] [Indexed: 12/18/2022]
Abstract
Clonal deletion of T cells specific for self-antigens in the thymus has been widely studied, primarily by approaches that focus on a single receptor (using TCR transgenes) or a single specificity (using peptide-MHC tetramers). However, less is known about clonal deletion at the population level. In this article, we report an assay that measures cleaved caspase 3 to define clonal deletion at the population level. This assay distinguishes clonal deletion from apoptotic events caused by neglect and approximates the anatomic site of deletion using CCR7. This approach showed that 78% of clonal deletion events occur in the cortex in mice. Medullary deletion events were detected at both the semimature and mature stages, although mature events were associated with failed regulatory T cell induction. Using this assay, we showed that bone marrow-derived APC drive approximately half of deletion events at both stages. We also found that both cortical and medullary deletion rely heavily on CD28 costimulation. These findings demonstrate a useful strategy for studying clonal deletion within the polyclonal repertoire.
Collapse
Affiliation(s)
- Elise R Breed
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455; and
| | - Masashi Watanabe
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Kristin A Hogquist
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455; and
| |
Collapse
|
41
|
LeGuern C, Germana S. On the elusive TCR specificity of thymic regulatory T cells. Am J Transplant 2019; 19:15-20. [PMID: 30378738 DOI: 10.1111/ajt.15165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/16/2018] [Accepted: 10/20/2018] [Indexed: 01/25/2023]
Abstract
Therapies using thymus-derived regulatory T cells (Tregs) are promising strategies for preventing autoimmunity or graft rejection. The efficacy of these approaches is, however, contingent on a better understanding of Treg mode of action, especially about factors controlling their activation in vivo. Although key parameters of Treg suppression have been identified, little information is available on Treg activation in vivo via the TCR. In light of recent studies using TCR transgenic mouse models as well as unpublished data, we discuss evidence in support of the view that Treg TCR specificities are not necessarily highly diverse, that the accessibility of Treg selective antigens control Treg development, and that peptides derived from MHC class II (MHC-II) could be prevailing antigens involved in Treg selection. This novel perspective provides insights on Treg development as well as a conceptual basis to a significant contribution of MHC-II derived peptides in the shaping of the Treg TCR repertoire.
Collapse
Affiliation(s)
- Christian LeGuern
- Massachusetts General Hospital/Harvard Medical School - Center for Transplantation Sciences, Charlestown, Massachusetts
| | - Sharon Germana
- Massachusetts General Hospital/Harvard Medical School - Center for Transplantation Sciences, Charlestown, Massachusetts
| |
Collapse
|
42
|
Katsumata H, Ikemiyagi M, Hirai T, Kanzawa T, Ishii R, Miyairi S, Fukuda H, Saiga K, Okumi M, Ishii Y, Yokoo T, Tanabe K. Impact of activated invariant natural killer T cells on the expansion of regulatory T cell precursors in murine thymocytes in vitro. Immunol Lett 2018; 206:41-48. [PMID: 30503823 DOI: 10.1016/j.imlet.2018.11.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/08/2018] [Accepted: 11/28/2018] [Indexed: 02/02/2023]
Abstract
Tolerance induction is a goal of clinical transplantation to prevent graft rejection without the lifelong use of immunosuppressive drugs. In a series of mouse studies, we previously reported that the establishment of mixed chimerism by treatment with a ligand for invariant natural killer T (iNKT) cells with CD40 signal blockade makes it possible to prevent allograft rejection without immunosuppressants, and this approach fails in thymectomized recipient mice. In this study, we showed that iNKT cells in murine thymocyte cultures are indispensable for the expansion of CD4+CD25+Foxp3+ regulatory T (Treg) cells as well as CD4+CD25+Foxp3- cells, which contained precursor Tregs (preTregs). After the culture of BALB/c mouse-derived thymocytes in the presence of α-galactosylceramide (α-GalCer), a representative ligand for iNKT cells, the ratio of CD4+CD25+Foxp3- preTregs to total CD4+CD8- T cells was much higher than that of CD4+CD25+Foxp3+ Treg cells, regardless of anti-CD40 L mAb treatment. The proliferation of CD4+CD25+Foxp3- cells, but not Treg cells, was significantly augmented, and the stability of Treg cells was not affected by α-GalCer. The expansion of thymocyte-derived Tregs was not inhibited by cytokine neutralization. However, in vitro thymus-derived CD4+CD25+Foxp3- cells expressed Foxp3 after IL-2 stimulation in a dose-dependent manner. These results collectively suggest that in vitro thymus-derived Treg cell expansion by α-GalCer treatment was caused by the proliferation of CD4+CD25+Foxp3- preTregs but not existing Treg cells.
Collapse
Affiliation(s)
- Haruki Katsumata
- Department of Urology, Tokyo Women's Medical University, Kawadacho, Shinjuku-ku, Tokyo, 162-8666, Japan; Division of Nephrology and hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8471, Japan
| | - Masako Ikemiyagi
- Department of Urology, Tokyo Women's Medical University, Kawadacho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Toshihito Hirai
- Department of Urology, Tokyo Women's Medical University, Kawadacho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Taichi Kanzawa
- Department of Urology, Tokyo Women's Medical University, Kawadacho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Rumi Ishii
- Department of Urology, Tokyo Women's Medical University, Kawadacho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Satoshi Miyairi
- Department of Urology, Tokyo Women's Medical University, Kawadacho, Shinjuku-ku, Tokyo, 162-8666, Japan; Department of Cardiovascular Surgery, Tokyo Women's Medical University, Kawadacho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Hironori Fukuda
- Department of Urology, Tokyo Women's Medical University, Kawadacho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Kan Saiga
- Department of Urology, Tokyo Women's Medical University, Kawadacho, Shinjuku-ku, Tokyo, 162-8666, Japan; Department of Urology, Jyoban Hosipital of Tokiwa Foundation, Fukushima, Japan
| | - Masayoshi Okumi
- Department of Urology, Tokyo Women's Medical University, Kawadacho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Yasuyuki Ishii
- Vaccine Innovation Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub (RCSTI), RIKEN, Suehirocho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan; REGiMMUNE Corporation, Nihonbashi-Hakozakicho, Chuou-ku, Tokyo, 103-0015, Japan
| | - Takashi Yokoo
- Division of Nephrology and hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8471, Japan
| | - Kazunari Tanabe
- Department of Urology, Tokyo Women's Medical University, Kawadacho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| |
Collapse
|
43
|
|
44
|
Bending D, Ono M. From stability to dynamics: understanding molecular mechanisms of regulatory T cells through Foxp3 transcriptional dynamics. Clin Exp Immunol 2018; 197:14-23. [PMID: 30076771 PMCID: PMC6591142 DOI: 10.1111/cei.13194] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2018] [Indexed: 12/30/2022] Open
Abstract
Studies on regulatory T cells (Treg) have focused on thymic Treg as a stable lineage of immunosuppressive T cells, the differentiation of which is controlled by the transcription factor forkhead box protein 3 (Foxp3). This lineage perspective, however, may constrain hypotheses regarding the role of Foxp3 and Tregin vivo, particularly in clinical settings and immunotherapy development. In this review, we synthesize a new perspective on the role of Foxp3 as a dynamically expressed gene, and thereby revisit the molecular mechanisms for the transcriptional regulation of Foxp3. In particular, we introduce a recent advancement in the study of Foxp3‐mediated T cell regulation through the development of the Timer of cell kinetics and activity (Tocky) system, and show that the investigation of Foxp3 transcriptional dynamics can reveal temporal changes in the differentiation and function of Tregin vivo. We highlight the role of Foxp3 as a gene downstream of T cell receptor (TCR) signalling and show that temporally persistent TCR signals initiate Foxp3 transcription in self‐reactive thymocytes. In addition, we feature the autoregulatory transcriptional circuit for the Foxp3 gene as a mechanism for consolidating Treg differentiation and activating their suppressive functions. Furthermore, we explore the potential mechanisms behind the dynamic regulation of epigenetic modifications and chromatin architecture for Foxp3 transcription. Lastly, we discuss the clinical relevance of temporal changes in the differentiation and activation of Treg.
Collapse
Affiliation(s)
- D Bending
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, UK.,Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - M Ono
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| |
Collapse
|
45
|
Baker RL, Jamison BL, Wiles TA, Lindsay RS, Barbour G, Bradley B, Delong T, Friedman RS, Nakayama M, Haskins K. CD4 T Cells Reactive to Hybrid Insulin Peptides Are Indicators of Disease Activity in the NOD Mouse. Diabetes 2018; 67:1836-1846. [PMID: 29976617 PMCID: PMC6110316 DOI: 10.2337/db18-0200] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/20/2018] [Indexed: 12/19/2022]
Abstract
We recently established that hybrid insulin peptides (HIPs), formed in islet β-cells by fusion of insulin C-peptide fragments to peptides of chromogranin A or islet amyloid polypeptide, are ligands for diabetogenic CD4 T-cell clones. The goal of this study was to investigate whether HIP-reactive T cells were indicative of ongoing autoimmunity. MHC class II tetramers were used to investigate the presence, phenotype, and function of HIP-reactive and insulin-reactive T cells in NOD mice. Insulin-reactive T cells encounter their antigen early in disease, but they express FoxP3 and therefore may contribute to immune regulation. In contrast, HIP-reactive T cells are proinflammatory and highly diabetogenic in an adoptive transfer model. Because the frequency of antigen-experienced HIP-reactive T cells increases over progression of disease, they may serve as biomarkers of autoimmune diabetes.
Collapse
MESH Headings
- Animals
- Autoantigens/chemistry
- Autoantigens/genetics
- Autoantigens/metabolism
- Autoimmune Diseases/immunology
- Autoimmune Diseases/metabolism
- Autoimmune Diseases/pathology
- Autoimmune Diseases/physiopathology
- Autoimmunity
- Biomarkers/blood
- C-Peptide/chemistry
- C-Peptide/genetics
- C-Peptide/metabolism
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/pathology
- Cells, Cultured
- Chromogranin A/chemistry
- Chromogranin A/genetics
- Chromogranin A/metabolism
- Clone Cells
- Crosses, Genetic
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 1/physiopathology
- Disease Progression
- Female
- Islet Amyloid Polypeptide/chemistry
- Islet Amyloid Polypeptide/genetics
- Islet Amyloid Polypeptide/metabolism
- Lymphocyte Activation
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Peptide Fragments/chemistry
- Peptide Fragments/genetics
- Peptide Fragments/metabolism
- Recombination, Genetic
- Specific Pathogen-Free Organisms
Collapse
Affiliation(s)
- Rocky L Baker
- Department of Immunology and Microbiology, University of Colorado School of Medicine at Denver, Aurora, CO
| | - Braxton L Jamison
- Department of Immunology and Microbiology, University of Colorado School of Medicine at Denver, Aurora, CO
| | - Timothy A Wiles
- Department of Immunology and Microbiology, University of Colorado School of Medicine at Denver, Aurora, CO
| | - Robin S Lindsay
- Department of Biomedical Research, National Jewish Health, Denver, CO
| | - Gene Barbour
- Department of Immunology and Microbiology, University of Colorado School of Medicine at Denver, Aurora, CO
| | - Brenda Bradley
- Department of Immunology and Microbiology, University of Colorado School of Medicine at Denver, Aurora, CO
| | - Thomas Delong
- Department of Immunology and Microbiology, University of Colorado School of Medicine at Denver, Aurora, CO
| | - Rachel S Friedman
- Department of Biomedical Research, National Jewish Health, Denver, CO
| | - Maki Nakayama
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine at Denver, Aurora, CO
| | - Kathryn Haskins
- Department of Immunology and Microbiology, University of Colorado School of Medicine at Denver, Aurora, CO
| |
Collapse
|
46
|
Sekiya T, Hibino S, Saeki K, Kanamori M, Takaki S, Yoshimura A. Nr4a Receptors Regulate Development and Death of Labile Treg Precursors to Prevent Generation of Pathogenic Self-Reactive Cells. Cell Rep 2018; 24:1627-1638.e6. [DOI: 10.1016/j.celrep.2018.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/11/2018] [Accepted: 07/01/2018] [Indexed: 02/01/2023] Open
|
47
|
Regulatory Role of CD4 + T Cells in Myocarditis. J Immunol Res 2018; 2018:4396351. [PMID: 30035131 PMCID: PMC6032977 DOI: 10.1155/2018/4396351] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/21/2018] [Accepted: 05/29/2018] [Indexed: 12/13/2022] Open
Abstract
Myocarditis is an important cause of heart failure in young patients. Autoreactive, most often, infection-triggered CD4+ T cells were confirmed to be critical for myocarditis induction. Due to a defect in clonal deletion of heart-reactive CD4+ T cells in the thymus of mice and humans, significant numbers of heart-specific autoreactive CD4+ T cells circulate in the blood. Normally, regulatory T cells maintain peripheral tolerance and prevent spontaneous myocarditis development. In the presence of tissue damage and innate immune activation, however, activated self-antigen-loaded dendritic cells promote CD4+ effector T cell expansion and myocarditis. So far, a direct pathogenic role has been described for both activated Th17 and Th1 effector CD4+ T cell subsets, though Th1 effector T cell-derived interferon-gamma was shown to limit myocarditis severity and prevent transition to inflammatory dilated cardiomyopathy. Interestingly, recent observations point out that various CD4+ T cell subsets demonstrate high plasticity in maintaining immune homeostasis and modulating disease phenotypes in myocarditis. These subsets include Th1 and Th17 effector cells and regulatory T cells, despite the fact that there are still sparse and controversial data on the specific role of FOXP3-expressing Treg in myocarditis. Understanding the specific roles of these T cell populations at different stages of the disease progression might provide a key for the development of successful therapeutic strategies.
Collapse
|
48
|
Perry JSA, Russler-Germain EV, Zhou YW, Purtha W, Cooper ML, Choi J, Schroeder MA, Salazar V, Egawa T, Lee BC, Abumrad NA, Kim BS, Anderson MS, DiPersio JF, Hsieh CS. Transfer of Cell-Surface Antigens by Scavenger Receptor CD36 Promotes Thymic Regulatory T Cell Receptor Repertoire Development and Allo-tolerance. Immunity 2018; 48:923-936.e4. [PMID: 29752065 DOI: 10.1016/j.immuni.2018.04.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 12/31/2017] [Accepted: 04/05/2018] [Indexed: 11/18/2022]
Abstract
The development of T cell tolerance in the thymus requires the presentation of host proteins by multiple antigen-presenting cell (APC) types. However, the importance of transferring host antigens from transcription factor AIRE-dependent medullary thymic epithelial cells (mTECs) to bone marrow (BM) APCs is unknown. We report that antigen was primarily transferred from mTECs to CD8α+ dendritic cells (DCs) and showed that CD36, a scavenger receptor selectively expressed on CD8α+ DCs, mediated the transfer of cell-surface, but not cytoplasmic, antigens. The absence of CD8α+ DCs or CD36 altered thymic T cell selection, as evidenced by TCR repertoire analysis and the loss of allo-tolerance in murine allogeneic BM transplantation (allo-BMT) studies. Decreases in these DCs and CD36 expression in peripheral blood of human allo-BMT patients correlated with graft-versus-host disease. Our findings suggest that CD36 facilitates transfer of mTEC-derived cell-surface antigen on CD8α+ DCs to promote tolerance to host antigens during homeostasis and allo-BMT.
Collapse
MESH Headings
- Animals
- Antigens, Surface/immunology
- Antigens, Surface/metabolism
- Bone Marrow Transplantation
- CD36 Antigens/genetics
- CD36 Antigens/immunology
- CD36 Antigens/metabolism
- CD8 Antigens/immunology
- CD8 Antigens/metabolism
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Epithelial Cells/immunology
- Epithelial Cells/metabolism
- Immune Tolerance/immunology
- Mice, Inbred BALB C
- Mice, Knockout
- Mice, Transgenic
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Thymus Gland/immunology
- Thymus Gland/metabolism
- Transplantation, Homologous
Collapse
Affiliation(s)
- Justin S A Perry
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Emilie V Russler-Germain
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - You W Zhou
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Whitney Purtha
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94131, USA
| | - Matthew L Cooper
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jaebok Choi
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mark A Schroeder
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Vanessa Salazar
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Takeshi Egawa
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Byeong-Chel Lee
- University of Pittsburgh Cancer Institute and Department of Medicine, Division of Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Nada A Abumrad
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brian S Kim
- Department of Medicine, Division of Dermatology and the Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mark S Anderson
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94131, USA
| | - John F DiPersio
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chyi-Song Hsieh
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
49
|
Yen B, Fortson KT, Rothman NJ, Arpaia N, Reiner SL. Clonal Bifurcation of Foxp3 Expression Visualized in Thymocytes and T Cells. Immunohorizons 2018; 2:119-128. [PMID: 29707696 PMCID: PMC5922779 DOI: 10.4049/immunohorizons.1700064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Regulatory T cells (Tregs) are crucial for suppressing autoimmunity and inflammation mediated by conventional T cells. To be useful, some Tregs should have overlapping specificity with relevant self-reactive or pathogen-specific clones. Whether matching recognition between Tregs and non-Tregs might arise through stochastic or deterministic mechanisms has not been addressed. We tested the hypothesis that some Tregs that arise in the thymus or that are induced during Ag-driven expansion of conventional CD4+ T cells might be clonally related to non-Tregs by virtue of asymmetric Foxp3 induction during cell division. We isolated mouse CD4+ thymocytes dividing in vivo, wherein sibling cells exhibited discordant expression of Foxp3 and CD25. Under in vitro conditions that stimulate induced Tregs from conventional mouse CD4+ T cells, we found a requirement for cell cycle progression to achieve Foxp3 induction. Moreover, a substantial fraction of sibling cell pairs arising from induced Treg stimulation also contained discordant expression of Foxp3. Division-linked yet asymmetric induction of Treg fate offers potential mechanisms to anticipate peripheral self-reactivity during thymic selection as well as produce precise, de novo counterregulation during CD4+ T cell–mediated immune responses.
Collapse
Affiliation(s)
- Bonnie Yen
- Department of Microbiology and Immunology, College of Physicians and Surgeons of Columbia University, New York, NY 10032.,Department of Pediatrics, College of Physicians and Surgeons of Columbia University, New York, NY 10032
| | - Katherine T Fortson
- Department of Microbiology and Immunology, College of Physicians and Surgeons of Columbia University, New York, NY 10032
| | - Nyanza J Rothman
- Department of Microbiology and Immunology, College of Physicians and Surgeons of Columbia University, New York, NY 10032.,Department of Pediatrics, College of Physicians and Surgeons of Columbia University, New York, NY 10032
| | - Nicholas Arpaia
- Department of Microbiology and Immunology, College of Physicians and Surgeons of Columbia University, New York, NY 10032
| | - Steven L Reiner
- Department of Microbiology and Immunology, College of Physicians and Surgeons of Columbia University, New York, NY 10032.,Department of Pediatrics, College of Physicians and Surgeons of Columbia University, New York, NY 10032
| |
Collapse
|
50
|
Sprouse ML, Scavuzzo MA, Blum S, Shevchenko I, Lee T, Makedonas G, Borowiak M, Bettini ML, Bettini M. High self-reactivity drives T-bet and potentiates Treg function in tissue-specific autoimmunity. JCI Insight 2018; 3:97322. [PMID: 29367462 DOI: 10.1172/jci.insight.97322] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/14/2017] [Indexed: 12/30/2022] Open
Abstract
T cell receptor (TCR) affinity is a critical factor of Treg lineage commitment, but whether self-reactivity is a determining factor in peripheral Treg function remains unknown. Here, we report that a high degree of self-reactivity is crucial for tissue-specific Treg function in autoimmunity. Based on high expression of CD5, we identified a subset of self-reactive Tregs expressing elevated levels of T-bet, GITR, CTLA-4, and ICOS, which imparted significant protection from autoimmune diabetes. We observed that T-bet expression in Tregs, necessary for control of Th1 autoimmunity, could be induced in an IFNγ-independent fashion and, unlike in conventional T cells (Tconv), was strongly correlated with the strength of TCR signaling. The level of CD5 similarly identified human Tregs with an increased functional profile, suggesting that CD5hi Tregs may constitute an efficacious subpopulation appropriate for use in adoptive Treg therapies for treatment of inflammatory conditions. Overall, this work establishes an instrumental role of high TCR self-reactivity in driving Treg function.
Collapse
Affiliation(s)
- Maran L Sprouse
- Department of Pediatrics, Section of Diabetes and Endocrinology
| | | | - Samuel Blum
- Department of Pediatrics, Section of Diabetes and Endocrinology
| | - Ivan Shevchenko
- Department of Pediatrics, Section of Diabetes and Endocrinology
| | - Thomas Lee
- Department of Pediatrics, Section of Diabetes and Endocrinology
| | | | - Malgorzata Borowiak
- Department of Molecular and Cellular Biology, Center for Cell and Gene Therapy, and.,McNair Medical Institute, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Matthew L Bettini
- Department of Pediatrics, Section of Diabetes and Endocrinology.,McNair Medical Institute, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Maria Bettini
- Department of Pediatrics, Section of Diabetes and Endocrinology.,McNair Medical Institute, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|