1
|
Zhang Y, Guo J, Chen Z, Chang Y, Zhang X, Liu Z, Li X, Zha X, Sun G, Li Y. Triclocarban disrupts the activation and differentiation of human CD8 + T cells by suppressing the vitamin D receptor signaling. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136096. [PMID: 39383692 DOI: 10.1016/j.jhazmat.2024.136096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
Triclocarban (TCC) is a widely applied environmental endocrine-disrupting chemical (EDC). Similar to most of EDCs, TCC potentially damages the immunity of various species. However, whether and how TCC impacts the adaptive immunity in mammals has yet to be determined. Herein, we discovered that TCC disrupts the activation and differentiation of CD8+ T cells in primary human peripheral blood samples, purified CD8+ T cells, and in mice in vivo. Mechanistically, TCC might block the activation of the vitamin D receptor (VDR) and reduce the synthesis of cholesterol, a precursor of vitamin D, resulting in inhibition of VDR signaling due to the suppression of both its ligand and the receptor itself by TCC. Our findings elucidate the hazard and potential mechanisms of TCC in mammalian adaptive immunity and highlighted VDR as a potential therapeutic target for the immunodeficiency caused by TCC.
Collapse
Affiliation(s)
- Yikai Zhang
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China; Department of Hematology, First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, Guangzhou 510632, China
| | - Jiafan Guo
- Department of Clinical Laboratory, First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Zhixi Chen
- Department of Hematology, First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, Guangzhou 510632, China
| | - Yiming Chang
- Department of Pediatrics, First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Xingwei Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Zirui Liu
- Department of Hematology, First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, Guangzhou 510632, China
| | - Xinye Li
- Department of Hematology, First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, Guangzhou 510632, China
| | - Xianfeng Zha
- Department of Clinical Laboratory, First Affiliated Hospital of Jinan University, Guangzhou 510632, China.
| | - Guodong Sun
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China.
| | - Yangqiu Li
- Department of Hematology, First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
2
|
Lu S, Wang C, Ma J, Wang Y. Metabolic mediators: microbial-derived metabolites as key regulators of anti-tumor immunity, immunotherapy, and chemotherapy. Front Immunol 2024; 15:1456030. [PMID: 39351241 PMCID: PMC11439727 DOI: 10.3389/fimmu.2024.1456030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/27/2024] [Indexed: 10/04/2024] Open
Abstract
The human microbiome has recently emerged as a focal point in cancer research, specifically in anti-tumor immunity, immunotherapy, and chemotherapy. This review explores microbial-derived metabolites, emphasizing their crucial roles in shaping fundamental aspects of cancer treatment. Metabolites such as short-chain fatty acids (SCFAs), Trimethylamine N-Oxide (TMAO), and Tryptophan Metabolites take the spotlight, underscoring their diverse origins and functions and their profound impact on the host immune system. The focus is on SCFAs' remarkable ability to modulate immune responses, reduce inflammation, and enhance anti-tumor immunity within the intricate tumor microenvironment (TME). The review critically evaluates TMAO, intricately tied to dietary choices and gut microbiota composition, assessing its implications for cancer susceptibility, progression, and immunosuppression. Additionally, the involvement of tryptophan and other amino acid metabolites in shaping immune responses is discussed, highlighting their influence on immune checkpoints, immunosuppression, and immunotherapy effectiveness. The examination extends to their dynamic interaction with chemotherapy, emphasizing the potential of microbial-derived metabolites to alter treatment protocols and optimize outcomes for cancer patients. A comprehensive understanding of their role in cancer therapy is attained by exploring their impacts on drug metabolism, therapeutic responses, and resistance development. In conclusion, this review underscores the pivotal contributions of microbial-derived metabolites in regulating anti-tumor immunity, immunotherapy responses, and chemotherapy outcomes. By illuminating the intricate interactions between these metabolites and cancer therapy, the article enhances our understanding of cancer biology, paving the way for the development of more effective treatment options in the ongoing battle against cancer.
Collapse
Affiliation(s)
- Shan Lu
- Department of General Practice, The Second Hospital of Jilin University, Changchun, China
| | - Chunling Wang
- Medical Affairs Department, The Second Hospital of Jilin University, Changchun, China
| | - Jingru Ma
- Department of Clinical Laboratory, the Second Hospital of Jilin University, Changchun, China
| | - Yichao Wang
- Department of Obstetrics and Gynecology, the Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Wang J, Mei L, Hao Y, Xu Y, Yang Q, Dai Z, Yang Y, Wu Z, Ji Y. Contemporary Perspectives on the Role of Vitamin D in Enhancing Gut Health and Its Implications for Preventing and Managing Intestinal Diseases. Nutrients 2024; 16:2352. [PMID: 39064795 PMCID: PMC11279818 DOI: 10.3390/nu16142352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/11/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Vitamin D, a crucial fat-soluble vitamin, is primarily synthesized in the skin upon exposure to ultraviolet radiation and is widely recognized as a bone-associated hormone. However, recent scientific advancements have unveiled its intricate association with gut health. The intestinal barrier serves as a vital component, safeguarding the intestinal milieu and maintaining overall homeostasis. Deficiencies in vitamin D have been implicated in altering the gut microbiome composition, compromising the integrity of the intestinal mucosal barrier, and predisposing individuals to various intestinal pathologies. Vitamin D exerts its regulatory function by binding to vitamin D receptors (VDR) present in immune cells, thereby modulating the production of pro-inflammatory cytokines and influencing the intestinal barrier function. Notably, numerous studies have reported lower serum vitamin D levels among patients suffering from intestinal diseases, including inflammatory bowel disease, irritable bowel syndrome, and celiac disease, highlighting the growing significance of vitamin D in gut health maintenance. This comprehensive review delves into the latest advancements in understanding the mechanistic role of vitamin D in modulating the gut microbiome and intestinal barrier function, emphasizing its pivotal role in immune regulation. Furthermore, we consolidate and present relevant findings pertaining to the therapeutic potential of vitamin D in the management of intestinal diseases.
Collapse
Affiliation(s)
- Jiaxin Wang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; (J.W.); (L.M.); (Q.Y.); (Z.D.); (Y.Y.); (Z.W.)
| | - Lihua Mei
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; (J.W.); (L.M.); (Q.Y.); (Z.D.); (Y.Y.); (Z.W.)
| | - Yanling Hao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China;
| | - Yajun Xu
- Department of Nutrition and Food Hygiene, Peking University, Beijing 100083, China;
| | - Qing Yang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; (J.W.); (L.M.); (Q.Y.); (Z.D.); (Y.Y.); (Z.W.)
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; (J.W.); (L.M.); (Q.Y.); (Z.D.); (Y.Y.); (Z.W.)
| | - Ying Yang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; (J.W.); (L.M.); (Q.Y.); (Z.D.); (Y.Y.); (Z.W.)
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; (J.W.); (L.M.); (Q.Y.); (Z.D.); (Y.Y.); (Z.W.)
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China;
| | - Yun Ji
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; (J.W.); (L.M.); (Q.Y.); (Z.D.); (Y.Y.); (Z.W.)
| |
Collapse
|
4
|
Aggeletopoulou I, Tsounis EP, Triantos C. Vitamin D and Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): Novel Mechanistic Insights. Int J Mol Sci 2024; 25:4901. [PMID: 38732118 PMCID: PMC11084591 DOI: 10.3390/ijms25094901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is an increasingly prevalent condition characterized by abnormal fat accumulation in the liver, often associated with metabolic disorders. Emerging evidence suggests a potential link between vitamin D deficiency and the development and progression of MASLD. The current review provides a concise overview of recent studies uncovering novel mechanistic insights into the interplay between vitamin D and MASLD. Several epidemiological studies have highlighted a significant association between low vitamin D levels and an increased risk of MASLD. Vitamin D, traditionally known for its role in bone health, has now been recognized as a key player in various physiological processes, including immune regulation and inflammation. Experimental studies using animal models have demonstrated that vitamin D deficiency exacerbates liver steatosis and inflammation, suggesting a potential protective role against MASLD. Mechanistically, vitamin D appears to modulate MASLD through multiple pathways. Firstly, the vitamin D receptor (VDR) is abundantly expressed in liver cells, indicating a direct regulatory role in hepatic function. Activation of the VDR has been shown to suppress hepatic lipid accumulation and inflammation, providing a mechanistic basis for the observed protective effects. Additionally, vitamin D influences insulin sensitivity, a critical factor in MASLD pathogenesis. Improved insulin sensitivity may mitigate the excessive accumulation of fat in the liver, thus attenuating MASLD progression. In parallel, vitamin D exhibits anti-inflammatory properties by inhibiting pro-inflammatory cytokines implicated in MASLD pathophysiology. Experimental evidence suggests that the immunomodulatory effects of vitamin D extend to the liver, reducing inflammation and oxidative stress, key drivers of MASLD, and the likelihood of hepatocyte injury and fibrosis. Understanding the complex interplay between vitamin D and MASLD provides a basis for exploring targeted therapeutic strategies and preventive interventions. As vitamin D deficiency is a modifiable risk factor, addressing this nutritional concern may prove beneficial in mitigating the burden of MASLD and associated metabolic disorders.
Collapse
Affiliation(s)
| | | | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece; (I.A.); (E.P.T.)
| |
Collapse
|
5
|
Song J, Wang H, Wang ZZ, Guo CL, Xiang WX, Li JX, Wang ZC, Zhong JX, Huang K, Schleimer RP, Yao Y, Liu Z. Aberrant follicular regulatory T cells associate with immunoglobulin hyperproduction in nasal polyps with ectopic lymphoid tissues. J Allergy Clin Immunol 2024; 153:1025-1039. [PMID: 38072196 PMCID: PMC11152195 DOI: 10.1016/j.jaci.2023.11.913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/09/2023] [Accepted: 11/03/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND Ectopic lymphoid tissues (eLTs) and associated follicular helper T (TFH) cells contribute to local immunoglobulin hyperproduction in nasal polyps (NPs). Follicular regulatory T (TFR) cells in secondary lymphoid organs counteract TFH cells and suppress immunoglobulin production; however, the presence and function of TFR cells in eLTs in peripheral diseased tissues remain poorly understood. OBJECTIVE We sought to investigate the presence, phenotype, and function of TFR cells in NPs. METHODS The presence, abundance, and phenotype of TFR cells in NPs were examined using single-cell RNA sequencing, immunofluorescence staining, and flow cytometry. Sorted polyp and circulating T-cell subsets were cocultured with autologous circulating naïve B cells, and cytokine and immunoglobulin production were measured by ELISA. RESULTS TFR cells were primarily localized within eLTs in NPs. TFR cell frequency and TFR cell/TFH cell ratio were decreased in NPs with eLTs compared with NPs without eLTs and control inferior turbinate tissues. TFR cells displayed an overlapping phenotype with TFH cells and FOXP3+ regulatory T cells in NPs. Polyp TFR cells had reduced CTLA-4 expression and decreased capacity to inhibit TFH cell-induced immunoglobulin production compared with their counterpart in blood and tonsils. Blocking CTLA-4 abolished the suppressive effect of TFR cells. Lower vitamin D receptor expression was observed on polyp TFR cells compared with TFR cells in blood and tonsils. Vitamin D treatment upregulated CTLA-4 expression on polyp TFR cells and restored their suppressive function in vitro. CONCLUSIONS Polyp TFR cells in eLTs have decreased CLTA-4 and vitamin D receptor expression and impaired capacity to suppress TFH cell-induced immunoglobulin production, which can be reversed by vitamin D treatment in vitro.
Collapse
Affiliation(s)
- Jia Song
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, China
| | - Hai Wang
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, China
| | - Zhe-Zheng Wang
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, China
| | - Cui-Lian Guo
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, China
| | - Wen-Xuan Xiang
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing-Xian Li
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, China
| | - Zhi-Chao Wang
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, China
| | - Ji-Xin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China; Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Robert P Schleimer
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Yin Yao
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, China; Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, China; Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
6
|
Ødum AWF, Geisler C. Vitamin D in Cutaneous T-Cell Lymphoma. Cells 2024; 13:503. [PMID: 38534347 DOI: 10.3390/cells13060503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Cutaneous T-cell lymphoma (CTCL) is characterized by the proliferation of malignant T cells in inflamed skin lesions. Mycosis fungoides (MF)-the most common variant of CTCL-often presents with skin lesions around the abdomen and buttocks ("bathing suit" distribution), i.e., in skin areas devoid of sun-induced vitamin D. For decades, sunlight and vitamin D have been connected to CTCL. Thus, vitamin D induces apoptosis and inhibits the expression of cytokines in malignant T cells. Furthermore, CTCL patients often display vitamin D deficiency, whereas phototherapy induces vitamin D and has beneficial effects in CTCL, suggesting that light and vitamin D have beneficial/protective effects in CTCL. Inversely, vitamin D promotes T helper 2 (Th2) cell specific cytokine production, regulatory T cells, tolerogenic dendritic cells, as well as the expression of immune checkpoint molecules, all of which may have disease-promoting effects by stimulating malignant T-cell proliferation and inhibiting anticancer immunity. Studies on vitamin D treatment in CTCL patients showed conflicting results. Some studies found positive effects, others negative effects, while the largest study showed no apparent clinical effect. Taken together, vitamin D may have both pro- and anticancer effects in CTCL. The balance between the opposing effects of vitamin D in CTCL is likely influenced by treatment and may change during the disease course. Therefore, it remains to be discovered whether and how the effect of vitamin D can be tilted toward an anticancer response in CTCL.
Collapse
Affiliation(s)
- August-Witte Feentved Ødum
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Carsten Geisler
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
7
|
Yao M, Oduro PK, Akintibu AM, Yan H. Modulation of the vitamin D receptor by traditional Chinese medicines and bioactive compounds: potential therapeutic applications in VDR-dependent diseases. Front Pharmacol 2024; 15:1298181. [PMID: 38318147 PMCID: PMC10839104 DOI: 10.3389/fphar.2024.1298181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
The Vitamin D receptor (VDR) is a crucial nuclear receptor that plays a vital role in various physiological functions. To a larger extent, the genomic effects of VDR maintain general wellbeing, and its modulation holds implications for multiple diseases. Current evidence regarding using vitamin D or its synthetic analogs to treat non-communicable diseases is insufficient, though observational studies suggest potential benefits. Traditional Chinese medicines (TCMs) and bioactive compounds derived from natural sources have garnered increasing attention. Interestingly, TCM formulae and TCM-derived bioactive compounds have shown promise in modulating VDR activities. This review explores the intriguing potential of TCM and bioactive compounds in modulating VDR activity. We first emphasize the latest information on the genetic expression, function, and structure of VDR, providing a comprehensive understanding of this crucial receptor. Following this, we review several TCM formulae and herbs known to influence VDR alongside the mechanisms underpinning their action. Similarly, we also discuss TCM-based bioactive compounds that target VDR, offering insights into their roles and modes of action.
Collapse
Affiliation(s)
- Minghe Yao
- Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, China
| | - Patrick Kwabena Oduro
- Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, Buffalo, NY, United States
| | - Ayomide M. Akintibu
- School of Community Health and Policy, Morgan State University, Baltimore, MD, United States
| | - Haifeng Yan
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
8
|
Yeh WZ, Lea R, Stankovich J, Sampangi S, Laverick L, Van der Walt A, Jokubaitis V, Gresle M, Butzkueven H. Transcriptomics identifies blunted immunomodulatory effects of vitamin D in people with multiple sclerosis. Sci Rep 2024; 14:1436. [PMID: 38228657 PMCID: PMC10792011 DOI: 10.1038/s41598-024-51779-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 01/09/2024] [Indexed: 01/18/2024] Open
Abstract
Vitamin D deficiency is a risk factor for developing multiple sclerosis (MS). However, the immune effects of vitamin D in people with MS are not well understood. We analyzed transcriptomic datasets generated by RNA sequencing of immune cell subsets (CD4+, CD8+ T cells, B cells, monocytes) from 33 healthy controls and 33 untreated MS cases. We utilized a traditional bioinformatic pipeline and weighted gene co-expression network analysis (WGCNA) to determine genes and pathways correlated with endogenous vitamin D. In controls, CD4+ and CD8+ T cells had 1079 and 1188 genes, respectively, whose expressions were correlated with plasma 25-hydroxyvitamin D level (P < 0.05). Functional enrichment analysis identified association with TNF-alpha and MAPK signaling. In CD4+ T cells of controls, vitamin D level was associated with expression levels of several genes proximal to multiple sclerosis risk loci (P = 0.01). Genes differentially associated with endogenous vitamin D by case-control status were enriched in TNF-alpha signaling via NF-κB. WGCNA suggested a blunted response to vitamin D in cases relative to controls. Collectively, our findings provide further evidence for the immune effects of vitamin D, and demonstrate a differential immune response to vitamin D in cases relative to controls, highlighting a possible mechanism contributing to MS pathophysiology.
Collapse
Affiliation(s)
- Wei Z Yeh
- Department of Neuroscience, Central Clinical School, Monash University, Alfred Centre, Level 6, 99 Commercial Rd, Melbourne, VIC, 3004, Australia.
- Department of Neurology, Alfred Health, Melbourne, VIC, Australia.
| | - Rodney Lea
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Jim Stankovich
- Department of Neuroscience, Central Clinical School, Monash University, Alfred Centre, Level 6, 99 Commercial Rd, Melbourne, VIC, 3004, Australia
| | - Sandeep Sampangi
- Department of Neuroscience, Central Clinical School, Monash University, Alfred Centre, Level 6, 99 Commercial Rd, Melbourne, VIC, 3004, Australia
- Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Louise Laverick
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - Anneke Van der Walt
- Department of Neuroscience, Central Clinical School, Monash University, Alfred Centre, Level 6, 99 Commercial Rd, Melbourne, VIC, 3004, Australia
- Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Vilija Jokubaitis
- Department of Neuroscience, Central Clinical School, Monash University, Alfred Centre, Level 6, 99 Commercial Rd, Melbourne, VIC, 3004, Australia
- Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| | - Melissa Gresle
- Department of Neuroscience, Central Clinical School, Monash University, Alfred Centre, Level 6, 99 Commercial Rd, Melbourne, VIC, 3004, Australia
- Department of Neurology, Alfred Health, Melbourne, VIC, Australia
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - Helmut Butzkueven
- Department of Neuroscience, Central Clinical School, Monash University, Alfred Centre, Level 6, 99 Commercial Rd, Melbourne, VIC, 3004, Australia.
- Department of Neurology, Alfred Health, Melbourne, VIC, Australia.
| |
Collapse
|
9
|
Mo G, Lu X, Wu S, Zhu W. Strategies and rules for tuning TCR-derived therapy. Expert Rev Mol Med 2023; 26:e4. [PMID: 38095091 PMCID: PMC11062142 DOI: 10.1017/erm.2023.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/17/2023] [Accepted: 12/05/2023] [Indexed: 04/04/2024]
Abstract
Manipulation of T cells has revolutionized cancer immunotherapy. Notably, the use of T cells carrying engineered T cell receptors (TCR-T) offers a favourable therapeutic pathway, particularly in the treatment of solid tumours. However, major challenges such as limited clinical response efficacy, off-target effects and tumour immunosuppressive microenvironment have hindered the clinical translation of this approach. In this review, we mainly want to guide TCR-T investigators on several major issues they face in the treatment of solid tumours after obtaining specific TCR sequences: (1) whether we have to undergo affinity maturation or not, and what parameter we should use as a criterion for being more effective. (2) What modifications can be added to counteract the tumour inhibitory microenvironment to make our specific T cells to be more effective and what is the safety profile of such modifications? (3) What are the new forms and possibilities for TCR-T cell therapy in the future?
Collapse
Affiliation(s)
- Guoheng Mo
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xinyu Lu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Sha Wu
- Department of Immunology/Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Wei Zhu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Ji Y, Wei CB, Gu W, Hou LL. Relevance of vitamin D on NAFLD and liver fibrosis detected by vibration controlled transient elastography in US adults: a cross-sectional analysis of NHANES 2017-2018. Ann Med 2023; 55:2209335. [PMID: 37155562 PMCID: PMC10167885 DOI: 10.1080/07853890.2023.2209335] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/26/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND The connection between vitamin D to non-alcoholic fatty liver disease (NAFLD) is still unclear. Herein, the relationship of vitamin D with NAFLD and liver fibrosis (LF) detected by vibration controlled transient elastography was investigated in US adults. METHODS The National Health and Nutrition Examination Survey of 2017-2018 was employed for our analysis. Participants were categorized as having either vitamin D deficiency (<50 nmol/L) or vitamin D sufficiency (≥50 nmol/L). A controlled attenuation parameter score of ≥ 263 dB/m was employed to define NAFLD. Significant LF was identified by the liver stiffness measurement value of ≥ 7.9 kPa. Multivariate logistic regression was adopted to explore the relationships. RESULTS Among the 3407 participants, the prevalence of NAFLD and LF was 49.63% and 15.93% respectively. Compared to participants without NAFLD, no significant difference in serum vitamin D was observed in NALFD participants (74.26 vs. 72.24 nmol/L; p = 0.21). Using multivariate logistic regression analysis, no obvious connection of vitamin D status to NAFLD (sufficiency vs. deficiency, OR 0.89, 95%CI 0.70-1.13) was discovered. However, among NAFLD participants, the sufficiency of vitamin D represents a lower LF risk (OR 0.56, 95%CI 0.38-0.83). When evaluated in quartiles, in comparison to the lowest quartile, high vitamin D represents low LF risk in a dose-dependent manner (Q2 vs. Q1, OR 0.65, 95%CI 0.37-1.14; Q3 vs. Q1, OR 0.64, 95%CI 0.41-1.00; Q4 vs. Q1, OR 0.49, 95%CI 0.30-0.79). CONCLUSIONS No relationship was found between vitamin D and CAP-defined NAFLD. However, a positive connection of the high serum vitamin D to the reduced LF risk was found among NAFLD subjects.Key messages:Our study found no relationship between vitamin D and CAP-defined NAFLD in US adults.High serum vitamin D was inversely associated with liver fibrosis in a dose-dependent manner among NAFLD participants.
Collapse
Affiliation(s)
- Yuan Ji
- Health Management Center, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Chang-Bao Wei
- Department of Joint Surgery and Sports Medicine, Wuxi 9th People’s Hospital Affiliated to Suzhou Medical College of Soochow University, Wuxi, China
| | - Wei Gu
- Health Management Center, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Lin-Lin Hou
- Health Management Center, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
| |
Collapse
|
11
|
Zhu X, Li K, Liu G, Wu R, Zhang Y, Wang S, Xu M, Lu L, Li P. Microbial metabolite butyrate promotes anti-PD-1 antitumor efficacy by modulating T cell receptor signaling of cytotoxic CD8 T cell. Gut Microbes 2023; 15:2249143. [PMID: 37635362 PMCID: PMC10464552 DOI: 10.1080/19490976.2023.2249143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/07/2023] [Accepted: 08/14/2023] [Indexed: 08/29/2023] Open
Abstract
Recent studies have demonstrated that the antitumor immunity of immune cells can be modulated by gut microbiota and their metabolites. However, the underlying mechanisms remain unclear. Here, we showed that the serum butyric acid level is positively correlated with the expression of programmed cell death-1 (PD-1) on circulating CD8+ and Vγ9 Vδ2 (Vδ2+) T cells in patients with non-small cell lung cancer (NSCLC). Responder NSCLC patients exhibited higher levels of serum acetic acid, propionic acid, and butyric acid than non-responders. Depletion of the gut microbiota reduces butyrate levels in both feces and serum in tumor-bearing mice. Mechanistically, butyrate increased histone 3 lysine 27 acetylation (H3K27ac) at the promoter region of Pdcd1 and Cd28 in human CD8+ T cells, thereby promoting the expression of PD-1/CD28 and enhancing the efficacy of anti-PD-1 therapy. Butyrate supplementation promotes the expression of antitumor cytokines in cytotoxic CD8+ T cells by modulating the T-cell receptor (TCR) signaling pathway. Collectively, our findings reveal that the metabolite butyrate of the gut microbiota facilitates the efficacy of anti-PD-1 immunotherapy by modulating TCR signaling of cytotoxic CD8 T cells, and is a highly promising therapeutic biomarker for enhancing antitumor immunity.
Collapse
Affiliation(s)
- Xinhai Zhu
- Department of Oncology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Ke Li
- Department of Geriatrics, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Guichao Liu
- Department of Head and Neck Breast Radiotherapy, The First People’s Hospital of Foshan City, Foshan, China
- The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Ruan Wu
- Center for Disease Control and Prevention, Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| | - Yan Zhang
- Department of Oncology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Siying Wang
- Department of Breast Surgery, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Meng Xu
- Department of Oncology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated with Jinan University, Zhuhai, China
| | - Peng Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated with Jinan University, Zhuhai, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| |
Collapse
|
12
|
Wen Z, Sun C, Lou Y, Kong J. Vitamin D/Vitamin D receptor mitigates cisplatin-induced acute kidney injury by down-regulating C5aR. J Immunotoxicol 2023; 20:2248267. [PMID: 37667858 DOI: 10.1080/1547691x.2023.2248267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/09/2023] [Indexed: 09/06/2023] Open
Abstract
Cisplatin (DDP) is a potent chemotherapeutic; however, it can also cause acute kidney injury (AKI). Because of the complexity of the toxicity it induces, few effective methods exist for ameliorating any form of DDP-induced AKI. Recent research has suggested that the complement system is a potential molecular target for such amelioration. In the study here, in vivo (male ICR mice) and in vitro (HK-2 cells) models of DDP-induced AKI were established to investigate the potential therapeutic effects of Vitamin D (VD) against this form of AKI. Endpoints assessed in vivo/in vitro included overall renal function, degree of renal damage, and complement receptor C5aR expression using histology, immunohistochemistry, immunofluorescence, RT-PCR, and Western blots. The data indicated that the use of VD treatment could reduce renal pathological damage along with expression of TNFα, IL-1β, IL-18, and C5aR; however, an over-expression of C5aR weakened the protective effects of VD/VD receptor (VDR) against oxidative damage and inflammatory cell infiltration. Using a luciferase reporter gene assay and ChIP analysis, it was demonstrated that C5aR was transcriptionally inhibited by VDR. In conclusion, VD/VDR could delay DDP-induced AKI by inhibiting the expression of C5aR through transcriptional regulation and reducing the production of downstream pro-inflammatory cytokines. The present study revealed the regulatory mechanism of VD/VDR in acute renal inflammation and provides new insights into its therapeutic function in DDP-induced AKI.
Collapse
Affiliation(s)
- Zhouyu Wen
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang, China
| | - Can Sun
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yan Lou
- Department of Computer Science, School of Intelligent Medicine, China Medical University, Shenyang, China
| | - Juan Kong
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
13
|
Johnson CR, Thacher TD. Vitamin D: immune function, inflammation, infections and auto-immunity. Paediatr Int Child Health 2023; 43:29-39. [PMID: 36857810 DOI: 10.1080/20469047.2023.2171759] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/12/2022] [Indexed: 03/03/2023]
Abstract
Vitamin D plays an active role beyond mineral metabolism and skeletal health, including regulation of the immune system. Vitamin D deficiency is widely prevalent, and observational studies link low vitamin D status to a risk of infections and auto-immune disorders. Reports indicate an inverse relationship between vitamin D status and such conditions. This review details vitamin D signalling interactions with the immune system and provides experimental and clinical evidence evaluating vitamin D status, vitamin D supplementation and host susceptibility to infections, inflammation and auto-immunity. The published literature including related reviews, systematic reviews, meta-analyses, randomised controlled trials (RCTs), observational studies and basic science reports have been synthesised. Meta-analyses of observational studies have demonstrated a link between low vitamin D status and risk of acute respiratory infections, COVID-19 disorders, multiple sclerosis, type 1 diabetes (T1DM), inflammatory bowel disease (IBD), systemic lupus erythematosus and other auto-immune disorders. Observational studies suggest that vitamin D supplementation may protect against several infectious and auto-immune conditions. Meta-analyses of RCTs had mixed results, demonstrating a small protective role for vitamin D supplementation against acute respiratory infections, especially in those with vitamin D deficiency and children, and providing modest benefits for the management of T1DM and IBD. Vitamin D status is inversely associated with the incidence of several infectious and auto-immune conditions. Supplementation is recommended for those with vitamin D deficiency or at high risk of deficiency, and it might provide additional benefit in acute respiratory infections and certain auto-immune conditions.
Collapse
Affiliation(s)
- Casey R Johnson
- Department of Pediatric Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Tom D Thacher
- Department of Family Medicine, Mayo Clinic, Rochester, New York, USA
| |
Collapse
|
14
|
Meghil MM, Cutler CW. Influence of Vitamin D on Periodontal Inflammation: A Review. Pathogens 2023; 12:1180. [PMID: 37764988 PMCID: PMC10537363 DOI: 10.3390/pathogens12091180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/09/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
The active form of vitamin D is the hormonally active 1,25(OH)2D3 (Vit D) vitamin, which plays an important role in bone biology and host immunity. The vitamin D receptor (VDR) is a nuclear ligand-dependent transcription factor expressed by many cells. Ligation of VDR by VitD regulates a wide plethora of genes and physiologic functions through the formation of the complex Vit D-VDR signaling cascade. The influence of Vit D-VDR signaling in host immune response to microbial infection has been of interest to many researchers. This is particularly important in oral health and diseases, as oral mucosa is exposed to a complex microbiota, with certain species capable of causing disruption to immune homeostasis. In this review, we focus on the immune modulatory roles of Vit D in the bone degenerative oral disease, periodontitis.
Collapse
Affiliation(s)
- Mohamed M. Meghil
- Department of Periodontics, The Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Christopher W. Cutler
- Department of Periodontics, The Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
15
|
Săsăran MO, Mărginean CO, Lupu A, Koller AM. Vitamin D and Its Association with H. pylori Prevalence and Eradication: A Comprehensive Review. Nutrients 2023; 15:3549. [PMID: 37630738 PMCID: PMC10459106 DOI: 10.3390/nu15163549] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Taking into account previous data that sustain a relationship between vitamin D deficiency and higher H. pylori infection positivity rates, this review aims to assess the influence of vitamin D deficiency and/or insufficiency upon the prevalence of H. pylori infection and its eradication success. Three major databases were searched for articles that analyzed a relationship between vitamin D status and H. pylori infection. The literature search retrieved a total of 37 reports, after the article selection process. Hypovitaminosis D emerged as a potential risk factor for H. pylori infection, given the higher prevalence of vitamin D deficiency and/or insufficiency among H. pylori-positive subjects. Furthermore, the same type of micronutrient deficiency has been directly linked to H. pylori eradication failure. An inverse linear relationship between vitamin D status and gastric cancer risk exists, but the additional involvement of H. pylori in this correlation is still in question. The potential benefit of oral supplements in enhancing the success of classical therapeutic regimens of H. pylori still requires future research. Future population-based studies from larger geographical areas are warranted to address this subject in more depth.
Collapse
Affiliation(s)
- Maria Oana Săsăran
- Department of Pediatrics 3, University of Medicine, Pharmacy, Sciences and Technology George Emil Palade from Târgu Mureș, Gheorghe Marinescu Street No. 38, 540136 Târgu Mureș, Romania;
| | - Cristina Oana Mărginean
- Department of Pediatrics 1, University of Medicine, Pharmacy, Sciences and Technology George Emil Palade from Târgu Mureș, Gheorghe Marinescu Street No. 38, 540136 Târgu Mureș, Romania
| | - Ancuta Lupu
- Department of Pediatrics, University of Medicine and Pharmacy Gr. T. Popa Iași, Universității Street No. 16, 700115 Iași, Romania;
| | - Ana Maria Koller
- Clinics of Pediatrics, Emergency County Clinical Hospital, Gheorghe Marinescu Street No. 50, 540136 Târgu Mureș, Romania;
| |
Collapse
|
16
|
Patrick MT, Nair RP, He K, Stuart PE, Billi AC, Zhou X, Gudjonsson JE, Oksenberg JR, Elder JT, Tsoi LC. Shared Genetic Risk Factors for Multiple Sclerosis/Psoriasis Suggest Involvement of Interleukin-17 and Janus Kinase-Signal Transducers and Activators of Transcription Signaling. Ann Neurol 2023; 94:384-397. [PMID: 37127916 PMCID: PMC10524664 DOI: 10.1002/ana.26672] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/03/2023]
Abstract
OBJECTIVE Psoriasis and multiple sclerosis (MS) are complex immune diseases that are mediated by T cells and share multiple comorbidities. Previous studies have suggested psoriatic patients are at higher risk of MS; however, causal relationships between the two conditions remain unclear. Through epidemiology and genetics, we provide a comprehensive understanding of the relationship, and share molecular factors between psoriasis and MS. METHODS We used logistic regression, trans-disease meta-analysis and Mendelian randomization. Medical claims data were included from 30 million patients, including 141,544 with MS and 742,919 with psoriasis. We used genome-wide association study summary statistics from 11,024 psoriatic, 14,802 MS cases, and 43,039 controls for trans-disease meta-analysis, with additional summary statistics from 5 million individuals for Mendelian randomization. RESULTS Psoriatic patients have a significantly higher risk of MS (4,637 patients with both diseases; odds ratio [OR] 1.07, p = 1.2 × 10-5 ) after controlling for potential confounders. Using inverse variance and equally weighted trans-disease meta-analysis, we revealed >20 shared and opposing (direction of effect) genetic loci outside the major histocompatibility complex that showed significant genetic colocalization (in COLOC and COLOC-SuSiE v5.1.0). Co-expression analysis of genes from these loci further identified distinct clusters that were enriched among pathways for interleukin-17/tumor necrosis factor-α (OR >39, p < 1.6 × 10-3 ) and Janus kinase-signal transducers and activators of transcription (OR 35, p = 1.1 × 10-5 ), including genes, such as TNFAIP3, TYK2, and TNFRSF1A. Mendelian randomization found psoriasis as an exposure has a significant causal effect on MS (OR 1.04, p = 5.8 × 10-3 ), independent of type 1 diabetes (OR 1.05, p = 4.3 × 10-7 ), type 2 diabetes (OR 1.08, p = 2.3 × 10-3 ), inflammatory bowel disease (OR 1.11, p = 1.6 × 10-11 ), and vitamin D level (OR 0.75, p = 9.4 × 10-3 ). INTERPRETATION By investigating the shared genetics of psoriasis and MS, along with their modifiable risk factors, our findings will advance innovations in treatment for patients suffering from comorbidities. ANN NEUROL 2023;94:384-397.
Collapse
Affiliation(s)
- Matthew T. Patrick
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Rajan P. Nair
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Kevin He
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Philip E. Stuart
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Allison C. Billi
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Xiang Zhou
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Johann E. Gudjonsson
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Jorge R. Oksenberg
- Department of Neurology, University of California, San Francisco, California, United States of America
| | - James T. Elder
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Lam C. Tsoi
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
17
|
Khazan N, Quarato ER, Singh NA, Snyder CWA, Moore T, Miller JP, Yasui M, Teramoto Y, Goto T, Reshi S, Hong J, Zhang N, Pandey D, Srivastava P, Morell A, Kawano H, Kawano Y, Conley T, Sahasrabudhe DM, Yano N, Miyamoto H, Aljitawi O, Liesveld J, Becker MW, Calvi LM, Zhovmer AS, Tabdanov ED, Dokholyan NV, Linehan DC, Hansen JN, Gerber SA, Sharon A, Khera MK, Jurutka PW, Rochel N, Kim KK, Rowswell-Turner RB, Singh RK, Moore RG. Vitamin D Receptor Antagonist MeTC7 Inhibits PD-L1. Cancers (Basel) 2023; 15:3432. [PMID: 37444542 PMCID: PMC10340436 DOI: 10.3390/cancers15133432] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Small-molecule inhibitors of PD-L1 are postulated to control immune evasion in tumors similar to antibodies that target the PD-L1/PD-1 immune checkpoint axis. However, the identity of targetable PD-L1 inducers is required to develop small-molecule PD-L1 inhibitors. In this study, using chromatin immunoprecipitation (ChIP) assay and siRNA, we demonstrate that vitamin D/VDR regulates PD-L1 expression in acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) cells. We have examined whether a VDR antagonist, MeTC7, can inhibit PD-L1. To ensure that MeTC7 inhibits VDR/PD-L1 without off-target effects, we examined competitive inhibition of VDR by MeTC7, utilizing ligand-dependent dimerization of VDR-RXR, RXR-RXR, and VDR-coactivators in a mammalian 2-hybrid (M2H) assay. MeTC7 inhibits VDR selectively, suppresses PD-L1 expression sparing PD-L2, and inhibits the cell viability, clonogenicity, and xenograft growth of AML cells. MeTC7 blocks AML/mesenchymal stem cells (MSCs) adhesion and increases the efferocytotic efficiency of THP-1 AML cells. Additionally, utilizing a syngeneic colorectal cancer model in which VDR/PD-L1 co-upregulation occurs in vivo under radiation therapy (RT), MeTC7 inhibits PD-L1 and enhances intra-tumoral CD8+T cells expressing lymphoid activation antigen-CD69. Taken together, MeTC7 is a promising small-molecule inhibitor of PD-L1 with clinical potential.
Collapse
Affiliation(s)
- Negar Khazan
- Wilmot Cancer Institute and Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY 14642, USA (A.M.); (K.K.K.); (R.G.M.)
| | - Emily R. Quarato
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Niloy A. Singh
- Wilmot Cancer Institute and Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY 14642, USA (A.M.); (K.K.K.); (R.G.M.)
| | - Cameron W. A. Snyder
- Wilmot Cancer Institute and Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY 14642, USA (A.M.); (K.K.K.); (R.G.M.)
| | - Taylor Moore
- Wilmot Cancer Institute and Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY 14642, USA (A.M.); (K.K.K.); (R.G.M.)
| | - John P. Miller
- Wilmot Cancer Institute and Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY 14642, USA (A.M.); (K.K.K.); (R.G.M.)
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Masato Yasui
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA; (M.Y.)
| | - Yuki Teramoto
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA; (M.Y.)
| | - Takuro Goto
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA; (M.Y.)
| | - Sabeeha Reshi
- School of Mathematical and Natural Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Jennifer Hong
- School of Mathematical and Natural Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Naixin Zhang
- Wilmot Cancer Institute and Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY 14642, USA (A.M.); (K.K.K.); (R.G.M.)
| | - Diya Pandey
- Wilmot Cancer Institute and Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY 14642, USA (A.M.); (K.K.K.); (R.G.M.)
| | - Priyanka Srivastava
- Wilmot Cancer Institute and Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY 14642, USA (A.M.); (K.K.K.); (R.G.M.)
| | - Alexandra Morell
- Wilmot Cancer Institute and Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY 14642, USA (A.M.); (K.K.K.); (R.G.M.)
| | - Hiroki Kawano
- Department of Medicine, Hematology/Oncology, University of Rochester Medical Center, Rochester, NY 14642, USA (T.C.)
| | - Yuko Kawano
- Department of Medicine, Hematology/Oncology, University of Rochester Medical Center, Rochester, NY 14642, USA (T.C.)
| | - Thomas Conley
- Department of Medicine, Hematology/Oncology, University of Rochester Medical Center, Rochester, NY 14642, USA (T.C.)
| | - Deepak M. Sahasrabudhe
- Department of Medicine, Hematology/Oncology, University of Rochester Medical Center, Rochester, NY 14642, USA (T.C.)
| | - Naohiro Yano
- Division of Surgical Research, Rhode Island Hospital, Brown University, Providence, RI 02912, USA;
| | - Hiroshi Miyamoto
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA; (M.Y.)
| | - Omar Aljitawi
- Department of Medicine, Hematology/Oncology, University of Rochester Medical Center, Rochester, NY 14642, USA (T.C.)
| | - Jane Liesveld
- Department of Medicine, Hematology/Oncology, University of Rochester Medical Center, Rochester, NY 14642, USA (T.C.)
| | - Michael W. Becker
- Department of Medicine, Hematology/Oncology, University of Rochester Medical Center, Rochester, NY 14642, USA (T.C.)
| | - Laura M. Calvi
- Department of Medicine, Hematology/Oncology, University of Rochester Medical Center, Rochester, NY 14642, USA (T.C.)
| | - Alexander S. Zhovmer
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Erdem D. Tabdanov
- CytoMechanobiology Laboratory, Department of Pharmacology, Penn State College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | - Nikolay V. Dokholyan
- Department of Pharmacology, Department of Biochemistry & Molecular Biology, Center for Translational Systems Research, Penn State College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA;
| | - David C. Linehan
- Division of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jeanne N. Hansen
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, NY 13346, USA
| | - Scott A. Gerber
- Division of Surgery and Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | - Peter W. Jurutka
- School of Mathematical and Natural Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
- School of Mathematical and Natural Sciences, Arizona State University, Health Futures Center, Phoenix, AZ 85054, USA
| | - Natacha Rochel
- Institute of Genetics and of Molecular and Cellular Biology, 67400 Illkirch-Graffenstaden, France
| | - Kyu Kwang Kim
- Wilmot Cancer Institute and Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY 14642, USA (A.M.); (K.K.K.); (R.G.M.)
| | - Rachael B. Rowswell-Turner
- Wilmot Cancer Institute and Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY 14642, USA (A.M.); (K.K.K.); (R.G.M.)
| | - Rakesh K. Singh
- Wilmot Cancer Institute and Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY 14642, USA (A.M.); (K.K.K.); (R.G.M.)
| | - Richard G. Moore
- Wilmot Cancer Institute and Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY 14642, USA (A.M.); (K.K.K.); (R.G.M.)
| |
Collapse
|
18
|
Tourkochristou E, Mouzaki A, Triantos C. Gene Polymorphisms and Biological Effects of Vitamin D Receptor on Nonalcoholic Fatty Liver Disease Development and Progression. Int J Mol Sci 2023; 24:ijms24098288. [PMID: 37175993 PMCID: PMC10179740 DOI: 10.3390/ijms24098288] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, with increasing prevalence worldwide. The genetic and molecular background of NAFLD pathogenesis is not yet clear. The vitamin D/vitamin D receptor (VDR) axis is significantly associated with the development and progression of NAFLD. Gene polymorphisms may influence the regulation of the VDR gene, although their biological significance remains to be elucidated. VDR gene polymorphisms are associated with the presence and severity of NAFLD, as they may influence the regulation of adipose tissue activity, fibrosis, and hepatocellular carcinoma (HCC) development. Vitamin D binds to the hepatic VDR to exert its biological functions, either by activating VDR transcriptional activity to regulate gene expression associated with inflammation and fibrosis or by inducing intracellular signal transduction through VDR-mediated activation of Ca2+ channels. VDR activity has protective and detrimental effects on hepatic steatosis, a characteristic feature of NAFLD. Vitamin D-VDR signaling may control the progression of NAFLD by regulating immune responses, lipotoxicity, and fibrogenesis. Elucidation of the genetic and molecular background of VDR in the pathophysiology of NAFLD will provide new therapeutic targets for this disease through the development of VDR agonists, which already showed promising results in vivo.
Collapse
Affiliation(s)
- Evanthia Tourkochristou
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, University Hospital of Patras, Rion, 26504 Patras, Greece
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, 26504 Patras, Greece
| | - Athanasia Mouzaki
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, 26504 Patras, Greece
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, University Hospital of Patras, Rion, 26504 Patras, Greece
| |
Collapse
|
19
|
Cantorna MT, Arora J. Two lineages of immune cells that differentially express the vitamin D receptor. J Steroid Biochem Mol Biol 2023; 228:106253. [PMID: 36657728 PMCID: PMC10006341 DOI: 10.1016/j.jsbmb.2023.106253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/29/2022] [Accepted: 01/15/2023] [Indexed: 01/17/2023]
Abstract
Since 1983 it has been known that monocytes and activated T and B cells expressed the vitamin D receptor (VDR) and are therefore vitamin D targets. New data identified two lineages of immune cells that can be differentiated by the expression of the VDR. Monocytes, macrophages, neutrophils, and hematopoietic stem cells were mostly from VDR positive lineages. T cells, ILC1 and ILC3 were also largely VDR positive, which is consistent with the known effects of vitamin D as regulators of type-1 and type-3 immunity. Activation of the VDR negative T cells did not induce the expression of the VDR reporter, suggesting that perhaps only a subset of the T cells in the periphery express the VDR. When activated, the VDR negative T cells responded as if they were VDR knockout T cells in that they made more IFN-γ and proliferated faster than the VDR positive T cells. The ability of vitamin D to regulate immune function will depend on which cells express the VDR and a better understanding of the signals that regulate VDR expression in immune cells.
Collapse
Affiliation(s)
- Margherita T Cantorna
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, United States.
| | - Juhi Arora
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, United States
| |
Collapse
|
20
|
Akram N, Saeed F, Afzaal M, Shah YA, Qamar A, Faisal Z, Ghani S, Ateeq H, Akhtar MN, Tufail T, Hussain M, Asghar A, Rasheed A, Jbawi EA. Gut microbiota and synbiotic foods: Unveiling the relationship in COVID-19 perspective. Food Sci Nutr 2023; 11:1166-1177. [PMID: 36911846 PMCID: PMC10002946 DOI: 10.1002/fsn3.3162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 01/13/2023] Open
Abstract
The Coronavirus disease 2019 (COVID-19) has spread across the globe and is causing widespread disaster. The impact of gut microbiota on lung disease has been widely documented. Diet, environment, and genetics all play a role in shaping the gut microbiota, which can influence the immune system. Improving the gut microbiota profile through customized diet, nutrition, and supplementation has been shown to boost immunity, which could be one of the preventative methods for reducing the impact of various diseases. Poor nutritional status is frequently linked to inflammation and oxidative stress, both of which can affect the immune system. This review emphasizes the necessity of maintaining an adequate level of important nutrients to effectively minimize inflammation and oxidative stress, moreover to strengthen the immune system during the COVID-19 severity. Furthermore, the purpose of this review is to present information and viewpoints on the use of probiotics, prebiotics, and synbiotics as adjuvants for microbiota modification and its effects on COVID-19 prevention and treatment.
Collapse
Affiliation(s)
- Noor Akram
- Department of Food and NutritionGovernment College UniversityFaisalabadPakistan
| | - Farhan Saeed
- Department of Food ScienceGovernment College UniversityFaisalabadPakistan
| | - Muhammad Afzaal
- Department of Food ScienceGovernment College UniversityFaisalabadPakistan
| | - Yasir Abbas Shah
- Department of Food ScienceGovernment College UniversityFaisalabadPakistan
| | - Aiza Qamar
- Department of Nutrition and Health PromotionUniversity of Home Economics LahoreLahorePakistan
| | - Zargham Faisal
- Institute of Food Science and NutritionBahauddin Zakariya University MultanMultanPakistan
| | - Samia Ghani
- Faculty of Pharmaceutical SciencesGovernment College University FaisalabadPunjabPakistan
| | - Huda Ateeq
- Department of Food ScienceGovernment College UniversityFaisalabadPakistan
| | - Muhammad Nadeem Akhtar
- University Institute of Diet and Nutritional SciencesThe University of LahoreLahorePakistan
| | - Tabassum Tufail
- University Institute of Diet and Nutritional SciencesThe University of LahoreLahorePakistan
| | - Muzzamal Hussain
- Department of Food ScienceGovernment College UniversityFaisalabadPakistan
| | - Aasma Asghar
- Department of Food ScienceGovernment College UniversityFaisalabadPakistan
| | - Ammara Rasheed
- Department of Food and NutritionGovernment College UniversityFaisalabadPakistan
| | | |
Collapse
|
21
|
Gao H, Zhou H, Zhang Z, Gao J, Li J, Li X. Vitamin D3 alleviates inflammation in ulcerative colitis by activating the VDR-NLRP6 signaling pathway. Front Immunol 2023; 14:1135930. [PMID: 36845152 PMCID: PMC9944717 DOI: 10.3389/fimmu.2023.1135930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 01/19/2023] [Indexed: 02/10/2023] Open
Abstract
Inflammation is a key factor in the development of ulcerative colitis (UC). 1,25-dihydroxyvitamin D3 (1,25(OH)2D3, VD3), as the major active ingredient of vitamin D and an anti-inflammatory activator, is closely related to the initiation and development of UC, but its regulatory mechanism remains unclear. In this study, we carried out histological and physiological analyses in UC patients and UC mice. RNA sequencing (RNA-seq), assays for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq), chromatin immunoprecipitation (ChIP) assays and protein and mRNA expression were performed to analyze and identify the potential molecular mechanism in UC mice and lipopolysaccharide (LPS)-induced mouse intestinal epithelial cells (MIECs). Moreover, we established nucleotide-binding oligomerization domain (NOD)-like receptor protein nlrp6 -/- mice and siRNA-NLRP6 MIECs to further characterize the role of NLRP6 in anti-inflammation of VD3. Our study revealed that VD3 abolished NOD-like receptor protein 6 (NLRP6) inflammasome activation, suppressing NLRP6, apoptosis-associated speck-like protein (ASC) and Caspase-1 levels via the vitamin D receptor (VDR). ChIP and ATAC-seq showed that VDR transcriptionally repressed NLRP6 by binding to vitamin D response elements (VDREs) in the promoter of NLRP6, impairing UC development. Importantly, VD3 had both preventive and therapeutic effects on the UC mouse model via inhibition of NLRP6 inflammasome activation. Our results demonstrated that VD3 substantially represses inflammation and the development of UC in vivo. These findings reveal a new mechanism by which VD3 affects inflammation in UC by regulating the expression of NLRP6 and show the potential clinical use of VD3 in autoimmune syndromes or other NLRP6 inflammasome-driven inflammatory diseases.
Collapse
Affiliation(s)
- Hongliang Gao
- Pathology Center, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, Xinjiang, China
- The Second Department of Gastroenterology, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - He Zhou
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Zhiqiang Zhang
- The Second Department of Gastroenterology, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jianshu Gao
- The Second Department of Gastroenterology, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jian Li
- The Second Department of Gastroenterology, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xinxia Li
- Pathology Center, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, Xinjiang, China
| |
Collapse
|
22
|
Plantone D, Primiano G, Manco C, Locci S, Servidei S, De Stefano N. Vitamin D in Neurological Diseases. Int J Mol Sci 2022; 24:87. [PMID: 36613531 PMCID: PMC9820561 DOI: 10.3390/ijms24010087] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Vitamin D may have multiple effects on the nervous system and its deficiency can represent a possible risk factor for the development of many neurological diseases. Recent studies are also trying to clarify the different effects of vitamin D supplementation over the course of progressive neurological diseases. In this narrative review, we summarise vitamin D chemistry, metabolism, mechanisms of action, and the recommended daily intake. The role of vitamin D on gene transcription and the immune response is also reviewed. Finally, we discuss the scientific evidence that links low 25-hydroxyvitamin D concentrations to the onset and progression of severe neurological diseases, such as multiple sclerosis, Parkinson's disease, Alzheimer's disease, migraine, diabetic neuropathy and amyotrophic lateral sclerosis. Completed and ongoing clinical trials on vitamin D supplementation in neurological diseases are listed.
Collapse
Affiliation(s)
- Domenico Plantone
- Centre for Precision and Translational Medicine, Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Guido Primiano
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Carlo Manco
- Centre for Precision and Translational Medicine, Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Sara Locci
- Centre for Precision and Translational Medicine, Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Serenella Servidei
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Nicola De Stefano
- Centre for Precision and Translational Medicine, Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| |
Collapse
|
23
|
Asghari A, Jafari F, Jameshorani M, Chiti H, Naseri M, Ghafourirankouhi A, Kooshkaki O, Abdshah A, Parsamanesh N. Vitamin D role in hepatitis B: focus on immune system and genetics mechanism. Heliyon 2022; 8:e11569. [DOI: 10.1016/j.heliyon.2022.e11569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/01/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
|
24
|
Nath K, Tomas AA, Flynn J, Fein JA, Alperovich A, Anagnostou T, Batlevi CL, Dahi PB, Fingrut WB, Giralt SA, Lin RJ, Palomba ML, Peled JU, Salles G, Sauter CS, Scordo M, Fraint E, Feuer E, Shah N, Slingerland JB, Devlin S, Shah GL, Gupta G, Perales MA, Shouval R. Vitamin D Insufficiency and Clinical Outcomes with Chimeric Antigen Receptor T-Cell Therapy in Large B-cell Lymphoma. Transplant Cell Ther 2022; 28:751.e1-751.e7. [PMID: 35944603 PMCID: PMC9637764 DOI: 10.1016/j.jtct.2022.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/16/2022] [Accepted: 08/01/2022] [Indexed: 01/29/2023]
Abstract
Vitamin D insufficiency is a potentially modifiable risk factor for poor outcomes in newly diagnosed large B-cell lymphoma (LBCL). However, the role of circulating vitamin D concentrations in relapsed/refractory LBCL treated with CD19-directed chimeric antigen receptor T-cell therapy (CAR-T) is currently unknown. This was a single-center, observational study that evaluated the association of pre-CAR-T 25-hydroxyvitamin D (25-OHD) status with 100-day complete response, progression-free survival, overall survival, and CAR-T-related toxicity in 111 adult relapsed/refractory LBCL patients. Vitamin D insufficiency was defined as ≤30 ng/mL in accordance with the Endocrine Society guidelines. The median pre-CAR-T 25-hydroxyvitamin D concentration was 24 ng/mL (interquarile range = 18-34). Vitamin D-insufficient patients (≤30 ng/mL; n = 73 [66%]) were significantly younger than their vitamin D-replete (>30 ng/mL; n = 38 [34%]) counterparts (P= .039). The vitamin D-insufficient cohort was enriched for de novo LBCL as the histological subtype (P= .026) and had a higher proportion of tisagenlecleucel as the CAR-T product (P= .049). There were no other significant differences in the baseline characteristics between the two groups. In vitamin D-insufficient compared to -replete patients, 100-day complete response was 55% versus 76% (P= .029), and 2-year overall survival was 41% versus 71% (P= .061), respectively. In multivariate analysis, vitamin D insufficiency remained significantly associated with 100-day complete response (odds ratio 2.58 [1.05-6.83]; P= .045) and overall survival (hazard ratio 2.24 [1.08-4.66], P= .030). In recipients of tisagenlecleucel, vitamin D insufficiency was associated with significantly lower cell viability of the infused CAR-T product (P= .015). Finally, pretreatment vitamin D insufficiency did not predict for subsequent CAR-T-related toxicity. This is the first report to demonstrate that vitamin D insufficiency is associated with inferior clinical outcomes in CAR-T recipients. Further study into the mechanistic insights of this finding, and the potential role of vitamin D supplementation to optimize CAR-T are warranted.
Collapse
Affiliation(s)
- Karthik Nath
- Department of Medicine, Adult Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ana Alarcon Tomas
- Department of Medicine, Adult Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center, New York, New York; PhD Program in Signals Integration and Modulation in Biomedicine, Cell therapy and Translational Medicine, University of Murcia, Murcia, Spain
| | - Jessica Flynn
- Department of Biostatistics and Epidemiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joshua A Fein
- University of Connecticut Medical Center, Farmington, Connecticut
| | - Anna Alperovich
- Department of Medicine, Adult Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Theodora Anagnostou
- Department of Medicine, Adult Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Connie Lee Batlevi
- Department of Medicine, Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, New York; Weill Cornell Medical College, New York, New York
| | - Parastoo B Dahi
- Department of Medicine, Adult Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center, New York, New York; Weill Cornell Medical College, New York, New York
| | - Warren B Fingrut
- Department of Medicine, Adult Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sergio A Giralt
- Department of Medicine, Adult Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center, New York, New York; Weill Cornell Medical College, New York, New York
| | - Richard J Lin
- Department of Medicine, Adult Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center, New York, New York; Weill Cornell Medical College, New York, New York
| | - M Lia Palomba
- Department of Medicine, Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, New York; Weill Cornell Medical College, New York, New York
| | - Jonathan U Peled
- Department of Medicine, Adult Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center, New York, New York; Weill Cornell Medical College, New York, New York
| | - Gilles Salles
- Department of Medicine, Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, New York; Weill Cornell Medical College, New York, New York
| | - Craig S Sauter
- Department of Medicine, Adult Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center, New York, New York; Weill Cornell Medical College, New York, New York
| | - Michael Scordo
- Department of Medicine, Adult Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center, New York, New York; Weill Cornell Medical College, New York, New York
| | - Ellen Fraint
- Department of Pediatrics, Stem Cell Transplantation and Cellular Therapies Program, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Pediatric Hematology, Oncology and Cellular Therapy, Children's Hospital at Montefiore, Bronx, New York
| | - Elise Feuer
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nishi Shah
- Department of Medicine, Adult Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - John B Slingerland
- Department of Medicine, Adult Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sean Devlin
- Department of Biostatistics and Epidemiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Gunjan L Shah
- Department of Medicine, Adult Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center, New York, New York; Weill Cornell Medical College, New York, New York
| | - Gaurav Gupta
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Miguel-Angel Perales
- Department of Medicine, Adult Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center, New York, New York; Weill Cornell Medical College, New York, New York
| | - Roni Shouval
- Department of Medicine, Adult Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center, New York, New York; Weill Cornell Medical College, New York, New York.
| |
Collapse
|
25
|
Khayami R, Goltzman D, Rabbani SA, Kerachian MA. Epigenomic effects of vitamin D in colorectal cancer. Epigenomics 2022; 14:1213-1228. [PMID: 36325830 DOI: 10.2217/epi-2022-0288] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vitamin D regulates a plethora of physiological processes in the human body and has been proposed to exert several anticancer effects. Epigenetics plays an important role in regulating vitamin D actions. In this review, we highlight the recent advances in the understanding of different epigenetic factors such as lncRNAs, miRNAs, methylation and acetylation influenced by vitamin D and its downstream targets in colorectal cancer to find more potential therapeutic targets. We discuss how vitamin D exerts anticancer properties through interactions between the vitamin D receptor and genes (e.g., SLC30A10), the microenvironment, microbiota and other factors in colorectal cancer. Developing therapeutic approaches targeting the vitamin D signaling system will be aided by a better knowledge of the epigenetic impact of vitamin D.
Collapse
Affiliation(s)
- Reza Khayami
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - David Goltzman
- Department of Medicine, McGill University Health Center, Montreal, QC, H3G 1A4, Canada
| | - Shafaat A Rabbani
- Department of Medicine, McGill University Health Center, Montreal, QC, H3G 1A4, Canada
| | - Mohammad Amin Kerachian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, On, H3A 1A4, Canada
| |
Collapse
|
26
|
Dong Y, Chen L, Huang Y, Raed A, Havens R, Dong Y, Zhu H. Sixteen-Week Vitamin D 3 Supplementation Increases Peripheral T Cells in Overweight Black Individuals: Post hoc Analysis of a Randomized, Double-Blinded, Placebo-Controlled Trial. Nutrients 2022; 14:nu14193922. [PMID: 36235575 PMCID: PMC9570777 DOI: 10.3390/nu14193922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/07/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Vitamin D is considered to modulate T-cell function, which has been implicated in the treatment of inflammatory conditions. However, there is limited knowledge on the effects of vitamin D and its influences on circulating T-cell profiles in humans, particularly in overweight Black individuals who are more likely to be vitamin D insufficient (serum 25(OH)D concentrations of ≤20 ng/mL). Thus, this study tested the hypothesis that vitamin D supplementation modulates T-cell composition, which is in a dose-dependent manner. Methods: A 16-week randomized, double-blinded, placebo-controlled trial of vitamin D3 supplementation was undertaken in 70 overweight/obese Black people (mean age = 26 years, 82% female) with 25 hydroxyvitamin D ≤ 20 ng/mL at baseline. Subjects were randomly assigned a supervised monthly oral vitamin D3 equivalent to approximately 600 IU/day (n = 17), 2000 IU/day (n = 18), 4000 IU/day (n = 18), or a placebo (n = 17). Fresh peripheral whole blood was collected and CD3+, CD4+ and CD8+ cell counts and percentages were determined by flow cytometry at baseline and at 16 weeks, among 56 subjects who were included in the analyses. Results: A statistically significant increase in CD3+% in the 2000 IU/day vitamin D3 supplementation group, and increases in CD4+% in the 2000 IU/day and 4000 IU/day vitamin D3 supplementation groups were observed (p-values < 0.05) from the changes in baseline to 16 weeks. Further adjustments for age, sex and BMI showed that 2000 IU/day vitamin D3 supplementation increased in CD3+ count, CD3%, CD4 count, and CD4%, as compared to the placebo group (p-values < 0.05). Moreover, the highest serum 25(OH)D quantile group had the highest CD3% and CD4%. Conclusions: Sixteen-week vitamin D3 supplementation increases peripheral blood T-cell numbers and percentages in overweight/obese Black patients with vitamin D insufficiency. This resulting shift in circulating T-cell composition, particularly the increase in T helper cells (CD4+ cells), suggests that vitamin D supplementation may improve immune function in Black individuals.
Collapse
Affiliation(s)
- Yutong Dong
- Georgia Prevention Institute, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Internal Medicine Residency Program, Department of Medicine, New York University Langone Health, New York, NY 10016, USA
| | - Li Chen
- Georgia Prevention Institute, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Ying Huang
- Georgia Prevention Institute, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Anas Raed
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Robyn Havens
- School of Nursing, University of South Carolina, Aiken, SC 29801, USA
| | - Yanbin Dong
- Georgia Prevention Institute, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Haidong Zhu
- Georgia Prevention Institute, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Correspondence: ; Tel.: +1-706-721-5470; Fax: +1-706-721-7150
| |
Collapse
|
27
|
Jolliffe DA, Vivaldi G, Chambers ES, Cai W, Li W, Faustini SE, Gibbons JM, Pade C, Coussens AK, Richter AG, McKnight Á, Martineau AR. Vitamin D Supplementation Does Not Influence SARS-CoV-2 Vaccine Efficacy or Immunogenicity: Sub-Studies Nested within the CORONAVIT Randomised Controlled Trial. Nutrients 2022; 14:3821. [PMID: 36145196 PMCID: PMC9506404 DOI: 10.3390/nu14183821] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 12/23/2022] Open
Abstract
Vitamin D deficiency has been reported to associate with the impaired development of antigen-specific responses following vaccination. We aimed to determine whether vitamin D supplements might boost the immunogenicity and efficacy of SARS-CoV-2 vaccination by conducting three sub-studies nested within the CORONAVIT randomised controlled trial, which investigated the effects of offering vitamin D supplements at a dose of 800 IU/day or 3200 IU/day vs. no offer on risk of acute respiratory infections in UK adults with circulating 25-hydroxyvitamin D concentrations <75 nmol/L. Sub-study 1 (n = 2808) investigated the effects of vitamin D supplementation on the risk of breakthrough SARS-CoV-2 infection following two doses of SARS-CoV-2 vaccine. Sub-study 2 (n = 1853) investigated the effects of vitamin D supplementation on titres of combined IgG, IgA and IgM (IgGAM) anti-Spike antibodies in eluates of dried blood spots collected after SARS-CoV-2 vaccination. Sub-study 3 (n = 100) investigated the effects of vitamin D supplementation on neutralising antibody and cellular responses in venous blood samples collected after SARS-CoV-2 vaccination. In total, 1945/2808 (69.3%) sub-study 1 participants received two doses of ChAdOx1 nCoV-19 (Oxford−AstraZeneca); the remainder received two doses of BNT162b2 (Pfizer). Mean follow-up 25(OH)D concentrations were significantly elevated in the 800 IU/day vs. no-offer group (82.5 vs. 53.6 nmol/L; mean difference 28.8 nmol/L, 95% CI 22.8−34.8) and in the 3200 IU/day vs. no offer group (105.4 vs. 53.6 nmol/L; mean difference 51.7 nmol/L, 45.1−58.4). Vitamin D supplementation did not influence the risk of breakthrough SARS-CoV-2 infection in vaccinated participants (800 IU/day vs. no offer: adjusted hazard ratio 1.28, 95% CI 0.89 to 1.84; 3200 IU/day vs. no offer: 1.17, 0.81 to 1.70). Neither did it influence IgGAM anti-Spike titres, neutralising antibody titres or IFN-γ concentrations in the supernatants of S peptide-stimulated whole blood. In conclusion, vitamin D replacement at a dose of 800 or 3200 IU/day effectively elevated 25(OH)D concentrations, but it did not influence the protective efficacy or immunogenicity of SARS-CoV-2 vaccination when given to adults who had a sub-optimal vitamin D status at baseline.
Collapse
Affiliation(s)
- David A. Jolliffe
- Wolfson Institute of Population Health, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AB, UK
| | - Giulia Vivaldi
- Wolfson Institute of Population Health, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AB, UK
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Emma S. Chambers
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Weigang Cai
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Wenhao Li
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Sian E. Faustini
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Joseph M. Gibbons
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Corinna Pade
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Anna K. Coussens
- Infectious Diseases and Immune Defence Division, Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Alex G. Richter
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Áine McKnight
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Adrian R. Martineau
- Wolfson Institute of Population Health, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AB, UK
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
- Asthma UK Centre for Applied Research, Queen Mary University of London, London E1 2AB, UK
| |
Collapse
|
28
|
Aggeletopoulou I, Thomopoulos K, Mouzaki A, Triantos C. Vitamin D–VDR Novel Anti-Inflammatory Molecules—New Insights into Their Effects on Liver Diseases. Int J Mol Sci 2022; 23:ijms23158465. [PMID: 35955597 PMCID: PMC9369388 DOI: 10.3390/ijms23158465] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 02/05/2023] Open
Abstract
There is consistent evidence that vitamin D deficiency is strongly associated with liver dysfunction, disease severity, and poor prognosis in patients with liver disease. Vitamin D and its receptor (VDR) contribute to the regulation of innate and adaptive immune responses. The presence of genetic variants of vitamin D- and VDR-associated genes has been associated with liver disease progression. In our recent work, we summarized the progress in understanding the molecular mechanisms involved in vitamin D–VDR signaling and discussed the functional significance of VDR signaling in specific cell populations in liver disease. The current review focuses on the complex interaction between immune and liver cells in the maintenance of liver homeostasis and the development of liver injury, the interplay of vitamin D and VDR in the development and outcome of liver disease, the role of vitamin D- and VDR-associated genetic variants in modulating the occurrence and severity of liver disease, and the therapeutic value of vitamin D supplementation in various liver diseases. The association of the vitamin D–VDR complex with liver dysfunction shows great potential for clinical application and supports its use as a prognostic index and diagnostic tool.
Collapse
Affiliation(s)
- Ioanna Aggeletopoulou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, GR-26504 Patras, Greece; (I.A.); (C.T.)
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, GR-26504 Patras, Greece;
| | - Konstantinos Thomopoulos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, GR-26504 Patras, Greece; (I.A.); (C.T.)
- Correspondence:
| | - Athanasia Mouzaki
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, GR-26504 Patras, Greece;
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, GR-26504 Patras, Greece; (I.A.); (C.T.)
| |
Collapse
|
29
|
Triantos C, Aggeletopoulou I, Mantzaris GJ, Mouzaki Α. Molecular basis of vitamin D action in inflammatory bowel disease. Autoimmun Rev 2022; 21:103136. [DOI: 10.1016/j.autrev.2022.103136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/29/2022] [Indexed: 12/15/2022]
|
30
|
Wang L, Jing L, Zhang Q, Li S, Wang Y, Zhao H. Lead induced thymic immunosuppression in Japanese quail (Coturnix japonica) via oxidative stress-based T cell receptor pathway signaling inhibition. J Inorg Biochem 2022; 235:111950. [DOI: 10.1016/j.jinorgbio.2022.111950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 11/28/2022]
|
31
|
Entrenas-Castillo M, Salinero-González L, Entrenas-Costa LM, Andújar-Espinosa R. Calcifediol for Use in Treatment of Respiratory Disease. Nutrients 2022; 14:2447. [PMID: 35745177 PMCID: PMC9231174 DOI: 10.3390/nu14122447] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 02/01/2023] Open
Abstract
Calcifediol is the prohormone of the vitamin D endocrine system (VDES). It requires hydroxylation to move to 1,25(OH)2D3 or calcitriol, the active form that exerts its functions by activating the vitamin D receptor (VDR) that is expressed in many organs, including the lungs. Due to its rapid oral absorption and because it does not require first hepatic hydroxylation, it is a good option to replace the prevalent deficiency of vitamin D (25 hydroxyvitamin D; 25OHD), to which patients with respiratory pathologies are no strangers. Correcting 25OHD deficiency can decrease the risk of upper respiratory infections and thus improve asthma and COPD control. The same happens with other respiratory pathologies and, in particular, COVID-19. Calcifediol may be a good option for raising 25OHD serum levels quickly because the profile of inflammatory cytokines exhibited by patients with inflammatory respiratory diseases, such as asthma, COPD or COVID-19, can increase the degradation of the active metabolites of the VDES. The aim of this narrative revision is to report the current evidence on the role of calcifediol in main respiratory diseases. In conclusion, good 25OHD status may have beneficial effects on the clinical course of respiratory diseases, including COVID-19. This hypothesis should be confirmed in large, randomized trials. Otherwise, a rapid correction of 25(OH)D deficiency can be useful for patients with respiratory disease.
Collapse
Affiliation(s)
- Marta Entrenas-Castillo
- Pneumology Department, Hospital QuironSalud, 14004 Cordoba, Spain; (M.E.-C.); (L.M.E.-C.)
- School of Medicine, University of Córdoba, 14071 Cordoba, Spain
| | | | - Luis M. Entrenas-Costa
- Pneumology Department, Hospital QuironSalud, 14004 Cordoba, Spain; (M.E.-C.); (L.M.E.-C.)
- School of Medicine, University of Córdoba, 14071 Cordoba, Spain
- Pneumology Department, Hospital Universitario Reina Sofía, 14004 Cordoba, Spain
| | - Rubén Andújar-Espinosa
- Pneumology Department, Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
- Medicine Department, University of Murcia, 30120 Murcia, Spain
| |
Collapse
|
32
|
Zheng M, Gao R. Vitamin D: A Potential Star for Treating Chronic Pancreatitis. Front Pharmacol 2022; 13:902639. [PMID: 35734414 PMCID: PMC9207250 DOI: 10.3389/fphar.2022.902639] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic pancreatitis (CP) is a chronic inflammatory and fibrotic disease of the pancreas. The incidence of CP is increasing worldwide but the effective therapies are lacking. Hence, it is necessary to identify economical and effective agents for the treatment of CP patients. Vitamin D (VD) and its analogues have been confirmed as pleiotropic regulators of cell proliferation, apoptosis, differentiation and autophagy. Clinical studies show that VD deficiency is prevalent in CP patients. However, the correlation between VD level and the risk of CP remains controversial. VD and its analogues have been demonstrated to inhibit pancreatic fibrosis by suppressing the activation of pancreatic stellate cells and the production of extracellular matrix. Limited clinical trials have shown that the supplement of VD can improve VD deficiency in patients with CP, suggesting a potential therapeutic value of VD in CP. However, the mechanisms by which VD and its analogues inhibit pancreatic fibrosis have not been fully elucidated. We are reviewing the current literature concerning the risk factors for developing CP, prevalence of VD deficiency in CP, mechanisms of VD action in PSC-mediated fibrogenesis during the development of CP and potential therapeutic applications of VD and its analogues in the treatment of CP.
Collapse
|
33
|
Koetzier SC, van Langelaar J, Wierenga-Wolf AF, Melief MJ, Pol K, Musters S, Lubberts E, Dik WA, Smolders J, van Luijn MM. Improving Glucocorticoid Sensitivity of Brain-Homing CD4+ T Helper Cells by Steroid Hormone Crosstalk. Front Immunol 2022; 13:893702. [PMID: 35693770 PMCID: PMC9178273 DOI: 10.3389/fimmu.2022.893702] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/29/2022] [Indexed: 11/20/2022] Open
Abstract
In early multiple sclerosis (MS), an IFN-γhighGM-CSFhighIL-17low CD4+ T-cell subset termed T helper 17.1 (Th17.1) reveals enhanced capacity to infiltrate the central nervous system. Th17.1 cells express high levels of multidrug resistance protein 1 (MDR1), which contributes to their poor glucocorticoid responsiveness. In this study, we explored whether glucocorticoid sensitivity of Th17.1 cells can generically be improved through synergy between steroid hormones, including calcitriol (1,25(OH)2D3), estradiol (E2) and progesterone (P4). We showed that human blood Th17.1 cells were less sensitive to 1,25(OH)2D3 than Th17 cells, as reflected by lower vitamin D receptor (VDR) levels and reduced modulation of MDR1, IFN-γ and GM-CSF expression after 1,25(OH)2D3 exposure. Upon T-cell activation, VDR levels were increased, but still lower in Th17.1 versus Th17 cells, which was accompanied by a 1,25(OH)2D3-mediated decline in MDR1 surface expression as well as secretion of IFN-γ and GM-CSF. In activated Th17.1 cells, 1,25(OH)2D3 amplified the suppressive effects of methylprednisolone (MP) on proliferation, MDR1 surface levels, secretion of IFN-γ and granzyme B, as well as expression of brain-homing markers CCR6 and VLA-4. The addition of P4 to 1,25(OH)2D3 further enhanced MP-mediated reduction in proliferation, CD25, CCR6 and CXCR3. Overall, this study indicates that glucocorticoid sensitivity of Th17.1 cells can be enhanced by treatment with 1,25(OH)2D3 and further improved with P4. Our observations implicate steroid hormone crosstalk as a therapeutic avenue in Th17.1-associated inflammatory diseases including MS.
Collapse
Affiliation(s)
- Steven C. Koetzier
- Department of Immunology, Erasmus Medical Center (MC), University Medical Center Rotterdam, Rotterdam, Netherlands
- Multiple Sclerosis (MS) Center ErasMS, Erasmus Medical Center (MC), University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Jamie van Langelaar
- Department of Immunology, Erasmus Medical Center (MC), University Medical Center Rotterdam, Rotterdam, Netherlands
- Multiple Sclerosis (MS) Center ErasMS, Erasmus Medical Center (MC), University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Annet F. Wierenga-Wolf
- Department of Immunology, Erasmus Medical Center (MC), University Medical Center Rotterdam, Rotterdam, Netherlands
- Multiple Sclerosis (MS) Center ErasMS, Erasmus Medical Center (MC), University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Marie-José Melief
- Department of Immunology, Erasmus Medical Center (MC), University Medical Center Rotterdam, Rotterdam, Netherlands
- Multiple Sclerosis (MS) Center ErasMS, Erasmus Medical Center (MC), University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Kim Pol
- Department of Immunology, Erasmus Medical Center (MC), University Medical Center Rotterdam, Rotterdam, Netherlands
- Multiple Sclerosis (MS) Center ErasMS, Erasmus Medical Center (MC), University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Suzanne Musters
- Department of Immunology, Erasmus Medical Center (MC), University Medical Center Rotterdam, Rotterdam, Netherlands
- Multiple Sclerosis (MS) Center ErasMS, Erasmus Medical Center (MC), University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Erik Lubberts
- Department of Rheumatology, Erasmus Medical Center (MC), University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Willem A. Dik
- Department of Immunology, Erasmus Medical Center (MC), University Medical Center Rotterdam, Rotterdam, Netherlands
- Laboratory Medical Immunology, Erasmus Medical Center (MC), University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Joost Smolders
- Department of Immunology, Erasmus Medical Center (MC), University Medical Center Rotterdam, Rotterdam, Netherlands
- Multiple Sclerosis (MS) Center ErasMS, Erasmus Medical Center (MC), University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Neurology, Erasmus Medical Center (MC), University Medical Center Rotterdam, Rotterdam, Netherlands
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Marvin M. van Luijn
- Department of Immunology, Erasmus Medical Center (MC), University Medical Center Rotterdam, Rotterdam, Netherlands
- Multiple Sclerosis (MS) Center ErasMS, Erasmus Medical Center (MC), University Medical Center Rotterdam, Rotterdam, Netherlands
- *Correspondence: Marvin M. van Luijn,
| |
Collapse
|
34
|
Yang W, Denger A, Diener C, Küppers F, Soriano-Baguet L, Schäfer G, Yanamandra AK, Zhao R, Knörck A, Schwarz EC, Hart M, Lammert F, Roma LP, Brenner D, Christidis G, Helms V, Meese E, Hoth M, Qu B. Unspecific CTL Killing Is Enhanced by High Glucose via TNF-Related Apoptosis-Inducing Ligand. Front Immunol 2022; 13:831680. [PMID: 35265081 PMCID: PMC8899024 DOI: 10.3389/fimmu.2022.831680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
TNF-related apoptosis inducing ligand (TRAIL) is expressed on cytotoxic T lymphocytes (CTLs) and TRAIL is linked to progression of diabetes. However, the impact of high glucose on TRAIL expression and its related killing function in CTLs still remains largely elusive. Here, we report that TRAIL is substantially up-regulated in CTLs in environments with high glucose (HG) both in vitro and in vivo. Non-mitochondrial reactive oxygen species, NFκB and PI3K/Akt are essential in HG-induced TRAIL upregulation in CTLs. TRAILhigh CTLs induce apoptosis of pancreatic beta cell line 1.4E7. Treatment with metformin and vitamin D reduces HG-enhanced expression of TRAIL in CTLs and coherently protects 1.4E7 cells from TRAIL-mediated apoptosis. Our work suggests that HG-induced TRAILhigh CTLs might contribute to the destruction of pancreatic beta cells in a hyperglycemia condition.
Collapse
Affiliation(s)
- Wenjuan Yang
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Andreas Denger
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Caroline Diener
- Institute of Human Genetics, School of Medicine, Saarland University, Homburg, Germany
| | - Frederic Küppers
- Internal Medicine II, University Hospital Saarland, Homburg, Germany
| | - Leticia Soriano-Baguet
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.,Immunology and Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg.,Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Gertrud Schäfer
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Archana K Yanamandra
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany.,INM-Leibniz Institute for New Materials, Saarbrücken, Germany
| | - Renping Zhao
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Arne Knörck
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Eva C Schwarz
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Martin Hart
- Institute of Human Genetics, School of Medicine, Saarland University, Homburg, Germany
| | - Frank Lammert
- Internal Medicine II, University Hospital Saarland, Homburg, Germany.,Hannover Medical School (MHH), Hannover, Germany
| | - Leticia Prates Roma
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Dirk Brenner
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.,Immunology and Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg.,Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital University of Southern Denmark, Odense, Denmark
| | | | - Volkhard Helms
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Eckart Meese
- Institute of Human Genetics, School of Medicine, Saarland University, Homburg, Germany
| | - Markus Hoth
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Bin Qu
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany.,INM-Leibniz Institute for New Materials, Saarbrücken, Germany
| |
Collapse
|
35
|
Arora J, Wang J, Weaver V, Zhang Y, Cantorna MT. Novel insight into the role of the vitamin D receptor in the development and function of the immune system. J Steroid Biochem Mol Biol 2022; 219:106084. [PMID: 35202799 PMCID: PMC8995385 DOI: 10.1016/j.jsbmb.2022.106084] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/10/2022] [Accepted: 02/18/2022] [Indexed: 12/31/2022]
Abstract
Immune cells express the vitamin D receptor (VDR) and are therefore vitamin D targets. The Vdr protein can be readily measured in the kidney using antibodies to the Vdr and western blot. It is much more difficult to measure Vdr protein in the spleen because of the low level of VDR expression in resting immune cells. In order to more sensitively measure VDR expression, the Cre enzyme was inserted in the 3rd exon of the VDR gene and a reporter mouse that irreversibly expresses tdTomato was made. Mice that express one copy of the VDRCre gene were confirmed to be VDR +/- and mice that express two copies were confirmed to be VDR -/-. Initial characterization of the immune cells from the VDR +/-/VDRtdTomato+ mice, compared to VDR+/+ wildtype (WT) littermates, showed no effect of being hemizygous for the VDR on immune cell frequencies. High tdTomato expression was shown to be present in the bone marrow (BM) and thymus immune cell precursors. In the periphery, monocytes, neutrophils and macrophages had very high tdTomato+ (88-98%) expression while lymphocytes ranged from 60% to 70% tdTomato+. Tissue resident innate lymphoid cell (ILC) 1 and 3 cells were about 60-80% tdTomoto+, while ILC2 cells had very low tdTomato expression. Stimulation of VDRtdTomato+ splenocytes showed that the tdTomato- CD4+ and CD8+ T cells proliferated more than their tdTomato+ counterparts. T cells were sorted for tdTomato+ and tdTomato- and then activated for 72 h. Sorted tdTomato+ T cells expressed the VDR protein only after 72 h post-activation. The sorted tdTomato- T cells proliferated more than the sorted tdTomato+ T cells. Interestingly, activation of the tdTomato- T cells failed to induce new tdTomato expression. The data suggest that an early immune precursor expresses the VDR. In the periphery, neutrophils and monocytes are almost all tdTomato+, while some immune cells (ILC2 and some T cells) may never express the VDR.
Collapse
Affiliation(s)
- Juhi Arora
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, United States
| | - Jinpeng Wang
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, United States
| | - Veronika Weaver
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, United States
| | - Yongwei Zhang
- Gene Modification Facility, Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Margherita T Cantorna
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, United States.
| |
Collapse
|
36
|
Wu Z, Liu D, Deng F. The Role of Vitamin D in Immune System and Inflammatory Bowel Disease. J Inflamm Res 2022; 15:3167-3185. [PMID: 35662873 PMCID: PMC9160606 DOI: 10.2147/jir.s363840] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/06/2022] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a nonspecific inflammatory disease that includes ulcerative colitis (UC) and Crohn’s disease (CD). The pathogenesis of IBD is not fully understood but is most reported associated with immune dysregulation, dysbacteriosis, genetic susceptibility, and environmental risk factors. Vitamin D is an essential nutrient for the human body, and it not only regulates bone metabolism but also the immune system, the intestinal microbiota and barrier. Vitamin D insufficiency is common in IBD patients, and the abnormal low levels of vitamin D are highly correlated with disease activity, treatment response, and risk of relapse of IBD. Accumulating evidence supports the protective role of vitamin D in IBD through regulating the adaptive and innate immunity, maintaining the intestinal barrier and balancing the gut microbiota. This report aims to provide a broad overview of the role vitamin D in the immune system, especially in the pathogenesis and treatment of IBD, and its possible role in predicting relapse.
Collapse
Affiliation(s)
- Zengrong Wu
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Research Center of Digestive Disease, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Deliang Liu
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Research Center of Digestive Disease, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Feihong Deng
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Research Center of Digestive Disease, Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Correspondence: Feihong Deng, Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Research Center of Digestive Disease, Central South University, Changsha, Hunan410011, People’s Republic of China, Email
| |
Collapse
|
37
|
Effect of Vitamin D on Graft-versus-Host Disease. Biomedicines 2022; 10:biomedicines10050987. [PMID: 35625724 PMCID: PMC9138416 DOI: 10.3390/biomedicines10050987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 11/29/2022] Open
Abstract
The different cell subsets of the immune system express the vitamin D receptor (VDR). Through the VDR, vitamin D exerts different functions that influence immune responses, as previously shown in different preclinical models. Based on this background, retrospective studies explored the impacts of vitamin D levels on the outcomes of patients undergoing allogeneic hematopoietic stem-cell transplantation, showing that vitamin D deficiency is related to an increased risk of complications, especially graft-versus-host disease. These results were confirmed in a prospective cohort trial, although further studies are required to confirm this data. In addition, the role of vitamin D on the treatment of hematologic malignancies was also explored. Considering this dual effect on both the immune systems and tumor cells of patients with hematologic malignancies, vitamin D might be useful in this setting to decrease both graft-versus-host disease and relapse rates.
Collapse
|
38
|
Guo T, Ma D, Lu TK. Sense-and-Respond Payload Delivery Using a Novel Antigen-Inducible Promoter Improves Suboptimal CAR-T Activation. ACS Synth Biol 2022; 11:1440-1453. [PMID: 35316028 PMCID: PMC9016769 DOI: 10.1021/acssynbio.1c00236] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Chimeric antigen
receptor (CAR)-T cell therapies demonstrate the
clinical potential of lymphocytes engineered with synthetic properties.
However, CAR-T cells are ineffective in most solid tumors, partly
due to inadequate activation of the infused lymphocytes at the site
of malignancy. To selectively enhance antitumor efficacy without exacerbating
off-target toxicities, CAR-T cells can be engineered to preferentially
deliver immunostimulatory payloads in tumors. Here, we report a novel
antigen-inducible promoter for conditional payload expression in primary
human T cells. In therapeutic T cell models, the novel NR4A-based
promoter induced higher reporter gene expression than the conventional
NFAT-based promoter under weakly immunogenic conditions, where payload
expression is most needed. Minimal activity was detected from the
inducible promoters in the absence of antigen and after withdrawal
of stimulation. As a functional proof-of-concept, we used the NR4A-based
promoter to express cytokines in an antimesothelin CAR-T model with
suboptimal stimulation and observed improved proliferation compared
to T cells engineered with the conventional NFAT promoter or CAR alone.
Our system achieves CAR-directed payload expression under weakly immunogenic
conditions and could enable the next generation of cell therapies
with enhanced antitumor efficacy.
Collapse
Affiliation(s)
- Tingxi Guo
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Dacheng Ma
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Timothy K. Lu
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Senti Biosciences, South San Francisco, California 94080, United States
| |
Collapse
|
39
|
Parvez F, Lauer FT, Factor-Litvak P, Islam T, Eunus M, Horayara MA, Rahman M, Sarwar G, Ahsan H, Graziano JH, Burchiel SW. Exposure to arsenic and level of Vitamin D influence the number of Th17 cells and production of IL-17A in human peripheral blood mononuclear cells in adults. PLoS One 2022; 17:e0266168. [PMID: 35404942 PMCID: PMC9000092 DOI: 10.1371/journal.pone.0266168] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 03/16/2022] [Indexed: 12/12/2022] Open
Abstract
There is limited evidence on the effects of environmental exposure to arsenic (As) on the immune system in adults. In a population-based study, we have found that urinary As (UAs), and its metabolites [inorganic As (InAs), monomethylated arsenicals (MMA+3/+5), and dimethylated arsenicals (DMA+3/+5)] modulate or influence the number of T-helper 17 (Th17) cells and IL-17A cytokine production. In non-smoking women, we observed that UAs and DMA+3/+5 were associated with changes in Th17 cell numbers in a nonlinear fashion. In smoking males, we found that UAs was associated with a significant decrease of Th17 cell numbers. Similar association was observed among non-smoking males. Likewise, UAs, DMA+3/+5 and MMA+3/+5 were associated with diminished production of IL-17A among non-smoking males. When stratified by Vitamin D levels defined as sufficient (≥20 ng/ml) and insufficient (<20 ng/ml), we found a substancial decrease in Th17 cell numbers among those with insufficient levels. Individuals with sufficient VitD levels demonstrated significant inhibition of IL-17A production in non-smoking males. Collectively, we find that exposure to As via drinking water is associated with alterations in Th17 numbers and IL-17A production, and that these associations may be modified by Vitamin D status. Our findings have significance for health outcomes associated with As exposure.
Collapse
Affiliation(s)
- Faruque Parvez
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, United States of America
- * E-mail:
| | - Fredine T. Lauer
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, New Mexico, United States of America
| | - Pam Factor-Litvak
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Tariqul Islam
- University of Chicago and Columbia University Field Research Office, Dhaka, Bangladesh
| | - Mahbubul Eunus
- University of Chicago and Columbia University Field Research Office, Dhaka, Bangladesh
| | - M. Abu Horayara
- University of Chicago and Columbia University Field Research Office, Dhaka, Bangladesh
| | - Mizanour Rahman
- University of Chicago and Columbia University Field Research Office, Dhaka, Bangladesh
| | - Golam Sarwar
- University of Chicago and Columbia University Field Research Office, Dhaka, Bangladesh
| | - Habibul Ahsan
- Department of Health Studies, University of Chicago, Chicago, Illinois, United States of America
| | - Joseph H. Graziano
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Scott W. Burchiel
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, New Mexico, United States of America
| |
Collapse
|
40
|
Pechlivanidou E, Vlachakis D, Tsarouhas K, Panidis D, Tsitsimpikou C, Darviri C, Kouretas D, Bacopoulou F. The prognostic role of micronutrient status and supplements in COVID-19 outcomes: A systematic review. Food Chem Toxicol 2022; 162:112901. [PMID: 35227861 PMCID: PMC8873042 DOI: 10.1016/j.fct.2022.112901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 12/23/2022]
Abstract
Micronutrients constitute an adjuvant treatment for respiratory viral infections. Since there is no effective antiviral therapy for COVID-19 yet, adjuvant intervention for the survival of critically ill patients may be significant. Search of the PubMed, CINAHL and Cochrane databases was carried out to find human studies investigating the prognostic role of micronutrient status and the effects of micronutrient supplementation intervention in COVID-19 outcomes of adult patients. Patients with certain comorbidities (diabetes mellitus type 2, obesity, renal failure, liver dysfunction etc.) or pregnant women were excluded. 31 studies (27 observational studies and 4 clinical trials) spanning the years 2020-2021, pertaining to 8624 COVID-19 patients (mean age±SD, 61 ± 9 years) were included in this systematic review. Few studies provided direct evidence on the association of serum levels of vitamin D, calcium, zinc, magnesium, phosphorus and selenium to patients' survival or death. Vitamin D and calcium were the most studied micronutrients and those with a probable promising favorable impact on patients. This review highlights the importance of a balanced nutritional status for a favorable outcome in COVID-19. Micronutrients' deficiency on admission to hospital seems to be related to a high risk for ICU admission, intubation and even death. Nevertheless, evidence for intervention remains unclear.
Collapse
Affiliation(s)
- Evmorfia Pechlivanidou
- Center for Adolescent Medicine and UNESCO Chair in Adolescent Health Care, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, 11527, Greece
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, 11855, Greece
| | - Konstantinos Tsarouhas
- Department of Cardiology, University Hospital of Larissa, Mezourlo, Larissa, 41110, Greece
| | | | | | - Christina Darviri
- Postgraduate Program "The Science of Stress and Health Promotion", School of Medicine, National and Kapodistrian University of Athens, 4 Soranou Ephessiou Street, 11527, Athens, Greece
| | - Dimitrios Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Flora Bacopoulou
- Center for Adolescent Medicine and UNESCO Chair in Adolescent Health Care, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, 11527, Greece; Postgraduate Program "The Science of Stress and Health Promotion", School of Medicine, National and Kapodistrian University of Athens, 4 Soranou Ephessiou Street, 11527, Athens, Greece.
| |
Collapse
|
41
|
Muñoz A, Grant WB. Vitamin D and Cancer: An Historical Overview of the Epidemiology and Mechanisms. Nutrients 2022; 14:1448. [PMID: 35406059 PMCID: PMC9003337 DOI: 10.3390/nu14071448] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 02/07/2023] Open
Abstract
This is a narrative review of the evidence supporting vitamin D's anticancer actions. The first section reviews the findings from ecological studies of cancer with respect to indices of solar radiation, which found a reduced risk of incidence and mortality for approximately 23 types of cancer. Meta-analyses of observational studies reported the inverse correlations of serum 25-hydroxyvitamin D [25(OH)D] with the incidence of 12 types of cancer. Case-control studies with a 25(OH)D concentration measured near the time of cancer diagnosis are stronger than nested case-control and cohort studies as long follow-up times reduce the correlations due to changes in 25(OH)D with time. There is no evidence that undiagnosed cancer reduces 25(OH)D concentrations unless the cancer is at a very advanced stage. Meta-analyses of cancer incidence with respect to dietary intake have had limited success due to the low amount of vitamin D in most diets. An analysis of 25(OH)D-cancer incidence rates suggests that achieving 80 ng/mL vs. 10 ng/mL would reduce cancer incidence rates by 70 ± 10%. Clinical trials have provided limited support for the UVB-vitamin D-cancer hypothesis due to poor design and execution. In recent decades, many experimental studies in cultured cells and animal models have described a wide range of anticancer effects of vitamin D compounds. This paper will review studies showing the inhibition of tumor cell proliferation, dedifferentiation, and invasion together with the sensitization to proapoptotic agents. Moreover, 1,25-(OH)2D3 and other vitamin D receptor agonists modulate the biology of several types of stromal cells such as fibroblasts, endothelial and immune cells in a way that interferes the apparition of metastases. In sum, the available mechanistic data support the global protective action of vitamin D against several important types of cancer.
Collapse
Affiliation(s)
- Alberto Muñoz
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, CIBERONC and IdiPAZ, 28029 Madrid, Spain;
| | - William B. Grant
- Sunlight, Nutrition and Health Research Center, P.O. Box 641603, San Francisco, CA 94164-1603, USA
| |
Collapse
|
42
|
Enhancement of Antiviral T-Cell Responses by Vitamin C Suggests New Strategies to Improve Manufacturing of Virus-Specific T Cells for Adoptive Immunotherapy. BIOLOGY 2022; 11:biology11040536. [PMID: 35453735 PMCID: PMC9032103 DOI: 10.3390/biology11040536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/14/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022]
Abstract
Allogeneic and autologous transplantation of hematopoietic stem cells (HSCT) are being routinely used to treat patients with leukemia and lymphoma. Due to the required immunosuppression after stem cell transplantation, infection and reactivation by viruses are life-threatening complications. In recent years, adoptive transfer using virus-specific T cells (VSTs) has emerged as alternative to conventional therapies. Since vitamins are described to influence the immune system and its cellular components, the aim of this study was to examine whether vitamins modulate VST function and thereby enable an improvement of therapy. For that, we investigated the impact of vitamin C and D on the functionality of cytomegalovirus (CMV)-specific T cells isolated from CMV-seropositive healthy donors. We were able to show that vitamin C increases the expansion and activation state of CMV-specific T cells, and an increased influence of vitamin C was observed on cells isolated from male donors and donors above 40 years of age. A higher frequency of the terminally differentiated effector memory CD8+ T-cell population in these donors indicates a connection between these cells and the enhanced response to vitamin C. Thus, here we provide insights into the impact of vitamin C on cytotoxic T cells as well as possible additional selection criteria and strategies to improve VST functionality.
Collapse
|
43
|
Lu M, Shi H, Taylor BV, Körner H. Alterations of subset and cytokine profile of peripheral T helper cells in PBMCs from Multiple Sclerosis patients or from individuals with MS risk SNPs near genes CYP27B1 and CYP24A1. Cytokine 2022; 153:155866. [PMID: 35339045 DOI: 10.1016/j.cyto.2022.155866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/21/2022] [Accepted: 03/14/2022] [Indexed: 11/03/2022]
Abstract
T helper cells play an important role in the aetiology of Multiple Sclerosis (MS). Vitamin D has an anti-inflammatory effect on T helper cells and can affect onset and pathogenesis of MS. Two genes of the metabolic Vitamin D pathway expressed by activated T helper (Th) cells have been identified as MS risk genes by genome-wide association studies, CYP27B1 (25(OH)D3 1-alpha-hydroxylase) and CYP24A1 (1,25(OH)2D3 24-alpha-hydroxylase). Therefore, we hypothesize that the MS risk alleles around gene CYP27B1 and CYP24A1 are associated with the altered inflammatory profile of peripheral Th cells in PBMCs both ex vivo and in vitro potentially influencing the pathogenesis of MS. PBMCs from MS patients (41 RRMS patients in their remitting stage and 4 SPMS patients) and 12 healthy controls were collected, subpopulation of Th cells in PBMCs and cytokine profile were tested by Flow cytometry and Cytometric Bead Array (CBA), respectively. MS risk SNPs were genotyped by allele-specific PCR analysis. Data were analysed using nonparametric tests and linear regression for adjusting multiple factors. The proportion of Th17.1, Th17 and Th1 cells were all associated with MS while the proportions of Th2 (significant) and Th17 (near significant) cells were correlated with the expanded disability scale score of MS patients. Additionally, we found a MS-specific dysregulation in the IL-6 and TNF production of Th cells in Concanavalin A-stimulated PBMCs. Furthermore, the risk allele rs2248359-C (near gene CYP24A1) showed a consistent inhibitory effect on the proportions of Th1 and Th17.1 cells, and the presence of the homozygous risk allele rs703842-AA (near gene CYP27B1) reduced the production of IL-2. In conclusion, both MS disease and its risk alleles near Vitamin D metabolism genes influence the inflammatory profile of T helper cells in PBMCs.
Collapse
Affiliation(s)
- Ming Lu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China; Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia.
| | - Hui Shi
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Bruce V Taylor
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Heinrich Körner
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, Anhui Province, China.
| |
Collapse
|
44
|
Liu Y, Yan X, Zhang F, Zhang X, Tang F, Han Z, Li Y. TCR-T Immunotherapy: The Challenges and Solutions. Front Oncol 2022; 11:794183. [PMID: 35145905 PMCID: PMC8822241 DOI: 10.3389/fonc.2021.794183] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/28/2021] [Indexed: 12/31/2022] Open
Abstract
T cell receptor-engineered T cell (TCR-T) therapy is free from the limit of surface antigen expression of the target cells, which is a potential cellular immunotherapy for cancer treatment. Significant advances in the treatment of hematologic malignancies with cellular immunotherapy have aroused the interest of researchers in the treatment of solid tumors. Nevertheless, the overall efficacy of TCR-T cell immunotherapy in solid tumors was not significantly high when compared with hematological malignancies. In this article, we pay attention to the barriers of TCR-T cell immunotherapy for solid tumors, as well as the strategies affecting the efficacy of TCR-T cell immunotherapy. To provide some reference for researchers to better overcome the impact of TCR-T cell efficiency in solid tumors.
Collapse
Affiliation(s)
- Yating Liu
- Department of Oncology, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Xin Yan
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Fan Zhang
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Xiaoxia Zhang
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Futian Tang
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Zhijian Han
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yumin Li
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
- *Correspondence: Yumin Li,
| |
Collapse
|
45
|
Matos C, Renner K, Peuker A, Schoenhammer G, Schreiber L, Bruss C, Eder R, Bruns H, Flamann C, Hoffmann P, Gebhard C, Herr W, Rehli M, Peter K, Kreutz M. Physiological levels of 25-hydroxyvitamin D 3 induce a suppressive CD4 + T cell phenotype not reflected in the epigenetic landscape. Scand J Immunol 2022; 95:e13146. [PMID: 35073416 DOI: 10.1111/sji.13146] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/28/2022]
Abstract
1,25-dihydroxyvitamin D3 (1,25(OH)2 D3 ), the active metabolite of vitamin D3 has a strong impact on the differentiation and function of immune cells. Here we analyzed the influence of its precursor 25-hydroxyvitamin D3 (25(OH)D3 ) on the differentiation of human CD4+ T cells applying physiological concentrations in vitro. Our data show that 25(OH)D3 is converted to its active form 1,25(OH)2 D3 by T cells, which in turn supports FOXP3, CD25 and CTLA-4 expression and inhibits IFN-γ production. These changes were not reflected in the demethylation of the respective promoters. Furthermore, we investigated the impact of vitamin D3 metabolites under induced Treg polarization conditions using TGF-β. Surprisingly, no additive effect but a decreased percentage of FOXP3 expressing cells was observed. However, the combination of 25(OH)D3 or 1,25(OH)2 D3 together with TGF-β further upregulated CD25 and CTLA-4 and significantly increased soluble CTLA-4 and IL-10 secretion whereas IFN-γ expression of iTreg was decreased. Our data suggest that physiological levels of 25(OH)D3 act as potent modulator of human CD4+ T cells and autocrine or paracrine production of 1,25(OH)2 D3 by T cells might be crucial for the local regulation of an adaptive immune response. However, since no epigenetic changes are detected by 25(OH)D3 a rather transient phenotype is induced.
Collapse
Affiliation(s)
- Carina Matos
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center of Regensburg, Germany
| | - Kathrin Renner
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center of Regensburg, Germany
| | - Alice Peuker
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center of Regensburg, Germany
| | - Gabriele Schoenhammer
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center of Regensburg, Germany
| | - Laura Schreiber
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center of Regensburg, Germany
| | - Christina Bruss
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center of Regensburg, Germany
| | - Ruediger Eder
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center of Regensburg, Germany
| | - Heiko Bruns
- Department of Internal Medicine 5 - Hematology/Oncology, University Hospital of Erlangen, Germany
| | - Cindy Flamann
- Department of Internal Medicine 5 - Hematology/Oncology, University Hospital of Erlangen, Germany
| | - Petra Hoffmann
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center of Regensburg, Germany.,Regensburg Centre for Interventional Immunology, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Claudia Gebhard
- Regensburg Centre for Interventional Immunology, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center of Regensburg, Germany
| | - Michael Rehli
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center of Regensburg, Germany.,Regensburg Centre for Interventional Immunology, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Katrin Peter
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center of Regensburg, Germany
| | - Marina Kreutz
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center of Regensburg, Germany.,Regensburg Centre for Interventional Immunology, University Hospital Regensburg, 93053, Regensburg, Germany
| |
Collapse
|
46
|
Vitamin D deficiency after allogeneic hematopoietic cell transplantation promotes T-cell activation and is inversely associated with an EZH2-ID3 signature. Transplant Cell Ther 2022; 28:18.e1-18.e10. [PMID: 34597852 PMCID: PMC8792200 DOI: 10.1016/j.jtct.2021.09.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/10/2021] [Accepted: 09/22/2021] [Indexed: 01/03/2023]
Abstract
Vitamin D promotes a shift from a proinflammatory to a more tolerogenic immune state in allogeneic hematopoietic cell transplant (HCT) recipients. The dominant mechanism responsible for this shift has not been elucidated. We took a multifaceted approach to evaluating the clinical and immunologic impact of low vitamin D levels in 53 HCT recipients. We used 28-plex flow cytometry for immunophenotyping, serum cytokine levels, T-cell cytokine production, and T-cell whole genome transcription. The median day-30 vitamin D level was 20 ng/mL, and deficiency was common in younger patients undergoing myeloablative transplantation. Low vitamin D levels were associated with a high CD8/Treg ratio, increased serum levels and T-cell production of proinflammatory cytokines, and a gene expression signature of unrestrained T-cell proliferation and epigenetic modulation through the PRC2/EZH2 complex. Immunophenotyping confirmed a strong association between high levels of vitamin D and an activated EZH2 signature, characterized by overexpression of ID3, which has a role in effector T-cell differentiation. Our findings demonstrate the critical role of vitamin D in modulating T-cell function in human GVHD and identify a previously undescribed interaction with EZH2 and ID3, which may impact effector differentiation and has implications to cell therapies and other forms of cancer immunotherapy. © 20XX American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
Collapse
|
47
|
Bahreini F, Rayzan E, Rezaei N. MicroRNAs and Diabetes Mellitus Type 1. Curr Diabetes Rev 2022; 18:e021421191398. [PMID: 33588736 DOI: 10.2174/1573399817666210215111201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/11/2020] [Accepted: 01/07/2021] [Indexed: 11/22/2022]
Abstract
Type 1 diabetes mellitus is a multifactorial, progressive, autoimmune disease with a strong genetic feature that can affect multiple organs, including the kidney, eyes, and nerves. Early detection of type 1 diabetes can help critically to avoid serious damages to these organs. MicroRNAs are small RNA molecules that act in post-transcriptional gene regulation by attaching to the complementary sequence in the 3'-untranslated region of their target genes. Alterations in the expression of microRNA coding genes are extensively reported in several diseases, such as type 1 diabetes. Presenting non-invasive biomarkers for early detection of type 1 diabetes by quantifying microRNAs gene expression level can be a significant step in biotechnology and medicine. This review discusses the area of microRNAs dysregulation in type 1 diabetes and affected molecular mechanisms involved in pancreatic islet cell formation and dysregulation in the expression of inflammatory elements as well as pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Farbod Bahreini
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Elham Rayzan
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- International Hematology/Oncology of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
48
|
Comparative pharmacokinetic study of bicalutamide administration alone and in combination with vitamin D in rats. ACTA CHROMATOGR 2021. [DOI: 10.1556/1326.2021.00995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Bicalutamide (BCL) has been approved for treatment of advanced prostate cancer (Pca), and vitamin D is inevitably used in combination with BCL in Pca patients for skeletal or anti-tumor strategies. Therefore, it is necessary to study the effect of vitamin D application on the pharmacokinetics of BCL.
We developed and validated a specific, sensitive and rapid UHPLC–MS/MS method to investigate the pharmacokinetic behaviours of BCL in rat plasma with and without the combined use of vitamin D. Plasma samples were extracted by protein precipitation with ether/dichloromethane (2:1 v/v), and the analytes were separated by a Kinetex Biphenyl 100A column (2.1 × 100 mm, 2.6 μm) with a mobile phase composed of 0.5 mM ammonium acetate (PH 6.5) in water (A) and acetonitrile (B) in a ratio of A:B = 35:65 (v/v). Analysis of the ions was run in the multiple reactions monitoring (MRM) mode. The linear range of BCL was 5–2000 ng mL−1. The intra- and inter-day precision were less than 14%, and the accuracy was in the range of 94.4–107.1%. The mean extraction recoveries, matrix effects and stabilities were acceptable for this method. The validated method was successfully applied to evaluate the pharmacokinetic behaviours of BCL in rat plasma. The results demonstrated that the pharmacokinetic property of BCL is significantly affected by combined use of vitamin D, which might help provide useful evidence for the clinical therapy and further pharmacokinetic study.
Collapse
|
49
|
Bouillon R, Quesada‐Gomez JM. Vitamin D Endocrine System and COVID-19. JBMR Plus 2021; 5:e10576. [PMID: 34950831 PMCID: PMC8674769 DOI: 10.1002/jbm4.10576] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/25/2021] [Accepted: 10/31/2021] [Indexed: 12/19/2022] Open
Abstract
Preclinical data strongly suggest that the vitamin D endocrine system (VDES) may have extraskeletal effects. Cells of the immune and cardiovascular systems and lungs can express the vitamin D receptor, and overall these cells respond in a coherent fashion when exposed to 1,25-dihydroxyvitamin D, the main metabolite of the VDES. Supplementation of vitamin D-deficient subjects may decrease the risk of upper respiratory infections. The VDES also has broad anti-inflammatory and anti-thrombotic effects, and other mechanisms argue for a potential beneficial effect of a good vitamin D status on acute respiratory distress syndrome, a major complication of this SARS-2/COVID-19 infection. Activation of the VDES may thus have beneficial effects on the severity of COVID-19. Meta-analysis of observational data show that a better vitamin D status decreased the requirement of intensive care treatment or decreased mortality. A pilot study in Cordoba indicated that admission to intensive care was drastically reduced by administration of a high dose of calcifediol early after hospital admission for COVID-19. A large observational study in Barcelona confirmed that such therapy significantly decreased the odds ratio (OR) of mortality (OR = 0.52). This was also the conclusion of a retrospective study in five hospitals of Southern Spain. A retrospective study on all Andalusian patients hospitalized because of COVID-19, based on real-world data from the health care system, concluded that prescription of calcifediol (hazard ratio [HR] = 0.67) or vitamin D (HR = 0.75), 15 days before hospital admission decreased mortality within the first month. In conclusion, a good vitamin D status may have beneficial effects on the course of COVID-19. This needs to be confirmed by large, randomized trials, but in the meantime, we recommend (rapid) correction of 25 hydroxyvitamin D (25OHD) deficiency in subjects exposed to this coronavirus. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Roger Bouillon
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism and AgeingKU LeuvenLeuvenBelgium
| | - José Manuel Quesada‐Gomez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina SofíaUniversidad de Córdoba, Fundación Progreso y SaludCórdobaSpain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES)MadridSpain
| |
Collapse
|
50
|
Katsuki H. Nuclear receptors of NR1 and NR4 subfamilies in the regulation of microglial functions and pathology. Pharmacol Res Perspect 2021; 9:e00766. [PMID: 34676987 PMCID: PMC8532137 DOI: 10.1002/prp2.766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/01/2021] [Accepted: 03/15/2021] [Indexed: 12/15/2022] Open
Abstract
This review provides an overview of researches on the NR1 and NR4 nuclear receptors involved in the regulation of microglial functions. Nuclear receptors are attractive candidates for drug targets in the therapies of the central nervous system disorders, because the activation of these receptors is expected to regulate the functions and the phenotypes of microglia, by controlling the expression of specific gene subsets and also by regulating the cellular signaling mechanisms in a nongenomic manner. Several members of NR1 nuclear receptor subfamily have been examined for their ability to regulate microglial functions. For example, stimulation of vitamin D receptor inhibits the production of pro-inflammatory factors and increases the production of anti-inflammatory cytokines. Similar regulatory actions of nuclear receptor ligands on inflammation-related genes have also been reported for other NR1 members such as retinoic acid receptors, peroxisome proliferator-activated receptors (PPARs), and liver X receptors (LXRs). In addition, stimulation of PPARγ and LXRs may also result in increased phagocytic activities of microglia. Consistent with these actions, the agonists at nuclear receptors of NR1 subfamily are shown to produce therapeutic effects on animal models of various neurological disorders such as experimental allergic encephalomyelitis, Alzheimer's disease, Parkinson's disease, and ischemic/hemorrhagic stroke. On the other hand, increasing lines of evidence suggest that the stimulation of NR4 subfamily members of nuclear receptors such as Nur77 and Nurr1 also regulates microglial functions and alleviates neuropathological events in several disease models. Further advancement of these research fields may prove novel therapeutic opportunities.
Collapse
Affiliation(s)
- Hiroshi Katsuki
- Department of Chemico‐Pharmacological SciencesGraduate School of Pharmaceutical SciencesKumamoto UniversityKumamotoJapan
| |
Collapse
|